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Even the mountains flowed 
before the Lord. 

From the song of Deborah 
after her victory over the 
Philistines, Judges 5 5 ,  
translated by M. Reiner 
(Physics Today, January 1964, 
Q. 62). 

The Soudan Iron Formation exposed in Tower-Soudan State Park 
near Tower, Minnesota. This rock was originally deposited as 
horizontal layers of iron-rich sediments at the bottom of a sea. 
Deposition took place more than a billion years ago, in the Precam- 
brian era of geologic time. Subsequent metamorphism, deforma- 
tion, and tilting of the rocks have produced the complex structures 
shown. (Photo by A.G. Fredrickson, University of Minnesota.) 
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PREFACE 

Today a number of industrial and academic researchers would like 
to use rheology to help solve particular problems. They really 
don’t want to become full-time rheologists, but they need rheolog- 
ical measurements to help them characterize a new material, ana- 
lyze a non-Newtonian flow problem, or design a plastic part. l 
hope this book will meet that need. A number of sophisticated in- 
struments are available now for making rheological measurements. 
My goal is to help readers select the proper type of test for their 
applications, to interpret the results, and even to determine 
whether or not rheological measurements can help to solve a par- 
ticular problem. 

One of the difficult barriers between much of the rheology 
literature and those who would at least like to make its acquain- 
tance, if not embrace it, is the tensor. That monster of the double 
subscript has turned back many a curious seeker of rheological 
wisdom. To avoid tensors, several applied rheology books have 
been written in only one dimension. This can make the barrier 
seem even higher by avoiding even a glimpse of it. Furthermore, 
the one-dimensional approach precludes presentation of a number 
of useful, simplifying concepts. 

1 have tried to expose the tensor monster as really quite a 
friendly and useful little man-made invention for transforming vec- 
tors. It greatly simplifies notation and makes the three-dimensional 
approach to rheology practical. I have tried to make the incorpo- 
ration of tensors as simple and physical as possible. Second-order 
tensors, Cartesian coordinates, and a minimum of tensor manipu- 
lations are adequate to explain the basic principles of rheology and 
to give a number of useful constitutive equations. With what is 
presented in the first four chapters, students will be able to read 
and use the current rheological literature. For curvilinear coordi- 
nates and detailed development of constitutive equations, several 
good texts are available and are cited where appropriate. 

Who should read this book, and how should it be used? For 
the seasoned rheologist or mechanicist, the table of contents 
should serve as a helpful guide. These investigators may wish to 
skim over the first section but perhaps will find its discussion of 
constitutive relations and material functions with the inclusion of 
both solids and liquids helpful and concise. I have found these four 
chapters on constitutive relations a very useful introduction to 
rheology for first- and second-year engineering graduate students. 
1 have also used portions in a senior course in polymer processing. 
The rubbery solid examples are particularly helpful for later de- 
velopment of such processes as thermoforming and blow molding. 
There are a number of worked examples which students report are 
helpful, especially if they attempt to do them before reading the 
solutions. There are additional exercises at the end of each chap- 
ter. Solutions to many of these are found at the end of the text. 
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In Part I of the book we only use the simplest deformations, 
primarily simple shear and uniaxial elongation, to develop the im- 
portant constitutive equations. In Part I1 the text describes rheo- 
meters, which can measure the material functions described in 
Chapters 1 through 4. How can the assumed kinematics actually 
be achieved in the laboratory'? This rheometry material can serve 
the experienced rheologist as a useful reference to the techniques 
presently available. Each of the major test geometries is described 
with the working equations, assumptions, corrections, and limita- 
tions summarized in convenient tables. Both shear and extensional 
rheometers are described. Design principles for measuring stress 
and strain in the various rheometers should prove helpful to the 
new user as well as to those trying to build or modify instruments. 
The important and growing application of optical methods in rheol- 
ogy is also described. 

The reader who is primarily interested in using rheology to 
help solve a specific and immediate problem can go directly to a 
chapter of interest in Part I11 of the book on applications of rheol- 
ogy. These chapters are fairly self-contained. The reader can go 
back to the constitutive equation chapters as necessary for more 
background or to the appropriate rheometer section to learn more 
about a particular test method. These chapters are not complete 
discussions of the application of rheology to suspensions and poly- 
meric liquids; indeed an entire book could be, and some cases has 
been, written on each one. However, useful principles and many 
relevant examples are given in each area. 
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APPENDIX SOLUTIONS 
TO EXERCISES 

Chapter 1 
1.10.1 Tensor Algebra 

z j u j = [  2 3 2  2 y 1 ] . [ i ] = ( 1 4 , 2 3 , - 2 )  (avector) 

- 1  1 0 

(b) 

= (14,23, -2)sinceT = TTthenv.T = T.v 

3 2  9 +4 +1 

-1  1 0 -1  1 0 + 1  +1 +o 
T. ' I  . T. 11 . = [ I l l : [  2 2 ;'I= +4 +4 + 1  = 2 5 ( a s c a i a ) = u ~ 2  

Vi T i jv j  = (using the vector result from (a)) = (5 ,3 ,7) .  

(el 

1 %1%125 %1%215 %if335 

%2%] 35 %1%221 %3%349 
or, showing the unit vv dyads = 2221 15 i2%29 %2%321 

25 15 35 

(0 

3 2  

- 1  1 0 
= [ 2 2 y l ]  * [ i] = (3,2, -1)  (a vector) 
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3 2 - 1  1 0 0  3 2 -1 

-1 1 0 0 0 1  -1 1 0 
cjIjk=[ 2 2 1 ] * [ 0  1 0 ] = [  2 2 1 1  

(T I = T is a definition of I, see eq. 2.2.33) 

1.10.2 Invariants 

Recall the definition of the invariants (eqs. 1.3.6-1.3.8) 

IT = trT = sum of the diagonal components of T = 3 + 2 + 0 = 5 

1 
2 

Z I T  = - (1: - trT2) 

T 2 = T " I ' = T i j q k =  t r T 2 = 1 4 + 9 + 2 = 2 5  

1 
I I T  = 2 (25 - 25) = 0 

I I I T  = detT = 0 - 2 - 2 - 3 -0  - 2  = -9 

1.10.3 Determination of the Stress Tensor 

(a) This exercise is very similar to Example 1.2.2. 1 N/1 mm2 is 
1 MPa. 

Normal to Test Su#ace Stress Vector (M P a )  
f l  tl = 21 
22 t 2  = -223 
23 t3  = -222 

Thus the state of stress or stress tensor at the test point is 

(b) What is the net force on the 1 mm2 surface whose normal is 
ii=21+22? 

t n = f i * T = ( l  - 1 O ) [ O  1 0 0  0 -2 ]=-( l ,O,-2)  1 

J z ' J z '  0 -2 0 Jz 
1 

f,, = a,tn = -(l21 - 223) in newtons Jz 
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(c) The normal component off, normal to li is 

(d) Invariants of T are 

1 
2 IT = 1 MPa ZIT = - (1-9) = -4(MPa)2 Z Z Z T  = -4(MPa)3 

1.10.4 C as Length Change 
Use the definition of the deformation gradient tensor, eq. 1.4.3, to 
substitute for dx 

Using the transpose, eq. 1.2.27, to change order of operations, we 
obtain 

since ii’ = dx’/Jdx’I. 

1.10.5 Inverse Deformation Tensors 
(a) Fromeq. 1.4.22 

since fi = dx/ldxl and B-I = ( F - l ) T  ( F - ’ ) T  by eq. 1.4.30. 
(b) From eq. 1.4.14. 

From eq. 1.4.17. for an incompressible material 

da‘ = da . F 

The inverse reverses this operation (recall eq. 1.4.29) 

da = da‘ + F - ’  
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Substituting 

I (da’ . F-I) . (da’ . F-I) - (da’ F-I) . ((F-l)T . da’) = fi’.c-’.fi’ - -- 
P 2  - da’ a da’ va t2  

1.10.6 Planar Extension of a Mooney-Rivlin Rubber 

(a) (b) The boundary deformations will be the same as in Example 
1.8.2. Thus, by eq. 1.8.8 B will be 

B i j = [  a2 0 0 1 ] and B ” = [  a-2 0 0 1 0 1  0 
0 0 a-2 0 0 ff2 

(c) With these tensors we can readily calculate the stresses for a 
Mooney-Rivlin rubber. Rewriting eq. 1.6.3 in terms of gl = 2Cl 
and g2 = -2C2. we have 

T = -PI + 2ClB - 2C2B-I 
TI\ = - p  + 2cIa2 - 2c2a-2 
T22 = - p  + 2Cl - 2C2 
T33 = - p  + 2 C 1 a - ~  - 2Cp2  = 0 free surface 

p = 2c,ff-? - 2c2ff2 

TI I = (2CI + 2CZ)(ar2 - a-2) 

This result has exactly the same functional dependence as the neo- 
Hookean model. Thus measurements of TII in planar extension 
could not differentiate between the two. However 

T22 = 2C1(1 - a-*) + 2C2(a2 - 1) 

which has a dependence on a that differs from the neo-Hookean. 

1.10.7 Eccentric Rotating Disks 
Note that in the literature this geometry&is called the Maxwell or- 
thogonal rheometer or eccentric rotating disks, ERD (Macosko and 
Davis, 1974; Bird, et al., 1987, also see Chapter 5 ) .  Usually, the 
coordinates 22 = y and 23 = E are used. 
( 4  

-S 

Fij = % = [ 5 c e ]  where c = cos Qt and s = sin Rt 
0 0  
c2 +s2  cs - s c  0 0 

c2 + s2 + y 2  
Y 

Note that there are shear and normal components of the strain. Also 
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note that this is the same deformation as simple shear of eq. 1.4.24 
with slightly different notation. 
(b) Using eq. 1.5.2., we can readily evaluate the stresses 

The stress components acting on the disks will be T . % 3  = t 3  

The force components can be calculated by integrating these stresses 
over the area of the disk. 

f = t3dA S 
f x ,  = 0 
f x l  = 
f x ,  = 0 

Macosko and Davis discuss using the boundary conditions to 
evaluate f x ,  . 

1.10.8 Sheet Inflation 

(a) From a right triangle formed with the bubble radius, R, as the 
hypotenuse and the initial sheet radius, Ro, as the base, we obtain 
R2 = Ri + ( R  - h)2 and thus R = ( R i  + h2/2h) .  
(b) Deformation in Membrane 

a1 = a2 near the pole because the bubble is symmetric 

aI(Y2a3 = 1 for an incompressible solid 

Thus a3 = l/a: or 6/S0 = ( A x , / A x ) ~ .  We can determine the 
thickness of the bubble by measuring the stretch near the pole. 
(c) Stresses in the Membrane. Applying the neo-Hookean model 

I qj = [ 0 - p  + G(a: - 1) 0 
- p  + G(u: - 1) 0 0 

0 0 - p  + G(u; - 1) 

T33 = 0 for a thin membrane; therefore p = G(a: - 1). Thus 
Ti1 = T22 = G(Q: - l / a f ) .  
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TI I and T22 can be treated as surface tensions where I' is the 
stress in the membrane times unit thickness r = TI I 6. Using the 
membrane balance equation, eq. 1.8.5. 

since R I  = R2 = R for a sphere. Substituting gives 

1.10.9 Film Tenter 

(a) Equate the volumetric flow rate at the entrance and exit. 

V i n A i n  = U o u t A o u t  

(1 m/s)(0.5m)(150 x 10-6m) = (3m/s)(l m)h 
h = 2 5 ~ m  

(b) Find the stress on the last pair of clamps. 
The extensions are fixed by the tenter 

f f 2 = - -  - 110.5 = 2 
Ax; 
Ax3 25 x 1 

f f 3 = - -  - 
Ax; 150 x = 6 

Because the material is incompressible, the volume will be constant: 

A X ;  AX;  AX;  = A X  I Ax2 Ax3 

1 1 
( Y I C X ~ C X ~  = 1 

Recall that 

Thus 

0 0 ff3 

To evaluate B, we use B = F . FT because F = FT; then B = FZ 
and 
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0 0  
B i j =  [! 0 ]  

0 0 a; 

For the neo-Hookean solid 

Substituting for B gives 

but T33 = 0, no external forces acting in 23 direction, perpendicular 
to the film. Therefore 

p = Gaf 
T22 = -Gaf + G a i  = G(ai - af) 

1 
36 

= 5 x 105(4 - -) = 1.99 x 106Pa 

Thus the force exerted per unit area in the last pair of clamps is 

(c) Assume that the torque needed to turn the roller is due only to 
the force required to stretch the film in the 21 direction. The force 
is the stress component tl times the film cross-sectional area a1 . 

torque = R x altl = -m f3 x (11 ml[25 x 1 0 - 6 m l ) T ~ ~ f ~  
(O; ) 

toque = (0.15 m)(25 x 

torque = (0.15)(25 x 10’6)(5 x 105(9 - 36 ) ) ( - f~)  

m2)(G(af - af))f3 x $2 

1 

M = -16.25flN - m 

Chapter 2 
2.8.1 B and D for Steady Extension 
An extensional flow is steady if the instantaneous rate of change of 
length per unit length is constant. 

1 dl -- = k = constant 
1 dt 
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or 

1 d a  -- = k where a = 1/10 = extension ratio 
a dt 

Integrating with the intitial condition 1 = lo at t = to, we obtain 

I I 

/ y = / k d t  

For a general extension 

Therefore, for a general steady extensional flow 

The rate of deformation tensor is just the first time derivative 
of B evaluated at ro = t 

Recall the definitions of the invariants from eqs. 1.3.6-1.3.8. 

1 2 0  = trD(= 0 for incompressible) 
1 
2 1 1 2 0  = - ((tr2D)' - tr (2D)2) 

1 1 1 2 ~  = det2D 

Now apply these results to each of the special cases. 
(a) Steady Uniaxial Extension. For the special case of uniaxial 
extension, symmetry gives 

while for an incompressible material (conservation of volume) it 
gives (recall eq. 1.4.6) 
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Thus 

and for steady uniaxial 

Now we can solve for the invariants 

(2.8.2) 

(2.8.3) 

1 1  

a1 I 
tr (B2) = a: + + 2 

1 1 
118 = ?[(ID)'  - uB2] = 2al + - 

a: 

or 

and 

I I I B  = 1 (for all incompressible materials) 

For the rate of deformation we can take the time derivatives 
of Bij or reason directly. Again by symmetry €2 = €3 and for an 
incompressible material 120 = tr 2D = 0. Thus 

€1 + €2 + €3 = 0 

which gives 

€ 1  = -2€7 
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Thus 

and the invariants are 

(b) Steady Equal Biaxial Extension. This is the reverse of uniaxial 
extension a b  = a: and a2 = l/ab. 
Thus 

and for steady equal biaxial 

The first invariant is 

1 
Ig = - + & I  

a: 

or 

and the second becomes 

(2.8.7) 

or 

Dij can be evaluated from the derivatives of Bij 

-211 0 0 
2Dij = [ 8 11 O ]  4DijDjk = [ 'i' d :] (2.8.8) 

0 € 1  0 0 1: 
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(2.8.9) 

1 1 1 2 D  = 21: 

We note that although equal biaxial extension is just the reverse of 
uniaxial, the invariants of B are different. Therefore we would ex- 
pect material functions measured in each deformation to be different 
in general. Another common approach to equibiaxial extension is 
to let ( rb  = cry2 and = 241, basing ~e~lgth change on the sides 
rather than the thickness of the samples. 
(c) Steady Planar Extension. In this case, as we saw in Example 
1.8.1, a2 = 1. Then from conservation of volume a1 = 1 /a3, and 
thus 

a; 0 0 
B i j = [ :  0 1 l /a  o:] 

and for steady planar extension 

and 

2.8.2 Stresses in Steady Extension 
(a) Power Law Fluid. Apply eq. 2.4.12 to the kinematics found 
in Exercise 2.8.1. The results are: 

Uniaxial extension 

Biaxial 
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Planar 

(b) Bingham Plastic. We can use the constitutive equation to 
rewrite the yield stress criteria in terms of B. Since r = GB 

Bingham Plastic results are summarized in the Table 2.8.1, 

2.8.3 Pipe Flow of a Power Law Fluid 
You need to increase the pipe diameter. Recall eq. 2.4.21 

Q =  

Let Ql = Q2; Ap1 = Am, 2Ll = L2; m ,  n =constants and solve 
for R2/ RI . 

From eq. 2.4.22 the ratio of shear rates in the two pipes will be 

TABLE 2.8.1 / Bingham Plastic Results 
Hookean t ,  Criteria Newtonian 

for 11, < 7; I I ,  for I I ,  > 7; 

Equal biaxial TII - T22 = G ( l / a i  -all L G2(a/ + 2/41) 2-11 - T22 = 3q0i + 437, 
< 3 q 0 2  
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2.8.4 Yield Stress in Tension 
Using the results of Example 2.8.2 we obtain 

10 
T~ = -Pa. 

d3 

Chapter 3 

3.4.1 Relaxation Spectrum 
Substitute for G ( s )  into qt(w) 

W W  

rf(o) = 1 [ 1 ?e-’/*dh]cos os ds 
0 0  

Rearranging gives 

Using standard integral tables, we find 

M 

for b =- 0 
b 

cos at e-bf dt = - 
b2 + a2 

0 

Thus 

M 

3.4.2 Two-Constant Maxwell Model 
The two-constant integral linear viscoelastic model is 
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Differentiating gives 

Multiplying by (hl + h2) yields 

-m 

+ (hi + h2)(G1 + G2)P(t)  

Differentiating again, 

or 

-m 

Combining the three equations, we find that 

a Y ( t )  as a2 T 
~ + ( A I  +h2)-+h1h2- at  a t 2  = (A1 G I +h2G2)p(r)+h Ih2(GI+G2)- at 

3.4.3 Derivation of G' and G" 

For sinusoidal oscillations the shear rate is p = 
3.3.27. Substituting 

cos wt, eq. 

t 

r = 1 G(t - r')j/ocos wt' dt' 
--03 
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00 

= yo 1 G(s) cos w ( t  - s ) d s  
0 

Using the trigonometric relation for cos(x - y), we can write 

7 00 

T = yo 1 G(s) cos ws ds cos wt + yo G(s) sin us ds sin wt 

0 0 

From eq. 3.3.17 we see that 

I 00 

Ti = 90 1 G(s) sin ws ds and r; = yo G(s) cos ws ds 
0 0 

Thus, from eqs. 3.3.28 and 3.3.29 

qr = I G ( s )  cos ws ds or G” = w G(s) cos u s  ds 
0 I 0 

q” = I G ( s )  sin ws ds or G’ = w G(s) sin ws ds 
0 7 0 

We can obtain these quantitites in terms of the discrete expo- 
nential relaxation times by substituting in for G(s) with eq. 3.2.8 or 
3.2.10 and solving the definite integrals of the exponentials (check 
any standard integral table). For example, with eq. 3.2.8 

Using eq. 3.2.10 gives 

N 
3.3.3 1 

k = l  

3.3.32 

3.4.4 Energy Dissipation 
Recall that the rate of energy lost by viscous dissipation per unit 
volume is 

rate of energy dissipation = r : D 
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and that the energy dissipated over a length of time t is 

energy dissipated = 4 = t : D dt s 0 

For small amplitude sinusoidal oscillations, this expression be- 
comes 

According to eq. 3.3.15, y = yo sin wt,  so i, = wyocos wt.  
Then from eq. 3.3.17, t = t h  sin wt + ~ C O S  wt.  
Then 

2HUJ 

9 = 1 (r; sin wt + rl  cos wt)yo cos wt dt 
0 

= wyo (ri sin wt cos wt + T: cos2 wt)dt q. 0 

jl lrw 
Since 

Then 

3.4.5 Zero Shear Viscosity and Compliance from G’, G” 

Recall that 
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Also from Exercise 3.4.3 

0 

0 

Expand sin ws and cos ws in a Taylor series around ws = 0 

G” = G(s)[l - - + * * * ]  ds sm 0 2 

Then in the limit as w +. 0 

G(s)ds and lim G’ = w2 
W+O 

0 
o+o 

0 

Thus 

Chapter 4 
4.6.1 Relaxation After a Step Strain for the Lodge Equation 

The shear stress is given by eq. 4.3.19, and y ( r ,  t’) is given for a 
step shear in eq. 4.3.20. From these two equations we find 

The portion of the integral from zero to t is zero because y (t , t’) = 0 
when t’ > 0. 
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To obtain the first normal stress difference, NI = TI I - 522, 

from eq. 4.3.18, we must obtain the components BI I ( r ,  t ')  and 
B22(t, t ' )  for the strain tensor B. We find from eq. 1.4.24 that 

and therefore 

B I  I  (t, r ' )  - B d t ,  r ' )  = y 2 0 ,  r ' )  

As before, y ( t ,  t ' )  is given by eq. 4.3.20. Carrying out the 
same manipulations as we did for the shear stress, therefore, yields 

The ratio NI / q 2  is then 

- Yo 
N1 -- 
TI 2 

which is the Lodge-Meissner relationship given by eq. 4.2.8. 

4.6.2 Stress Growth After Start-up of Steady Shearing for the 
Lodge Equation 
For steady shearing that began at time zero, the history of the strain 
tensor is given by eq. 4.3.21. Therefore, according to eq. 4.3.19 the 
shear stress is 
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Most of the terms above cancel out, leaving 

- ~ o ( 1  - e-''*) q+=-- 712 

Y 

This is the same result that we obtained with the UCM model; 
see eq. 4.3.14. 
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1 
The power of any spring 

in the sameproportion 
with the tension thereof. 

ELA S TIC S OLID 
Robert Hooke (1678) 

1.1 Introduction 
Figure 1.1.1 shows some of the experimental apparatuses Robert 
Hooke used to prove his law. When he doubled the weight attached 
to the springs or to the long wire, the extension doubled. Thus he 
proposed that the force was proportional to the change in length: 

f - A L  (1.1.1) 

Figure 1.1.1. 
Some of the experiments 
Hooke used to establish his 
law of extension. Note the 
marks (0, p, q, r, etc.) he 
used to indicate that displace- 
ment goes linearly with force. 
From Hooke, 1678. 
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He was certainly on the right track to the constitutive equation 
for the ideal elastic solid, but if he used a different length wire or 
a different diameter of the same material, he found a new constant 
of proportionality. Thus his constant was not uniquely a material 
property but also depended on the particular geometry of the sam- 
ple. To find the true material constant-the elastic modulus-of 
his wires, Hooke needed to develop the concepts of stress, force 
per unit area, and strain. Stress and strain are key concepts for 
rheology and are the main subjects of this chapter. 

If crosslinked rubber had been available in 1678, Hooke 
might well have also tried rubber bands in his experiments. If 
so he would have drawn different conclusions. Figure 1.1.2 shows 
results for a rubber sample tested in tension and in compression. 
We see that for small deformations near zero the stress is linear 
with deformation, but at large deformation the stress is larger than 
is predicted by Hooke's law. A relation that fits the data reasonably 
well is 

1 TII = G(aZ - -) 
(Y 

( 1.1.2) 

where T1 I is the tensile force divided by the area a, which it acts 
upon. 

f Figure 1.1.2. 

stress versus extension ra- a 
tio for a rubber sample. (b) 
Schematic diagram of the de- 
formation, Data from Treloar 
(1975) on sulfur-vulcanized 
natural rubber. Solid line is 

Pa. 

( 1.1.3) 

The extension ratio (Y is defined as the length of the deformed 
sample divided by the length of the undeformed one: 

(a) Tensile and compressive Ti1 = - 

(1.1.4) 
L 
L' 

( Y = -  
eq. 1.1.2 with G = 3.9 x lo5 

undefonned 15 - 
.- 8 

I t - L '  +I 

compression T I 1  -bTll 
4 L b -  

(a> (b) 
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Figure 1.13. 
(a) Shear and normal stresses 
versus shear strain for a sili- 
cone rubber sample subject to 
simple shear shown schemati- 
cally in (b). The open points 
indicate the normal stress 
difference TII - T22 neces- 
sary to keep the block at con- 
stant thickness x2, while the 
solid points are for the shear 
stress. Notice that the nor- 
mal stress stays positive when 
the shear changes sign. Data 
are for torsion of a cylinder 
(DeGroot, 1990; see also 
Example 1.7.1). 

Figure 1.1.3 shows the results of a different kind of experi- 
ment on a similar rubber sample. Here the sample is sheared be- 
tween two parallel plates maintained at the same separation x2. We 
see that the shear stress is linear with the strain over quite a wide 
range; however, additional stress components, normal stresses TI  I 

and T22, act on the block at large strain. In the introduction to this 
part of the text, we saw that elastic liquids can also generate nor- 
mal stresses (Figure 1.3). In rubber, the normal stress difference 
depends on the shear strain squared 

T I I  - T22 = G y 2  (1.1.5) 

where the shear strain is defined as displacement of the top surface 
of the block over its thickness 

S y = -  
x2 

( 1.1.6) 

Strain 
y = s / x z  

while the shear stress is linear in shear strain with the same coeffi- 
cient 

T21 = GY (1.1.7) 

These apparently quite different results for different defor- 
mations of the same sample can be shown to come from Hooke’s 
law when it is written properly in three dimensions. We will do this 
in the next several sections of this chapter, calling on a few ideas 
from vector algebra, mainly the vector summation and the dot or 
scalar products. For a good review of vector algebra Bird et al. 
(1987a, Appendix A), Malvern (1969) or Spiegel (1968) is help- 
ful. In the following sections we develop the idea of a tensor and 
some basic notions of continuum mechanics. It is a very simple 

y=0.4 

y= 0 

T22 - 0.4 - 0.2 0.0 0.2 0.4 

y= -0.4 
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development, yet adequate for the rest of this text and for start- 
ing to read other rheological literature. More detailed studies of 
continuum mechanics can be found in the references above and in 
books by Astarita and Marmcci (1974), Billington and Tate (198 I), 
Chadwick (1976), and Lodge (1964, 1974). 

1.2 The Stress Tensor * 
To help us see how both shear and normal stresses can act in a 
material, consider the body shown in Figure 1.2.la. Let us cut 
through a point P in the body with a plane. We identify the direction 
of a plane by the vector acting normal to it, in this case the unit vector 
fi. If there are forces acting on the body, a force component f,, will 
act on the cutting plane at point P. In general f,, and fi will have 
different directions. If we divide the force by a small area d a  of the 
cut surface around point P, then we have the stress or traction vector 
tn per unit area acting on the surface at point P. Figure 1.2.1 b shows 
a cut that leacjs to a normal stress, while Figure 1.2. l c  shows another 
that gives a shear stress tm. Note that Figure 1.2.1 shows two stress 
vectors of the same magnitude acting in opposite directions. This is 
required by Newton’s law of motion to keep the body at rest. Both 
vectors are manifestations of the same stress component. In the 
discussion that follows we usually show the positive vector only. 

As we have seen in Figures 1.1.2 and 1.1.3, materials may 
respond differently in shear and tension, so it is useful to break 
the stress vector tn into components that act normal (tensile) to the 
plane fi and those that act tangent or shear to the plane. If we pick 
a Cartesian coordinate system with one direction fi, the other two 
directions m and 6 will lie in the plane. Thus, t ,  is the vector sum 
of three stress components. 

t, = fiT,,,, + mTnm + 6Tn0 (1.2.1) 

We designate the magnitude of these stress components with a capi- 
tal T and use two subscripts to identify each one. The first subscript 
refers to the plane on which the components are acting; the sec- 
ond indicates the direction of the component on that plane. If we 
take another cut, say with a normal vector m, through the same 
point in the body, then the stress vector acting on m will be tm with 
components T m m ,  Tmo,  and T m n .  

So what we have now is a logical notation for describing 
the normal and shear stresses acting on any surface. But will it 
be necessary to pass an infinite number of planes through P to 

*Many students with engineering or physics backgrounds are already familiar with 
the stress tensor. They may skip ahead to the next section. The key concepts in this 
section are understanding ( 1 )  that tensors can operate on vectors (eq. 1.2.10), ( 2 )  
standard index notation (eq. 1.2.21), (3) symmetry of the stress tensor (eq. 1.2.37), 
( 4 )  the concept ofpressure (eq. 1.2.44), and (5)  normal stress differences (eq. 1.2.45). 
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Figure 1.2.1. 
(a) A force acting on a body. 
(b) A cut through point P 
nearly perpendicular to the 
direction of force . The nor- 
mal to the plane of this cut 
is ii. The stress on this plane 
is t,, = flu, where a equals 
the area of the cut. (c) An- 
other cut nearly parallel to 
the force direction. The equal 
and opposite forces acting at 
point P are represented by 
the single component t,,,. 

Figure 1.2.2. 
(a) Three mutually perpen- 
dicular planes intersecting at 
the point P with their associ- 
ated stress vectors. (b) Stress 
components acting on each of 
these planes. (c) A plane ii 
is cut across the three planes 
to form a tetrahedron. As in 
Figure 1.2.1, t,, is the stress 
vector acting on this plane 
with area a,,. For any plane 
6, tIz can be determined from 
the components on the three 
perpendicular planes. 

X 

characterize the state of stress at this point? No, because in fact, 
the stresses acting on all the different planes are related. The stress 
on any plane through P can be determined from a quantity called the 
stress tensor. The stress tensor is a special mathematical operator 
that can be used to describe the state of stress at any point in the 
body. 

To help visualize the stress tensor, let us set up three mutually 
perpendicular planes in the body near point P, as shown in Figure 
1.2.2a. Let the normals to each plane be f, f ,  and 2 respectively. 
On each plane there will be a stress vector. These planes will form 
the Cartesian coordinate system f, 9 ,  i. As shown in Figure 1.2.2b, 
three stress components will act on each of the three perpendicular 
planes. Now, if we cut a plane ii across these three planes, we will 
form a small tetrahedron around P (Figure 1.2.2~). The stress t, 

t 

‘ i  

2 
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on plane ii can be determined by a force balance on the tetrahedron. 
The force on ii is the vector sum of the forces on the other planes 

-fn = fx + fy + fz (1.2.2) 

Because force equals stress times area, the balance becomes 

- fn = ant, = axt, +arty + a,tz (1.2.3) 

where a, is the area of the triangle MOP as indicated in Figure 
1.2.2~. From geometry we know that the area a, can be calculated 
by taking the projection of a,, on the f plane. The projection is 
given by the dot or scalar product of the two unit normal vectors to 
each plane 

(1.2.4) A *  a, = ann x 

and similarly for ay and a,. Thus, the force balance becomes 

ant,, = (a,$ f)t, + (anfi . f)t, + (a,$ * %)tz (1.2.5) 

In the limit as the area shrinks down to zero around P, the 
stresses become constant, and we can divide out a,, to give 

tn = ii [ft, + ity + %tz] (1.2.6) 

Performing the dot operation gives 

where n, is the magnitude of the projection of f onto 2. Figure 
1.2.2b indicates the three components of each stress. These com- 
ponents with their directions can be substituted into the balance 
above to give 

tn = 6 .  [jET,x + f f T , y  +f%T,,  
+ 9fTy.x + f iTyy  + i i T y ,  (1.2.8) + f f T ,  + 2iTzy + %T,,] 

which, when we take the dot products, reduces to 

tn = f h T , ,  + nyTyx + n,T,,) + f(n,Txy + nyTyy + n,TZy) 

(1.2.9) 

It is rather cumbersome to write out all these components 
each time, so a shorthand was invented by Gibbs in the 1880s (see 
Gibbs, 1960). He defined a new quantity called a tensor to represent 
all the terms in the brackets in eq. 1.2.8. Following Gibbs and 
modem continuum mechanics notation, we generally use boldface 
capital letters to denote tensors, while boldface lowercase letters 
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are vectors. Thus, the stress tensor becomes T, and when we use it 
eq. 1.2.8 certainly looks less forbidding 

t,, = i i * T  (1.2.10) 

Here the dot means the vector product of a tensor with a vector to 
generate another vector. 

Perhaps the simplest way to think of a tensor dot product with 
a vector is as a machine (see Figure 1.2.3) that linearly transforms a 
vector to another vector. Push the unit vector ii into one side of the 
stress tensor machine and out comes the stress vector t,, acting on 
the surface with the normal vector h. T is a mathematical operator 
that acts on vectors. It is the quantity that completely characterizes 
the state of stress at a point. We can not draw it on the blackboard 
like a vector, but we can see what it can do by letting it act on any 
plane through eq. 1.2.10. 

1.2.1. Notation 

By comparing eq. 1.2.10 with eq. 1.2.6, we see that the stress tensor 
can be viewed as the sum of three “double vectors” 

(1.2.1 1) T = i t ,  + 3ty + ft, 
These double vectors are called dyads. The dyad carries two 

directions, the first being that of the plane on which the stress vector 
is acting and the other the direction of the vector itself. Thus another 
way to visualize the stress tensor is as the dyad product, the special 
combination of the forces (or stress) vectors with the surface that 
they act on. 

In eq. 1.2.8 we see the tensor represented as the sum of nine 
scalar components, each associated with two directions. This is the 
usual way to write out a tensor because the dyads are now expressed 
in terms of the unit vectors 

Figure 1.2.3. 
The tensor as a machine for 
transforming vectors. 
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Often matrix notation is used to display the scalar compo- 
nents. 

Here we have left out the unit dyads that belong with each scalar 
component, so the = sign does not really signify “equals” but rather 
should be interpreted as “scalar components are.” Usually the unit 
dyads are understood. Matrix notation is convenient because the 
“dot” operations correspond to standard matrix multiplication. In 
matrix notation eq. 1.2.10 becomes a row matrix times a 3 x 3 
matrix. 

nxTxy + nyTyy + nzTzy 
T x x  Txy Tx, n,Txx i- nyTyx + nzTzx 

[ T z x  T,, :: 1 = [ n J x z  + nyTyz + n,Tz, 
tn = i.T = (n ,  n y  n z ) .  Tyx Tyy  

Remember again that we have left out the unit dyads (ff, etc). In 
matrix notation the vector scalar product of eq. 1.2.4 becomes the 
multiplication of a row with a column matrix. 

(1.2.15) A A  

Usually in rheology we use numbered coordinate directions. 
Under this notation scheme the unit vectors f, f ,  2 become 21,22, 
i 3 ,  and the components of the stress tensor are written 

TI1 TI2 TI3 
Tij = T21 T22 (1.2.16) 

[T31 T32 

This numbering of components leads to a convenient index notation. 
As indicated the nine scalar components of the stress tensor can be 
represented by Tij, where i and j can take the values from 1 to 3 
and the unit vectors 21, 22, f 3  become 2;. Thus, we can write the 
stress tensor with its unit dyads as 

(1.2.17) 

If we evaluate the summation, we will obtain all nine terms in 
eq. 1.2.8. Using index notation, the “dot” operations can be written 
as simple summations, and eq. 1.2.4 or 1.2.15 becomes 
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and eq. 1.2.9 or eq. 1.2.14 becomes 

3 3  

When index notation is used, usually the summation signs 
are dropped and the unit vectors and unit dyads are understood. 
Here is how it works: 

3 
t = Ci;f; = f; 

i= I 

(1.2.20) 

(1.2.21) 

(1.2.22) 

(1.2.23) 

If an index is not repeated, multiplication of each component by 
a unit vector is implied (e.g., t;  or niTij) .  If two indices are not 
repeated, we will have two unit vectors or a unit dyad (e.g., T; j ) .  
If an index is repeated, summation before multiplication by a unit 
vector, if any, is implied. Since the indices all go from 1 to 3, the 
choice of which index letters is arbitrary, as indicated in eq. 1.2.23. 

To summarize, three types of notation are used in vector and 
tensor manipulations. The simplest to write is the Gibbs form (e.g., 
n T ) ,  which is convenient for writing equations and seeing the 
physics of things quickly. The index notation in its expanded form 
(e.g., xi  i; C j  njTj;) ,  or as abbreviated (e.g., njT,;) ,  indicates 
all the components explicitly, but it is harder to write down and to 
read all the indices. Matrix notation (e.g., eq. 1.2.14) is convenient 
for actually carrying out “dot” operations but is even more tedious 
to write out and tends to obscure the physics. 

All this notation associated with tensors has been known to 
cause a severe headache upon first reading; however, there have 
been no reported fatalities. In fact, when students realize that it 
is mostly notation, they usually attack tensor analysis with new 
confidence. 

Perhaps the following examples will serve as a helpful aspirin 
tablet. Several more examples appear at the end of the chapter. 
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Figure 1.2.4. 
Stress on a plane cutting 
through a cylindrical rod. 

f 

t 

Example 1.2.1 Stress on a Shear Plane in a Rod 
It is helpful to consider the simple example of the force acting on 
a cylindrical rod of cross-sectional area a as illustrated in Figure 
1.2.4. 
(a) What is the state of stress at point P? 
(b) What are the normal and shear stresses acting on a plane that 
cuts across the rod? The normal il to the cutting plane lies in the 
2 1 2 2  plane and makes an angle 0 with 21; fi = cos O i l  + sin O i 2 .  

The tangent 0 is the intersection of the 2 1 2 2  plane and the cutting 
plane; $ = sin O i l  - cos 8%2. 

Solution 

(a) Using Cartesian coordinates the stress tensor everywhere in 
the rod is just (from eq. 1.2.1 1) 

T = i l t l  + 2 2 t 2  + i 3 t 3  (1 -2.24) 

Since tl = ?I( f l u )  and t 2  = t 3  = 0, then 

T = (6) ilt, (1.2.25) 

or 

.1=[ f l u  0 0 0 01 0 

0 0 0  

Note that there are mostly zero components in this matrix. This is 
typical in rheological measurements. The rheologist needs simple 
stress fields to characterize complex materials. 
(b) From eq. 1.2.10 the stress vector t,, acting on the plane whose 

normal is fi is just t,, = fi T, where ii = cos 821 + sin O i 2 .  
Using matrix multiplication gives 

f/a 0 0 f / a  cos e 
t,, =fi-T=(cose,sine,O) 0 0 0 

[ o  o J = [  8 1 
= (i) coseil (1.2.26) 

The normal stress on the fi plane is just the projection of tn on fi 
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The shear stress comes from vector subtraction 

t,, - Tnni  = Tn,i (1.2.28) 

where i is the vector in the % I f 2  plane tangent to the plane 6. 
Substituting on the left-hand side gives 

(~cose ,o ,o ) - ( f . cos3e ,  -cos28sin8,0 f ) = (f cos 8 sin2 8 ,  -- f cos2 8 sine, 0 
a a a 

Since i = sin 812, - cos e i 2 ,  then 

T,,, = (i) cos 8 sin 8 (1.2.30) 

This shear stress can be important in failure. For example, if a 
certain crystal plane in a material has a lower slip or yield stress, 
this stress may be exceeded although the tensile strength between 
the planes may not. 

Example 1.2.2 Stress on a Surface 
Measurements of force per unit area were made on three mutually 
perpendicular test surfaces at point P ,  (Figure 1.2.2a), with the 
following results: 

Direction of Vector ti 
Normal to Test Surface Measured Force/Area { P a  = k N / m 2 )  

2,  
322 - 23 
- %* + 3%3 

(a) What is the state of stress at P? 
(b) Find the magnitude of the stress vector acting on a surface 
whose normal is 

(1.2.31) 

(c) What is the normal stress acting on this interface? 

Solution 

(a) The state of stress at a point is determined by the stress tensor 
(eq. 1.2.24) 

T = f i t ,  + %2t2 + i 3 t 3  
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where the measured tractions & are 

Thus, 

or 

(b) From q. 1.2.10 we know that the stress vector tn acting on 
the plane whose normal is fi is just 

& =ri .T (1.2.10) 

Using matrix multiplication (eq. 1.2.14) we find 

Remembering the omitted unit vectors, we write 

The magnitude of this stress vector is 

(c) The normal stress Tnn is just the projection of &, onto the unit 
vector 

Ten = i ( l ,  1, 0)’- L:,] = 2Pa (1.2.35) Jz 

1.2.2 Symmetry 
Notice that the stress tensor in each of the examples above is sym- 
metric; that is, the rows and columns of the matrix for the compo- 
nents of T can be interchanged without changing T. The compo- 
nents of the traction vectors ti were picked that way intentionally. 
The symmetry of the stress tensor can be shown by considering the 
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Figure 1.2.5. 
To balance angular momen- 
tum about the 21 axis, the 
two shear stress components 
T32 and T23 acting on the 
tetrahedron must be equal. 

shear stresses acting on the small tetrahedron sketched in Figure 
1.2.5. The component T23 gives rise to a moment about the XI axis. 
To conserve angular momentum, this moment must be balanced 
by the one caused by T32. Thus, T32 = T23, and by similar argu- 
ments the other pairs of shear components T12 = T21 and TI3 = T31 
are equal. Thus, the stress tensor is symmetric with only six in- 
dependent components, which when written in matrix form (again 
leaving out the dyads), become 

In Gibbs notation, we show that a tensor is symmetric by 
writing 

T = TT (1.2.37) 

where TT is called the rrunspose of T. In the tensor TT the scalar 
components of the rows and columns of T have been interchanged. 
This interchange may be clearer when TT is written in index nota- 
tion 

TT = xi ( f i % j T ~ j ) ~  = xi cj 12jkjTji (1.2.38) 

The transpose has wider utility in tensor analysis. For exam- 
ple, we can use it to reverse the order of operations in the vector 
product of eq. 1.2.10 

tn = TT .ii (1.2.39) 

This result can be verified by using matrix multiplication. Try it 
yourself. Follow eq. 1.2.14, switch rows with columns in T, and 
make 6 a column vector on the other side. Of course, in the end 
this manipulation does not matter for T because it is symmetric, 
but we will find the operation useful later. 

i 2  i 
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Figure 1.2.6. 
A hydrostatic state of stress 
on a tetrahedron of fluid. 

The possibility of a nonsymmetrical stress tensor is discussed 
by Dahler and Scriven (1961, 1963). Asymmetry has not been 
observed experimentally for amorphous liquids. Body torques do 
exist on suspension particles, but these can be treated by calculating 
the stress distribution over the particle surface for each orientation 
(see Chapter 10). 

1.2.3 Pressure 
One particularly simple stress tensor is that of uniform pressure. A 
fluid is a material that cannot support a shear stress without flowing. 
When a fluid is at rest, it can support only a uniform normal stress, 
TI I = T22 = T33, as indicated in Figure 1.2.6. This normal stress 
is called the hydrostatic pressure p .  Thus, for a fluid at rest, the 
stress tensor is 

0 1 0 0  

0 0 1  
Tij = [ -p - p  :] = - p  [ 0 1 0 1  (1.2.40) 

0 -P 

where the minus sign is used because compression is usually con- 
sidered to be negative. 

The matrix or tensor with all ones on the diagonal given in 
eq. 1.2.40 has a special name. It is called the identity or unit tensor. 
When multiplied by another tensor, it always generates the same 
tensor back again: 

T . L = T  (1.2.41) 

The Gibbs notation for the identity tensor is I. Its components are 
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Thus, the stress tensor for a fluid at rest is 

T = -PI (1 -2.43) 

When dealing with fluids in motion, it is convenient to retain 
p .  Thus, we write the total stress tensor as the sum of two parts 

T = - p I + r  (1.2.44) 

where r is known as the extra or viscous stress tensor.* Often T is 
referred to as the toral stress tensor and r as just the stress tensor. 

In rheology we generally assume that a material is incom- 
pressible, The deviations from simple Hookean or Newtonian be- 
havior due to nonlinear dependence on deformation or deformation 
history are usually much greater than the influence of compress- 
ibility. We discuss the influence of pressure briefly in Chapters 2 
and 6. For incompressible materials the overall pressure cannot 
influence material behavior. In other words, increasing the baro- 
metric pressure in the room should not change the reading from a 
rheometer. For incompressible materials the isotropic pressure is 
determined solely by the boundary conditions and the equations of 
motion (see Sections 1.7 and 1.8). 

Thus, it makes sense for incompressible materials to subtract 
p .  The remaining stress tensor I contains all the effects of defor- 
mation on a material. Constitutive equations are usually written in 
terms of z. However, experimentally we can measure only forces 
which, when divided by the area, give components of the total stress 
T. Since T includes p and r ,  we would like to remove the pressure 
term from r .  This presents no problem for the shear stress compo- 
nents (because T12 = 712, etc.), but the normal stress components 
will differ by p; T;; = - p  + ~ i ; .  As we said, determination of 
p requires boundary conditions for the particular problem. Thus, 
normal stress difSerences are used to eliminate p since 

TII - T22 = t i 1  - 722 
T22 - T33 =r22 - 733 

(1.2.45) 

As an example of how we use the normal stress difference, 
consider the simple uniaxial extension shown in Figure 1.1.2b. The 
figure shows that tension acting on the f 2 l  faces of the rubber cube 
will extend it. However, as shown in Figure 1.2.7, a compression, 
-T22 = -T33, on the f22 and f23 faces could generate the same 
deformation. The rubber cube does not know the difference. The 
deformation is caused by Ti, - T22, the net difference between 
tension in the 21 direction and the compression in the 22 direction. 

Figure 1.2.7. 
Uniaxial extension generated 
by a uniform compression. 

T22 

- - J  7-22 
t 

*r is an exception to the general rule for using boldface Latin capital letters for 
tensors. Howeves it is in such common use in rheology that we retain it here, 

I 
T22 
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For the special case of simple shear we use 

We call NI thejrs t  normul stress diflerence and N2 the second 
normul stress diflerence. Some authors use the difference TII - 
T33. However, there are only two independent quantities because 
TI - T33 is just the sum of the other two. The reader should also 
be aware that other notations for stress are common: P or II for T 
and u or T’ for T. Also, several authors use the opposite sign for 
T and T (See Bird et al., 1987a, p. 7, who consider compression, 
eq. 1.2.40, to be positive). 

It is perhaps consoling to the student struggling with the stress 
tensor to learn that although Hooke wrote his force extension law 
before 1700, it took many small and painful steps until Cauchy in 
the 1820s was able to write the full three-dimensional state of stress 
at a point in a material. 

1.3 Principal Stresses and Invariants * 
Later in this and subsequent chapters we will want to make consti- 
tutive equations independent of the coordinate system. In particular 
we will need to make scalar rheological parameters like the modu- 
lus or viscosity a function of a tensor. 

How can a scalar depend on a tensor? Let us start by con- 
sidering a simpler but similar problem: How does a scalar depend 
on a vector? In particular, consider how scalar kinetic energy de- 
pends on the vector velocity. Recall the equation for kinetic energy 
E K  = 1/2mu2, where u2 = v v. Kinetic energy is a function 
of the dot or scalar product of the velocity vector, the magnitude 
of the vector squared. Thus, v v is independent of the coordinate 
system; it is the invariant of the vector v. 

There is only one commonly used invariant of a vector: its 
magnitude. However there are three possible invariant scalar func- 
tions of a tensor. For the stress tensor we can give these three 
invariants physical meaning through the principal stresses. 

It is always possible to take a special cut through a body such 
that only a normal stress acts on the plane through the point P. This 
is called a principal plane, and the stress acting on it is a principal 
stress u. As demonstrated below, there are three of these planes 
through any point and three principal stresses. 

We can visualize the principal stresses in terms of a stress 
ellipsoid. The surface of th is  ellipsoid is found by the locus of 
the end of the traction vector t, from P when fi takes all possible 
directions. The three axes of the ellipsoid are the three principal 

*The reader may skip to Section 1.4 on afirst reading. The concept of invariants is 
used in Section 1.6. 
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Figure 1.3.1. 
(a) A section of the stress 
ellipsoid at P through two 
principal axes a,& and a&2. 

(b) The stress ellipsoid for a 
hydrostatic state of stress. 

stresses and their directions the principal directions. A section of 
such an ellipsoid through two of the axes is shown in Figure 1.3.1. 

Note that in the simplest case all the principal stresses are 
equal: u1 = u2 = 0 3  = u. This equivalence represents the hydro- 
static pressure p = -0. As we saw at the end of the Section 1.2.3, 
a hydrostatic state is the only kind of stress that can exist in a fluid 
at rest. 

If we line up our coordinate system with the three principal 
stresses, all the shear components in the stress tensor will vanish. 
This is nice because it reduces the stress tensor to just three diagonal 
components: 

components of the principal stress tensor = T; 

0 0  

0 0 u3 
(1.3.1) 

However, in practice it is often difficult to figure out the rota- 
tions of the coordinate system at every point in the material, so as 
to line it up with the principal directions. Furthermore, it is usually 
more convenient to leave the coordinates in the laboratory frame. 
Thus, we normally do not measure the principal stresses (except for 
purely extensional deformations) but rather calculate them from the 
measured stress tensor.* We show this next. 

Because a principal plane is defined as one on which there is 
only a normal stress, the traction vector and the unit normal to that 
plane must be in the same direction: 

t, =ah (1.3.2) 

*An exception ispow birefringence where differences in the principal stresses and 
their angle of rotation are measured directly; see Section 9.4. 

ELASTICSOLID / 21 



Thus, a is the magnitude of the principal stress and h its 
direction. As we saw earlier (eq. 1.2.10), the stress tensor is the 
machine that gives us the traction vector on any plane through the 
dot operation. Thus, 

t ,= f i .T=af i  (1.3.3) 

This equation can be rearranged to give 

fi . (T - 01) = 0 or ni(Tij  - aZij) = 0 (1.3.4) 

Since fi is not zero, to solve this equation we need to find values 
of a such that the determinant of T - a1 vanishes. This is usually 
called an eigenvalue problem. 

TI1 - 0 TI2 TI 3 

[ T31 T32 T33 - 
det(T-aI)  = det T2l T22 -a T23 ] = 0 

Expanding t h i s  determinant yields the characteristic equation of the 
matrix 

a3 - I T a 2  + IITCJ - IIIT = 0 (1.3.5) 

where the coefficients are 

IT is called the first invariant of the tensor T, IIT the second invari- 
ant, and IIIT the third invariant. They are called invariants because 
no matter what coordinate systems we choose to express T, they 
will retain the same value. We will see that this property is par- 
ticularly helpful in writing constitutive equations. Note that other 
combinations of I;:j can be used to define invariants (cf. Bird et al., 
1987a, p. 568). 

Equation 1.3.5 is a cubic and will have three roots, the eigen- 
values 01,  a2, and 0 3 .  If the tensor is symmetric all these roots will 
be real. The roots are then the principal values of Tij and ni,  the 
principal directions. With them T can be transformed to a new 
tensor such that it will have only three diagonal components, the 
principal stress tensor, eq. 1.3.1. 

To help illustrate the use of eq. 1.3.5 to determine the principal 
stresses, consider Example 1.3.1. 
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Example 1.3.1 Principal Stresses and Invariants 
Determine the invariants and the magnitudes and directions of the 
principal stresses for the stress tensor given in Example 1.2.2. 
Check the values for the invariants using the principal stress mag- 
nitudes. 

Solution 
For eq. 1.2.32 we obtain 

Using eqs. 1.3.6-1.3.8 we can calculate the invariants 

IT = trT = 7 
I ZZT = -(Z; - trT2) = 14 
2 

111~ = detT = 8 
( 1.3.10) 

From eq. 1.3.5 we can find the principal stress magnitudes: 
a3 - 7a2 + 14a - 8 = 0, which factors into 

(a - l ) (a  - 2)(a - 4) = 0 

Thus 

a1=1 a 2 = 2  a 3 = 4  (1.3.11) 

Clearly most cases will not factor so easily, but the cubic can be 
solved by simple numerical methods. We can check the values for 
the invariants using these ai : 

IT = + f a3 = 7 
IIT = a102 + a1a3 -b 0 2 0 3  = 14 (1.3.12) 
IIIT = a l ~ 2 ~ 3  = 8 

To obtain the principal directions, we seek r,(i), which are 
solutions to 

For each principal magnitude eq. 1.3.13 results in three equations 
for the three components of each principal direction. 



These three sets of equations are solved for directions of unit length 
as follows: 

Thus the principal directions are 

where n(’) is rotated + 45” from the i 2  axis.* 

1.4 Finite Deformation Tensors 
Now that we have a way to determine the state of stress at any point 
in a material by using the stress tensor, we need a similar meas- 
ure of deformation to complete our three-dimensional constitutive 
equation for elastic solids. 

Consider the small lump of material shown in Figure 1.4.1. 
We have drawn a cube, but any lump will do. P is a point embed- 
ded in the body and Q is a neighboring point separated by a small 
distance dx’. Note that dx’ is a vector. The area vector da‘ repre- 
sents a small patch of area around Q. We use the ’ to denote the rest 
or reference state of the material; or, if the material is continually 
deforming, the ’ denotes the state of the material at some past time, 
t’. From here on we concentrate on deformations from a rest state. 
In the following chapters we treat continual deformation with time. 

Now let the body be deformed to a new state as shown in 
Figure 1.4.1, Because the points P and Q move with the material, 
the small displacement between them will stretch and rotate as 
indicated by the direction and magnitude of the new vector dx. 
Somehow we need to relate dx back to dx’. Another tensor to 
the rescue! The change in dx with respect to dx’ is called the 

*The rotation anglex’of the principal stress axes is used in analyzing flow birefnn- 
gence data as discussed in Section 9.4. I .  In this example x’ = 45’C and 1 2  - 1 3  is 
the plane of shearing. Then the results above satisfr eqs. 9.4.2 and 9.4.3. 

2T23 = Aasin 2x‘ 
2(-1) (2-4)  * I 

T22 - T33 = AuCOS 210 
3 - 3 = (-2) . O  

(9.4.2) 

(9.4.3) 
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deformation gradient. It is sometimes written like a dyad (recall 
eq. 1.2.1 1) V’x, but usually simply as the tensor F. In either case 
it represents the derivative or change in present position x with 
respect to the past position x‘. 

(1.4.1) 

By this definition we are assuming that x can be expressed 
as a differentiable function of x’ and time 

x = x(x’, 1 )  (1.4.2) 

This would not be the case, for example, if a crack developed be- 
tween P and Q during the deformation. 

Like the stress tensor, the deformation gradient has up to 
nine components, each with a scalar magnitude axi/ax; and two 
directions for each of them. One direction comes from the unit 
vectors of the coordinate system used to describe x and the other 
from the x’ unit vectors. And like the stress tensor, F is a machine, 
a mathematical operator. It transforms little material displacement 
vectors from their past to present state, faithfully following the 
material deformation. 

dx = F * dx’ (1 -4.3) 

Just as the stress tensor characterizes that state of stress at any point 
through its ability to describe the force acting on any plane, the 
deformation gradient describes the state of deformation and rotation 
at any point through the relation above. However, unlike the stress 
tensor, which depends only on the current state, the deformation 
gradient depends on both the current and a past state of deformation. 

Figure 1.4.1. 
Deformation of a lump of 
material showing the mo- 
tion between two neighboring 
points. 

Rest or past state at t‘ Deformed or present state at t 

x 3  
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The following examples illustrate how the deformation gradient 
tensor works. Table 1.4.1 gives the components of F in rectangular, 
cylindrical, and spherical coordinates. 

Example 1.4.1 Evaluation of F 
Consider the block of material with dimensions Axl!,  AX^,, AXV 
shown in Figure 1.4.2. Within the block is a material point P 
with coordinates x i ,  xi,  xi in the reference state. Assume that the 
block deforms affhely (i.e., that each point within the cube moves 
in proportion to the exterior dimension). The block is subject to 
three different motions as shown: (a) uniaxial extension, (b) simple 
shear, and (c) solid body rotation. In each, the new coordinates of 
P become x 1 ,  x2, x3. For each deformation, write out functions to 
describe the displacement of P like those given in eq. 1.4.2. From 
these determine the components of F, the deformation gradient 
tensor. 

TABLE 1.4.1. / Components of F 
Rectanaular Coordinates (x. Y, z )  

Displacement functions: x = x(x', y', z', t ,  t') 

y = y(x', Y' ,  z', t ,  t ' )  

z = z(x', y', z', t ,  t ' )  

Frr = &/at-' F , ~  = arlr'ae' F,, = ar/azl 
For = Fee = rae/r'ae' 
F,, = F , ~  = azp 'ael  F:.- = = az/ rae4az' 

Spherical Coordinates (r, 9 , # )  

r = r(r', e', #', t ,  t') 

e = e(r', el, #', t ,  t') 

4 = #(r', e', 4', t ,  t ') 
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Solutions 
(a) Uniaxial Extension. Since the deformation is affine, the 
change in xi is just proportional to the changes in the exterior of 
the block. Thus, the displacement functions become 

A x  I 

Ax', 
Ax2 , 
Ax;  
Ax3 
Ax; 

X I  = -x;  = a , x ;  

x2 = -x* = a2x; 

x3 = -x; = a3x; 

Figure 1.4.2. 
A block of material subject 
to three different motions: (a) 

where the ai are the extension ratios, eq. 1.1.4. 
Using Fij = axi/ax,l,  we obtain 

uniaxial extension in the % I  

direction, (b) simple shear in 
the fl direction, and (c) solid 
body rotation about the %S 
axis with no change in Ax,!. 

A 

X2t 

b) x2i hx: 

A 

x3 

A 

x2i hxc 

0 0  

0 0 a3 
Fij = [? 4 2  0 ]  

____* 

Uniaxial 
extension 

- 
Simple 
shear 

(1.4.4) 

(1.4.5) 
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Because uniaxial extension is symmetric about the % I  axis, a2 = a3. 
If the material is incompressible, then the volume must be constant 
(see Section 1.7.1 for mass balance) and 

V’ = v 

(b) Simple shear. In simple shear, material planes slide over each 
other in the 21 direction. Thus, the x; and x i  coordinates of P 
remain unchanged, while 21 coordinate are displaced by an amount 
proportional to s / A x ;  = 8. The displacement functions become 

S 
XI = x ;  + -x; = x ;  + y x ;  

Ax;  
x2 = x;  
x3 = x ;  

(1.4.8) 

where y is the shear strain, eq. 1.1.6. Fij becomes 

(1.4.9) 

We note that in contrast to the stress tensor, the deformation gradient 
F is not necessarily a symmetric tensor. 
(c) Solid Body Rotation. Since rotation is about the 23 axis, this 
coordinate does not change, and point P rotates along the arc of a 
circle in the ~ 1 x 2  plane. The displacement functions can be written 

x i  = x ;  case - x; sin8 
x2 = x i  sin8 +x;cos8 (1.4.10) 

x3 = x;  

Solving for the components of F, we obtain 

cos8 -sin8 0 
(1.4.1 1) 

[ o  0 OI 1 
Fij  = sin8 cos8 

Even though the material lines in the block do not change in length 
(i.e., there is no actual deformation or change of shape) we see that 
F is not zero. F describes both deformation and rotation. 
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In Example 1.4.1 we see that the deformation gradient tensor 
describes rotation as well as shape change. Somehow we must 
eliminate this rotation. Material response is determined only by 
stretching or rate of stretching, not by a solid body rotation. Imagine 
if we did the tensile test illustrated in Figure 1.1.2 while standing 
on a turntable. We would not expect the rotation to change our 
results. 

This principle is calledfrarne indifemnce. It helps us select 
the proper tensor forms in constitutive equations. 

1.4.1 Finger Tensor 
To express the idea of both stretch and rotation in the deformation 
gradient, we write it as the tensor product of V for stretching and 
R for rotation 

F = V * R  (1.4.12) 

To remove the rotation, we can multiply F by its transpose 
(interchanging rows and columns).* We know from matrix algebra 
that if we multiply a matrix times its transpose, we always get a 
symmetric matrix. Recall that transpose simply means interchang- 
ing rows and columns of the matrix. 

The dot product of two tensors is called a tensor product 
because it generates a new tensor just as matrix multiplicaton of 
one 3 x 3 matrix by another generates a new 3 x 3 matrix. In this 
case the new tensor is called the Finger deformation tensor after 
J. Finger (1894), who was the first to use it. 

Physically this tensor gives us relative local change in area 
within the sample. The relative local area change squared is just 

da' da' 
da . da 

p= = - (1.4.14) 

Note that da'.da' = lda'I2, the square of the magnitude of the orig- 
inal or undeformed area. To relate this to F, we need to determine 
the volume associated with da' and dx'. If we look back at Figure 
1.4.1, the volume of the material element is the scalar product of 
the area vector da' with the length dx'. 

d V' = da' . dx' (1.4.15) 

*This can be shown by noting that FT = RT V T  and R RT = I; a rotation 
followed by a reverse rotation leads to no change. 
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Because mass is always conserved in a deformation, the den- 
sity p times volume must be constant 

p'dV' = p dV 

or in terms of area and length from eq. 1.4.15, 

p'da' dx' = p da . dx (1.4.16) 

Using the deformation gradient tensor to express dx in terms of 
dx', eq. 1.4.3 gives 

P da'= -da .F  
P' 

(1.4.17) 

For incompressible materials p/p'  = l.* 
Combining eq. 1.4.17 with 1.4.14 gives 

da . F) . (da - F) u = =  ( 
(1.4.18) da . da 

da . ( F .  FT) .da  da . B  -da  

The unit normal to the surface around Q is just 

(1.4.19) 

So we can write eq. 1.4.18 

Thus, physically the Finger tensor describes the area change 
around a point on a plane whose normal is a. B can give the 
deformation at any point in terms of area change by operating on 
the normal to the area defined in the present or deformed state. 
Because area is a scalar, we need to operate on the vector twice. 

We can also express deformation in terms of length change. 
This comes from the Green or Cauchy-Green tensor 

axk axk 
ax;  ax; 

c = F ~ .  F or cij = F ~ ~ F ~ ~  = -- (1.4.21) 

Note that we have merely switched the order of the tensor product 
from that given in the Finger tensor, but as we will see, in general, 
this switch gives us different results. By a similar derivation, (see 
Exercise 1.10.4) as given for p,  the relative area change, we can 

*Note that plp' can be calculated from the determinant of F. Since plp'  is a scalar 
multiplier, it can be readily carried along if desired (Malvern, 1969). 
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use C to calculate the extension ratio Q at any point in the material 
by the equation 

(1.4.22) 

Length, area, and volume change can also be expressed in terms 
of the invariants of B or C (see eqs. 1.4.45-1.4.47). Note that the 
Cauchy tensor operates on unit vectors that are defined in the past 
state. In the next section we will see that the Cauchy tensor is not 
as useful as the Finger tensor for describing the stress response at 
large strain for an elastic solid. But first we illustrate each tensor 
in Example 1.4.2. This example is particularly important because 
we will use the results directly in the next section with our neo- 
Hookean constitutive equation. 

Example 1.4.2 Evaluation of B and C 

For the deformations illustrated in Figure 1.4.2 and Example 1.4.1, 
evaluate the components of the Finger and the Cauchy deformation 
tensors. 

Solutions 
This is straightforward using the definitions of B (eq. 1.4.13) and 
C (eq. 1.4.21) and the results we obtained for Fij in Example 1.4.1. 
(a) Uniaxial Extension 

Since F = FT, then B = C = F.F = F2 and it does not matter 
which deformation measure is used. 
(b) Simple Shear 

l y 0  1 0 0  1+y2 y 0 
B i j = [ O  1 1 O ] = [  yI(1.4.24) 

0 0 1  0 0 1  

Here we see that B and C do have different components for a 
shear deformation. Note that both tensors are symmetric, as they 
must be. 
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(c) Solid Body Rotation 

cos8 -sin8 0 cos8 sin8 0 1 0 0  
Bij = sin8 cos8 O ]  [ -sin8 cos8 O ] =  [0 1 0 1  (1.4.26) 

[ o  0 1 0 0 1  0 0 1  

Cij also gives the same result, just the identity tensor I. 
The last result in Example 1.4.2 says that there is no area or 

length change in the sample for the solid body rotation (Le., there 
is no deformation). This is what we expect; deformation tensors 
should not respond to rotation. They are useful candidates for 
constitutive equations, for predicting stress from deformation. 

1.4.2 Strain Tensor 
So far we have defined deformation in terms of extension, the ra- 
tio of deformed to undeformed length, a! = L/L’. Thus when 
deformation does not occur, the extensions are unity and B = I. 
Frequently deformation is described in terms of strain, the ratio of 
change in length to undeformed length 

L - L’ 
L’ c=- = f f - 1  (1.4.27) 

When there is no deformation, the strains are zero. A fi- 
nite strain tensor can be defined by subtracting the identity tensor 
from B 

E = B - I  (1.4.28) 

Thus from Example 1.4.2 the strain tensor in uniaxial extension 
becomes 

0 ff+l 

(2:-1 0 

Y O  
and in simple shear Eij = [ 

0 0 0  0 0 1  

Since it is often simpler to write the Finger deformation ten- 
sor, and since it only differs from the strain tensor by unity, we 
usually write constitutive equations in terms of B. 

1.4.3 Inverse Deformation Tensors * 
As we noted earlier, the stress tensor depends only on the current 
state, while the deformation gradient term depends on two states. 

*The reader may skip to Section 1.5 on aprst  reading. 
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the present x and the past x'. It is a relative tensor. We have defined 
the deformation gradient as the change of the present configuration 
with respect to the past, dx = F + dx'. However, we can reverse 
the process and describe the past state in terms of the present. This 
tensor is called the inverse of the deformation gradient; it is like 
reversing the tensor machine. 

dx' = F-' - dx (1.4.29) 

where FIT' = a x ; / a x j  

define inverses of the deformation tensors B and C 
Using the inverse of the deformation gradient, we can also 

and 

Physically B-' is like B; it operates on unit vectors in the 
deformed or present state n, but instead of area change it gives the 
inverse of length change at any point in a material 

Similarly C-' operates on unit vectors in the undeformed or past 
state of the material to give the inverse of the area change (as defined 
in eq. 1.4.14). 

(1.4.33) 
1 - = 3 .  c-' .h' 

P2 

These results are proven in Exercise 1.10.5. 
Thus we have four deformation tensor operators that can de- 

scribe local length or area change, eliminating any rotation involved 
in the deformation. It is also possible to derive these four tensors 
directly from F by breaking it down into a pure deformation and a 
pure rotation (Astarita and Marrucci, 1974; Malvern, 1969). Other 
deformation tensors can also be defined, but clearly all are derived 
from the same information so they are not independent. We can 
convert from one to another, although this operation may be diffi- 
cult. Which deformation tensor we use in a particular constitutive 
equation depends on convenience and on predictions that compare 
favorably with real materials. 

Example 1.4.3 Evaluation of B-l and C-' 

Evaluate the inverse deformation tensors for the deformations given 
in Example 1.4.1. 
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Solutions 

(a) Uniaxial fitension. The inverse of a diagonal matrix is simply 
the inverse of the components. Thus, 

Verify this by inverting the displacement functions (xi = al 'x l ,  
etc.), and determining the components ( B ; ' ,  etc.) directly from 
the definition of B;' in eq. 1.4.30. 
(b) Simple Shear: The inverted displacement functions are 

x; = X I  - yx2 

x; = x2 
x; = x3 

(1.4.35) 

(1.4.36) 

Cij' = F ; ' ( q y  = F , p , ; r '  = (1.4.37) 

(c) Solid Body Rotation. N o  change: B;' = C-' = Z i j .  
I J  

1.4.4 Principal Strains 
For any state of deformation at a point, we can find three planes on 
which there are only normal deformations (tensile or compressive). 
As with the stress tensor, the directions of these three planes are 
called principal directions and the deformations are called princi- 
pal deformations oLi , or principal extensions. Determining of the 
principal extensions is an eigenvalue problem comparable to de- 
termining the principal stresses in the preceding section. All the 
same equations hold. Thus from eq. 1.3.5 principal extensions are 
the three roots or eigenvalues of 

ct3 - I F C I ~  + I I F U  - I I I F  = 0 (1.4.38) 

where the invariants of the deformation gradient tensor F are the 
same as those defined for T, eqs. 1.3.6-1.3.8. To help illustrate 
the principal extensions and invariants, consider the following 
example. 
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Example 1.4.4 Principal Extensions and Invariants 
of B and C 

Determine the principal extensions and the invariants for each of 
the tensors B and C given in Example 1.4.2. 

Solutions 

(a) 
obtain 

Uniaxial Extension. Taking eq. 1.4.23 and setting a1 = a, we 

Here the components of B and C form a diagonal matrix; the princi- 
pal directions are already lined up with the laboratory coordinates. 
There is no rotation in this deformation. We can find the invariants 
by using eqs. 1.3.6-1.3.8 

2 
Zg = trB = a 2  + - 

U 

or for a general extensional deformation 

Ze =a: +a; +a; 

(1  -4.40) 

(1.4.41) 

2 2 2  ZZZB = detB = 1 = ala2a3 

(b) Simple Shear 

1+y2 y 0 
(1.4.24) 

1 Y  
(1.4.25) 
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Calculate invariants 

I B  = trB = 3 + y 2  = Ic 
1 
2 
1 
2 

I I B  = - ( I :  - trB2) 

= - (9 + 6 y 2  + y4 - 3 - 4y2 - y4) 

I I B  = 3 + y2 = I I C  

I I I B  = detB = (1 + y2) - y 2  = 1 = IZIc 

(1.4.42) 

We see that both B and C have the same invariants. Furthermore, 
ZB = ZIB for simple shear; the average length change is the same 
as the average area change. 

We can solve eq. 1.3.5, the characteristic equation, for the 
principal extensions 

1y3  - (3 + y2)1y2 + (3 + y2)a - 1 = 0 (1 -4.43) 

Factor out 1y - 1 and solve the resulting quadratic equation to give 

a2 = - 1 (2 + y 2  - r J G 3  (1.4.44) 
2 

a3 = 1 

Thus in simple shear there is no deformation in one direction. We 
can see that this is 23 in Figure 1.4.2. The extension occurs entirely 
within the plane perpendicular to 123, but the principal extensions 
rotate as y changes. 
(c) Solid Body Rotation. There is no deformation, and thus = 1 

Note that for the strain tensor E = B - I, eq. 1.4.28, all the invariants 
will be zero. 

In Example 1.4.4 the invariants of both B and C are the same. 
This will always be true. It is useful to plot the invariants for the 
different types of deformation shown in Figure 1.4.3 as I I B  versus 
I B .  All possible deformations are bounded by simple tension and 
compression. Since I B  = I I B  for simple shear, the deformation 
lies along the diagonal. So does planar extension, stretching of a 
sheet in which the sides are held constant (see Example 1.8.2). 

The three invariants of B can be given physical meanings. 
The root of the first invariant over three is the average change in 
length of a line element at point P in the material averaged over all 
possible orientations (recall Figure 1.4.1). 

(1 -4.45) 
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Figure 1.4.3. 
Map of invariants of the Fin- 
ger tensor for deformation of 
an incompressible material, 
111s = 1. All types of de- 
formation must occur in the 
shaded regions and thus may 
be considered to be a com- 
bination of the three simple 
ones indicated by the lines. 

The root of the second invariant is the average area change on all 
planes around P. 

(1.4.46) 

The third invariant, as you might have guessed by now from the 
dimensions of each invariant, is the volume change for an element 
of material around P. 

dV’ p 
m = d e t F = a l a p 3 = - = -  

dV p’ 
(1.4.47) 

From eq. 1.4.6 we know that the product of the principal extensions 
is unity for an incompressible material. Note also the footnote to 
eq. 1.4.17. 

1.5 Neo-Hookean Solid 
In the introduction to this chapter we noted that in 1678 Hooke 
proposed that the force in a “springy body” was proportional to its 
extension. It took about 150 years to develop the proper way to 
determine the three-dimensional state of force or stress and of de- 
formation at any point in a body. In the 1820s Cauchy completed the 
three-dimensional formulation of Hooke’s law. However, because 
metals and ceramics, which fracture or yield at small deformations, 
were the main interest at that time only a tensor for small strains 
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was used. With such a tensor, terms like y z  in shear deformations 
(eq. 1.4.24) do not appear. 

On the other hand, rubber can deform elastically up to exten- 
sions of as much as 7. As rubber came into use as an engineering 
material during World War 11, a need arose to express Hooke’s law 
for large deformations. Using the Finger deformation tensor, we 
can come up with the result quite easily. If the stress at any point is 
linearly proportional to deformation and if the material is isotropic 
(i.e.. has the same proportionality in all directions), then the extra 
stress due to deformation should be determined by a constant times 
the deformation. 

r = G B  or T = - p I + G B  (1.5.1) 

Rivlin (1948) first developed this equation, and it is called the neo- 
Hookean or simply Hookean constitutive equation. G is the elastic 
modulus in shear. It can be a function of the deformation, but in the 
simplest case we assume it to be constant. 

Note that when no deformation is present, B = I (recall 
Example 1.4.2) and eq. 1.5.1 give 7 = GI. Because the pressure 
is arbitrary for an incompressible material, we can set p = G and 
thus make the total stress T = 0 in the rest state. An alternative 
way to write the neo-Hookean model is in terms of the strain tensor 
E (cf. Bird et al., 1987b, p. 365) 

T = - p I + G E  (1.5.2) 

where E = B - I, eq. 1.4.28. Then p = 0 in the rest state; but 
clearly the value of p in a constitutive equation for an incompress- 
ible material is arbitrary. For any particular problem, the boundary 
conditions determine p. Only normal stress differences cause de- 
formation. 

1.5.1 Uniaxial Extension 
We can test out our large strain Hookean or neo-Hookean model 
with the deformations shown in Figure 1.4.2. For uniaxial exten- 
sion we can calculate the stress components by substituting the 
components of B given in eq. 1.4.23 into eq. 1.5.2. 

TI] = - p  + Ga: (1.5.3) 

G 
T22 = T33 = -p + - 

a1 
(1.5.4) 

This deformation can be achieved by applying a force f on the % I  

planes, at the ends of the sample. The stress acting on the ends is 
divided by the area of the deformed sample Ax2Ax3 = al , so that 

(1.5.5) 
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If no tractions act on the sides of the block, then T22 = T33 = 0 
and p = G/arl. Substituting this expression in eq. 1 S . 5 ,  we obtain 
the result given for rubber in eq. 1.1.2 and Figure 1.1.2 

(1  S.6)  

Often the force divided by original area u; is reported. For an 
incompressible material 

Thus, 

(1.5.7) 

We can also express eq. 1.5.6 in terms of the strain E .  Recalling 
that 01 = 1 + c and substituting, we have 

(1.5.8) 

We see that in the limit of small strain 

TII = 3 G c  for E cc 1 (1 S.9) 

which is the linear region in Figure 1.1.2. We can define the tensile 
or Young's modulus as 

TII - T22 E = lim 
c+o E 

(1.5.10) 

which gives 

E = 3G (1.5.1 la) 

Thus, the tensile modulus is three times that measured in shear, a 
well-known result for incompressible, isotropic materials. 

For compressible, isotropic materials, a parameter k ,  Pois- 
son's ratio, is required to relate the tensile to shear modulus 

E = 2G(p + 1) ( 1.5.1 16) 

where p ranges from 0.5 for the incompressible case to 0 (e.g., 
Malvern, 1969; Ward, 1972). 
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1 S . 2  Simple Shear 

For simple shear, 
y ,  BII = 1 + y 2 ,  
model gives quite 

the results from eq. 1.4.24 give B12 = B Z I  = 
and B22 = B33 = 1. Applying the neo-Hookean 
different results from extension 

TII = - p  + G(1 + r2) 
Ti2 = T21 = Gy 

T22 = T33 = - p  + G 

( 1.5.1 2) 
(1.5.13) 
(1.5.14) 

We see that the shear stress Ti2 is linear in strain even to large 
deformations. This finding agrees with the experimental results 
for rubber given in Figure 1.1.3. For an incompressible material, 
p is arbitrary, and only measurements of normal stress differences 
are meaningful (recall eq. 1.2.45). So we combine eqs. 1.5.12 and 
1.5.14 to give 

Tll - T22 = Gy2 
T22 - T33 = 0 

(1.5.15) 
(1.5.16) 

Thus, in simple shear the neo-Hookean model predicts a first normal 
stress difference that increases quadratically with strain. This also 
agrees with experimental results for rubber (note Figure 1.1.3). We 
will see in Chapter 4 that the same kinds of normal stress appear 
in shear of elastic liquids (recall the rod climbing in Figure 1.3). 
Note that there is only one normal stress difference, N I ,  for the 
neo-Hookean solid in shear. 

If we had used the Green tensor C instead of B in writing 
the constitutive equation, we would have obtained different results 
for the normal stresses in shear. (note eq. 1.4.25). Using B gives 
results that agree with observations for rubber. 

The neo-Hookean model has been applied to many other large 
strain deformation problems. Several are given in the examples in 
Section 1.8 and in the exercises in Section 1.10. 

1.6 General Elastic Solid 
The neo-Hookean model gives a good but not perfect fit to tensile 
data on real rubber samples. As shown in Figures 1.1.2 and 1.6.1, 
tensile stress deviates from the model at high extensions. Is there 
some logical way to generalize the idea of an elastic solid to better 
describe experimental data? 

In the neo-Hookean model, stress is linearly proportional to 
deformation. We can generalize our elastic model by letting stress 
be afunction of the deformation. Thus 

(1.6. la) T = f (B) 
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Figure 1.6.1. 200 / 
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Expanding in a power series gives 

T = foBo + fi B + f2B2 + f3B3 + * 9 .  (1.6. lb) 

where Bo = I and fi are scalar constants. The Cayley Hamilton 
theorem (Chadwick, 1976) states that any tensor satisfies its 
own characteristic equation (eq. 1.3.5). This theorem allows us to 
write 

B3 - ZsB2 + IIsB - If Is1 = 0 (1.6.2a) 

Similarly B4 and higher powers can be expressed in terms of the 
lower powers and invariants of B. An alternative to eq. 1.6.2a is to 
multiply it by B-' and use the result to eliminate B2, giving 

B3 = (1; - IIe)B + ( I l l s  - I B I I B ) I  + IsIIIeB-' (1.6.2b) 

This later form was used by Rivlin (1948,1956), and following him 
we can reduce eq. 1.6.1 b to 

T = go1 + glB + g2B-I (1.6.3) 

where g, are scalar functions of the invariants of B. If the material 
is incompressible, then go = - p .  Thus, a general incompressible, 
isotropic elastic solid can be described by two functions of the in- 
variants of B. Since I& = 1 for an incompressible material, gi can 
depend only on Is and IIn. These are called material functions. 

T = -PI + gl(IB1 IIB)B + gZ(IB9 1Ie)B-I (1.6.4) 

The neo-Hookean solid is a special case in which g2 = 0 and 
gl = G, a single material constant. 

ELASTICSOLID I 41 



Let us apply the general elastic solid to the case of uniaxial 
extension. We have already worked out the components of B and 
B-' for this deformation in Example 1.4.2, eq. 1.4.23, and Example 
1.4.3, eq. 1.4.34. Substituting these into eq. 1.6.4 gives 

g2 TI' =go +g1a: + - 
a: 

(1.6.5) 

The normal stress difference, the net stress on the ends of the sam- 
ple, is then 

(1.6.7) - fl = TI' - T22 = (gl - g ) ( a i  - $) 
a1 

When gl and g2 are replaced by constants, this equation is 
known as the Mooney or Mooney-Rivlin equation 

TII - T22 = (ZCI + ?)(a? - -!-) (1.6.8) 

The Mooney-Rivlin equation has been found to fit rubber tensile 
data better than the neo-Hookean model and is frequently used 
for engineering calculations. Figure 1.6.1 illustrates how it fits 
data for silicon rubber. We see that it does quite well in tension, 
but not as well in compression. Functions rather than constants 
appear to be necessary to fit experimental data for a general defor- 
mation. In experiments on crosslinked natural rubber, Rivlin and 
Saunders (195 1) found that gl was constant, but g2 was quadratic in 
Z ZB . Work continues on finding better empirical material functions 
(Kawabata and Kawai, 1977; Tschoegl, 1979; Ogden, 1984) and 
on relating them to molecular structure (e.g., Eichinger, 1983). 

1.6.1 Strain-Energy Function 

Another way to derive the constitutive relation for a general elastic 
solid (eq. 1.6.4) is to start from an energy balance. We discuss 
the energy equation in the next chapter, but the basic idea is that 
for a perfectly elastic solid at equilibrium, the stress can only be a 
function of the change in the internal energy U of the sample away 
from its reference state due to a deformation 

au 
T = p -  

aB (1.6.9) 
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Usually a strain energy function is defined as W = poU. For 
an incompressible, isotropic material, the relation becomes 

T = -p1+2-B aW - 2- a w  B-1 
a I B  ailB 

(1.6.10) 

Here the material functions are derivatives of the strain-energy 
function with respect to the invariants of B. This equation is identi- 
cal in form to eq. 1.6.4, but because the strain-energy function can 
be derived from molecular arguments, it provides a connection to 
molecular theory. 

The strain-energy function that gives the neo-Hookean 
model is 

(1.6.1 1) 1 
W = - G I B  

2 

and for the Mooney-Rivlin model 

Valanis and Landel (1967) proposed that for many materials, the 
strain-energy function is separable into the sum of the same func- 
tion of each of the principal extensions a; 

W(ai )  = ~ ( 0 1 1 )  + W ( C X ~ )  + ~ ( a 3 )  = C W ( C ~ ~ )  (1.6.13) 

They found that an exponential function fit data 

w ( Q ~ )  = k;ami (1.6.14) 

Example 1.6.1 shows that both the neo-Hookean and Mooney- 
Rivlin models are of the Valanis-Landel form. 

Example 1.6.1 Separable Strain-Energy Function 

Show that the neo-Hookean and Mooney-Rivlin models satisfy the 
Valanis-Landel form, eq. 1.6.14 

Solution 

(a) Neo-Hookean 

Recall that in terms of the principal strains (see eq. 1.4.40) the first 
invariant of B is 
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Thus 

(1.6.15) 

which satisfies eq. 1.6.14 if k = G/2  and m = 2. 
(b) Mooney-Rivlin 

w = c l I B + c 2 I I B  

Recall eq. 1.4.40 once more 

I I B  = ff;ff; + ff;ff: + ff:ff: 
Using the fact that for an incompressible material 

2 2 2  ZZZB =f f1 f f2 f f3  = 1 

Thus 

or 

(1.6.16) 

which satisfies eq. 1.6.14 if kl = C I ,  rnl = 2, k 2  = Cz, and 
m2 = -2. 

1.6.2 Anisotropy 
Most crystalline solids are anisotropic. Since our main concern 
is polymeric liquids and rubbery solids, we generally do not need 
to wony about anisotropy. The general approach to constitutive 
equations for anisotropic materials is to use a different elastic con- 
stant for each direction. In general, to relate stress to deformation 
requires a fourth rank tensor with 34 components 

8j = CijklBkl  (1.6.17) 

However, symmetry and energy considerations usually reduce these 
to 21 or less (Malvern, 1969, Section 6.2). Ward (1983) discusses 
some anisotropic models for crystalline polymers. 
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1.6.3 Rubber-like Liquids 

In a number of polymer processing operations, such as blow mold- 
ing, film blowing, and thermoforming, deformations are rapid and 
the polymer melt behaves more like a crosslinked rubber than a 
viscous liquid. Figure I. 1 showed typical deformation and recov- 
ery of a polymeric liquid. As the time scale of the experiment 
is shortened, the viscoelastic liquid looks more and more like the 
Hookean solid. In Chapters 3 and 4 we develop models for the full 
viscoelastic response, but in many cases of rapid deformations, the 
simplest and often most realistic model for the stress response of 
these polymeric liquids is in fact the elastic solid. 

1.7 Equations of Motion 
The deformation of a material is governed not only by a constitu- 
tive relation between deformation and stress, like the neo-Hookean 
equation discussed above, it also must obey the principles of con- 
servation of mass and conservation of momentum. We have already 
used the mass conservation principle (conservation of volume for 
an incompressible material) in solving the uniaxial extension ex- 
ample, eq. 1.4.1. We have not yet needed the momentum balance 
because the balance was satisfied automatically for the simple de- 
formations we chose: that is, they involved no gravity, no flow, 
nor any inhomogeneous stress fields. However, these balances are 
needed to solve more complex deformations. They are presented 
for a flowing system because we will use these results in the follow- 
ing chapters. Here we see how they simplify for a solid. Detailed 
derivations of these equations are available in nearly every text on 
fluid or solid mechanics. 

1.7.1 Mass Balance 

The mass of a body can be expressed as the integral of its density 
over its volume V. 

r n = l p d V  (1.7.1) 

In a flowing system V becomes a control volume and velocity can 
carry mass into and out of this volume, as illustrated in Figure 1.7.1. 
The rate of change of mass in this volume must equal the net flux 
of mass across the surface S 

dm d 
(1.7.2) --- dt  - dt  l p d V = mass flux across S 

The volume flux through a small surface element dS will be 
just the velocity component normal to the surface times the area 
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Figure 1.7.1. 
Mass balance on control vol- 
ume V in a flowing system: 
ii .pv is the mass flux through 
the area dS. 

PV 

A 

I 
V 

-h v d S .  We use -& the negative of the surface normal, because 
we want to get the flux into the volume. The mass flux is the density 
times the volume flux, 4 - pv dS. If we integrate over the entire 
surface, we obtain the rate of change of mass inside the volume 

(1.7.3) 

Using the divergence theorem, the surface integral can be 
transformed into a volume integral 

(1.7.4) 

The divergence operator V. on a vector (V v )  is given for 
several coordinate systems in Table 1.7.1. Since the control volume 
is fixed, we can bring the time derivative inside the integral to give 

(1.7.5) 

The control volume is arbitrary, so we can shrink it to zero, 
leaving the differential equation 

(1.7.6) 

which is known as the continuity equation. The continuity equation 
is usually written in terms of the material derivative 

DP - = - p v  . v 
Dr 

(1.7.7) 

where the material derivative is the time derivative following the 
motion 

- = -  D p  a p + v . v p  
~t at 

(1.7.8) 

We will discuss other types of time derivatives in Chapter 4. 
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For an incompressible fluid the density is constant, and 
eq. 1.7.7 simplifies to 

v * v = o  (1.7.9) 

Components of the continuity equation for an incompressible fluid 
are given in Table 1.7.1 in several coordinate systems. 

For a solid, the density change from the reference p’ to the 
deformed state p is just (Malvern, 1969) 

plp‘  = detF = IIIF = IIILf2 = f f I f f Z f f 3  (1.7.10) 

As we showed in eq. 1.4.47, for an incompressible material 
IIIB = 1. For most purposes we will assume incompressibility. 

1.7.2 Momentum Balance 
The momentum of any body is its mass times velocity. Using 
eq. 1.7.1, we have 

mv = s, pvdV (1.7.1 1) 

Momentum can be transferred to the body by convection through 
the surface, by contact forces acting on the surface by the surround- 
ing material, and by body forces like gravity or magnetic forces 
acting on the volume. Each of these is illustrated in Figure 1.7.2. 
Convection is determined by the volume flux normal to the surface 
-A - v dS, times the momentum per unit volume pv. Contact forces 
on the surface are determined by the stress vector acting on the sur- 
face +t,dS.* (Recall Figure 1.2.1 .) We can use the stress tensor, 
eq. 1.2.10, to express t, dS = ii T dS. The change of momentum 
due to gravity will be pg dV. 

By integrating each contribution, we can combine all these 
factors into a balance of the rate of change of momentum 

rate of momentum rate of momentum rate of momentum rate of momentum 
change within V addition across S addition across S addition in V due 

due to flow due to contact forces to body forces 

We can also view this equation as a force balance. From Newton’s 
first law, the left-hand term is (mass) due to momentum flux, the 
contact force, and the body force all acting on the volume V. 

*Note that we use here the sign convention that tensile stress is positive. Some other 
texts, particularly Birder al. (1987a), choose tension as negative. 
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TABLE 1.7.1. I Equations of Motion* 
Rectangular CoordiMtes (x, y, z) 

x-Component 

y-Component 

z-Component 

The continuity equation: 
av, av,, avZ 
ax ay az 

v . v = - + - + - = o  

Cylindrical Coordinates (r, 8, z) 
r-Component 

-Component 

z-Component 

The continuity equation: 

1 ave av, i a  
r ar r ae az + - = O  V.v=-- ( rv , )+- -  
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Spherical Coordinates (r ,  9 , d )  

r-Component 

9-Component 

&Component 

The continuity equation: 

* r has not been assumed symmetric. 

Figure 1.7.2. 
Momentum balance on a con- 
trol volume V. Momentum 
is brought into the body by 
surface traction t,, by body 
forces pg, and by momentum 
convected across the surface P" - fi * v(pv). 

Pg 
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Again we can apply the divergence theorem to change the 
surface integrals to volume integrals. We also can use the transport 
theorem to bring the time derivative inside the integral 

As with the mass balance, the control volume is arbitrary so we can 
shrink it to zero, leaving the differential equation 

(1.7.14) 

or in terms of the material derivative with the help of the continuity 
equation 

Dv 
P E r = v . T + p g  (1.7.15) 

Equations 1.7.15 and 1.7.7 together are often called equations 
of motion, and their components are given in several coordinate 
systems in Table 1.7.1. In deriving the table, eq. 1.2.44 was used 
to express T as the sum of pressure and the extra stress t. 

For solids there is no flow, so the balance of momentum can 
also be written 

(1.7.16) pa = V * T + pg 

where a represents the acceleration of the body. In most elasticity 
problems the body is in static equilibrium and the effects of gravity 
are negligible, so the equation reduces to just a stress balance 

aTij 

axi 
0 z V . T  or O = -  (1.7.17) 

We can write this equation in different coordinate systems 
using only the stress terms in Table 1.7.1. In the uniaxial extension 
and simple shear examples, which we worked for the neo-Hookean 
solid, the stress was homogeneous, so all its derivatives are zero 
and eq. 1.7.17 is satisfied. However, with more complex shapes, 
such as twisting of a cylinder shown in Figure 1.7.3, the stresses do 
vary across the sample and the stress balance is required to solve 
for the tractions on the surface. 

Example 1.7.1 Twisting of a Cylinder 

Consider a cylinder of a neo-Hookean rubber with diameter 2R, 
which is twisted through an angle 8 while its height to is held 
constant. Determine the torque and normal force generated by this 
deformation. 
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Figure 1.7.3. 
Torsion of cylinder. The bot- 
tom surface is fixed and the 
top surface is twisted through 
an angle 8. 

Solution 

The displacement functions in cylindrical coordinates become 

r = r’ 
0 = 8’ + az’ 
z = z’ 

(no change in diameter) 
(twist angle proportional to height above base) 
(no change in height) 

( 1.7.18) 

where a = 8/.t,. Note that a has the units of reciprocal length. 
Applying these to determine F in cylindrical coordinates, 

Table 1.4.1, we obtain very similar results to simple shear, Example 
1.4.2. 

However, because the deformation is not uniform, the stress will 
not be homogeneous. Applying the neo-Hwkean model, eq. 1.5.2, 
gives 

We can readily calculate the torque on the cylinder by integrating 
the shear stress 

1 (1.7.21) M = 275 1 Tezr2dr = - 1 ~ G d  
2 

R 

To determine the normal force F, we need to determine p. Be- 
cause the stress field is not homogeneous, we need to use the stress 
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balance equations in cylindrical coordinates, eq. 1.7.17 and Table 
1.7.1, which in this case reduce to 

(1.7.22) a a Trr 
Tee = - ( rTrr)  = r -  + Trr ar ar 

Substituting for Tee and Trr, we obtain 

Integrate using the boundary condition T,, = 0 at r = R 

(1.7.24) 
1 
4 

R 
F, = 275 rTzzdr = - -xGa2R4  

Note that at large strains this deformation may not be stable. 
Buckling can occur as shown by Penn and Kearsley (1976). This 
can be demonstrated by twisting a rubber hose. 

Figure 1.1.3 showed data for torsion of a silicone rubber disk 
cured between parallel plates of a rotational rheometer. The data 
are plotted as stress 

(1.7.25) 

(1.7.26) 

as a function of maximum shear strain at the edge of the plates 

Ymax = a R  (1.7.27) 

The solid lines are calculated using eq. 1.7.20 and G = 163 kPa. 
The excellent agreement between data and calculations indicates 
that the neo-Hookean model describes this material very well in 
shear up to y = 0.4. 

1.8 Boundary Conditions 
To actually solve problems, in addition to the equations of motion 
and a constitutive equation, we need the boundary conditions. In 
general, for problems dealing with fluids or solids, we have the 
following basic kinds of boundary condition: 

1 .  Motion of u su@uce: This.usually means specifying displace- 
ments of solids or velocities of fluids. Typically sample ma- 
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terials (a) move with solid surfaces of the rheometer and (b) 
do not penetrate it. If a represents the sample side and b the 
rheometer, then 

or in terms of velocities 

2. Tractions at a sul3cace: Continuity of shear and normal forces 
across the interface 

tf,, = t, or (fi . T * i), = (6 . T . i)b 

and 

tn,, = tnn or (fi a T . fi), = (3 . T . f i )b  

(1.8.3) 

3.  A mixture of motion and tractions. 
The first type of boundary condition frequently does not hold 

for large deformation of rubber and highly elastic or very viscous 
liquids. These materials can slip at solid surfaces (Schowalter, 
1989). 

Special conditions apply to the tractions at liquid-liquid and 
liquid-gas interfaces. These conditions and the concept of surface 
tension are discussed at the end of Chapter 2. However, the interfa- 
cial tension concept also can be useful for modeling deformations 
of thin rubber sheets. With interfacial tension r, the normal traction 
condition becomes 

(fi * T . fi), = (fi T . f i ) b  + 2 H r  (1.8.4) 

where H is the arithmetic mean of the two principal curvatures 
that describe the interface. For example, for a sphere 2H = 2 / R  
and for a cylinder 2H = 1/R. We can treat the elastic stresses 
in a membrane as surface tensions (see Figure 1.8.1). The normal 
forces are the pressures on each side of the membrane. So then 
eq. 1.8.4 becomes 

Figure 1.8.1. 
Tensions in a thin membrane 
with two radii of curvature 
RI and R2. 

(1.8.5) 

The use of these boundary conditions is illustrated for solids 
in Examples 1.8.1-1.8.3 and in the exercises given at the end of 
this chapter and for fluids in the next chapter. 

Example 1.8.1 Uniaxial Extension 

rl r2 P a  = pb + - + - 
Ri R2 

'1 

Illustrate the use of both types of boundary condition by reworking 
the uniaxial extension problem solved in eq. 1 S.5 (see also Figure 
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1.4.2a and Examples 1.4.1 and 1.4.2). State the boundary condi- 
tions explicitly. 

t l  
A 

*X1 

Solution 

In eq. 1.4.4 we were given that the displacement of the fl surface 
for uniaxial extension of a cube is L/L’  

(1.4.4) 

The discussion that followed eq. 1.5.5 pointed out that the tractions 
on the other two surfaces are zero. 

t z  = t 3  = 0 

These boundary conditions are illustrated in Figure 1.8.2. 
Since t 2  = t 3 ,  the displacements, ~2 and 123, must also be equal by 
symmetry. 

Next the conservation of mass of an incompressible solid, 
eq. 1.4.6 (or 1.4.38), was used to solve for a 2  and a 3  in terms of Q I , 

C Y I ( Y ~ C X ~  = 1 (1.4.6) 

f f p  = f f 3  = - 

The components of the stress tensor were determined from the 
neo-Hookean model, eqs. 1.5.3 and 1 S.4, and the arbitrary pressure 
p was eliminated by using the boundary tractions t 2  = t3 = 0. 
Then the unknown traction tl was determined from tl = TI 121. 

We can see that if instead of specifying the constitutive equa- 
tion in this problem, we specify the boundary traction t l ,  we Can 

Figure 1.8.2. 
Boundary conditions for uni- 
axial extension. 



Figure 1.8.3. 
Planar extension of a rubber 
sheet. 

f 

t 

get information on the constitutive relation. If it is neo-Hookean, 
we have immediately G, the elastic modulus. If it is a general 
elastic solid, we have the dependence of the material function 
group ~ I ( I B , z z B )  - ~ ~ ( I B , z z B ) / ~  for ZB = a: + 2/a1 and 
ZZB = 2al + a:. This then is the rheologist's strategy: specify 
enough boundary conditions and satisfy the equations of motion 
such that both stress and deformation can be determined. Then 
material functions of an unknown material can be measured. 

Example 1.8.2 Planar Extension 
A wide, short, and thin sheet of rubber, Wo >> Lo >> H,, is 
clamped along its wide edges and pulled from its original length 
Lo to L with a force f .  This deformation is called planar exten- 
sion, plain strain, or sometimes pure shear. Assume neo-Hookean 
behavior, eq. 1.5.2. 
(a) Write out the boundary conditions and justify the assumption 
that Wo is constant during the deformation. 
(b) Calculate the components of the deformation gradient F and 
the strain tensors B and B-'. Determine the invariants of B. 

Figure 1.8.4. 
Deformation of free edges in 
planar extension. 

f 

a =- L 
L O  

f 
L 
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(c) Relate f to the initial dimensions and the shear modulus G of 
the sample. 

Solution 
(a) If the sheet is wide, short, and thin, Wo =-> Lo >> H,, 
and clamped rigidly at the top and bottom edges, W, will change 
little compared to Lo and H,. Some workers have used small clips 
to apply forces along the edge to maintain the sides straight (e.g., 
Kawabata and Kawai, 1977). Thus the boundary conditions are 
three displacements 

W 
a2 = - = 1 (1.8.6) 

H 
a3 = - L 

a1 = - 
Lo ' Ho ' W" 

and one force per unit area 

(b) For an incompressible material alu2a3 = 1, thus a1 = l / q .  
The displacement functions are (note eq. 1.4.4) 

XI  = ff,x; 

x2 = x; 

x3 = Cqx; =x i / . ,  (1.8.7) 

Applying the definitions of F and B gives 

Cij will be the same as Bij because Fi, = Fj i .  The invariants are 

I ,  = a: + a,-? + 1 = 11, (1.8.9) 
III ,  = 1 

as expected for an incompressible material. 
(c) Applying the neo-Hookean model T = -PI + GB, eq. 1.5.1 
gives 

TI[ = - p  + GCY: 
G 

T33 = - p  + - ff: (1.8.10) 
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Figure 1.8.5. 
Inflation of a thin-walled rub- 
ber tube. 

Since the sheet is thin and there are no forces acting on its surface, 
T33 = 0,  p = G/u:. Thus 

T I I  = G(u: - :) (1.8.1 1) 

We can also solve the problem by considering the force balance on 
the sheet. The force in the X I  direction is 

Thus by substituting we have 

Note that for small strains 
tensile modulus is four times that in shear. 

= 1 + 6 ,  T I I  = 4Ce; the "planar" 

Example 1.8.3 Tube Inflation 
A long, thin-walled rubber tube (Figure 1.8.5) is inflated with a gas 
pressure po with its length W, held constant. Assuming that the 
material obeys the neo-Hookean model, determine how much the 
tube will inflate. Show that this is a planar extension, identical to 
Example 1.8.2. 

Solution 
Boundary conditions are 

u2 = 1 
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since the tube length W, is constant and 

T33 = 0 

since we assume a thin membrane. For acylinder, eq. 1.8.5 becomes 

We can define the extensions as 

H 
a3 = - 

H, 
( 1 3.1  3) 

By conservation of volume then a 3  = 1 /a I .  These are the same 
extension ratios found in Example 1.8.2 for planar extension with 
L replaced by R .  Thus F and B will be identical. So will T, since 
the same constitutive equation is used. Using T33 = 0, we get the 
same result for T I  I .  

We can now relate T I [  to the applied pressure-tension balance, 
eq. 1.8.5. Approximate the surface tension by rl = TIIH and 
assume no external pressure Pb = 0. Thus 

GH(a!: - l / a ! ; )  

R 
(1.8.14a) Pa = 

or using the initial dimensions of the cylinder R = a! I R,, and H = 
H,/al gives 

GHo(1 - l/a!f) GH,,(l - R,4/R4) 
( 1.8.14b) - - Pa = 

R, R, 

which can be used to solve for the inflated radius R. 

1.9 Summary 
In this chapter we have developed a general constitutive equation 
for an elastic solid. In the process we learned how stress and strain 
are described in three dimensions. We saw that when large strain is 
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properly described, extensional stresses become nonlinear in strain, 
and the surprising phenomenon of normal stresses in shear arises 
naturally. We learned that scalar material functions depend on 
invariants of strain (or stress). 

We gave several specific constitutive equations that fit stress- 
deformation data for real rubber reasonably well. These are useful 
for design of tires and other rubber goods. In Section 1.8 we showed 
how to attack some elastic boundary value problems. Additional 
problems are given in the exercises. However, we introduced the 
neo-Hookean model primarily for its value in developing constitu- 
tive equations for viscolastic liquids, particularly in Chapter 4. 

Furthermore, in a number of polymer processing operations, 
such as blow molding, film blowing, and thermoforming, deforma- 
tions are rapid and the polymer melt behaves more like acrosslinked 
rubber than a viscous liquid. Figure I. 1 showed typical deformation 
and recovery of a polymeric liquid. As the time scale of the experi- 
ment is shortened, the viscoelastic liquid looks more and more like 
the neo-Hookean solid. In Chapters 3 and 4 we develop models 
for the full viscoelastic response, but in fact in many cases of rapid 
deformations the simplest and often most realistic model for the 
stress response of these polymeric liquids is the elastic solid. 

However, before we go on to “softening” the Hookean solid 
into the viscoelastic liquid, we need to look at the other extreme, 
the Newtonian liquid, the subject of our next chapter. 

1.10 Exercises 
1.10.1 Tensor Algebra 
Consider a stress tensor T whose components are 

3 2  
Tij=[ 2 2 

-1 1 0 

Note that the tensor is symmetric. Consider also a vector v with 
components 

Evaluate the following. 

(a) T .  v (e) vv (dyad product) 
(b) v * T  (f) Tax1 
(c) T : T (g) T * 1 
(d) V .  ( T .  V) 

1.10.2 Invariants 
Determine the invariants of the stress tensor T in Example 1.10.1, 
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1.10.3 Determination of the Stress Tensor 
Measurements of force were made on 1 mm2 test surfaces around a 
point in a fluid. The vectors normal to these test surfaces comespond 
to the coordinate directions 21, 22, and 23. The measured force 
vectors on these surfaces are 

fl = 1N in the 21 direction; 
f2 = 2N in the - 23 direction 
f3 = 2N in the - 22 direction 

(a) What is the state of stress at the point? 
(b) What is the net force on 1 mm2 surface whose normal is in 
the%! +%2? 
(c) What is the component of this force normal to the surface? 
(d) Calculate the three invariants of this stress tensor. 

1.10.4 C as Length Change 
Section 1.4 mentioned that physically the Green tensor C is an 
operator that gives length changes; that is, prove eq. 1.4.22. 

(1.4.22) 

where 

C = F ~ . F  (1.4.21) 

1.10.5 Inverse Deformation Tensors 
(a) Show that the inverse of the Finger tensor operates on unit vec- 
tors in the deformed state to give inverse square of length 
change ct2 

(1.4.32) 

where 

(b) Show that the inverse of the Cauchy tensor operates on unit 
vectors in the undeformed or past state to give inverse area change 
squared 

1 
(1.4.33) - = n' . c-1 . n' 

P2 
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Figure 1.10.1. 
Eccentric rotating disks. 

Figure 1.10.2. 
Inflation of a thin sheet. 

1.10.6 Planar Extension of a Mooney-Rivlin Rubber 
Redo Example 1.8.2 for a general elastic model, eq. 1.6.3, with 
gl = 2C1 and g2 = -2C2 (i.e., a Mooney-Rivlin material). 

1.10.7 Eccentric Rotating Disks (Macosko and Davis, 1974; 
Walters, 1975; see also Section 5.7) 
Figure 1.10.1 shows two parallel disks rotating at velocity a. The 
disks are separated by a distance h and their axes of rotation are 
eccentric or displaced by an amount a. 

The displacement functions for a material confined between 
the disks are 

X I  = xi cos at - x i  sin at 
x2 = xi sin f i r  + x; cos at + y x ;  

x3 = x; 

where y = a/ h and x,! are the coordinates in the undeformed state. 
(a) Calculate the components of F and B for this deformation. 
(b) If the material between the disks is a neo-Hookean solid, de- 
termine the components of the force it exerts on the disks due to 
the deformation. 

1.10.8 Sheet Inflation 
A thin sheet of rubber is clamped over a circular hole and inflated 
by a pressure p into a hemispherical bubble (Figure 1.10.2). 
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1 m / s  

tt 
4 

4 
--.) 0.5 m 

v 

+ 1m-4 
Figure 1.10.3. 
Stretching of a polymer film. 

(a) Relate the bubble height h, which is relatively easy to measure, 
to the bubble radius R and the hole radius R,. 
(b) Relate bubble thickness near the pole S to relative length 
changes on the surface of the bubble. 
(c) Relate bubble height to the pressure, pole thickness, and the 
modulus G of the rubber. Assume that the neo-Hookean model, 
eq. 1 S.2 ,  is valid. 
(d) Compare this result with the Mooney-Rivlin model, eq. 1.6.3. 

1.10.9 Film Tenter 
Polymer film can be oriented with a device called tenter, a set of 
moving clamps on the edge of the film that pull on the film as 
indicated schematically in Figure 1.10.3. The film is usually held 
at just above its transition temperature by infrared heaters. 
(a) If the initial film thickness is 150 p m  (0.006 in.), what is the 
final film thickness? 
(b) If the film can be treated as a neo-Hookean solid with G = 
5 x lo5 Pa, what is the stress it exerts on the last pair of clamps? 
(c) What is the torque needed to turn the take-up roll (diameter 
0.3 m)? 
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The resistance which arises 
from the lack of slipperiness 
originating in a fluid, other 

things being equal, is 
proportional to the velocity 

by which the parts of the 
fluid are being separated 

from each other. 
Isaac S. Newton (1687) 

VISCOUS LIQUID 

2.1 Introduction 
Only a few years after Hooke expressed the concept that eventually 
led to the constitutive equation for the ideal elastic solid, New- 
ton (Figure 2.1.1) wrote his famous Principia Mathematica. Here 
Newton expressed, among many other things, the basic idea for 
a viscous fluid. His “resistance” means local stress; “velocity by 
which the parts of the fluid are being separated” means velocity 

Figure 2.1.1. 
Portrait of Newton in 1702 
and sketch from the Principia 
in which he illustrated some 
of his ideas about fluid flow. 
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Figure 2.1.2. 
Examples of shear-dependent 
viscosity. (a) Red blood cells 
(normal human, Hb 37%; 
Mills et al., 1980). (b) A 
0.35 wt 90 aqueous solu- 
tion of xanthan gum, a stiff 
biopolymer (Whitcomb and 
Macosko, 1978). (c) A com- 
mercial yogurt (deKee et 
al., 1980). (d) Polystyrene- 
ethylacrylate latex spheres 
DW = 0.5 pm at various con- 
centrations in diethylene gly- 
col, T = 23” C (Laun, 1988). 
The lines in (a)-(c) are fits 
using models described in 
this chapter. 

h 

ti l o ’  
F 

i b 
103 

gradient or the change of velocity with position in the fluid. The 
proportionality between them is the viscosity or “lack of slipperi- 
ness.” In one dimension this can be written as 

(2.1.1) 

Although Newton had the right physical insight, it was not un- 
til 1845 that Stokes finally was able to write out this concept in three- 
dimensional mathematical form. Only in 1856 were Poiseuille’s 
capillary flow data analyzed to prove Newton’s relation experimen- 
tally. Couette tested the relation carefully, using the concentric 
cylinder apparatus shown in Chapter 5 (Figure 5.1.1), and found 
that his results agreed with the viscosities he measured in capillary 
flow experiments (Couette, 1890; Markovitz, 1968). 

After Couette described his apparatus, several researchers 
used the design to study a wide variety of fluids. They soon found 
that many colloidal suspensions and polymer solutions did not obey 
this simple linear relation. Nearly all these materials give a viscos- 
ity that decreases with increasing velocity gradient in shear. Figure 
2.1.2 shows that shear thinning occurs in a wide range of materials 

10-2 lo0 102 
Shear rate (s-1) 
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1 I I I I J 
100 102 104 

Shear rate J (s-1) 
(c) yogurt 

10-1 10’ 103 
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(d) SVEA sphens in diethyleneglycol, 
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Figure 2.1.3. 
Viscosity measured in uniax- 
ial extension and in shear 
for a polystyrene melt at 
160°C. Note that at low rates 
q,, = 3r7. Adapted from Mun- 
stedt (1 980). 

(see also Figures 2.4.1,2.5.2,2.5.3, and 2.5.4). It was this unusual 
flow behavior, first observed in the early 1900s, that led Bingham 
to coin the word rheology. Some concentrated suspensions also 
show shear thickening behavior as illustrated in Figure 2.1.2d. 

Other experimenters in the early 1900s measured viscosity 
on very stiff liquids such as pitch and molten glass. Because these 
materials are so viscous, Trouton (1906) was able to test them like 
a solid in tension with little sagging due to gravity. His apparatus 
is shown in Chapter 7 (Figure 7.1.1). He found that the proportion 
between stress and velocity gradient was constant but three times 
larger than the value he measured in shear. This result turns out to 
be quite consistent with Newton's viscosity law when it is written 
properly in three dimensions. However, in the 1960s, workers 
exploring higher velocity gradients and other materials found that 
the viscosity in extension could increase with rate, although the 
shear viscosity decreased. A typical result for a polystyrene melt 
is shown in Figure 2.1.3. We see that the ratio of extensional to 
shear viscosity is 3 at low rates but becomes much greater with 
increasing deformation rate. We saw this qualitative difference 
between shear and extension with the elastic solid in Chapter 1. It 
is also typical of polymeric liquids. 

In this chapter we show how Newton's viscosity law can be 
written in three dimensions with the rate of deformation tensor to 
give Trouton's result. Then we will generalize this ideal viscous 
model to explain the shear thinning and thickening behavior shown 
in Figure 2.1.2 in a manner similar to our derivation of the general 
elastic solid in Chapter 1. However, as we can see in Figures 2.1.2 
and 2.1.3, viscous liquids exhibit a wider degree of departure from 
ideality. For example, some materials show a sudden shear thinning 
or plastic behavior. We will find that it is difficult to describe shear 

n 
v) 

i 
e5 

1 
P 

F 

Q 

105 

104 
10-4 10-3 10-2 10-1 100 101 

6, + (S'l) 
VISCOUS LIQUID / 67 



Figure 2.2.1. 
Relative velocity, dv, between 
points P and Q moving with 
the fluid. 

thinning and extensional thickening in the same sample (Figure 
2.1.3). In Section 2.6.4, we examine the temperature dependence 
of viscosity and the role of viscous dissipation in flows. 

2.2 Velocity Gradient 
To extend eq. 2.1.1 to three dimensions, we can use the stress tensor 
developed in Chapter 1 , but we need a way to determine the velocity 
gradient in any direction at a point in the fluid. Newton said that the 
resistance depends on the “velocity by which parts of the fluid are 
being separated,” so let us consider P and Q, two points embedded 
in a flowing fluid, separated by a small distance dr. In general, the 
velocity in the fluid is a function of position and time. 

v = v(x, r )  (2.2.1) 

The velocity at point P is v and at Q is v + dv (Figure 2.2.1). 
We are not concerned with the absolute velocity but rather with the 
relative rate of separation of dv of point P and Q, which can be cal- 
culated at any point in the fluid by taking the gradient of the velocity 
function 

(2.2.2) dv = - . dx  or dv  = L - d x  

where L is the velocity gradient tensor. This new tensor like the 
other tensors we have seen has two directions: one the direction of 
the velocity and the other of the gradient. Like the other tensors 
we have seen, it is an operator. It operates on a local displacement 
vector at a point to generate the magnitude and direction of the 
velocity change. For example, a uniform flow field may display 
very high v but L = 0, so there is no rate of separation of points. 

In Chapter 1 (recall Figure 1.4.1) we were also concerned 
with describing how points separate. There we used the displace- 
ment of points to find F ;  here we need rate of displacement. Clearly 
F, the deformation gradient tensor, and L, the velocity gradient ten- 
sor, are related. Recall eq. 1.4.3 

av 
ax 

d x = F * d x ’  (1.4.3) 

Taking the time derivative, we obtain 

But because dx’ is fixed at r’ then a(dx’)/ar = 0. Thus eq. 2.2.3 
becomes 
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Equating this result with eq. 2.2.2 gives 

F .  dx' = L .  dx 

Using eq. 1.4.3 to substitute for dx gives 

F = L . F  (2.2.4) 

Since we are only interested in the instantaneous rate of separation 
of points right now, t' becomes t and dx' becomes dx.  In the limit, 
as the past displacement is brought up to the present, we can write 

lim F = I and lim F = L (2.2.5) 
x'+ x x'+x 

The velocity gradient L is often written out as the dyad prod- 
uct of the gradient vector (symbol V) and the velocity vector 

Dropping the summation and the direction vectors as discussed in 
Chapter 1, we can write simply 

Note that the index order is the reverse of that for L, and thus L is 
the transpose of Vv in the usual notation. 

To illustrate the velocity gradient tensor further, let us apply 
it to several simple flow examples. To help us, Table 2.2.1 gives 
the components of L in several coordinate systems. 

TABLE 2.2.1 / Components of L or (V v ) ~  
Cartesian Coordinates ( x ,  y ,  z) 

VISCOUSLIQUID / 69 



Figure 2.2.2. 
Streamlines for steady uniax- 
ial extension. 

Example 2.2.1 Evaluation of L for Steady Extension, Shear, 
and Rotation 
Consider the same types of deformation given in Example 1.4.1 but 
now let them be steady motions (rather than step deformations), 
whose velocities are independent of time. 

Solutions 
(a) Uniaxial extension is illustrated in Figure 2.2.2. Fluid enters 
in the ~ 2 x 3  plane and exits along the X I  axis. Following eq. 2.2.5 
to find L, we take time derivatives of the displacement functions, 
eq. 1.4.4, and then evaluate them at xi + X I  to obtain 

d x l  dal -- - - X I  
dt dt 

Similarly 

u 2  = f f 2 x 2  (2.2.7) 
u3 = k 3 x 3  

Since dul /dxl = d r l ,  etc., the components of L for extension are 

0 0  

0 0 dl3 

(2.2.8) 

t 
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Figure 2.2.3. 
Velocity profile in steady 
simple shear flow. 

Because uniaxial extension is symmetric, u2 = u3 and thus 
d12 = d l3 .  For an incompressible fluid the continuity equation 
(eq. 1.7.9) becomes 

v . v = o  (1.7.9) 

Combining results gives 

Substituting into eq. 2.2.8 gives the components of L for uniaxial 
extension 

d l l  0 0 € 0  
Lij = 0 -dl1/2 0 ] = [ 0 --El2 8 ] (2.2.9) 

Frequently called the extension rate, -E is used for d l l  in steady 
extensional flows. 

Thus eq. 2.2.9 gives the velocity gradient tensor L for steady 
uniaxial extension. When this tensor operates on displacement 
vectors imbedded in the liquid, it generates the velocity field for 
steady uniaxial extension. 
(b) Steady simple shear is shown in Figure 2.2.3. Here planes of 
fluid slide over each other like cards in a deck. Again by taking 
time derivatives of the displacement functions for simple shear, 
eq. 1.4.8, we obtain 

[ 0 0 -412  0 0 -612 

dxi d y  
dt dt 
_ -  - - x2 = U ]  

or 

(2.2.10) dUl 

dx2 
U I  = 9 x 2  = - x2 and u2 = u3 = 0 
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Figure 2.2.4. 
Velocity in solid body rota- 
tion. 

Thus L has only one component 

(2.2.1 1) 

y is called the shear rate. Note that since Vv = LT, we have 

(2.2.12) 
z 

(c) Solid body rotation about the xz or z axis is illustrated in 
Figure 2.2.4. In cylindrical coordinates the velocity field is 

vr = v, = 0 

Evaluating L from Table 2.2.1 we obtain 

(2.2.13) 

If we use Cartesian coordinates (see eq. 1.4.10), U I  = Slxz and 
v2 = - S l x ~ ,  and we obtain the same result. 

From Example 2.2. l c  we see that the velocity gradient tensor 
is not zero for a solid body rotation. From the statement of New- 
ton's viscosity law, we would not expect stress to be generated as a 
result of the flow in solid body rotation because there is no relative 
separation of points. Like the deformation gradient F, the velocity 
gradient tensor L contains rate of rotation as well as stretching. We 
need a way to remove this rotation. 

2.2.1 Rate of Deformation Tensor 
We can remove rotation from the velocity gradient by recalling the 
definition of F in terms of the stretch and rotation tensors. 

F = V * R  (1.4.12) 

If we differentiate with respect to time 

F = V-R + V.R 
and then let the past displacement x' come up to the present x ,  there 
will be no displacements, so 

lim V(t') = lim R(t') = I (2.2.14) 
x'+x x'+x 
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With this result and eq. 2.2.5 (i.e., F = L), we obtain 

lim F = L = V + R  
X'+X 

(2.2.15) 

and similarly 

LT = (V + R ) T  

The time derivative of the stretching tensor V is usually called the 
rate ofdefomation tensor 2D. It is symmetric. 

2V = 2D = L + LT or 2D = (V o ) ~  + Vv (2.2.16) 

R is antisymmetric (or skew-symmetric) and is called W, the vor- 
ticity tensor. 

2R = 2W = L - LT or 2W = ( V V ) ~  - Vv (2.2.17) 

From the definitions we see that 

L = D +  w = ( v v ) ~  (2.2.18) 

A number of other symbols are frequently used in rheological 
literature to represent the rate of deformation and vorticity tensors, 
particularly A or y for 2D and Sa for W. Bird et al. (1987) call 
9 the rate-of-strain tensor. Example 2.2.2 should help to illustrate 
2D and 2W.* 

Example 2.2.2 Evaluation of 2D and 2W 

For the flows given in Example 2.2.1, determine the components 
of 2D and 2W. Also calculate their invariants. 

Solutions 

(a) 
diately that 

Steady Uniaxial Extension. From eq. 2.2.9 we see imme- 

2€ 0 0 
20;j = (Ljj + Lji) = (2.2.19) 

2wij = (Ljj - Lji)  = 0 

This flow is called irrotutionul since W = 0. Recalling eqs. 1.3.6- 
1.3.8, we can readily calculate the invariants of 2D. 

1 2 ~  = tr2D = 0 

*At this point the reader has the key concepts and may skip ahead to Section 2.3. 
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(b) Steady Simple Shear 
From eq. 2.2.11 and our definitions, we can write: 

(2.2.21) 

(2.2.22) 

(2.2.23) 

(2.2.24) 

(c) Solid Body Rotation 

Dij = 0 = Lij (2.2.25) 

Iw  = o  

IIIW = 0 
I l w  = Q2 (2.2.26) 

This flow is purely rotational because the rate of deformation 
tensor is zero. 

From these examples we see that physically W gives the 
angular rotation in a material at any point. For a solid body rotation 
we have only W .  D characterizes the rate of stretching at a point. 
We see that for uniaxial extension there is only stretching: W = 0. 
FromExample 2.2.2b we see that shear flow is a mixture of both 
stretching and rotation. 

We note that in each flow the first invariant of D is zero. 
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This is true in general for an incompressible material. Since 

I D  = trD = V ; V ~  = V - v  

The map of invariants of the 
rate of deformation tensor 
lie in the shaded region 
bounded by simple shear 
and uniaxial extension for 
all flows of an incompressi- 
ble material I ,  = 0. 

12 

and by eq. 1.7.9, V . v = 0 for an incompressible fluid. 
The second and third invariants of 2D are the only ones that 

vary during incompressible flows. As the invariants of the Finger 
tensor bound the possible defomtions in a material (Figure 1.4.3), 
the invariants of the rate of deformation bind the possibleflows. The 
domain of all possible flows is shown in Figure 2.2.5. 

The fact that D measures stretching is demonstrated in Ex- 
ample 2.2.3, which shows D is the local rate of change in length. 
Example 2.2.4 shows that D is also the time derivative of B in the 
limit of small deformation. 

Simple shear or 
planar extension 

- 

Example 2.2.3 The Rate of Deformation Tensor 2D as a Rate 
of Length Change 
Show that the rate of deformation tensor measures the rate of 
squared length change in a material d)dx12/dt.  That is, show 

= dx * 2D * dx 
d(dx(* 

dt 

Solution 
Note that 

(2.2.28) 

(2.2.29) 

=2D 8 -  

biaxial extension 
4 -  

0 
-1 3 7 

111, 
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From eq. 2.2.2 

Thus 

Substitution into eq. 2.2.29 gives 

= dx * 2L - d x  
d)dx12 

dr 

Breaking L down into D and W yields 

-- d'dx 'Z  - dx a 2D dx + dx a 2W. dx 
dt 

(2.2.2) 

(2.2.30) 

(2.2.31) 

(2.2.32) 

In each of the right-hand terms the tensor is operating on two dx 
vectors. Because these vectors are identical, we can reverse the 
operations, operating on the other one first. However, changing the 
operation order requires the tensor to be symmetric. D is, but W is 
not (see eqn 2.2.17). Thus the last term is 0 and we have 

(2.2.33) 

Thus we see that 2D is a tensor that operates on small dis- 
placement vectors around a point in a material to give the time rate 
of change of the squared length of those vectors. 

Example 2.2.4 Rate of Deformation as a Time Derivative of 
B and C 

Show that 

dB 
t 1 4 t  dt lim - = 2D 

and similarly for C. 

Solution 

From the definition of B, eq. 1.4.13, we can write 

d B  . - - = B = F . F T  = F . F T + F . F  
dr 
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As in deriving eq. 2.2.15, we note that 

l imF = limFT = I  
r’+f V-+r 

Thus 

lim B = F + FT (2.2.34) 
t ‘+f  

which from eq. 2.2.5 becomes 

l i m B = L + L T  = 2 D  (2.2.35) 
f ’+t  

In the same way starting from the definition of C = FT - F, we 
obtain 

lim C = L T + L = 2 D  (2.2.36) 
f+ t ‘  

2.3 Newtonian Fluid 
We now have the tools to extend Newton’s law to three dimensions. 
As we have seen, particularly in Example 2.2.3, D is the proper 
three-dimensional measure of the rate “by which the parts of the 
fluid are being separated.” Thus using T and D we can turn eq. 2.1.1 
into a tensor relation 

t = v2D (2.3.1) 

or in terms of the total stress 

T = -PI + v2D (2.3.2) 

The factor of 2 arises naturally because B = 2D, as we saw 
in Example 2.2.4, and also because viscosity is normally defined 
by the shear relation given in eq. 2.1.1. We can see this by applying 
the Newtonian constitutive relation to the steady simple shear flow 
of Example 2.2.2. Substituting eq. 2.2.21 for 2D into 2.3.2 gives 

0 9 0  
(2.3.3) 

We see that the shear stress reduces to eq. 2.1.1 

Recall that 9 is the shear rate, du,/dxZ, eq. 2.2.10. The only 
normal stress in steady shear of an incompressible Newtonian fluid 
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TABLE 23.1 / The Viscosity of Some Familiar Materials 
at Room Temperature 

Liquid Approximate Wscosiv (Paas) 

Glass 1040 
Molten glass (500°C) 10'2 
Asphalt 108 
Molten polymers 103 
Heavy syrup 1 02 
Honey 101 
Glycerin 1 00 
Olive oil 10-1 
Light oil 10-2 
Water 10-3 
Air 10-5 

Adapted from Barnes et al. (1989). 

is the arbitrary hydrostatic pressure. The two normal stress differ- 
ences N1 and N2, eq. 1.2.46, are zero. 

The SI unit of viscosity is the pascal-second (Paes). The cgs 
unit, poise=0.1 Paas, is also often used. One centipoise, ~ p = l O - ~  
Pa.s or 1mPa.s is approximately the viscosity of water. Table 2.3. I 
shows the tremendous viscosity range for common materials. Very 
different instruments are required to measure over this range. 

Shear rates of common processes can also cover a very wide 
range, as indicated in Table 2.3.2. 'Ifipically, however, very high 
shear rate processes are applied to low viscosity fluids. Thus shear 
stresses do not range as widely. 

TABLE 2.3.2 / Shear Rates 'Qpical of Some Familiar Materials and Processes 
Typical Range of 

Process Shear Rates @-I) Application 

Sedimentation of fine powders 10-6 - 10-4 Medicines, paints 
in a suspending liquid 
Leveling due to surface tension Paints, printing inks 
Draining under gravity 10-1 - 101 Painting and coating; emptying 

tanks 
Screw extruders 100 - 102 Polymer melts, dough 
Chewing and swallowing 10' - 102 Foods 
Dip coating 10' - 102 Paints, confectionery 
Mixing and stirring 10' - 103 Manufacturing liquids 
Pipe flow 100 - 103 Pumping, blood flow 
Spraying and brushing 103 - 104 Spray-drying, painting, fuel 

Rubbing 104 - 105 Application of creams and lotions 

1njection.mold gate 104 - 10s Polymer melts 
Milling pigments in fluid bases 103 - 105 
Blade coating 105 - 106 Paper 
Lubrication 103 - 107 Gasoline engines 

10-2 - 10-1 

atomization 

to the skin 

Paints, printing inks 

Adapted from Barnes et al. (1989). 
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2.3.1 Uniaxial Extension 

For steady uniaxial extension, eq. 2.2.19 gives the components of 
2D. Using these components with eq. 2.3.2 gives the stresses in a 
Newtonian fluid 

T22 = T33 = -p - ‘I€ (2.3.6) 

If we can neglect surface tension effects, the boundary conditions 
on the free surface are 

T22 = T33 = 0 (2.3.7) 

Substituting gives 

If we define an extensional viscosity as 

(2.3.9) 

we obtain 

‘ Iu  =3t7 (2.3.10) 

This important result demonstrates the value of the tensor 
form of Newton’s viscosity law. It is directly analogous to the re- 
sult in Chapter 1, that the tensile modulus is three times the shear 
modulus, eq. 1.5.1 1. The three times rule for viscosity in steady 
uniaxial extension is often called the Trouton ratio. We see it holds 
true at low rates for the polymer melt in Figure 2.1.3. The follow- 
ing examples give applications of the Newtonian model to more 
complex deformations. Further examples appear at the end of the 
chapter. Bird, et al. (1987, Chapter 1) or any other good fluid 
mechanics book contains many worked Newtonian examples. 

Example 2.3.1 Flow Between Eccentric Rotating Disks 

Consider again the flow between eccentric rotating disks pictured 
in Exercise 1.10.7. 
(a) Calculate the components of 2D, the rate of deformation ten- 
sor. 
(b) If the material between the disks is a Newtonian liquid, deter- 
mine the force components on the disks. 
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Solution 

(a) To calculate the deformation gradient tensor 2D we must de- 
termine the velocities from the displacement functions. Recall 

XI = xi cos at - x i  sin Rt (2.3.1 1) 
x2 = xi sin Qr + x i  cos Rt + yx;  (2.3.12) 
x3 = x; (2.3.13) 

where y = a /  h (see Exercise 1.10.7). Applying vi = dx; / d t  gives 

v1 = -xi  R sin s t r  - x;R cos Rr 
u2 = +xi Q cos Rt - x;R sin Rr 
v3 = 0 

We need to get vi in terms of the present coordinates xi  (rather the 
past time positions xi ) .  This can be done formally by expressing x: 
in terms of x; ,  that is, by finding the inverse deformation gradient 
dx' = F-' . dx (eq. 1.4.29). However, in this case we can eliminate 
xf by substituting these results back into displacement functions. 
Let 

-v1 x i  cos Rt = - - xi sin Rr R 

Then with eq. 2.3.12 

-v1 

sz x2 = - - xi sin Rt + xi sin at + yx; 

or 

V l  = Ryx3 - ox* (2.3.14) 

Then let 

which substituted into eq. 2.3.1 1 gives 

v2 

Q 
XI = - + x i  sin Rr - x i  sin at 

Thus, 

v2 = R X l  

Therefore, 

(2.3.15) 

0 0 Q y  
0 0 0  (2.3.16) av. avi 

axj axi 
2Dij = 2 + - 
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Figure 2.3.1. 
Cone and plate rheometer. 
The small-angle cone rotates 
at angular velocity 52 while 
the plate is stationary. 

(b) Applying the Newtonian constitutive relation, eq. 2.3.2, for 
an incompressible material, we obtain the stress components 

TI3 = T31 = V Q Y  
Tli = T22 = T33 = - p  (2.3.17) 
Ti2 = T23 = 0 

The only stress component acting on the disk will be 

23 .T = ti = T3123. 

The force will equal this stress times the disk area 

f l  = f x  = Y C R ~ V Q Z ~  (2.3.18) 

Example 2.3.2 Cone and Plate Rheometer 

The cone and plate geometry shown in Figure 2.3.1 is a common 
one for measuring viscosity. 
(a) Derive the relation between the geometry, the angular velocity, 
and the shear rate: 

(b) Derive a relationship between the torque M and the shear 
stress tl2. Does this relation require a constitutive equation? As- 
sume laminar, steady, isothermal flow with negligible gravity and 
edge effects and B c 0.10 rad. 

Solution 

(a) The proper coordinate system for this problem is spherical. 
By symmetry and as a result of the small angles with no inertial 
effects (slow flow), we expect ue = u, = 0. Thus the only ve- 

I- 
I 6 .  
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locity component is u4(6), and the components for L in spherical 
coordinates reduce to (see Table 2.2.1). 

(2.3.19) 

Thus, since cot(~c/2-0.1) < 0.1, 

(2.3.20) 

From the no-slip boundary conditions 

Substituting gives 

(2.3.21) 

The error in this result due to the approximation made in eq. 2.3.20 
is less that 1% for /? = 0.1 rad (5.7'). 
(b) The equations of motion in spherical coordinates for the 4 
direction, Table 1.7.1, reduce to 

Integrating gives 

- constant Cl 
sin2 8 

T4.g = - - 
This is independent of 6 and q5 because 

1.00 3. sin2(; - B )  L .99 for jl c 0.1 rad 

Thus from a torque balance 

3M 
T+g = - 

21c ~3 
(2.3.22) 
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Equation 2.3.22 is independent of the constitutive equation because 
of the small angle. The result is a homogeneous shear field, like 
simple shear between sliding parallel plates or between closely 
fitting cylinders. Because stress and deformation rates can be de- 
termined independent of a constitutive equation, these flows are 
very useful as rheometers and are discussed further in Chapter 5. 

2.4 General Viscous Fluid 
The Newtonian constitutive equation is the simplest equation we 
can use for viscous liquids. It (and the inviscid fluid, which has 
negligible viscosity) is the basis of all of fluid mechanics. When 
faced with a new liquid flow problem, we should try the Newtonian 
model first. Any other will be more difficult. In general, the New- 
tonian constitutive equation accurately describes the rheological 
behavior of low molecular weight liquids and even high polymers 
at very slow rates of deformation. However, as we saw in the in- 
troduction to this chapter (Figures 2.1.2 and 2.1.3) viscosity can be 
a strong function of the rate of deformation for polymeric liquids, 
emulsions, and concentrated suspensions. 

A large number of models that depend on rate of deformation 
have been developed, but they all arise logically from the general 
viscousfluid. The general viscous model can be derived by a proc- 
ess very similar to the derivation of the general elastic solid in 
Section 1.6. Here we propose that stress depends only on the rate 
of deformation 

T = f(2D) (2.4.1) 

Expanding the function in a power series gives 

T = foDo + f i  D' + f2D2 + f3D3 + * . * (2.4.2) 

Note that Do = I and for an incompressible fluid fo = - p .  Again 
we can evoke the Cayley Hamilton theorem, eq. 1.6.2. Thus 

T = -pI + r ] ,  2D + q2 (2W2 (2.4.3) 

where r ] ,  and q2 are scalar functions of the invariants of 2D. 

T = -PI+ r ] ,  (1120, I I ~ D ) ~ D +  t72(112~, 11120)(2D)~ (2.4.5) 

This constitutive equation is also known as a Reiner-Rivlin 
fluid. The Newtonian fluid is simply a special case with r ] ,  (ZZzO, 
11120) = q, a constant, and 72 = 0. 

The r]2 term gives rise to normal stresses in steady shear flow, 
but unfortunately they are not even in qualitative agreement with 
experimental observations. This can be readily seen by noting 
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the components of 2D for steady simple shear from eq. 2.2.21 and 
calculating (2D)2 

(2.4.6) 

Substituting these into eq. 2.4.5 gives for the stresses 

TI2 = r,Y (2.4.7) 
(2.4.8) TII = T22 = -P + r2P 

T33 = - P  (2.4.9) 

2 

In steady simple shear flow nearly all fluids that exhibit normal 
stresses show a positive first normal stress difference TI I - T22 and 
a much smaller, typically negative second normal stress difference 
T22 - T33. From eq. 2.4.8 we see that the first normal stress will be 
zero but the second will not. 

This little exercise is significant. It tells us that one of the 
four key rheological phenomena laid out in the introduction to these 
chapters on constitutive relations-normal stresses in steady shear 
flows-cannot be explained by any function of the rate of the de- 
formation tensor. On the other hand, almost any function of B, the 
Finger tensor, does generate proper shear normal stresses. We will 
wait until Chapter 4 to pursue this reasoning further. 

Since the q2 term gives qualitatively the wrong result, it is 
usually discarded. Therefore, the general viscous fluid reduces to 

Because so much rheological work has been done with simple 
shear flows where III2D = 0 (note eq. 2.2.23), most functional 
forms for q have assumed T](II2D) only. 

Several common expressions for q ( Z l 2 ~ )  are given in Sections 
2.4.1-2.4.5. 

2.4.1 Power Law 

The most widely used form of the general viscous constitutive re- 
lation is the power law model 

t i j  = m lzz2~l(n-')'2(2~jj) (2.4.12) 

This equation is most often applied to steady simple shear 
flows in which the absolute value of the second invariant becomes 
(eq. 2.2.23) 
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Thus for steady shear the power law becomes 

512 = 521 = my” or ~ = r n j / ” - l  (2.4.13) 

Figure 2.4.1. 
Plot of viscosity versus shear 
rate for an ABS polymer melt 
at three temperatures (Cox 
and Macosko, 1974): dashed 
lines, power law tit; solid line 
represents a Cross or Ellis 
model. See Table 2.4.1. 

with no other stress components. Equation 2.4.13 is frequently 
the way the power law is written, but it is important to remember 
that this version is valid only for simple shear. For other flows, 
such as radial flow between plates (e.g., Good et al., 1974), the full 
three-dimensional version given in eq. 2.4.12 must be used. 

In the processing range of many polymeric liquids and dis- 
persions the power law is a good approximation to the data from 
viscosity versus shear rate. Figure 2.4.1 shows viscosity versus 
shear rate data for an acrylonitrile-butadiene-styrene (ABS) poly- 
mer melt (Cox and Macosko, 1974). At high shear rate, 3 > 1, 
the power law fits the data well, with m representing a function of 
temperature. The power law has been used extensively in polymer 
process models (e.g., Middleman, 1977; Tadmor and Gogos, 1979; 
Tanner, 1985; Bird et al., 1987). Nearly all non-Newtonian materi- 
als show shear thinning, n < 1, but some, particularly concentrated 
suspensions. show regions of shear thickening, as illustrated in Fig- 
ure 2.1.2d. These can be fit locally with n > 1, but one should be 
cautious in modeling flows of shear thickening fluids. Thickening 
often signals such other complications as instability, phase separa- 
tion, and lack of reversibility. 

One of the obvious disadvantages of the power law is that it 
fails to describe the low shear rate region. Since n is usually less 
than one, at low shear rate q goes to infinity rather than to a constant 
q,, as is usually observed experimentally (Figures 2.4.1 and 2.1.2a, 
b). It is also observed that viscosity becomes Newtonian at high 
shear rates for many suspensions and dilute polymer solutions (see 
Figure 2.1.2a). 

lo5 

lo4 
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2.4.2 Cross Model 
To give Newtonian regions at both low and high shear rates, Cross 
(1965) proposed 

-- 1 (2.4.14) 'I - 'I, 
'In - 'I, - (I-n)/2 1 + (K21112DI) 

mically q, >> 'I,, so when ( ~ I Z D ) ' / ~  = i /  is very small, 'I goes 
to qo. At intermediate i /  the Cross model has a power law region 

('I - q,) 'v ('I,, - qJrny"-' where m = KI-" (2.4.15) 

or for 'I >> 'I, 

At very high shear rates the right-hand side of q. 2.4.15 becomes 
very small, and goes to the high shear rate Newtonian limit, 17,. 

The Cross model has been used to fit the data sets shown in 
Figures 2.4.1 and 2.1.2. The parameters used are shown in Table 
2.4.1. 

2.4.3 Other Viscous Models 
To fit data even better Yasuda et al. (1 98 1) have proposed 

-- - 1 (2.4.16) 'I - 'I, 
( I  - ) / a  

This is equivalent to the Cross model with a fifth fitting parameter, 
a. With a = 2, eq. 2.4.16 is known as the Carreau model (Bird et 
al., 1987, p. 171). 

Frequently the high shear rate region is not observed, and 
'I, is set to zero in q. 2.4.14. Such a model fits the polymer melt 
data in Figure 2.4.1 quite well. This three-parameter version is 
often called the Ellis model. The Ellis model, however, is usually 
written in terms of the stress invariant 

TABLE 2.4.1 / Cross Model Parameters for Several Materials' 

(2.4.17) 

Figure tln tl, K 
Material Number ( P a  *s) (Paas)  (S 1 n 

ABS (200°C) 2.4. I 45, OOO - 2.5 0.40 
Blood 2.12 0.125 0.005 52.5 0.285 
Xanthan 2. I .2b 15 0.005 10 0.20 
Yogurt 2. I .2c 10 0.004 0.26 0. I 

a Fits for data in Figure 2.1.2 adapted from Barnes et al. ( I  989). 
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The three-parameter Ellis model is still simple enough to allow 
analytical solution of some complex flow problems (Bird, 1976; 
Tadmor and Gogos, 1979). Applying the more complex viscous 
models requires numerical solutions. 

Other models have been used (Bird et al., 1987, p. 228), 
but most studies have concentrated on the power law or the Cross 
(Carreau) models. Once one has chosen a numerical method, any 
of the general viscous models that depend on 1120 can be used. 

The following example illustrates the use of the power law 
model. 

Example 2.4.1 Flow of a Power Law Fluid Through a Tube 
Determine the relationship between pressure drop po - pL and flow 
rate for a power law fluid flowing through a circular tube (Figure 
2.4.2). Assume that (a) the flow is steady, laminar incompressible, 
and fully developed; (b) gravity is negligible; and (c) isothermal 
conditions. 

Solution 
From the assumptions above and symmetry, we expect that 

Thus the continuity equation is satisfied identically and the mo- 
mentum balance reduces to (see Table 1.7.1) 

Since ap/ax is a function only of x and the second term is a function 
only of r ,  we can change the partials to ordinary derivatives 

Figure 2.4.2. 
Flow through a circular tube. 

PO PL 
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and integrate d p / d x  to obtain p = CIX + co. From the pressure at 
x = O a n d L w e g e t  

P = -(+ Po - p L  x + P O  

Thus 

Integrate 

rrx = - ( v ) r  +; c2 (2.4.18a) 

c2 = 0 because the shear stress cannot be infinite at the tube center. 
We will use the shear stress at the wall 

(2.4.18b) (Po - PL)R 
2L T r x l R  = %J = 

Substituting the power law equation, which in one dimension be- 
comes 

and integrating, we obtain 

Figure 2.4.3. 
Reduced velocity profiles 
for tube flow of a power law 
fluid. 

0 

(2.4.19) 

[ 1 - (f )'""] (2.4.20) 

r R 
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Figure 2.4.4. 
(a) Pressure-driven flow 
through an annulus with 
rotation (helical annular 
flow). (b) The same flow 
“unwrapped,” showing the 
projection of the velocity in 
both planes. 

We can determine the flow rate by integrating the velocity 
profile 

Zn R 

Q = / / v , r d r d B  
0 0  

I 

(2.4.21) 

=- 

which is the desired relation. We can also write an expression for 
the shear rate at the wall in terms of Q. 

(2.4.22) 
. 4Q 3 = Yw = [a + &] 

We will use these results for analyzing capillary rheometer data in 
Chapter 6. 

2.4.4 The Importance of I l z D  

The problem of combined flows of a shear thinning liquid in a die 
offers an excellent example of why the scalar material functions 
must depend on the invariants of the deformation (or stress) tensor. 

Consider an axial annular die in which the liquid is pumped 
out under pressure and the central core is rotated at an angular 
velocity !2 (see Figure 2.4.4). Ignoring curvature, the stress balance 
becomes 

with boundary conditions 

(b) 
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Figure 2.4.5. 
Dimensionless flow rate ver- 
sus dimensionless pressure 
drop for helical annular flow 
of a power law fluid; n = 1 
is the Newtonian solution 
representing the result in the 
absence of shear thinning. 
The solid lines are the results 
obtained numerically, while 
the dashed line (for n = f) 
is the analytical solution ob- 
tained using eq. 2.4.23. Note 
how much Q is enhanced at 
high pressures. 

10 

0.1 

0.25 

The solution of this problem for any value of n can be obtained 
by numerical integration (Middleman, 1977). Of special interest is 
the relationship between the volumetric flow rate Q and the pressure 
drop A p  = P I  - p2. The relationship between dimensionless flow 
rate and dimensionless pressure drop is shown in Figure 2.4.5 for 
different values of n.* 

For n = 4, an analytical solution can be obtained (Bird et al., 
1987, p. 184). The expression is 

Q = - ( , ~ ) ~ [ l + 9 6 0 ( ~ ) ’ ( ~ ) ~ + ~ - - ]  W B 2  B A p  (2.4.23) 
80 BAP 

The series expansion employed to obtain eq. 2.4.23 is vdid 
for large pressure drop values. Using only the terms shown in 
eq. 2.4.23, we obtain the results shown by the dashed line in Fig- 
ure 2.4.5, which are in good agreement with the numerical results 
shown by the continuous lines for large values of dimensionless 
pressure drop. 

The cross flow due to rotation of the die shear thins the vis- 
cosity, further increasing the flow rate from the die. But nothing is 
free. It takes considerable power to rotate the die! Flow rate is also 
augmented when A p  and i /  are in the same direction (Middleman, 
1977; Bird et al., 1987). 

*Obtaining the results in Figure 2.4.5 will be an interesting exercise in numeri- 
cal analysis for the curious reader- combination of numerical integration and 
interative solution is required; see Middleman (1977, Section 5.5) for the equation. 
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2.4.5 Extensional Thickening Models 

As we saw in Figure 2.1.3, viscosity measured in extension can 
be qualitatively different from that measured in shear. Primarily 
this difference constitutes a problem in nonlinear viscoelasticity, 
and we will wait until Chapter 4 to fully address it. However, 
several models that only depend on 2D or 2W have been proposed. 
These have no time dependence but are much easier to apply than 
viscoelastic models and are worth mentioning here. 

In uniaxial extension the third invariant of 2D is 2g3, but in 
simple shear 11120 = 0 (recall eqs. 2.2.20 and 2.2.23). Thus a 
model that depends on 11120 may give the possibility of different 
behavior in extension. Debbaut et al. (1988) have proposed several 
models that depend upon Z Z Z 2 0 .  One that gives shear thinning but 
constant extensional viscosity as in Figure 2.1.3, is 

A problem with this model is that it gives effects in uniaxial exten- 
sion only. In planar extension we also expect thickening, but here 
ZZZZD = 0, as shown in Exercise 2.8.1. 

To solve this problem, Schunk and Scriven (1990) proposed 
a model that uses Wre1, a magnitude of the vorticity, to give ex- 
tensional thickening. They define this magnitude such that it is 
insensitive to simple solid body rotation yet retains the rotation in- 
herent in simple shear. They argue that this rotation is a key to un- 
derstanding the difference between shear thinning and extensional 
thickening 

where 

1 
2 

+ v . Vd)) - -V x v (2.4.26) 

where di)  are the eigenvectors of 2D (recall eqs. 1.3.3 and 1.3.13) 
and 

npically qs(ZZz0) is a shear thinning function of the Cross or 
Carreau form and f l , ( Z 1 2 ~ )  is an extensionally thickening function 
of the same form (but n > 1). The ratio W,l/S = 1 in simple shear 
and 0 in pure extension. 
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Souza Mendes et. al. (1994) have suggested that rather than 
the arithmetic mean (eq. 2.4.25) a geometric mean may give a more 
reasonable viscosity function 

The approaches above can describe only steady state, time- 
independent viscosities. In Chapter 4 we will show that for time- 
dependent viscoelastic models, like Maxwell’s, extensional thick- 
ening arises naturally. 

2.5 Plastic Behavior 
A plastic material is one that shows little or no deformation up to 
a certain level of stress. Above this yield stress the material flows 
readily. Plasticity is common to widely different materials. Many 
metals yield at strains less than 1%. Concentrated suspensions 
of solid particles in Newtonian liquids often show a yield stress 
followed by nearly Newtonian flow. These materials are called 
viscoplastic or Bingham plastics after E. C. Bingham, who first de- 
scribed paint in this way in 1916. House paint and food substances 
like margarine, mayonnaise, and ketchup are good examples of 
viscoplastic materials. 

A simple model for plastic material is Hookean behavior 
at stresses below yield and Newtonian behavior above. For one- 
dimensional deformations 

t = Gy for T c ty 

and (2.5.1) 

The model also can be written as allowing no motion below the 
yield stress 

i /  = 0 for t < ry 

and (2.5.2) 

T = q y  + ty for T 2 ty 

This latter form is the one Bingham used in his original paper. 
Figure 2.5.1 illustrates eqs. 2.5.1 and 2.5.2 and compares the 

Bingham model to Newtonian and power law fluids. We can see 
why strong shear thinning behavior is frequently called pseudo- 
plastic. In fact the data shown in Figure 2.1.2~ for yogurt, which 
is very shear thinning, n = 0.1, can be fit nearly as well with a 
Bingham model using ty = 60 Pa and q = 4 &as. 
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Figure 2.5.1. 
Bingharn plastic behavior. (a) 
Shear stress versus strain at 
constant strain rate according 
to eq.2.5.1. (b) Shear stress 
versus strain rate following 
eq. 2.5.2 compared to power 
law and Newtonian models. 

An important feature of plastic behavior is that if the stress is 
not constant over a body, parts of it may flow while the rest acts like 
a solid. Consider flow in a tube: the shear stress goes linearly from 
zero at the center of the tube to a maximum at the wall (eq. 2.4.18a). 
Thus the central portion of the material flows like a solid plug 
(Fredrickson, 1964. p. 178). The shape is shown in Figure 2.4.3, 
the curve for n = 0.01. Neck formation during uniaxial extension 
of a solid at constant strain rate is another example of local flow. 
At the smallest sample cross section or at an inhomogeneity, the 
stress during the test will just exceed the yield stress and large 
deformation can occur. 

To handle deformations occurring in more than one direc- 
tion, eq. 2.5.1 should be put into three-dimensional form. The only 
significant change required is to replace the one-dimensional yield 
criterion with some scalar function of the invariants of T. There are 
a number of yield criteria in the literature (Malvern, 1969, Sections 
6.5,6.6). The von Mises criterion, which uses the second invariant 
of r ,  is the most common. 

r = GB for 11, < T: 

and 

The Bingham model has been applied to a wide variety of 
flow problems (Bird et al., 1982). One case is given in Example 
2.5.1. 

Example 2.5.1 The Ketchup Bottle 
We have all been frustrated by that malevolent Bingham plastic, 
ketchup. To exceed yield stress of this substance in the neck of the 

i 
c zy a 

Power law 
(pseudoplas tic) 

Newtonian 
*/' 

/** 

strain y 
(a) 
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Figure 2.5.2. 
Flow data for several food 
products (courtesy of Graco 
Co.). The Newtonian syrup 
has a higher viscosity at 
high shear rate, while the 
viscoplastic salad dressing 
and the ketchup show a yield 
stress and much higher vis- 
cosity at low rates. 

bottle, one must frequently tap the bottle, and then, when the shear 
stress at the wall exceeds ry ,  flow is rapid. Figure 2.5.2 shows 
shear stress versus shear rate data for ketchup and several other 
food products. For this ketchup sample, ry = 200 dynes/cm2 (note 
that in contrast to Figure 2.5.1, this is a log-log plot). Will ketchup 
empty under gravity from a typical bottle? 

Solution 
In the neck of the bottle, the wall shear stress rw will be balanced by 
the pressure head of ketchup in the bottle. If we can approximate 
the neck of the bottle as a tube, length L and diameter D, and the 
body of the bottle as a cylindrical reservoir of height H, then from 
eq. 2.4.18 

j7 0 2  
~ ; ( X D L )  = p ( T )  or rw = - l J g H D  using p g H  = p (2.5.4) 

4L 

Let density p 2: 1 g/cm3 and gravitational acceleration g = 
980 cm/s2. Assume a bottle with a “standard” neck: D 2: 1.5 
cm, L 2: 6 cm. If the bottle is partially full, H 21 4 cm, then 
rw 2 200 dynes/cm2 and the ketchup should not flow without 
some thumping. Note that the situation is probably worse because 
we have assumed atmospheric pressure above the ketchup in the 
bottle. The pressure will typically be less because a partial vacuum 
is created as the bottle is inverted. With a “wide mouth” bottle, 
D 2: 3 cm. Then rw N 400 dynes/cm2, which may make meal 
times flow more smoothly. 

Figures 2.5.3 shows Bingham plots of data for an iron oxide 
suspension. Data over a wide shear rate range are shown in Figure 
2.5.3a, while the lower shear rate range of data is shown in Figure 
2.5.3b, both on a linear scale. The constants of the Bingham model 

10 I I I I 
1 10 100 lo00 

Shear rate ( 8 - l )  

94 I RHEOLOGY 



Figure 2.5.3. 
Bingham fits for experimental 
data of 6.0 vol % iron oxide 

fitted to these two ranges of data are considerably different. The 
difference is more obvious when the data are examined on a log-log 
plot (Figure 2.5.3c), especially in the lower shear rate range. Large 
errors in ty can result by picking the wrong shear rate range to fit 
the Bingham model. 

2.5.1 Other Viscoplastic Models 
Casson (1959) proposed an alternate model to describe the flow 
of viscoplastic fluids. The three-dimensional form is left as an 
exercise to the reader (hint: see eq. 2.5.9), but the one-dimensional 
form of the Casson model is given by. 

i /  = 0 for t < ty 

t'/* = t:/' + ( q ~ ) ' / ~  for t 2 ty (2.5.5) 
suspension in mineral oil (re- 
plotted from Navarrete, 1991) 
in (a) the higher shear rate 

range, and (c) all data on a 
log-log scale. 

This model has a more gradual transition from the Newtonian to the 
yield region. For many materials, such as blood and food products, 

range, (b) the lower shear rate it provides a better fit. 

- 
: z  

0 200 400 600 800 1000 
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Figure 2.5.4. 
Comparison of Bingham 
and Casson fits to the iron 
oxide suspension data over 
the entire range of experi- 
mental data obtained; pa- 
rameters for the Bingham 

and ?,, = 1.66 Pa, while for 
the Casson model they are 
0.15 Pass and 1.66 Pa, 
respectively. 

model are q = 0.25 P a s  z 
pa) 

10-6 10-4 10-2 100 102 

.i (5-9 

Figure 2.5.5. 
Data of Figure 2.5.3 replotted 
as (a) viscosity versus shear 
rate and (b) viscosity versus 
shear stress for 6.0 vol % 
iron oxide suspension. The 
latter clearly shows the dra- 
matic drop in viscosity over 
a very nmow shear stress 
range. 

Id 
rl 

(Pas) 
10' 

10-1 

The iron oxide suspension data, including even lower shear 
rates, are shown in Figure 2.5.4. Curves of the Bingham and Cas- 
son models are also shown; Bingham model parameters from Figure 
2.5.3b are used instead of a best fit. Note that values of the param- 
eters for the Casson model also depend on the range of shear rates 
considered. 

Studies covering a very wide shear rate range indicate that 
there is a lower Newtonian rather than a Hookean regime. This 
regime can be clearly seen in Figure 2.5.5, and it suggests the fol- 
lowing two-viscosity model: 

0 
0 

0 i 
0 

n 

T 
(Pass) 

0 
0 

0 

0 
0 
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Using a critical shear rate rather than shear stress as a yield crite- 
ria makes application to numerical calculations much easier (Bev- 
erly and Tanner, 1989). Equation 2.5.6 with stress yield crite- 
ria (eq. 2.5.3) is known as Herschel-Bulkley model (Herschel and 
Bulkley, 1926; Bird et al., 1982). From Figure 2.5.5 we see that the 
two-viscosity models will better describe the iron oxide suspension 
data illustrated here. 

Papanastasiou (1987) proposed a modification to the vis- 
coplastic fluid models that avoids the discontinuity in the flow 
curve due to the incorporation of the yield criterion. Papanasta- 
siou’s modification involves the incorporation of an exponential 
term, thereby permitting the use of one equation for the entire flow 
curve, before and after yield. The one-dimensional form of Pa- 
panastasiou’s modification is 

(2.5.7) 

The three-dimensional forms of the Herschel-Bulkley 
(eq. 2.5.6) and Casson (eq. 2.5.5) equations, with Papanastasiou’s 
modification, are as follows. 

Modified Herschel-Bulkley : 

Modified Casson: 

and 

t = Itlsgn(D) (2.5.9b) 

where the function “sgn” gives the corresponding sign of the D com- 
ponent. By choosing larger values for a, we can approach closer 
to the ideal yield stress behavior. Typically, a 2 100 (Ellwood 
et al., 1990) is large enough to approximate the ideal viscoplastic 
behavior (Figure 2.5.6). Papanastasiou and co-workers (Papanas- 
tasiou, 1987; Ellwood et al., 1990) also have demonstrated that the 
exponential term used in eqs. 2.5.7-2.5.9 results in a flow curve 
that fits experimental data well. 

The two-viscosity models (eq. 2.5.6) and Papanastasiou’s 
modification (eqs. 2.5.7-2.5.9) are empirical improvements de- 
signed primarily to afford a convenient viscoplastic constitutive 
equation for numerical simulations (Abdali et al., 1992). Figure 
2.5.6 compares them with the ideal Bingham model. 

Barnes and Walters (1985) proposed that ty is a consequence 
of instrumental limitation, and given instruments capable of meas- 
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Figure 2.5.6. 
Comparison of the two- 
viscosity models and Pa- 
panastasiou's modification 
for a Bingham fluid. Larger 
values of parameter a in Pa- 
panastasiou' s modification 
(eq. 2.5.7) permit a better ap- 
proximation to the Bingham 
model. 

102 t I I I I I s m # (  I I I 1 1 1 1 1  

L - 
- 

Papanastasiou, Q = 100 
Papanastasiou, a = 50 

II 

- - 
m - - - Two-viscosity model, fc = 0.1 s * - 

ry = 50 Pa 
q = 20 Paas 

I I I I I I I I l  I I 1 1 I I 1 I  

10-2 10-1 

uring at extremely low shear rates, the yield stress does not exist. 
The iron oxide suspension data shown in Figure 2.5.5 demonstrate 
that measurements at i. c 10-5s-' are required to observe the ex- 
istence of a high viscosity limit rather than a solidlike limit. Hartnett 
and Hu (1989) disputed this hypothesis by showing that a nylon ball 
suspended in a Carbopol solution did not fall by a measurable dis- 
tance over 3 months. A compromise to this controversy may be 
obtained from Astarita's (1990) argument that yield stress is a con- 
venient engineering reality, dependent on the nature of the problem 
under consideration. 

Perhaps the best picture of a viscoplastic fluid is that of a 
very viscous, even solidlike, material at low stresses. Over a nar- 
row stress range, which can often be modeled as a single yield 
stress, its viscosity drops dramatically. This is shown clearly in 
Figure 2.5.5b, where viscosity drops over five decades as shear 
stress increases from 1 to 3 Pa. (The drop is even more dramatic 
in Figure 10.7.2.) Above this yield stress the fluid flows like a 
relatively low viscosity, even Newtonian, liquid. Because of the 
different behaviors exhibited by these fluids, the model (Bingham, 
Casson, etc.) and the range of shear rates used to calculate the 
parameters must be chosen carefully. In Section 10.7 we will dis- 
cuss microstructural bases for rr. It is also important to note that 
experimental problems like wall slip are particularly prevelant with 
viscoplastic materials. Aspects of slip are discussed in Section 5.3. 

2.6 Balance Equations 
To apply these viscous models to more complex problems, we need 
to use the equations of motion and boundary conditions in a man- 
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ner similar to the way we approached the elastic solids problems in 
Section 1.7. The equations of motion are the same as those given 
there. The common boundary conditions relevant for fluids prob- 
lems are also summarized. Finally, we discuss the energy equation, 
which can be important for viscous fluids that generate heat during 
flow. To solve the energy equation, relations for the temperature 
dependence of viscosity are needed. l k o  are given in t h i s  section. 

2.6.1 Equations of Motion 
As discussed in Section 1.7, for incompressible fluids the continuity 
equation becomes 

v . v = o  (1.7.9) 

and the momentum equation is 

Dv 
= V . T + p g  

(1.7.15) 

These equations are given in component form for several coordinate 
systems in Table 1.7.1. 

2.6.2 Boundary Conditions 
At solid boundaries, the no-slip, no-penetration conditions gener- 
ally hold 

vt = Vsurface 

v, = 0 
(2.6.1) 

At liquid-liquid interfaces, the velocities and stresses of both 
fluids (a and b) tangent to the interface must match 

Vt* = Vt* 

(B * T P), = (B . T i ) b  (2.6.2) 

The velocities normal to the liquid-liquid interfaces are again zero, 
and the normal stress balance must include any interfacial tension 
I' and the surface curvature H 

At a gas-liquid interface the same conditions hold, but usually we 
can assume the shear stress is zero at the interface 
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2.6.3 Energy Equation 

Because flowing viscous liquids can generate heat, we also need 
to consider the energy balance. In a manner similar to that used 
with the mass and momentum conservation relations, we can write 
a balance for the rate of change of internal energy over a control 
volume. This integral balance can be converted to a differential 
balance (Bird et al., 1987, p. 9) giving 

= - V ’ p U v  - V - q  + T : D  (2.6.5) 
rate of change change due to change due to stress work 

of internal convection conduction (viscous 
energyhnit vol dissipation) 

Here U is the internal energy per unit mass and q is the conductive 
energy flux. 

It is more convenient to express internal energy in terms of 
temperature because it can readily be measured for an incompress- 
ible material with constant conductivity and no chemical reaction 

(2.6.6) 

where 5, is the heat capacity per unit mass at constant pressure, T is 
the temperature (not to be confused with the stress tensor T = T, j ) ,  

and kT is the thermal conductivity (assumed to be constant). Bird, 
Stewart, and Lightfoot (1960) give the energy equation in a number 
of other formsand tabulate it in component form for rectangular, 
cylindrical, and spherical coordinates. In Chapters 5 and 6 we 
will see how ‘the energy equation can be used to estimate rises in 
rheometer temperature. 

Many non-Newtonian materials also have very high viscosity, 
with the result that the viscous dissipation term T : D can become 
significant. This is illustrated in Example 2.6.1. Solution of such 
problems is complicated by the fact that viscosity also depends on 
temperature, and thus shear heating can change the velocity profile. 
Then the energy and momentum equations are coupled through the 
temperature-dependent viscosity. 

2.6.4 Temperature and Pressure Dependence of Viscosity 

The temperature dependence of viscosity can often be as important 
as its shear rate dependence for nonisothermal processing problems 
(e.g., Tanner, 1985). For all liquids, viscosity decreases with in- 
creasing temperature and decreasing pressure. A useful empirical 
model for both effects on the limiting low shear rate viscosity is 

‘lo = Kl ebTeap (2.6.7) 

This equation is relatively easy to use in solving flow problems and 
is valid over a temperature range of about 50 K and pressure change 
of 1 kbar for polymers. Typical values of b range from -0.03 K-’ 
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for polyolefins to -0.1 K-' for polystyrene and a = 1-4 kbar-' 
for the same materials (van Krevelen, 1976). Pressure dependence 
of viscosity is discussed further in section 6.3. 

A relation that is valid over a wider temperature range is the 
Andrade-Eyring equation (Bird et al., 1960) 

qo = KZeE,IRT (2.6.8) 

This equation was derived from the hypothesis that small molecules 
move by jumping into unoccupied sites or holes. For many small 
molecule liquids E, = 10-30 W/mol. Polymer melts also obey 
this equation at temperatures well above their glass transition. With 
polymers, viscosity may be governed by successive jumps of seg- 
ments of the chain. E,  ranges from about 25 k J/mol for polyethy- 
lene to 60 for polystyrene and 85 for polycarbonate and polyvinyl 
chloride. 

Near the glass transition temperature in polymers, E, de- 
creases. This decrease has been explained by the extra free volume 
created by thermal expansion, which leads to the Williams-Landel- 
Ferry (WLF) equation (Ferry, 1980). This equation describes the 
viscosity at temperature T in terms of viscosity at some reference 
temperature T,. 

The change in temperature times density Trpr/Tp is small and 
often ignored. Typically Tr is chosen as the glass transition and then 
C1 = 17.44 and C2 = 51.6 K for many polymers. Van Krevelen 
(1976) reports a better fit with T, = Tg + 43 K and C1 = 8.86 
and C2 = 101.6 K. The WLF equation is used extensively to make 
master curves of viscoelastic data; several examples are shown in 
Chapters 3 and 4. The equation is discussed further at the end of 
Chapter 11.  Figure 11.6.1 is particularly useful to illustrate the 
transition from eqs. 2.6.8 and 2.6.9 in polymer melts. 

Figure 2.6.1 shows that the data of Figure 2.4.1 can be shifted 
quite well with eq. 2.6.9. Van Krevelen shows that the WLF equa- 
tion is most useful for amorphous polymers close to their glass 

Figure 2.6.1. 
Shear stress data from Fig- 
ure 2.4.1 shifted to 473 K 
using eq 2.6.9. 

10-l loo 10' lo2 lo3 lo4 lo5 
nd(s-1) 
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transition temperature, while the exponential form appears to be 
more satisfactory for T > TB + 100" K. 

Temperature dependence of concentrated suspensions has 
been much less studied. Laun (1988) fit his data with a Casson 
model and found that over a 50 K range near room temperature 
both q and t,, followed eq. 2.6.8. The viscosity decreased with in- 
creasing temperature with the same activation energy as the matrix 
(polyisobutylene), but the yield stress increased. Similar trends 
were found for shear thickening lattices like those in Figure 2.1.2d. 

Example 2.6.1 Viscous Dissipation in Shear Flow 
Consider steady simple shear flow between infinite parallel plates 
as in Example 2.2. lb, but do not neglect viscous dissipation. 
(a) Determine temperature as a function of position for a power 
law fluid, assuming viscosity is independent of temperature. 
(b) If the viscosity is a decreasing function of temperature, sketch 
the velocity profile and indicate how the force necessary to move 
the plate at vo will change. 

Solution 

(a) Temperature-Independent viscosity. For simple shear flow 
between parallel plates, the velocity profile is 

where vo is the velocity of the upper plate, y = B. The lower plate, 
y = 0, is at rest. For a steady state temperature profile, the energy 
equation becomes 

d2T dv, 2 
0 = kT-- + v(z) 

dY2 
(2.6.10) 

For a power law fluid 

(2.6.11) 
d2T 

0 = kT-- + m  
dY2 

Boundary conditions are isothermal walls or 

T = T o  at y = O  and B 

Integrating gives 

(2.6.12) 
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The maximum in temperature occurs at the midplane, y = B/2. 
Thus, 

where Br is the Brinkman number. 
(b) Because viscosity decreases with increasing temperature for 
liquids, if we allow viscosity to depend on temperature in this flow, 
we would find a lower viscosity near the flow center. Since the 
shear stress is constant across the flow, the velocity gradient will 
be higher than expected near the center and lower near each plate 
surface. The velocity field is sketched in Figure 2.6.2. 

The force needed to keep the plate moving is just its area times 
the shear stress at the surface. Near the surface the temperature is 
To, so the viscosity is unchanged, but as Figure 2.6.2 indicates, the 
velocity gradient has decreased from the isothermal case. Thus for 
the case of viscous dissipation the force will be less. Another way 
to look at this phenomenon is to simply consider that the average 
viscosity will be lower as a result of the increased temperature and 
thus the force will be lower. 

Bird et al. (1987, p. 223) solve this problem. For a power 
law fluid with an exponential temperature dependence, 

but assuming n and kT are constant, they obtain the velocity profile 
as a series expansion. 

_ -  ux - 2 - Brb [ 2 - 3(  f ) 2  + 2( $)'I + Br2(o) - . . . 
uo B 12n B 

(2.6.15) 

Note that they use the Nahme-Griffith number Nu = bBr. Na is a 
ratio of temperature rise due to viscous heating to the temperature 
change necessary to alter the viscosity. Thus since 

Figure 2.6.2. 
Velocity field for simple 
shear flow (a) isothermal and 
(b) viscous dissipation. 

(a) (b) 
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the force on the plate will decrease. Considering only the first two 
terms in eq. 2.6.15 gives 

F 
Fo 

(2.6.17) 

2.7 Summary 
In this chapter we have developed the general constitutive equation 
for a viscous liquid. We found that by using the rate of deforma- 
tion or strain rate tensor 2D, we can write Newton's viscosity law 
properly in three dimensions. By making the coefficient of 2D de- 
pendent on invariants of 2D, we can derive models like the power 
law, Cross, and Carreau. We also showed how to introduce a three- 
dimensional yield stress to describe plastic materials with models 
like those Bingham and Casson. We saw two ways to describe the 
temperature dependence of viscosity and the importance of shear 
heating. 

These models fit the shear rate dependence of viscosity very 
well and are very useful to engineers. They form the backbone 
of polymer processing flow analyses. If the problem is to predict 
pressure drop versus steady flow rate in channels of relatively con- 
stant cross section, or torque versus steady rotation rate, the general 
viscous fluid gives excellent results. We need to be sure that we 
pick a model that describes our particular material over the rates 
and stresses of concern, however. With numerical methods, the 
multiple parameter models are readily solved. 

Although our viscous models describe shear thinning, shear 
thickening, and yielding well, they cannot describe the other three 
phenomena we said were very important in the introduction to Part 
I on constitutive equations, namely: 

Time dependence 

Normal stresses in shear 

Different behaviors in extension and in shear 

In fact we have lost something over Chapter 1. The Finger tensor 
B is able to give us normal stresses and extensional thickening. We 
will have to wait until Chapter 4 to get these factors back into our 
models. But in the next chapter we will see how to bring in the 
phenomenon of time dependence, which is so important for poly- 
meric systems. We should note that for concentrated suspensions, 
especially flocculated systems, there is little elastic recovery, and 
time dependence is often either very short or extremely long. Thus 
the viscous models of this chapter are often quite adequate (recall 
Figures 2.5.3 and 2.5.4 and look ahead to Chapter 10). 

The exercises in Section 2.8 illustrate how viscous models 
can be applied to different flow geometries and to some simple 
process problems. Many excellent applications of viscous, non- 
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Newtonian models can be found in Bird et al. (1987, Chapter 4) or 
in texts on polymer processing such as Middleman (1977, Chapter 
5), Tadmor and Gogos (1979). Pearson (1984). or Tanner (1985). 

2.8 Exercises 
2.8.1 B and D for Steady Extension 
Consider three sceudy extensional flows: (a) uniaxial, (b) equal 
biaxial, and (c) planar. Determine components of the tensors B and 
D for each and for their invariants. 

2.8.2 Stresses in Steady Extension 
Determine the normal stress differences in the three steady exten- 
sional flows of Exercise 2.8.1. 
(a) For a Power Law Fluid 

T = -PI + mIIIz#-')/22D (2.4.12) 

(note: m = qu and n = 1 for a Newtonian fluid) 
(b) For a Bingham Plastic 

T = GB for I I ,  c r: 
and 

T = [q,, + ,II:i,l/2]2D for I I ,  1. r: (2.5.3) 

2.8.3 Pipe Flow of a Power Law Fluid 
A power law fluid is being transported 10 m between two tanks. 
The process is being redesigned and you must increase the distance 
to 20 m yet maintain the same flow rate with the same pressure 
drop. Design the new pipe. 

2.8.4 Yield Stress in Tepsion 
If a uniaxial tensile stress of 10 Pa just yields a sample of a Bingham 
material, find ry (the yield stress that would be found by simple 
shear measurements on the same material). 

2.8.5 Polymer Melt Pumped Through a Tubing Die 
A polymer melt is pumped through a tubing die set at 200°C. As 
shown in Figure 2.8.1, the outside diameter is 10 cm and the inner 
mandrel is 9.5 cm. The length of the die (axial length of the annulus) 
is 10cml 

The melt can be modeled with the power law 

where n = f and m = 10s P ~ . s ' / ~ .  Density of the melt is 800 kg/m3. 
(a) Sketch the temperature profile in the land of this die near the 
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Figure 2.8.1. 
Schematic of polymer melt 
pumped through annular die 
with rotating inner cylinder. 

exit. Assume that little heat can be conducted out of the inner 
mandrel and that the outer wall is isothermal. 
(b) How many kilograms per hour can be roduced from this die 
if the extruder delivers a pressure of 2 x 10 Pa. (You can assume 
the gap is very small and neglect curvature.) 
(c) If we double the pressure from the extruder, how much will 
the flow rate increase? 
(d) The mandrel of the tubing die can be rotated. If it is rotated 
at 10 rpm, calculate I I2D in the land region. 
(e) Estimate how the flow rate through this die will change when 
the mandrel is rotated in this range at 10 rpm. 

.p 

2.8.6 Casson Model 
Derive the three dimensional form of eq. 2.5.5. 
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3 
The state of the solid 

depends not only on the forces 
actually impressed on it, 
but on all the strains to 

which it has been subjected 

LINEAR 
VISCOELASTICITY 

during its previous existences. 
James C. Maxwell (1866) 

Figure 3.1.1. 
Torsional creep apparatus 
used by Kolrausch ( 1  863) to 
study viscoelasticity in glass 
fibers and rubber threads. 
The sample was twisted by 
the lever arm and then re- 
leased. The time-dependent 
recovery was recorded by 
light reflected from the round 
mirror attached to the bottom 
of the sample. 

r’ 
J 

”i 

3.1 Introduction 
During the latter half of the nineteenth century, scientists began to 
note that a number of materials showed time dependence in their 
elastic response. 

When materials like silk, gum rubber, pitch, and even glass 
were loaded in shear or extension, an instantaneous deformation, 
as expected for a Hookean solid, was followed by a continuous 
deformation or “creep.” One of the earliest apparatuses used to 
measure this phenomenon is shown in Figure 3.1.1. When the load 
was removed, part of the deformation recovered instantly, more 
recovered with time, and in some materials there was a permanent 
set. 

Today we call this time-dependent response viscoelasticity. 
It is typical of all polymeric materials. Another common way to 
measure the phenomenon is by stress relaxation. As illustrated in 
Figure 3.1.2, when a polymeric liquid is subject to a step increase 
in strain, the stress relaxes in an exponential fashion. If a purely 
viscous liquid is subjected to the same deformation, the stress re- 
laxes instantly to zero as soon as the strain becomes constant. An 
elastic solid would show no relaxation. 

If we convert stress relaxation data to a relaxation modulus 

G ( t )  = - 
Y 

(3.1.1) 

all the data for small strains, typically y < yc = 0.5 for polymeric 
liquids, fall on the same curve. This is shown as a log-log plot 
in Figure 3.1.3b. Note that at short times the relaxation modulus 
approaches a constant value known as the plateau modulus G,. This 
linear dependence of stress relaxation on strain, eq. 3.1.1, is called 
linear viscoelasticity. For larger strains, y > ye, the relaxation 
modulus is no longer independent of strain, as illustrated in Figure 
3.1.3b. 
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Figure 3.1.2. 
Stress response T versus time I 
for a step-input in strain y .  
The Hookean solid (b) shows 
no stress relaxation; the New- 
tonian fluid (c) relaxes as 
soon as the strain is constant, 
while the viscoelastic liquid 
or solid shows stress relax- 
ation over a significant time. 
In a viscoelastic liquid the Time Time 

(a) (bf stress relaxes to zero, while 
for the viscoelastic solid it 
asymptotically approaches 
an equilibrium stress te. A 
small overshoot is shown in 
the strain versus time plot 
(a). This is typical of actual 
control systems, which may 
require 0.01 second or more 
to stabilize (see Chapter 8). 

Figure 3.1.3. 
Stress relaxation data for a 
polydimethylsiloxane sample. 
As in Figure 3.1.2a, shear 
strain is stepped nearly in- 
stantly to a constant value. 
(a) Shear stress jumps and 
then decays exponentially. 
(b) When a log of the time- 
dependent shear modulus, 
G(r) = t ( r ) / v ,  is plotted ver- 
sus log time, all the data at 
small strain fall on the same 
curve. 

Newtonian 

z 

Tlme 
(d 

Viscoelastic 

..... solid 
.”.. ...____.._, ...... 

” ..._. 

I 

Time 
(d) 

Figure 3.1.3a shows typical stress relaxation data for increas- 
ing strain magnitudes. We can convert this data into a relaxation 
modulus 

(3.1.2) 

This is known as nonlinear viscoelastic behavior, and it is the sub- 
ject of the next chapter. Here we consider only relatively small 
strains, such that the relaxation modulus is independent of strain. 
Note that we can also define linear viscoelasticity for a particular 

z log G 

log t 

(3) 
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material as a region of stress in which strain varies linearly with 
stress. 

Because we are dealing with relatively small strains, shear 
normal stresses and the type of deformation-for example, shear 
versus uniaxial extension-will not be important. To impose a 
small strain on a material in one direction only requires exerting a 
stress in that direction (Lockett, 1972). Thus, we could just as well 
define a tensile relaxation modulus from tensile stress relaxation 
(recall eq. 1.510) 

(3.1.3) 

but for small strains this will be just three times the shear relaxation 
modulus 

E ( t )  = 3G( t )  (3.1.4) 

Thus in all our discussions for simple shear we must realize 
that the models can ,be applied to other types of deformation. In 
the next section we develop a general model for linear viscoelas- 
tic behavior in only one dimension. Then we extend it to three 
dimensions, and in Section 3.3 we examine its behavior for differ- 
ent deformation histories: stress relaxation, creep, and sinusoidal 
oscillation. 

3.2 General Linear Viscoelastic Model 
In an attempt to model the early experiments on viscoelastic solids, 
Boltzmann (1876) suggested that small changes in stress equal 
small changes in the modulus times the strain 

d t  = ydG (3.2.1) 

We can define a new function, the memoly function, as the time 
derivative of G 

(3.2.2) 

Since the relaxation modulus G(r) decreases with time, the deriva- 
tive will be negative. Thus the minus sign is added to make M ( t )  
a positive function. 

With M ( t )  we can rewrite eq. 3.2.1 as 

dt = - M y  dt (3.2.3) 

If the relaxation modulus (and thus the memory function) depend 
only on time, we can make up any larger deformation (but defor- 
mations still within the linear range of the material) by summing 
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up all the small deformations. This can be expressed as the integral 
over all past time, as suggested by the quotation from Maxwell at 
the opening of this chapter 

d t  = T = - M ( t  - t’)y(t’)dt’ (3.2.4) S 0 -W 

where t’ is the past time variable running from the infinite past -CQ 

to the present time t (also note Figure 1.4.1 for a definition oft’). 
The memory function M depends only on the elapsed time t - t’ 
between the remembered past and the present. Often the elapsed 
time is denoted by s = t - t’ so that eq. 3.2.4 becomes 

(3.2.5) 
0 

Equation 3.2.5 is a one-dimensional constitutive model for 
linear viscoelastic behavior. We can also write the model directly 
in terms of the relaxation modulus. Consider a small change in 
stress due to a change in strain 

d s  = G d y  (3.2.6) 

which can also be written 

dY dT = G-dt  = Gjl dt 
dr 

Integrating this expression gives 

T = 1 G ( t  - t’)jl(t’)dt’ 
-W 

or in terms of s 

(3.2.7) 

T = T G ( s ) j l ( t - s ) d s  s = t - t ’  

0 

Thus the stress is an integral, over all past time, of the relax- 
ation modulus times the rate of strain. Since the deformation might 
be changing with time, j l  is a function of time. This is the form that 
is most frequently used because G ( t )  can be measured directly. 

What form does the relaxation modulus function have? Fig- 
ure 3.1.3 indicates that we should try an exponential decay 

G ( t )  = Go e-‘’’ (3.2.8) 
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Figure 3.2.1. 
Comparison of experimental 
relaxation modulus data on a 
polydimethylsiloxane sample 
to (a) the single exponential 
model, eq. 3.2.8, with h = 
0.1 s and Go = lo5 Pa and 
(b) a five-constant model, 
ea. 3.2.10, with the constants 

where A is the relaxation time. Substituting this into eq. 3.2.7 gives 
the single relaxation or simple Maxwell model 

Figure 3.2.la shows that this model is qualitatively reason- 
able, but does not fit typical data very well. A logical improvement 
on this model is to try several relaxation times. This can be writ- 
ten as a series of relaxation times & multiplied by the weighting 
Constants Gk 

N 

(3.2.10) 

When substituted into eq. 3.2.7, this gives the general linear vis- 
coelastic model 

(3.2.11) 

We see that the relaxation data for polydimethylsiloxane in 
Figure 3.2.1 can be fit quite well with only five relaxation times. 
The disadvantage of this approach is that a unique set of relax- 
ation times and weighting constants may not be available. The 
constants in Table 3.2.1 were determined by first selecting a set of 
relaxation times evenly spaced on a log scale, in this case one per 
decade, and then running a linear regression program to determine 
the Gk values that minimize the least square of the deviation of 
eq. 3.2.11 from the data. Appendix 3A has more information on 

in Table 3.2.1. 

r 

.01 .1 1 10 100 .01 .1 1 10 100 
Time (s) Time (s) 

(a) (b) 
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TABLE 3.2.1 / Relaxation Times for Polydimethylsiloxane at 25°C 

k Ak (S) Gk ( P a )  
0.01 
0.1 
1 .o 
10 
100 

2 x  105 
1 05 
104 
1 0 2  

10 

the calculation of these constants from G(t )  data, including a non- 
linear regression method. 

The data in Figure 3.2.1 cover about five decades of time. 
Three to five decades are all that are practical for a typical single 
viscoelastic experiment. However, to fully describe G ( t )  we often 
need a wider range. This can be accomplished by collecting data at 
different temperatures and shifting it to one reference temperature. 
This idea of time-temperature superposition has been described, 
eq. 2.6.9, with respect to viscosity and is also illustrated in Chapter 
1 1.6. Equation 2.6.9 holds for any of the viscoelastic functions, for 
example, G(t) .  

The shift factors a~ used to construct Figures 3.3.7 and 3A.2 were 
determined with eq. 2.6.9. Table 1 1.6.1 gives CI and C2 values for 
many polymers. 

A useful test for the G(t )  function determined by fitting pro- 
cedures is the relation 

00 

TI, = (3.2.12) 

which says that for a liquid, the area under the relaxation curve is 
the zero shear viscosity. The relation is helpful for checking Ai at 
each end of the spectra. 

Polymer molecular theories, like the Rouse model, discussed 
in Chapter 11, suggest an infinite series form for the relaxation 
modulus 

(3.2.13) 

Thus only two constants must be fit from the data, and the form 
for G(s) is prescribed. Unfortunately, this model does not fit data 
on high molecular weight polymer melts or concentrated solutions. 
Its response for the polydimethylsiloxane data would not be much 
better than the single relaxation time, Figure 3.2.la. However, 
the Rouse model is useful for dilute polymer solutions and low 
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molecular weight systems. We examine its response and other 
molecular models in Chapter 11. 

The stress relaxation behavior of a viscoelastic solid is shown 
in Figure 3.1.2. We can see that instead of relaxing to zero, the stress 
goes to some equilibrium value t,. This can readily be treated 
with the models already discussed by simply adding on a constant 
equilibrium modulus G,. For example, eq. 3.2.1 1 for a viscoelastic 
solid becomes 

3.2.1 Relaxation Spectrum 
Another approach to linear viscoelasticity that has been widely 
used in the past is the relaxation spectrum H(A) .  Using it provides 
a continuous function of relaxation time A rather than a discrete set. 
The relation between the relaxation modulus and the spectra is 

(3.2.14) 
0 

or for a narrow spacing of relaxation times 

A k  Gk 2 H(Ak)ln- 
AkH 

There are a number of forms for H ( h ) ,  and much of the literature is 
in terms of it (Ferry, 1980; note also Exercise 3.4.1 and eq. 3.4.2.). 

3.2.2 Linear Viscoelasticity in Three Dimensions 
We can extend eq. 3.2.7 to three dimensions by using the extra stress 
tensor t for the shear stress and the rate of deformation tensor 2D 
for y .  

t 

t = 1 G ( t  - t ’ )  2D(t’) dt’ (3.2.15) 
-m 

As we saw in Example 2.2.2 for simple shear there are only 
two components of 2D, SO 2Dij = 2012 = 2021 = j . .  Thus 
the linear viscoelastic model does not predict normal stresses in 
steady shear flow. The viscosity is independent of p, but tl2 is 
time dependent. 

Example 3.2.1 Stress Growth in Steady Shear Flow 
Consider the situation in which a fluid at rest is suddenly set into 
simple shear flow for t > 0. Let the velocity gradient be j.0 for 
t > 0. Using the general viscoelastic model: 
(a) Determine $, the time-dependent viscosity 
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(b) Show that at steady state viscosity qo is independent of shear 
rate 
(c) Show that the relaxation modulus can be calculated from the 
start-up viscosity by G ( t )  = dq+(r) /dt.  

Solution 

I 

Fort > 0 ~ 1 2  = PO j G(t - r’)dt’ = 90 j G(s)ds 
0 0 
f r 

0 0 
(a) q+(r) E = G(t  - t’)dt’ = G(s)ds (3.2.1 6) 

! N  N 

N N 

Since Gk and Ak are constants, qo is constant. Note that the viscosity 
qo is simply the area under the G(s) curve, eq. 3.2.12. 

(c) From the stress equation, eq. 3.2.16, 

(3.2.17) 

3.2.3 Differential Form 
We can also write the concept of linear viscoelasticity in a differ- 
ential form 

ds 
r + A ; i ; = q y  (3.2.18) 

This result is equivalent to eq. 3.2.9, which can be shown by deter- 
mining the time derivative of eq. 3.2.9 
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Figure 3.2.2. 
Spring and dashpot represen- 
tation of a Maxwell element. 

Multiplying this result by A and combining with eq. 3.2.9, the inte- 
grals cancel, giving 

(3.2.20) 
dr  
dt 

r + A- = AGO? = ~9 

since q = GoA. 

Maxwell (1867) first proposed this equation for the viscosity 
of gases! Despite his initial misapplication of a good theory, rhe- 
ologists have forgiven him and embrace eq. 3.2.18 as the Maxwell 
model. It is often represented as a series combination of springs, 
elastic elements, and dashpots, viscous ones as shown in Figure 
3.2.2. 
We see from eq. 3.2.18 and from the spring and dashpot represen- 
tation that for slow motions the dashpot or Newtonian behavior 
dominates. For rapidly changing stresses, the derivative term dom- 
inates, and thus at short times the model approaches elastic behavior 
(recall Figure 3.1.2 and the bouncing putty in Figure I. 1). 

In the next chapter we discuss differential models further. We 
will find that for large strains we need to use another type of time 
derivative. 

3.3 Small Strain Material Functions 
A number of small strain experiments are used in rheology. Some 
of the more common techniques are stress relaxation, creep, and 
sinusoidal oscillations. In the linear viscoelastic region all small 
strain experiments must be related to one another through GO), as 
indicated by the basic constitutive equation, eq. 3.2.7, or through 
M ( t ) ,  eq. 3.2.4. Different experimental methods are used because 
they may be more convenient or better suited for a particular ma- 
terial or because they provide data over a particular time range. 
Furthermore, it is often not easy to transform results from one type 
of linear viscoelastic experiment to another. For example, trans- 
formation from the creep compliance J ( t )  to the stress relaxation 
modulus G(t )  is generally difficult. Thus both functions are often 
measured. 

Sections 3.3.1-3.3.3 describe each of these small strain ma- 
terial functions and show typical data for several rheologically dif- 
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ferent materials: lightly crosslinked rubber, polymer melts, dilute 
polymer solutions, and suspensions. 

3.3.1 Stress Relaxation 
As discussed in Section 3.2, stress relaxation after a step strain yo 
is the fundamental way in which we define the relaxation modulus. 
The relaxing stress data illustrated in Figures 3.1.2 and 3.1.3 can 
be used to determine G(t )  directly 

G(r)  = - 
Yo 

(3.3.1) 

Typical relaxation modulus data are illustrated in Figure 3.3.1 
for several materials. We see that crosslinked rubber shows a 
short time relaxation followed by a constant modulus. Concen- 
trated suspensions show the same qualitative response but only at 
very small strain. High molecular weight concentrated polymeric 
liquids show behavior similar.to rubber at shorter times with a 
nearly constant modulus plateau Go, eventually followed by flow 
at long times. Dilute solutions and suspensions show complete 
relaxation in short times. Molecular weight distribution (MWD) 
and long chain branching of the polymer also have a strong effect 
on the long time relaxation of G(r). This is discussed further in 
Chapter 11. 

Experimentally it is impossible to jump the strain y instan- 
taneously to yo. This is illustrated in Figure 3.1.2. A short rise 
and stabilization time, typically 0.01-0.1 s, is required for current 
instruments, as discussed in Chapter 8; therefore, it is difficult to 
get data for r < 0.1 s by stress relaxation methods. Also, it is 
very difficult to measure a decaying stress over more than three 
decades with one transducer. Thus methods are needed that can 

Figure 3.3.1. 
vpical relaxation modulus 
data for several different ma- 
terials. 

log G 

........... Rubber 
(concentrated 
a i i a n e n a i n n \  

Crosslinking 

solution . 
Polymeric 
liquid 

log t 
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better measure the short time and long time ends of the relaxation 
spectra. 

3.3.2 Creep 
Creep experiments are particularly useful for the long time end of 
the relaxation spectra. As illustrated in Figure 3.3.2, in a creep 
experiment the stress is increased instantly from 0 to ro and the 
strain is recorded versus time. 

Typical creep data are shown in Figure 3.3.2. We note that 
rubber shows only short-term creep, while polymeric liquids con- 
tinue to deform, eventually reaching a steady rate of straining )&,. 
Data are usually expressed in terms of J ( r ) .  the compliance 

(3.3.2) v(r) J ( r )  = - 
TO 

J has the units of reciprocal modulus but in general it does not equal 
1/G. However, because in the linear viscoelastic regime strain is 
linear with stress, strain versus time data at diffennt ro collapse 
into one J ( t )  plot. This is analogous to the reduction of stress 
relaxation curves to one G(t )  plot. 

As indicated in Figure 3.3.2c, a steady state creep compliance 
J," is defined by extrapolation of the limiting slope to r = 0. The 
slope is the inverse of the viscosity at low shear rate, v0. Thus, in 
the steady creeping regime, we have 

or 
Figure 33.2. 
Creep experiment. (a) Stress 
is increased from 0 to so at 
t = 0. (b) Strain is recorded 
versus time. (c) Data are usu- 
ally plotted as creep compli- 
ance. 

7 

t 
J ( t )  = J,o + - 

90 

% O Time 

J 

(3.3.3) 

(3.3.4) 
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From Figure 3.3.25 we note that as molecular weight (or concen- 
tration) increases, there is less creep, lower J, and higher qo. For 
rubber, which does not flow, qo + 00. 

If we apply to the creep experiment the single relaxation 
time model, the simple Maxwell model, eq. 3.2.9, or eq. 3.2.16, we 
obtain 

l r l  t 
J ( t )  = - + - = - + - 

Go v Go AGO 
(3.3.5) 

Nevertheless, for the more general model it is not simple to calculate 
the compliance. Since r is the independent variable, we must invert 
the integral in eq. 3.2.7. 

ro = 1 G(t - r ’ )  k( t ’ )dt ’  (3.3.6) 
-w 

However, we can look at some limiting relations. At long time the 
shear rate becomes steady + ( t )  = &, and we can write 

so = G(t  - 1’)  &dr’ (3.3.7) 
-a: 

Equating these two expressions after some manipulation, we can 
obtain (Bird et al., 1987, p. 271) 

W 

sG(s)ds 
Yo 0 - = Ao? longest relaxation time = 
Yw T G ( s ) d s  

(3.3.8) 

0 

or since yo = J:ro, then (3.3.9) 

Thus the relaxation modulus can be used to calculate limiting por- 
tions of the creep wave. 

Numerical methods are needed to actually obtain G ( t )  from 
y ( r )  using eq. 3.3.6 for a general linear viscoelastic material. The 
program must guess a form for G ( t )  and then test it with the y ( t )  
data, taking the derivative ) i ( r ) ,  then applying eq. 3.3.6 and iterating 
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to reduce the error. A helpful relation in this context is (Ferry, 1980, 
P. 68) 

1 G ( s ) J ( t  - s)ds = t 
0 

When J( t )  is written as a discrete spectra 

(3.3.11) 

(3.3.12) 

explicit relations between the coefficients of G(t) can be derived 
(Ferry, 1980; Baurngaertel and Winder, 1989) 

Another type of experiment often done in conjunction with 
creep is creep recovery, the recoil of strain after the stress is re- 
moved, as illustrated in Figure 3.3.2. After the stress has been 
removed from a viscoelastic material, the deformation reverses it- 
self, We can define a recoverable creep function 

(3.3.13) 

where to is the stress before recovery starts. If recovery is per- 
formed after steady state creep, i / ( t )  = and the equilibrium 
creep recovery directly measures J," 

lim Jr(r) = J," f o r  y ( t )  = pw (3.3.14) 
t-+m 

If steady state creep has truly been achieved, then eqs. 3.3.14 and 
3.3.4 should give the same result. In fact this equivalence is used 
to test for achievement of steady state and accurate determination 
of J,". For high molecular weight and broad distribution polymer 
melts, the relaxation times are very long, on the order of tens of 
minutes, and accurately measuring J," can be difficult. 

3.3.3 Sinusoidal Oscillations 
In another important small strain experiment, the sample is de- 
formed sinusoidally. Within a few cycles of start-up and often 
much less, the stress will also oscillate sinusoidally at the same 
frequency but in general will be shifted by a phase angle S with 
respect to the strain wave. This is illustrated in Figure 3.3.3 and 
expressed mathematically as follows: 

y = yo sin wt (3.3.15) 

t = 70 sin(wt + 6 )  (3.3.16) 

LINEAR VISCOELASTICITY / 121 



Figure 3.33. 
Sinusoidally oscillating shear 
strain produces a sinusoidal 
stress phase shifted by an 
amount 6. For analysis the 
stress wave is broken down 
into two waves, T' in phase 
with y and T" 90c out of 
phase. Note that T" is in 
phase with the rate of strain 
wave 9 = d y / d t .  

two 
(sin 

Time 

Such data are analyzed by decomposing the stress wave into 
waves of the same frequency, one in phase with the strain wave 
wr)  and one 90" out of phase with this wave (cos wt).  Thus, 

(3.3.17) 7 = 7' + 7" = 76 sin wt + r; cos wt 

As you can try for yourself, trigonometry shows that 

7; 

7; 
tan6=- (3.3.18) 

This decomposition suggests two dynamic moduli 

G' = -, 76 the in-phase or elastic modulus (3.3.19) 
Yo 

and 

7; 
G" = -, the out-of-phase, viscous, or loss modulus (3.3.20) 

Yo 

From eq. 3.3.18 we can also write 

G" 
tans=- 

G' 
(3.3.21) 

The prime and double prime notation has its origin in complex 
numbers. Recall that 

eie = cose + i sin 8 where i = (3.3.22) 
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Then we can represent y as the imaginary part of the complex 
number yOeiWf and likewise r’ = Im(roeiW‘) and r” = Re(roeiw‘}. 
Then we can define G* such that 

ro = IG*IYo (3.3.23) 

where G* is a complex number with G’ as its real and GI’ as its 
imaginary parts, respectively 

G* = G’ + iG“ (3.3.24) 

or 

r = G’yo sin ot + G”y0 cos or 

However, there is nothing physically “imaginary about” G” and, in 
fact, it is a measure of the energy dissipated per cycle of deformation 
per unit volume (see Exercise 3.4.4). 

2nlw 

= t : D d t  = rY dt = nG”yi  (3.3.25) J energy 
dissipated 

0 0 

Sometimes the magnitude of the complex modulus is reported 

(3.3.26) 

Another way to view the same experiments is in terms of a 
sinusoidal strain rate. Then a dynamic viscosity material function 
is defined (Bird, et al., 1987). This may be more comfortable for 
those dealing with liquids, but we can readily convert from one to 
the other. Noting that the derivative of the small strain is the strain 
rate, we have 

(3 $3.27) dY y = - = yow cos wt = yocos wt dt 

If we decompose the stress again, the r’’ wave will be in phase with 
the strain rate as shown in Figure 3.3.3. If we had started from 
the strain rate viewpoint, we would have called this the r’ wave, 
following the complex number ideas discussed above. But let us 
not switch notation in midstream! From the magnitudes of the 
viscous stress to the strain rate, we can define a dynamic viscosity 

(3.3.28) 

We can also define an elastic part of the complex viscosity 

(3.3.29) 
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Figure 3.3.4. 
Typical results from sinu- 
soidal experiments on a poly- 
mer melt plotted as moduli 
G*, G‘, G” and viscosities 
1.. r l l ,  1“. 

1% 

log 0 

where the magnitude of the complex viscosity is 

”2 = [ (s)’ + (z)’]”’ = - 1 IG*l (3.3.30) 
0 

lv*l = (d2 + T ]  1 

Plots of T]’, T]*, and G” versus w and of G”,  G*,  and G‘ versus w 
are shown in Figure 3.3.4 for a typical polymer melt. 

Let us look at typical behavior of these material functions. In 
Figure 3.3.5 we see that G’ versus o looks similar to G versus llt 
from Figure 3.3.1. For rubber it becomes constant at low frequency 
(long times), and for concentrated polymeric liquids it shows the 
plateau modulus G ,  and decreases with w-2 in the limit of low fre- 
quency. The loss modulus is much lower than G’ for a crosslinked 
rubber and sometimes can show a local maximum. This maximum 
is more pronounced in polymeric liquids, especially for narrow 
molecular weight distribution. The same features are present in 
dilute suspensions of rodlike particles, but not for dilute random 
coil polymer solutions, as Figure 3.3.3b shows. These applications 
of the dynamic moduli to structural characterization are discussed 
in Chapters 10 and 11. 

Just as creep behavior must be a function of G ( t )  in the linear 
region, so must sinusoidal response. If we apply the general linear 
viscoelastic model of eq. 3.2.1 1 (see Exercise 3.4.3 for aderivation), 
we obtain 

Figure 3.3.5. 
’Qpical behavior of the dy- 
namic moduli for (a) rubber 
and concentrated polymeric 
liquids and (b) dilute solution 
of random coils and rodlike 
particles. 

log G 

Rubber 
Conc. 

liquid 

.......................... 

G‘ 

(3.3.31) 

(3.3.32) 

Random 
coils 

............... 
G“ / ................ Rods 

‘ f2 Dilute 
systems 

log 0 
(a) 
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Figure 3.3.6. 
Shear relaxation modulus 
versus time for a low density 
polyethylene at 150°C. The 
heavy line is the sum of the 
eight exponential relaxation 
times given in Table 3.3.1. 
Replotted from Laun, (1978). 

14 I I I I I 

Figure 3.3.7. 
Dynamic shear moduli for the 
same low density polyethy- 
lene as in Figure 3.3.6. Data 
were collected at different 
temperatures and shifted ac- 
cording to eq. 2.6.9. Lines 
calculated from G(t)  using 
eqs. 3.3.31 and 3.3.32, re- 
plotted from Laun ( I  978). 

1 0 3  10-2 lo-I loo 10' lo2 lo3 

Time (s) 

Examples of the fit of the same G(t )  function to both stress 
relaxation and sinusoidal results appear in Figures 3.3.6 and 3.3.7. 
Table 3.3.1 gives the relaxation times and moduli used to fit all 
these data. Figure 3.3.7 illustrates that short time (high frequency) 
data are more readily obtained with sinusoidal methods. 

It is possible to define other small strain material functions, 
such as stress growth under constant rate of straining (Example 
3.2.1) or recoverable strain after constant strain rate. However, 
these deformation histories are better suited for large strain studies 
and are discussed in Section 3.2. The small strain material functions 
will be seen as limits of the large strain ones. Table 3.3.2 lists some 
of the interrelations between the various experiments for linear 
viscoelastic behavior. Note that the limiting low shear rate viscosity 
vo can be calculated from 

(3.3.33) A0 Ilo = - 
J," 

4 

Reduced angular frequency a T o  (5.1) 
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TABLE 3.3.1 / Relaxation Times and Moduli for Low Density Poly. 
ethylene at 150°C 

k i k ( S )  Gk(Pa) 
1 103 1 .oo 
2 102 1.80 x lo2 
3 10' 1.89 103 
4 100 9.80 103 
5 10-1 2.67 x 104 
6 10-2 5.86 x 104 
7 10-3 9.48 104 
8 10-4 1.29 x 105 

From Lam, (1978). 

3.4 Exercises 
3.4.1 Relaxation Spectrum 
Using the definition of the relaxation spectrum, eq. 3.2.14, show 
that 

TABLE 3.3.2 / Limiting Relations for Linear Viscoelasticity 
Equilibrium Longest 

Creep Compliance Relaxation Time 

Property J," = A o l t l o  A0 

Steady she& lim !im 6 
y - r o  2112 Y+O 

Sinusoidal oscillations 

Creep 

Constrained recoil 

Stress relaxation after step strain 

Stress relaxation after steady shearing 

lim 5 
70+0 

lim & 
W+O 

lim 
70-0 

W 

lirn y d t  Stress growth (start-up of steady shear) lim 7 ?0(7u7;7(1)) dt 
Y-0 ,  0 Y+O 0 

aThe linear viscoelastic model does not predict NI in shear. 
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3.4.2 Two-Constant Maxwell Model 
Extend the derivation of the Maxwell model, eq.3.2.20, from 
eq.3.2.9 to show that a two-constant integral linear viscoelastic 
model can also be expressed as follows: 

3.4.3 Derivation of G’ and G” 
Derive eqs. 3.3.31 and 3.3.32, the relation between the relaxation 
modulus, and the dynamic moduli. 

3.4.4 Energy Dissipation 
Verify eq. 3.3.25 forthe energy dissipation per cycle per unit volume 
during small-amplitude sinusoidal oscillations. 

3.4.5 Zero Shear Viscosity and Compliance from G‘, G” 
Show that ~0 = lim and J,” = l i i  

W+O 

APPENDIX 3A 
Robert B. Secor 

Curve Fitting of the Relaxation Modulus 
For purposes of comparison and modeling, it is often necessary to fit 
experimental relaxation modulus data to an analytic function. The 
objective of the fitting process is to determine parameter values that 
in some sense represent the “best” fit of the approximating function 
to the experimental data. Consideration should be given to (1)  the 
form of the approximating function, (2) the measure of the error 
between the experimental data and the approximating function, and 
(3) the procedure for finding the parameters that minimize the error. 

Fitting of the relaxation modulus falls into a more general 
class of problems known as constrained optimization. The goal 
of constrained optimization is to optimize (minimize or maximize) 
some entity (the objective function) while satisfying certain con- 
straints. In curve fitting, the objective function is the error between 
the approximating function and the experimental data. Constraints 
can be of three types: inequality constraints, equality constraints, 
and variable bounds. For instance, only positive relaxation times 
have physical significance. For further discussion of fitting of 
relaxation spectra see Tschoegl (1989). Baumgaertel and Winter 
(1989, 1992), and Honerkamp and Weese (1993). 

Approximating Form 
The approximating form of the relaxation modulus should exhibit 
the following properties: 

1. Decrease monotonically with time (fading memory) 
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2. 
3. 
4. 

5 .  

Have a finite memory, G(w)  = 0 (for liquids) 
Have a bounded modulus, G(0) < 00 

Exhibit a bounded steady state viscosity 

Exhibit a bounded steady state compliance 

< 0 O  
0 J," = 4 

The traditional form that satisfies these conditions and is similar to 
forms predicted by molecular theory of polymeric liquids is a sum 
of exponentially fading functions in time: 

(3A. 1) 

Other approximating forms that come to mind fall short in some 
category. For instance, a form analogous to the Carreau viscosity 
function (eq.2.4.16) that does not allow analytic conversion be- 
tween relaxation modulus and the elastic modulus or loss modulus 
is 

(3A.2) 

Error Measure 
The next consideration is the selection of a measure of the error be- 
tween the approximating function and the experimental data. One 
convenient measure is the Euclidean norm of the deviations at the 
M data points 

M 
E = C [ G ( t i )  - G"(tj)I2 

i-1 
(3A.3) 

where G(ri) is the experimental data point and Gfi'(ti) is the ap- 
proximating function. However, since the relaxation modulus gen- 
erally decays over several orders of magnitude, this error measure 
artificially weights the error at short times higher than the error at 
long times. An error measure, which avoids this defect, measures 
the deviations between the natural logarithms of the modulus 

2 M 
E = x[ln[G(ri)]  - ln[G'l'(tj)]] (3A.4) 

i-I 
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An alternative is to introduce a weighting function of ( l/G(ti)2) to 
eq. 3A.3 so that the error measure becomes the following: 

(3A.5) 

By considering the Taylor expansion of ln(Gfit/G) around 
G"/G = 1, it can be shown that the last two error measures differ 
by an amount that is third order in the quantity (1 - Grit/ G) 

where HOT are Higher Order Terms 
Consequently, as long as the approximating function is rea- 

sonably close to the experimental data, the two error measures are 
equivalent. However, the last one does not introduce nonlinearities 
into the problem. 

Search Procedures 
In constrained optimization, the task of finding the optimum point 
is divided into two parts. The constrained optimization problem 
is converted to an equivalent unconstrained problem followed by a 
constrained search. The methods of converting constrained prob- 
lems to unconstrained ones are beyond the scope of this writing, 
but a description of them can be found in Pierre and Lowe (1975). 
The objective of an unconstrained search is to find the parameter 
values that minimize (or maximize) the objective function. In the 
case of the relaxation modulus, the objective is to find the relaxation 
times and relaxation strengths that minimize the error between the 
approximating function and the experimental data. 

The efficiency of any search routine can be sensitive to the 
scaling of the parameters. Ordinarily, it is desirable to have all pa- 
rameters of the same order of magnitude. Unfortunately, relaxation 
times and relaxation strengths generally vary over several orders of 
magnitude. A change of variables that helps scale the parameters 
is 

ak = In Gk (3A.7) 

tk = In A k  (3A.8) 

In these new variables the approximating form of the relaxation 
modulus is 
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Common unconstrained search methods include steepest de- 
scent methods and Newton's method. Newton's method has the 
advantage of rapid rate of convergence when it converges, while 
steepest descent methods often converge but at a painfully slow 
rate. In the curve fitting of the relaxation modulus, it has been 
found to be difficult to obtain convergence with Newton's method. 
Thus, some quasi-Newtonian methods employing a combination 
of Newton's and steepest descent methods have been used. Both 
the Levenburg-Marquardt algorithm (Marquardt, 1963) and the 
Davidson-Fletcher-Powell (DFP) algorithm have been used with 
success. The DFP algorithm was designed for constrained opti- 
mization problems, and a program listing can be found in Pierre 
and Lowe (1975). 

The results of applying the DFP program to the fitting of some 
oscillatory shear experiments follow. Consistent with eq. 3A.9, the 
appropriate approximating forms for G'(w),  G"(o), and IG* (@)I 
are 

IG*(w)/ = [G'(o)' + G"(w)2 ] ' / 2  (3A. 12) 

The data shown in Table 3A. 1 for a narrow distribution poly- 
butadiene sample were fit to four relaxation times, and the broad 
distributionpolyisobutylene datainTable 3A.2 (Ferry 1980, p. 606) 
were fit to ten relaxation times. The results are shown in Table 3A.3 
and Figures 3A. 1 and 3A.2. 

TABLE 3A.1/ Polybutadiene Data 
0 G' G" IG'I 

(rads)  (Pa) (Pa) (Pa) 

0.3 162 414.0 1.12 x 104 1.13 x 104 
0.5623 11  10.0 2.00 x 104 2.01 x 104 
1 .oo 2970.0 3.55 x 104 3.56 x 104 

3.162 2.40 x 104 1.07 x 105 1.10 x 105 
10.0 1.52 x 105 2.46 x 105 2.89 x 105 
17.78 2.84 x 105 2.88 x 105 4.05 x 105 
3 1.62 4.21 x lo5 2.83 105 5.07 105 
56.23 5.30 x 105 2-53 x 105 5.87 x 105 

100.00 6.19 x 105 2.23 x 105 6.58 x 105 
177.8 6.92 x 105 2.06 105 7.22 x 105 
316.2 7.69 x 105 1.87 x 105 7.92 105 

0.1 53.7 3460.0 3460.0 
0.1778 176.0 6280.0 6285.0 

1.778 8500.0 6.23 x 104 6.29 x 104 
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TABLE 3A.2 I Polvisobutvlene Dataa 

~~ 

O.OOO3 16 
0.00 1 
0.003 16 
0.01 
0.03 16 
0.1 
0.316 
1 .o 
3.16 

10.0 
31.6 

100.0 
316.0 

104 
3.16 x 104 
105 
3.16 x 10s 
106 
3.16 x lo6 

103 
3.16 103 

107 
3.16 x 107 

109 

108 
3.16 x lo8 

~ ~~ 

1.05 x 105 
1.32 105 
1-62 x 105 

2.00 x 105 
2.24 x 105 

2.63 x 105 

2.95 x 105 
3.02 x 105 
3.24 x 105 
4.07 x 105 
5.75 x 105 

1.78 x 105 

2.40 x 105 

2.75 x 105 

9.12 x 105 
1.59 x lo6 
3.09 x lo6 
6.76 x lo6 
1.45 x 107 
3.09 x 107 
6.46 x lo7 
1.29 x lo8 
2.51 x lo8 
4.37 x 108 
6.61 x lo8 
8.51 x lo8 

4.68 x-104 1.15 105 
4.57 104 1.40 105 

3.98 x 104 1.82 x 105 
3.02 x 104 2.02 x 105 
2.82 104 2.26 105 

2.51 x 104 2.64 105 
2.63 x 104 2.77 105 
3.09 x 104 2.97 x 105 
5.62 x 10" 3.07 x 105 
1.12 105 3.43 x 105 
2.40 x 10s 4.73 105 
5.13 x 105 7.71 105 

4.37 x 104 1.68 x 105 

2.75 104 2.42 x 105 

1.07 x lo6 
2.34 x lo6 
4.90 x lo6 

1.41 x lo6 
2.83 x lo6 
5.79 x 106 

1.05 107 1.25 107 
2.19 x 107 2.62 107 
4.37 x 107 5.35 107 
8.32 x 107 
1.45 x lo8 
2.29 x lo8 
3.16 x 10' 
3.24 x 10' 
2.46 x lo8 

1.05 x 10" 
1.94 x lo8 
3.40 x lo8 
5.39 x 108 
7.36 x lo8 
8.86 x lo8 

nFerry, 1980 

TABLE 3 A 3  I Parameter Values 
Polybutadiene Polyisobutylene 

hk (S) Gk (pa) lk (S) Gk (pa) 

8.04 x 10-3 3.00 x 105 8.33 x lo-' 6.13 x lo8 
5.93 x 10-2 4.83 x 105 1.31 x 1.79 x lo8 

7.61 x lo-' 1.04 x lo2 4.78 x 3.62 x lo6 
1.46 x lo-' 2.98 x 104 2.23 x 10-6 3.06 x 107 

1.03 x 10-3 5.40 x 105 
4.26 x 10-2 3.99 x 104 

1.62 x 102 5.33 x 104 
3.83 x 103 1.46 105 

9.84 x lo-' 
9.31 x 10' 

4.12 x lo4 
4.41 x 10" 
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Figure 3A.1. 
Narrow distribution polybuta- 
diene. 
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Figure 3.A.2. 
Broad distribution poly- 
isobutylene. 
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4 
The experimental results 

show that.. . in nddition to 
the shear stress [there is] 

NONLINEAR 
VIS COELASTICITY a pull along the lines offlow. 

Karl Weissenberg (1947) 

Ronald G. Larson 
~~~ ~ 

4.1 Introduction 
The experiments to which Weissenberg refers were done during 
World War I1 in England on materials for flame throwers. One 
goal of this research was to improve predictions of the pressure drop 
through the spray nozzles (Russell, 1946). Gum rubber in gasoline, 
polymethyl methacrylate in benzene, and similar materials were 
studied. Figure 4.1.1 shows some of the experiments that were 
used to demonstrate normal stress effects. 

Inchapter 1 we saw that nonlinear normal stresses can arise in 
simple shear (eq 1.5.15) and in torsion (Example 1.7.1) of an elastic 
solid. In this chapter our immediate goal is to develop constitutive 
equations that can predict normal stresses and other nonlinear phe- 
nomena in flowing viscoelastic liquids. The eventual goal of this 
effort is to use these equations to predict and control viscoelastic 

Figure 4.1.1. 
Various experiments used by 
Weissenberg ( 1  947) and his 
co-workers to demonstrate 
normal stress effects in liq- 
uids. 
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fluid flows in practical applications, such as polymer processing or 
even in flame throwers. 

Nonlinear rheology vastly extends all the phenomena (elastic, 
viscous, and linear time dependent) discussed in Chapters 1-3. 
Elastic, viscous, and linear viscoelastic behaviors are but coastal 
zones on a continent of nonlinear rheology; see Figure 4.1.2. The 
abscissa on Figure 4.1.2 is the Deborah number, which is generally 
defined as the ratio of the material's characteristic relaxation time 
h to the characteristic flow time t .  

(4.1.1) 
h 

De = - 
t 

The origin of Deborah's number is indicated in the frontispiece to 
this text. In Figure 4.1.2 we take the characteristic flow time to be 
the inverse of the typical deformation rate p-', while in oscilla- 
tory flows we use the amplitude of the oscillatory strain times its 
frequency (you) - ' .  The elastic, Newtonian, and linear viscoelas- 
tic limits illustrated in Figure 4.1.2 have already been discussed 
in Chapters 1, 2, and 3, respectively. Second-order fluids, to be 
covered shortly, reside in a fringe of the regime of nonlinear vis- 
coelasticity that lies just across the border from the Newtonian 
domain. 

The breadth of the scope of nonlinear phenomena can be 
grasped in part by considering the various time-dependent probes 
of linear viscoelasticity cited in Table 3.3.2: sinusoidal oscillation, 
creep, constrained recoil, stress relaxation after step strain, stress 
relaxation after steady shearing, and stress growth after start-up 
of steady shearing. In the linear regime-that is, at small strains 
or small strain rates-the experimental results of any one of these 
probes (in simple shear, for example) can be used to predict results 
for any of the other probes, not only for simple shearing defor- 

Figure 4.1.2. 
Schematic diagram showing 
the behavior of viscoelastic 
fluids in the limits of low 
strain rates, low amplitude 
deformations, and high strain 
rates. Adapted from Pipkin 
(1972). 
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mations, but for any volume-preserving deformation. For strains 
and strain rates that are not small, each of these probes gives a 
nonlinear response. In principle, in the nonlinear regime none of 
these probes or combinations of probes gives a response that can 
be used to predict the nonlinear response to any of the other probes. 
Nor can any amount of nonlinear data (in shear, for example) be 
used to generate from first principles predictions in any other type 
of deformation, such as uniaxial extension. Each nonlinear test 
gives data that in principle are directly relevant to that test only. 
Therefore, at the minimum the task of the nonlinear rheologist is 
to develop empirical correlations among nonlinear measurements; 
or more ambitiously, it is to find constitutive equations that allow 
one to predict a useful range of nonlinear behavior, using as input 
rheological measurements over a small subset of that range. 

Thus the general nonlinear rheological behavior of a material 
is characterized by finding a constitutive equation appropriate for 
that material. The appropriateness of a constitutive equation is 
a balance of many factors, including the equation’s accuracy in 
fitting and predicting various data, the soundness of its theoretical 
underpinnings, its simplicity, its mathematical and computational 
tractability, and the range of phenomena one wishes to address using 
the equation. The weighting of the various factors is subjective to a 
significant degree; hence a rich diversity of constitutive equations 
has been developed over the past 50 years, many of which continue 
to be used. 

In the interest of clarity, we shall confine our attention in 
this chapter to three major topics. First, we mention the most 
important nonlinear phenomena that a constitutive equation should 
describe, namely normal stresses dzferences, shear thinning, and 
extensional thickening. Restricted examples of these phenomena 
have been discussed in Chapters 1 and 2; normal stresses in shearing 
of purely elastic materials were mentioned in Section 1.5; shear 
thinning of inelastic fluids was described in Chapter 2; and the fact 
that the stress response in extension can be quite different from 
that in shear was touched on in Figures 1.1.3 and 2.1.3. A good 
nonlinear constitutive equation should describe not only general 
manifestations of all three of these phenomena, but also the time 
dependence of rheological material functions, such as the linear 
viscoelastic time dependence discussed in Chapter 3. 

As our second major topic, we present the simplest equa- 
tions from each of the three important classes of constitutive equa- 
tions, namely the differential equations from the retarded-motion 
expansion, the Maxwell-type differential equations, and the inte- 
gral equations. Third and finally, we summarize the more accu- 
rate constitutive equations that we feel are the most promising 
for simply and realistically describing viscoelastic fluids and for 
modeling viscoelastic flows. More complete treatments of nonlin- 
ear constitutive equations are available elsewhere (Tanner, 1985; 
Bird et al., 1987; Larson, 1988; Joseph, 1990). Throughout this 
chapter, our examples are drawn from the literature on polymeric 
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fluids, especially polymer melts. Although suspensions, emul- 
sions, microemulsions, and other nonpolymeric fluids also have fas- 
cinating nonlinear rheological properties and are important classes 
of materials for industrial applications, a discussion of the non- 
linear properties unique to these materials is best deferred to 
Chapter 10. 

4.2 Nonlinear Phenomena 
4.2.1 Normal Stress Differences in Shear 
When a viscoelastic material is sheared between two parallel sur- 
faces at an appreciable rate of shear, in addition to the viscous 
shear stress T12, there are normal stress differences N I  = TI 1 - T22 

and N2 = T22 - T33. Here “1” is the flow direction, “2” is per- 
pendicular to the surfaces between which the fluid is sheared, as 
defined by eq 1.4.8, and “3” is the neutral direction. The largest 
of the two normal stress differences is N I ,  and it is responsible 
for the rod climbing phenomenon mentioned at the beginning of 
this book. For isotropic materials, NI has always been found to be 
positive in sign (unless it is zero). In a cone and plate rheometer 
this means that the cone and plate surfaces tend to be pushed apart. 
NZ is usually found to be negative and smaller in magnitude than 
N I  ; typically the ratio -Nz/Nl  lies between 0.05 and 0.3 (Keentok 
et al., 1980; Ramachandran et al., 1985). Figure 4.2.1 shows the 

Figure 4.2.1. 102 
Shear stress tl~, first nor- 
mal stress difference N1, and 
negative of the second nor- 
mal stress difference NZ as 
functions of shear rate 3 for 
a 1.18% solution of poly- 
isobutylene in decalin. Re- 
plotted from Keentok et al. 
(1980). 

10’ lo2 

Shearrate9 (s-1) 
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Figure 4.2.2. 
Steady state shear viscosity 
and primary normal stress 
coefficient for low density 
polyethylene “melt I” and 
from the Kaye-Bernstein, 
Kearsley, Zapas (K-BKZ) 
equation with the double ex- 
ponential damping function, 
eq4.4.13 (solid lines) and 
with the single exponential, 
eq4.4.12 (dotted line). Data 
at different temperatures have 
been shifted to one master 
curve by ar(T). Replotted 
from Laun (1 978). 
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three quantities T12, N1, and -N2 measured by Keentok et al. for 
a 1.18% solution of polyisobutylene in decalin. The ratio - N2/N1 
for this fluid is small (0.11) and nearly independent of shear rate. 
At sufficiently low shear rates, lower than those for which data are 
plotted in Figure 4.2.1, Tl2 usually becomes linear in the shear rate 
k; that is, the shear viscosity r]  = Tl2 /y  becomes independent of 
i / .  Similarly N1 and N2 approach the limits N1 o( p 2 ,  N2 0: p 2  at 
small y ,  and thus the normal stress coeficients 

(4.2.1) Ti1 - T22 
Y 2  

$ 1  = 

T22 - T33 
Y 2  

*2 = (4.2.2) 

approach constant values at small i / .  

4.2.2 Shear Thinning 
Figure 4.2.2 shows the dependence of r]  and $1 on i, at steady state 
for a polyethylene melt. Although 77 and $1 approach constants 
defined as 110 and $I,O at low i., at higher both q and $1 decrease 
dramatically with increasing P. The decrease in v,  and the related 
decreases in @I and $2, are referred to as shear thinning. Shear 
thinning is a nonlinear phenomenon that is especially pronounced in 
polymer melts and in concentrated polymer solutions. A molecular 
explanation for shear thinning in polymeric fluids is given when 
entanglement concepts are introduced in Chapter 11. 

loo 10 lo4 
Reduced shear rate a Ty (s -1) 
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Figure 4.2.3. 
Growth of shear viscosity as 
a function of time after start- 
up of steady shearing at vari- 
ous shear rates i, for a 7.55% 
vol% solution of polybuta- 
diene (M, = 350, OOO) in a 
hydrocarbon oil. The dashed 
line is the prediction of lin- 
ear viscoelasticity. Replotted 
from Menezes and Graessley 
(1980). 
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Shear thinning phenomena are also evident in time-dependent 
measurements. Figure 4.2.3 shows the time-dependent viscos- 
ity after start-up of steady shearing for a polybutadiene solution 
(Menezes and Graessley, 1980). The time-dependent viscosity is 
defined analogously to the steady viscosity as 

(4.2.3) 

The lowest shear rate in Figure 4.2.3,0.0214 s-', is nearly in 
the linear viscoelastic regime where q+(t, i / )  becomes independent 
of i.. As the shear rate increases with t fixed, $ ( t ,  Y )  decreases. 
Also, an overshoot appears; that is, v+ at fixed i, passes through a 
maximum before the steady state value q+( t ,  9 )  -+ q(+) is reached 
at large t. Note also that even when + is large, q+( t ,  i / )  at small t 
does not depart from the linear viscoelastic response. Deviations 
from linear viscoelasticity occur only when both the strain rate 9 
and the strain y = Y t  are not small. 

4.2.3 Interrelations Between Shear Functions 
The introduction emphasized that in general one cannot use linear 
viscoelastic data to predict a nonlinear viscoelastic material func- 
tion, nor as a rule can one use one nonlinear material function to 
predict another. Nevertheless, in shearing flows a few useful in- 
terrelations between material functions have often been observed 
to hold, at least approximately, for polymer melts and solutions. 

1; = 0.0214 sql 
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Figure 4.2.4. 
Steady state shear viscosity 
versus shear rate for a low 
density polyethylene melt 
(solid line) compared to pre- 
dictions of the Cox-Men 
rule, eq 4.2.6 (open points), 
and the Gleissle mirror rule, 
eq4.2.7 (solid points). Re- 
plotted from Retting and 
Lam (1991). 

n E 
p1 v 
F 

lo4 

lo3 

A few of these interrelationships can be derived from postulates 
that are general enough to be valid for most polymeric fluids. For 
example, the steady state shear viscosity and first normal stress co- 
efficient at low shear rate can be derived from low frequency linear 
viscoelastic measurements: 

r ] ( j / )  = r]’(o) ; as w = 9 + 0 (4.2.4) 
2G’(w) 

*l(?> = 7 , as w = y + O  (4.2.5) 

The first of these relationships, eq. 4.2.4, follows from little 
more than the definitions of r]  and r]’, while eq. 4.2.5 is less obvious 
(Coleman and Markovitz, 1964). Both relationships are of limited 
usefulness because they are relevant only for low shear rate prop- 
erties. However, an empirical relationship, called the “Cox-Merz 
rule,” often holds fairly well at high shear rates. This rule states that 
the shear rate dependence of the steady state viscosity r]  is equal 
to the frequency dependence of the linear viscoelastic viscosity r]*;  

that is, 

r ] ( p )  =( r]*(w) 1; with p = o (4.2.6) 

The quantities r]’ and r]* were defined in eqs. 3.3.28-3.3.30. An 
analogous relationship, the “mirror rule” (Gleissle, 1980) between 
q ( p )  and q+(t),  has been proposed: 

1 
t 

q ( p )  = r]+(t); with i /  = - (4.2.7) 

Here we remind the reader that r]+(t) is a low shear rate, linear 
viscoelastic function of time only. Figure4.2.4 shows that eqs. 4.2.6 
and 4.2.7 work well for a sample of linear low density polyethylene 

lo2 
10-3 10 -l 10 10 

Shear rate (s-l) 
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(Laun, 1990). Empirical relationships have also been proposed 
that predict the shear rate dependence of the first normal stress 
coefficient 11.1 (q ) ,  using either the linear viscoelastic quantities 
G’(w) and G”, or + T ( t )  (Gleissle, 1980; Wissbrun, 1986; Al- 
Hadithi et al., 1988), and even using q(?)  (see eq. 6.5. l). Although 
these “rules” cannot be derived rigorously, plausible arguments can 
be made that they should generally hold for polydisperse polymeric 
fluids (Booij et al., 1983; Larson, 1985; Wissbrun, 1986). 

A “rule” that can be derived theoretically from general 
premises likely to be valid for polymer melts and solutions is the 
Lodge-Meissner relationship (Lodge and Meissner, 1972) between 
the shear stress and the first normal stress difference after a step 
shear strain: 

where y is the step shear strain. Equation 4.2.8 has repeatedly been 
observed to hold (an example will be given in Figure 4.4.1) and is 
thought to be quite general (Laun, 1978; Vrentas and Graessley, 
1981; Larson et al., 1988), 

4.2.4 Extensional Thickening 

Although in a shear flow the viscosity of a polymeric fluid usually 
decreases with increasing deformation rate, in an extensional flow 
the viscosity frequently increases with increasing extension rate; 
that is, the fluid is extensional thickening (recall Figure 2.1.3). Fig- 
ure 4.2.5 shows the time-dependent uniaxial extensional viscosity 

(4.2.9) 

for several polymer melts, where € is the steady extension rate (see 
eq. 2.3.9). The molecules in two of the melts, polystyrene (PS) and 
high density polyethylene (HDPE), contain no long side branches, 
while the two low density polyethylenes (LDPEs) are branched, 
treelike molecules. Note that q: for the branched materials shows 
pronouncedextensional thickening; that is, q: for large € lies above 
the linear viscoelastic response obtained for small 6 .  This thicken- 
ing behavior is the opposite of the nonlinear effect seen in shearing 
flows depicted in Figure 4.2.3. The same point is made more dra- 
matically in Figure 4.2.6, which shows both q+( t ,  y )  and q:(t, €) 
for a branched low density polyethylene. For low strain rates or 
small strains-that is, in the linear viscoelastic regime-@ and 
differ only by the Trouton ratio q,’(t, C ) / q + ( t ,  C) = 3. As the strain 
rate or strain increases, the shear viscosity sinks below the linear 
viscoelastic result, while the extensional viscosity rises above it. 
Melts without long side branches, such as the polystyrene and high 
density polyethylene in Figure 4.2.5, often are much less extension 
thickening than melts with long branches. 

For melts the nonlinearity in the extensional viscosity is usu- 
ally more sensitive to the molecular architecture (e.g., the presence 
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Figure 4.2.5. 
Uniaxial extensional viscosity 
q: versus time for different 
extension rates C for four 
different melts. The solid 
lines are the fits to the data 
of a special form of the inte- 
gral equation, eq 4.4.15. The 
curves at the lowest exten- 
sion rates correspond to linear 
viscoelastic response. Note 
that curves have been shifted 
vertically by the multiplier 
indicated along the ordinate. 
Replotted from Laun (1984). 

Figure 4.2.6. 
Uniaxial extensional viscos- 
ity q,f and shear viscosity 
q+ as functions of time after 
inception of steady strain- 
ing for IUPAC A low density 
polyethylene. The open sym- 
bols are elongational viscosi- 
ties; the solid and half-open 
symbols are shear viscosi- 
ties. Adapted from Meissner 
(1972). 
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of long branches) than is the nonlinearity in the shear viscosity. 
The level of shear thinning generally does not strongly correlate 
with the magnitude of the extensional thickening behavior (Laun 
and Schuch, 1989). There do not seem to be any reliable interrela- 
tionships between nonlinear shear viscosities and nonlinear exten- 
sional viscosities. Hence it is important that extensional viscosities 
be measured if the material is to be adequately characterized and 
a reliable constitutive equation is to be chosen. Unfortunately, ex- 
tensional viscosities are notoriously difficult to measure accurately; 
several of the best available methods of measuring or inferring them 
are described in Chapter 7. 

Although the transient extensional viscosity in most of the 
curves of Figure 4.2.5 seems to approach a steady state at long 
times after start-up of extension, data of Meissner and co-workers 
(Wagner et al., 1979) indicate that in some cases the plateau in 
the extensional viscosity is a maximum from which the viscosity 
begins to drop when the extensional flow is continued to larger 
total strains. To see this drop in viscosity, Meissner had to stretch 
his sample to more than a hundred times its initial length. No 
steady state was obtained even after the sample’s length had been 
increased a thousandfold over its initial length. Of course, the 
sample cannot be stretched indefinitely because if it is stretched 
too thin, experimental artifacts significantly degrade the quality of 
the data (see Section 7.2). 

Thus, in the nonlinear regime of an extensional flow, one 
usually cannot be confident that a steady state has been reached, 
even if the data seem to possess a plateau at long times. By con- 
trast, arbitrarily large strains can be imposed in rotational shearing 
flows, and the attainment of steady state can usually be assured. 
A steady state extensional viscosity, even if it could be measured 
with confidence, would not necessarily be directly relevant to pro- 
cessing flows because a material element in a processing flow is 
unlikely to see a steady extensional flow that persists long enough 
for a steady state to be approached. The extraordinary effort re- 
quired to produce in the laboratory even an approximation to steady 
state extensional flow highlights the unlikelihood that such a con- 
dition might be achieved unintentionally in a processing flow. On 
the other hand nearly steady state shearing does occur in various 
processing flows, such as molding, extrusion, and transport through 
ducts and dies. 

These remarks about reaching a steady state apply not only to 
uniaxial extensional flows, data for which appear in Figure 4.2.5, 
but for other extensional flows as well. Besides uniaxial extension, 
the two most important extensional flows are equal biaxial exten- 
sion and planar extension. Kinematic tensors for these extensional 
flows were to have been found in Exercise 2.8.1. In uniaxial ex- 
tension the material is stretched in one direction and compressed 
equally in the other two; in equal biaxial extension the material is 
stretched equally in two directions and compressed in the third; and 
in planar extension the material is stretched in one direction, held 
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to the same dimension in a second, and compressed in the third. 
Following Meissner et al. (1982), it is useful to define the stressing 
viscosities p1 and p2 for a general extensional flow as follows: 

where rn = - 1/2 for uniaxial extension, rn = 1 for equal biaxial 
extension, and rn = 0 for planar extension. These viscosities are 
defined in such a way that in the linear viscoelastic regime both 
of them equal the linear viscoelastic shear viscosity q+. Thus for 
uniaxial extension, the Trouton ratio of 3 is divided out of the stress- 
ing viscosity p:. For uniaxial extension only p;' is defined, while 
p;' = p i  for biaxial extension; but for planar extension p;' and 
p; are unequal. Note from eqs. 4.2.9 and 4.2.10 that for uniaxial 
extension p;' = q:/3. 

Measurements of these viscosities in equal biaxial and planar 
extension are extremely rare. Laun and Schuch (1989) measured 
p: and p l  in steady planar extension and p;' in steady uniaxial 
extension for a polyethylene with long branches, IUPAC X. For 
these sets of data, shown in Chapter 7, Figure 7.4.6, the planar ex- 
tensional viscosity p;' is almost as extension thickening as is the 
corresponding viscosity in uniaxial extension. The second viscos- 
ity p l  for planar extension seems to be small and does not show 
extension-thickening characteristics. For a melt of polyisobuty- 
lene that presumably has few or no long side branches, Meissner et 
al. (1982) have found that the stressing viscosities in equal biaxial 
extension and in planar extension show little or no extension thick- 
ening, while significant extension thickening occurs in uniaxial 
extension (see Figure 4.2.7). Because of the lack of corroborating 
data for other melts or solutions, it would be dangerous or even 
foolhardy to try to draw general inferences from these limited data. 

In addition to the nonlinear phenomena we have discussed 
in this section, namely normal stresses, shear thinning, and ex- 

Figure 4.2.7. 
Stressing viscosity p: for 
uniaxial, biaxial, and planar 
extension, stressing viscos- 
ity p; for planar extension, 
and shear viscosity Q+, as 
functions of time after in- 
ception of steady straining 
for polyisobutylene. The 
solid line is the low shear 
rate limit of q +  . Extension 
and shear rates are 0.08s-l 
except the biaxial which is 
0.02s-I. From Retting and 
Lawn, 1991. 
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tensional thickening, nonlinearity modifies the linear phenomena 
discussed in Chapter 3. We have seen an example in Figure 4.2.3, 
which illustrated how nonlinear effects can change the linear vis- 
coelastic stress growth after start-up of steady shearing. Other ways 
of probing time-dependent viscoelasticity (such as stress relaxation 
after a step strain: Figure 4.4.1) are also strongly affected by non- 
linear phenomena if the strains are large. We would like to be able 
to describe or predict these phenomena using nonlinear constitutive 
equations. As a first step, we first describe the simplest constitutive 
equations. 

4.3 Simple Nonlinear Constitutive Equations 
4.3.1 Second-Order Fluid 

The simplest constitutive equation capable of predicting a first nor- 
mal stress difference is the equation of the second-orderfluid (Bird 
et al., 1987; Larson, 1988): 

V 
T = -PI + 2qoD - ~ I , O  D +4+2,oD * D (4.3.1) 

Hereafter in constitutive equations such as eq 4.3.1 we will use the 
stress tensor t, which does not contain the isotropic pressure term 
PI. In eq 4.3.1 we have introduced the upper-convected derivative, 
denoted by “V,” which when acting on an arbitrary tensor A gives 
by definition 

0 

A E A  - ( V V ) ~ . A  - A * V V  (4.3.2) 

As usual, the dot ( a )  over a tensor denotes the substantial or 
material time derivative of that tensor; that is, 

* a  
A 5 - A + v  * VA 

at 

The upper-convected time derivative is a time derivative in a special 
coordinate system whose base coordinate vectors stretch and rotate 
with material lines. With this definition of the upper-convected 
time derivative, stresses are produced only when material elements 
are deformed; mere rotation produces no stress (see Section 1.4). 
Because of the way it is defined, the upper-convected time deriva- 
tive of the Finger tensor is identically zero (see eqs. 2.2.35 and 
1.4.13): 

V 
B = O  (4.3.3) 

V 
The term proportional to D in eq 4.3.1 incorporates a weak elastic 
“memory” into the constitutive equation. It can be shown under 
quite general conditions that a viscoelastic fluid will obey eq 4.3.1 
if the flow is sufficiently slow and slowly varying, to ensure that 
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departures from Newtonian behavior are small (Coleman and Noll, 
1960). For example, if the flow is a shear flow, eq4.3.1 will hold 
only if the shear rate is low enough to prevent the viscosity and first 
and second normal stress Coefficients from departing from their 
low shear rate values r ] ~ ,  +1,0, and @2,0; that is, if there is no shear 
thinning. 

Example 4.3.1 The Second-Order Fluid in Simple Shear 
Show for a steady simple shearing flow that the shear viscosity and 
first and second normal stress coefficients predicted by eq4.3.1 are 
indeed 90, $I,o. and h . 0 .  

Solution 
First we evaluate D for steady simple shearing by replacing A in 
eq4.3.2 by expression 2.2.16 for D. For steady flow a D p t  = 0; 
for homogeneous flow VD = 0. Thus D = 0, and by substituting 
expression 2.2.12 for Vv, we obtain 

V 

0 3 2  0 0 y 2  0 0 y 2  0 0 
D=-'( 0 0 O ) - i ( O  0 (I)=-( 0 0 0) (4.3.4) 

0 0 0  0 0 0  0 0 0  

Substituting this result and eq 2.2.21 for D into eq4.3.1 gives 

(4.3.5) 
0 0 0  

By the definitions of shear viscosity, r]  E 712 /y ,  and normal stress 
coefficients = (711 - 722) /p2 and $2 = (722 - q 3 ) / P 2 ,  it is 
clear that qo in eq. 4.3.5 is the zero shear viscosity and @1,0 and 
$2.0 are the limiting first and second normal stress coefficients. 

Example 4.3.1 proves only that we have assigned the, proper 
coefficients to the terms in the second-order fluid equation. Let us 
consider a more interesting example. 

Example 4.3.2 Uniaxial Extensional Viscosity 
for a Second-Order Fluid 
Suppose that for viscoelastic fluid X we measure the ratio +2/+, 

as -0.2 at low shear rates. In a slow steady uniaxial extensional 
flow, should we expect fluid X to show extensional thickening or 
extensional thinning? 
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Solution 
Taking D for uniaxial extension from eq2.2.19 and setting D = 0, 
we find from eqs. 4.3.1 and 4.3.2: 

4 2  0 0 422 0 0 
(4.3.6) 

From the definition of the uniaxial extensional viscosity, 
eq. 4.2.9, we find from eq. 4.3.6 that qu = 3170 + ~ ( + I , o  + 2142,o)i. 
Therefore we can conclude that as long as - + ~ , o / + I , o  c 0.5, the 
first departures of I], from the Newtonian value will be positive. 
Hence fluid X will be extension thickening at low extension rates. 
A similar calculation for equal biaxial extension (Larson, 1988) 
shows that I]b = 617 - 6(+1 + 2+2)€. 

This example makes evident the usefulness of the equation 
of the second-order fluid. Once the three coefficients of the equa- 
tion have been specified-and measurements in simple shear alone 
are enough to specify them-predictions can be made for the first 
deviations from Newtonian behavior for any other flow. This prop- 
erty has proved useful in analyzing slow but complex nonuniform 
flows, such as those observed in rod climbing (see Chapter 5) and 
flow over a pressure hole (see Chapter 6). 

The equation of the second-order fluid is so named because 
it contains all terms up to second order in the velocity gradient in 
a perturbation expansion about the rest state. The Newtonian term 
2qoD is the first-order term, and PI is the zeroth-order term. There 
are also equations of the third-order fluid, and so on (Bird et al., 
1987). These form a series of equations in the “retarded motion 
expansion”; so called because it assumes that the flow is a small 
perturbation from the state of rest. The equations that are higher 
in order than second are of less practical importance because of 
their complexity and the restricted conditions under which they are 
accurate. 

Most flows of polymeric fluids are not slow enough for the 
second-order-fluid equation or any of the equations of the retarded- 
motion expansion to apply to them. Of course eq 4.3.1 can be made 
accurate for any steady shearing flow merely by replacing the con- 
stants qo, y?l,o, and +2,0 by the shear rate dependent coefficients 
I](?), 91 (F), and +2(F). Although the resulting equation, called 
the Criminale-Ericksen-Filbey equation (1958), is valid for any 
steady shearing flow, it cannot be expected to predict steady exten- 
sional viscosities or the stresses in any flow besides steady simple 
shear. More seriously, neither the second-order-fluid equation, nor 
any retarded-motion equation, nor the Criminale-Ericksen-Filbey 
equation can predict time-dependent viscoelastic phenomena such 
as stress growth or stress relaxation. If the flow is suddenly stopped, 
the stress tensor in eq4.3.1 or any other of the retarded-motion 
equations goes immediately to zero rather than relaxing gradually. 
This is what we mean when we say that eq4.3.1 contains elastic 
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effects in a weak sense only. Although eq4.3.1 is able to predict 
some nonlinear effects, it is not able to describe time-dependent 
phenomena even in the linear viscoelastic regime. 

4.3.2 Upper-Convected Maxwell Differential Equation 

Perhaps the simplest way to combine time-dependent phenomena 
and rheological nonlinearity is to incorporate nonlinearity into the 
simple Maxwell equation, eq. 3.2.18. This can be done by replacing 
the substantial time derivative in a tensor version of eq 3.2.18 with 
the upper-convected time derivative o f t ,  using eq. 4.3.2 (Oldroyd, 
1 950) * : 

V 
r + A t = 2 7 p ~ D  (4.3.7) 

This equation, which is called the upper-convected Maxwell (UCM) 
equation, is nonlinear because G contains products of the velocity 
gradient Vv and the stress tensor T. For small strain amplitudes, the 
nonlinear terms disappear and the upper-convected time derivative 
reduces to the substantial time derivative; eq 4.3.7 is then equivalent 
to the linear Maxwell model. On the other hand, if the flow is steady 
and the strain rate is small, 7 is negligible and Newtonian behavior 
is recovered. Thus, to first order in the velocity gradient, we obtain 

t % 2qoD + second - order terms (4.3.8) 

V 

Suppose that we now increase the strain rate until we start to see 
a weak departure from Newtonian behavior. We can calculate this 
departure by using eq. 4.3.8 to evaluate the small term G: 

V V 
T % 2qo D + third - order terms (4.3.9) 

Then eq. 4.3.7 gives 
V 

t' FZ 2qoD - 2qoA D + third - order terms (4.3.10) 

Comparing eq.4.3.10 with eq.4.3.1, we see that to second order 
in the velocity gradient the upper-convected Maxwell equation for 
small strain rates reduces to a special case of the equation of the 
second-order fluid with lj11,o = 2Aq0 and +Z,O = 0. All properly 
formulated constitutive equations for which the stress is a smooth 
functional of the strain history reduce at second order in the ve- 
locity gradient to the equation of the second-order fluid. Example 
4.3.3, however, illustrates that the equation of the second-order 
fluid cannot be trusted except for slow nearly steady flows. 

~ 

*Note that it is possible to dejne other convected derivatives (Bird et al., 1987; Lar- 
son, 1988). The upper-convected derivative arises most naturally from molecular 
theory. We will see this in Chapter I 1  with the elastic dumbbell model. Note also 

that 1 arises naturally from using the time derivative of the neo-Hookean model, eq 
1.5.2, in eq 3.2.18. See Exercise 4.6.3.: 

V 
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Example 4.3.3 Shear and Extensional Flow Predictions 
of the UCM Equation 
Calculate the predictions of the upper-convected Maxwell equation 
in (a) start-up of steady shear and (b) steady state uniaxial extension 
for arbitrary shear rate 9 and extension rate 1, and compare these 
predictions with those for the Newtonian and second-order fluids. 

Solution 
(a) Start-up of Steady Shear 
Using the definition of eq. 4.3.2 for the upper-convected derivative, 
the upper-convected Maxwell equation (eq. 4.3.7) can be written 
in expanded form as follows: 

a 
at 

r + h- r + Av . Vr - A(VV)~ - r - hr . Vv = 2v,,D (4.3.1 1) 

The term V r  is zero because we are considering a homogeneous 
flow. The symmetry of the shearing flow leads us to expect that the 
stress tensor will contain only the components 712, 721, 71 I ,  722, and 
733. Assuming this form for the stress tensor and using eq. 2.2.10 
for the velocity gradient, we obtain 

Thus eq. 4.3.1 1 becomes 

To obtain the steady state results, we set the time derivative to zero. 
We find immediately that 733 = 722 = 0. With this result for 722. 

we find that 712 = q09, from which we can obtain 71 I = 2 q 0 A y 2 .  
This result implies that the shear viscosity is a constant qo, the first 
normal stress coefficient is also a constant equal to 2Aq0, and the 
second normal stress coefficient is zero. This is the same result that 
we obtained in the second-order fluid limit of the UCM equation! 

To obtain the stress growth predictions, we note from 
eq. 4.3.12 that the only nonzero stress components are 71 I and r 1 2  
and that these satisfy 

(4.3.13) 

If the shearing starts at t = 0, we can take 71 I = 712 = 0 at 
t = 0. Solving first for 712 gives 

(4.3.14) 
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This is the same result that we obtained in Example 3.2.1 for the 
linear viscoelastic (LVE) model. However, unlike the LVE model, 
the UCM predicts shear normal stresses. Substituting this solution 
for tl2 into the equation for t l 1  and solving the resulting equation 
gives 

Figure4.3.1 compares q+( t )  for the UCM equation to the pre- 
dictions for the Newtonian and the second-order fluids. Although 
all three of these constitutive equations predict a shear rate inde- 
pendent viscosity at steady state, only the UCM equation predicts 
a gradual rather than instantaneous growth of stress after inception 
of shearing. Therefore the UCM equation is the most realistic of 
the three. 
(b) Steady State Uniaxial Extension 
Substituting the velocity gradient for uniaxial extension, eq. 2.2.9, 
into eq. 4.3.7, we readily find that at steady state 

Thus we obtain 

Figure 4.3.1. 2.0 
Growth of the shear viscos- 
ity q+ after onset of steady 
shearing for the UCMnodge 
equation, compared to a New- 
tonian and a second-order 
fluid. I .5 

q+ 1.0 

0.5 

0.0 

- T I I  - 522 2% VO =-+- 
€ 1 -2A€ 1 + h i  rlu = 

(4.3.16) 

(4.3.17) 

Newtonian Second-order fluid f 

I 

0 1 2 3 4 
Time 
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Figure 4.3.2. 
Growth of the uniaxial exten- 
sional viscosity ~ u +  after onset 
of steady extension for the 
UCMLodge equation com- 
pared to a Newtonian and a 
second-order fluid. 

11: 

This viscosity is extremely extension thickening, since it rises to 
infinity as k approaches 1/2A. Recall that the second-order fluid 
equation predicts only alinear rise of qu with k , while the Newtonian 
fluid predicts no dependence of qu on 1-. 

Thus for steady state uniaxial extensional flow, in contrast to 
steady state shearing flow, the second-order fluid result agrees with 
the UCM prediction only at small strain rates. The UCM, second- 
order fluid, and Newtonian fluid equations all differ in their pre- 
dictions of the strain rate dependences of the extensional viscosity, 
though the strain rate dependences of the shear viscosity are the 
same for all three equations. This result typifies the usual finding 
that constitutive equations differ among themselves more strongly 
in their predictions of extensional viscosities than in their predic- 
tions of shear viscosities. 

Following the steps we used for start-up of steady shear- 
ing, we can also use the UCM equation to calculate qlf,  the time- 
dependent uniaxial extensional viscosity after start-up of steady 
extension. We leave it to the reader to show that the result is identi- 
cal to that obtained in Section 4.4.4 for the Lodge integral equation. 
This time-dependent viscosity a,' for the UCM equation is com- 
pared to that for the Newtonian and second-order fluids in Figure 
4.3.2. Note that as was the case in shear, only the UCM equation 
predicts a gradual growth of the extensional viscosity after start-up 
of flow. Figure 4.3.2 also depicts the unbounded growth of the 
extensional viscosity shown by the UCM equation when 1- exceeds 
1 /2h. 
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4.3.3 Lodge Integral Equation 
Recall from Chapter 3 that the linear Maxwell equation can be writ- 
ten in an integral form. The nonlinear upper-convected Maxwell 
equation can also be written in an integral form, namely 

T =  j 5 e - ( t - t ’ ) / A  (B(t, t‘)  - 1)dt’ (4.3.18) 
-W 

By making use of eq. 4.3.3, it can be shown that eq. 4.3.7 can be de- 
rived from eq. 4.3.18 (Astarita and Marrucci, 1974; Larson, 1988). 
For an incompressible liquid, the stress tensor T is determined only 
to within an isotropic constant; thus the unit tensor I in eq. 4.3.18 
can safely be dropped. Although equivalent to the differential 
UCM equation, it is worthwhile to introduce eq.4.3.18 because 
some problems are easier to address with an integral equation and 
because eq. 4.3.18 is a simple prototype of more realistic integral 
equations to be discussed in Section 4.4. To illustrate how calcu- 
lations are carried out with integral constitutive equations, let us 
calculate the shear stress in a couple of different simple shearing 
deformation histories. From eq. 1.4.24 we find that the shear or 
off-diagonal component of the tensor B in a simple shearing defor- 
mation is simply the shear strain y .  Thus B12(t, t ’)  = y ( t ,  t’), and 
from eq. 4.3.18 we obtain 

y ( t ,  t’)dt’ (4.3.19) 
-W 

Here y (t, t’) is the shear strain that accumulated between the times 
t’ and t .  Let us illustrate the meaning of y (t,  t’) with two examples. 

Example 4.3.4 Step Shear Strain 
Calculate y ( t ,  t’)  for a step shear of magnitude yo applied at time 
zero as illustrated in Figure 4.3.3a. 

Solution 

If r’ > 0, then since the step occurred at time zero, no strain was 
added to the material between t’ and r and y (t’, t) = 0. However, if 
t’ < 0, then between r‘ and t the strain yo was added to the material 
and y ( t ,  r ’ )  = yo. Thus, for a step shear strain at time zero 

0; t’ > 0 1 yo; t’ I 0  
y 0,  t’) = (4.3.20) 
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Figure 4.3.3. 
(a) Strain history for a step 
strain yo applied at time zero. 
(b) Strain history for start-up 
of steady shearing at a rate p, 
starting at time zero. 

Y 

Example 4.3.5 Start-up of Steady Shearing 

Calculate y ( t  , t ’ )  for steady shearing at a shear rate 2‘ that began at 
time zero as illustrated in Figure 4.3.3b. 

Solution 
If r’ > 0, then the shearing has been continuous at a rate 2’ from time 
t’ until the present time r ,  so the total strain accumulated between 
t’ and the present time t is p ( t  - t’). However, if t’ < 0, then 
since no shearing occurred from time t’ up to time zero, the total 
accumulated strain between t’ and t is that which accumulated since 
time zero, namely g t .  Thus 

(4.3.21) 2‘(t - t ’ ) ;  t’ > 0 
t’ 5 0 y ( t ,  t’) = { p t ;  

We leave it as an exercise to the reader to calculate the shear stress 
at time t for the two strain histories given by eq.s 4.3.20 and 4.3.21. 

As one more example, let us consider an extensional flow. 

Example 4.3.6 Stress Growth in Start-up 
of Uniaxial Extension 
Calculate, using eq. 4.3.18, the growth of the extensional viscosity 
after start-up of a steady uniaxial extension. Compare the steady 
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state extensional viscosity from this equation with the prediction 
of the differential version of the UCM equation, eq. 4.3.7. 

Solution 
The tensor B for uniaxial extension is given in Exercise 2.8.la. If 
the uniaxial extensional flow starts at time t = 0, by analogy with 
Example 4.3.5 we have 

e- i ( t - r ' ) .  

e-d. 9 r ' s 0  
, t ' > O .  [ ' " ' (4.3,.22) BII = B22 = 

From this and eq. 4.3.18 we obtain 

n I 

Carrying out these integrals yields 

(4.3.25) 

(4.3.26) 

We find at steady state, when r + 00, that 

r1° (4.3.27) =-+- 2rlO 3rl0 
(1 - 2Ai)(1 +Ai) 1 -2a.i 1 + A €  

- rii - r22 = 
t rlu = 

which is the same result that we obtained earlier from the Maxwell 
model, eq. 4.3.7 in Example 4.3.3b. 

Equation 4.3.25 also shows us that when € exceeds 1/2A, 
the extensional stress grows without bound and no steady state is 
reached for this constitutive equation. 

As discussed in Chapter 3, real polymeric fluids possess a 
distribution of relaxation times. Equation 4.3.18 can easily be gen- 
eralized to include this spectrum: 

r = 1 M ( t  - t ' )  B(t, t')dt' (4.3.28) 
-W 
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where M ( t )  is the memory function defined in eq. 3.2.2. Equation 
4.3.28 is called the equation of the Lodge rubber like liquid (Lodge, 
1956, 1964, 1968). A differential form for this equation can be 
obtained if M(r - r ’ )  is represented by a discrete spectrum (recall 
eq. 3.2.10): 

With this spectrum, we can decompose the stress tensor into a sum 
of contributions from individual modes: 

N 

5 = c T i  
i = l  

(4.3.30) 

with 

To within an added isotropic constant, the stress t i ,  given by eq. 
4.3.3 1 for each mode, satisfies an upper-convected Maxwell equa- 
tion: 

V 
t i  + hi t i  = 2Gj hiD (4.3.32) 

With the inclusion of the spectrum of relaxation times in 
Lodge’s equation, or equivalently, in the upper-convected Maxwell 
equation, we recapture all the power of the theory of linear vis- 
coelasticity described in Chapter 3. Of course we obtain the New- 
tonian behavior discussed in Chapter 2 when the strain rate is low, 
and we retain the nonlinear features of the UCM equation, in par- 
ticular the existence of a first normal stress difference in simple 
shearing and extensional thickening in uniaxial extensional flows. 
However, as with the UCM equation, we still predict a zero sec- 
ond normal stress difference and strain rate independent values of 
the shear viscosity and first normal stress coefficient-that is, we 
predict no shear thinning. Also, the extensional thickening we 
predict is too severe, since an infinite steady state extensional vis- 
cosity is obtained above a critical value of i. Thus, although the 
LodgeNCM equation has some of the qualitative behavior of real 
polymeric fluids, it is still far from being a quantitative constitutive 
equation for most polymeric fluids. 

For dilute solutions of polymers, however, the UCM equa- 
tion, or a simple variation of it, seems to be satisfactory. The 
solutions we have in mind are very dilute, at most a few tenths of 
a percent polymer. For these solutions, polymer molecules do not 
entangle much with each other, and the viscoelastic properties of 
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Figure 43.4 
2G' versus o and NI versus 
y for a Boger fluid, in this 
case a high molecular weight 
polyisobutylene in a solvent 
consisting of poly( I-butene) 
of low molecular weight 
and kerosene. r~, ,  and A,, are 
the viscosity and relaxation 
time of the high molecu- 
lar weight polymer; r ~ ,  and 
As are the viscosity and re- 
laxation time of the solvent. 
The solid line gives the best 
fit to G' data of the upper- 
convected Maxwell equation 
with two relaxation times; 
the dashed lines give the best 
tit of the Oldroyd-B equa- 
tion, eq. 4.3.33. Both models 
fit the N1 data well. Replot- 
ted from Mackay and Boger 
( 1987). 

10 * 
n 

g 2- 10'  

ii 100 
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the polymer solution are particularly simple. In most dilute poly- 
mer solutions, the longest relaxation time is so short that the fluid 
shows little viscoelasticity unless strain rates are hundreds of re- 
ciprocal seconds or higher. These high strain rates occur in some 
processing flows such as coating flows. 

On the other hand, if the solvent viscosity is very high, say 
a hundred poise or greater, the longest relaxation time can be a 
second or more, and strong viscoelastic effects are seen even at 
shear rates of only a few reciprocal seconds. Such viscous dilute 
solutions, which are called Bogerfluids (Boger, 1977; Binnington 
and Boger, 1985), are often concocted as test fluids. The solvent in 
a Boger fluid is often itself a low molecular weight polymeric fluid. 
The use of Boger fluids is advantageous in that their rheology has 
the simplicity of dilute solutions, yet the relaxation times are long 
enough to permit the manifestation of strong nonlinear viscoelastic 
effects at shear rates low enough to be easily accessed by most 
rheometers. 

Although the UCM equation gives the polymer contribution 
to the stress in a dilute solution such as a Boger fluid, the sol- 
vent contribution to the stress cannot be neglected, and so the 
total stress tensor T in these solutions is the sum of the polymeric 
and solvent contributions 

r = rP + I" (4.3.33) 

Here rp is given by the UCM equation 4.3.7 (or equivalently by 
the Lodge equation, eq.4.3.18), and r" is usually just a Newtonian 
term 2q,D, where q,s is the solvent viscosity. The combination of 
these two terms is the Oldroyd-B constiruriue equation (Oldroyd, 
1950; see Exercise 4.6.4). Figure 4.3.4 compares the storage mod- 

hp =0.269 s / 1 
- - -  - Oldroyd-B fluid 
(A, = 0) 
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103 I I I I L' 
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ulus G’ and the first normal stress difference NI for a Boger fluid 
to the predictions of the Oldroyd-B and UCM equations. In this 
case the solvent had a small, but non negligible relaxation time, 
so the solvent contribution could itself be represented by the UCM 
equation. Thus T P  and T,‘ were both given by eq. 4.3.7, but the re- 
laxation time As for the solvent was some three orders of magnitude 
smaller than A,, the relaxation time for the polymer. Therefore the 
constitutive equation for the solution as a whole was eq. 4.3.32 with 
two relaxation times (Mackey and Boger, 1987). The agreement of 
this two-relaxation-time UCM equation with the experimental data 
for this Boger fluid is satisfactory. 

~ ~ ~~ 

4.4 More Accurate Constitutive Equations 
4.4.1 Integral Constitutive Equations 

Most polymeric fluids are not described very well by the 
LodgeNCM equation. The Lodge/UCM fluid is an inadequate 
description for most materials because its elasticity is that of a 
simple Hookean material. This can be seen by supposing that the 
deformation occurs suddenly at time zero. Immediately after the 
deformation, the stress tensor of eq. 4.3.28 becomes 

M ( t  - t’)dt’ = B G(0) (4.4.1) 
-W 

which is identical to eq. 1.5.1 for a Hookean rubber. A more general 
constitutive equation would be a viscoelastic version of the equa- 
tion for the general elastic solid, eq. 1.6.4. A viscoelastic equation 
based on this idea was proposed independently by Kaye (1962) and 
by Bernstein, Kearsley, and Zapas (1963). The so-called K-BKZ 
equation can be written as follows: 

Here u ( Is , I Is, r - t ’ )  is a time-dependent elastic energy kernel 
function. The strain energy 

is the generalization of the energy function of the elastic solid given 
in eq. 1.6.13. Is and I I B  are the invariants of the tensor B as 
discussed in Example 1.4.4. In eq. 4.4.2, B and the invariants of B 
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depend on t and t’.  The Lodge equation is a special case of eq. 4.4.2 
obtained when 

1 
2 

~ ( l g ,  I I B ,  t - t’) = - M(t - t‘) I B  (4.4.3) 

With the introduction of the K-BKZ equation, we are at last 
in a position to describe shear thinning phenomena; but to do so 
we need to obtain the energy function u ( Z B  , I I B  , t - t’). Because 
u depends on two strain invariants as well as time, obtaining the 
complete energy function requires a lot of experimental data or else 
some guidance from molecular theory (which will come in Chapter 
11). However, things become much simpler if we restrict ourselves 
to shearing flows. For shearing flows, using eq 1.4.24 for B and 
1.4.36 for its inverse, eq. 4.4.2 yields 

(4.4.4) 
-W 

t 

N1 = 1 2 (6 - 5) y 2 ( t ,  t’)dt’ (4.4.5) 
-m 

(4.4.6) 

If one wishes to obtain t l 2  and N I  , one need only obtain the quantity 

This function can most readily be obtained by performing step strain 
deformations; if a shear strain y is imposed on the material at time 
zero, eq. 4.4.4 gives 

0 m 

-W t 

where s is defined in Chapter 3 (3.2.5). Thus the function 4 ( y ,  s) 
can be obtained by taking a time derivative of the relaxing shear 
stress after imposition of a step shear strain. Once 4 has been 
obtained, 512 and N I  in any shearing deformation history can be 
predicted for the K-BKZ equation from eqs. 4.4.4 and 4.4.5. 

Figure 4.4.1 shows the shear stress modulus G (  y ,  t )  = t 1 2 /  y 
as a function of time after imposition of a step shear strain for 
a commercial low density polyethylene. This particular batch of 
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Figure 4.4.1 
Modulis of shear stress 
G I s l l / y  (open symbols) 
and of the primary normal 
stress difference G N  = N , / y Z  
(solid symbols) of melt I as 
functions of time after a step 
shear. At is the time over 
which the “step” in strain oc- 
curred. Replotted from Laun 
(1 978). 
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polyethylene is referred to as melt I. It is almost identical to the melts 
IUPAC A and IUPAC X encountered in Figures 4.2.5 and 4.2.7, 
respectively. The data of Figure 4.4.1 can be used to obtain the 
K-BKZ function 4 ( y ,  s). On a log-log plot the relaxation curves 
for Melt I are nearly parallel; this means that the stress relaxation 
modulus is nearly factorable into time- and strain-dependent terms: 

This, in turn, implies that the kernel function 4 ( y ,  t )  is also 
factorable: 

At small strains y + 0, so G ( y ,  t )  must reduce to the linear 
viscoelastic modulus G ( t ) ,  and h ( y )  must approach unity for small 
y . Note also in Figure 4.4.1 that the normal stress modulus N I  / y 2  
equals the shear stress modulus r12/ y ; this implies that melt I obeys 
the Lodge-Meissner relationship, eq 4.2.8. Note that this relation 
follows directly from eqs. 4.4.4 and 4.4.5. 

For deformations other than shear-such as step biaxial ex- 
tension (Soskey and Winter, 1985) and step planar extension (Khan 
and Larson, 199 1)-time-strain factorability has also been found 
to hold, at least approximately, for commercial polymer melts. If 
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it holds for all types of deformation for a given material, then 
~ ( l g ,  I I B ,  t - t ’ )  = M ( t  - ? I )  U(Zs, ZZE), andthe K-BKZequation 
reduces to 

Figure 4.4.2. 
The damping function for 
melt I in step shearing fitted 
by the single exponential of 
eq 4.4.12 (dashed line) and 
the double exponential of 
eq4.4.13 (solid line). Replot- 
ted from Laun (1978). 

Time-strain factorability, when it can be used, simplifies the K- 
BKZ equation considerably; since M(r - t ’ )  can be obtained from 
simple linear viscoelastic measurements, only nonlinear ex- 
periments are needed to obtain the strain-dependent function 
U ( Z g ,  ZZs). To predict 712 or NI in any shearing flow, h ( y )  is 
the only nonlinear material function that needs to be measured. 
This so-called dampingfunction, h ( y ) ,  can be obtained at each y 
simply by finding the amount of vertical shift on a log-log plot 
such as Figure 4.4.1 required to superimpose a curve of G(y,  t )  
onto the linear viscoelastic curve G(t)  = G(y + 0, t). When 
this is done for melt I, one obtains the damping function plotted 
in Figure 4.4.2. Note that h ( y )  decreases monotonically as the 
strain y increases. The negative departures of the modulus G(y,  t )  
from the linear viscoelastic limit become ever greater as the strain 
increases, a phenomenon known as strain sofening. The damping 
function of Figure 4.4.2 can be fit out to a strain y of 10 or so by a 
simple exponential (Wagner, 1976) 

h ( y )  = exp(-ny) (4.4.12) 
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Figure 4.43. 
Growth of shear stress and 
primary normal stress differ- 
ence after start-up of steady 
shearing of melt I compared 
to predictions of the K-BKZ 
equation with the double ex- 
ponential damping function, 
eq 4.4.13 (solid lines), and 
with the single exponential, 
eq 4.4.12 (dashed line). Re- 
plotted from Laun (1 978). 

with n = 0.18. For higher strains a sum of two exponentials (Laun, 
1978) 

with f l  = 0.57, f2 = 0.43, nl = 0.31, and n2 = 0.106, gives a 
near-perfect fit. These data can also be fit fairly well out to y = 10 
by the simple expression (Khan and Larson, 1987) 

1 
(4.4. = 1 + f a y 2  4) 

with a! = 0.21. 
With expressions 4.4.12 or 4.4.13 for h ( y )  and with G(r) 

obtained from a sum of exponentials with parameters Aj and Gj 
(given in Table 3.3.1 for melt I), predictions can now be made for 
various shearing flows in the nonlinear regime. Figure 4.2.2 shows 
that the predicted steady state shear viscosity q and first normal 
stress coefficient @I agree well with the experimental data. 

The same can be said for the growth of r12 and N1 after start- 
up of steady shearing in Figure 4.4.3 and the relaxation of 512 and NI 
after cessation of steady state shearing in Figure 4.4.4. The agree- 
ment of the predicted q and @I with the measured values shows 
that at least in simple shearing flows, there is a strong connection 
between strain softening and shear thinning; if the strain softening 
in step shear is properly incorporated into the constitutive equation, 
accurate predictions of the shear thinning follow directly. The good 
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Figure 4.4.4. lo5 

steady state shearing of melt lo4 

Relaxation of shear stress 
and primary normal stress 
difference after cessation of 

I compared to predictions of 
the BKZ equation with the 
double exponential damp- 
ing function, eq4.4.13 (solid pa 103 
lines), and with the single ex- 
ponential, eq 4.4.12 (dashed 
lines), Redrawn from Laun 
(1978). lo2 

I I I I 1 

Reduced time t/a (s) 

agreement obtained in Figures 4.2.2, 4.4.3, and 4.4.4 also shows 
that a wealth of nonlinear rheological data for melt I can be eco- 
nomically represented by a simple damping function that expresses 
the degree of strain softening this material shows in simple shearing 
deformations. Indeed, by fitting expressions such as eqs. 4.4.12- 
4.4.14 to data for other polymer melts, the nonlinear behavior of 
a series of different melts can be summed up or characterized, for 
example, by the values of a! that give the best fits to the damping 
functions for those melts. For melts in step shear, the best-fit values 
of a! in eq. 4.4.14 typically lie in the range 0.15-0.6 (Khan et a]., 
1987). 

One can also extract the damping function from the shear rate 
dependence of the steady state shear viscosity by fitting the inte- 
gral constitutive equation to the experimental data. Although the 
damping function one obtains this way differs significantly from 
that obtained directly from the step strain data (Laun, 1986), the 
predictions of the constitutive equation in steady shearing are not 
terribly sensitive to the damping function chosen. This is evident 
in Figures 4.2.24.2.4, in which accurate stress predictions are ob- 
tained from both the single and double exponential damping func- 
tions, eqs. 4.4.12 and 4.4.13. 

Factorization of the function t# ( l~ ,  118, t - t') in eq4.4.8 
is not always a good approximation. Figure 4.4.5 shows that for 
a nearly monodisperse concentrated polystyrene solution, time- 
strain factorability is not valid at short times after the imposition 
of the step shear. An accurate K-BKZ constitutive equation for 
shearing flows of this material will be much more complex than 
that for melt I. Furthermore, in strain histories in which a strain 
reversal takes place, such as constrained recoil (Wagner and Laun, 
1978) or double-step strains with the second strain of sign opposite 
the first (Doi, 1980; Larson and Valesano, 1986), good agreement 
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Time, t (s) Time, t (s) 

Figure 4.4.5. 
(a) G(t ,  y )  = r 1 2 / y  as a func- 
tion of time for various strain 
magnitudes for concentrated 
polystyrene solutions. Each 
curve represents a different 
strain; the lower curves cor- 
respond to higher strains. (b) 
The curves can be superim- 
posed at times longer than 
about 20 seconds by verti- 
cal shifting by an amount, 
h ( y ) ,  that depends on strain. 
Redrawn from Einaga et al. 
(1971). 

t 

with the measured stresses is sometimes not attained unless the 
K-BKZ integral is modified. 

Even when strain reversal is not a concern and when time- 
strain factorability can be assumed, we still have much more work 
to do, because a really useful constitutive equation must be capable 
of predicting stresses for flows other than simple shearing. Unfor- 
tunately, there is a paucity of data for other types of flow, such as 
the various extensional flows. Especially rare are sets of data for a 
single fluid in a variety of different types of flow. Such sets of data 
are necessary to obtain the strain energy function U(ZB, ZZB)  for 
a factorable K-BKZ fluid, or u ( Z B ,  ZZB, t - r’) for a nonfactorable 
fluid. Reasonably complete sets of data do exist for long chain 
branched melt I (Laun, 1978; Wagner et al., 1979; Wagner and 
Meissner, 1980) and for a polyisobutylene melt studied by Meiss- 
ner and co-workers (1982). There are also somewhat less complete 
sets of data for a handful of other melts (Papanastasiou et al., 1983; 
Soskey and Winter, 1985; Khan et al., 1987; Laun and Schuch, 
1989; Samurkas et al., 1989). With these limited data, theoretical 
workers have attempted to devise simple and yet accurate kernel 
functions for K-BKZ and other integral equations. 

Several theoreticians have worked with an integral equation 
that is somewhat more general than the factored K-BKZ equation 
(Bird et al. 1987): 



Here the functions 41 and & are not necessarily derivatives with 
respect to I B  and I I B  of a strain-energy function. Equation 4.4.15 
is easier to fit to experimental data than is the factorized K-BKZ 
equation, eq 4.4.1 1. Since eq 4.4.15 lacks a strain-energy function, 
a fluid obeying this constitutive equation could theoretically violate 
the second law of thermodynamics in flows that are much faster than 
any of the relaxation processes included in the linear relaxation 
spectrum (Larson, 1983). However, for realistic relaxation spectra 
and realistic flows, no such violation is likely. Perhaps it is more 
significant to ask whether real fluids respect the constraint of the 
K-BKZ theory that 41 and & be derivatives of a strainanergy 
function. This question remains unanswered. 

In Table 4.4.1 we present some forms for 41 (IS, I I S )  and 
& ( I B ,  I IS) that have been found to fit data for IUPAC A, Meiss- 
ner’s polyisobutylene melt, and other melts. However, data for 
IUPAC X, a material almost identical to IUPAC A, indicates that 
eq 4.4.15 may be incapable of giving even an approximate fit to a 
full range of extensional and shear flows for this and other melts that 
have long chain branching (Samurkas et al., 1989). For many melts 
without long chain branching, good fits are obtained not only with 
the integral BKZ and BKZ-like equations we have just discussed, 
but also with simpler differential equations, discussed below. 

TABLE 4.4.1 I Kernel Functions #I and & for Superposition Integral Equations 

Authors 41 4 for Polymer Melts 
Fits to Data 

Wagner et al. , ,p,m + f2p’m. 0 For IUPAC A polyethylene, 
( 1979) I =a/#+( I -a)ll# f i  = 0.57; f2 = 0.43; 

nl = 0.31; n2 = 0.106; 
a = 0.032 

Papanastasiou, I 
et al. (1983) I+u(ls -3)+b(lls-3) 0 For IUPAC A polyethylene, 

u = 0.0013; b = 0.068 
For a polystyrene, 
a = 0.0021; b = 0.093 
For a polydimethylsiloxane, 
u = O.OO40: b = 0.195 

Wagner For Meissner’s 

( 1990) 
and Demarmels r- & polyisobutylene, 

a = 0.1 I ;  /3 = -0.27 

Doi and Edwards A. ( 1978); also see 1-1’ 
Cunie ( 1980) 

K-BKZ kernel functionP 
U = fW(l  - 1)/71 
where i=rs+24-i 

a 
~ ~~ 

PThis potential is based on a molecular theory: there are no adjustable ararneters. Good tits are obtained 
only with polymers without long-chain branching for which the poly8spersity is not too high. 
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Before leaving the integral constitutive equations, we remark 
that a class of equations has been proposed in which the functions r#q 
and & of eq 4.4.15 depend on the invariants of the strain rate tensor 
D, rather than the strain tensor B (Bird et al., 1968). Many of the 
simpler examples of these equations do not reduce to the equation 
of linear viscoelasticity at small strains (Gross and Maxwell, 1972; 
Astarita and Mmcci ,  1974); and this class of equations has not 
been much favored lately. 

4.4.2 Maxwell-Qpe Differential Constitutive Equations 
The K-BKZ and other integral constitutive equations discussed 
above can be regarded as generalizations of the Lodge integral, 
eq4.3.18. The upper-convected Maxwell (UCM) equation, which 
is the differential equivalent of the Lodge equation, can also be 
generalized to make possible more realistic predictions of nonlin- 
ear phenomena. 

Many differential constitutive equations of the Maxwell type 
have been proposed; most of them are of the form 

Here fc(t, D), which depends on both the stress tensor r and the 
strain rate tensor D, modifies the rate at which stress tends to build 
up, and fd(t) ,  which depends only on the stress tensor, modifies the 
rate at which the stress tends to decay. For the UCM fluid, fd = f, = 
0. Shear thinning or strain softening can now be introduced into 
eq 4.4.16 either through f,, which can reduce the rate at which stress 
builds up in a flow field, or through fd, which can accelerate the rate 
at which stress decays. In principle, nonlinear effects introduced 
through fd affect the time dependence of the stresses in transient 
flows somewhat differently from nonlinearities introduced through 
f,. But when eq 4.4.16 is generalized to allow a distribution of 
relaxation times typical of commercial materials, it has been found 
that similar nonlinear effects can be introduced through either fd or 
f, (Larson, 1988 and Chapter 7). 

Table 4.4.2 lists some of the more popular constitutive equa- 
tions that can be expressed in the form of eq 4.4.16. Besides the 
linear viscoelastic parameters G and A, the parameters in this table 
are e ,  a, a, and /J. Where these appear, they must be fit by nonlinear 
rheological experiments. Because none of the equations listed con- 
tains more than two such nonlinear parameters, it is not hard to find 
enough data to fit all the parameters. Each of the equations listed has 
its own strengths and weaknesses. As examples of weaknesses, the 
Johnson-Segalman and White-Metzner equations show infinite ex- 
tensional viscosities at finite extension rates; the White-Metzner 
and Larson equations have a zero second normal stress difference 
in simple shearing flows; and the Johnson-Segalman and Phan 
"hien-Tanner equations can show spurious oscillations in start-up 
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TABLE 4.4.2 I Stress Buildup and Decay Functions in Maxwell-Type Differential 
Equation 4.4.16 

Constitutive Models Fits to Data 
Authors fc fd for Polymer Melts 
Johnson and Segalman t ( D .  t + t - D) 0 Predicts negative shear 
( 1977) stress in step shear. 

Spurious oscillations in 
start-up of steady 
shearing. Singularities in 
steady extensional flows. 

White and Metzner a (2D: D) 0 
(1963, 1977) 

Larson ( 1984) $D:r(t +GI)  0 

Giesekus (1966, 1982) 

Leonov ( 1976) 

0 

Poor fits in step shears. 
N2 = 0. Singularities in 
steady extensional flows. 

Fits data reasonably 
well for a variety of 
different types of 
deformation, except it 
predicts NZ = 0 

+t . t  Excellent fits in shearing 
flows; not the best for 
extensional flows. 

0 T . t / Z G A  Excellent fits in shearing 
- tr(s + I) flows; not the best for 
+q t r ( t  + 11-l extensional flows. NO 

fitting parameters other 
than those of linear 
viscoelasticity. 

Phan Thien and Tanner t (D t + t D) 
(1977, 1978) 

iexp(gtr t)(t - I) Fits data reasonably 
well for a variety of 
different types of 
deformation. But there are 
spurious oscillations in 
start-up of steady shearing 
when t # 0; and when 6 = 0, 
then NZ = 0. 

of simple shearing. None of these equations fits time-dependent 
experimental data well unless a spectrum of relaxation modes is in- 
troduced in a way analogous to that described earlier for the UCM 
equation. That is, G, A, and r in eq4.4.16 are subscripted with a 
mode index i, and the total stress is given by a sum of the stresses 
from all modes, as in eq 4.3.30. When this is done, the equations of 
Phan Thien and Tanner and of Larson seem to agree better than the 
other differential equations with large sets of data for melts with- 
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Figure 4.4.6 
Best overall fit of the Larson 
model (left), and the Phan 
Thien-Tanner model (right) 
to data for a high density 
polyethylene (circles) in step 
shear (a), in steady elongation 
(b), and in step biaxial exten- 
sion (c). Adapted from Khan 
and Larson (1987). 
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out long side branches; see Figure 4.4.6. However, with suitable 
adjustment other equations, such as that of Giesekus, can also be 
made to work reasonably well if the parameters in the equation 
that control the nonlinear phenomena are made to depend on mode 
number i (Bird et al., 1987; p. 413) or if refinements are made to 
the simplest forms of the equations given in Table 4.4.2. The reader 
should be aware that versions of these equations other than those 
given in Table 4.4.2 are to be found in the literature (White and 
Metzner, 1963; Phan Thien and Tanner, 1977). 

In numerical simulations of complex flows, some of the equa- 
tions seem to be less tractable for certain flows (Apelian et al., 
1988), but no consensus has emerged that would distinctly favor 
one equation over the others. As a class, the differential equa- 
tions can be incorporated more simply than the integral equations 
into numerical techniques that solve flow problems, but the inte- 
gral equations admit a broad spectrum of relaxation times more 
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naturally and in a way that requires fewer primitive unknowns and 
thus consumes less computer storage than do the Maxwell-type 
differential equations. The differential equations in Table 4.4.2, 
some additional differential equations not expressible in the form 
of eq. 4.4.16, and the integral equations discussed earlier all have 
their advocates. And occasionally a new entree is placed on the 
smorgasbord of constitutive equations. No integral or differential 
equation has yet proven so convincingly superior that the cham- 
pions of the other equations are cowed into submission. Thus, at 
this stage, one who is interested in modeling a polymer flow must 
weigh the advantages and disadvantages of the various equations 
for his or her application. Tables 4.4.1 and 4.4.2 may help one 
to choose well; much more complete comparisons of the various 
equations are offered elsewhere (Tanner, 1985; Bird et al., 1987; 
Larson, 1988). 

Example 4.4.1 Viscosity and Normal Stress Coefficients 
for the Johnson-Segalman Equation 

Calculate the steady state values of 17, $1, and $2 for the Johnson- 
Segalman equation, defined by eq. 4.4.16, with f, and fd given in 
Table 4.4.2. 

Solution 
Using eq 2.2.10 for the velocity gradient in simple shear, the Johnson- 
Segalman equation reduces at steady state to 

Y r 2 2  0 
0 0 0  

0) (4.4.17) 
0 0 

Some algebra suffices to show that 

(4.4.18) 

(4.4.19) 

(4.4.20) 

where 170 = Gk and a = 1 - t .  Thus for the Johnson-Segalman 
equation, there is pronounced shear thinning in all three functions, 
and N ~ / N I  = -612. 
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4.5 Summary 
The major categories of nonlinear rheological phenomena have 
been described. These include the existence of nonzero first and 
second normal stress differences in shearing, shear thinning, and 
extensional thickening. Nonlinear phenomena become important 
when two conditions are met. These are shown schematically in 
Figure 4.5.1. The first condition is that the strain experienced by a 
material particle be appreciable; the theory of linear viscoelasticity 
then no longer applies. The second condition for nonlinear phe- 
nomena to be important is that the Deborah number not be small. 
The Deborah number is the ratio of the material relaxation time to 
the flow time, or equivalently, the product of the relaxation time 
and the characteristic strain rate. 

When the Deborah number is very high, as in rapid defor- 
mations of a polymer melt, the elastic solid is appropriate even for 
a liquid. Polymer melts have relaxation times of 1-10 seconds. 
Thus, as noted in Section 1.9, in polymer processing operations 
such as blow molding or thermoforming and even some rapid com- 
pression molding, the neo-Hookean model is often the best choice 
for predicting stress response. Example 1.8.3 and Exercises 1.10.8 
and 1.10.9 illustrate the application of the neo-Hookean model to 
flows of these type. Polymer gels, highly filled polymers, and asso- 
ciated colloids have even longer relaxation times but typically show 

Figure 4.5.1. 
The schematic diagram from 
Figure 4.1.2, summarizing 
the major viscoelastic models 
discussed in this chapter. 

[General viscous z = Zq(I1 2D)D] I 

I- - + 
.C& I Nonlinear viscoelasticity 
' I  

I Linear viscoelasticity 

I z + h.2 = 2qD I I 

Y yield 

Deborah number = k/t or A,{ or yo ho 
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neo-Hookean behavior only up to a smaller strain limit; YyMd may 
even be less than 1% for colloids. This leads to the Bingham plastic 
model described in Section 2.5, which is given a microstructural 
basis in Section 10.7. 

When the Deborah number is vanishingly small, the fluid 
can be described as Newtonian. The Newtonian model should 
always be used first to study a new and complex flow problem 
and of course is appropriate for small molecule liquids. When the 
Deborah number is small but not negligible and the flow is steady or 
near steady, nonlinear effects are weak and can be described by the 
equation of the second-order fluid. The second-order fluid equation 
predicts the existence of normal stress differences in shearing and 
weak extension thickening but does not predict shear thinning or 
time-dependent rheological phenomena. It is a simple model to 
solve and gives qualitative trends like rod climbing (Figure 5.3.3), 
extrudate swell, or pressure hole errors (Figure 6.3.6). 

Besides the equation of the second-order fluid, which cannot 
describe high Deborah number flows, perhaps the simplest nonlin- 
ear constitutive equation is the upper-convected Maxwell equation 
or its equivalent, the Lodge integral equation. These two equations 
predict the existence of normal stress differences in simple shearing 
flows, extreme extension thickening in extensional flows, and time- 
dependent phenomena, but cannot predict shear thinning and are 
generally inaccurate in predicting complex rheological phenomena. 

If shear thinning is the main phenomenon to be described, 
the simplest model is the general viscous fluid, Section 2.4. It 
has no time dependence, nor can it predict any normal stresses or 
extensional thickening (however, recall eq. 2.4.24). Nevertheless, 
it should generally be the next step after a Newtonian solution to 
a complex process flow. The power law, Cross or Carreau-type 
models are available on all large-scale fluid mechanics computa- 
tion codes. As discussed in Section 2.7, they accurately predict 
pressure drops in flow through channels, forces on rollers and 
blades, and torques on mixing blades. 

Finally, more accurate differential and integral constitutive 
equations were presented, and their successes and failures in de- 
scribing experimental data were discussed. No single nonlinear 
constitutive equation is best for all purposes, and thus one's choice 
of an appropriate constitutive equation must be guided by the prob- 
lem at hand, the accuracy with which one wishes to solve the prob- 
lem, and the effort one is willing to expend to solve it. Generally 
differential models of the Maxwell type are easier to implement nu- 
merically, and some are available in fluid mechanics codes. Also, 
some constitutive equations are better founded in molecular theory, 
as discussed in Chapter 1 1. 

4.6 Exercises 
4.6.1 Relaxation After a Step Strain for the Lodge Equation 
Calculate the relaxation of the shear stress and the first normal stress 
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difference after imposition of a step shear of magnitude yo at time 
zero for the Lodge equation with one relaxation time (i.e., with 
eq4.3.18). Show that the Lodge-Meissner relationship, eq4.2.8, 
holds for this constitutive equation. 

4.6.2 Stress Growth After Start-up of Steady Shearing for the 
Lodge Equation 

Calculate the growth of the shear stress after a steady shear with 
shear rate i /  that began at time zero. 

4.6.3 Derive the Maxwell Model from Neo-Hookean and 
Newtonian Models 
Show that the Maxwell model, eq.4.3.7, can be derived from a 
series combination of the neo-Hookean, t = GE, eq. 1.5.2, and 
Newtonian models t = 27D. 

4.6.4 Derive the Oldroyd-B Model 
Show that the Oldroyd-B model as Oldroyd first presented it, 

t + A I  t = 27 ID + A2 D} can be derived from 4.3.33. 
V V 

References 
Al-Hadithi, A. S. R.; Walters, K., Barnes, H. A., in Proceedings of the 
Tenth International Congress on Rheology, Vol. I; Uhlherr, P. H. T., Ed.; 
Sydney, 1988. 

Apelian, M. R.; Armstrong, R. C.; Brown, R. A., J. Non-Newtonian Fluid 
Mech. 1988,27,299. 

Astarita, G.; Marmcci, G., Principles of Non-Newtonian Fluid Mechan- 
ics: McGraw-Hill: London, 1974. 

Bemstein, B.; Kearsley, E. A.; Zapas, L. J., Trans. Soc. Rheol. 1963, 7, 
391. 

Binnington, R. J.; Boger, D. V., J. Rheol. 1985,29, 887. 
Bird, R. B.; Carreau, P. J., Chem. Eng. Sci. 1968,23,427; Carreau, P. J.; 
MacDonald, I. F.; Bird, R. B., ibid. 1968,23, 901. 

Bird, R. B.; Armstrong, R. C.; Hassager, O., Dynamics of Polymeric 
Liquids, 2nd ed., Vol. 1;  Wiley: New York, 1987. 
Boger, D. V., J. Non-Newtonian Fluid Mech. 1977,3, 87. 

Booij, H. C.; Jkblans, P.; Palmen, J.; Tiemersma-Thoone, G., J. Polym. 
Sci., Polym. Phys. Ed. 1983,21, 1703. 

Coleman, B. D.; Noll, W., Arch. Ration. Mech. Anal. 1960, 6, 355. 
Coleman, B. D.; Markovitz, H., J. Appl. Phys. 1964,35, 1 .  
Criminale, W. O., Jr.; Ericksen, J. L.; Filbey, G. L., Jr., Arch. Ration. 
Mech. Anal. 1958, I, 410. 
Currie, P. K., in Rheology, Astarita, G.; Marmcci,G.; Nicolais, L.; Eds.; 
Plenum: New York, 1980. 

172 / RHEOLOGY 



Doi, M., J. Polym. Sci., Polym Phys. Ed. 1980,18, 1891. 
Doi, M.; Edwards, S. F., J. Chem. SOC., Faraday Trans. XI, 1978, 74, 
1789; 1802; 1818; 1979,75,32. 
Einaga, Y.; Osaki, K.; Kurata, M.; Kimura, S.; Tamura, M., Polym. J. 
1971,2,550. 
Giesekus, H., Rheol. Acta 1966,5,29. 
Giesekus, H., J. Non-Newtonian Fluid Mech. 1982,11,69. 
Gleissle, W., in Rheology. Vol. II; Astarita, G.; Marmcci, G.; Nicolais, 
L.; Eds.; Plenum: New York, 1980. 
Gross, L. H.; Maxwell, B., Trans. SOC. Rheol. 1972,16,577. 
Johnson, M. W., Jr.; Segalman, D., J. Non-Newtonian FluidMech. 1977, 
2,225. 
Joseph, D. D., Fluid Dynamics of Viscoelastic Liquids; Springer-Verlag: 
New York, 1990. 
Kaye, A,, College of Aeronautics, Cranford, U.K.; Note No. 134, 1962. 
Keentok, M.; Georgescu, A. G.; Sherwood, A. A.; Tanner, R. I., J. Non- 
Newtonian Fluid Mech. 1980,6,303. 
Khan, S. A.; Larson, R. G., J. Rheol. 1987,31,207. 
Khan, S. A.; Larson, R. G., Rheol. Acta 199 1,30, 1. 
Khan, S. A.; Pmd’homme, R. K.; Larson, R. G., Rheol. Acta 1987,26, 
144. 

Larson, R. G., J. Non-Newtonian Fluid Mech. 1983, 13,279. 
Larson, R. G., J. Rheol. 1984,28,545. 
Larson, R. G., Rheol. Acta 1985’24,327. 
Larson, R. G., Constitutive Equations for Polymer Melts and Solutions; 
Butterworths: Boston, 1988. 
Larson, R. G.; Valesano, V. A,, J. Rheol. 1986,30, 1093. 
Larson, R. G.; Khan, S. A.; Raju, V. R., J.  Rheol. 1988,32, 145. 
Laun, H. M., Rheol. Acta 1978, 17, 1. 
Lam, H. M., in Proceedings of the Ninth International Congress on 
Rheology; Acapulco, Mexico, 1984. 
Laun, H. M., J. Rheol. 1986,30,459. 
Laun, H. M.; Schuch, H., J.  Rheol. 1989,33, 119. 
Leonov, A. I., Rheol. Acta 1976, 15, 85. 

Lodge, A. S., Elastic Liquids; Academic Press: New York, 1964. 
Lodge, A. S., Trans. Faraday SOC. 1956,52, 120. 
Lodge, A. S., Rheol. Acta 1968,’ 7,379. 
Lodge, A. S.; Meissner, J., J. Rheol. Acta 1972, 11, 351. 
Mackay, M. E.; Boger, D. V., J.  Non-Newtonian Fluid Mech. 1987.22, 
235. 
Meissner, J., J. Appl. Polym. Sci. 1972, 16,2877. 
Meissner, J.; Stephenson, S. E.; Demannels, A,; Portmann, P., J. Non- 
Newtonian Fluid Mech. 1982,11,221. 
Menezes, E. V.; Graessley, W. W., Rheol. Acta 1980,19, 38. 

NONLINEAR VISCOELASTICITY / 173 



Oldroyd, J. G., Proc. R. SOC. 1950, A200, 523. 

Papanastasiou, A. C.; Scriven, L. E.; Macosko, C. W., J. Rheol. 1983, 
27, 387. 

Phan Thien, N.; Tanner, R. I., J. Non-Newtonian Fluid Mech. 1977, 2, 
353; the function fd is given in Phan Thien, N., J. Rheol. 1978, 22, 259. 

Pipkin, A. C., Lectures on Viscoelasticity Theory; Springer-Verlag, New 
York, 1972. 

Ramachandran, S.; Gao, H. W.; Christiansen, E. B., Macromolecules 
1985, 18, 695. 

Retting, W.; Laun, H. M., KunstofS-Physik; Hanser-Verlag, Munich, 
1 9 9 1 , ~ .  138. 

Russell, R. J., Ph.D. thesis, University of London, 1946. 

Samurkas, T.; Larson, R. G.; Dealy, J. M., J, Rheol. 1989,33, 559. 

Soskey, P. R.; Winter, H. H., J. Rheol. 1985,29,493. 

Tanner, R. I., Engineering Rheology; Oxford University Press: New 
York, 1985. 

Vrentas, C. M.; Graessley, W. W., J. Non-Newtonian Fluid Mech. 198 1, 
9, 339. 

Wagner, M. H., Rheol. Acta 1976, 15, 136. 

Wagner, M. H.; Demarmels, A., J. Rheol. 1990,34, 943. 

Wagner, M. H.; Laun, H. M., Rheol. Acta 1978, 17, 138. 

Wagner, M. H.; Meissner, J., Makromol. Chem. 1980, 181, 1533. 

Wagner, M. H.; Raible, T.; Meissner, J.,  Rheol. Acta 1979, 18,427. 

Weissenberg, K., Narure 1947, 159, 3 10. 

White, J. L.; Metzner, A. B., J. Appl. Polym. Sci. 1963, 8, 1367; the 
function f, is given in Ide, Y., White, J. L., J. Non-Newtonian Fluid 
Mech. 1977, 2 ,  28 1. 

Wissbrun, K. F., J. Rheol. 1986,30, 1143. 

174 / RHEOLOGY 



,I 

3 
The comparison of 

[PoiseuiUe’s results] with, . . 
the results given by the 

cylinder apparatus makes 
obvious the parallelism 

S HEAR 
RHEOMETRY. 

between the two phenomena. 
Maurice Couette (1890) DRAG FLOWS 

~~ 

5.1 Introduction 
As discussed in the introduction to the chapters on rheometry, it is 
convenient to divide shear rheometers into two groups: dragflows 
like the Couette apparatus shown in Figure 5.1.1, in which shear is 
generated between a moving and a fixed solid surface, andpressure- 
drivenflows, in which shear is generated by a pressure difference 
over a closed channel. The important members of each of these 
groups are shown schematically with the coordinate systems used 
for analysis in Figure 5.1.2. Because the design and measurements 
for pressure-driven rheometers differ greatly from those for drag 
flow rheometers, pressure-driven rheometers are treated separately 
in Chapter 6. Results from both are compared at the end of that 
chapter. 

All these rheometers can be used to measure one or more of 
the shear material functions discussed in Chapters 1 4 :  

Relaxation modulus 

(5.1.1) 

and related linear viscoelastic functions like G*(w), J ( t )  or q+(t),  
transient shear viscosity 

(5.1.2) 

which in the limit of long time becomes the steady shear viscosity, 
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Figure 5.1.1. e 
The original apparatus used 
by Couette in 1890 to meas- 
ure viscosity. Shaft T ro- 
tates the outer cylinder V. 
The sample is sheared in 
the narrow gap and exerts 
a torque on the cylinder s. 
Light reflected from the mir- 
ror v' measures the amount 
of twist of the torsion wire at 
C'. Guard rings g and g ' are 
fixed and serve to reduce end 
effects. 

T 

1 

first normal stress coeficient 

(5.1.3) 2 t,, - *22 
+ I ( ? >  = N / ?  = - 

Y 2  

second normal stress coeflcient 

(5.1.4) N2 =12 - =33 
* 2 ( 9 )  = - = ~ 

Y 2  P2 

The sections that follow present the important working equa- 
tions for each of these rheometers. The working equations give the 
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material functions in terms of the instrument dimensions, measured 
motions, and forces. Derivations of these equations are presented, 
along with potential sources of error and comments on the circum- 
stances in which each rheometer is most useful. 

The equations for shear strain or strain distribution also are 
Figure 5.1.2. 
Common shear flow geome- 
tries. 

Drag Flows: Coordinates 
x1 x2 x3 

Chapter 5 
(section number) 

Sliding plates (5.2) 
Y - 

Concentric cylinders (5.3) 
(Couette flow) 

Cone and plate (5.4) 

Parallel disks (5.5) 
(torsional flow) 

Pressure Flows: 
Chapter 6 
(section number) 

Capillary (6.2) 
(Poiseuille flow) 

Slit flow (6.3) 

Axial annulus flow (6.4) 
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given. These are needed for the small strain, linear viscoelastic, 
material functions like G(r) ,  G*(o) ,  and J ( t )  and for the large 
strain functions like G ( t ,  y ) ,  $(?, t ) ,  and J ( t ,  y ) .  However, 
the special problems associated with making these time-dependent 
measurements, such as transducer inertia, instrument compliance 
and cross correlation software, are treated in Chapter 8, where we 
also look at some of the instrument design features required for 
accuracy in drag flow rheometers. 

As the chapter quotation indicates, almost the first thing Cou- 
ette did after he built his famous rotational rheometer was to com- 
pare its results to those from Poiseuille’s capillary instrument. If we 
do our measurements right and make the appropriate corrections, 
all the instruments shown in Figure 5.1.2 should give the same value 
of the viscosity. The major theme of Chapters 5-9 is determining 
what it takes to get absolute material function data. We will see 
how well this can be done by comparing results (for G*, v ,  @ I ,  
etc.) by the different shear methods at the end of Chapter 6. 

5.2 Sliding Plates, Falling Ball 
Perhaps the simplest way of generating steady simple shear is to 
place one material between a large fixed plate and another plate 
moving at constant velocity, as shown in Figure 5.2.1. If inertial 
and edge effects can be neglected, then the flow is homogeneous 
and the equations of motion are identically satisfied (Table 1.7.1). 
As we saw in Examples 1.4.2 and 2.2.2, the shear strain, shear rate, 
and shear stress, respectively, will be simply 

f x  Txy = TI2 = - 
LW 

(5.2.a) 

(5.2.1 b) 

(5.2.2) 

At very short times or at high frequency oscillation inertial 
effects cannot be neglected; especially when testing low viscosity 
samples. It takes a finite time for the velocity profile to develop. At 
short times it looks roughly like the nonisothermal velocity profile 
of Figure 2.6.2b. Schrag (1977) gives a simple criteron for the time 
to establish homogenous, simple shear flow 

(5.2.3) 

This criterion is applicable to the other narrow gap drag flows in 
this chapter. It is illustrated by the birefringence measurements 
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/Area of plate, L W I ,  

Figure 5.2.1. 
Schematic of sliding plate 
rheometer. The displacement 
Ax = u0t (recall Examples 
1.4.1 and 2.2.1). 

Figure 5.2.2. 
Shear sandwich fixture for 
polymer melts, adhesives, or 
rubber. 

sin (at) 

- 
t 
L 

- i 

f 

h l /  / Yt' 
fx 
VO 

shown in Figure 9.5.1. It takes about 0.1s for the shear stress wave 
to propogate across the gap. 

In principle, from the total thrust fy or from pressure 
measurements with sliding plates one could also determine T22, 
but this does not appear to have been reported in the literature. A 
major practical problem with this geometry is edge effects. With 
solids, unless L and W are much greater than h, buckling will occur 
(e.g., Reiner, 1960, p. 38). It is very difficult to keep the two plates 
parallel for large strains and also for large normal forces. With liq- 
uids, the sample must be viscous enough not to run out, although 
if it is very viscous, it may also show the buckling and tearing 
problems typical for solids. The other obvious problem associated 
with liquids is achieving steady shear. As strain increases, the edge 
effects become more severe. Thus, most shear measurements on 
liquids are done with rotating geometries that have closed stream 
lines. 

However, a number of studies have used shear plates. Van 
Wazer et al. (1963, p. 302) describes a device for studying asphalts 
that uses the sliding plate shown in Figure 5.2.1. Most shear plate 
rheometers, however, use a double sample. This helps to prevent 
cocking and eliminates any normal stress effects. A shear sandwich 
geometry for solids that can be used in a standard tensile machine 
is shown in Figure 5.2.2. The sample can be machined from a 
large block with a thin test section on each side and a thick section 
of sample used for applying the force (Sternstein et al., 1968). 
Rubber samples can be bonded to ametal block with adhesives (e.g., 
Goldstein, 1974). Sliding plates and sliding cylinders rheometers 
have been developed to study polymer melts (Laun and Meissner, 
1980; Kimura, et al., 1981; Liu et al., 1983; Sivashinsky et al., 
1984; Dealy and Giacomin, 1988). 

A similar concept, shown in Figure 5.2.3, has been used for 
some time as a high shear rheometer for printing inks (Van Wazer 
et al., 1963, p. 296). As indicated in Figure 5.2.3, a thin, wide film 
is pulled through a narrow gap filled with fluid. It is assumed that 
the flow will keep the film centered. The velocity is determined by 
timing marks on the film. 

5.2.1 Falling Cylinder 

To eliminate part of the edge problem in the sliding plates, we can 
slide a cylinder inside a tube. If both ends are open and the gap is 
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Figure 5.2.3. 
Band viscometer used for 
high shear rate testing of inks 
and coatings. 

small, then we have simple shear as indicated in Figure 5.2.4a. Song 
and co-workers (Sivashinsky et al., 1984) have used this geometry 
for polymer melts with results very similar to those derived from 
the shear sandwich studies. As with the sandwich, high viscosity 
and surface tension hold the sample in the gap. 

If a cylinder is dropped in a closed tube, the displaced fluid 
must flow back, which results in the velocity profile shown in Figure 
5.2.4b. Bird et al., (1987) give relations for the narrow gap case, but 
the most commonly used method is the other extreme. Qpically a 
small diameter needle is dropped in a large cylinder of the test fluid. 
After the needle has fallen for a distance great enough to allow the 
fluid to reach steady state, the terminal velocity urn is determined 
by timing between two marks. This generally limits the technique 
to transparent fluids. 

Figure 5.2.4. 
Falling cylinder rheometers: 
(a) open ends for high vis- 
cosity samples and (b) closed 
end, free falling. 
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Assuming a wide gap, K << 1, the relations for the shear 
stress and the Newtonian viscosity are 

(5.2.4) 

(5.2.5) 

Park and Irvine (1988) give relations for a power law fluid. They 
also demonstrate that one can easily change the effective density of 
the needle and thus tWK by using a hollow tube filled with various 
amounts of steel shot. In this way one can obtain an ~ ( j / )  function. 

5.2.2 Falling Ball 
The time required for a ball to fall a given distance in a fluid is 
probably the simplest and certainly one of the oldest viscosity tests 
(Stokes, 1851). Unfortunately, creeping flow around a sphere is 
very complex. Thus the falling ball is really an index test and 
requires a constitutive equation for complete analysis. Analyses 
of the flow have been made for inelastic (Gottlieb, 1979; Beris et 
al., 1985) and viscoelastic fluids (Hassager and Bisgaard, 1983; 
Graham et al., 1989). Usually an apparent viscosity based on the 
Newtonian analysis is reported. 

(5.2.6) 

Because the flow is slow, this value usually corresponds well to 
the zero shear viscosity even for elastic, shear thinning liquids. A 
test, of course, is to see whether the same q, is obtained for several 
different density or diameter (small) balls. If 10R is less than Dc 
wall effects can be ignored. 

Like the falling needle, the falling ball viscometer can be 
sealed to prevent evaporation and permit measurements to be taken 
at high pressure. 

5.2.3 Rolling Ball 
Some problems with the falling ball can be reduced by tilting the 
tube and allowing the ball to roll down one side; see Figure 5.2.5b. 
When a ball is dropped, it often does not fall straight in elastic liq- 
uids or falls too fast in low viscosity liquids. The rolling ball always 
follows the same path, making detection easier even in translucent 
fluids. Tilt angle can be used to adjust the time and the effective 
shear stress. The price of this convenience is an even more complex 
flow. A result for R << Dc is 
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Figure 5.2.5. 
(a)Fdling and (b) 
ball of Bennett et al. (1982). There is disagreement in the analysis even for Newtonian fluids 

(Bennett, 1982). 

5.3 Concentric Cylinder Rheometer 
The first practical rotational rheometer was the concentric cylin- 
der instrument of Maurice Couette (1890). As shown in Figure 
5.1.1, Couette utilized a rotating outer cup and an inner cylinder 
suspended by a torsion wire. The angular deflection of the wire 
was measured by a mirror and indicated the torque on the inner 
cylinder. Today most commercial instruments utilize similar de- 
sign concepts (see Chapter 8). Working equations relating the shear 
stress to torque measurements, the shear rate to angular velocity, 
and normal stress coefficients to radial pressure difference are given 
below. Their derivations and the importance of nonidealities in the 
flow are discussed. Table 5.3.1 summarizes the important working 
equations, errors, and best uses for concentric cylinder rheometers. 

Consider the flow of a fluid confined between concentric 
cylinders with the inner cylinder rotating at Q, as shown in Figure 
5.3.1. If we assume: 

1. Steady, laminar, isothermal flow 
2. ~6 = rQ only and Vr = V,  = 0 
3. Negligible gravity and end effects 
4. Symmetry in 8 ,  a p e  = 0 

then the equations of motion in cylindrical coordinates (see Table 
1.7.1) become 

(5.3.1) 

(5.3.2) 
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TABLE 5.3.1 I Working Equations for Concentric Cylinders 

(5.3.8a) 

Shear strain 

(5.3.9) 
R ,  

R,, - Rj R,, - Ri R,, 
(for narrow gaps, K = 2 2 0.99) 

where 8 is the angular displacement, 8 = Qt for steady rotation 

and i? = (R,, + R ; ) / 2 ,  the mean radius 

QtF 
or - y=- 8 x  

Strain rate 

2Qi 
(for K > 0.99) j . ( R i )  2 j . (R,,)  = - = - (5.3.11) 

R,, - Ri 1 - K' 

252; 
(for gaps 0.5 c K < 0.99) ) ; ( R j )  = (5.3.24) 

n ( l  - K21J ' )  

-2ni d In Mi 
d In Q; 

where n = - (5.3.25) n ( l  - K - 2 / ! 1 )  
and ?(I?,,) = 

Normal stress 

(5.3.29) 

Errors 
End effects, eq.5.3.41, Figure 5.3.6 
Wall slip, eq. 5.3.27 
Inertia and secondary flows, eqs. 5.3.32, 5.3.42 
Eccentricities, eq. 5.3.43 
Viscous heating, eq. 5.3.44 

Utility 
Best for lower viscosity systems, q,) < 100 Pa.s 
Good for high shear rates 
Gravity settling of suspensions has less effect than in cone and plate 
Normal stresses hard to measure because of curvature and need to transmit signal through a rotating shaft 
Rod climbing is another option, eq. 5.3.36 
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Figure 5.3.1. 
Schematic of a concentric 
cylinder rheometer. 

(5.3.3) 

Equation 5.3.3 simply determines the hydrostatic pressure in the 
gap. Equation 5.3.1 governs the normal stress and eq.5.3.2 the 
shear stress. The boundary conditions are 

ve = QiRi at r = Ri (5.3.4) 

ve = 0 at r = R, (5.3.5) 

or in general when both cylinders can rotate 

ve = O,R, at r = R, (5.3.6) 

5.3.1 Shear Stress 
The shear stress distribution across the gap between the cylinders 
is obtained by integrating eq. 5.3.2 

(5.3.7) C1 
5 = -  

0' r 2  

where the integration constant CI can be found from a torque bal- 
ance. If torque is measured on the inner cylinder M i ,  then 
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and thus 

If torque is measured on the outer cylinder, then 

(5.3.8a) 

(5.3.8b) 

5.3.2 Shear Strain and Rate 
For very narrow gaps (K = Ri/Ro > 0.99), the curvature can be 
neglected and the shear strain will be the same as that between 
parallel plates (eq. 5.2.1) 

(5.3.9) 

where 0 is the angular displacement of the cylinder and 
midpoint between the cylinders 

is the 

(5.3.10) 

Similarly, the velocity gradient is constant across the gap as in flow 
between parallel plates (eq. 5.2.2), and thus the shear rate is the 
average in the gap 

AV S2iR 
shear rate ) ; ( R i )  = - = - (narrow gap) (5.3.11) 

Ar Ro - Ri 

This result is generally used to evaluate shear in Couette viscome- 
ters. However, for many instruments Ri / R, is less than 0.99, and 
thus we need to develop a more exact analysis. 

From the components of the rate of deformation tensor in 
cylindrical coordinates, the shear rate is (see Table 2.2.1) 

The problem with a wide gap viscometer is that the shear rate 
changes across the gap. In principle, to evaluate the derivative 
in eq. 5.3.12, we need to have actual measurements of the veloc- 
ity profile, but we can avoid these difficult measurements by using 
eq. 5.3.7 to make the shear rate a function of trO 

dS2 dS2 
? ( r )  = Ir-1 = 2q0- 

dr d 4 s  
(5.3.13) 
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Thus (dropping the subscript r e ) ,  we have 

dS2 
i / ( r )  = 2t- 

d r  (5.3.14) 

Integrating this for a rotating inner cylinder, Q(Ri)  = S 2 i ,  and 
stationary outer cylinder 

' R i  y ( r )  
dS2 = SZi  = lRo 2(t)dr  (5.3.15) 

Then differentiating with respect to tRi gives 

From eqs. 5.3.8 we see that 

2 

Substituting, we obtain 

(5.3.17) 

(5.3.18) 

For a large gap, for example, if K = Ri / R, < 0.1, then by 
(t,,). From eq. 5.3.13 for eq. 5.3.7 rRo < 0.01 r,, and i / ( rRo)  << 

a power law fluid (eq. 2.4.13) 

which for K 5 0.1 gives 

-- y ( r R o )  - for n = 1 / 3  and K =0.1 
9 ('Ri 

Thus eq. 5.3.18 becomes 

or 

d In Qi 
d In Mi 

yRi 2 2ni- 

(5.3.20) 

(5.3.21) 

Newton tried to derive this equation in his Principia, but he made 
an error that was not discovered until 1845, when Stokes derived 
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the equation for calculating the true shear rate for instruments in 
which a rotating cylinder is immersed into a large beaker of test 
fluid (Reiner, 1960). 

This derivation is typical of all those for nonhomogeneous 
rheometers. In each case, the derivative of velocity with position, 
which is difficult to measure, is transformed to a derivative of stress 
with respect to rotation or flow rate. We will see it again with the 
parallel disks and the pressure flow rheometers. 

Many concentric cylinder rheometers, including Couette' s 
original, use a fairly narrow gap, 0.5 < K < 1.0. To find the 
shear rate in this case, we expand eq. 5.3.18 in a Maclaurin series 
(Krieger and Elrod, 1953; Yang and Krieger, 1978) 

2f 3 4/45 

p ( t R i )  =*[1 - ;lnK+ 1 (:lnK) - (:lnK) +...I (5.3.22) 
-In K 

where n is the power law index, or in terms of torque and rotation 
rate, 

(5.3.23) 

For - (In K ) / n  < 0.2, the first two terms give an error of less than 
1%. For 0.2 < -(lnK/n) < 1.0, the third term should be used. 
Coleman and No11 (1959) give another series for p, but it appears 
to converge more slowly. 

For K > 0.5 if n is constant over the region rRi to tRo (usu- 
ally a good approximation), then we have the power law case and 
eq. 5.3.18 becomes (McKelvey, 1962, p. 107) 

(5.3.24) 

(5.3.25) 

A number of concentric cylinder instruments rotate the outer cylin- 
der 520 and hold the inner cylinder fixed. For this case we can just 
replace 52; with Szo in eq. 5.3.24 and 5.3.25. 

Many commercial devices employ a narrow gap (K > 0.9), 
and their operation instructions suggest that the shear rate equation 
for a Newtonian fluid, n = 1 in the equations above, be used to 
reduce data. The error of this approximation for a power law fluid 
will be 

(5.3.26) 

For typical shear thinning fluids, 1 < n < 1/4. For such fluids, 
if the gap between the cylinders is very narrow, such that K > 
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0.99, then the error in using the simplified eq. 5.3.1 1 will be 3% or 
less. Otherwise, the data should be plotted as 1nM versus In 52, n 
determined graphically or numerically, and then eq. 5.3.24 or 5.3.25 
used to calculate i.. Giesekus and Langer (1977) give a single point 
correction method similar to that for parallel disks (eq. 5.6.10). 

Figure 5.3.2 illustrates the magnitude of the error involved in 
using eq. 5.3.1 1 with K = 0.794 and a typical pseudoplastic polymer 
solution. 

In the foregoing analysis we assumed ideal Couette flow: 
v = u(0, r n ,  0). For concentrated suspensions, some gels, and 
polymer solutions, a low viscosity layer can develop near the cylin- 
der surfaces (note Figure 10.2.la). This leads to an apparent wall 
slip. This slip velocity can be determined by making measurements 
with two different radii bobs, RI  and R2, with cups sized to give 
the same K (Yoshimura and Prud’homme, 1988) 

This slip velocity can be used to correct shear rate readings to give 
the true material viscosity. Kiljanski (1989) also proposed a two- 
bob method that does not require the same K .  

Wall slip and even sample fracture can be so severe in Couette 
flow of some concentrated suspensions that it is doubtful whether 
a true viscosity can be measured (Toy et al., 1991). One method to 
attempt to eliminate wall slip is to use the vaned bob shown later 
(Figure 5.6.2). 

Figure 5.3.2. 
Shear stress versus shear rate 
data for concentric cylinder 
viscometer (Epprecht, Model 
RM-15), K = 0.794. Uncor- 
rected shear rate (eq. 5.3.1 1) 
is compared to true shear rate 
(eq. 5.3.24) and with n evalu- 
ated graphically versus y for 
a 1 % carboxymethylcellulose 
solution From Middleman 
(1968, p. 25). 

10 100 1000 
i ( s - 9  

194 / RHEOLOGY 



Besides wall slip there can be departure from ideal Couette 
flow due to the ends of the cylinder, to inertia, and to eccentricity. 
There also can be errors due to shear heating. These are discussed 
below, but first we examine normal stress effects. 

5.3.3 Normal Stresses in Couette Flow 
As mentioned in Part I, one of the remarkable phenomena of elastic 
liquids is that they climb a rotating cylinder. This is illustrated in 
Figure 5.3.3. We see that for the Newtonian oil the surface near the 
rod is slightly depressed. The surface acts as a sensitive manometer 
for the small negative pressure near the rod generated by centrifugal 
force. The surface of the polyisobutylene in oil solution shows a 
large rise. We can see how this rise can occur from the normal stress 
terms in the r component of the equation of motion in eq. 5.3.1. 

Rearranging eq. 5.3.1, we obtain 

(5.3.28a) 

Figure 5.3.3. 
A 9.52 mm diameter alu- 
minum rod rotating at 
201r rad/s in a large vat of 
(a) Newtonian oil and (b) 
polyisobutylene solution. 
From Beavers and Joseph 
( 1975). 
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We note that the numerator of the second term on the right is the 
first normal stress difference,  TI^ - T22. If the gap between the 
cylinders is small, then 

(5.3.28b) 

and if for the moment we neglect inertial effects, we can write an 
expression for the first normal stress difference directly 

where is the midpoint between the cylinders (eq. 5.3.10). 4, 
(R; )  - 4, (R,) is simply the pressure difference between the inner 
and outer cylinders. In Chapter 3 we saw that the first normal stress 
difference can be a large positive number, with the result that the 
pressure on the inner cylinder will be higher, causing the fluid to 
rise up the rod. 

There are several problems with using narrow gap Couette 
flow for normal stress measurements. Mounting a typical flat- 
tipped pressure transducer on the curved surface of a cylinder 
requires the use of holes, which leads to pressure hole errors (Broad- 
bent and Lodge, 1971). This problem is discussed further in Chap- 
ter 6.  Transmitting the transducer signals through a rotating shaft 
requires slip rings, which can reduce accuracy. Finally, for nar- 
row gaps r,, (Ri )  Z 4, ( R,), resulting in considerable uncertainty 

The latter uncertainty can be reduced by operating at large 
gap. The relations for this situation can be obtained by integrating 
eq. 5.3.28a from Ro to R;.  

in t,, - r22. 

= JRR.(I.o - 7,,)d lnr  - -dr (5.3.30) 

If the gap is not too large, ue varies approximately linearly 
across the gap and the second integral becomes 

1 
2 l: prQ2(r)dr = --pR2Q = Apinerria (5.3.31) 

Since this term is negative, for a Newtonian fluid the pressure 
at the inner cylinder will be less than that at the outer and the fluid 
will be depressed as shown in Figure 5.3.3. For larger gaps a 
secondary flow sets up giving an additional contribution (Bird et 
al., 1959). 
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Figure 5.3.4 shows a test of this equation against data on a silicone 
oil. 

Either inertial correction given above can be added to the 
measured pressure difference Apr to give an effective pressure dif- 
ference, which will be a function only of N1 = rss - r,, 

AP; = Apr + Apinertia (5.3.33) 

To evaluate the other integral, we can use eq. 5.3.7 to change 
variables from r to r as we did in deriving the shear rate relations 

Differentiating this expression with respect to In S2,  we obtain 

- d Apf = Nl(rR,)- d In rRi - N2(tR0)- d In rRo (5.3.35) 
d l n Q  dlnS2 d l n Q  

For a power law fluid d In tRi /d In S2 = dlnr,/dln S2 = n, 
and N1 can be evaluated from a plot of A p: versus In 52. However, 
it is more reliable to plot Api versus In t according to eq. 5.3.34 
and do a numerical or graphical integration. Such a plot is shown 
in Figure 5.3.5. Note the large pressure hole correction. 

An alternative to measuring small pressure differences be- 
tween the curved cylinder surfaces has been developed by Giesekus 
and co-workers (Abdel-Wahab et al., 1990). They made the inner 
cylinder slightly eccentric and measured the total side thrust on the 
stationary outer cylinder. Their results were reasonable when com- 
pared to cone and plate measurements on two polymer solutions. 

Figure 5.3.4. 
Ratio of measured Ap, 
to theoretical (eq. 5.3.32) 
A pinertia / S2; versus S2; for 
a 12.5 Pass silicone fluid. 
From Broadbent and Lodge 
(197 1). 

A 
A 

di ri ro h, h2 K 
A 0.6 3.175 6/98 4.8 9.4 0.454 
o 0.3 3.74 6.98 4.8 9.2 0.536 
A 0.6 3.175 5.08 7.3 8.9 0.625 
0 0.6 3.175 5.08 9.8 3.9 0.625 

25 50 75 100 

(rad/s)2 
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Figure 5.3.5. 
Data of Broadbent and Lodge 
(1971) on a polyisobutene 
solution taken in Couette 
flow with recessed transduc- 
ers. Solid curve from cone 
and plate data of Kaye et al. 
(1968). 

1000 

5.3.4 Rod Climbing 
In some ways a simpler approach to obtaining normal stresses from 
the concentric cylinder system is to use the rod climbing phe- 
nomenon quantitatively. Because the flow is complex, analysis 
requires the assumption of some constitutive relation. Joseph and 
Fosdick (1973) have done this using the second-order fluid, which 
should be an exact representation of elastic liquids in the limit of 
slow flows (see Section 4.3). They derive a power series for the 
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Figure 5.3.6. 
Experimental values of 
h ( R ,  a) for several aluminum 
rods in polyisobutylene in oil 
(STP oil additive). Replot- 
ted from Beavers and Joseph 
(1975). 

height rise in terms of a combination of normal stresses and surface 
tension. For slow flow, this series should be approximated by the 
first two terms (Joseph et al., 1973 have solved for the next two 
terms) 

where h, is the static rise due to the surface tension r and A2 = R? 
pgK'. /3 is a combination of the low shear rate limiting values of 
the normal stress coefficients 

B = ( 1 P )  l4 l ,o + 2 @ 2,o (5.3.37) 

Note that according to eq. 5.3.36 there is an optimum radius to give 
the maximum climbing effect. 

To test this result Beavers and Joseph (1975) measured h 
versus Q2 for a polyisobutylene solution. Some of their results are 
reproduced in Figure 5.3.6. We see that there is an approximately 
constant static climb, h,(O), with different radii and a fairly large 
region of linearity in Q2. This linearity appears to justify dropping 
the higher order terms in eq.5.3.36. From the slopes in Figure 
5.3.6, Beavers and Joseph calculate ,9 = 0.97 f0.5 g/cm at 26°C. 
Davis and Macosko (1973) estimated $I,O and @Z,O from the low 
shear rate limits of N I  from cone and plate thrust data and N I  - N2 
from parallel disk data and obtained = 0.98 k0.5 g/cm on the 
same material. Joseph et al. (1984) have made similar comparisons 
on a number of polymers. 

One of the disadvantages of the rod climbing experiment is 
that it requires another physical property measurement: surface 

0 0  
0.7 

0 : 0.635 

0 

0.317 

0 

0 

0 

0.079 - Radius (cm) 
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tension at test conditions. This is difficult to obtain on materi- 
als like polymer melts or suspensions. Fortunately, changes in r 
with respect to temperature, concentration, and molecular weight 
are relatively small compared to those for viscosity (van Kreve- 
len, 1976, p. 95). Furthermore, eq. 5.3.36 is rather insensitive to 
I', since it appears as r-'lz. A more serious disadvantage may 
be the ability to determine the slope accurately. For example, for 
many polymeric liquids B should be lo4 or lo5 gkm, but constant 
QI values-and thus presumably second-order fluid behavior-are 
achieved only for i. < 0.1 s-' . This implies very low rotation rates 
and long times. Dealy and Yu (1978) reported great difficulty in 
making climbing measurements on polymer melts. Siginer (1984) 
found large errors due to eccentricity when climbing was measured 
in a concentric cylinder apparatus. 

However, the sensitivity and simplicity of the experiment are 
great advantages. Furthermore, the limiting normal stress values 
from B are useful data for molecular theories of rheological phe- 
nomena. 

5.3.5 End Effects 
In the assumptions for flow between concentric cylinders, we ig- 
nored any end effects. It is not too difficult to estimate their im- 
portance. At the bottom of the cylinder in Figure 5.3.1 there will 
also be a shear flow. This can be approximated as torsional flow 
between parallel disks, to be discussed in Section 5.5. From that 
section we can use eq. 5.5.8 and the power law, eq. 2.4.12, for t,, 
to calculate the extra torque contributed by the end 

(5.3.38) 

wherem = l /n .  
If we can ignore the comers, eq. 5.3.38 can be combined with 

eqs. 5.3.8 and 5.3.24 to give the total torque in a flat-bottomed 
instrument. 

(5.3.39) 
n ( l  - ~ 2 1 0 )  

M = M,, i- M p p  = 2n R? Lm 

Oka (1960) has treated the Newtonian case to include the comers. 
It has been suggested that different L (and thus Lb) be used 

on the same fluid and M /  SZ be plotted versus L to give a straight 
line with the intercept as the end effect (Van Wazer et al., 1963; 
p. 69). From eq. 5.3.39 we see that this procedure can be only 
generally valid for a Newtonian fluid. 

Three design ideas sketched in Figure 5.3.7 are frequently 
used to minimize end effects. One features a conical bottom. With 
proper choice of cone angle, the shear rate in the bottom can be quite 
satisfactorily matched to that in a narrow gap on the sides. From 
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eqs. 5.3.24 and 5.4.12 in the next section, we see that matching 9 s  
requires that 

1 - K 2 i n  1 - K 2  
/go=-"- - for 1 > K > 0.99 and B < 0.1 rad (5.3.40) 

2nK2/n 2 K  

Thus, T,, = T, and 

Because narrow gaps and small angles are required, the devices 
must be well constructed and aligned. 

The other designs shown in Figure 5.3.7 are the recessed bot- 
tom and double Couette geometries used, for example, by Haake. 
The recessed bob traps air, which transfers essentially no torque to 
the fluid. Princen (1986) has used mercury, a very low viscosity liq- 
uid, instead of air in the bottom recess. The thin rotating, inverted 
cup shown in Figure 5.3.7~ should also make Mbottom << Mcc. This 
design also allows better temperature control. Note, however, that 
unless the gap is small, the shear rates on the inside and outside of 
the rotating cup will not be equal. 

The strategy that Couette himself used to reduce end effects 
was to connect only the central portion of the inner cylinder to his 
torque transducer. The upper and lower segments of the cylinder 
(g and g' in Figure 5.1.1) are called guard rings. One hundred years 
later Giesekus and co-workers found that the same design is still 
valid (Abdel-Wahab et al., 1990). The main problem with these 
guard rings is the difficulty of cleaning test fluids from the small 
gaps. 

The top end of the Couette flow usually presents fewer prob- 
lems, since it is open to a gas interface. Provision should be made 
in the design for exact maintenance of L without the need for pre- 
cise volumetric filling. This can be accomplished by the spillover 
cup shown in Figure 5.3.7. Two problems can occur at the up- 
per end: surface composition changes and normal stress climbing. 

Figure 5.3.7. 
Three common designs for 
eliminating end effects in 
concentric cylinder rheome- 
ters: (a) conicylinder, (b) re- 
cessed bottom, and (c) double 
Couette. 

(b) (4 
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Typically, surface tension forces are too small to influence the total 
torque readings, but some materials tend to change at the free sur- 
face, creating a stiff, solidlike crust, which can have large effects 
on measurements. The denaturization of protein in blood plasma at 
the gas interface is a well-known example of artificially high yield 
stresses due to such a crust. Evaporation of solvents from polymer 
solutions can cause similar high torque readings. Some workers 
have used guard rings to reduce these surface problems (Copley 
and King, 1970; Cokelet, 1972). A conicylinder design with an 
upper cone and plate region can be used to minimize the amount 
of free surface (Van Wazer et al., 1963, p. 81; Leary, 1975). Other 
approaches include humidifying the gas above the sample with an 
appropriate solvent or floating a low viscosity, low density oil on 
the sample surface. 

Normal stress climbing or the Weissenberg effect is well 
known. Elastic materials will climb up a rotating inner cylinder 
and even leave the apparatus. Using upper cover plates or filling 
the overflow dam can reduce this problem. Other materials-related 
problems in using Couette flows, such as particle migration and 
particle size effects, are discussed in Chapter 10 under applications 
of rheology to suspensions. 

5.3.6 Secondary Flows 
Secondary flows in the Couette geometry have been well studied 
following Taylor’s classic work (1923). With the inner cylinder 
rotating at some speed, inertial forces cause a small axisymmet- 
ric cellular secondary motion known as Taylor vortices or Taylor 
cells. These dissipate energy and cause an increase in the measured 
torque. Some data from Denn and Roisum (1969) for a glycerin- 
water solution are shown in Figure 5.3.8. For Newtonian fluids and 
narrow gaps, the criterion for stability is 

< 3400 
p2R2 ( R ,  - Ri)3 Ri 

Ta = 
v ( Y ) 2  

(5.3.42a) 

where Ta is the Taylor number. Equation 5.3.42a is well established 
experimentally (Chandrasekhar, 1961). For non-Newtonian poly- 
mer solutions and narrow gaps, the stability limit seems to move 
to higher Taylor number. This can be seen for the polyisobuty- 
lene (PIB) solution in Figure 5.3.8. Thus, a conservative stability 
criterion for experimentalists appears to be the Newtonian one, 
eq. 5.3.42. For the outer cylinder, rotating Couette flow is stable 
until the onset of turbulence at a Reynolds number of about 50,000, 
where N R ~  = pRRo(Ro - R i ) / n  (Van Wazer 1963, p. 86). The 
influence of inertia and secondary flow on normal stress measure- 
ments was given in eq. 5.3.32. 

Even at low Taylor number there is a purely elastic insta- 
bility which causes very fine, time periodic cells. The onset of 
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these instabilities depends on a critical Weissenberg (or Deborah) 
Number 

- 30 for K < 0.95 
s2A wi, = - 

R, - Ri 
(5.3.42b) 

Larson (1992) has reviewed these and other instabilities in vis- 
coeiastic liquids. 

Eccentricity of the two cylinders also changes the assumed 
velocity profile and can lead to decreased torque. This situation 
is the same as that encountered in a journal bearing and has been 
approximately analyzed (Pinkus and Sternlicht, 1961, p. 41). For 
cylinders with parallel axis displaced an amount u, the reduction in 
torque is 

(5.3.43) 

where is the mean gap thickness. The effect of eccentricity on 
the torque with a power law fluid is expected to be less (Ehrlich 
and Slattery, 1968). 

5.3.7 Shear Heating in Couette Flow 

The shearing action in Couette flow generates heat. Many organic 
and polymeric fluids have rather low thermal conductivity. Thus, 

Figure 5.3.8. 
Effect of secondary flow 
(Taylor vortices) on educed 
toque in a Couette viscome- the viscous dissipation results in a temperature rise in the fluid. 
ter. From Denn and Roisum 
(1969). Note that A and B 

Since viscosity decreases, typically exponentially, with tempera- 

are constants. 

.7 

.6 

.5 

60% Glycerine (Newtonian) 
0 ~ ~ 0 . 9 5  

5496 pm I O K  

F LI 0.97 
0 0.98 

\ 
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Figure 5.3.9. 
Viscosity versus shear rate 
data for Arochlor 1260. Bro- 
ken lines are initial readings; 
solid lines represent read- 
ings taken after equilibra- 
tion of temperature profiles 
due to viscous dissipation. 
From Sukanek and Laurence 
(1974). 

ture, this temperature rise results in a decreasing torque with time 
and with decreasing shear stress. Sukanek and Laurence (1974) 
report pronounced torque decreases for a Newtonian oil, Arochlor 
1260, which has a highly temperature-sensitive viscosity. As we 
can see from their data in Figure 5.3.9, this Newtonian liquid ap- 
pears to be pseudoplastic after reaching thermal equilibrium. 

For flow in a narrow gap viscometer, the energy equation and 
the momentum balance are coupled together by the temperature- 
dependent viscosity. These equations have been solved for the equi- 
librium temperature profile and the effect on shear stress by Gavis 
and Laurence (1968) for a power-law fluid and by Turian (1969) 
with the Ellis model. For the power law model, the effect on torque 
in a narrow gap instrument can be expressed in terms of a power se- 
ries in the Brinkman number (see Example 2.6.1, eq. 2.6.15). The 
first term of the series is helpful to the experimentalist to indicate 
where shear heating can affect data. 

Mo 
(5.3.44) 

where M, is the torque under isothermal conditions and the Brink- 
man number is 

(5.3.45) 

h s 
b 
.i 
0 

F 

1 o4 

lo3 
39.9OoC 

--w-e-m-e-** 

10 2 2  
loo 10' 10 

.j, (s -9  
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Figure 5.4.1. 
Schematic of cone and plate 
rheometer. 

The temperature sensitivity of the viscosity is b, the expo- 
nential factor in the power law expression 

Some typical values of b for polymer melts are 0.05-0. I (Tadmor 
and Gogos, 1979). These can be somewhat higher for solutions. 
Further discussion of the temperature dependence of viscosity is 
given in Section 2.6. 

5.4 Cone and Plate Rheometer 
Mooney and Ewart (1934) appear to have been the first to suggest 
the cone and plate geometry for viscosity measurements. Rus- 
sell (1946) used the geometry for normal stress measurements. 
His studies eventually led to the development of the Weissenberg 
Rheogoniometer (Jobling and Roberts, 1959; Lammiman and 
Roberts, 1961) and the Ferranti Shirley instrument (McKennell, 
1954). Today the cone and plate, with its constant rate of shear 
and direct measurement of N I  by total thrust, is probably the most 
popular rotational geometry for studying nowNewtonian effects. 

A sketch of the cone and plate geometry is shown in Figure 
5.4.1. Spherical coordinates are the proper ones for the problem; 
note also Figure 5.1.2. If we assume: 

1. 
2. 
3. 
4. 
5. 

Steady, laminar, isothermal flow 

u#(r, 0 )  only; ur = ue = 0 
/3 e 0.10 rad (a 6") 
Negligible body forces 
Spherical liquid boundary 

then the equations of motion from Table 1.7.1 reduce to 

(5.4.1) PV; 1 a rn, + To, 
r : - -  - - -  ( r2s ,>  - 7 r r2 ar  

1 a(r,,,sinO) toter,, e :  o =- -- (5.4.2) 
r sin8 88 r 

I ar,, 2 4 : 0 = - - + -cotOr",, (5.4.3) 
r a0 r 

The boundary conditions are 

.(;) = o  (5.4.4) 

v#(+ - /3 )  = Rrsin(:-/3) (5.4.5) 
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since sin ( x / 2  - B )  = cos 8 = 1 - $ + 5 . 
/3 5 0.1, then 

Z 1 within 1 %  for 

(5.4.6) 

The solutions to these equations are summarized in Table 
5.4.1 and derived in the Sections 5.4.1-5.4.6. 

5.4.1 Shear Stress 

As we saw in Example 
integrating eq. 5.4.3. 

2.3.2, the shear stress can be found by 

(5.4.7) 

From a torque balance on the plate 

TABLE 5.4.1 I Working Equations for Cone and Plate 

(5.4.10) 3M 
ZnR" 5,:  = roH = Shear stress 

Shear strain y = $ (homogeneous) (5.4.1 1)  

Shear rate y = "  b (5.4.13) 

(5.4.2 1 ) 2F. 
n R -  T , ,  - r2? = rw - r,, = t Normal stress 

Errors 
Inertia and secondary flow NI = 3 - 0 . 1 5 ~  Q 2 R 2  (5.4.24) 

x = 1 + 6.1 x IO-*Re2, Re = (5.4.25) Mi Torque correction 

Gap opening c material relaxation time (5.4.28) 

(5.4.32) = I-hBr 
Mo ?On Shear heating 

Utility 
Most common instrument for normal stress measurements 
Simple working equations: homogeneous deformation 
Nonlinear viscoelasticity G(r. y )  
Useful for low and high viscosity materials 
High viscosity limited by elastic edge failure 
Low viscosity limited by inertia corrections, secondary flow, and loss of sample at edges 

~~ ~ ~ 
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Noting from eq. 5.4.7 that rw, ln/2 = CI = rM (8)sin28, we substitute 
to obtain 

(5.4.9) 

But since B < 0.1 rad, then 1 > sin2 ( n /2 -,9) 2 sin2 (IC /2 - 
0.1) = 0.990 and the shear stress is essentially constant throughout 
the fluid 

(5.4.10) 

5.4.2 Shear Strain Rate 
Since r,, is nearly constant, it follows that the shear strain and shear 
rate will also be nearly constant. From B in spherical coordinates 
(Table 1.4.1 and eq. 1.4.13) 

(5.4.1 1) 9 B6e = y = - 
B 

Similarly from D in spherical coordinates (Table 2.2.1 and 
eq. 2.2.10) 

sin8 a U, 1 = 11 av, U# 

r a8 sin8 r a8 r 120,@ I= y = I---(-) -- - -cote 

Because 8 = n/2 - p,  we can rewrite cot 8 by 

cote = cot( f - B )  = tan B 

However, since is small we can approximate tan B by 

B3 tanp z #I + - 
3 

(5.4.12) 

To a good approximation, the velocity profile is 

so the shear rate is given by 

(5.4.13) 
n 

Adams and Lodge (1964) show that the error in using 
eq. 5.4.13 for the shear rate at the plate is less than 0.7% at 0.1 
rad and only 2% at 0.18 rad. The attractiveness of the cone and 
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plate geometry lies in the fact that the shear rate and shear stress 
are independent of position and can be easily calculated. No dif- 
ferentiation of data is required to obtain a true r,, (p) relation for 
an unknown fluid. 

5.4.3 Normal Stresses 

Normal stress differences can be determined from pressure and 
thrust measurements on the plate. If we ignore inertial effects for 
the moment, eq. 5.4.1 can be written as 

We recall that N2 is a steady shear material function and only de- 
pends on shear rate. Since i, is independent of r 

Thus, eq. 5.4.14 becomes 

(5.4.1 6) 

r,, is just the pressure measured by a transducer on the plate or the 
cone surface. 

Thus at a fixed angular velocity S2, plots of r,,, versus lnr  
should be a straight line. Miller and Christiansen (1972) have 
mounted transducers flush to the plate surface and measured roR (r). 
From their results on a polyacrylamide (PAA) solution plotted in 
Figure 5.4.2, we see that r,,(r) versus logr is indeed linear. We 
also note that there is a small positive pressure at the rim of the 
plate, re@ (R). If we can assume that the stress in the radial direc- 
tion at the rim rHo (R) is balanced by the ambient pressure pa (i.e., 
there are no surface tension or other edge effects), then raa (R) is 
just the second normal stress difference. 

N2 = rZ2 - r33 = r,,(R) - r r , (R)  = r,,,(R) - 0 (5.4.17) 

It is more common and simpler to measure the total thrust on 
the plate. Making a force balance on the plate, we have 

Fz = - lR r,, (r)dr d# - p a n  R2 (5.4.18) 

Integrating by parts and noting that rw + r,, - 2r,, = N1 + 
2N2 is only a function of shear rate and thus is independent of r 
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Figure 5.4.2. 
Normal stress as a function 
of log r for a 1.49% poly- 
acrylamide. From Miller 
and Christiansen (1972). 

or 

100 I I I 1 1 1 1  I I I I I I I I  

1.49 % PAA 
Shear rate (s-l) 
0 34.3 
A 89.3 
0 224.4 
-t 355.6 - 

40 - 

0 

= --n R2 [ (+) + t,, + p a ]  

10 

(5.4.19) 

As mentioned above, if the boundary has a spherical shape, 
and if surface tension effects are negligible, then trr ( R )  must be 
balanced by pa .  Thus, we have the simple result 

or 

(5.4.20) 

(5.4.21) 

Miller and Christiansen (1972) also measured total thrust 
and obtained the Nl values shown in Figure 5.4.3. By subtract- 
ing 2t,, ( R )  from the slopes in Figure 5.4.2, N I  can be calculated 
independently. Similarly subtracting N1 (calculated from the to- 
tal thrust from the slopes) gives a test of the rim pressure meas- 
urements. Results by each of these methods for two cone angles 
compare well, particularly for Nl . 

5.4.4 Inertia and Secondary Flow 
In the foregoing derivations we neglected the inertia term in 
eq. 5.4.1. We saw with concentric cylinders that inertia causes 
a depression around the inner cylinder rather than the climb due 
to viscoelastic normal stresses (Figure 5.3.3). In cone and plate 
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Figure 5.4.3. ,,, 105 
Normal stress differences E e increased by two different 
methods. Miller and Chris- Q) 

tiansen (1972). )r 

u) 

C 

0 g to4 
C 

* : 
fc, 
0 

% 103 

4- E 
- I 
u) 

0 
E 
b = lot& 

rheometers, inertia forces tend to pull the plates together rather than 
push them apart. This “negative” normal force can be expressed in 
terms of stress distribution (Walters, 1975) 

1.49% PAA 
lntegrol 

0 0 a=  4 O  

8 

8 

0 an 2” I 

a 

‘(Ti1 - f22)9 
a .  a 

e a s  

0 2 ‘  
e e  (r222- f33) g 

* 8 8 @ @ .  0 m 8 8 g  

0 -  0 -  

o o : : o g Q  ’ 
0 

= 0.15pS22(r2 - R2) (5.4.22) 

or in terms of the total thrust 

When eq. 5.4.23 is combined with eq. 5.4.21, we obtain a 
result that is commonly used to correct measured F, values 

(5.4.24) N I  = - 2Fz - 0.15pSt2R2 
IT R2 

This result has been well confirmed experimentally for New- 
tonian fluids using pressure distribution data (Greensmith and 
Rivlin, 1953; Markovitz and Brown, 1963; Adams and Lodge, 
1964; Alvarez et al., 1985) and from total thrust (Huppler et al., 
1967; Miller and Christiansen, 1972; Kulicke, et al., 1977; Whit- 
comb and Macosko, 1979). Figure 5.4.4 compares eq. 5.4.23 to 
experimental data. Several of these studies indicate that the correc- 
tion also seems to be valid for non-Newtonian fluids. 

Inertia also generates secondary flows in the re  plane. These 
have been observed for large cone angles (Giesekus, 1963; Hopp- 
man and Miller, 1963; Walters and Waters, 1968) and modeled 
theoretically for the Newtonian case (Turian, 1969, 1972; Fewell 
and Hellums, 1977; Sdougas et al., 1984). Secondary flow will 
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Figure 5.4.4. 
Comparison of data of Miller 
and Christiansen (1 972) to 
eq. 5.4.23 (dashed line). 

I 1 I I 1  1 1 1 1  I I I I . I I I  

I$ 
lo" 

loo lo' 
51, Radions/second 

increase the torque over that given by eq.5.4.10. Turian (1972) 
solves for this extra torque in terms of the Reynolds number 

(5.4.25a) 
M 
- = 1 + 6.1 x 10-4Re2 
MO 

where 

pS2j3' R2 
Re = - 

fl" 

Whitcomb and Macosko (1978) find that this result fits both their 
high shear rate data on Newtonian oils and the data reported by 
Cheng (1968) up to M / M o  Y 2. These results are shown in Figure 
5.4.5. Ellenberger and Fortuin (1985) report a better fit to this data 
with the empirical expression 

M 0.309Re3f2 
MO 
- -  

50 + Re - 1 +  (5.4.25b) 
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Turian (1972) also gives a similar correction for the influence 
of secondary flow on the normal stresses. 

(Fz)imfi = 0 . 0 7 5 ~ p Q ~ R ~ [ I  + 4 x 10-'Re2] (5.4.26) 

Note that eq. 5.4.23 is usually sufficient. In all these corrections the 
experimenter should be cautious whenever the adjustments become 
large, particularly with non-Newtonian fluids. As the pictures of 
Giesekus (1963) and Walters and Waters (1965) show, circulation 
is in the opposite direction for viscoelastic and Newtonian liquids. 

Eccentricities and misalignment in the cone and plate geom- 
etry can be very serious because of the small angle. Adams and 
Lodge (1964) found large steady r,, values for Newtonian oils if 
one axis is tilted slightly ( O M o  for a 3" cone). The values vary with 
location in the 4 direction and with direction of rotation. There does 
not appear to be any available analysis of the problem, but presum- 
ably the Newtonian case should yield to lubrication approximations. 
Larger cone angles, of course, reduce these effects. 

Vertical oscillations are always present in rotating members. 
These can be particularly annoying with normal stress measure- 
ments on high viscosity materials. Adams and Lodge give an es- 

Figure 5.4.5. 
Theoretical torque correc- 
tion for secondary flow in 
cone and plate geometry 
compared to data on three 
fluids. From Whitcomb and 
Macosko (1979). 

n 
I 
- 

Re, Reynolds Number 
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timate for the size of pressure oscillations based on the squeezing 
flow equations (to be discussed in Chapter 6) 

(5.4.27) 

where I) is the vertical velocity of the boundary. If the oscillations 
are sinusoidal urnax= S2 Ah, where Ah is the vertical run out of the 
rotating spindle. Equation 5.4.27 shows a very strong dependence 
on cone angle; however, it does not appear to have been tested 
experimentally. Tanner (1970) gives a similar result for the effect 
of instrument stiffness K on normal force start-up data. He indi- 
cates that the instrument response time must be much less than the 
material relaxation time 

(5.4.28) 

This problem is discussed further in Chapter 8. 

5.4.5 Edge Effects with Cone and Plate 
There are two important assumptions in deriving the cone and plate 
equations: that the free surface is spherical and the velocity field 
is maintained up to the edge. Adams and Lodge (1964) discuss 
the consequences of this double assumption. In eq. 5.4.17, r,,@(R), 
should be particularly sensitive to the edge shape. Miller and Chris- 
tiansen (1972) report that with a 4” cone they varied the inter- 
face considerably inward and outward from spherical and found no 
change in 5, (R).  Their good experimental agreement between var- 
ious methods and cone angles in Figure 5.4.3 supports the assump- 
tion that edge effects can be neglected under proper experimental 
conditions. 

A “drowned” edge or “sea” of liquid around the cone has 
been used frequently by experimenters. The flow will extend out 
into the sea, increasing the torque and affecting normal stresses. 
Vrentas et al. (199 1) have analyzed the effect on torque for parallel 
plates. Their results (eq. 5.5.12) should be approximately valid for 
the cone and plate. The effect of liquid outside the gap on normal 
stresses can be seen if we look carefully at the data of Olabisi and 
Williams (1972) shown in Figure 5.4.6. The pressures near r = R 
drop slightly below the line expected from eq. 5.4.16. Note also that 
some deviation occurs near the center. The authors attribute this to 
a slight elevation of the cone or to the finite diameter (indicated on 
graph) of the transducer. 

Tanner (1970) has analyzed the drowned edge and finds for 
a second-order fluid that eq. 5.4.20 becomes 

1 
2 

F, = - x R ~ ( N I  + Nz) (5.4.29) 
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and eq. 5.4.17 

1 
2 

T , ( R )  = - N2 (5.4.30) 

He reports that the results of Adams and Lodge (1964) and 
Kaye et al. (1968) seem more reasonable when corrected with 
eq. 5.4.30 and for pressure hole emrs. Olabisi and Williams also 
find some experimental agreement with Tanner’s equations. 

A more serious edge effect occurs with high viscosity samples 
like polymer melts. At disappointingly low shear rates, typically 
9 -z 10 s-I, the sample appears to cut in at the midplane and flow 
out at each of the solid surfaces. Figure 5.4.7 shows this edge failure 
with parallel plates. The effect is very similar for cone and plate. 
Before it is even visible at the free surface, edge failure can be 
detected by a drop in the torque and normal force values (Macosko 
and Morse, 1976). The continuous decrease in $ at 5 and 20 s-’ in 
Figure 4.2.6 is due to edge failure. This defect severely limits the 
useful shear rate range of either geometry with polymer melts. 

Turian’s secondary flow analysis ignores the free surface. 
But it appears that in any case the failure shown in Figure 5.4.7 
may be due more to elastic effects. Hutton (1969) applied an elas- 
tic energy Criterion to predict the failure, While Tanner and Keentok 
(1983) used a fracture mechanics approach. However, the exper- 
imental results of Hutton (1969) and Broyer and Macosko (1975) 

Figure 5.4.6. 
Average pressure profiles 
(clockwise and countemlock- 
wise) for a 3% polyethylene 
Oxide solution- From OlabiSi 
and Williams (1972). 

r / R  

r /R 
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Figure 5.4.7. 
Edge failure with poly- 
dimethylsiloxane (q,, = 
14,000 poise at 25°C) in par- 
allel disks. From Broyer and 
Macosko (1975). 

h 

V 
.6- e 

suggest that there may be simply a critical edge velocity for a given 
material. This critical velocity seems to decrease with increasing 
viscosity and decreasing surface tension. 

Some of Broyer and Macosko's data are shown in Figure 
5.4.8. Using smaller cone angles or gaps in parallel disks (see 
next section) allows higher shear rate data. However, at small gaps 
the effects of misalignment and eccentricity on the normal forces 
become quite severe; note eq. 5.4.27. Quinzani and Valles (1986) 
have been able to increase the shear rate limit on normal force 
measurements by using a cup-shaped lower plate that fits closely 
to the edge of the cone. 

Figure 5.4.8. 
Critical velocity for the onset 
of edge failure within ap- 
proximately 15 seconds of 
shearing. From Broyer and 
Macosko ( 1  975). 
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Another edge problem is the same as that discussed with 
the concentric cylinder end effects: change or hardening of the 
sample at the gas-liquid interface. To prevent evaporation, a layer 
of silicone or other nonvolatile oil can be spread over the free surface 
(Boger and Rama Murthy, 1969; Orafrdiya, 1989). 

5.4.6 Shear Heating 
The shear heating of Newtonian (Turian and Bird, 1963) and power 
law fluids (Turian, 1965) has been studied in the cone and plate 
geometry. For the case that both cone and plate are isothermal at 
To, Turian’s power law analysis predicts the maximum temperature 
rise (see also Bird et al., 1987, p. 226; note bBr = Na) 

Tmax - To - Br bBr2 
(5.4.3 1) 

TO 

and the decrease in torque 

(5.4.32) 

where, as in flow between concentric cylinders, b is the temperature 
sensitivity of the power law viscosity in eq. 5.3.46. The Brinkman 
number is defined for the cone and plate as 

From their experiments with Newtonian oils in a Ferranti 
Shirley viscometer, Turian and Bird find better agreement with an 
adiabatic cone: 

(5.4.33) 

We see from eqs. 5.4.32 and 5.4.33 that calculating bBr provides 
a useful check on the importance of shear heating. When bBr is 
less than 1 for isothermal cone and plate and less than 0.2 for one 
surface adiabatic, shear heating effects will be negligible. 

5.4.7 summary 
The cone and plate is a very useful and simple test geometry. Be- 
cause of the small angle, it requires more precise alignment than 
Couette devices. A number of possible errors have been suggested, 
but in normal operations these problems appear to be minimal with a 
well constructed machine. The simplest check for all error sources 
is to use two cone angles that differ by a factor of 2 or more, and 
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Figure 5.5.1. 
Schematic of a parallel plate 
rheome ter. 

possibly also two different radii. The drowned edge should not be 
used to obtain good normal stress data. With high viscosity sam- 
ples, the edge failure problem limits the high shear rate use of the 
device. 

5.5 Parallel Disks 
The parallel disk geometry was suggested by Mooney (1934). The 
Mooney tester, which consists of a disk rotating inside a cylindrical 
cavity, is used extensively in the rubber industry (ASTM 01646). 
Russell (1946) first measured normal forces from the total thrust 
between two disks. Greensmith and Rivlin (1953) measured the 
pressure distribution, and Kotaka et al.( 1959) used total thrust to 
study normal stresses in polymer melts. In many ways the flow 
is similar to the cone and plate. Most instruments are designed to 
permit the use of either geometry. However, in contrast to the cone 
and plate, flow between parallel disks is not homogeneous. 

The parallel disks geometry is sketched in Figure 5.5.1. If 
we assume: 

1. Steady, laminar, isothermal flow 
2. ue(r, z) only, ur = LJ: = 0 
3. Negligible body forces 
4. Cylindrical edge 

then the equations of motion reduce to 

r : --(rr,,) l a  - - roo = -PT Vez 
r r ar 

(5.5.2) 

(5.5.3) 

Table 5.5.1 gives the working equations for this geometry. 
With one disk stationary and the other rotating at Q, assuming 

no slip at these surfaces and neglecting inertial forces, the velocity 
must be 

and thus 

rR 
y ( r )  = - 

h (5.5.4) 

SHEAR RHEOMETRY: DRAG FLOWS / 217 



TABLE 5.5.1 /Working Equations for Parallel Disks 

Shear strain 

Or 
h 

y = - (nonhomogeneous, depends on position) 

Shear rate at r = R 

Shear stress 

t,* = to: = 

2M 
t" = - 

x R3 

d In M [ 3+- d lnyR]  

apparent or Newtonian shear stress 

Representative shear stress 

for t = 0.76~~ and - d l n M  < 1.4 
d In YR 

Normal stress 

-~ ~~ 

(5.5.5) 

(5.5.4) 

(5.5 23) 

(5.5.9) 

(5.5.10) 

(5.5.17) 

(5.4.23) 

Errors 
Inertia and secondary flow 
Edge failure (same as cone and plate) 
Shear heating 
Nonhomogeneous strain field (correctable) 

Sample preparation and loading is simpler for very viscous materials and 
soft solids 
Can vary shear rate (and shear strain) independently by rotation rate 
(and 9) or by changing the gap h; permits increased range with a given 
experimental set up 
Determine wall slip by taking measurements at two gaps 
Delay edge failure to higher shear rate by decreasing gap during an ex- 
periment (requires change of cone angle in cone and plate) 
Measure Nz when used with cone and plate thrust data 
Preferred geometry for viscous melts for small strain material functions 

utility 
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Similarly the strain goes from zero at the center to maximum at the 
edge 

9r y = -  
h 

(5.5.5) 

As in wide gap Couette and Poiseuille flow (Chapter 6), shear rate 
is not constant. Thus we must use a derivative to relate shear stress 
to total torque. The resulting equations are given below and then 
derived in the remainder of this section. 

From eq.5.5.1 and recalling that the shear stress can be a 
function of shear rate alone, T,: = T,, = t l 2 ( Y ) .  From a torque 
balance 

r R  
M = 27c lo r t , , ( r ) r  dr  

Changing variables, we have 

h .  R y  Q R  
r = --y = - where yR = - 

Y R  h 

R 
d r  = -dy 

Y R  

Then 

3 

M = 27t lyR (;) y 2 t , , d y  

Rearranging and differentiating using Leibnitz’s rule gives 

(5.5.6) 

(5.5.7) 

(5 .5.8)  

Thus to evaluate shear stress for an unknown fluid, a sufficient 
amount of In M versus In yR data must be taken to determine the 
derivative accurately. In practice this is not highly difficult, since 
many materials have power law regions and numerical software 
packages are readily available for handling the data. Furthermore, 
the derivative is generally less than 1, and thus a 10% error results 
in less than 3% error in t,, . 

If the test liquid is Newtonian, d In M / d  In 9~ = 1 .O and the 
shear stress becomes 

2M 
ra(R)  = - 

nR3 (5.5.9) 

This apparent shear stress often is used to calculate an apparent vis- 
cosity, since only a single torque measurement is required. How- 
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ever, a simple, approximate single point method was developed by 
Geisekus and Langer (1977). It is similar to the method for approx- 
imating true shear rate in a capillary rheometer given in Example 
6.2.1. Here the idea is that the true and apparent shear stresses 
must be equal at some radial position. This occurs at nearly the 
same point, r / R  = 0.76, for a wide range of liquids, i.e. those for 
which dln M/d In i / ~  < 1.4. Thus the true viscosity is equal to the 
apparent viscosity evaluated at 

v ( t )  = vu( tu )  f 2% for t = 0 . 7 6 ~ ~  (5.5.10) 

It is easier to load and unload viscous or soft solid sam- 
ples with the parallel disk geometry than with cone and plate or 
concentric cylinders. Thus parallel disks are usually preferred for 
measuring viscoelastic material functions like G ( t ,  y ) ,  G’(w),  or 
J ( t ,  t) on polymer melts. To evaluate moduli or compliance, we 
use the strain and stress at the edge of the disk (eqs. 5.5.5 and 5.5.8), 
but now the stress must be corrected by d In M/d In y (Soskey and 
Winter, 1984). In the linear viscoelastic region G ( t ,  y )  = G ( t )  
anddlnM/dlny = 1. 

The parallel disk rheometer is also very useful for obtaining 
viscosity and normal stress data at high shear rates. As eq. 5.4.4 
indicates, shear rate can be increased by either increasing rotation 
rate or decreasing gap. Errors due to secondary flows (similar 
to those shown in Figure 5 . 4 3 ,  edge effects (Figure 5.4.7), and 
shear heating (Figure 5.3.9) are all reduced by operating at small 
gaps. Binding and Walters (1976) report reaching lo5 s-’ with 
h = 3.2 pm. Connelly and Greener (1985) and Kramer et al. 
(1985) report that below about 300 pm they needed to correct for 
an error in the measured gap. A simple constant error term (he = 10 
to 40 pm) was found adequate; that is, for a Newtonian liquid the 
relation 

fit their data in which i/h is the apparent shear rate calculated at the 
measured gap. 

Another use for data collected at different gaps in the par- 
allel disk geometry is in determining wall slip. Yoshimura and 
Prud’homme (1988) have shown that the difference in apparent 
stress versus shear rate at two different gaps can be related to wall 
slip, analogous to eq. 5.3.27. 

Vrentas et al. (1991) have analyzed the effect on the torque of 
using a cup instead of the lower disk. The flow extends out into the 
surrounding fluid. For small gaps and large cups Rcup/ R r 1.1, 
the effect of the cup radius can be ignored if R/R, , ,  > 1.1. Then 
the extra torque depends solely on the ratio of gap to radius 

M h - = 1 + 1.9- 
Mo R 

(5.5.12) 
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5.5.1 Normal Stresses 

The normal stresses arise from eq. 5.5.3. Neglecting 
term and noting that 

the inertial 

(5.5.13) 

Integrating from r to R 

gives, after substituting for N1 and N2, 

(5.5.14) 

As in our cone and plate discussion, we assume that t3) ( R )  
is exactly balanced by atmospheric pressure and the free surface 
is cylindrical with negligible surface tension effects. This parallel 
disk pressure distribution is not as useful as eq. 5.4.12 was for the 
cone and plate. There is no simple linear relation, as can be seen 
in the data of Greensmith and Rivlin (1953). Note that prim = N2. 
eq. 5.4.16, should still hold. 

Integrating 
eq. 5.5.10 for Fz gives 

More frequently, total thrust is measured. 

R 
Fz = - 22r d N2r d r  

+ 2 n l  7 Ni + N2 (1” d o r d r  (5.5.15) 

If we are careful about the limits of integration, we can change the 
order to give 

R 
= -n (N2 - N l ) r d r  (5.5.16) 

Changing variables again by eq. 5.5.6 and differentiating with re- 
spect to yR we obtain 
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Figure 5.5.2. 
Normal stress differences for 
a high density polyethylene 
(Marlex 6050) at 190°C. 
Total thrust between par- 
allel disks (solid line) 
N ,  - N2 and cone and plate 
(-- - -) N I  and their dif- 
ference (- - -1 -N2 
(data taken from Macosko, 
1970, 1974). Birefringence 
in cone and plate (triangles) 
N I  and slit flow (circles) 
N I  + N2 and their differ- 
ence (- - - -) -N2 (data from 
Wales 1969, 1970). 

1 06 

105 

104 

103 

10-2 10-1 100 10' 102 
Shear rate (s-1) 

or 

(Nl - N2) IYR = - Tc Fz R= [2+-1 (5.5.17) 

Secondary flow effects are similar to the cone and plate. 
Turian (1972) reports that his eqs. 5.4.25a and 5.4.26 can be used 
for parallel disks with the substitution of h / R  for B. The exper- 
imental results of Greensmith and Rivlin described in connection 
with eq. 5.4.22 are for the parallel disks and agree with the theory. 

Eccentricities or misalignments are not as important except 
for very narrow gaps. One advantage of the parallel disk system is 
that the shear rate can readily be changed by both and h.  Broyer 
and Macosko (1975) have used small h values to delay edge failure 
effects to higher shear rates than can be achieved in typical cone 
and plate geometries. Some of their results were shown in Figure 
5.4.7. 

Accurate data can be obtained with the parallel disk geometry. 
Figure 5.5.2 shows some parallel disk total thrust data for N l  - N2 
calculated by eq. 5.5.17. There is reasonable agreement between 
N2 by the difference between parallel disks and cone and plate and 
by birefringence studies. 

5.6 Drag Flow Indexers 
There are a number of index tests in which the flow is driven by 
drag. Most are based on rotating a disk or other complex shape in 
a large quantity of the sample. These geometries are used because 
thev are easv to load or because thev heh  samde mixine. 



Here we will focus on two major types of drag flow indexers. 
The first consists of rotating disk or vaned fixtures used for fluid 
systems, dispersions, and soft gels. The other group is made up 
of instrumented mixing devices, typically consisting of a rotating 
screw or two countenotating blades in a heated chamber, which 
monitor torque as a sample is melted. This equipment is used to 
mix both food products such as bread dough, and polymer powder 
or pellets. The machines are mainly process simulators equipped 
with a torque monitor to get some idea of viscosity. 

In the rubber industry a double parallel plate device, the 
Mooney Viscometer (ASTM D1646) is used to measure viscos- 
ity, Data is normally reported in Mooney units from 0 to 100, but 
these can be translated to torque and analyzed by eq. 5.5.8 (Naka- 
jima and Collins, 1974). Another rubber indexer is the oscillating 
disk curometer, which is typically a bicone oscillating at 3 Hz in 
a disk-shaped cavity (ASTM D2704). Peak torque is reported on 
a scale of 0-100, but if the amplitude is known, this can be trans- 
lated to G*. However, at high G* levels and the usual operating 
conditions wall slip can occur. 

5.6.1 Rotating Disk in a Sea of Fluid 
For quality control, and even for formulation development of many 
industrial fluids from paints to pizza sauce, the rotating disk indexer 
is the mainstay. As shown in Figure 5.6.1, the hand-held rheometer 
can be easily placed in a beaker of the sample and a viscosity 
number recorded. The device is often called a Brookfield after a 
manufacturer of commonly used equipment. 

Shear rate varies in both the r and z directions from the disk 
surface. The flow field can be analyzed for a Newtonian fluid 

3M 
= * (5.6.1) 

Williams (1979) reviews various correction factors and gives a nu- 
merical method for using the rotating disk to obtain true ~ ( k )  data 
from curves of M versus S2. Geometries other than a disk are 
sometimes used. With a long cylinder shear rate varies only in the 
t direction and true viscosity can be determined (eq 5.3.21). The 
vane fixture for fluids with a yield stress is described below. A 
T-shaped fixture is used for soft gels. It is lowered into the sample 
as it rotates, to ensure that unsheared sample is always being tested. 

Figure 5.6.1. 
Side view of a disk rotating 
in a large container of test 
fluid. 

5.6.2 Rotating Vane 
Figure 5.6.2 shows the vane fixture designed for samples with a 
yield stress. It can be rotated in a large container in the same way 
as the disk discussed above, but more recently it has been used 
with a close-fitting cylindrical cup (Barnes and Carnali, 1990, with 
review of previous work). A vane inserted into a fluid will create 
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Figure 5.6.2. 
Schematic of vane fixture. 

Applied 
motion 

far less disturbance than a solid bob. Large particles present a less 
severe problem than they do for a narrow gap Couette device, but, 
most significantly, for strongly shear thinning fluids (n < OS), the 
fluid within the vanes moves as a solid plug. This helps to prevent 
wall slip. For less shear thinning fluids there will be secondary flow 
between the vanes, and the geometry will not give correct viscosity 
shear rate data. 

Figure 5.6.3 compares vane-in-cup to bob-in-cup measure- 
ments for a very shear thinning polymer solution. The bob-in-cup 
data indicate that there is yield stress, but this is actually due to wall 
slip. 

5.6.3 Helical Screw Rheometer 

If the die end of a screw extruder is closed off, fluid will recirculate 
between the fights in a complex shear flow pattern. Kraynik and 
co-workers (1984) have shown that this flow can be analyzed to give 
viscosity versus shear rate data from pressure rise over the screw 
and rotation rate. An advantage of this geometry is that it can keep 

Figure 5.6.3. 
Viscosity versus shear stress 
for a 5.5% sodium carboxy- 
methylcellulose in water so- 
lution. Solid points are for 
bob-in-cup geometry, open 
points are vane-in-cup. From 
Barnes and Carnali (1990). 
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concentrated suspensions well mixed during measurement. It can 
also be quickly pumped out by opening the end, whereupon a new 
sample can be tested. This makes the geometry suitable for on-line 
measurements (see Chapter 8). Scott and Macosko (1993) have 
used a screw with a central hole to provide better mixing. They 
also report that pressure versus screw speed measurements could 
give accurate data on viscosity versus shear rate for several polymer 
melts. 

5.6.4 Instrumented Mixers 
Related to the helical screw devices are the instrumented batch 
mixers often called torque rheometers. They consist of a chamber 
or mixing bowl with two counterrotating blades. There are many 
different blade configurations. A common one is shown in Figure 
5.6.5. These devices are primarily used as simulators of larger 
batch mixers and extruders and to prepare compounded samples. 
One of the rotating shafts has a transducer that records torque as 
polymers melt and mix with other additives. Blyler and Daane 
(1967) have shown that when the sample has reached steady state, 
one can obtain a good measure of n (but not m) for power law fluids 
from torque and screw speed. 

Figure 5.6.4. 
Helical screw rheometer. 
From Kraynik (1 984). 
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Figure 5.6.5. 
Roller blades in a torque 
rheometer. 

~~ 

5.7 Eccentric Rotating Geometries 

I I 

Assembly view top 

Sample 
chamber 

Assembly view f r h t  

Figure 5.7.1. 
Eccentric rotating rod of a 
viscoelastic solid. The dis- 
placement b is proportional to 
the loss in the sample. 

By taking a circularly symmetrical sample and rotating it through a 
deformation, it is possible to create a periodic strain in the sample 
somewhat similar to the sinusoidal oscillations described in Figure 
3.3.3. The first use of such geometries appeared in the fatigue 
testing of metal rods. One end of a rod is simply inserted into a 
rotating holder and a weight is hung on the other end, as shown 
in Figure 5.7.1. Any element along the outer circumference of the 
rod goes through a cycle of tension and compression. The number 
of cycles to failure is recorded. The device, known as the Wohler 
fatigue tester, has been used since the late 1800s. 

In 1926 Kimball and Love11 pointed out that any hysteresis 
or loss in the sample would result in a component of force perpen- 
dicular to the displacement because the stress distribution lags the 
strain. The force causes the end of the rod to displace slightly, by 
an amount b, as shown in Figure 5.7.1. 

The other eccentric geometries described in Sections 5.7.1- 
5.7.3 all accomplish an oscillatory motion in a similar way by ro- 
tating the sample through a deformation fixed in laboratory space. 
These oscillations are not identical to sinusoidal oscillations, but in 
the region of linear viscoelastic response, the dynamic moduli can 
readily be obtained from the solution for an ideal elastic or ideal 
viscous material (Abbot et al., 1971; Pipkin, 1972). 

The advantage of eccentric geometries is that a steady force 
is generated in the laboratory from an oscillatory deformation in the 
sample. This force is simpler to measure and analyze than the os- 
cillatory force or torque produced by sinusoidal shearing found, for 
example, in a cone and plate rheometer. However, with the advent 
of small, inexpensive microcomputers in the late 1970s it became 
quite simple to record and analyze sinusoidal data (see Chapter 
8). With such microcomputer control and analysis, a steady shear 
rheometer can also make dynamic measurements. Thus today there 
is little advantage in using eccentric rheometers. One area of inter- 
est, however, may be the nonlinear response of these devices. Since 
the deformation is not the same as sinusoidal simple shear, except 
in the limit of small strain, eccentric geometries could be used to 
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test constitutive equations (Gross and Maxwell, 1972; Jongschaap 
et al., 1978). 

5.7.1 Rotating Cantilever Rod 

The geometry of Figure 5.7.1 has been used extensively with metals 
by Lazan (1943, 1950) and with plastics by Maxwell (1956) and 
by Kaelble (1965). Instead of using a fixed load, Maxwell (1956) 
applied a fixed displacement to the sample and measured the forces 
on the end of the rod through rolling contact to a load cell. Any 
loss in the sample creates a component of force f1 perpendicular 
to the displacement. 

For small strains in the linear viscoelastic range, the measured 
force components can be converted to E’ and E” by using the static 
cantilever equations and substituting E* for the elastic modulus E. 

tensile storage modulus (5.7.1) 64L3f2 Et  = - 
315 D4a 

tensile loss modulus (5.7.2) 64L3f, E” = - 
315 D4a 

where L is the sample length, D the diameter, and a the displace- 
ment. 

Notice that in eqs.5.7.1 and 5.7.2 the sample dimensions 
appear to high powers thus accurate measurement and sample uni- 
formity are essential. Diameter variations or stresses molded into 
the sample can cause large oscillations in the measured force com- 
ponents. 

5.7.2 Eccentric Rotating Disks 
Figure 5.7.2a illustrates the eccentric rotating disk (ERD) geometry 
(recall Exercise 1.10.7 and Example 2.3.1). A sample is placed 
between two disks that rotate at the same angular velocity but about 
offset or eccentric axes. Surface tension holds the sample between 
the disks. The flow between these eccentric rotating disks results 
in a shearing motion, with material elements moving in circular 
paths with respect to each other. A coordinate system r, s, t that 
rotates with the lower disk (Figure 5.7.2b) can describe the relative 
motion between particles (Figure 5.7.2~). The deformation is seen 
to be of constant magnitude, but continually changing direction. 

Gent (1960) first published an ERD experiment using vulcan- 
ized rubber. He reports that his inspiration came from Maxwell’s 
rotating cantilever rod experiments. Mooney (1934) also tried the 
geometry on gum rubbers. Maxwell and Chartoff (1965) carried 
out the first tests on polymer melts. Maxwell’s (1967) experiments 
caused the geometry to become known as the Maxwell orthogonal 
rheometer. 

If an elastic rubber sample is placed between ERDs, a force 
in the x2 direction will be necessary to maintain the offset a. Any 
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Figure 5.7.2. 
Eccentric rotating disks. (a) 
Cross section of the exper- 
imental geometry. (b) Top 
view showing particle paths. 
(c) Relative displacements of 
particles in a coordinate sys- 
tem rotating with the lower 
disk. 

b )  
lower 

loss or hysteresis in the material will induce a force component f1. 

For an ideal elastic solid, f2 will be proportional to the deformation 
and shear modulus 

(5.7.3) 

Exercise 1.10.7 derived this result from the neo-Hookean model. 
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For a Newtonian liquid there will be loss only in the sample. 
Thus fz = 0 and from Example 2.3.1 

f1 = r R 2  G?(;)q (5.7.4) 

For a general viscoelastic liquid we can substitute q* = q' + iq" 
for q and obtain 

(5.7.5) 

(5.7.6) hfl G" = Qq' = - 
IT R2a 

These simple equations have been verified with several different 
constitutive equations (Macosko and Davis, 1974; Walters, 1975; 
Jongschaap et al., 1978). Inertia can be included in the analysis 
(Abbot and Walters, 1970; Walters, 1975); however, for viscous 
samples the errors are negligible (Macosko and Davis, 1974). 

In the typical ERD apparatus (Macosko, 1970; Payvar and 
Tanner, 1973) one disk is driven and the other follows, coupled 
through the sample. Waterman (1984) has shown that for the 

Figure 5.7.3. 
Comparison of ERD to 
other rheometers for a poly- 
dimethylsiloxane melt. From 
Macosko and Davis (1974). 
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torques to balance, the freely rotating disk must always lag slightly. 
For a viscoelastic fluid that lag is 

- 2’’ G’ - 
- 

/ 
- 

- /o 
/ 

- 
o /  

I I I I I I I l l  I I I I I l l 1  10 

(5.7.7) 

where K is the friction in the free bearing. The data of Davis and 
Macosko (1974) are fit well by this relation. Using an air bearing 
with typical operating conditions, lag is less than 1%. 

Equations 5.7.5 and 5.7.6 can be tested experimentally be- 
cause G’ and G” can be measured with sinusoidal shear oscillations. 
This has been done by Macosko and Davis (1974) for several poly- 
meric systems. One of their results with a polydimethylsiloxane 
polymer is shown in Figure 5.7.3. G’ and q’ were measured with 
four different rheometers: ERD, oscillating cone and plate, os- 
cillating sliding plates, and the tilted rotating hemispheres. The 
agreement between the four instruments is quite good. Note that 
the ERD extends to lower frequency. This enlarged range appears 

Figure 5.7.4. 
Of ERD to Other 

rheometers for a 6.8% poly- 
isobutylene solution. From 
Macosko and Davis (1974). 
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Figure 5.7.5. 
Other eccentric rotating ge- 
ometries: (a) tilted rotating 
hemispheres (also called bal- 
ance rheometer), (b) eccentric 
rotating cylinders, and (c) 
tilted rotating cone and plate. 

to be due to the ability to resolve smaller values of G’. Figure 5.7.4 
shows a similar comparison between ERD and oscillating cylin- 
ders for a low viscosity polymer solution. Agreement is within 
the accuracy of the oscillating cylinder data (Tanner and Williams, 
1971). 

Macosko and Davis (1974) and Gottlieb and Macosko (1982) 
report relations for instrument compliance in ERD data. These 
corrections can become very large for G‘-in the range 106 N/m2 
or higher-and must be accounted for. 

5.7.3 Other Eccentric Geometries 
Several other eccentric geometries have been described. Three 
of them are shown in Figure 5.7.5. Kepes (1968) and Kaelble 
(1969) developed tilted rotating hemispheres also known as the 
Kepes balance rheometer. Figure 5.7.3 shows that this rheometer 
can measure 8’ and G’ data accurately . 

Eccentric rotating cylinders can give accurate I]’ and G’ data 
but only at rather small strains (Broadbent and Walters, 1971). At 
larger deformation, cavitation or extrusion of the sample from the 
gap can occur. This also seems to be the problem for such other 
eccentric geometries as the tilted rotating disks or cone and plate 
(Davis and Macosko, 1973; Walters, 1975). 
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6 
The water in the tube, when 
it encounters the resistance 

of the wall, is not able to move 
as a solid cylinder. The 

middle thread mustjlow much 
faster than the outer one. 

G. H. L. Hagen (1839) 

Figure i.l.1. 
Hagen’s capillary tube (A) 
was supplied with water from 
tank (B). The pressure head 
was recorded by a pointer 
(C) attached to the float (D) 
and flow rate was checked by 
weighing the effluent. 

SHEAR 
RHEOMETRY: 
PRESSURE 
DRIVEN FLOWS 

6.1 Introduction 
The first measurements of viscosity were done using a small straight 
tube or capillary (Figure 6.1.1). Hagen (1 839) in Germany and in- 
dependently Poiseuille (1 840) in France used small diameter cap- 
illaries to measure the viscosity of water. A key development that 
made their work possible was the advent of precision diameter, 
small bore tubing. For water, use of larger diameters usually results 
in turbulent flow. Precision is required, as we shall see, because 
the tube radius enters the viscosity equation to the fourth power. 
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A capillary rheometer is a pressure-driven flow, the theme 
of this chapter, in contrast to the drag flows of Chapter 5.  As Ha- 
gen first observed, when pressure drives a fluid through a channel, 
velocity is maximum at the center. The velocity gradient or shear 
rate and also the shear strain will be maximum at the wall and 
zero in the center of the flow. Thus all pressure-driven flows are 
nonhomogeneous. This means that they are only used to measure 
steady shear functions: the viscosity and normal stress coefficients 
q ( P ) ,  $I(P), and 1,b2(9). Equations 5.1.1-5.1.3 define these func- 
tions, and Figure 11.3 indicated how they are related to the other 
material functions. 

If pressure-driven rheometers can measure only the steady 
shear functions, why are they so widely used? The first reason, of 
course, is that they are relatively inexpensive to build and simple 
to operate. Despite their simplicity, long capillaries can give the 
most accurate viscosity data available. A second major advantage 
is that closed-channel flows have no free surface in the test region. 
In Chapter 5 ,  for example, we saw how edge effects in the cone and 
plate geometry seriously limit the maximum shear rate in rotational 
instruments. In fact, for viscous polymer melts, capillary or slit 
rheometers appear to be the only satisfactory means of obtaining 
data at shear rates greater than 10 s-’ .  Capillary rheometers can 
also eliminate solvent evaporation and other problems that plague 
rotational devices with free surfaces. Because the sample flows 
through a capillary or slit, these rheometers can be readily adapted 
for on-line measurements (see Chapter 8). 

Another reason capillary rheometers are so,widely used is 
that they are very similar to process flows like pipes and extrusion 
dies. A capillary run is an excellent first test of processibility for a 
small amount of a new polymer or coating formulation. 

Just as a rotational rheometer designed to produce cone and 
plate flow can typically be used for concentric cylinder or parallel 
plate geometries, a capillary rheometer usually can be adapted for 
slit or annular flows. This chapter focuses mainly on capillary 
flow but also treats these other channel geometries. Flow over a 
narrow channel or “pressure hole” gives data. Such flow can be 
generated by both drag and pressure, but since it is usually measured 
in a pressure-driven slit geometry, we discuss it here. Extrudak 
swell and exit pressure can also give information on normal stresses 
and are discussed. We also look at two important pressure-driven 
indexers: the melt index and squeezing flow. At the end of the 
chapter we compare all the shear rheometers, summarizing their 
advantages and limitations. Chapter 8 has a section addressing 
capillary rheometer design. 

6.2 Capillary Rheometer 
A capillary was the first rheometer, and this device remains the 
most common method for measuring viscosity. The basic features 
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of the instrument are shown in Figure 6.2.1. Gravity, compressed 
gas, or a piston is used to generate pressure on the test fluid in a 
reservoir. A capillary tube of radius R and length L is connected 
to the bottom of the reservoir. Pressure drop and flow rate through 
this tube are used to determine viscosity. 

In deriving the viscosity relation the important assumptions 
are as follows: 

1.  Fully developed, steady, isothermal, laminar flow 
2. No velocity in the r and 8 directions 
3. No slip at the walls, ux = 0 at R 
4. The fluid is incompressible with viscosity independent of 

pressure 

With these assumptions, the equation of motion in the x di- 
rection (Table 1.7.1) in cylindrical coordinates reduces to 

(6.2.1) 

Because ap /dx  should be constant for fully developed in- 
compressible flow, we can integrate to obtain the shear stress dis- 
tribution (see also Example 2.4.1) 

r P c  
t r x  = - - 

2 L  
(6.2.2) 

Figure 6.2.1. 
Schematic of capillary 
rheometer. 
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where pc is the pressure drop over the capillary. At the wall the 
shear stress is 

(6.2.3) 

and 

A summary of the working equations for the capillary is pre- 
sented in Table 6.2.1. Their derivations are given in Sections 6.2.1- 
6.2.6. 

6.2.1 Shear Rate 

Usually we measure the volumetric flow rate Q, but to calculate 
viscosity, we need the shear rate du,/dr = 3. Q is related to ux by 

(6.2.5) 
0 

Integrating by parts and using the no-slip assumption gives 

(6.2.6) 

We now have the shear rate du,/dr, but it is inside the integral. To 
help us remove it, we can change from the r variable to T .  Using 
eq. 6.2.4 gives dr = R / r w  dtlz.  Substituting for r and dr gives 

Then differentiating with respect to r,, we get 

(6.2.7) 

(6.2.8) 
r,, 

Rearranging, we obtain the Weissenberg-Rabinowitsch equation 
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TABLE 6.2.1 / Working Equations for Capillary Rheometer 
Wall shear stress 

(6.2.3) 
and (6.2.20) 

Wall shear rate 

Yaw = (6.2.10) 

yw = tyuw [ 3 +  din^.] (6.2.9) 

yw = 3 + (for power law model) [ I  
Representative shear rate 

for y = 0.83yu (6.2.13) 

and 0.2 < < 1.3 

First normal stress difference from extrudate swell (not rigorous) 

(TI, - T22)Z = S r i ( B 6  - 1) (6.2.27) 

where B = $ - 0.13 

Errors 
Wall slip with concentrated dispersions 
Melt fracture at r, - lO5Pa 
Reservoir pressure drop 
Entrance pressure drop 

Bagley plot 
Single die L I R  2: 60 
Kinetic energy for low q, high 9 

Viscous heating-Na 1 
Material compressibility 
Pressure dependence of viscosity 
Shear history, degradation in reservoir 

Utility 
Simplest rheometer, yet most accurate for steady viscosity 
High y 
Sealed system: pressurize, prevent evaporation 
Process simulator 
Quality control: melt index 
Nonhomogeneous flow, only steady shear material functions 
Entrance corrections entail more data collection 

(6.2.21) 

(6.2.22) 
(6.2.23) 
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where paw is the apparent or Newtonian shear rate at the wall 

4Q 
n R3 Yaw = - (6.2.10) 

Thus we have the shear rate and the shear stress (eq. 6.2.3) at the 
same point, the wall. Therefore, we can calculate viscosity from 
the measured variables Q and pc ,  if there is enough data to evaluate 
the derivative l/n’ = d In Q / d  In pc 

q = - = -  ‘UJ IrR4” ( - “ ) (6.2.11) 
yw 2QL 3n’+ 1 

Note that n’ is simply the exponent n of the power law constitutive 
equation (compare eq. 6.2.9 to eq. 2.4.22, Example 2.4.1). For a 
Newtonian fluid, n’ = 1 and i; = paw. Often we evaluate capillary 
data in terms of an apparent viscosity based on the Newtonian result 

(6.2.12) 

For eq. 6.2.9 we see for the third time this “trick” of changing 
variables to extract useful rheological variables from an inhomoge- 
neous flow. In thp wide gap concentric cylinders (eqs. 5.3.21 and 
5.3.24) we traded an unknown velocity gradient for the measurable 
gradient of torque with rotation rate. In torsional flow between 
parallel plates the stress distribution is unknown, but we can find it 
at the edge of the plate by again using the gradient of torque with 
rotation rate (eq. 5.5.8). 

To use eq. 6.2.9 to get the true shear rate, we must have ad- 
ditional data near the point of interest. Furthermore, numerical 
differentiation of data is notoriously inaccurate. Fortunately, this 
correction does not greatly alter the shape of the viscosity versus 
shear rate function. The apparent (Newtonian) shear rate paw is 
multiplied by (3 + l/n’)/4 and the viscosity is divided by it. Thus 
data points are shifted to the right and down along a line with slope 
-1 on a log-log plot as illustrated in Figure 6.2.2. The correc- 
tion is similar to that for a wide gap concentric cylinders rheometer 
(Figure 5.3.2). 

A simpler, approximate method to correct the shear rate data 
has been developed by Schiimmer (1970,1978) and Giesekus and 
Langer (1977). It uses the idea that the true and apparent shear 
rates must equal one another near the capillary wall. It turns out 
that this occurs at nearly the same point, r,* = r / R  = 0.83, for a 
wide range of fluids. Thus the apparent viscosity equals the true 
viscosity evaluated at 

~ ( 9 ~ )  = qa(Yaw) for Pw = 0.83 paw (6.2.13) 

This result is derived in Example 6.2.1. Figure 6.2.2 shows how 
this simplifiedconversion shifts the data. Laun (1983,1989) reports 
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Figure 6.2.2. 
Effect of shear rate correc- 
tions on viscosity data for 
two polymer melts. Open 
points, assuming parabolic 
(Newtonian) velocity pro- 
file; solid points, assuming 
Weissenberg-Rabinowitsch 
eq. 6.2.11. Inset compares 
eq. 6.2.1 1 to the simple, 
approximate method of 
Schummer, eq. 6.2.13. 

101 1 02 103 104 
i,, ? (9.1) 

that this single point method for correcting viscosity is as accurate 
as the Weissenberg-Rabinowitsch method. He used both capillary 
and slit geometries with several polymer melts and solutions. 

Example 6.2.1 Simplified Conversion from Apparent 
to True Viscosity 
Show for a power law fluid flowing in a capillary that when the 
apparent (Newtonian) viscosity is evaluated at Yaw, it gives the true 
viscosity at 0.83yaW. Give the accuracy of this approximation. 

Solution 
For any fluid, the shear stress varies linearly with capillary radius 
(eq. 6.2.2). For a Newtonian fluid, the shear rate will also be linear 
in r*, where r* = r/R 

while for a power law it increases with r*'In 

(6.2.14) 

(6.2.15) 

These two functions intersect each other at r,* as illustrated in Figure 
6.2.3. We can solve for r,' by equating eqs. 6.2.14 and 6.2.15 and 
substituting for yw from eq. 6.2.9 
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Figure 6.2.3. 
Shear stress (tw, eq. 6.2.2), 
apparent shear rate (pa ,  
eq. 6.2.14), and power law 
shear rate (p, eq. 6.2.15 with 
n = 0.3) plotted versus cap- 
illary radius. Adapted from 
Laun (1983). 

I I R 

* -1 rc 0 r,' I 

r* = r/R 

(6.2.16) 

Figure 6.2.4 plots r,* versus n according to eq. 6.2.16. We 
see that it varies from 0.77 to 0.88 over the usual range of n .  If we 
assume a constant value for r,* the viscosity error will be 

3 + l ln  nI(1-n) - Atl = (n  - l ) [ r , * ( T )  - 11 (6.2.17) 
tl 

Error values are plotted for several r,* values. We see that for 
r,* = 0.83 the viscosity error will be less than 2% for 0.2 < n < 1.3. 

We have used the power law in this derivation, but this does 
not mean that the unknown fluid we are testing in the capillary must 
obey the power law over a wide range of i.* We apply the model 
locally; the fluid must be power law only from Pa to 0.839,. 

The main danger in using this approximation is for strongly 
shear thinning liquids (Giesekus and Langer, 1977). In Figure 
6.2.4b we see that the errors are large for n 5 0.1. 

6.2.2 Wall Slip, Melt Fracture 

A more serious error in shear rate occurs when there is wall slip. 
This can be particularly important for concentrated dispersions and 

*Since we normally need to know only y at the wall, for the rest of this chapter we 
will not distinguish between y or yw and yo and yaw. 
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Figure 6.2.4. 
(a) Variation of the intersec- 
tion point r,* with power in- 
dex. (b) Error in viscosity by 
using constant r:. Adapted 
from Laun (1983). 
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for polymer melts. Let us first consider the dispersions. Because 
of the impenetrability of the wall, the layer of particles next to a 
rheometer wall is typically more dilute than in the bulk dispersion. 
Furthermore, as discussed in Chapter 10, during flow the shear rate 
gradient causes particles to migrate away from the wall. This shear- 
induced migration is greater for small capillaries and higher shear 
rates. The thin, dilute layer near the wall will have a much lower 
viscosity and will act as if the bulk fluid were slipping along the 
wall. 

The simplest way to test for this phenomenon is to compare 
viscosity functions determined by capillaries of similar L /  R but 
different R. This is shown in Figure 6.2.5. We see that the smaller 
diameter capillaries have lower apparent viscosities. 
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Figure 6.2.5. 
Apparent viscosity versus 
apparent wall shear rate by 
capillaries of various radii R 
but constant L I R  = 60 for 
a clay paper coating formu- 
lation with 68 wt % solids. 
Solid circles denote values 
extrapolated to infinite radius 
using eq. 6.2.18. From Laun 
and Hirsch (1989). 
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It is usually possible to correct this apparent wall slip and de- 
termine the true viscosity of the sample by extrapolating to infinite 
diameter. Apparent wall shear rates measured at constant extrusion 
pressure (i.e., constant tw)  for a constant L / R  are plotted against 
1 / R according to the relation first developed by Mooney (193 1) 

(6.2.18) 

where v, is an effective slip velocity. Laun and Hirsch (1989) 
obtained straight lines when they plotted the data in Figure 6.2.5 
according to the relation. Using the Pam values from the intercepts, 
they recalculated q and obtained the upper curve in Figure 6.2.5. 
This should be the true viscosity of the sample. Gleissle and Wind- 
hab (1985), Windhab (1986), and Kurath and Larson (1990) have 
also applied wall slip corrections to capillary flow of concentrated 
dispersions. 

Polymer melts show a transition from stable to unstable flow 
at high stress. The extrudate surface appears distorted, usually in a 
regular pattern at first and then very rough at higher flow rates. The 
phenomena is often called "melt fracture." In some cases pressure 
will oscillate strongly, as indicated in Figure 6.2.6 for high density 
polyethylene. As with the dispersions, smaller diameter dies show 
a greater slip effect. Uhland (1979) fit his data with eq. 6.2.18, but 
the Pam were not low enough to superpose the slip data on the no- 
slip curve. However, he was able to model the slip region assuming 
a 180 k m  thick film on the capillary wall with a viscosity 10% of 
the melt. 

The melt distortion phenomenon is not well understood. 
Clearly it involves loss of adhesion at the die wall and slip or stick- 
slip flow (Uhland, 1979; Kurtz, 1984; Ramamurthy, 1986; Kalika 
and Denn, 1987; Lim and Schowalter, 1989). But it can also arise 
from unstable flow in the die entry region (White, 1973; see also 
Figure 7.8.5) or from rapid acceleration of the surface layer as it 
exits the die. 
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Figure 6.2.6. 
Shear stress versus shear rate 
for a high density polyethy- 
lene melt showing flow insta- 
bilities and evidence of slip. 
Adapted from Uhland (1979). 
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From the viewpoint of capillary rheometry, the onset of melt 
distortion means the end of rheological data. The onset stress 
should be noted, but it does not appear to be possible to correct 
the data to give true viscosity data at higher stresses. Although 
tapering the die entrance can help somewhat, distortion appears to 
occur at t 2 lo5 Pa independent of temperature, polymer type, 
or chain length (Tadmor and Gogos, 1979; Lim and Schowalter, 
1989). This makes it particularly difficult to get data on high vis- 
cosity elastomers (Geiger, 1989; Leblanc et al., 1989). 

If melt distortion limits shear stress for highly viscous (and 
elastic) materials, turbulent flow potentially puts an upper limit on 
capillary rheometry of low viscosity fluids. The classical Reynolds 
number criteria for the onset of turbulence in tube flow gives 

(6.2.19) 

Here we have expressed the mean velocity in terms of the apparent 
shear rate )ia = 4iS/R. For water ( p  = lo00 kg/m3, r]  = 1 mPa.s) 
flowing in a 0.5 mm radius capillary, eq. 6.2.19 gives a maximum 
shear rate of 17,000 s-' for laminar flow. The addition of polymer 
or particles will tend to raise the critical Re. Therefore, with the 
small diameters typically used in capillary rheometry, turbulence 
is rarely an issue. 

6.2.3 True Shear Stress 

We have presented the important corrections needed to get true 
shear rate from flow rate measurements. We now turn our attention 
to getting the correct shear stress. According to the assumptions 
used in deriving eq. 6.2.3, we need to measure p , / L ,  the pressure 
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Figure 6.2.7. 
Schematic of pressure profile 
in a capillary rheometer. 
Where, 
pf: pressure drop due to fric- 
tion between piston & reser- 
voir walls 
p r :  pressure drop in the 
reservoir, due to steady, fully 
developed flow 
pen: previous drop in the cap- 
illary due to converging flow 
from reservoir to capillary 
pc:  pressure drop due to 
nearly fully developed flow 
in capillary 
pex:  non-zero pressure at cap- 
illary exit due to fluid elastic- 
ity 

drop over a length of steady, fully developed flow. This can be done 
with pressure transducers mounted on the capillary wall. The diam- 
eter of such transducers is much larger than the typical capillaries, 
which means that the transducers must be recessed and connected 
to the capillary through small holes. This can lead to plugging and 
cleaning problems. 

As a result of these difficulties, typical capillary rheometers 
measure pressure in or above the reservoir as indicated in Figure 
6.2.1 or from the forces on a driving piston. (Different capillary 
rheometer designs are discussed further in Chapter 8.) To determine 
the true shear stress, a number of corrections must be considered. 

Figure 6.2.7 indicates the pressure profile in a typical piston- 
driven capillary rheometer for polymer melts. The total pressure is 
made up of a number of contributions: 

where pc  = 2twL/R by eq. 6.2.3. Our goal is to evaluate tw from 
ptot measurements. Thus we need to evaluate the other four terms. 

Most rheometers used for higher viscosity liquids employ 
some type of piston and thus are subject to pressure losses due to 
friction between the piston and the reservoir walls. It is frequently 
suggested that p f  can be estimated by running the piston down an 
empty reservoir. However, seal friction can change significantly in 
the presence of fluid and back pressure. Earlier workers generally 
found p j  small (e.g., Marshall and Riley, 1962; Choi, 1968), but 
at shear rates below 1 s-l the total pressure drop becomes small 
enough to permit frictional forces to become significant. Of course, 
for gas- or gravity-driven viscometers, which are used for lower 
viscosity fluids, p j  is not a factor. However, with the direct gas 
type, channeling of gas into the fluid can become a problem as 
viscosity increases. A ball placed on top of the reservoir liquid can 
prevent channeling. The mass of this ball must be added to the 
gravity head in the reservoir. 
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Figure 6.2.8. 
Schematic of pressure on pis- 
ton versus height in reservoir 
(barrel). To allow extrapola- 
tion to zero reservoir height, 
four constant flow rates (pis- 
ton velocities) are repeated 
three times as the barrel is 
emptied. 

The pressure drop, p r ,  in the reservoir shows up as agradually 
falling pressure in a constant flow rate instrument or as a rising flow 
rate with a constant pressure rheometer. It may be eliminated by 
extrapolation to the capillary entrance, as indicated in Figure 6.2.8. 
A power law model can be used to get an estimate of pr  (Skinner, 
1961; Marshall and Riley, 1962; Metzger and Knox, 1965) 

Most high temperature instruments have relatively small diameter 
reservoirs for fast heating and they are long, to provide enough 
sample. 'Qpical dimensions are Lr = 200 mm and Rr = 5 mm. 
With a short, large diameter die e.g., L = 4 mm, R = 1 mm and 
a Newtonian fluid, pr  = 0.08 pc.  For n < 1 the correction will 
be less. For R / R ,  < 0.2 and for higher pressures (longer dies 
or higher shear rates), both friction and the reservoir loss can be 
neglected. This is the general practice, but a good alternative is to 
mount a pressure transducer just above the capillary entrance. 

Another important aspect of the reservoir is the prehistory of 
the sample. The main problem is thermal degradation with heat- 
sensitive materials. Sample extruded at the end of the run may have 
been at high temperatures long enough to alter its rheology. Settling 
of dense dispersions may also occur at low flow rates. Sometimes 
an extruder or other pump is used to feed the capillary (see Chap- 
ter 8). Preshear in the pump can influence the capillary results. 
Hanson (1969) and Villemaire and Agassant (1983-1984) fed their 
capillaries through the gap between rotating concentric cylinders. 
This preshearing considerably lowered the capillary pressure drop 
on some polymer melts. Rauwendaal and Fernandez (1 985) found 
lower viscosities with a slit rheometer fed by an extruder. Frayer 
and Huspeni (1990) found a strong preshear effect on the slit flow 
of liquid crystalline polymers. 

Figure 6.2.1 shows a schematic representation of pen, the 
pressure consumed in the converging flow from the large reservoir 
to the smaller capillary. 'Qpically, pex is smaller and arises from 
normal stresses, velocity rearrangement, and perhaps surface ten- 
sion at the exit. Approaches to obtain normal stresses from pcx are 
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Figure 6.2.9. 
Representation of pressure 
versus L / R  at constant flow 
rate for a polyethylene melt, 
often called a “Bagley plot.” 
The upward curvature for 
long dies is due both to com- 
pressibility and to the pres- 
sure dependence of viscosity. 
The data have been fit with 
the three functions indicated. 
Evaluating dP/d(UR) at U R  = 
0 for each of these fits gives 
rwl = 215 kPa, T , ~  = 244 
Wa, and t w 3  = 233 Wa. 

discussed further in Section 6.3 on slit rheometry. Here we will 
lump them together as pe = pen + pex.  

The most accurate way to correct for pe is to take data with 
several capillaries. If they have the same radius and flow rate, then 
pe will remain the same, but the pressure drop we need, Ap = 
2t, L /  R ,  will increase with L .  

If ptot is plotted versus L /  R at constant Q ,  the intercept gives 
pe .  This is illustratedfor apolyethylene melt inFigure 6.2.9. Some- 
times the intercept on the abscissa is used to express the correction 
as an extra die length e (Bagley, 1957). For short dies the end ef- 
fects can be very significant. For example, for L / R  = 4 in Figure 
6.2.9 the intercept is about 70% of ptot. 

Construction of Bagley plots like Figure 6.2.9 requires con- 
siderable experimental effort. The usual practice is to use one long 
die ( L I R  2 60) and assume that all the corrections are negligible. 
This method is not always as accurate as might be expected. Notice 
the slight upward curvature in Figure 6.2.9. Curvature in p versus 
L / R  data is due to compressibility and the influence of pressure on 
viscosity, which is discussed further in connection with slit rheom- 
etry in Section 6.3. For example, the pressure readings at L / R  = 
66, 98, and 132 all give rw = 2.75 x 105Pa if all the corrections 
in eq. 6.2.20 are neglected. However, this value is 18% higher than 
the true value taken from the slope at small L / R .  

Negative curvature rarely occurs in Bagley plots, but an ex- 
ample is shown in Figure 6.2.10. Laun and Hirsch (1989) attributed 
this to the thixotropy: that is, the decrease in viscosity with amount 
of shear. For this sample only dies of L I R  I 12 could be used to 
estimate the end effects. 

The most accurate method for determining pe is to make a 
Bagley plot with at least two short dies of the same diameter. An- 
other approach is to measure pe  directly with an orifice die and use 
it to correct data from one long die. This method usually requires 
using two different transducers because of the great difference in 
pressure. 

In some cases it is possible to estimate the end corrections. 
For Newtonian fluids the pressure drop for a sudden contraction 

I1 
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- 
- 

2 -  
3 4 9 -  
v 

1 3 5 -  - 
21 - 

Shear stress based on the 
three fits to the data: 
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Figure 6.2.10. 1 I Pressure versus L I R  for a 
60% solids clay coating at 
25"C, R = 1.5 mm. The 
negative curvature is due to 
strong thixotropy. From Laun 
and Hirsch (1989). 15 
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is due to the kinetic energy change (or fluid inertia) and viscous 
rearrangement of the velocity profile (Van Wazer et al., 1963) 

K, 
;pv* Re 
-- pen - KH + - (6.2.22) 

Here the cross-sectional area of the reservoir is assumed to be much 
larger than the capillary area. Sylvester and Chen (1985) have 
reviewed the literature and find KH = 2.0-2.5 and K, = 30-800 
from various experimental studies. For higher Re Reynolds number 
(eq. 6.2.19), a best fit of their data gave K, = 133 f 30. Boger 
(1987) gives the inertia correction for a power law fluid. 

Figure 6.2.1 1 illustrates the application of the kinetic energy 
correction to some very high shear rate data on a low viscosity clay 
suspension, - 10 m /Pa.s. We see that in this case the Bagley plots 
are straight even to L / R  = 100. Table 6.2.2 shows that at the two 
lowest shear rates, eq. 6.2.22 predicts pen fairly well; however at 
higher rates it is about double the experimental values. If eq. 6.2.22 
and pen for only one capillary are used ( L / R  = loo), the error in 
viscosity is 20% at the highest p. Kurath and Larson (1990) also 
applied eq. 6.2.22 to data on similar clay coating samples. 

SHEAR RHEOMETRY: PRESSURE DRIVEN FLOWS / 251 



I - Figure 6.2.11. 
Pressure versus L I R  for a b 
55.3% solids clay.coating at E 
40"C, R = 0.205 mm. Table a 100 -- 
6.2.2 compares these exper- 
imental end corrections to 
the kinetic energy term us- 
ing KH = 2.24 and the vis- 
cous term using K, = 133 
with eq. 6.2.22. Adapted from 
Laun and Hirsch (1989). 

0 20 40 60 80 100 

Length Over Radius Ratio L/R 

For polymer melts and solutions pen is strongly influenced by 
the extensional flow occurring at the capillary entrance. Observed 
values of pen can be much higher than those predicted by eq. 6.2.22. 
In fact, the use of capillary entrance flow as an extensional indexer 
is discussed in Section 7.8. 

The corrections needed to get true shear rate and shear stress 
are summarized in Table 6.2.1, When these corrections are made, 
excellent viscosity data can be obtained with capillary rheometers 
over a wide range of shear rates. Section 6.5 gives some typical 
data and makes comparisons to other shear rheometers. 

6.2.4 Shear Heating 

High viscosity and high shear rates may generate considerable heat 
as a result of viscous dissipation near the capillary wall. This heat 
will lower the viscosity near the wall and make the fluid appear 
more shear thinning. The general problem of viscous dissipation 
was discussed in Chapter 2, and its effect on drag flow rheometers 
was treated in Chapter 5 (e.g., Figure 5.3.9). Shear heating in 
pressure-driven flows is reviewed by Winter (1975, 1977) and by 
Warren (1988). 

The Nahme number Na is the critical parameter for estimating 
the importance of shear heating in rheometry. It determines how 

TABLE 6.2.2/ Entrance Pressure Drop from Figure 6.2.11 Compared 
to Inertia Calculation 

Poi 
3 t W  pe,, eq. 6.2.22 KHpv2/2 K,r/16 

(105s-') (bar) (bar) (bar) (bar) (bar) 

10 .47 21.3 42.8 38.9 3.9 
7 .32 8.8 21.8 19.1 2.7 
5 .23 5.5 11.6 9.73 1.91 
2 .10 2.0 2.39 1.56 .83 
1 .064 0.8 .92 .389 .53 
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much the temperature rise will affect the viscosity (see Example 
2.6.1). For capillary flow 

B t y R 2  
Na = - 

4k 
(6.2.23) 

where k is the thermal conductivity and /I is the temperature sensi- 
tivity of viscosity 

When Na 2 1 significant errors occur in capillary measurements as 
a result of viscous dissipation. Figure 6.2.12 demonstrates this for 
flow of a polymer melt through two very different diameter capillary 
dies with the same L /  R. If there were wall slip (recall Figure 6.2.5), 
the smaller diameter capillary would give a lower stress, but here 
it is significantly higher because there is less viscous dissipation as 
a result of the R2 term in Na. Figure 6.2.12 indicates Na = 1 for 
each die. We see that this corresponds well to the point at which the 
experimental stress values depart significantly from the isothermal 
flow curves. 

Other examples of the effect of viscous dissipation on capil- 
lary data are given by Cox and Macosko (1 974b) and Warren (1 988). 
These workers and Winter (1975, 1977) indicate how to correct 
data affected by shear heating to true viscosity values. This re- 
quires numerical solution of the momentum and energy equations, 
a capability available in many standard fluid mechanics software 
packages. However, note that for typical capillary dies the stress 
level at which viscous dissipation becomes important is near the 
region for polymer melt fracture, tw - lO5Pa. As already pointed 
out, it is not possible to get true viscosity data after the onset of 
melt fracture. 

Figure 6.2.12. 
Shear stress versus appar- 

laries of different diameter 
but the same L/R = 60. 
ABS polymer melt: squares, 
R = 0.26 mm, 230°C barrel; 
circles, R = 1.6 mm, 232°C 
barrel. The solid line rep- 
resents isothermal flow es- (Pa) 
timated at high i /  from the 

ure 2.6.1); the dashed line, 

viscous dissipation with no - 
1 02 103 104 heat transfer to the wall, for 

R = 1.6 mm. Replotted from 
Cox and Macosko (1 974a) 

ent shear rate for two capil- 6-105 I I I I I 1  I "  I I I l l l l  - 
- 
- 

'FW 230'C 

viscosity master curve (Fig- 

adiabatic boundary condition, Adiabatic - 
R = 1.6 m m  

wall - 
I 1 1 1 1 1 1 1 l  I I 1 1 1 1 1 1  

and Cox (1973). ?a (6-9 
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6.2.5 Extrudate Swell 
When an elastic liquid leaves a capillary die, it expands as sketched 
in Figure 6.2.1. This expansion results from tension along stream- 
lines. The experiment is analogous to recoverable strain after steady 
shearing (Chapter 3), but here the confining walls evaporate at the 
onset of recovery. If the effects of gravity, surface tension, and air 
cooling are not too strong (or can be eliminated by, for example, 
extruding into an oil bath), then an equilibrium swell can be meas- 
ured. This swelling has been related to NI , the first normal stress 
difference. The derivation is model dependent and the assumptions 
are not rigorously obeyed, so extrudate swell must be considered to 
be a normal stress index, perhaps useful for comparing materials. 

Dealy (1982) reviews the experimental methods used to meas- 
ure extrudate or die swell. Typically the ratio of equilibrium extru- 
date diameter D, to die diameter 2 R is measured 

4 Be, = - 
2R 

(6.2.25) 

The method that appears to give results closest to equilibrium is 
to extrude directly into a heated oil bath and take photographs. A 
simpler method is to quench a strand and then anneal it at melt 
temperature in an oil bath or even on a tray covered with talcum 
powder. Annealing time needs to be long enough to reach equilib- 
rium swell, but short enough to prevent surface tension or gravity 
from distorting the shape. Diameter measurements that are made 
at room temperature should be corrected to the melt temperature 
by the change in density. 

Reservoir diameter and capillary L /  R influence the equilib- 
rium swell ratio. If R,/R c 10 and L/R > 40, then swell meas- 
urements are independent of rheometer geometry (Han, 1976). Of 
course, the onset of melt distortion sets an upper limit on shear 
stress for swell measurements. 

Theory and experiment show that Newtonian liquids swell 
at low Reynolds numbers but shrink as inertia becomes important: 
B = 1.13 for Re 5 2 and B = 0.87 for Re 2 100 (Middleman, 
1977). Typically elastic liquids are extruded in the low Reynolds 
range, so the Newtonian result is subtracted from the experimental 
values to give an “elastic swell” 

B = Bex - 0.13 (6.2.26) 

Vlachopoulos (1981) and Tanner (1988a) have reviewed the 
various efforts to relate B to rheological material functions. The 
simplest and most widely used is Tanner’s (1970a), which follows 
from Lodge’s work (1964) on recoverable strain. It assumes uncon- 
strained recovery after steady shear and applies an integral model 
of the BKZ type (4.4.2) with one relaxation time. The result is 

N: = 8 r i ( B 6  - 1) (6.2.27) 
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Figure 6.2.13. 
Viscosity and N1/2q2 versus 
shear rate: open points, cone 
and plate; solid points, capil- 
lary extrudate swell L/R = 
81; N1/2t12 from eq.6.2.27 
with B = Be, - 0.11. From 
Utracki et al. (1975). 

I I I I I10 

where both B and N1 are evaluated at the same shear stress, t,. This 
result has fit some data well (Tanner, 1970b; Utracki et al., 1975), 
as indicated in Figure 6.2.13, but it does not always give a very 
accurate prediction of N ~ / T I ~ .  Table 6.2.3 shows swell and normal 
stress data on a low density polyethylene (IUPAC A; Meissner, 
1975). Here eq. 6.2.27 does a poor job of predicting B .  A full 
numerical simulation using a viscoelastic constitutive equation does 
fairly well. The experimental normal stress data at 10 s-' may be 
low because of edge failure. Vlachopoulos (198 1) reports a similar 
underprediction of B by eq. 6.2.27 for polystyrene. Tanner (1988a) 
has found that in addition to N1 the value of extensional viscosity 
may influence extrudate swell. 

Underprediction of eq. 6.2.27 is not due to experimental er- 
rors in Bex because such errors should lead to failure to reach equi- 
librium and smaller values. 

Accurate extrudate swell measurements are not easy to make, 
yet because the swell ratio must be cubed N1 - B 3 ,  they are critical 
to predicting normal stresses. 

TABLE 6.2.3 / Extrudate Swell of Low Density Polyethylen2 

Y N i l ~ i z  Be, Be ,  Be, 
(s-l) (exp) (eq. 6.2.27 + 0.13) (numerical) (exp) 

0.1 1.5 1.17 1.34 1.35 
1.0 3.1 1.27 1.52 1.53 
10 (3.8) 1.32 (1.56) 1.75 

'Data taken with long dies at 150°C from Tanner (1988a). Parentheses indicate 
approximate value. 
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Because eq.6.2.27 depends on both choice of constitutive 
equation and idealization of the deformation, it seems unwise to rely 
on capillary die swell data to measure normal forces. However, such 
data are useful as normal stress indexes for comparing materials. 

6.2.6 Melt Index 
The most common capillary instrument in the polymer industry is 
not a rheometer but an indexer. The quality of nearly every batch 
of thermoplastic made in the world is controlled by melt index. 
Because it is so widely used and has all the essential features of 
a capillary rheometer, and because rheologists are often asked to 
compare their results to melt index values, we need to examine it 
here. 

The melt index is standardized internationally, (IS0 R1133; 
R292) in the United States, Germany, Japan (e.g., ASTM D1238- 
73, DIN 53735, JIS K72iO) and in other countries. Figure 6.2.14 
shows the measuring apparatus. It resembles a typical capillary for 
polymer melts except that only one die and one driving pressure are 
specified to give the melt index number. The die has a rather large 
diameter, 2R = 2.095 mm, and is short, L/R = 7.637. There are 
a number of different load and temperature conditions, depending 
on the particular polymer. The most common is “condition E’: 
190°C and 2.160 kg mass on the piston. Since the piston is 9.55 
mm diameter, pressure on the top of the melt is 2.97 x lo5 Pa and 

Figure 6.2.14. 
Schematic of melt index (MI) 
apparatus. 

Tempering 
fluid 

9.55 mm 

e 
MI die 
L.42 = 1.631 
2R = 2.095 UUII 
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Figure 6.3.1. 
Schematic of slit rheometer 
with flush-mounted pressure 
transducers A. 

8 

wall shear stress, assuming no end effects, is tw = 1.94 x lo4 Pa, 
from eq. 6.2.3. This stress is relatively low for capillary rheometry. 
For comparison tW = 1.94 x lo4 Pa would give, respectively, 
p 2 40 and c 10 s-' for the ABS and PVC samples shown in 
Figure 6.2.2. 

After the sample comes to temperature, the weight is applied 
and flow rate is determined by cutting and weighing the extrudate 
obtained in 10 minutes. This weight in grams is the melt flow 
index (MFI) of the polymer. It resembles an inverse viscosity at 
moderately low stress. High MFI means low qo and low molecular 
weight, hence its use to control polymerization reactors (Bremner 
and Rudin, 1990). 

Such an instrument could measure true viscosity, but one 
would need to use other dies and weights. With such a short 
die entrance, losses can consume up to half of ptot (recall Fig- 
ure 6.2.9). Also the ratio of die to reservoir radius is rather large, 
R / R ,  = 0.219, so reservoir losses are significant. Thus the melt 
index number is a combined measure of shear and extensional vis- 
cosity. 

Because MFI is used so widely, there is interest in quantita- 
tively relating it to rheological material functions. Michaeli (1984) 
gives a nomogram to relate MFI to melt viscosity. Such calculations 
generally ignore reservoir and entrance pressure losses. 

6.3 Slit Rheometry 
Capillary rheometers can be modified readily to force liquid through 
a thin rectangular channel or slit. Figure 6.3.1 shows a typical ar- 
rangement. Derivation of the working equations follows closely 
that for the capillary and can be found in a number of texts (Wal- 
ters, 1975; Dealy, 1982; Bird et al., 1987). The important results 
are summarized in Table 6.3.1, which contains eqs. 6.3.1-6.3.5, 
not presented separately in this section. 

Except for numerical constants, the equations for calculating 
shear rate are the same as for the capillary. The constant 0.79 in 
the representative shear rate equation can be obtained following the 
derivation given in Example 6.2.1 (see also Laun, 1983, Appendix 
A). Varying slit thickness, H, can be used like capillary radius to 
test for wall slip. In fact, the studies by Lim and Schowalter (1989) 
and by Geiger (1989) referred to in Section 6.2 were done with slit 
dies. Slip or melt fracture in polymer melts occurs at about the 
same wall shear stress as for capillaries, 105Pa. 

Shear heating can also affect slit data. Again the Nahme 
number can be used to estimate when significant viscosity errors 
will occur. For a rectangular channel 

(6.3.6) 
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TABLE 6.3.1 /Working Equations for Slit Rheometer 

Wall shear stress 

,w=L* 2 ( l + H / W )  dx  (6.3.1) 

Wall shear rate 

Yu = & (6.3.2) 

(6.3.3) 

Representative shear rate 

q o j )  = qu(Yu) = y to f 3% (6.3.4) 

for = 0.791i, (6.3.5) 

and0.17 c < 1.2 

First normal stress difference 

By extrapolation to pex 

N t = p e x ( I + * )  

By pressure hole, transverse slot 

(6.3.1 1) 

Errors 
Similar to capillary, but no Bagley plots are needed if pressure transducers 
on the slit wall are used 

Utility (same advantages and limitations as capillary except) 
Obtain d p l d x  directly from pressure transducers; no entrance corrections 
NI by pex and especially Ph more rigorous than capillary die swell, but 
obtaining accurate NI values is difficult 
Effect of finite slit width 
Cleaning slit corners 
More complex, more expensive than capillary 

Lodge and KO (1989) tested this criteria with Newtonian oils in a 
miniature slit die rheometer, 0.05 x 0.5 x 2 mm. At the remarkably 
high shear rate of 5 x lo%-' with a 2.5 m Pa-s oil, they reached 
Na = 1.3 and recorded a 7% error in viscosity. Lodge and KO 
(1989) and also Winter (1975, 1977) give detailed analyses of the 
role of viscous dissipation in slit flow. 

A disadvantage of slit flow is the lower shear rate and stress 
obtained at the side walls. Wales et al. (1965) examined the effect 
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of aspect ratio and found insignificant error for W / H  > 10. For 
W / H  < 10 the wall shear stress should be corrected as indicated 
in the denominator of eq. 6.3.1 (Table 6.3. I ) .  

The major advantage of the slit rheometer is also indicated 
in eq. 6.3.1, namely direct measurement of the pressure gradient 
dpldx.  This is possible because pressure transducers can be 
mounted on the wide flat sides of the slit geometry. Even if pres- 
sure holes are used, they are easier to construct and will not disturb 
the flow as much as in a small diameter capillary. If pressure trans- 
ducers are not used, dp/dx can be evaluated from ptot as with the 
capillary (eq. 6.2.20). 

A typical pressure profile down a slit die is shown in Fig- 
ure 6.3.2. From the slope, T, can be determined directly using 
eq. 6.3.1 without the reservoir and end corrections required for ac- 
curate capillary rheomeuy. Thus only one flow rate is needed for 
each ~ ( 9 )  point. To ensure that accurate data are obtained, the 
pressure transducers must be carefully calibrated. Laun (1983) 
discusses the accuracy of commercial transducers and the use of a 
nonlinear calibration curve. When such care is taken, it is possible 
to get excellent viscosity data over a wide shear rate range. Figure 
6.3.3 gives an example of such data with comparison to cone and 
plate and three sets of capillary data. There are other examples 
in the literature (e.g., Wales et al., 1965; Han, 1976; Hansen and 
Jansma, 1980). 

In Figure 6.3.2 note the large drop in pressure from the reser- 
voir to the die. Laun (1983) has shown that this entrance pressure 
drop is in good agreement with that measured by capillary rheom- 
etry. Notice also the curvature in the pressure versus distance data. 
We saw curvature with different L / R  capillaries in Figure 6.2.9. It 
is caused primarily by the pressure dependence of viscosity. We 
can analyze for pressure dependence by fitting the profiles with a 
quadratic function 

p ( x )  = a + bx + cx2 (6.3.7) 

Figure 6.3.2. 
Pressure versus distance 
down a slit die with a linear 
and quadratic fit through the 
four data points. The curves 
are schematic: curvature and 
pex have been exaggerated. P 

Pex 
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Rgure 63.3. I o5 
Comparison of viscosity ver- PE T =  I5O"C 
sus shear rate data on a low 
density polyethylene at 150°C 
for slit (o), cone and plate 
(01, gas-driven capillary (A), E 
rheometer (v: R = 0.6 mm; 
0, R = 0.25 mm). From 
Laun (1983). 

lo4 - 

and piston-driven capillary F 

lo2- 

10' 
I I I I I 

lo-' loo 10' lo2 lo3 lo4 
Shear rate (s-1) 

Note that here x = 0 is at the slit outlet. If viscosity is assumed to 
depend exponentially on pressure 

then the pressure coefficient can be found from 

alnV(i/) 2c = -  
b2 

a!= 
aP 

(6.3.9) 

Duvdevani and Klein (1967) have used a similar approach 
on capillary data. This method is not highly accurate, but it yields 
reasonable values for a! (Laun, 1983). One difficulty is that com- 
pressibility of the sample also can cause similar curvature in p ( x )  
data (Wales et al., 1965). One approach to separating the two ef- 
fects is to apply additional hydrostatic pressure at the die exit. Shear 
heating also causes such quadratic curvature in the pressure profile. 

6.3.1 Normal Stresses 

The entire discussion above is concerned with getting accurate shear 
viscosity data. It is also possible to use slit geometry to obtain 
information on the normal stress differences in shear. As with 
a capillary, extrudate swell occurs as liquid leaves a slit. Again, 
starting from an integral model, a relation similar to eq. 6.2.27 can 
be derived 

N: = 12ti(B4 - 1) (6.3.10) 

here B = Be, - 0.19, where 0.19 is the correction due to Newtonian 
fluid swell, and Bex = H / H , ,  the ratio of the swollen extrudate 
thickness to that of the original slit. Planar extrudate swell suffers 
from all the theoretical limitations associated with capillary die 
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swell (Tanner, 1988a). In addition, the finite widthof the slit creates 
strong edge effects, which make experimental measurements even 
more difficult to interpret than with the capillary. White (1990) 
gives some results for extrudate swell from slits with aspect ratios 
of 10 and 17. As with the capillary, theory somewhat underpredicts 
experiment. 

However, two other methods for obtaining normal stress data 
from slit rheometry have had reasonable success: the exit pressure 
and particularly the pressure hole method. These are discussed in 
Sections 6.3.2 and 6.3.3. 

6.3.2 Exit Pressure 
When pressure is plotted against distance down a capillary 
(eq. 6.2.7) or slit (eq. 6.3.2, Table 6.3.1) the value extrapolated to the 
exit typically is positive. This exit pressure comes from the same 
tension along streamlines that causes extrudate swell and should 
be related to the shear normal stresses in an elastic liquid. Such 
measurements are potentially quite interesting They can give N I  
on polymer melts at shear rates several orders of magnitude higher 
than are possible in rotational rheometers. Here we discuss pex 
using slit rheometry. Some work has also been done using pressure 
transducers mounted along a tube (Han, 1976). 

If we can neglect fluid inertia and any rearrangement of the 
velocity profile up to the die exit, then the exit pressure can be 
related to the first normal stress difference 

NI = pex ( In pCx) 
l + G  

(6.3.1 1) 

Boger and Denn (1980) discuss problems in the use of this relation. 
For example, it has been shown that the velocity profile in polymer 
solutions rearranges near the exit (e.g., Gottlieb and Bird, 1979). 
However, for polymer melts evidence from experiments (Han and 
Drexler, 1973) and finite element analyses (Tuna and Finlayson, 
1984; Vlachopoulos and Mitsoulis, 1985) indicates that velocity 
rearrangement is not significant enough to invalidate eq. 6.3.1 1. 
Han (1988) argues that the relation should be valid for r,,, > 25 kPa. 

The real problem, however, is to measure the exit pressure 
accurately. Exit pressure is very small, typically pex > 2 bar, 
less than 2% of the range of the pressure transducer nearest to the 
exit. A number of studies report negative pex using a linear extrap- 
olation (Laun, 1983; Lodge and de Vargas, 1983; Tuna and Fin- 
layson, 1988; Senouci and Smith, 1988). Others report wide scatter 
(Rauwendaal and Fernandez, 1985; Baird et al., 1986). Clearly the 
curvature we have already discussed makes it very difficult to eval- 
uate pcx as well as the derivative term in eq. 6.3.11. Disturbances 
due to pressure holes or deformation of flush-mounted diaphragms 
can be significant. Viscous dissipation will also complicate data 
analysis. 
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Figure 6.3.4. 
Viscosity and first normal 
stress difference versus shear 
for a high density polyethy- 
lene at 200°C: cone and plate 
(o), slit die (o), and capillary 
(A) data. Adapted from Chan 
et al. (1990). 

Chan, et al. (1990) have measured exit pressures for five 
different polymers. Pressure transducers were calibrated in situ, at 
temperature, with dead weights, both before and after experiments. 
These investigators found very little curvature in their plots of p 
versus x when they used three flush transducers. The introduction 
of a pressure hole caused some curvature. Although they report 
excessive scatter in their pex data and sometimes a negative slope 
of pcx versus tw, Chan et al. found fair agreement between N I  
by cone and plate and predictions from eq 6.3.1 1. Figure 6.3.4 
gives an example of their results. Tuna and Finlayson (1988) found 
similar agreement between cone and plate and pex data on three 
polyethylene melts. They used four pressure transducers and a 
quadruricfit. The derivation of eq. 6.3.11 assumes a linear pressure 
profile. Hence the use of pex from extrapolation of a quadratic fit 
needs further theoretical work. 

These results indicate that exit pressure measurements can be 
used to obtain normal stress data on high viscosity systems. The 
range of measurement is 10-100 kPa (1-300 s-’). Great care must 
be taken to get precise pressure readings, and even then the best 
work often shows a scatter of 3~100%. 

6.3.3 Pressure Hole 
Another method for extracting normal stress data from slit rheom- 
etry is to read the difference in pressure between a recessed and a 
flush transducer as indicated in Figure 6.3.5. It is rather surprising 
at first that the two transducers do not agree for an elastic liquid. 
They do agree for Newtonian fluids, and it created quite a stir when 
rheologists discovered that all their manometers and recessed trans- 
ducers were giving errors (Broadbent et al., 1968). The good news 
is that these errors are proportional to something we often would 
like to measure, N I  and Nz. 

The source of the pressure hole effect is the slight bending 
of the streamlines into the hole. An elastic liquid generates tension 

106 

lo5 E 
z“ 

lo4 
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Figure 6.3.5. 
Schematic of pressure hole 
geometry showing curvature 
of the streamlines near the 
mouth of the hole or slot. 
The difference between the 
pressures measured by the 
flush-mounted and recessed 
transducers gives the hole 
pressure, P h  = PI - P 1 . h .  

T 

or normal stresses along these streamlines in shear flow. Where 
the streamlines are curved over the mouth of the hole, the normal 
stresses tend to lift up on the fluid in the hole as shown in Figure 
6.3.5. This causes pressure that is read by a transducer at the bot- 
tom of the hole, Pl,h, to be lower than P I ,  the pressure read by 
a flush-mounted transducer exactly opposite p1 , h a  The streamline 
curvature has been photographed (Hou et al., 1977). 

Hole pressure is defined as the difference between the two 
transducer readings 

Ph = PI - Pl,h (6.3.1 2) 

Figure 6.3.6 shows the three different types of hole that have been 
used. The normal stress difference that is measured depends on 
how the streamlines are bent. For example, for a circular hole 
(Figure 6.3.6c), streamlines are bent in both directions, and thus 
P h  is proportional to a combination of N I  and N2. If flow over 
the hole is slow, symmetric about the hole centerline, and shear 
undirectional, then simple relations may be derived for the three 
types of hole (Lodge, 1988; Tanner, 1988b): 

Slot transverse to flow 

N1 = 2mph (6.3.13) 

Or a slot parallel to flow 

N2 = -mph (6.3.14) 

Circular hole 

where 

(6.3.1 6 )  
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Figure 6.3.6. 
Schematic of flow over pres- 
sure holes of three types. (a) 
For a long, narrow slot trans- 
verse to the flow direction, 
there is curvature along the 
streamlines, in the xIx2 plane. 
This generates a tension pro- 
portional to rI1 - ~ 2 2  = N I  
at the mouth of the slot. (b) 
For a slot parallel to the flow, 
curvature is across stream- 
lines, in the ~ 2 x 3  plane. This 
generates 522 - 533 = N2, 
the second normal stress dif- 
ference. (c) A circular hole 
bends streamlines in both 
directions, and thus the pres- 
sure error is a combination of 
NI and N2. 

x2 

x3 4 x2, I 

By “slot” we mean a long, rectangular hole in the channel wall. 
The length of this slot should be much greater than H, while its 
width b should be less than H and its recess depth d should exceed 
H. Remarkably, apart from these restrictions P h  is insensitive to 
specific hole dimensions. 

Because Nl is generally of greater interest than the much 
smaller N2,  we will concentrate on tests of eq. 6.3.13. We also will 
focus on hole pressure measurements in slit flow. Again more work 
has been done with slits, but it is of course possible to measure hole 
pressure on the wall of any shear flow rheometer. Lodge (1985, 
1988) has extensively reviewed hole pressure results. 

Lodge (1988, 1989) has shown that it is necessary to correct 
for misalignment of the flush-mounted transducer P I  and for inertia. 
Both corrections can be made using measurements from Newtonian 
fluids. The misalignment correction probably comes from bending 
of the flush-mounted transducer diaphragm and must be measured 
against tw for each transducer in situ. The inertia correction appears 
to be linear in stress and Reynolds number. 

P h  = -0.033rwRe (6.3.17) 
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Figure 6.3.7. 
Comparison of shear and nor- 
mal stress determined by par- 
allel plates (solid symbols) 
and slit rheometer with hole 
pressure (open symbols) for 
a polyisobutylene solution 
at room temperature. From 
Lodge (1989). 

lo5 

104 

lo3 

Pa 

Figure 6.3.8. 
Normal stress versus shear 
stress for a polystyrene melt 
at 190°C: cone and plate (0) 
and transverse pressure holes 
of two different widths (A). 
From Baird et al. (1986). 

A A* 
- 

- 
N 1  A M A  

- A 
V 

I I I 

When these corrections have been made, it is possible to 
measure N I  over a wide shear rate range. Figure 6.3.7 compares t, 
and N 1  results from hole pressure and narrow gap parallel plates on 
a polymer solution. There is agreement between the two methods 
over nearly two decades in shear rate. Lodge (1989) has been able 
to measure N1 to 9 > lo6 s-', the highest ever reported by any 
method. Figure 6.3.8 compares hole pressure and cone and plate 
data on a polystyrene melt. Again there is significant overlap of 
the data, in contrast to the exit pressure data shown in Figure 6.3.4. 

Actually the comparisons in Figures 6.3.7 and 6.3.8 are too 
good. From flow birefringence we know that at higher rates, flow 
over the hole is no longer unidirectional shear (Pike and Baird, 
1984). This changes the normal stresses and generates new exten- 
sional stresses. Fortunately, these two contributions tend to cancel 
each other, leading to the wider validity of eq.6.3.13 (Yao and 
Malkus, 1990). 

Despite the ability of the hole pressure method to measure 
normal stresses reliably at high shear rates, it has not yet seen wide 
use. Some of the reasons may include problems with maintaining 
and cleaning the pressure slots for routine tests. Melt samples espe- 
cially may degrade in the recess. Materials with a yield stress may 

I Styron 678 
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Figure 6.4.1. 
Schematic of axial annular 
flow die with wall pressure 
difference measurement. 

fail to properly transmit stress in the hole. Some of these problems 
may be relieved by filling the hole with a viscous, stable Newtonian 
fluid. There is also the question of accuracy. Hole pressures are 
relatively small differences between large numbers. High accuracy 
demands careful in situ calibration of pressure transducers. Even 
a small amount of leakage from the hole can lead to large errors in 
ph (Lodge, 1985). 

6.4 Other Pressure Rheometers 
Several other channel geometries have been used as rheometers, 
particularly annular flows. In addition in this section we describe 
the important indexer: squeezing flow between parallel plates. 

6.4.1 Axial Annular Flow 
Pressure-driven axial flow through a narrow annulus is essentially 
the same as flow through a slit, but without the side walls. The 
lack of side walls may be helpful for studying slip phenomena and 
for reducing residence time distribution. Furthermore, the pressure 
difference between the outer and inner walls of the annulus gives 
the second normal stress difference. 

Figure 6.4.1 shows how an annular die can be installed in a 
capillary rheometer banel. A screw extruder may also be used to 
feed a polymer melt to the annulus (Ehrmann and Winter, 1973; 
Ehrmann, 1976; Okubo and Hori, 1980). Using the notation given 
in Figure 6.4.1, in which K is the ratio of outer to inner cylinder 
radius, the equations for shear stress and shear rate become 

A p  R(1 - K )  

2L 
(6.4.1) 5, = 

(6.4.2) 
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where 

d In A p  
d l n Q  

n = -  

The shear rate here is actually an average. Curvature causes the 
shear rate on the inner cylinder to be higher than on the outer wall. 
Equation 6.4.2 is valid for narrow annuli. Hanks and Larsen (1979) 
give a full solution for a power law fluid, while McEachern (1966) 
uses the Ellis model (Bird et al., 1987, p. 233). 

In axial annular flow there is curvature acivss the flow stream- 
lines, that is, curvature in the plane perpendicular to the flow direc- 
tion X I  (see Figure 5.1.2). This is similar to the pressure hole error 
for flow over a parallel slot, eq. 6.3.14. Both geometries meas- 
ure the second normal stress difference. The pressure difference 
between the outer and inner cylinder gives 

R 

APR = P R  - P K R  = - / dr (6.4.3) 
K R  

Okubo and Hori use a change of variables and an estimate of the 
location of the radial position for zero shear stress to derive an 
explicit relation for N2 

(6.4.4) 

As we might expect, the pressure difference APR is small. 
Furthermore, because of the curvature of the cylinder walls and the 
size of typical pressure transducers, pressure holes must be used 
(note Figure 6.4.1). When corrections are made for pressure hole 
errors, results for N2 are in qualitative agreement with those ob- 
tained by other methods (Lob0 and Osmers, 1974; Ehrmann, 1976). 
Figure 6.4.2 shows results for a 1% polyacrylarnide 
solution. Here N2 is negative and -N2/N1 2 0.06. This ratio 
is somewhat lower than the value of 0.10 of an 0.8% solution of 
the same polyacrylamide (Keentok et al., 1980). This discrepancy 
may be due to the hole pressure error, which is somewhat lower 
(0.25N1-0.1N1) than expected by eq. 6.3.15. 

6.4.2 Tangential Annular Flow 
If fluid is pumped tangentially (circumferentially) around an annu- 
lus, as indicated in Figure 6.4.3, streamlines are curved. As with 
the transverse pressure slot (Figure 6.3.13), this curvature generates 
a pressure related to the first normal stress difference 

R 

PR - PKR = / d r  (6.4.5) 
K R  
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Figure 6.4.2. 
Normal stress measurements 

versus wall shear stress for 
a 1% solution of polyacryl- 
amide at 25°C in annular 
flows: -N2 from axial an- 

line) tangential annular flow, 
N I  from (dashed line) cone 
and plate, and Ph the hole 
pressure error. Adapted from 
Osmers and Lob0 (1976). 

nular flow, N I  from (solid 103 

Pa 

10' 

Figure 6.4.3. 
Schematic of tangential flow 
between concentric cylinders. 

Using change of variables, it should be possible to derive an explicit 
expression for N1 similar to eq. 6.4.4. Instead Osmers and Lob0 

The wall pressure d&rence 
gives N I .  

(1976) have assumed an Ellis-type equation for Nl , while Geiger 
and Winter (1978) used a numerical method to evaluate N l  from 
eq. 6.4.5. Both corrected for pressure hole errors. 

As Figure 6.4.2 indicates, there is fair agreement between 
N I  measured by tangential annular flow and by cone and plate. 
Because the tangential method involves no free surfaces, it is not 
limited by edge failure, as are cone and plate or parallel plate rhe- 
ometers. Thus tangential annular flow permits data to be taken at 
significantly higher stresses. This geometry has not yet been widely 
used for rheometry. \w 6.4.3 Tilted Open Channel 
When a viscoelastic fluid flows down a tilted, open channel, the free 
surface bulges slightly as indicated in Figure 6.4.4. This curvature 
is across the streamlines of the flow; thus, as with parallel pressure 
slot and axial annular flow, we expect the bulge to be proportional Flow out Flow in 
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Figure 6.4.4. 
Side and cross-sectional 
views of flow of a viscoelas- 
tic fluid down a semicircular 
tube. The bulge h(x3)  is an 
indication of negative N2. 
After Tanner (1970). 

Flow in 

Flow out 

to N2. If we include the influence of interfacial tension I' (Keentok 
et al., 1980), 

(6.4.6) 

where 

(6.4.7) 1 
2 

t, = - pgRsinB 

p is the fluid density, and other terms are defined in Figure 6.4.4. 
Channel bulge is perhaps the simplest and most direct meas- 

urement of the second normal stress difference. If h is positive, 
a convex surface N2 is negative. Since Tanner's first experiments 
with the tilted trough in 1970 and the discovery of the pressure hole 
error (Broadbent et al., 1968), nearly all studies have shown NZ to 
be small and negative. 

Because N2 is relatively small and r, is limited by p < 15", 
the channel bulge is small. However, photographing the reflec- 
tion of a graduated straight edge allowed Keentok et al. (1980) to 
measure h I f 10 pm. They report N2 data on five fluids at sev- 
eral concentrations with an accuracy fO. 1 Pa. The results indicate 
- N2/ N I  2: 0.1 independent of shear rate. The technique is limited 
to lower viscosities (< 0.1 Paas), lower shear stresses (< 20 Pa), 
and room temperature. 

The magnitude of the bulge can be greatly increased by float- 
ing another, immiscible fluid of similar density on top of the test 
fluid (Sturges and Joseph, 1980). As with rod climbing, the height 
rise is roughly proportional to the reciprocal of the density differ- 
ence. 
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6.4.4 Squeezing Flow 
When a liquid is squeezed between two parallel plates, a pressure- 
driven flow is generated. However, the flow is quite complex, as 
indicated in Figure 6.4.5. As with flow in a capillary or slit, the 
velocity profile is parabolic. But because the walls are moving 
together, the radial flow rate keeps increasing with r .  Thus there 
are gradients in velocity in both z and r directions. This means 
that in addition to the usual inhomogeneity that accompanies all 
pressure-driven flows, au,/az # constant, there is also extension, 
av,/ar > 0. Furthermore, the flow is transient because thickness 
changes are normally recorded from a rest state. 

Despite these limitations, squeezing flow is a popular flow 
indexer. It is very simple to build and operate and easy to control 
temperature over a wide range, and with large loads it generates 
high shear rates. Known as the Williams parallel plate plastometer 
(ASTh4 D926; Gent, 1960) in the rubber industry, it is particularly 
useful for such high viscosity materials as rubber and glass (Wilson 
and Poole, 1990). It has also been used to evaluate the cure of epoxy 
resins (Tungare et al., 1988) and flow of fiber-filled suspensions 
(Lee et al., 1984). 

Squeezing flow is interesting to fluid mechanicians because 
it simulates such polymer processes as compression molding and 
stamping. In addition, it is a simple model for the action of a 
lubricant film under a bearing. Because polymers are typically 
added to lubricant oil, a number of studies have used squeezing flow 
to determine whether viscoelasticity will improve load capacity of 
bearing. 

But the question for the rheologist is: Can squeezing flow 
measure rheological material functions? Strictly speaking, the an- 
swer is no. The flow is so complex that the squeezing force can 
be related to the gap change only through a constitutive equation. 
In fact, the flow has been used as a model to evaluate constitutive 

Figure 6.4.5. 
Schematic of squeezing flow 
between two parallel plates. 
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equations. However, if we take data at longer squeezing times, vis- 
coelastic effects are small and useful shear viscosity measurements 
can be made. 

For a Newtonian fluid-neglecting gravity and inertia-we 
obtain Stefan’s simple result (1874; Bird et al., 1987, p. 21) 

sample fills plates; constant sample radius (6.4.8) rlo = - 37t. R 4 f l  
2 f ~ 3  

where !I is the rate of squeezing, dH/dt* Typically a weight is 
placed on the moving disk; thus f is constant and H is meas- 
ured. However, if the plates are mounted-for example, in a tensile 
machine-fi can be held constant and f recorded. 

The parallel plate plastometer is usually run with a sample 
much smaller than the plates (see Figure 7.3.2). In this case the 
sample radius changes with time, but sample volume between the 
plates V is constant. This leads to (Gent, 1960) 

2 , q ~ 5  
3 v ( v  + 2n ~ 3 ) k  

sample smaller; constant sample volume (6.4.9) rlo = 

Typically R 1 lOH, and the 2 r H 3  term is insignificant. Most 
studies have been done with the plates filled with sample, the 
squeeze flow geometry of Figure 6.4.5. Thus we focus on this 
version of the indexer for the rest of our discussion. 

Integrating eq. 6.4.8 for the constant force case gives 

4 f H2t 
(6.4.10) 

Figure 6.4.6a shows H versus time data for a polyethylene melt. 
At long times, a plot of (H,/ H)2 versus t will become nearly con- 
stant, as predicted by eq. 6.4.10, but at short times the data deviate 
from the Newtonian result. There are several reasons for this devia- 
tion. With high squeeze rates Fnd low viscosity, inertia can become 
important (i.e., when pH(-H)/vo > 1). When coupled with vis- 
coelasticity, inertia can even generate oscillations in H versus t 
(Lee et al., 1984). 

However, two more significant causes of deviation from New- 
tonian squeezing are typically the shear rate and time dependence 
of the viscosity. The importance of shear rate dependence can be 
estimated by applying a power law model to squeezing flow. For a 
power law fluid (eq. 2.4.12) with f constant (Grimm, 1978) 

*Note that much of the squeeze flow literature uses h = H / 2  as the gap measure. 
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Figure 6.4.6. 
(a) Sample thickness versus 
time for squeezing of a low 
density polyethylene sample 
at 150"C, R = 25 rnm. (b) 
Same data plotted as log H 
versus log H. From Laun 
(1992). 

where 

A Carreau-type model has also been applied to squeezing flow 
(eq. 2.4.16) (Phan Thien et al., 1987). 

For time dependent models there will still be a large de- 
viation of H versus t at short times. This deviation is primarily due 
to the transient viscosity $, the "overshoot" in shear stress at the 
start-up of shear flow (recall Figure 4.2.3). Leider and Bird (1974) 
incorporated an empirical stress overshoot function into their anal- 
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Figure 6.4.7. 
Reduced reciprocal of force 
versus time to squeeze to 
half-thickness; A is the time 
constant from the Carreau 
model, eq. 2.4.16, or the 
Maxwell time constant when 
R = 1. Hatched region is 
the range of experimental 
data on several polymer so- 
lutions from Leider (1 974). 
The experiments deviate 
from the power law model 
(dashed line) at short times. 
A Maxwell model even with 
shear thinning, n = 0.56, 
gives the opposite trend, but a 
model with overshoot in start- 
up of steady shear compares 
well. Adapted from Phan 
Thien et al. (1987). 

ysis and found that it predicted a reduction in squeezing. Phan 
Thien et al. (1987) found similar results using their differential 
model (Table 4.4.2), which predicts shear stress overshoot on start- 
up. Figure 6.4.7 shows the results of their numerical calculations: 
reduced force is plotted versus half-time, the time to squeeze H 
to HJ2, according to the power law model, eq. 6.4.1 1 .  Increasing 
the parameter ( increases the overshoot. The ratio of the steady 
shear normal stresses can be used to find 6;  6 = 0.2 corresponds 
to -N2/N1 = 0.1. It is important to note that the Maxwell model 
(eq. 4.3.7), which shows extensional thickening but no overshoot 
in shear, does not explain the short time effects in squeezing flow, 
nor are shear normal stresses the cause of the short time deviation 
(Phan Thien et al., 1987). 

Laun (1992) has suggested a very simple way to analyze 
squeezing flow data. The flow at any location between the plates 
is nearly that for a slit. If we choose the edge of the plates and 
substitute W = 21r R and Q = n R2k in eq. 6.3.3 (Table 6.3.1) for 
the shear rate, we obtain 

(6.4.12) 

lo3 

1 o2 

10 

1 

lo-’ 

1 o-2 

10” 5 = 0.3 Phan Thien-Tanner 

1 o - ~  
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Figure 6.4.8. 
Viscosity versus shear rate for 
a low density polyethylene: 
line is from capillary data, 
points from squeezing flow, 
using stress and shear rate 
at the perimeter, The lower 
curve has been shifted down 
one decade to show complete 
data for the f s 500 N run. 
The open points on this lower 
curve are due to transient 
shear behavior and have not 
been used to determine q ver- 
sus 9 .  Replotted from Laun 
(1992). 

lo6 

k z w  
lo3 I I I I nl . 

lo2 10’ loo 10’ lo2 1( 

Shear rate at edge y (8-l) 

From a plot of log(-k) versus log H, we can obtain the power law 
index directly , 

1 dln(-k) - =  - 2  
n d l n H  

(6.4.13) 

Such plots are illustrated in Figure 6.4.6b. We can see that n is 
nearly constant for this polyethylene. The shear stress at the edge 
becomes 

H f  
t,, = (n + 3) - 2n R3 

(6.4.14) 

If we apply these relations to the data of Figure 6.4.6a and plot 
qll = t w r / y w r  versus Pw,, we obtain the curves shown in Figure 
6.4.8. The short time overshoot behavior shows up at higher “shear 
rates.” The long time data are in excellent agreement with capillary 
viscosity data. 

Thus it appears that at long times, flow in the squeezing in- 
dexer is dominated by simple, steady shear, and it can be used to 
collect true viscosity shear rate data. Further analyses may even 
allow better interpretation of the transient regime. The influence 
of bulk modulus and pressure dependence of viscosity may be im- 
portant in fast squeezing. 

A squeezing rheometer can also be used to measure biaxial 
extensional viscosity if the test surfaces are lubricated with a much 
lower viscosity fluid than the test sample. Ideally the lubricant will 
take up all the shear component. This rheometer is discussed in 
Section 7.3. 

274 / RHEOLOGY 



6.5 Comparison of Shear Methods 

Chapters 5 and 6 have described and evaluated the important shear 
rheometers and indexers. If measurements of torques, forces, and 
velocities or pressures and flow rates are made and interpreted prop- 
erly, all these rheometers should measure the same shear material 
functions. To conclude these two chapters, we make a few com- 
parisons between rheometers to emphasize this point. Table 6.5.1 
highlights some of the strengths and weaknesses of each. 

It is very valuable to compare different rheometers in your 
own laboratory. Of course comparisons are helpful in checking in- 
strument calibration or finding such errors as a mislabled cone an- 
gle. Juxtaposition of rheometers can often identify more insidious 
errors, such as secondary flows, slip, or evaporation. Comparisons 
are also very helpful in selecting which rheometer is most useful 
for a particular material, deformation, or temperature range. Com- 
parisons give confidence to operators that they are really seeing 
material behavior and not some instrument artifact. 

We have already shown a number of rheometer comparisons. 
Figure 5.5.2 compares N I  and N2 by cone and plate, parallel disks 
and slit flow. Figure 2.4.1 compares viscosity data from capillary 
and cone and plate rheometers. Chapter 3 compares different linear 
viscoelastic measurements. Figure 5.7.4 compares dynamic data 
G’ and v’ by oscillating concentric cylinders with two eccentric 
rotating geometries. Figure 5.7.5 shows steady and dynamic data 
illustrating the limiting relations at low shear rate or frequency. 

Figure 5.4.3 compares Nl and N2 as determined from total 
thrust in the cone and plate to values obtained from the pressure 
distribution. Figure 6.2.13 and Table 6.2.2 compare N I  from cone 
and plate to extrudate swell. Figures 6.3.4,6.3.6, and 6.3.7 do the 
same for N I  determined by exit pressure and hole pressure. These 
comparisons helped us to decide which methods were reliable and 
over what range of measurement. The same could be said of the 
normal stress comparisons made for axial annular and tangential 
annular flow in Figure 6.4.2. 

Comparisons of results from rheometers and indexers are es- 
sential in evaluating what material function dominates the indexer’s 
response. Such comparisons can help us to determine when an in- 
dexer may give us useful rheological data, as in the case of squeez- 
ing flow, Figure 6.4.8. This ability becomes even more important 
in the next chapter, where we shall see that indexers are the only 
choice for extensional measurements on low viscosity fluids. 

Figure 6.5.1 illustrates the very wide range of viscosity meas- 
urement possible on a stable suspension, eight decades in i / ,  when 
one combines results from several rheometers. We see that con- 
centric cylinders are typically used for the lowest shear rates, while 
capillaries provide high shear rate data. The increase in viscosity 
with shear rate is real and has been verified by tests with differ- 
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TABLE 6.5.1 I Comparison of Sheer Rheometers2 
Method Advantages Disadvantages 

Sliding plates (5.2) .Simple design .Edges limit y < 10 
.Homogeneous .Gap control 
.Linear motion .Loading 

Falling ball (5.2) 

Concentric cylinders (5.3) 
(Couette flow) 

Cone and plate (5.4) 

Parallel disks (5.5) 
(torsional flow) 

Contained bobs (5.6) 
(Brabender, Mooney) 

Capillary (6.2) 
(Poiseuille flow) 

Slit flow (6.3) 

Axial annular flow (6.4.1) 

Squeeze flow (6.4.4) 

-high q ,  GO, v )  
.I z 10-3s 

.Very simple 

.Needle better 

.Sealed rheometer 

.High T, p 

.Not very useful for viscoelastic fluids 

.Nonhomogeneous 

.Transparent fluid 

.Need p 

.Low q. high p 

.Homogeneous if Ri/R,, 2 0.95 

.Good for suspension settling 

.Homogeneous p I 0.1 rad 

.Best for N I  loading difficult 

.Best for G(t ,  y )  

.End correction 

.High 11 fluids are dimcult to clean 

.N, impractical 

.High q: p low, edge failure, 

.Low q: inertia 

.Evaporation 

.Need good alignment 

.Easy to load viscous samples .Nonhomogeneous: not good for G(t,y). 

.Best for G’ and G” of melts, curing OK for G(t)  and ~ ( y )  

.Vary 9 by h and C2 .Edge failure 
4Ni - W ( 9 )  .Evaporation 

Sealed 
. h e s s  simulator 

.High y 
Sealed 
.Process simulation 
* V ~ N  from APent 
.Wide range with L 

.Indexers 

.Friction limits range 

Corrections for Ape,,, time-consuming 
.Nonhomogeneous no G(t .  y )  
.Bad for time dependence 
.Extrudate swell only qualitative for NI 

.No Ape,  with wall-mounted 

4 P )  .Difficult to clean 
*pea, Ph give NI 

.Edge effects with W l H  < 10 
pressure transients .Similar to capillary 

.Slit with no edges 

.Ap can give NZ 

.Simple 

.Process simulation 

.q(y) at long times 

.Difficult construction and cleaning 

.Index flow: mixed shear rates 
and shear transients 

‘Numbers in parentheses indicate section in chapter that describes device. 

ent capillaries and a high shear rate concentric cylinders rheometer 
(Laun et al., 1991). 

Figure 6.5.2 shows a flocculated suspension with a yield 
stress as well. The yield stress is best measured with a stress- 
controlled rotational rheometer but may be confirmed by rate- 
controlled and capillary measurements. In Chapter 8 we discuss 
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Figure 6.5.1. 101, i 

Viscosity versus shear rate 
function using concentric 
cylinders (o), cone and plate h 0 Cone and plate 

@ = 0.43 
0 Concentric cylindem 

A Capillary 

StEA spheres in HzO 
DH. = 0.25 p DHJDn = 

T = 25'C 

(o), and capillary rheometers 2 
10 '  

(A) for a latex suspension. 
Adapted from Laun (1988). P 

l 
F 

.Y 

I I I I I I i 

10-2 1 00 101 I04 1 06 

Shearrate f (s-1) 

different types of rheometer control and give further data on range 
of deformation rate possible with current instruments. 

Figures 6.5.3-6.6.5 show data collected in our lab over two 
days during our Rheological Measurements summer short course. 
No special efforts other than standard calibration procedures were 
made. The agreement illustrates what one can expect from normal 
operation of modem rheological instruments with stable, polymeric 
samples. Such an exercise is reassuring to the new rheologist. 

Figure 6.5.3 compares data from three rheometers for a 
strongly shear thinning polymer solution. Note that the Cox-Merz 
relation, eq. 4.2.6, between steady and dynamic viscosity is very 
well obeyed for this fluid (see also Figure 4.2.4). Figure 6.5.4 shows 
viscosity and first normal stress coefficient for a polydimethylsilox- 
ane melt. Here we compare cone and plate data and birefringence in 
concentric cylinders. Chapter 9 describes the birefringence method 
further. 

Figure 6.5.2. 
Viscosity versus shear stress 
for a latex suspension show- 
ing a yield stress. Data from 
concentric cylinders, cone 
and plate, and a capillary un- 
der stress control. Adapted 
from Laun et al. (1 992). 
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Comparison of steady shear 
viscosity by cone and plate, 
concentric cylinders, and par- 

Figure 6.5.5 compares viscosity measurements on a 
polystyrene melt. Edge failure limits the cone and plate data to 
i, 5 3 s-', below the range of most melt capillaries. The dynamic 
viscosity does a fair job of bridging the gap between the two. Dy- 
namic data are typically easier to obtain and are recommended for 
a first measurement. Figure 6.5.6 shows first normal stress coeffi- 
cient measured directly by cone and plate and estimated from G' by 
eq. 4.2.5 and from integrating the steady shear viscosity (Gleissle, 
1988) 

I I Ill111) I I I I IL - - - - - - - d - - 

where 3' = Y12.7. (6.5.1) 

Although the cone and plate is the only true measure of *I, 
its range is limited on viscous polymer melts: thus the empirical 

Figure 6.5.4. 
Comparison of viscosity and 
first normal stress coefficient 
Wl = N l / y 2  by cone and 
plate (solid points) and bin- 
fringence (open points) for a 
polydimethylsiloxane melt. 2 

5; 

8 

? 

r4 
P 
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Figure 6.5.5. 
Viscosity versus shear rate for 
polystyrene at 200"C, using 
capillary, cone and plate, and 
sinusoidal oscillations with 
IS'l(0) = r l ( ) i ) .  

lo-* 

Figure 6.5.6. 
First normal stress coef'fi- 
cient by steady cone and 
plate by sinusoidal oscilla- 
tion, (2G'/oZ, eq. 4.2.5), and 
integrating capillary viscosity 
data using eq. 6.5.1. 
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0 Cone and plate, oscillation 
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A 
A 
A 

I I I I I 

lo4 I 

lo3 

n 
P 
d 

F 
b 

A 
lo2 0 Cone and plate, steady A t 

0 Cone and plate, oscillation 
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correlations illustrated in Figure 6.5.6 are attractive and worthy of 
further investigation. 

6.6 Summary 
Shear rheometers are the primary tool of the experimental rhe- 
ologist. The rheologist's main job is to pick the material function 
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needed for the particular problem and then select the best rheometer. 
Figure 11.3 can help in connecting rheometer to material function. 
To assist in selecting the best rheometer for the job and to alert the 
operator for potential errors, Table 6.5.1 is helpful. It summarizes 
the major advantages and disadvantages of each rheometer. 

To study suspensions, the first choice is a narrow gap, concen- 
tric cylinder rheometer. The outer cylinder should rotate to avoid 
inertia problems. If there are no settling, large particle, or sensi- 
tivity limitations, the cone and plate is a good second choice. For 
either geometry, stress-controlled instruments (see Figure 8.2.10) 
provide the lowest shear rate data and best measure of yield stress. 
Most of the stress-controlled instruments can also do sinusoidal os- 
cillations that allow determination of yc and structure breakdown 
and recovery measures (see Chapter 10). 

For polymer solutions, the rheologist should start with the 
cone and plate, unless the concentric cylinder sensitivity is needed. 
Normal stress data can be collected simultaneously, and the entire 
range of strain from linear to nonlinear is possible. Temperature 
control is typically available over a wide range, but solvent evapo- 
ration at the edge can cause problems. 

For polymer melts one would also like to use the cone and 
plate, but for viscosities exceeding lo3 Pass and high elasticity, 
edge failure is a severe limitation. Squeezing a viscous sample 
into the conical shape is also very time-consuming. Thus a better 
starting point is the parallel plate rheometer with sinusoidal oscil- 
lations. Disklike samples can be easily molded or cut from sheets. 
Pellets or powder can also be used. Within 15 minutes after load- 
ing the sample into a preheated instrument, one can obtain more 
than three decades of data on viscosity and elasticity versus fre- 
quency, as shown in Figures 6.5.5 and 6.5.6. One must take care 
interpreting dynamic data in terms of the steady shear functions 
(i.e., eq. 4.2.4), especially for highly filled or structured melts. Dy- 
namic measurements with parallel plates are also the first choice 
for time-dependent studies like curing. 

Capillary rheometers don’t seem very “high technology,” but 
they can give the highest shear rates, the widest range in shear rate, 
and the most accurate viscosity numbers. Changing capillary length 
is the key to that range. These rheometers offer the surest way to 
prevent evaporation and are the simplest extrusion and die flow 
simulators. Pressure drop through an orifice die can be used to 
estimate extensional behavior (Section 7.8). Because of the sim- 
plicity, robustness, and process simulation capabilities of capillary 
rheometer, it is usually the first choice for a processing lab. 

References 
Bagley, E. B., J. Appl. Phys. 1957, 28, 624. 
Baird, D. G.; Read, M. .; Pike, R. D., Polym. Eng. Sci. 1986,26, 225. 

280 I RHEOLOGY 



Bird, R. B.; Armstrong, R.; Hassager, O., Dynamics of Polymeric Liquid, 
Vol. I: Fluid Mechanics; 2nd ed.; Wiley: New York, 1987. 
Boger, D. V., Annu. Rev. Fluid Mech. 1987, 19, 157. 
Boger, D. V.; Denn, M. M., J. Non-Newtonian FluidMech. 1980,6, 163. 
Bremner, T.; Rudin, A,, J. Appl. Polym. Sci. 1990,41, 1617. 
Broadbent, J. M.; Kaye, A.; Lodge, A. S.; Vale, D. G., Nature 1968,217, 
55. 

Chan, T. W.; Pan, B.; Yuan, H., Rheol. Acta I990,29,60. 
Choi, S. Y., J. Polym. Sci. 1968, A2, 6,2043. 
Cox, H. W., Ph.D. thesis, University of Minnesota, 1973. 
Cox, H. W.; Macosko, C. W., AIChE J. 1974a, 20,785. 

Cox, H. W.; Macosko, C. W., SPE Tech. Pap. 1974b, 20. 
Dealy, J. M., Rheometers for Molten Plastics; Van Nostrand Reinhold: 
New York, 1982. 
Duvdevani, 1. J.; Klein, I., SPE J. 1967,23:12,41. 
Ehrmann, G., Rheol. Acta 1976, 15, 8. 

Ehrmann, G.; Winter, H. H., KunststofStechnik 1973, 12, 156. 
Frayer, P. D.; Huspeni, P. J., J.  Rheol. 1990,34, 1 199. 
Geiger, K., Extensive Characterization of Rubber Compounds with Cap- 
illary and Rotational Rheometry; presentation to Society of Rheology, 
Montreal, October 1989. 
Geiger, K.; Winter, H. H., Rheol. Acta 1978, 17, 264. 
Gent, A. N., B. J. Appl. Phys. 1960,II, 85. 

Giesekus, H.; Langer, G., Rheol. Acta 1977, 16, 1. 

Gleissle, W., in Proceedings of the 10th International Congress on Rhe- 
ology, Vol. 1; Uhlherr, P. H. T., Ed.; Sydney, 1988; p. 350. 
Grimm, R. J., AIChE J. 1978,24,427. 

Gleissle, W.; Windhab, E., Exp. Fluids 1985,3, 177. 
Hagen, G. H. L., Ann. Phy. 1839,46,423. 
Han, C. D., Trans. SOC. Rheol. 1974,18, 163. 
Han, C. D., Rheology in Polymer Processing; Academic Press: New 
York, 1976; Chapter 5 .  

Han, C. D., in Rheological Measurements; Collyer, A. A.; Clegg, D. W., 
Eds.; Elsevier: London, 1988; Chapter 2. 
Hanks, R. W.; Larson, K. M., Ind. Eng. Chem. 1979, 18, 33. 
Hanson, D. E., Polym. Eng. Sci. 1969, 9,405. 
Hansen, M. G.; Jansma, J. B., in Rheology, Proceedings of the Eighth 
International Congress on Rheology, Vol 2, Astarita, G.; Marrucci, G.; 
Nicolais, L., Eds.; Plenum: New York, 1980; p. 193. 
Hou, T. H.; Tong, P. P.; devargas, L., Rheol. Acta 1977, 16,544. 
Kalika, D. S.; Denn, M. M., J.  Rheol. 1987,31, 815. 
Keentok, M.; Georgescu, A. G.; Sherwood, A. A.; Tanner, R. I., J. Non- 
Newtonian Fluid Mech. 1980,6, 303. 
Kurath, S. F.; Larson, W. S., TAPPl Proceedings; Boston, May 1990; 
p. 459. 

SHEAR RHEOMETRY: PRESSURE DRIVEN FLOWS / 281 



Kurtz, S. J., in Advances in Rheology, Vol. 3; Mena, B.; Garcia-Regjon, 
A.; Rangel-Nafaile, C., Eds.; Universidal Nacional Autonoma de Mex- 
ico, 1984, p. 399. 
Laun, H. M., Rheol. Acta 1983.22. 17 1. 
Laun, H. M., in Proceedings of the 10th Intemtional Congress on Rhe- 
ology; Uhlherr, P. H. T., Ed.; Sydney, 1988; p. 37. 
Laun, H. M., Makromol. Chem., Makromol. Symp. 1992,56,55. 
b u n ,  H. M. ; Bung, R.; Hess, S.; Loose, W. ; Hess, 0. ; Hahn, K.; 
Hhdicke, E.; Hingmann, R.; Schmidt, E; Lindner, P., J .  Rheol. 
1992,36,743. 
Laun, H. M.; Hirsch, G., Rheol. Acta 1989,28,267. 
Laun, H. M.; Bung, R.; Schmidt, F.. J. Rheol. 1991,35,999. 
Leblanc, J. L.; Villemaire, J. P.; Vergnes, B.; Aggasant, J. F.,’Plastics 
Rubber Process. Appl. 1989, I I ,  53. 
Lee, S. J.; Denn, M. M.; Crochet, M. J.; Metzner, A. B.; Riggins, G. J., 
J. Non-Newtonian Fluid Mech. 1984,14,301. 
hider, P. J., Ind. Eng. Chew. Fundam. 1974, 13,342. 
hider, P. J.: Bird, R. B., I d  Eng. Chem. Fundam. 1974.13.336, 
Lim. E J.; Schowalter, W. R., J. Rheol. 1989,33,1359. 
Lob. P. F.; Osmers, H. R., Rheol. Acta 1974.13.457, 
Lodge, A. S., Elastic Liquids, Academic Press: New York, I W; p. 13 1. 
Lodge, A. S., Chem. Eng. Commun. 1985,32, 1. 
Lodge, A. S., J. Rheol. 1989,33. 821. 
Lodge, A. S., in Rheological Measurement, Collyer, A. A,; Clegg, D. W., 
Eds.; Elsevier: London, 1988; p. 345. 

Lodge, A. S.; KO, Y. S., Rheol. Acta 1989,28,464. 
Lodge, A. S.; devargas. L., Rheol. Acta 1985,22, 151. 
Marshall, D. I.; Riley, D. W., J. Appl. Polytn. Sci. 1962.6,546. 
McEachern, D. W.. AIChE J. 1%6,12,328. 
Meissner, J., Pure Appl. Chem. 1975,42,553. 
Meager, A. P.; b o x ,  J. R., 7km. Soc. Rheol. 1%5,9, 13. 
Michaeli, W., Extrusion Dies, Design and Engineering Computations; 
Hanser: Munich, 1984. 
Middleman, S., Fundamentals of Polymer Ptvcessing; McGraw-Hill: 
New York, 1977. 
Mooney, M., Trans. Soc. Rheol. 1931,2,210. 
Okubo, S.; Hori, Y., J. Rheol. 1980. 24,275. 
Osmers, H. R.; Lob, I? E, Tkmr. Soc. Rheol. 1976,20,239. 
Phan Thien, N.; Sugeng, F.; Tanner, R. I., J. Non-Newtonian Fluid Mech. 
1987.24.97. 
Pike, R. D.; Baird, D. G., J. Non-Newtonian Fluid Mech. 1984.16.21 1. 
Poiseuille, L. J., Comptes Rendus 1840,II. %1 and 1041; 1841,12,112. 
Ramamurthy, A. V., J. Rheol. 1986.30.337, 
Rauwendaal, C.; Femandcz, F,, Polym. Eng. Sci. 1985,25,765. 
Schummer. P., Chem-Ing-Tech. 1970,42, 1239. 

282 / RHEOLOGY 



Schiimmer, P.; Worthoff, R. H., Chem. Eng. Sci. 1978,33,759. 
Senouci, A.; Smith, A. C., Rheol. Acta 1988,27,649. 
Skinner, S. J., J. Appl. Polym. Sci. I%], 5.55. 

Stefan, J., Sitzungbes K. A M .  Wiss. Math. Natus Wien 1874,69 Part 
2, 713. 
Sturges, L. D.; Joseph, D. D., J. Non-Newtonian Fluid Mech. 1980.6, 
325. 
Sylvester, N. D.; Chen, H. L., J.  Rheol. 1985,29, 1027. 
Tadmor, Z.; Gogos, C. G., Principles of Polymer Processing; Wiley: New 
York, 1979. 
Tanner, R. I., J. Polym. Sci. 1970b, A-28.2067; Trans. SOC. Rheol. 
1970a. 14,483. 
Tanner, R. I., in RheologicalMeasuremenr, Collyer, A. A.; Clegg, D. W., 
Eds.; Elsevier: London, 1988a; p. 93. 
Tanner, R. I., J. Non-Newtonian Fluid Mech. 1988b. 28,309. 
Tuna, N. Y.; Finlayson, B. A., J. Rheol. 1984,32,285. 
Tuna, N. Y.; Finlayson, B. A., J. Rheol. 1988,28,79. 
Tungare, A. V.; Martin, G. L.; Gotro, J. T., Polym. Eng. Sci. 1988, 28, 
1071. 
Uhland, E., Rheol. Acta 1979, 18, 1.  

Utracki, L. A.; Bakerdjian, Z.; Kamal, M. R., J. Appl. Polym. Sci. 1975, 
19,481. 
Van Wazer, J. R.; Lyons, J. W.; Kim, K. Y.; Colwell, R. E., Viscosity and 
Flow Measurement; Wiley-Interscience: New York, 1963. 
Villemaire, J. P.; Agassant, J. F., Polym. Proc. Eng. 1983-1984, I ,  223. 
Vlachopoulos, J., Rev. Deform. Behav. Mates 1981,3,219. 
Vlachopoulos, J.; Mitsoulis, E., J. Polym. Eng. 1985.5, 173. 
Wales, J. L. S.; den Otter, J. L.; Janeshitz-Kriegl, H., Rheol. Acta 1965, 
4, 146. 
Walters. K., Rheometry; Wiley: New York, 1975. 
Warren, R. C., in Rheological Measurement, Collyer, A. A., Clegg, 
D. W., Eds.; Elsevier: London, 1988; p. I 19. 
White, J. L., J. Appl. Polym. Sci. Symp. 1973,20, 155. 
White, J. L., Principles of Polymer Engineering Rheology; Wiley: New 
York, 1990; p. 29 1. 

Wilson, S. J.; Poole, D. Muter. Res. Bull. I990,25, 113. 

Windhab, E., Untersuchungen zum rheologischen verhabten konzentri- 
errer Suspensionen; VDI-Verlag: Dusseldorf, 1986. 
Winter, H. H.. Polym. Eng. Sci. 1975, 15, 84. 
Winter, H. H., Adv. Heat Transfer 1977, 13, 205. 
Yao. M.; Malkus, D. S., Rheol. Acta 1990.29, 3 10. 

SHEAR RHEOMETRY: PRESSURE DRIVEN FLOWS I 283 



7 - 

A variety of pitch which 
gave by the traction method 

I=  4.3 x 1Oio  (poke) was 
found by the torsion method 

to have a viscosity 
p= 1.4 x loio (poise). 
RZ Trouton (1906) 

Figure 7.1.1. 
To hold his viscous pitch 
samples, Trouton forced a 
thickened end into a small 
metal box. A hook was at- 
tached to the box from which 
weights were hung. From 
Trouton (1906). 

EXTENSIONAL 
RHEOMETRY 

7.1 Introduction 
In Section 2.3 we derived Trouton’s important rule that the viscosity 
in uniaxial extension is three times the shear viscosity for a Newto- 
nian fluid (eq. 2.3.10). Trouton carefully tested his rule using very 
viscous samples and slow deformation rates (Figure 7.1.1). Al- 
though these ingenious experiments with pitch, shoemaker’s wax, 
and glass marked the beginning of extensional rheometry, the field 
did not advance significantly until the 1970s. Today it is an active 
area of research. The reason so few extension measurements had 
been taken in the past is that they are so hard to make. There is so 
much activity today because it has been recognized that extensional 
flows exhibit very sensitive variations in structure and are highly 
relevant to many process flows. 

From the extensional material function data shown in Chap- 
ters 2 and 4, we know that extensional response can differ very 
much from shear. For example, at low extension rate tensile vis- 
cosity typically obeys Trouton’s rule, but at higher extension rates 
it shows very little of the thinning so common for shear viscos- 
ity (Figure 2.1.3). Sometimes even thickening is observed (Fig- 
ures 4.2.5-4.2.7). Such behavior is not unexpected from struc- 
tural theories for rodlike suspensions (Chapter 10) and for polymers 
(Chapter 11). 

Extensional deformations also play a significant role in many 
processing operations. For example, fiber spinning, thermoform- 
ing, film blowing, blow molding, and foam production are all es- 
sentially extensional deformations. Flow in converging or diverg- 
ing regions of dies and molds as well as flow at the moving front 
during mold filling can have large extensional components. Ex- 
tensional material function data are needed to model these flows. 
Also, because extensional flows strongly orient polymer molecules 
and asymmetric particles, regions of extensional flow in a particular 
process can have a strong effect on final product properties. 

Although the importance of extensional measurements is well 
recognized, there are relatively few data available because it is so 
difficult to generate homogeneous extensional flow, especially for 
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low viscosity liquids. The basic problem is that flow over stationary 
boundaries results in shear stresses; but without such boundaries 
it is difficult to control the deformation of a low viscosity fluid. 
Surface tension, gravity, and inertia conspire to change the defor- 
mation. 

A further problem arises from the large strains that are often 
required before stresses in memory fluids can reach their steady 
straining limit. Streamlines are parallel in shear flows, so that 
large strains can be achieved by going to long residence times. 
The streamlines in extensional flow diverge (or converge), which 
means that a sample must become very thin in one direction to 
achieve large strain. As indicated in Section 4.2, it is often not 
possible to reach a steady stress state before the sample ruptures or 
deforms nonuniformly. 

Many different methods have been tried to circumvent these 
problems and generate purely extensional flows. In this chapter 
we examine the most successful, the geometries shown in Figure 
7.1.2. The first three, simple extension, compression, and sheet 
stretching, are all, like Trouton’s work, adapted from test methods 
used for solids, particularly those for rubber (Treloar, 1975). They 
can all give homogeneous, purely extensional deformations, but 
because their success depends on somehow holding onto the edges 
of a sample, they have only been used successfully with higher 
viscosity samples. 

The remaining four geometries in Figure 7.1.2 all represent 
attempts to measure extensional material functions on lower vis- 
cosity liquids. Their strengths and weaknesses will be discussed in 
the following sections. 

As with the shear rheometers, we develop the basic work- 
ing equations to convert measured forces and displacements into 
stresses and strains. These in turn are used to calculate extensional 
material functions. 

As indicated in Figure 7.1.2, there are several types of ex- 
tensional deformation; all can be described using the convention 
given in Chapter 4, which defines two transient extensional viscosi- 
ties (Meissner, 1985) 

(4.2.10) or (7.1.1) 

(7.1.2) 

To describe the deformation, a Cartesian coordinate system is cho- 
sen such that 

€ = € , I  1 E . 2 2  2 €33 (7.1.3) 

and 

€22  m = -  
€ 1  1 

(7.1.4) 
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Coordinates Figure 7.1.2. 

As indicated in Figure 11. I ,  
Extensional flow geometries. XI x2 x3 

only the first three geometries 

rheometers. The coordinate 
systems indicated are cho- 
sen to give € 1 1  z 422 z €33. 
Numbers in parentheses in- 
dicate section in which each 
geometry is discussed. 

can be used as homogeneous Extension (7.2) 

Compression (7.3) 

Sheet stretching (7.4) 

Fiber spinning (7.5) 

Bubble collapse (7.6) 

Stagnation flows (7.7) 

Entrance flows (7.8) x r t J  

For a general extensional deformation then 

(7.1.5) 

For simple uniaxial extension €22 = -61 1 /2 and from symmetry 
€22 = €33 (see Example 2.2.1). Thus m = -0.5 and 722 = 733, 
so p2 = 0. For equibiaxial extension or compression 6 1  I = €22 
and 133 = -2111. Thus m = 1 and T I ]  = 722 and p I  = p2. 
For planar extension € 1 1  = 4 3 3  and €22 = 0 (see Chapter 2, 
Example 2.8.1). Therefore m = 0, and we have two extensional 
viscosities. Note that the extensional viscosities in eqs. 7.1.1 and 
7.1.2 have been defined in such a way that all give the same linear 
viscoelastic shear viscosity in the limit of small strain and strain rate. 
Thus-for example, with uniaxial extension-the factor of 3 (often 
called the Trouton ratio) that arises between shear and extension 
(see eq. 2.3.10) is divided out when m = -0.5 in eq. 7.1.1. 
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In the following sections, in addition to giving the work- 
ing equations for determining these material functions, we discuss 
corrections, applicability, and limitations for each of the meth- 
ods depicted in Figure 7.1.2. Further information on extensional 
rheometry can be found in the references at the end of this chapter. 
Reviews by Meissner (1985,1987). a monograph by Petrie (1979), 
and Dealy's book (1982) are also recommended. 

7.2 Simple Extension 
The simplest way we might imagine to generate uniaxial extension 
is to grab a rod of fluid on each end and pull on it. That is what 
Trouton did for his very viscous pitch and other materials. With 
special ways of holding the sample and supporting it, we can extend 
this approach down to viscosities near l@ Pass. But before we 
consider how to hold the sample, if we can indeed grab the ends, 
how should we program them? If we want to generate a steady 
uniaxial extension, then the velocity field in cylindrical coordinates 
should be 

u, = €x (7.2.1) 

(7.2.2) 
1 u, = -- i r  

where i is a constant, the rate of extension. We should note here 
that the sample cross section need not be circular (see Examples 
1.4.1 and 2.2.1). Rods with square or rectangular cross section 
may also be used. 

To achieve such a velocity field, the sample ends must move 
with velocity (see Figure 7.2.1) 

PL 
uend = - 

2 (7.2.3) 

or 

d L  - - r L = € L  
dt 

Integrating from Lo to L, we obtain 

L = L,ei' (7.2.4) 

Thus the length of the sample increases exponentially, or the sample 
ends must move at velocity 

1 
ucnd = - 2 P Loci' (7.2.5) 
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2 A = n R  Figure 7.2.1. 
A cylindrical sample being 
pulled at each end by a force 
f with a velocity Vend. 

-W Vend 
Vend f + f 

1 - L -  

The strain in the sample is just 

This logarithmic strain measure is sometimes called the Hencky 
strain (1924). In the limit of small strain, it is the same as the usual 
(“engineering”) strain measure L / L o  - 1. 

The stress causing the sample to elongate is the normal stress 
difference T,, - T,, . If we ignore surface tension and other factors 
like gravity for the moment, then this stress is the force per unit 
area acting on the end of the sample (note Figure 7.2.1) 

(7.2.7) f T,, - T,, = - 
A 

Of course the area and thus the force are changing with time. 
For an incompressible material, the sample volume is conserved, 
n R: Lo = ~t R2 L ;  thus 

A ( t ) L ( t )  = nRgLo (7.2.8) 

or 

A ( t )  = 7r R:e-“ 

Thus the stress difference becomes 

(7.2.9) 

From the equations for stress and rate we can readily define 
the extensional viscosity following eq. 7.1.1 with m = -0.5. 

(7.2.10) TI1 - 522 = 7.’ 
3€ 3 I -q  = 
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TABLE 7.2.1 I Working Equations for Uniaxial Extension 

Tensile strain 

E = In L/Lo  (moving clamps) 

(rotating clamp) 8 Rc 

L" 
c = -  

Strain rate 

or - (moving clamps) 1 d L  i = - -  
L dt L 

n=-  dB (rotating clamp) n R,. 6 s -  
Lfl dt 

Tensile stress 

f c" T,, - T,, = - (rectangular cross section) 
YfIZfl 

Uniaxial extensional viscosity 

(7.2.6) 

(7.2.12) 

(7.2.3) 

(7.2.1 1) 

(7.2.9a) 

(7.2.96) 

(7.2.10) 

Errom 
Temperature gradients 
Density mismatch with sumunding fluid 
Uptake of buoyancy fluid 
Surface tension at low Z 
End effects 

(eq. 7.2.14) 

Moving clamps-necking at bonded clamp 
rotating clampslip 

Sample inhomogeneity 

utility 
Uniaxial extension very sensitive to macromolecular and microstructural 
factors relevant for fiber spinning, entrance flows 
Homogeneous deformation 
Highest extensional strain: c = 3 4  typical with careful sample prepa- 
ration and &7 possible with rotating clamps 
Buoyancy bath required for &A < 1 (eq. 7.2.13) 
Need a solid sample to load 
-q 2 lo3 P a s s  due to gravity (density mismatch), surface tension, low 
forces, and drag on buoyancy fluid 
Rotating clamp with horizontal bath easiest to build and use; must cut 
and measure length to get recovery 
Movable clamps permit smaller samples and recovery versus time; but 
lower total strain, longer bath, usually must bond samples 
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Figure 7.2.2. 
Recording of the tensile force 
as a function of time for a 
constant strain rate i,, test. 
From Laun and Munstedt 
(1976). 

Figure 7.2.3. 
Samples for uniaxial exten- 
sion testing using translating 
clamps: (a) ring shape and 
(b) cylindrical sample bonded 
with adhesive to a metal base. 

Temperature T =  150’ C 
Strain rate &, = 3 .  lo? s.’ 
Totalstrain e = % r = 6  
Initial diameter do= 6.2’ 101 m 
Initial sample length Lo = 0.65 m 

6 -  

Y 2 -  

I I 

0 50 100 150 200 
Time t (s) 

Note that the Trouton ratio of 3 is already included when is used 
to define uniaxial extensional viscosity, in contrast to qu used in 
Chapter 2 (eq. 2.3.9) and frequently in the literature. 

As discussed in the preceding section, 2 = 211 and € 2 2  = 
€33, and since t 2 2  = t33, there is only one viscosity function in 
uniaxial extension. Table 7.2.1 summarizes the working equations 
for uniaxial extensional rheometry. 

A typical force versus time trace is shown in Figure 7.2.2. 
According to eq. 7.2.9, to determine tensile stress this force must 
be multiplied by the exponentially increasing length and divided by 
area. If we want to maintain constant stress on a sample, the product 
of force and length must be constant. Servo-controlled rheometers 
have been developed to increase sample length exponentially or to 
maintain constant stress (Munstedt, 1979; Au Yueng and Macosko, 
1980). Further discussion of deformation and stress control in 
extensional rheometers is given in Chapter 8. 

7.2.1 End Clamps 
It is easy to say “make a rod of the liquid sample and pull on its 
ends.” It is quite another matter to actually achieve this deforma- 
tion in practice. A number of methods for holding the ends have 
been tried. As illustrated in Figure 7.1.1, Trouton (1906) thickened 
the ends. Connelly, Garfield, and Pearson (1979) used a blob of 
epoxy to thicken the ends of molten polymer rods. Other work- 
ers (Cogswell, 1968; Dealy et al., 1976) have used water-cooled 
collars, but these can lead to unacceptable temperature gradients. 
Shaw (1976) pulled ring-shaped samples like those shown in Figure 
7.2.3. Mechanical clamps, like those used for rubber, are success- 
ful for rectangular samples (Muller and Froelich, 1985). Sridhar 
et al. (1991) have shown that for strongly extensional-thickening 
materials, samples can be simply confined between two plates and 
pulled rapidly. This method has strong end effects but is the eas- 
iest to use and has been applied to polymer solutions with shear 
viscosities of about 30 Pa.s. 

The best method for holding polymer melts over a range of 
deformation rates appears to be to bond the ends of the sample to a 
metal clip. Bonding is done in the solid state. Laun and Munstedt 
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Figure 7.2.4. 
Test of uniformity in the 
drawing of a low density 
polyethylene sample at 
150°C in creep: Initial sam- 
ple length 1, = 10 mm; 
initial sample diameter 
do = 6 mm; stretching ra- 
tio h = 111, = 40. From 
Laun and Munstedt (1978). 

(1978) found epoxy adhesives hold up to 190°C. Garritano (1982) 
reports success with polyimide adhesives in the 200-225°C range. 
For certain materials such as polyolefins, it is necessary to etch the 
polymer surface with concentrated sulfuric acid to achieve good 
adhesion. Samples can be molded under vacuum to avoid air bub- 
bles and annealed slowly to minimize frozen-in stresses (Au Yueng 
and Macosko, 1980; Meissner, 1985). 

End effects occur even with adhesive-bonded samples. Near 
the bond the sample cannot deform; see Figure 7.2.4. As a result of 
partially compensating effects, however, this error is not too large. 
Franck and Meissner (1984; Meissner, 1985) found that in creep the 
error in strain was only 3% at E = 2.2 for a cylindrical polystyrene 
sample approximately 6 mm x 30 mm. At larger strains the error 
will increase, but the control servo can be programmed to correct 
for it by using actual diameter (or length) measurements from a cut 
taken out of the control part of an earlier sample. 

7.2.2 Rotating Clamps 

An alternate method for pulling samples is the rotating clamp, de- 
veloped by Meissner (1969) and further improved by Meissner and 
co-workers (1971, 1981) and Li et al. (1990). The sample is held 
between two pairs of rotating gears or cylinders, as indicated in 
Figure 7.2.5. A simpler alternative is to fix one end by gluing or 
other means while the free end is pulled between rotating gears or 
wrapped around a rotating rod (Macosko and Lorntson, 1973; Ever- 
age and Ballman, 1976; Ide and White, 1976; Laun and Munstedt, 
1978; Connelly et al., 1979, Ishizuka and Koyama, 1980). 

It is much easier to program a constant extension rate with the 
rotating clamp than with the translating clamp. Since we are always 
testing a constant length sample Lo from eq. 7.2.1, the velocity of 

initial sample length l o  = 1 0 m m  
initial sample diameter  d o =  6 m m  
stretching rat io h = 1 / 1 ,  = L O  

0 E c  -5 .$ 

L E  
Q L  0 100 200 300 400 E 2  

b *  1.0 ~ ~ O O . ~ O O . O ; O O . O ~ . . .  , 
G 

position along the sample x t m m l  o a l  

metal sheets ) sample after deformation 

-'/.llh sample before deformation 

292 / RHEOLOGY 



Figure 7.2.5. 
Schematic drawing of the 
double rotating clamp appa- 
ratus (adapted from Meissner, 
1971). (a) Top view. The 
cylindrical sample P of ini- 
tial length L,, is stretched by 
clamps Zi and Z2 rotating 
at 521 and Qz. Drive motor 
M I  is shown. Spring B and 
displacement sensor W meas- 
ure force. (b) A detail of the 
rotating clamps. Gear teeth 
are used to prevent slip. (c) 
End view showing oil buoy- 
ancy bath with top surface 
0. Fourteen pairs of scis- 
sors T cut the sample into 
small lengths LA for recovery 
measurement L R .  

the end of the sample will be a constant, proportional to SZ, the 
angular velocity, and the radius, Rc, of the rotating clamp. Thus 
the strain rate is 

(7.2.1 1) 

or 

if there are rotating clamps at each end of the sample. The strain is 
proportional to the angular rotation 6 

RC 
L O  

E = -  (7.2.12) 

The area still decreases exponentially, eq. 7.2.8; thus eq. 7.2.9 ap- 
plies for the stress. 

In addition to providing a simpler control for achieving con- 
stant extension rate, another advantage of the rotating clamp is that 
the overall apparatus can be shorter. To reach a strain of 4, the trans- 
lating clamp machine must stretch a 10 mm long sample to 550 mm. 
With a rotating clamp, the length remains constant. Raible et al. 
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(1979) have reached strains of 7, more than a 1000-fold extension, 
with rotating clamps (see below, Figure 7.2.7). 

A disadvantage of rotating over translating clamps is that 
tests other than constant rate are more difficult. For example, as 
shown in Figure 7.2.5, recovery can be measured only by cutting 
the extended sample with scissors and measuring the recovered 
length. Another disadvantage is that longer samples are required 
for the rotating clamps: 70-700 mm versus 10 mm. For accurate 
work, samples must be specially extruded to provide a homoge- 
neous sample (Raible et al., 1979; Meissner et al., 1981). Shorter 
samples for translating clamp devices can be vacuum compression 
molded and annealed to provide samples free from bubbles and 
stress (Meissner, 1985). 

Another problem with rotating clamp devices is slip at the 
clamp surface. Meissner (1969,1981,1985) reports that the sample 
end velocity was 8-10% less than Q R , .  

7.2.3 Buoyancy Baths 
Trouton found that to achieve uniform deformation with lower vis- 
cosity materials, vo < lo7 Pa.s, he needed to support the sample 
in a low viscosity liquid (salt water) of the same density. Connelly, 
et al. (1979) studied samples drawn out horizontally in an air bath. 
They could not get uniform extension when the extension rate times 
the fluid’s longest relaxation time was less than 1 

€Ao < 1 (7.2.13) 

Thus for lower rate testing some sort of buoyancy bath is 
required. Figure 7.2.5 indicates a horizontal buoyancy bath of the 
type most often used with rotating clamp instruments. Both hor- 
izontal (Vinogradov et al., 1970, Franck and Meissner, 1984) and 
vertical baths (Munstedt, 1975, 1979) like the one shown in Figure 
7.2.6 are used with translating clamp rheometers. 

Matching density is less difficult with a horizontal bath. The 
sample merely must be less dense than the fluid. Typically, dimethyl 
and phenyl silicone oils and perfluorinated polyethers are used for 
higher density. Clearly the oil must not diffuse into the sample. 
A sensitive test for diffusion is actually to watch for changes with 
time in rheological properties like qo. Other techniques such as 
infrared have been used (Munstedt, 1979). 

At low stress levels the force due to interfacial tension, r, 
between the oil and sample can become appreciable. Equation 
7.2.7 for the stress becomes 

TII - T22 = f - r(l - F) 
A R  

(7.2.14) 

Interfacial tension works against the pulling force. Typically, 
interfacial tension is 5 mN/m, so the correction is small in polymer 
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Figure 7.2.6. 
Schematic of extensional 
rheometer with a translating 
clamp and vertical buoyancy 
control bath. The tempera- 
ture control fluid is circulated 
through a jacket around the 
buoyancy fluid. An outer 
vacuum jacket insulates the 
apparatus. Redrawn from 
Munstedt (1 979). 

Figure 7.2.7. 
Nominal tensile stress ver- 
sus strain for a low density 
polyethylene at 150°C: rotat- 
ing clamps, 1 ,  = 0.035-'. 
The highest curve shows the 
effect of small temperature 
gradients (r O.I"C/lO cm) 
at high strain. With excellent 
control of temperature, data 
are reproducible to within the 
shaded region. From Meiss- 
ner et al. (1981). 

t" 

4 
f 

- Buoyancy fluid 

- Temperature 
control fluid 

- Vacuum 

+ Silvered 

-Epoxy bonded 

melts. Laun and Munstedt (1978) report that surface tension influ- 
enced their results on low density polyethylene for k < 10-4s-'. 
Density mismatch may be a greater source of error in vertical bath 
instruments. With rotating clamps the 2R/L term in eq.7.2.14 

With good density match, and temperature control, it is pos- 
sible to get very uniform sample extension over the length of a 
vertical bath, as illustrated in Figure 7.2.4. Figure 7.2.7 shows that 
small temperature gradients in a horizontal bath can significantly 
affect data at extremely large strains. This figure also shows that for 
some polymer melts, even a strain of 7 is not sufficient to achieve 
steady extension. 

drops out. 

nominal stretch An, Sexp tio t )  

nom'nal rtmin E~~~ - i o t  
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When the foregoing precautions are taken, both moving and 
rotating clamp devices give good agreement for q z ,  as shown in 
Figure 7.2.8. Other examples of uniaxial extensional viscosity are 
shown in Section 4.2. Surface tension, density differences, and pos- 
sibly diffusion and drag problems with the buoyancy fluid appear to 
limit these rod pulling methods to relatively high viscosity liquids, 
r]  =- lo3 Pa.s. The advantages and limitations of the methods are 
summarized in Table 7.2.1. 

7.2.4 Spinning Drop 
For lower viscosity fluids, an alternate to rod pulling is to use a 
buoyancy fluid to squeeze the sample radially. Hsu and Flummer- 
felt ( 1975) have adapted the spinning drop tensiometer (Joseph et 
al., 1992) shown in Figure 7.2.9 to extensional measurements. If 
the surrounding fluid is more dense, pz > P I ,  then the test fluid 
will move to the center when rotation starts. It will elongate until 
interfacial tension balances the inertial forces. 

During start-up, the tensile stress difference in the test fluid 
will be a balance of inertial, interfacial, and drag forces 

Figure 7.2.8. 
Comparison of translating 
(0,-) and rotating clamp 
(0) data for a low density 
polyethylene (IUPAC A) at 
150°C. From Au Yueng and 

(@ - pi)Q2RZ + 
2 R Ti1 - T22 = 

8 -  
h 

B 
0 
e 

X 6 -  

cn cn 
W 
a 
I- 
W 4 -  

W 
A 

v 

- 
Macosko (1980). 

I 
IUPAC 'xi LDPE 
15OoC 

0 LAUN 

4 = 0.1 set" , I o  = 10.4mm 
1 =0.03sec"  ,d,=8.2mm 

0 MUNSTEDT 

- RER 

"0 I 2 3 
HEN C K Y STR A I N 

4 

2% / RHEOLOGY 



Figure 7.2.9. 

apparatus. The shape change 
Schematic of spinning drop R P2r)2 

Rend 1 that occurs after rotation _RL-RtLL \-- 
starts is an extensional de- 
formation. 

where represents an average extension rate in the surrounding 
(Newtonian) fluid at the interface, and r is the interfacial ten- 
sion. Even when 52 is increased suddenly, the drop radius typically 
does not decrease exponentially; thus the deformation is not that of 
steady extension. However, Hsu and co-workers (1977) were able 
to achieve constant extension rate and constant stress tests by using 
a photocell system for feedback control on the drop length. Their 
results on two polymer solutions, qo lo3 Pa-s, were limited to 
low extension rates, 4 < 0.03 s-I, and low total strain, E .c 0.6. 
Further work is needed to define the utility of this method. 

7.3 Lubricated Compression 
In shear if we reverse the shear direction, we obtain the same ma- 
terial functions. The same is not true for uniaxial extension. In 
general, the normal stress difference needed to generate uniaxial 
compression (or equibiaxial extension) is not merely the negative 
of the stresses needed to generate uniaxial extension. Equibiaxial 
extension flow is not as strongly orienting as it is uniaxial. This 
fact is most clearly demonstrated with dilute suspensions of rodlike 
particles in Chapter 10 (Figure 10.5.3). It is valuable to measure 
this effect, which can be used to test constitutive equations (e.g., 
Papanastasiou et al., 1983; Khan et al., 1987). Biaxial flow is also 
relevant to sheet forming of polymers and compression molding. 

In principle, one way to generate uniaxial compression or 
equal biaxial flow would be to reverse the rod pulling experiment 
described in Section 7.2. However, if the initial cylinder is long and 
thin, it will buckle under compression. Buckling can be eliminated 
by going to smaller UR, but then shear from the fixed ends will 
contribute significantly to the total force. One way to eliminate this 
shear is to lubricate both ends of the sample with a lower viscosity 
liquid. This approach has been used successfully to obtain biaxial 
viscosity data (Chatraei et al., 198 1). Figure 7.3.1 shows the motion 
of a tracer parallel to the z axis in a polydimethylsiloxane (PDMS) 
melt. As the rod deforms, the tracer moves out parallel to the z 
axis, becoming shorter and fatter. A cylindrical weight was placed 
on the sample and the weight and sample put into a silicone oil 
bath. The same results are obtained when the lubricant is simply 
coated on the sample ends (Chatraei, 1981). This simpler method 
(see Figure 7.3.2) is the most commonly used (Soskey and Winter, 
1985; Khan et al., 1987). 
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Figure 7.3.1. 
Lubricated squeezing of 
a PDMS sample, vo = 
2.7 x lo4 Pa. s; lubricant 
viscosity = 0.45 Pa. s. A 
vertical, black ink line was 
embedded at % R , / 2 .  L ,  = 
30 mm, R, = 28.6 mm. From 
Chatraei et al. (1981). 

In compression the maximum strain component is 

1 Jw) 
6 = err = 

2 
(7.3.1) 

where Lo is the initial sample thickness as indicated in Figure 7.3.2. 
Following the convention given in eq. 7.1.3, we must choose a co- 
ordinate system with r in the X I  direction so that err = 611 = €22. 
This is different from the uniaxial case (see Figure 7.1.2 or compare 
Figures 7.3.2 and 7.2.1). It follows that 

(7.3.2) 

The normal stress difference that drives the flow is 

(7.3.3) f Trr - Txx = Ti1 - T33 = - 
n R2 

If the plates are only partially filled, then 

+- 
J Ti1 - T33 = - 

nr*(t)  
(7.3.4) 
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Figure 7.3.2. 
Schematic of lubricated 
squeezing geometry: (a) the 
initial sample disk is smaller 
than plate radius; (b) sam- 
ple and plate radius; are the 
same. 

The varying sample radius can be determined from the thickness, 
assuming a constant volume sample 

(7.3.5) 

Following eq.7.1.1, m = 1 and the equibiaxial viscosity 
becomes 

(7.3.6) 

The working equations for lubricated compression are summarized 
in Table 7.3.1. 

Figure 7.3.3 plots E versus 1 for the sample used in Figure 
7.3.1. We see that after a short transient, the lubricated sample 
creeps at constant rate, indicating steady equibiaxial flow. The 
departure at E - 1 indicates loss of lubricant. Also shown in Figure 
7.3.3 is an unlubricated sample at about the same stress. It squeezes 
much more slowly, and the height versus time is well described by 
the Stefan equation (eq. 6.4.8). 

Loss of lubrication at E - 1 is typical. Papanastasiou et al. 
(1986) analyzed lubricated squeezing of two Newtonian fluids and 
found limiting regimes for the flow behavior shown in Figure 7.3.4. 
They showed that lubricant thickness S decreases approximately 
with the square root of the gap 

(7.3.7) 

Secor (1988) extended their work and established criteria for lubri- 
cation 

(7.3.8) 

where q~ and q are the Newtonian shear viscosities of the lubricant 
and sample, respectively. 
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TABLE 7.3.1 1 Working Equations for Compression 
(Equibiaxial Extension) 

Strain 

(7.3.1) 

(assuming perfect lubrication of sample ends) 

Strain rate 

1 d L  
6 = -- 

2L dt (7.3.2) 

Stress 

f 
T r r  - Txx = - x R2 

-- - f (if partially full) (7.3.3) 
x r 2 ( t )  

Equibiaxial viscosity 

(7.3.6) qb+=-- TII - T33 - 6P: 
€ 

Errors 
Lubricant viscosity must satisfy eq. 7.3.8 
Always loses lubrication as S decreases during squeezing 
Stresses at edge 
Influence of S in L measurement, especially if lubricant pumped in 

Utility 
Biaxial extension: 

Different material function from uniaxial 
Less strongly orienting, less sensitive to structure 
Relevant for molding, foaming processes 

Simple experiment: fast, small sample, easy to prepare; broad tempera- 
ture range 
Step strain allows exploration of nonlinear viscoelasticity 
Planar flow can be done with same apparatus (see. Figure 7.3.7) 
Limited strain, E < 1.5, without external lubricant supply 
Need solid sample for simple loading 
-q > 102 Pa.s 

If the lubricant viscosity is too low or the layer is too thick, it 
will rapidly squeeze out, according to the profile in Figure 7.3.4a. 
It then goes into the desired biaxial mode (Figure 7.3.4b), but even- 
tually S becomes thin enough (following eq. 7.3.7) that the upper 
limit is reached (Figure 7.3.4~). Here the flow is no longer purely 
equibiaxial. This point occurs at E - 1 for typical conditions: So = 
0.1 mm, Lo = R = 5 mm, and q ~ / q  - 

300 I RHEOLOGY 



c 

Figure 7.3.3. 
Typical creep, -46 = 
y2 ln(L/L,,) versus time for 
the PDMS of Figure 7.3.1: 
(open points, 0) lubricated 
experiment f/A = 2.2. kPa, L,, 
= 13.13 mm; (solid points, 
0 )  unlubricated experiment 
f/A = 2.0 kPa, L,, = 17.01 
mm; curves show Newton- 
ian theory for unlubricated 
squeezing flow. Adapted 
from Chatraei et al. ( 1  98 1). 

Figure 7.3.4. 
Velocity profile in lubricated 
squeezing depends on the 
ratio T]L R2/qS' (eq. 7.3.8). 
(a) Ratio too small; lubricant 
is rapidly squeezed out. (b) 
The ideal situation. (c) Ratio 
too large; there will be shear 
as well as extension in the , 
sample. From Papanastasiou 
et al. (1986). 
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Secor (1988) showed that by replenishing the lubricant lay- 
ers from the centers of the two plates using a double-syringe pump, 
maximum strains could be extended to E - 2.5. Here strain be- 
comes limited by accurate determination of the lubricant layer 
thickness, which must be subtracted from L(t). Sample thickness 
becomes very small at large strain: E = 2.5 L / L o  = 0.007. 

Over a range of about lo2 in stress, Chatraei et al. were 
able to reach steady biaxial extension (i = 0.003-1.0 s-I). Thus 
a steady state biaxial viscosity qb can be plotted versus normal 
stress, Figure 7.3.5. When this is compared to the data for shear 
viscosity versus shear stress, we see good agreement with 6q0 at 
low stresses. There is also reasonable agreement between the four 
different diameters used, indicating no strong edge effects. Note 
that the biaxial viscosity shows thinning but at a higher stress level 
than for shear. 

To perform constant rate squeezing rather than constant stress 
requires programming the gap to close at an exponentially decreas- 
ing rate, eq. 7.2.4. Soskey and Winter (1985) have done this. They 
were able to get the linear viscoelastic limit, but for E =- 1 they 
found it difficult to determine whether they had strain hardening or 
simply loss of lubrication. Isayev and Azari (1986) did the simpler 
constant velocity squeezing experiments. They calculated a biax- 
ial viscosity from their force versus time curves using a differential 
constitutive model and found behavior very similar to Figure 7.3.5 
for a polybutadiene gum (qo - lo7 Pa-s). 

It is also possible to do step squeezing experiments, as indi- 
cated in Figure 7.3.6. Similar to the results of constant stress and 
constant rate tests, lubrication is lost at E -= 2. Secor suggests that 
the ratio that controls lubrication is ~ L . ? R ~ / G S ~ ,  where i is the 
compression rate during the step squeezing and G is the relaxation 
modulus at the start of the relaxation process. 
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Figure 7.3.5. I 
Shear and biaxial viscosi- 
ties versus stress at 25°C for 
the PDMS of Figure 7.3.1: 
(A), Shear viscosities (by 
cone and plate). Biaxial 
extensional viscosities (4) 
as follows: R = 12.7 mm, 
(0) R = 25.4 mm, ( 0 )  R = 
28.6 mm, (0) R= 63.5 mm; 
(-) 617. Replotted from 
Chatraei (1981). 

Figure 7.3.6. 
Stress relaxation for step 
squeezing of polystyrene at 
180°C. (a) Stress versus time 
for increasing strain steps. 
Stress increases at short 
times, 2-10 ms because the 
plates take a finite time to 
close. The horizontal stress 
response signifies transducer 
overload. The rapid drop for 
strains E > 1 indicates loss 
of lubricant. (b) Stress re- 
laxation data plotted as re- 
laxation modulis. Solid line 
is the linear viscoelastic re- 
laxation modulus calculated 
from shear dynamic data. 
Adapted from Soskey and 
Winter (1985). 
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1 

Figure 7.3.7. 
Fixtures used for 
planar squeezing. 
and Larson ( 1  99 1 

7.3.1 Planar Squeezing 

The apparatus used for lubricated compression also can be readily 
adapted to give lubricated planar flow, as shown in Figure 7.3.7. 
Only one normal stress difference is measured, (tl I - t33) = F / A .  
Thus only one of the two planar viscosities is available, p l  . How- 
ever, as shown elsewhere (Figures 4.2.7 and 7.4.6), this viscosity 
should be the more strongly thickening one. 

Khan and Larson (1991) have shown that step planar squeez- 
ing gives the correct linear viscoelastic limit at small strains. Lu- 
brication is lost at strains similar to equibiaxial, 6 5 1.5. Further 
work is needed with this geometry. 

Lubricated compression is probably the simplest extensional 
method. If samples can be made in a solid form, they will be easy 
to load and test. Temperature can be readily controlled over a wide 
range. Strain appears to be limited to 1-1.5 by loss of lubricant, 
and samples with viscosity q > lo2 Pa.s seem necessary to create 
enough difference between sample and lubricant. The advantages 
and limitations of lubricated compression are summarized in Ta- 
ble 7.3.1. However, the method has not been widely studied, and 
further work is needed to accurately determine its limitations. 

lubricated 
F~~~ Khan 

1. 

7.4 Sheet Stretching, Multiaxial Extension 
Nearly all the extensional tests described above were developed 
from experiments used to study solids, especially rubber. Another 
method used extensively in fundamental studies on rubber is sheet 
stretching. Thin rubber sheets can be pulled at their perimeter or 
inflated to give quite a variety of deformations (Treloar, 1975). In 
fact, Rivlin and Saunders (1951) showed that any state of stress 
could be generated by applying different combinations of stresses 
along the edges of an originally square rubber sheet. Figure 7.1.2 
illustrated this schematically. Kawabata and Kawai (1977) have 
reviewed these techniques and the results for several types of rubber. 
A picture of their general biaxial stretching apparatus is shown in 
Figure 7.4.1. 

A translating clamp device of similar design could be used for 
high viscosity polymers. Small clamps could be glued to the edges 
much as in the rod pulling experiments. In addition to pulling, 
the clamps must translate laterally to accommodate the increas- 
ing sample width. However, an apparatus like Figure 7.4.1 does 
not yet seem to have been applied to high viscosity liquids. Biax- 
ial stretchers for molten polymers have been built with pneumatic 
clamps to simulate film tentering, but they were not designed to 
be used as rheometers. There appears to be too much friction in 
the slide mechanism to accurately measure the small forces needed 
to stretch polymer melts. See example 1.10.9 for another type of 
polymer melt orienting device. 
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7.4.1 Rotating Clamps 
A rotating clamp device for sheets of high viscosity liquids has 
been developed by Meissner and co-workers (1982). Their design, 
illustrated in Figure 7.4.2, is analogous to the rotating clamp for 
uniaxial extension (Figure 7.2.5). For equibiaxial extension, eight 
pairs of cylindrical rollers are arranged in an octagonal pattern. 
Other arrangements can give uniaxial, planar, or any other com- 
bination of extensions (Figure 7.4.3). The test sample is floated 
on a liquid bath or on talcum powder. The rollers are mounted on 
leaf springs so stress can be detected. Scissors periodically cut the 
sheet between the rollers to permit uniform winding. Each roller 
is servo-controlled and a minicomputer coordinates all the rollers 
and scissors. 

Figure 7.4.4 shows data from the rotating clamp device for 
the transient equibiaxial viscosity at three different extension rates. 
For comparison, the linear viscoelastic viscosity and the uniax- 
ial viscosity are shown. Results for the biaxial viscosity compare 
well to those measured in lubricated compression on the same poly- 
isobutylene sample as in Figure 7.4.4 (Chatraei et al., 1981). So far, 
only results with the rotating clamp method have been reported for 
this sample. Maximum strains were 2.5 in the biaxial and multiax- 
ial tests and G < 0.1 s-' . Friction on the talcum powder may limit 
the total strain and the detectable stress values. Much larger, more 
homogeneous samples are required than were used in the lubricated 
squeezing experiments. However, because the rotating clamps can 

Figure 7.4.1. 
Ranslating apparatus 

by Kawabata and 
Kawai ( I  977) for general bi- 
axial testing of rubber sheets. 
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Figure 7.4.2. 
Rotary clamp for multiaxial 
elongation of polymer melts. 
The two grooved cylinders 
RC rotate in opposite di- 
rections and draw a strip of 
polymeric material. After 
passing the nip line of the 
two cylinders, the strip is 
wound up by cylinder WU. 
A suspension system with 
eight leaf springs LS allows 
small elastic displacements in 
the length direction L of the 
clamp and in the perpendic- 
ular direction N, which are 
recorded by transducers T-L 
and T-N. From Meissner et 
al. (1982). 

Figure 7.4.3. 
Various arrangements of ro- 
tating clamps ( R C i )  for mul- 
tiaxial elongation. (a) Equi- 
biaxial: S = sample; Ci = 
one of eight pairs of scissors; 
transducers 1;. (T-L of Figure 
7.4.2) record the forces. (b) 
Planar: clamps A-F rotate 
with constant speed, while 
G and H remain stationary, 
recording only force. L,, = 
158 mm. If only G and H 
rotate and A-F are removed, 
we have uniaxial extension 
of a strip. (c) Multiaxial with 
rn = 0.5 (eq. 7.1.4): ellipse 
axes a = 268 mm, b = 380 
mm. From Meissner et al. 
(1982) and Demarmels and 
Meissner ( 1  985). 
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Figure 7.4.4. 12 
Transient equibiaxial viscos- 
ity (rn = 1, open symbols), 
uniaxial viscosity (rn = -0.5, 
solid symbols), and linear 
viscoelastic shear viscosity 
(lines) for polyisobutylene. 
Replotted from Meissner et 
al. (1982). 
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be arranged in any pattern, this method permits arbitrary, multiaxial 
deformations. 

7.4.2 Inflation Methods 

To avoid the problems associated with grabbing the edge of a sheet 
of liquid, a number of workers have tried various inflation methods. 
Planar extension can be achieved by inflating a hollow cylinder of 
melt (Stevenson et al., 1975, Laun and Schuch, 1989). By pulling 
on the tube, various amounts of uniaxial extension can be super- 
posed on the planar extension, creating any state of stress, as in the 
general sheet stretching (Chung and Stevenson, 1975). 

The tube inflation apparatus of Laun and Schuch is shown in 
Figure 7.4.5. They modified the uniaxial extensional apparatus of 
Munstedt (Figure 7.2.6) by adding a syringe that injects oil into the 
tube as it is stretched. Just enough oil is injected to keep the mean 
radius, R = (R, + Ri)/2, constant. For constant 1 the tube length 
is extended exponentially as in uniaxial extension, eq. 7.2.4. The 
pressure inside the tube, Pi, measures the second planar viscosity. 
From eq. 7.1.1 with m = 0 

where AR = R, - Ri.  The derivation assumes a thin-walled 
tube (see Laun and Schuch, 1989, Appendix A). The first planar 
viscosity is a combination of the tensile force and the pressure 

Figure 7.4.6 shows some transient planar viscosity data ob- 
tained by tube inflation. At short times (small strains) all the ma- 
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Figure 7.4.5. 
Schematic of the appara- 
tus used for planar elonga- 
tion tests, in which a tube- 
like sample is extended and 
inflated. From Laun and 
Schuch (1989). 

syringe 

hose 

force . 
transducer 

Figure 7.4.6. 
Transient planar viscosities 
(open symbols) compared to 
uniaxial (e) and shear (0)- 
all at constant extension or 
shear rate of 0.05 s-'-for 
a low density polyethylene 
at 125°C. The solid line is 
the linear viscoeslastic limit. 
Ticks denote a repeat test 
(at half the sample length, 
20 mm, in the planar case). 
Shaded area denotes range 
of ~2 for several runs. From 
Laun and Schuch ( 1  989). 
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terial functions should converge to the linear viscoelastic limit; pz 
is low. The measured pressure was low, typically Pi = 1 mbar. 
The first planar viscosity does agree with linear viscoelasticity at 
small strain and converges toward the uniaxial result at large strain. 
Petrie (1990) has shown that this behavior is expected from a broad 
class of molecular models. 

It is difficult to fabricate the hollow cylinders required for 
tube inflation tests. Inflating a flat rectangular sheet over a long 
rectangular slot .also approximates planar extension (Denson and 
Hylton, 1980). However, the clamped edges around the rectangu- 
lar slot prevent a uniform deformation over the entire sheet. Pho- 
tographs of a grid in the polar region are necessary for accurate 
determination of strain. 

Inflation of a sheet clamped over a circular hole suffers the 
same difficulty. More work has been done with this method (see 
Dealy, 1982). Inflation has been done with both liquid and gas. The 
stress and deformation equations are treated in Chapter 1, Exercise 
1.10.8, and by Dealy (1982). The results can give the biaxial viscos- 
ity function and E up to 2 has been achieved (Rhi-Sausi and Dealy, 
1981; Yang and Dealy, 1987). But results so far have been limited 
to relatively low extension rates. The method requires photography 
and a somewhat complex apparatus. Inflation tests, however, are 
similar to the vacuum forming process for making shaped plastic 
items (Schmidt and Carley, 1975; DeVries and Bonnebat, 1976). 
Thus there is motivation to continue this work. 

7.5 Fiber Spinning 
In Sections 7.2-7.4, we saw that it is possible to test high viscosity 
samples, particularly molten polymers, in extension. The major 
problems are sample preparation, clamping, and buoyancy. Exten- 
sional rheometry is more difficult, and the upper limits of strain 
rates and strains are much lower than for shear. Nonetheless, accu- 
rate and reproducible data can be obtained, particularly in uniaxial 
extension. 

With lower viscosity liquids, q < lo3 Pa.s, extensional 
rheometry is much more problematic. It is impossible to “grab 
and pull” such fluids as we did with the melts. Gravity, surface 
tension, air drag, or confining walls all work against the desired 
extensional flow. Yet the effects of extensional flow can be much 
greater for polymer solutions than for polymer melts (see Figure 
7.5.1). However, because these extensional effects are so strong, 
we can use extensional indexers (i.e., flows with a mixture of exten- 
sion and shear or with poorly defined strain histories). These index 
results will give a good idea of the importance of extensional flow, 
but they will not give us purely extensional material functions. The 
rest of this chapter concentrates on these approximate extensional 
methods for lower viscosity samples. 
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A, 0 2% Polyacrylamide soln. 
- 3% Xanthan soln. 

Shear rate f(s-’) 

(a) 

Figure 7.5.1. 
Comparison of shear and ex- 
tensional properties of two 
polymer solutions with sim- 
ilar shear viscosities: 2% 
polyacrylamide and 3% xan- 
than, both in water at room 
temperature. Apparent uni- 
axial extensional viscosity 
by fiber spinning. Replotted 
from Jones et al. (1 987). 

Figure 7.5.2 
Schematic of a fiber spinning 
apparatus. 

tf 

‘“100 10’ 102 

Strain rate 6 (d) 

The most common of these methods is fiber spinning. Figure 
7.5.2 shows the basic features of this method. To avoid the problem 
of “grabbing and pulling,” the sample is continuously extruded from 
a tube and stretched by a rotating wheel or vacuum suction. The 
force on the tube or on the take-up system is measured. The fiber 
diameter is measured as a function of distance along the fiber, either 
photographically or by a video camera. 

The extension rate can be determined from measurements of 
fiber diameter and flow rate. If we assume that the only component 
of velocity is v x and that it is uniform across the radius, then the 
flow rate is 

Q = v,j7R2(x) (7.5.1) 

For constant flow rate using the definition of extension rate, we 
have 

E = - = - - -  . av, 2Q d R  
ax nR3  d x  

(7.5.2) 

Differentiating the R ( x )  profile gives the extension rate down the 
fiber. The practice of taking derivatives of experimental data is 
prone to errors. Fitting the data first with a spline function can 
improve accuracy of d R / d x  (Secor, 1988). 

A simpler analysis is often used. If we assume that the ex- 
tension rate is constunt everywhere along the fiber, then 

(7.5.3) 
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and from eq. 7.5.1 

(7.5.4) 

Since the final diameter is small, a good approximation for the 
strain rate is 

Q ka z - 
RR;L 

(7.5.5) 

If we equate eqs. 7.5.2 and 7.5.4, we can obtain a quadratic expres- 
sion for the radius profile 

X -- - 
R; L 

(7.5.6) 

The total strain experienced by each material element as it is 
drawn down with the fiber is 

(7.5.7) 

which is equivalent to eq. 7.2.6 for rod pulling. 
The measured force in the fiber spinning experiment is the 

sum of the extensional stress in which we are interested as well 
as the effects of gravity, inertia, and surface tension (Secor et al., 
1989). 

For high viscosity liquids the correction terms can often be ne- 
glected. Hence, data often are analyzed by simply dividing the 
force on the nozzle by the die cross section 

f 
(7.5.9) 

From this relation and eq. 7.5.5 we can define an apparent uniaxial 
extensional viscosity for the fiber spinning experiment 

(7.5.10) 

Much of the literature data is reported using this simplified analysis 
(e.g., Figure 7.5.1). 
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TABLE 7.51 I Working Equations for Apparent Uniaxial 
Extensional Viscosity from Fiber Spinning 

Strain rate 

Strain 

- 2 Q  d R  g = -  - 
nR3 d x  

if i is assumed to be constant down fiber 

Q 
~ R ; L  

€(, = - 

R; 
R: 

cu = ln- 

(7.5.2) 

(7.5.5) 

(7.5.7) 

Tensile stress 

Apparent unixial extensional viscosity 

fL 
Q rlu.u = - (7.5.10) 

(neglect gravity, inertia, and surface tension, and 
assume C constant) 

Errors 
Effect of shear history in feed die, extrudate swell 
6 is not usually constant 
Gravity, inertia can be significant for low 9 
Surface tension r / R  = 10 - 100 Pa 
Air drag, especially with vacuum take-up 
Detachment of fiber on inside of die 
Uncertainty in diameter due to vibration, instabilities 
Nonisothermal (polymer melts) 
Solvent evaporation 
Unstable flow 

Utility 
Effects of prehistory and nonconstant C obviate interpretation of results 
in terms of simple extensional material function, but the method is still 
useful 
Sensitive to changes in uniaxial extensional viscosity 
Easy sample preparation, but often requires > 100 ml 
Relatively simple equipment 
Particularly useful for polymer solutions and suspensions 
q > 1 Pa.s 
Simulates fiber spinning process 
10 < 6 < 10.' typical and usually less for a given material 
c c 3 and typically E < 2; syphon may be better 
Imaging system (photo or video) highly desirable, slows data analysis 



Figure 7.5.3. 
Determination of extension 
rate in fiber spinning for a 
Newtonian liquid (5050 glyc- 
eridwater mixture) and a 
1.5 wt % solution of poly- 
acrylamide in water. (a) Ra- 
dius profiles used to calculate 
(b), the local extension rate, 
and (c), the cumulative strain 
down the fiber. 

These working equations, along with the limitations and util- 
ity of fiber spinning measurements, are summarized in Table 7.5.1. 
The major problem is that typically 4 is not constant, so the force, 
which is measured over the entire fiber, is an integration of stresses 
due to various strain rates and even the upstream shear history in 
the die. For these reasons, the fiber spinning experiment is not 
a true rheometer, but gives only an apparent uniaxial extensional 
viscosity. 
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Figure 7.5.4. 
Comparison of the correction 
terms in the extensional stress 
calculation for (a) 1.5 wt % 
polyacrylamide in a 5050 
mixture of water and glyc- 
erin and (b) glycerine. From 
Secor et al. (1989). 

To illustrate this point, let us examine typical fiber radius pro- 
files for a Newtonian liquid and a polymer solution (Figure 7.5.3a). 
For the elastic polymer solution we see that the radius actually in- 
creases before it draws down. This is due to extrudate swell typical 
for capillary flow of elastic liquids. Using eq. 7.5.2 and a five-point 
spline fit, extension rate was evaluated from these R ( x )  data. Fig- 
ure 7.5.3b shows that away from the nozzle € becomes constant at 
about 23 s-' for the glycerin solution, but for the polyacrylamide 
e continues to increase along the entire fiber. Figure 7 .5 .3~  shows 
strain versus x for the same two runs. 

Figure 7.5.4 shows the tensile stress along the fiber calculated 
according to eq. 7.5.8. For the polyacrylamide, the correction terms 
are negligible, but for the lower viscosity glycerin solution, the 
gravity correction becomes over 90% of the measured force. With 
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Figure 7.5.5. 
Experimental data for glyc- 
erin of 0.8 Paes shear vis- 
cosity. The upper and lower 
lines represent the error 
bounds. The middle line cor- 
responds to an extensional 
viscosity of 2.4 Pa.s, which 
is three times the shear vis- 
cosity. The data symbols rep- 
resent measurements from 
different locations on 10 fil- 
aments. From Secor et al. 
(1989). 

such large corrections, the accuracy of the results is not high. This 
is illustrated in Figure 7.5.5 for a wide range of extension rates. 
At higher rates forces are large and accuracy improved. Hudson 
and co-workers (1988) report accuracy o f f  10% for two glycerin 
solutions in the range k = 500 - 5000 s-'. 

Another error not included in eq. 7.5.8 is air drag, which can 
become important at high rates and especially with a vacuum take- 
UP (see also Figure 7.5.8). Fibers also can detach from the inside 
of the nozzle (Sridhar and Gupta, 1988; Butlers and Meijer, 1990). 
Cavitation can occur at high stresses. The lowest rate is limited 
by gravity fall, while at high rates instabilities can set in. Secor et 
al. (1989) roughly summarize these effects to define an operating 

Figure 7.5.6. 
Owrating diagram of exten- 
sional rheometry by fiber 
drawing. Inside the bound- 
aries are ranges for which 
experimental measurements 
were made. Adapted from 
Secor et al. (1989). 
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Figure 7.5.7. 
Steady state elongational vis- 
cosity function of low density 
polyethylene from isother- 
mal constant strain rate tests 
at 150°C (solid line). The 
data points represent appar- 
ent elongational viscosities 
produced by nonisothermal 
fiber spinning for a barrel and 
die temperature of 150°C. A 
long die (solid symbols) and 
an orifice (open symbols) of 
radius 1.25 mm and various 
extrusion rates LJ, have been 
used. From Laun and Schuch 
(1989). 

range for fiber spinning in Figure 7.5.6. As indicated, a particular 
fluid and apparatus combination often has a narrower range. 

For polymer melts, fiber spinning results can be compared to 
true uniaxial extensional viscosity data measured by rod pulling. 
Figure 7.5.7 shows such a comparison for a low density polyethy- 
lene. We see qualitative agreement between the methods but, a 
very strong effect of upstream history is evident in the fiber data. 
Both die extrusion velocity and residence time in the die exert a big 
influence. 

7.5.1 Tubeless Siphon 
A variation on fiber spinning is the ductless or tubeless siphon, 
which is simply fiber spinning in reverse. A nozzle is dipped in 
a bath of the test fluid, a vacuum applied, and fluid sucked out of 
the bath. The nozzle is slowly raised, and a free-standing, rising 
column of fluid develops as shown in Figure 1.4. Sometimes the 
tubeless siphon is called a Fano flow, after the physician who first 
reported the technique (1908). 

The simplest way to use the tubeless siphon is to record the 
maximum height rise that can be achieved when one applies full 
vacuum. However, strain rates and tensile stress can be obtained 
with the same analysis used for fiber spinning except that the sign of 
the gravity term in eq. 7.5.8 is now positive. This tends to destabi- 
lize the flow and reduce the fiber length. Another problem with the 
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Figure 7.5.8. 
Tracer line pattern obtained 
for a tubeless siphon experi- 
ment. The lines were drawn 
from a high speed movie 
of 2% polyisobutylene in 
mineral oil. Time interval 
between line positions, 2.5 
ms; siphon length, - 10 mm. 
From Mathys (1988). 

the tubeless siphon is accumulation of a bead of liquid around the 
nozzle tip. The siphon and some fiber spinning devices are limited 
in that the maximum force that can be achieved is what the vacuum 
can apply. Air is sometimes sucked in with the vacuum and can 
also alter the velocity profile near the nozzle. This is illustrated in 
Figure 7.5.8. 

An advantage of tubeless siphon flow is the less severe pre- 
history. Liquid is drawn from a large bath. A slow circulation 
occurs in the bath, but the movement is nothing like the shear flow 
in the tubing and nozzle of the fiber spinning delivery system. Be- 
cause fluid is drawn from the large bath, RO is large, and it appears 
possible to reach higher strains in siphon flow than in fiber spin- 
ning. Figure 7.5.9 shows that the strain rate was quite constant 

Figure 7.5.9. 
Stretch rate as a function of 
axial distance for a 3% hy- 
drolyzed polyacrylamide solu- 
tion (3.4 x 1W4g/cm3, M, = 
8 x lo6). From Moan and 
Magueur ( 1  988). 
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Figure 7.5.10. 
Variation of reduced exten- 
sional viscosity with to- 
tal strain for various poly- 
acrylamide concentrations, 

(a) c = 1.02 x (b) 

and (d) 3.4 x 10-4g/cm3. 
From Moan and Magueur 
(1 988). 

Mu, = 8 x lo6, i = 1-4 S-':  

7.65 10-4, (c) 5.1 x 10-4, 

Figure 7.6.1. 
Bubble of radius R on the 
end of a capillary tube in 
test fluid; PG is the pressure 
inside the bubble, pm in the 
surrounding fluid. 

Tube 

I 

over the column for a polyacrylamide solution, and Figure 7.5.10 
demonstrates that strains of nearly 4 are possible. High strain lev- 
els may be important, for example, in promoting the coil stretch 
transition in dilute polymer solutions. Figure 7.5.10 shows that 
higher strains are required to see the strong increase in apparent 
extensional viscosity as polymer concentration is decreased. 

7.6 Bubble Collapse 
Another method for measuring uniaxial extensional viscosity is by 
bubble collapse. A small bubble is blown at the end of a capillary 
tube placed in the test fluid (see Figure 7.6.1). It comes to equilib- 
rium with the surrounding pressure and surface tension. Then at 
time t = 0 the pressure inside the bubble is suddenly lowered or the 
surrounding pressure increased. The decrease in bubble radius with 
time is recorded. If the deformation is reversed (i.e., the pressure 
inside the bubble is suddenly increased), the growing bubble radius 
can be used to give the equibiaxial viscosity. This flow appears to 
be less stable and has not been studied as a rheometer. 
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Figure 7.6.2. 
Log-reduced radius versus 
time for the collapse of a 
bubble in a high density 
polyethylene melt at 140°C. 
The initial radius need not be 
known exactly because the 
ratio R / R o  comes from the 
decrease in pressure above 
the melt. Adapted from Mun- 
stedt and Middleman (1981). 

-0 

HDPE 140 "C 
1 OOO 

OO 

Bubble radius gives the extensional strain and strain rate. If 
we can ignore diffusion and the influence of the capillary and as- 
sume that the bubble collapses symmetrically in an incompressible 
fluid, then the continuity equation in spherical coordinates (Table 
1.7.1) reduces to 

From the definition of the rate of uniaxial extension 

. av, 2R2 dR 
6 = € 1 ,  = e r r  = - - - -- - 

ar r 3  dt 
(7.6.2) . .  

We see that the deformation is not homogeneous. It is a 
maximum at the gas-liquid interface, r = R,  and decreases with 
r -3 .  The rate is most easily evaluated at the interface 

2 d R  
E R  = -- - 

R dt 

and by integration, we obtain for the strain 

R 
E = -2 In - 

Ro 

(7.6.3) 

(7.6.4) 

Bubble radius can be measured directly by a film or video 
camera. Pearson and Middleman (1977) found their bubbles were 
sightly nonspherical and used an average radius. For opaque liquids 
one can infer the bubble radius by measuring the small change in gas 
pressure above the liquid sample caused by the collapsing bubble 
(Johnson and Middleman, 1978). This method is also simpler and 
faster to use. 

Typical radius versus time data for a polymer melt are shown 
in Figure 7.6.2. Note that after 1.5 seconds the bubble appears to 

1.0 m 
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collapse exponentially, giving a constant extension rate. A total 
strain of nearly 3 is reached in this case. 

Bubbles in polymer solutions also collapse at constant rate 
as indicated in Figure 7.6.3. Note that for these lower viscosity 
materials, bubble collapse can be very rapid. When the bubble gets 
too small, necking occurs near the capillary and the collapse is no 
longer spherically symmetric (Figure 7.6.3b). 

Stress can be determined from the pressure difference across 
the bubble. Papanastasiou et al. (1984) have shown that even for 
the rapid bubble collapse in polymer solutions, the unsteady and 
inertial terms in the momentum balance may generally be neglected. 
Neglecting viscosity of the gas, but considering interfacial tension, 
leads to 

We would like to be able to determine the extensional stress 
difference T,., - 700, but in general it appears that we need a consti- 
tutive equation to evaluate the integral. This is a serious limitation 
on using bubble collapse as a rheometer. However, let us examine 
the Newtonian case for which eq. 7.6.5 becomes 

t r r  - tee = - -3 2 (PG - Po0 - - 2r) R (7.6.6) 

This result can be used to define an apparent uniaxial extensional 
Figure 7.6.3. viscosity 
Log-reduced radius versus 

(7.6.7) 
4 d R l d t  

Middleman and co-workers have shown good agreement be- 
tween qu,a and 3q for Newtonian fluids. Figure 7.6.4 shows data 
for a mildly elastic polymer melt. There is good agreement be- 
tween qu,a and both 3q0 and rod pulling measurements taken us- 
ing the apparatus shown in Figure 72.6.  Note that higher exten- 

time for bubble collapse 3(pC - poo - W R ) R  
in hydroxypropylcellulose, Vu,a = 
2% in water. (a) Low rates 
and (b) high rate also show- 
ing necking as the bubble 
&,.inks to the size 
( R ~  
Data from high speed cam- 
era (Pearson and 
1977). 

0.5 mm, R,, 2 2 mm). 
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Figure 7.6.4. 
Uniaxial exensional viscosity 
by rod pulling (0) compared 
to apparent extensional vis- 
cosity by bubble collapse (A). 
From Munstedt and Middle- 
man (1981). 

Figure 7.6.5. 
The ratio of uniaxial ex- 
tensional viscosity to shear 
viscosity by rod pulling (0) 
compared to apparent ex- 
tensional measurements by 
bubble collapse (A) for a low 
density polyethylene. Uniax- 
ial data shifted from 150°C 
to the bubble test temperature 
of 200°C. From Munstedt and 
Middleman ( 1  98 1). 

a 
n 4 

sion rates are possible with bubble collapse than with rod pulling. 
When these two methods are compared for a strongly extension- 
thickening melt, Figure 7.6.5, the apparent extensional value for 
bubble collapse is much too low. This indicates the importance 
of the form of the constitutive equation used in the integration in 
eq. 7.6.5. 

Bubble collapse is a well-posed problem: that is, the ini- 
tial condition is rest state, for analysis with viscoelastic constitu- 
tive equations (Pearson and Middleman, 1977; Papanastasiou et 
al., 1984). Such work would be valuable to test other extensional 
methods for solutions. Bubble growth and collapse measurements 
also have important applications for processing of foamed polymer. 

7.7 Stagnation Flows 
Steady extensional deformations can be created by impinging two 
liquid streams, creating a stagnation flow. Figure 7.7.1 illustrates 
both axisymmetric and planar stagnation flow. These flows are not 
homogeneous. A material element near the central part of the flow 
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Figure 7.7.1. 
(a) Steady uniaxial exten- 
sional flow generated by flow 
into a trumpet-shaped tube 
(reverse impingement). The 
stream surface is axisymmet- 
ric. View: tilted forward by 
15". (b) The impingement 
of two rectangular streams 
generates steady planar exten- 
sional flow. From Winter et 
al. (1979). 

will experience much higher strain than one further out. Thus only 
the steady extensional material functions can readily be measured 
in these flows, and as we have seen it may take considerable strain 
to reach the steady state. Despite this limitation, there is a strong 
interest in stagnation flows, mainly because the extensional strain 
becomes infinite at the stagnation point. Thus at least in a por- 
tion of the flow we will get very high orientation of particles or 
macromolecules. Also, crude stagnation flows can be generated 
relatively easily for low viscosity fluids. 

Fiber spinning (Figure 7.5.2) approximates one end of the 
axisymmetric stagnation flow. The tubeless siphon is a little closer. 
But neither has a stagnation point. Ideally we want to confine a fluid 
to flow within the stream surfaces indicated in Figure 7.7.1. For 
planar stagnation these surfaces are defined (Winter et al., 1979) 
by the relation 

hxo 
2 

x y  = - 

At each surface, fluid must move with velocity 

vx = E x X  

vy = -i,y 

v, = 0 

(7.7.1) 

(7.7.2) 

The real challenge experimentally is to hold this shape, yet 
keep all surfaces moving at the prescribed velocity. Probably the 
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Figure 7.7.2. 
The four-roller experiment of 
Taylor ( 1  934) produces pla- 
nar stagnation flow only near 
the center: the roller radius 
is chosen to be a radius of 
curvature of one of the hy- 
perbolic streamlines of steady 
planar extension. 

/FILLING HOLE 

A 

first attempt to do this involved the four-roller apparatus of Taylor 
(1934) shown in Figure 7.7.2. A planar stagnation flow is created 
near the center. Measuring pressure through the rotating rollers is 
very difficult, and the torque to turn the rollers is dominated by shear 
stresses from the surrounding fluid. However, birefringence can be 
used to measure the tensile stress difference directly at the center 
where the flow is purely extensional. With flow birefringence, the 
four-roller apparatus provides a convenient and accurate method for 
measuring planar extensional viscosities on transparent solutions. 
The method is further discussed in Chapter 9 (see Figure 9.4.6). 

7.7.1 Lubricated Dies 

Another attempt to generate stagnation flows involves constructing 
a solid die with an internal shape like Figure 7.7.1 and lubricating 
the die walls (Winter et al., 1979; Van Aken and Janeschitz-Kriegl, 
1981). As with lubricated compression, the lubricating fluid must 
be Newtonian, with a significantly lower viscosity than the test 
fluid. 

Figure 7.7.3 shows a die for creating lubricated planar stag- 
nation flow of a polymer melt. Silicone oil is fed through four 
semicircular channels, from which it flows through a narrow gap 
and then is directed along the die walls. Pressure required to drive 
the polymer melt through the diverging then converging flow is 
recorded by a transducer. As Figure 7.7.4 shows, pressure in the 
unlubricated flow can be modeled by a simple viscous, shear thin- 
ning constitutive equation. The good fit implies that shear effects 
at the wall dominate any extensional thickening that might be oc- 
curring in the stagnation. This is confirmed by the dramatically 
lower data for the lubricated case in Figure 7.7.4. Lubrication has 
essentially eliminated the shear contribution to the pressure drop, 
leaving only that due to planar extension. 

The lower set of curves in Figure 7.7.4 were calculated assum- 
ing various lubricating conditions. The two lowest curves assume 
perfect slip, while the upper pair include the lubricant flow and 
thus give a slightly higher pressure drop. This analysis of Secor et 
al. (1987; see also Zahorski, 1992) shows that it is impossible to 
achieve perfect planar stagnation flow; the lubricant fluid always 
produces some shear in the test liquid. Furthermore, the experi- 
mental pressures are even lower than the calculations. This may 
be due to effects of gravity on the exiting sheet causing the top 
lubricant layer to be thicker (Secor et al. 1987). 

7.7.2 Unlubricated Dies 
Lubricated stagnation is a difficult, messy experiment and given 
the results reported so far, does not seem to be worth the trouble. 
Unlubricated stagnation is much easier to achieve and, although 
wall pressure measurements are dominated by shear as Figure 7.7.4 
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Figure 7.7.3. 
(a) Cross section of a die 
designed to create lubricated, 
planar stagnation flow of a 
polymer melt. (b) Projection 
of the same die with top and 
end melt feed plates removed. 
From Macosko et al. (1982). 

(b) 
Oil distribution channels 

shows, birefringence can be used to probe stresses near the center, 
where the stagnation flow assumption is very good. Keller (1975) 
showed dramatic birefringence in polystyrene solutions impinging 
in a simple crossed-slot die. Figure 7.7.5 shows planar viscosity 
measurements calculated from birefringence measurements along 
the y and z axes of unlubricated flow through the same die shown 
in Figure 7.4.3. 

7.7.3 Opposed Nozzles 
If one is going to use an unlubricated stagnation flow, it is best to 
remove the walls as far as possible. Keller and co-workers (1987) 
have placed two tubes (or nozzles) in close opposition (see Figure 
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Figure 7.7.4. 
Pressure drop versus flow 
rate for a polystyrene melt 
flowing at 200°C through the 
die of Figure 7.7.3. The up- 
per data points are for unlu- 
bricated flow; the curves are 
calculated using a Newton- 
ian and a Carreau model (see 
eq. 2.4.16). The lower data 
set is for lubricated flow; the 
curves are calculated for dif- 
ferent lubrication conditions. 
From Secor et al. (1987). 

Figure 7.7.5. 
Planar viscosities determined 
by measuring birefringence in 
unlubricated stagnation flow 
in both directions. The same 
polystyrene melt as Figure 
7.4.4 was used in the same 
die. From Macosko et al. 
(1980). 
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7.7.6) in a “sea” of high polymer solution. When fluid is sucked 
into the nozzle from the surrounding sea, a stagnation flow is cre- 
ated. Birefringence and pressure drop measurements show strong 
increase at high suction rate, indicating extensional thickening due 
to the polymer coils rapidly stretching out. 

Fuller and co-workers (1987; Mikkelsen et al., 1988) have 
attempted to make the opposed-nozzle device more quantitative by 
measuring the torque on the arm that holds the nozzle down into the 
beaker. Torque is detected by a rebalance transducer that maintains 
the gap constant. 

If we assume that the flow is purely extensional and that there 
is no contribution from pressure in the surrounding fluid, the force 
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Figure 7.7.6. 
Opposed-nozzle (or jet) de- 
vice creates a uniaxial ex- 
tensional flow by sucking in 
surrounding fluid. Flow cre- 
ates a force that tends to pull 
the nozzles together and is 
measured by the torque on 
one of the flow tubes. 

Separation d 

on the nozzles ( M L )  divided by the nozzle sectional area is the 
tensile stress difference on the fluid. 

(7.7.3) 

As mentioned with respect to Figure 7.7.1, the strain and 
strain rates in stagnation flow, as in capillary flow, are not constant. 
We can define an apparent strain and strain rate in the cylindrical 
test region 

. 2Q 
€0 = - 

rc R2d 

(7.7.4) 

(7.7.5) 

Apparent extensional viscosity is calculated by dividing eqs. 7.7.3 
and 7.7.5. 

Figure 7.7.7 shows data collected in suction (uniaxial exten- 
sion) and expulsion (biaxial or compression) plotted as apparent 
viscosity versus apparent extension rate. The liquid was Newto- 
nian: a glycerin-water mixture with shear viscosity of 1.6 poise. 
The dashed line gives 3q0, the value we would expect for pulling of 
the sample in air. We see that the qu,, values are closer to 4q, be- 
cause of the departure of the flow from ideal extensional flow. The 
solid lines represent calculations by Schunk et al. (1990), who have 
carried out a fairly complete analysis of this flow, solving the Na- 
vier-Stokes equations via the finite element method. 

Figure 7.7.8 shows this plot of the streamlines and the relative 
amount of extension in the flow. We see that only near the stag- 
nation point is the flow nearly pure uniaxial extension. Shear flow 
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Figure 7.7.7. 
Measured extensional viscosi- 
ties versus rate for glycerin- 
water compared to predictions 
from flow of a Newtonian 
liquid between opposed noz- 
zles. The upturn in the expul- 
sion data is due to secondary 
flows as the Reynolds num- 
ber exceeds 1. Adapted from 
Schunk et al. (1990). 

Figure 7.7.8. 
Predictions showing one- 
quarter of the flow into a 
nozzle: (a) Giesekus crite- 
ria, namely cl in pure ex- 
tension, 0 in simple shear, 
and minus 1 in pure rota- 
tion, and (b) streamlines. 
Glycerin-water solution q,, = 
0, 17 Paes, Q = 0.1 ml/s, 
d = 1 mm, 2R = 0.98 mm. 
Adapted from Schunk et al. 
(1 990). 
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dominates along the nozzle walls and “pollutes” the pure extension 
around the nozzle tip. However, this shear flow does not contribute 
as much to the measured torque as does the pressure from the sur- 
rounding liquid. Schunk et al. are able to calculate the total torque 
reasonably well, including the effect of fluid inertia at higher flow 
rates (Figure 7.7.7). 

The opposed-nozzle device is an extensional viscosity in- 
dexer. The flow is not homogeneous, nor is it purely extensional. 
However, it has a strong extensional component. Figure 7.7.9 
demonstrates that it can detect strong thickening in a dilute polymer 
solution where shear shows slight thinning and biaxial extension 
only very slight thickening. All these results are expected from 
molecular theory. Cathey and Fuller (1988) find good agreement 
between v , , , ~  and theory for rodlike suspensions (eq. 10.3.19) on 
solutions of collagen. They also have measured the coil-stretch 
transition for dilute, high molecular weight polystyrene solutions 
with the device. The opposed-nozzle device is particularly use- 
ful for low viscosity liquids, for which few methods are available. 
It is convenient to use and has a significantly lower viscosity and 
wider rate range than fiber spinning (Cai et al., 1992). One problem 
with interpreting results from the device may be flow instability as 
polymer molecules become highly oriented (Keller et al., 1987). 

7.8 Entrance Flows 
Entrance flows can be perceived as a part of the stagnation flows 
shown in Figure 7.7.1. For example, flow into an axisymmetric 
contraction is similar to the stagnation flow starting from the y-z 
plane and proceeding along the x direction (Figure 7.7.la). For 
a planar contraction, which involves the flow from a rectangular 
reservoir into a slit or rectangular orifice, the similarity is with the 
planar stagnation flow starting from the x-z plane and going along 
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Figure 7.7.9. 100 t 
Apparent uniaxial and biaxial 
(compression) viscosity ver- 
sus apparent extension rate 
for 1% polyacrylamide in 
glycerin-water. a 10 = 

Compression 
Y - 

1 10 100 loo0 
Strain rate (s-1) 

they direction (Figure 7.7.1 b). As the fluid flows from a large cross 
section tube into a small cross section tube, the streamlines converge 
(Figure 7.8.1). To overcome this reduction in the cross-sectional 
area and continue to flow, the fluid dissipates extra energy, which 
is expressed as the entrance pressure drop Ape,,. The converging 
streamlines indicate the existence of the extensional flow. However, 
the presence of the walls along the contraction imparts a shear 
component to the flow. Attempts to minimize the shear component 
were made by Everage and Ballman (1978) and Winter et al. (1979) 
by lubricating the tube walls. However, just as with the lubricated 
stagnation dies, the increased difficulty involved in lubricating the 
walls is not really worth the trouble. The major advantage of the 
entrance flow is that it is the easiest extensional flow to generate 
and measure because it primarily involves forcing the fluid through 
an orifice and measuring the pressure drop. 

Several different analyses have been presented to estimate the 
extensional viscosity from Ape,, measurements. The three major 
approaches are discussed below: sink flow (Metzner and Metzner, 
1970), Cogswell's analysis (1972), and Binding's analysis (1988). 

The sink flow analysis, which assumes a purely extensional 
flow (i.e., no shear Component), was presented by Metzner and 
Metzner (1 970) to evaluate the extensional viscosity from orifice 
Ape" measurements. For an axisymmetric contraction, the flow 
into the orifice is analogous to a point sink; for a planar contraction 
flow, the analogy is with a line sink (Batchelor, 1967). In the case 
of axisymmetric contraction (Figure 7.8. l), the use of spherical 
coordinates and continuity gives the velocity components 

Figure 7.8.1. 
Streamlines showing the en- 
trance flow into an orifice. 

u, = - Q *  ve = U@ (7.8.1) 
A '  

where A is the cross-sectional area in the converging region. By 
considering the isosceles triangle with the included angle C$ (where 
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4 is the half-angle of convergence) and employing the law of cosines 
(from trigonometry), the area is given by 

A = rr2r2(1 - cosI$) (7.8.2) 

where r is the radial coordinate distance (Figure 7.8.1). From eqs. 
7.8.1 and 7.8.2, the radial velocity is 

Q 
2nr*(l  - cosq5) 

v r  = 

The extension rate at the orifice is 

(7.8.3) 

(7.8.4) 

where r = Ro/sin4 has been used, Ro being the radius of the 
orifice (Figure 7.8.1). The normal stress difference is assumed to 
be equal to the entrance pressure drop 

The apparent extensional viscosity is given by 

(7.8.6) 

The major problem in using eq. 7.8.4 to evaluate the extension 
rate is the need to know 4, which is typically determined by flow 
visualization. The approximations involved in the analysis and the 
difficulty in obtaining 4, which varies with flow rate, result in the 
following approximate equation for the extension rate: 

(7.8.7) . Yo 
8 

c = -  

where I$  x 15" has been used and pa is the apparent shear rate 
evaluated at the orifice. 

Other kinematical problems associated with the sink flow 
analysis are discussed by Denn (1977) and Cogswell (1978). 

For the planar contraction, the cylindrical coordinate system 
will be convenient, and the velocity and extension rate equations 
respectively are given by 

Q 
2 W r  sin 4 21, = - 

and 

. Qsin4 c=- 
2Wh2 

(7.8.8) 

(7.8.9) 
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where W is the slit width, h is half of slit height, and r = h/sin 4 
has been used to eliminate r .  

Because the sink flow analysis is based on the assumption 
of purely extensional flow, it requires flow situations in which the 
shear components are negligible. Cogswell (1972) considers both 
shear and extensional components in the contraction. By assum- 
ing that the pressure drop Ape, can be separated into shear and 
extensional components, Cogswell calculates these pressure drop 
components from the shear and normal stresses in an elemental 
cone (or wedge) by applying simple force balances. The shear 
and normal stresses are then replaced by the shear and extensional 
viscosities. The overall Ape, is then calculated by minimizing an 
infinite sum of the elemental pressure drops along the contraction. 
For axisymmetric contraction, the orifice extension rate is 

(7.8.10) Tw Ycl 
€ =  

- 522) 

where 5, is the wall shear stress, and the normal stress difference 
is calculated from 

The corresponding equations for a planar contraction are 

r w  Ycl 

~ ( T I I  - m) € =  (7.8.12) 

and 

respectively. The application of Cogswell's analysis requires shear 
viscosity data. With a knowledge of the shear viscosity parame- 
ters, Cogswell's equations permit the calculation of the extensional 
viscosity from a single Ape, and Q measurement with an orifice 
die-a procedure very convenient for quickly ranking fluids. 

A number of recent studies have attempted to evaluate ex- 
tensional viscosity from Ape, using Cogswell's analysis (Laun 
and Schuch, 1989; Tremblay, 1989; Boger and Binnington, 1990). 
Laun and Schuch (1989) compared extensional viscosities from 
rod pulling tests with that from circular orifice pressure drop meas- 
urements for several polymer melts. Their data for different poly- 
ethylene melts are shown in Figure 7.8.2. The entrance flow 
TI,,, deviates from the rod pulling data at low 6 but overlaps at 
higher G. 

Binding (1988) analyzed the entrance flow by applying vari- 
ational principles to minimize the overall energy consumption for 
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Figure 7.8.2. 
Comparison of uniaxial ex- 
tensional viscosities from rod 
pulling (open symbols), en- 
trance flow using Cogswell's 
analysis (solid symbols), and 
tensile creep (solid symbols 
with ticks) measurements. 
From Laun and Schuch 
(1989). 

Figure 7.8.3. 
Data from fiber spinning 
(symbols, with different sym- 
bols corresponding to differ- 
ent flow rates) and orifice 
entrance flow using Binding's 
(1988) analysis (line) meas- 
urements for a 1% aqueous 
solution of polyacrylamide. 
From Binding and Walters 
(1988). 

a a 

a LDPE 9 
8 .- 

1. 

4 

axisymmetric and planar contractions. His analysis also consid- 
ers both shear and extensional components in the contraction. In 
addition, the extensional viscosity is assumed to be a power law 
function of k 

q, = &-' (7.8.14) 

with t > 1 for an extension-thickening fluid and t < 1 for an 
extension-thinning fluid. By minimizing the overall energy dis- 
sipated in the entrance region, an expression relating Ape" and 
the power law parameters of the shear and extensional viscosities, 
shear rate, and the contraction ratio is obtained. The expressions 
and the calculations of Binding's analysis are more elaborate than 
those of the sink flow and Cogswell's analyses. Interestingly, both 
Cogswell's and Binding's analyses predict the same value for r 
when qe is plotted versus k; this can also be shown theoretically 
(Tremblay, 1989). 

Binding and co-workers (1988,1990) used his analysis to es- 
timate the extensional viscosity of polymer solutions. For an aque- 
ous polyacrylamide solution, Binding and Walters (1988) found 
that the entrance flow qu agreed within the experimental scatter of 
the fiber spinning data (Figure 7.8.3); however, for a Boger fluid the 
predictions were considerably apart. Tremblay (1989) compared 
sink flow, Cogswell's, and Binding's analyses for polyethylene 
melts. For LLDPE he found that the sink flow and Binding pre- 
dictions were reasonably close, while the Cogswell prediction was 
considerably larger in magnitude (Figure 7.8.4). 

Figure 7.8.5 shows the flow field for a Boger fluid obtained 
by Binding and Walters (1988). The pictures show that as the flow 
rate increases, vortices generated in the comers of the contraction 
increases in size as a result of the extension-thickening nature of 
the fluid. 
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Figure 7.8.4. 
Comparison between 
Cogswell’s (dotted line), 
Binding’s (dashed line), and 
Tremblay’s sink flow (solid 
straight line) predictions of 
uniaxial extensional viscos- 
ity for LLDPE at 155°C. The 
symbols are data from rod 
pulling, and the continuous 
curve is a prediction based on 
Larson’s constitutive equa- 
tion (see Table 4.4.2). From 
Tremblay (1 989). 

0.0001 0:ml 0:or 0.1 1 10 1 

Strain rate (s-l) 

7 103 ! 
0 

The complexities of the entrance flow are clearly evident 
from Figure 7.8.5, and the analyses above are simplified interpre- 
tations. The reviews of Boger (1987), White et al. (1987), and 
Binding (1991) provide an excellent overview of the entrance flow 
problem. The greatest advantage of the entrance flow is that it is 
the easiest method to obtain extensional data. It can be especially 
useful in quickly ranking the extensional effects. For example, 
Laun and Schuch (1989) made single point Ape” measurements 
with an orifice die, and using Cogswell’s analysis they were able to 

Figure 7.8.5. 
Flow fields of a Boger fluid 
at various flow rates in an 
axisymmetric contraction with 
a contraction ratio of 14.375: 
(A) Q = 0.08 mL/s, (B) 
Q = 0.18 mL/s, (C)  Q = 
0.5 mL/s, and (D) Q = 
0.76 mL/s. From Binding 
and Walters (1988). 
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differentiate the extensional flow behavior of various polyethylene 
melts. Thus, experimental evidence seems to indicate that entrance 
flows give valuable information that increases our understanding 
and use of extensional rheology. 

7.9 Summary 
Table 7.9.1 summarizes the main flow geometries that have been 
tested as extensional rheometers. They are listed from top to bottom 
in the order of this chapter, but also from rheometer to indexer, and 
generally from use with more viscous to less viscous test samples. 
The key advantages and disadvantages of each method are noted. 
The types of material function that these rheometers and indexers 
can measure were summarized in Figure 11.3. 

Extensional rheometry will continue to be an area of active 
research for some time. The critical problems in extensional rheom- 

TABLE 7.9.1 / Comparison of Extensional Methods 
Method Advantages Disadvantages 

Tension . Homogeneous . Requires high viscosity . “Clean” data . Sample gripping . Windup is easiest to generate . Low € . Sample history, 
preparation . Need bath 

Lubricated . Simple sample preparation, grip . Need lubricant 
compression . Easy to generate small displacement . High q 

q h  < flc 

.€ 5 2  

Fiber spinning, .Low q 
ductless siphon . Process simulator . Sample prep easy 

. Simple sample preparation . Process simululation 
Bubble collapse 

Stagnation . Large strain center but 
nonhomogeneous . Birefringence . Opposed nozzles low q,  
convenience wide range of € 

Entrance flows . Simplest 
.Wide q range . Process simululation 

. Entrance condition . Corrections; g, FD . Photo 

. Transparent for photo 

. Not homogeneous 

.Wall effects (e.g., shear) . Lubricant . Stability of flow 

q b  < q c  

. Complex flow 
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etry are elimination of shear due to confining walls and the diffi- 
culty in determining the role of strain in nonhomogeneous flows. 
No extensional device can compare with such shear rheometers as 
concentric cylinders, cone and plate, or capillary for generating a 
pure deformation to large strains over a wide range of rates and test 
liquids. However, we are able to recommend a few methods for 
families of materials. 

For high viscosity systems like polymer melts, where a solid 
sample can be prepared, grabbed, melted, and then tested, the first 
choice is tension of a cylindrical or rectangular sample. This is a 
homogeneous deformation that provides true q: data. The rotat- 
ing clamp or simple windup is the easiest gripping method. High 
extension rates are still difficult with tension devices. 

By far the easiest extensional method is the last listed in Table 
7.9.1, entrance pressure drop. Entrance pressure drop data can be 
readily obtained with a capillary rheometer over a very wide range 
of rates and viscosities. More work is needed to determine the 
utility of data from this attractive extensional indexer. Can it give 
information on extensional response of new materials? Can we 
guess extensional parameters for a constitutive equation and use 
entrance flow to test them (eg. Schunk and Scriven, 1990)? 

In the low viscosity range, the opposed-nozzle device seems 
most attractive. Like entrance pressure drop, it is an indexer, but 
the flow from opposed nozzles is more nearly extensional. 

Lubricated squeezing is also attractive because of its simple 
operation and sample preparation. The flow is homogeneous, but 
loss of lubricant at relatively low strains is discouraging. The fact 
that biaxial extension is not as strong a flow as uniaxial reduces the 
interest in making many bieial experiments. Results to date show 
no surprises in biaxial response. Current constitutive equations can 
predict biaxial behavior from shear and uniaxial measures. 
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More than 40 years sfrer 
Weissenberg’s pioneering 

proposal [Figures 4.1.1 and 
8.1.11 for the measurement 

of shear and normal stresses 
during shear flow of elastic 

liquids, the determination of 
the rheological material 

firnctions of polymers in 
simple shear flow is still a 

nightmare for the experimenter. 
J. Meissner et al. (1989) 

Figure 8.1.1. 
The Weissenberg Rheogo- 
niometer, the first appara- 
tus used to measure normal 
stresses in shear flows. The 
lower cone H is driven by a 
motor through shaft S and a 
gear train to a hollow spin- 
dle which is supported by 
bearings B and B1. The sam- 
ple A generates a torque that 
twists a torsion bar D. The 
torque is measured by ca- 
pacitance gage C. Normal 
thrust on the cone deflects the 
leaf spring F detected by the 
gage at E .  From Jobling and 
Roberts (1958). 

RHEOMETER 
DESIGN 

8.1 Introduction 
Chapters 5-7, which describe shear and extensional rheometry, give 
the most important deformation geometries and derive the working 
equations for each. These equations permit conversion of measured 
quantities like force, torque, pressure, and angular velocity to stress 
and strain on the sample. Such stress and strain data allow us 
to determine rheological material functions, which are needed to 
evaluate the parameters in particular constitutive equations. 

In Chapters 5-7 we discussed difficulties in getting true stress 
and strain values as a result of sample-related problems like inertia, 
flow instabilities, shear heating, and evaporation of matrix solvent. 

I 
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We assumed that the instrument was perfect. In this chapter we 
try to uncover the most important instrument imperfections. In the 
process we hope to show that with proper design and operation, 
rheological experiments need not be the nightmare experienced by 
Meissner and co-workers, even with polymer melts. 

The organization of this chapter parallels that of its predeces- 
sors in Part 11, describing first the design of drag flow rheometers, 
then pressure-driven ones. Separate sections are devoted to analysis 
of data, particularly sinusoidal oscillations, and to special designs 
for process-line rheological measurements. The section on exten- 
sional rheomeuy is brief because most of the design issues were 
discussed in Chapter 7. 

The focus of this chapter is on how we can actually gener- 
ate the deformations already described, particularly those given in 
Chapters 3 and 4. For example, even if the sample can follow a 
step strain without inertia problems, we still need an apparatus to 
generate that motion. No rheometer can do it instantly. We de- 
scribe the major methods of rheometer control and measurement 
and discuss instrument compliance, imperfect temperature distri- 
bution, and similar problems. The final section gives some criteria 
for instrument and test selection, as well as guidelines for detecting 
instrument errors. 

Many rheometer designs have been published. A number 
have been reviewed by Van Wazer et al. (1963), Whorlow (1980, 
1992), Dealy (1982), and Collyer and Clegg (1988). In this chapter 
we concentrate on describing features that are common to commer- 
cially available instruments. Particular commercial instruments are 
used to illustrate specific designs; however we do not attempt to 
list all the commercial rheometers. Such lists have been compiled 
by Whorlow (1980, 1992) and Dealy (1982). 

8.2 Drag Flow Rheometers 
In a typical drag flow rheometer we measure the velocity or dis- 
placement of the moving surface and the force on one of the sur- 
faces. As Chapter 5 indicates, most drag flow rheometers are based 
on rotary motion and use one of three geometries: concentric cylin- 
der, cone and plate, and parallel disks. In most cases the same ro- 
tary instrument can use all three of these flow geometries. Thus we 
concentrate on the design of rotary instruments. The most impor- 
tant nonrotary, drag flow rheometers are the sliding plate devices 
shown in Figures 5.2.1 and 5.2.2. To generate the needed linear 
motion, they typically use actuators like the hydraulic pistons and 
ball screws found in standard tensile testing machines for solids. 
Solenoids or other electromechanical actuators are often used for 
small amplitudes and low forces. Most of the same problems of 
control and measurement found in the rotary devices occur in these 
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linear ones. We will point out some features that are unique to 
sliding plate rheometers. 

There are two basic designs of drag flow rheometers: con- 
trolled strain with stress measurement and controlled stress with 
strain measurement. Below we first discuss strain control and 
torque measurement (Section 8.2.2) followed by instrument align- 
ment problems (Section 8.2.3) and normal stress measurement (Sec- 
tion 8.2.4). Then we treat special design issues for stress control. 
Both designs use the same type of environmental control system, 
as discussed in Section 8.2.6. 

8.2.1 Controlled Strain 
The first drag flow rheometer, Couette's concentric cylinders shown 
in Figure 5.1.1, was a controlled strain device. Couette fixed' the 
angular velocity of the outer cup and measured the torque on his 
inner cylinder by the deflection of a suspending wire. 

The Weissenberg Rheogoniometer (Figure 8.1.1) also con- 
trolled the strain and measured the generated torque and normal 
force. Like Couette's device, the rheometer described by Jobling 
and Roberts (1958) drove the outer cup. Using a rotating outer 
cylinder eliminates the problem of flow instabilities discussed in 
Chapter 5.3, eq. 5.3.42, but can present some difficulties in attach- 
ing temperature control baths. 

Jobling and Roberts used an ac synchronous motor coupled to 
a gear box to generate a wide range of constant rotation rates. This 
method is still used in some rheometers: for example, the Brook- 
field Synchro-Electric (Whorlow, 1992, pp. 140-141). However, 
most rotary rheometers now use dc motors with closed-loop servo 
control. This permits infinite speed variation and programming of 
the deformation. Several instruments use feedback from a tachome- 
ter: for example, the Bohlin VOR (Bohlin, 1988) and the Rotovisco 
RV20 (Hake, 1986). Both these devices drive the rotating shaft 
indirectly through a gear train (e.g., Figure 8.2.1). This gives some 
flexibility in motor size and location, but backlash in the gears 
prevents smooth reversing of the motion and thus limits the defor- 
mations that can be programmed. 

The most versatile controlled strain design is direct coupling 
of a dc motor to the rotating shaft. As illustrated in Figure 8.2.2, 
a tachometer is used to control angular velocity and a capacitance 
transducer is used to control angular position. Combined with a 
servo control system, this design has a fast response and can deliver 
a wide range of shear deformations to the test sample. Typical 
rotation rates are from 0.001 to 100 rad/s. The position control 
servo can generate oscillation frequencies from to 500 rad/s, 
with an amplitude of angular motion from 50 p a d  to 0.5 rad. 
Angular accelerations typically exceed lo3 rad/s2, which means a 
0.1 rad rotation can be accomplished in 5 0.01 s. This fast transient 
response, illustrated in Figure 8.2.3, is important for measuring 
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Figure 8.2.1. 
Schematic diagram of the 
Bohlin VOR rheometer. A 
dc motor with tachometer 
A drives gear box B, which 
drives the timing belt to pro- 
vide steady rotation of the 
shaft. When the electromag- 
netic clutch C, is activated, 
the eccentric arm D can os- 
cillate the shaft sinusoidally. 
The sample cell is surrounded 
by a temperature control bath 
E. An air bearing F centers 
a torsion bar H, whose rota- 
tion is sensed by linear vari- 
able differential transformer. 
Adapted from Bohlin (1988). 

short relaxation times in stress relaxation tests (recall Figure 3.1.2a 
and see Figure 8.3.5) and start up of steady straining. 

Sinusoidal oscillations can also be accomplished mechani- 
cally. The rotating cam (J in Figure 8.1.1) and the oscillating, 
eccentric solenoid arm (D in Figure 8,2.1) are examples. These 
mechanical devices can sometimes generate smaller amplitude os- 
cillations than a position servo. However, they generally cannot 
cover as wide a range nor generate as smooth a sine wave. 

Optical encoders have been used to provide feedback control 
of both rate and position to direct current motors (Michel, 1988; 
Amari et al., 1992). In contrast to capacitance transducers, which 
are typically limited to a f 0.5 rad window, encoders can control 
position over 360'. This permits, for example, the superposition 
of sinusoidal oscillations on steady rotation. However, encoders 
are digital devices with a minimum step size around 1 mrad. With 
interpolation circuits encoders can resolve about 10 prad. Thus at 
very low rates and low frequency there may be a long time between 
pulses, which can make control difficult. At high rates, accurately 
reading all the pulses sets an upper limit. Amari et al. report a 
steady rotation range of 0.001 to 3 rad/s with their stepper motor 
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Figure 8.2.2. 
Schematic diagram of the 
Rheometrics RFSII. A dc mo- 
tor C is controlled in steady 
rotation by a tachometer B 
and in sinusoidal or other an- 
gular position changes by a 
rotary variable capacitance 
transformer (RVCT) A. The 
sample is surrounded by a 
temperature control bath D. 
The upper fixture is attached 
to a rebalance transducer E, 
described further in Figure 
8.2.5. Adapted from Rheo- 
metrics (1992). 

system. Inductive or capacitive coupled devices are similar to an 
encoder but generate a continuous series of sine waves. Using 
such a device for feedback gives control of velocity from 2 x 

to 1 rad/s with 0.01% accuracy (Starita, 1980; Rheometrics, 
1990; Whorlow, 1992). 

Figure 8.2.3. 
Normalized angular displace- 
ment versus time for a dc 

The 0.1 rad step is achieved 
in less than 5 ms but shows 
some overshoot. From Starita 
(1980). 
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8.2.2 Torque Measurement 

The measured variable in a controlled strain rheometer is the torque. 
Couette's original method of measuring the twist in a torsion bar has 
been followed up to modern times. He used a mirror; Jobling and 
Roberts used a capacitance gage, and Bohlin uses a linear variable 
differential transformer (LVDT). By using different diameter bars, 
it is possible to cover a very wide range of torque. Centering the 
bar with a radial air bearing permits measurement of torques down 
to below 10-8Nm (Bohlin, 1988). However, such very thin torsion 
bars have low resonant frequency, which reduces the range of tran- 
sient testing. This problem is illustrated for relaxation after steady 
shearing in Figure 8.2.4a. The torque in the 1 Pa s Newtonian oil 
should relax instantly, but it takes about 3 seconds for the inertial 
vibrations to damp down. Transducer inertia and compliance also 
limit maximum frequency for accurate sinusoidal oscillation test- 
ing. Sample inertia, too, can limit the range of transient testing of 
low viscosity liquids, but as discussed in Chapter 5 ,  the range can 
be extended by simply decreasing the sample thickness. 

Figure 8.2.4a was constructed from the equation of motion 
for a damped torsion oscillator (Walters, 1975; Mackay et al. 1992) 

Figure 8.2.4. 
Reduced torque versus time 
after steady shear of a 1 Pa-s 
Newtonian oil at 10 s-' with 
a 25 mm diameter, 0.1 rad 
cone. (a) Strong spring: re- 
sponse of a torsion bar trans- 
ducer with a spring con- 
stant, K = 10 N.m/rad and 
250 rad/s resonant frequency, 
simulated using eq. 8.2.1. (b) 
Force rebalance transducer 
with resonant frequency of 
960 rad/s. From Mackay et 
al. (1992). 

d28 do 
- dt*.' + (g + c)- dt* + e = o (8.2.1) 

2rrR7o,, 
3KB 

where g = U/Iw, , ,  C = 2, t *  = tw,,; 8 is the angular 
motion of the transducer, g is the transducer damping element, and 
C is the test fluid damping. I is the transducer inertia, U its damping 
coefficient (typically due to the air bearing), w,, resonant frequency, 
and K torsional spring constant (1/K is the compliance). R is the 
radius of the cone, /3 its angle, and 9 the shear rate. This equation 
gives good agreement with experimental transducer response. In 
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Figure 8.2.4a a stiff spring was used; a more sensitive one would 
oscillate more slowly and take even longer to damp out. 

In one design variation the torsion bar is mounted on the 
rotating shaft and deflection of the bar is detected through slip 
rings, by a capacitive device, or even optically (Haake, 1986; van 
Wazer et al., 1963; Whorlow, 1992). This design puts everything on 
one shaft of the rheometer, reducing cost and making temperature 
control design simpler. However, to detect the torque through a 
rotating shaft, these torsion springs are typically made even more 
compliant than the simple torsion bars. 

Even very stiff torsion bars must twist slightly to record the 
torque. With high viscosity polymer melts, this small twist can lead 
to significant errors in the strain or transient strain rate imposed on 
a sample (Gottlieb and Macosko, 1982). For example, consider 
stress relaxation after a step strain of 100% on a polymer melt with 
Go = lo5 Pa (see Figure 3.3.6). Using a 0.1 rad, 25 mm diame- 
ter cone, to achieve a strain of 100% requires an initial torque of 
0.4 N-m. However, if the transducer stiffness is 10 N.m/rad then 
it will twist 0.04 rad, and the true strain in the sample will only be 
60%. There are also transient errors. For very viscous samples, the 
parameter C in eq. 8.2.1 dominates the damping of the transducer, 
and it can be used to estimate the time constant of the error: 

(8.2.2) 

Meissner (1972) shows how this small transient deflection of the 
torque transducer can affect short time start-up data (see Figure 
8.3.7). Gottlieb and Macosko give relations to correct G’ and G” 
for compliance. These corrections are made in the software in some 
rheometers. Corrections are reliable only if the spring constant K 
is known accurately, and then typically only when the measured 
strain is 10% or more of the commanded value. 

Stiffer transducers have been made with strain gages (Ma- 
cosko and Starita, 1971; Drislane et al., 1974). These devices can 
be very sensitive to temperature changes (Franck, 1985a). Very 
stiff and more thermally stable are piezoelectric transducers. Laun 
and Hirsch (1989) were able to measure stress overshoot and stress 
relaxation in less than 10 ms with a torque and normal force quartz 
load cell. However, it is difficult to get low torque levels with 
piezoelectric transducers. Furthermore, they are capacitance de- 
vices with a slowly decaying signal, making it difficult to accurately 
measure long relaxation processes. 

One solution to transducer deflection is to eliminate it with 
a feedback control servo; see Figure 8.2.5 (Franck, 1985a). The 
transducer is essentially a dc motor in which torque is measured by 
the current needed to prevent any deflection. No servo system is 
instantaneous, and a combination of high frequency and torque can 
lead to transducer compliance (Mackay and Halley, 1991). The up- 
per frequency is about 100 rad/s, whereas stiff torsion bar systems 
have resonant frequencies above lo3 rad/s and piezoelectric sys- 
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Figure 8.2.5. 
Force rebalance transducer. 
From Franck (1985a). Normal 

force 
sew0 

Torque 
servo 

I Drivemotor I 
tems even higher. However, as Figure 8.2.4b indicates, the active 
servo system results in tremendously improved time response for 
low viscosity liquids, where more compliant torsion springs must 
be used. A key advantage of force rebalance transducers is their 
wide torque range, 1 to lo4 or lo5, with good low torque resolution, 
lo-”. m or less (Whorlow, 1992; Rheometrics, 1992). 

A very different approach is to measure shear stress directly 
with a transducer mounted in the wall (Giacomin et al., 1989). The 
deflection of a small disk flush with the wall is proportional to the 
shear force acting on its surface. Such a device can be mounted 
in rheometers of many different types. Figure 8.2.6 illustrates a 
wall shear stress transducer in a sliding plate rheometer. The wall 
transducer is not affected by edge failure (e.g., Figure 5.4.7), sample 
area, or degradation and drying of exposed surfaces. Like a torsion 
bar, the cantilever design is subject to errors due to transducer inertia 
and compliance. Wall stress transducers have been designed mainly 
for high viscosity samples. It is necessary to periodically remove 
test material, which leaks into the clearance around the disk. This 
material can also damp transient measurements (Dealy, 1992). 

Figure 8.2.6 also illustrates a sliding plate shear rheometer 
design. If a wall shear stress transducer is not used, then the total 
force on the fixed plate is usually measured with a strain gage 
load cell. The linear actuators used have time constants in the 
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Figure 8.2.6. 
Wall shear stress transducer 
mounted in a sliding plate 
rheometer. Shear between 
the sample and the wall 
causes the cantilever to de- 
flect slightly, which motion 
is detected by the capacitance 
probe. Adapted from Inter- 
laken (1992). 

Hydraulic 
linear actuator t- 

5-10 ms range. They are servo controlled similar to the rotary 
actuators. Hydraulic drivers can deliver much more force than a 
typical dc motor. The flat design of sliding plate rheometers can be 
an advantage for combining optical or scattering experiments with 
rheometry (Kannan and Komfield, 1992; Koppi et al., 1993; see 
also Chapter 9). 

8.2.3 Normal Stresses 

'Qpically only more sophisticated rotary rheometers measure nor- 
mal stresses. When measurements are made, they usually entail 
total thrust in the cone and plate or parallel disk geometries. The 
Weissenberg Rheogoniometer transferred the thrust through the 
driven shaft to a leaf spring (Figure 8.1.1). Other rheometers have 
used multiaxis strain gage (Macosko and Weissert, 1974; Drislane 
et al., 1974) or piezoelectric load cells (Laun and Hirsch, 1989). A 
rebalance transducer design for both torque and normal force was 
shown in Figure 8.2.5. 

RHEOMETER DESIGN I 345 



Figure 8.2.7. 
Oscillation in normal force 
due to small temperature 
fluctuations in a viscous 
polyethylene sample (Franck, 
1985a). Tiny vertical oscil- 
lations in the rotating shaft 
(bearing runout) can lead to 
similar oscillations in the nor- 
mal force. 

Trying to make normal force measurements on polymer melts 
caused Meissner and co-workers (1989) the nightmares referred to 
at the beginning of this chapter. One source of such nightmares 
consists of oscillations in the thrust readings due to bearing runout 
and temperature fluctuations. Because of their slow relaxation, 
very viscous samples in the narrow cone and plate gap transmit os- 
cillations almost directly to the thrust transducer. Smooth, normal 
thrust readings become possible when the instrument is mounted 
on a vibration isolation table, gear noise eliminated, and the rotat- 
ing shaft directly driven with a dc motor rotating on high precision, 
preloaded ball bearings, or a stiff air bearing. 

Tiny temperature changes can also wreak havoc with nor- 
mal force readings. Figure 8.2.7 illustrates the potential effect of 
f 0.02"C fluctuations in sample temperature. The normal force 
oscillations are caused by sample expansion or contraction, which 
relaxes slowly as a result of the high sample viscosity. A rebalance 
normal force servo can greatly reduce this noise (Franck, 1985a), 
but ultimately temperature needs to be very stable for reliable meas- 
urements on polymer melts (Meissner et al., 1989). 

Another nightmare is the accurate measurement of transient 
normal stresses. In the start-up of steady shear, as the normal force 
builds up, the transducer must deflect slightly to measure the force. 
This pushes open the gap between cone and plate (or parallel disks) 
by a small amount, and the sample flows toward the center of the 
cone. This cross flow reduces the true normal force reading. The 
smaller the cone angle, the longer the material takes to flow. The 
consequences are shown in Figure 8.2.8. After 15 seconds, the data 
from all five cone angles agree; but the true normal force overshoot 
is recorded at short time only for cone angles of 0.1 rad or larger. 

Nazem and Hansen (1976) analyzed the gap opening prob- 
lem. Assuming that the gap opening is infinitesimally small and 
the liquid is Newtonian, the time for the transducer to reach 63% 
of the total travel when a step normal force is applied is 

(8.2.3) 

Applying this equation to the data in Figure 8.2.8 gives 2.6 seconds 
for the 0.035 rad (2") cone, 0.3 seconds for the 0.07 rad cone, and 

Air convection oven sample T = 13OoC 

T \ f o.0soc 
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< 0.1 seconds for all the larger angles, in reasonable agreement with 
the time for the normal stress to reach lo5 Pa. The normal force 
transducer used to collect the data was specially stiffened. Greater 
stiffness will just accentuate the temperature and bearing runout 
problems. Increasing the cone angle or decreasing the radius for 
samples with large normal forces leads to accurate data (and more 
pleasant rheological dreams). A normal force rebalance transducer 
can virtually eliminate this problem (Franck, 198Sa). 

Although nearly all shear normal stress data reported in the 
literature are measured by total thrust methods, some work has 
been done with the distribution of pressure across the plate with 
small flush transducers (Christiansen and Leppard, 1974; Magda 
et al., 1991; see Figure 5.4.2). Meissner and co-workers (1989) 
have used the total thrust on a central disk of smaller radius than 
the sample. Both techniques permit measurement of N2 as well as 
N I  . Birefringence methods, discussed in the next chapter, can also 
give normal stress distributions. 

8.2.4 Alignment 
The bearing runout problems discussed above highlight the impor- 
tance of mechanical construction in rheometers. Clearly a small 
departure from 90" between the axis of a small angle cone and the 
surface of its plate will cause the shear rate to be higher on one 
side than on the other. The same is true for eccentricity in the 
axes of concentric cylinders (eq. 5.3.43); but with typical gap sizes 
( 2  0.5 mm), alignment is less critical than with the cone and plate. 

To load and unload samples, vertical motion is required. This 
motion must be precise for cone and plate rheometers. Typically 

Figure 8.2.8. 
Normal stress versus time 
upon start-up of steady shear, 
9 = 10 s-', for a polyethy- 
lene melt, ~0 = 5 x lo4 Pa. s. 
Cone diameter, 24 mm and 
five different cone angles. 
Normal force spring stiffness, 
K, = lo5 N/m. Replotted 
from Meissner (1972). 
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the tip of the cone, about 50 km, is removed to avoid unwanted 
normal forces due to particles in the sample. Thus the gap between 
the truncated cone and plate must be set at this value. This is usually 
done without a sample by noting the vertical position at which the 
normal force is first sensed and then resetting that position with the 
sample in place. For rheometers without normal force capability, 
the null position is determined by electrical contact or the onset of 
torque under slow rotation. Increasing the sample test temperature 
causes the test fixtures to expand, thereby closing the gap, typically 
on the order of 1 pm/"C. 

Precise alignment and vertical motion are critical for obtain- 
ing high shear rate data with parallel disk rheometers. As discussed 
in Chapter 5, several workers have reported that for gaps below 
300 pm they must add as much as 40 pm to their apparent gap 
readings (see eq. 5.5.11). This is surprising because these investi- 
gators used rheometers that were able to set the gap and parallelism 
between the disks within 2 pm over the 25 mm diameter. 

High shear rate data also have been obtained using very nar- 
row gap concentric cylinder rheometers. Rather than trying to align 
the axes perfectly, a universal joint is used on one shaft. It is be- 
lieved that the flow will be self-centering (Taylor, 1992). The inner 
surfaces of the cylinders are tapered inward slightly, so that lower- 
ing the inner cylinder will decrease the gap (see Figure 8.2.9). Gaps 
down to 3 pm and shear rates up to lo6 s-' have been reported using 
this method (Whorlow, 1992). 

Figure 8.2.9 also illustrates a design for quick but precise 
mounting and removal of test fixtures. There are many such de- 

Figure 8.2.9. 
Schematic diagram of higher 
shear rate concentric cylin- 
der test fixtures. The tapered 
inner cylinder surfaces and 
universal joint allow oper- 
ation at very narrow gaps. 
The outer cup is aligned to 
the tapered shaft and can be 
removed quickly from the 
rotating shaft and bath. 
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signs in commercial rheometers. Each should include two precision 
locating surfaces, one parallel and one perpendicular to the axis of 
rotation. 

8.2.5 Controlled Stress 

Controlling torque and measuring the angular motion has also been 
done since the earliest days of rotational rheometry (van Wazer et 
al., 1963). A string wrapped around the shaft attached over a weight 
to a pulley provided the constant torque. This design is simple but 
limited by bearing friction, total strain (how far the weight can fall), 
and maximum strain rate. 

Torque may also be maintained in a controlled strain rheome- 
ter such as shown in Figure 8.2.2 by using feedback from the torque 
sensor to adjust the motor velocity or position. However, control 
is typically difficult because of the sample response. Ideally one 
should include the viscosity of the sample in the control algorithm. 
Performance can be improved significantly by avoiding the sample 
and closing the feedback loop around a torque sensor on the mo- 
tor, such as motor current to a dc motor (Michel, 1988). However, 
brush friction in the motor limits the lowest torque levels to lop3 to 

N.m. 
Zimm and Crothers (1962) used a rapidly rotating magnet to 

produce a constant torque on a steel pellet contained in an inner 
glass cylinder of a concentric cylinder viscometer. Changing the 
distance between the magnet and cylinder changes the torque. Very 
low torque levels can be maintained (lo-' Nem), and this design has 
been used to study dilute biopolymer solutions. Van den Brule and 
Kadijk (1992) used a concentric cylinder filled with a Newtonian 
reference liquid to convert a constant angular velocity to a constant 
driving torque. Because of the large difference between driving 
velocity and velocity at the sample, neither this nor the Zimm- 
Carothers design can be used for transient stress control. 

The most versatile design and the one used in commercial 
controlled stress rheometers is shown in Figure 8.2.10. It consists 
of a magnetic field, which rotates around a copper or aluminum 
cup, which is supported by an air bearing. The field induces eddy 
currents in the cup, which tries to follow the rotating field. The 
torque on the cup is proportional to the square of the voltage on the 
stators. The device is called a drag cup motor (Davis et al., 1968; 
Plazek, 1968, 1980; Franck, 1985b; Berry et al. 1989). 

Drag cup motors are not very efficient. It takes a high voltage 
to generate high torques. This high voltage can cause heating of 
the motor and a transient decrease in the resulting torque. Cooling 
and compensating circuits can extend the upper torque range to 
about 50 mNm. The lowest torque is limited by imperfections 
in the air bearing and eccentricities in the rotating shaft to about 

N-m. A magnetically supported shaft has considerably lower 
residual torque but is much less stiff to axial loads than an air bearing 
(Plazek, 1968,1980; Franck, 1985b). 
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Figure 8.2.10. 
Schematic diagram of an 
open loop, controlled stress 
rheometer. Torque is pro- 
vided by a drag cup motor, 
and motion is measured with 
an optical encoder. Designs 
similar to this are used by 
Bohlin, Carri-Med, Haake, 
and Rheometrics. 
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gratings 1 'p Light source 

Encoder 
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Angular displacement of the shaft can be measured by a va- 
riety of methods. The optical lever similar to Couette's is still used 
(Magnin and Piau, 199 1). Capacitance transducers can be very sen- 
sitive to angular position (Franck, 1985b) but are linear over only 
a limited angular range (Giles and Denn, 1990). Optical encoders 
have a great advantage because they divide 360" into uniform steps, 
as small as 5 prad/step with recent models. This step size translates 
to less than 0.01% strain with a 0.1 rad cone. Yet with high speed 
counters it is possible to use such encoders to measure velocity up 
to 100 rad/s. 

A major limitation in controlled stress rheometers is instru- 
ment inertia. It is very similar to the transducer inertia described 
with eq. 8.2.1. The torque imposed on the drag cup must over- 
come reluctance torque, air bearing friction, and rotor inertia as 
well as the sample viscosity. The inertia portion dominates with 
low viscosity samples (Geiger, 1990). Figure 8.2.1 la  illustrates 
the problem. Stress was commanded to increase linearly from 0 to 
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Figure 8.2.11. 
Errors introduced in transient 
viscosity measurements (bro- 
ken lines) as a result of in- 
strument inertia can be elim- 
inated by an active control 
loop (-). (a) Stress ramp 
0-90 seconds for a 5 mPa.s 
Newtonian standard. Adapted 
from Franck (1992). (b) Si- 
nusoidal oscillations on a 100 
mPa.s standard. 
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0.5 Pa in 90 seconds. The response time of the system with parallel 
disk geometry is 

2hI 
x R4r] Linen = - (8.2.4) 

where h is the sample gap and I is the inertia of rotor and the upper 
test fixture. For the sample and instrument used in Figure 8.2.1 la, 
Linen = 7.5 seconds. Thus the sample never sees the commanded 
torque (although it gets closer at long times), and the Newtonian 
standard looks like a strongly thixotropic material. If the stress is 
ramped at a slower rate, the effect of course is reduced. However, 
Kreiger (1990) has shown that it is relatively straight-forward to 
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use the equations of motion to correct the data. This can be done 
automatically in the instrument software, with the results illustrated 
in Figure 8.2.1 l a  (Franck, 1992). 

Rotor inertia affects all transient measurements on low vis- 
cosity fluids. Figure 8.2.1 lb  illustrates the problem in sinusoidal 
oscillation testing. Even for this relatively high viscosity standard, 
it was not possible to obtain accurate data above about 0.2 rad/s 
without compensating for inertia. The most difficult corrections 
are for step changes in torque like start-up and recovery. Even 
for these cases, Franck (1992) reports that his correction software 
yields true values less than 2 seconds after the step for a very low 
5 mPa . s, viscosity standard. 

With proper inertia correction controlled stress rheometers 
are very versatile and may replace controlled strain instruments for 
many applications. The fact that stress and strain are measured 
on the same shaft in controlled stress instruments allows lower 
cost and simpler temperature control but also is the source of the 
inertia limitations. Table 8.2.1 summarizes the advantages and 
disadvantages of each control mode. 

8.2.6 Environmental Control 
The two types of rotational rheometer, controlled strain and con- 
trolled stress, can use the same environmental control. It can be 
as important to control the temperature, pressure, or humidity of a 
sample as it is to control the shear stress. Yet these factors, espe- 
cially temperature, seem to be less exciting to the engineers who 
design rheometers. At least there are often large temperature gra- 
dients even in popular commercial instruments. Fortunately, with a 
few thermocouples it is easy to check for such problems, and often 

TABLE 8.2.1 / Comparison of ‘Qpical Controlled Stress and Controlled Strain Rheometers 

Torque: - 5 x lo-’ N . m lo-’ - N m 
Angular velocity: lo-’ - 10’ rad/s 
Oscillation frequency: - lo2 rad/s - 500 rad/s 
Angle: 5 x - oorad 5 x - 0.5 rada 
Stress and strain measured on the same shaft 

s Controlled Stress s Controlled Strain 

- lo2 (lo3) rad/s 

Typically stress and strain on different shafts. 
Inertia limits short time response at 
low viscosity. 

Better short time response at low 
viscosity (see Fig. 8.2.4b). 

No limit to long time creep data or long 
relaxation times. may limit. 
Constant stress is often a natural loading 
more sensitive to material changes. r < r,” 
doesn’t break structure. May reach steady 
state q more quickly. 

a For 5 x 10-64.02 rad (see Bohlin, 1988). 

Low torque signals, transducer drift 

Natural way to do step strain experiments, 
get G ( t ,  v). 
Normal force available on these instruments. 
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the situation can be improved. Here we mainly focus on temper- 
ature control but also point out some ways of maintaining desired 
pressure and humidity in rotary rheometers. 

There are three fundamental approaches to temperature con- 
trol: radiation, convection, and conduction. Radiation has been 
used for some very high temperature designs. For example, Sopra 
et al. (1988) describe a wide gap concentric cylinder viscometer 
with a radiation furnace for studying silicate magna to 1300°C. 
Normally radiation is combined with a gas convection oven. Fig- 
ure 8.2.12 shows a typical design. Air or inert gas is forced to flow 
over a resistance wire heater into an insulated chamber surround- 
ing the sample. The sample is heated by radiation from the oven 
walls, as well as by the circulating gas. Baffles are used to en- 
sure that the hot gas does not hit the sample directly and to create a 
more uniform temperature distribution. The gas can be recirculated 
(Macosko and Weissert, 1974), but usually it is simply allowed to 
escape around the test fixture bases. These bases are typically hol- 
low stainless steel cylinders with windows cut out near the sample 
and an insulating plug. Both features reduce conduction loss from 
the sample. Sample temperature is recorded by a thermocouple 
either very close to the sample in the gas or mounted in the fixture 
base at the center. 

A platinum resistance thermometer or thermocouple in the 
gas stream is used to control the temperature. Placement of this 
sensor is important. Close to the edge of the sample yields better 
agreement between the controller set point and sample temperature. 
Close to the gas inlet gives less overshoot. 

This overshoot is illustrated in Figure 8.2.13, curve 2a. Large 
overshoot can lead to degradation of the sample free surface. A 
control strategy which resets the integration constant can eliminate 
overshoot, as illustrated in curve 2b. However, as curve Ib illus- 

Figure 8.2.12. 
Temperature distribution in a 
typical gas convection oven. 
Each gray tone represents - 1°C. From Mora and 
Macosko (1991). 
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Figure 8.2.13. 
Temperature versus time in 
parallel disks after a step 
change in the set point from - - -  - 
100 to 200°C. From Mom 
(1991). 
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Figure 8.2.14. 
Qpical temperature distribu- 
tion between parallel disks 
for (a) gas convection, and 
(b) liquid convection bath, 
heating only the bottom plate. 
From Mora and Macosko 
(1991); Mora, (1991). 
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trates, such a strategy means longer time to sample equilibration. 
In this example the final sample center point temperature reached 
was 197°C. For curve lb, 196°C was reached in about 20 minutes. 
Allowing the gas temperature to overshoot (curve 2a) reduced the 
time to reach within 1°C of the final temperature to about 10 min- 
utes. 

Note in Figure 8.2.13 that even at steady state there is a 1.5"C 
difference between the gas and sample center temperatures. This 
means that there will be temperature gradients inside the sample. 
Figure 8.2.14aillustrates these gradients. In this example the upper 
plate is cooler than the lower one. This gradient probably could 
be reduced by lowering the fixture with respect to the oven or by 
adjusting the baffles. However, the temperature gradient from the 
center to the sample edge (Figure 8.2.14b) is more difficult to de- 
crease. These gradients will increase with sample size and with the 
difference between the test and the sample temperatures. 

Gas convection ovens can increase temperature very rapidly 
as illustrated by curves 2a and 2b in Figure 8.2.13. The sample 



temperature rises more slowly, - 40"C/min using the initial slope 
of curve 1. Under temperature-programmed testing, gradients in 
the sample increase. Mora (1991) reports that the temperature dif- 
ference between center and sample edge for a 1.1 mm thick, 50 mm 
diameter parallel disk sample nearly doubled from its steady state 
value when programmed at 4"C/min. The difference increased 
from 0.65 to 1.1"C at 200°C. 

Temperature programming is frequently used to study the 
viscoelasticity of solid polymers. Typically rectangular samples 
about 40 mm x 10 mm x 20 mm are tested in sinusoidal torsion. 
Temperature gradients in such samples, particularly if they are thick 
and programmed rapidly, can cause significant errors. For example, 
Mora and Macosko (1 99 1) found that the temperature in the central 
20 mm region of a 30 mm x 12 mm x 3 mm sample was constant 
to within 1"C, but the ends were 3°C colder at 100°C and about 
5°C colder when temperature was programmed at 3"C/min. These 
temperature gradients can cause a significant error in transition 
temperatures. For example, Tg, based on tan S maximum using 
a 4 mm thick sample was 5°C too high, -39°C rather than -45". 
When Mora and Macosko reduced the sample thickness to 0.5 mm, 
the error was eliminated. Similar temperature gradient problems 
in thick samples " buried " the Tg of a rubber additive under the 
p transition of the epoxy matrix (Gerard et al., 1990). 

Another error associated with temperature programming is 
sample and fixture expansion. As mentioned above, a typical 
change in the gap is 1 lm/"C due to fixture expansion. This can 
cause significant errors for thin cone and plate or parallel disk sam- 
ples. With solids it can lead to high normal forces at low tempera- 
tures and sample buckling at high temperatures. Some instruments 
automatically adjust the gap based on the .normal force (Rheomet- 
rics, 1990). 

The testing of both liquids and solids discussed above illus- 
trates a major advantage of gas convection ovens: flexibility. They 
can accommodate a wide variety of test fixtures from three-point 
bending to torsion rectangular to concentric cylinders. Gas con- 
vection ovens also offer the widest temperature range. Using the 
boil-off from liquid nitrogen, it is possible to control temperature 
from -150 to 600°C (van der Wal et al., 1969). Such a liquid 
nitrogen system is particularly useful for rapid cooling-for exam- 
ple, to study rheological changes during crystallization or phase 
separation. 

The main disadvantages of gas convection ovens are temper- 
ature gradients and sample evaporation. Gas flow can also dis- 
turb sensitive torque transducers. Control using liquid convection 
is much better for reducing evaporation but temperature gradients 
can still be a problem. This is illustrated in Figure 8.2.14b, where 
the top and edges of the sample are cooler because the sample is 
heated only from the bottom plate. Gradients are less for a concen- 
tric cylinder geometry, which can be immersed in the liquid bath as 
indicated in Figures 8.2.1 and 8.2.2. Around 80°C the temperature 
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difference across a 1 mm gap is typically < 0.5"C; over a length 
of 30 mm it is - 1°C ( Mora, 1991). 

Liquid convection baths typically use water as the circulating 
liquid and thus are limited to 5 - 80°C. With oils and a refriger- 
atingheating circulator this range can be extended from -50 to 
200°C. Temperature in these circulators can be programmed but 
typically slowly (5 3"C/min). Rheometer designs like Figures 
8.2.1 and 8.2.2 require liquid-tight rotating seals between the bath 
and driven shaft. Devices in which stress and strain are measured 
on the same shaft (Figure 8.2.10) make the design of such baths 
simpler. 

Liquid convection baths are best suited for the concentric 
cylinder geometry and for temperatures between - 10 and 150°C. 
Temperature gradients with cone and plate and parallel disk geome- 
tries can be a problem because of heat loss from the upper fixture. 
Insulated covers and thin samples help. For other geometries and 
wider temperature ranges, gas convection is preferred. 

Direct electrical heating is less common in commercial 
rheometers, but it can provide rapid programming and precise con- 
trol for parallel disk or cone and plate geometries (Meissner et 
al., 1989; Mani et al., 1991). Heaters can be readily controlled 
on rotating shafts using slip rings, so precise temperature can be 
maintained on both surfaces. Typically an inert gas chamber sur- 
rounds the sample for temperatures of 200°C or more. With normal 
resistance heaters, controlled cooling is not possible. However, 
semiconductors known as Peltier elements can heat and cool over 
a limited temperature range: 0 to 80°C. A Peltier device is incor- 
porated into the lower plate of some controlled stress rheometers 
(Carri-med, 1988; Rheometrics, 1993) while others use electrical 
heating (Bohlin, 1990; Haake, 1992; Rheometrics, 1993). Induc- 
tion heating of the test fixtures is also used (Carri-med, 1992). 
Electrically heated concentric cylinders geometry is available com- 
mercially (Physica, 1989). 

Above we discussed the problem of sample evaporation. 
Nearly all rotational rheometers have free surfaces, where the sam- 
ple is exposed to the environment. To prevent evaporation, the usual 
method is to surround the sample with porous pads filled with the 
sample or an appropriate solvent, to try to maintain a proper hu- 
midity in the environmental chamber. Some workers coat the free 
surface with a low viscosity oil to prevent evaporation. 

An alternative approach to preventing evaporation is to seal 
the entire rheometer. This can be easily done with the falling or 
rolling ball indexer (Figure 5.2.5). Contained rotors are used in the 
rubber industry (see Section 5.6). The viscous rubber forms a seal 
in the tight clearance around the rotating shaft. This design can 
contain a few atmospheres of pressure, which prevents oil in the 
rubber from vaporizing. 

Figure 8.2.15 shows a design for a pressurized rheometer. 
The key is the thin-walled tube, which acts as a torsion spring 
and also permits the motion to be transferred out of the chamber. 
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Figure 8.2.15. 
Schematic diagram of a 
torque transducer for a pres- 
surized rheometer. The thin- 
walled tube twists slightly 
when torque is exerted by the 
sample on the inner cylinder. 
This twist is recorded by the 
rod and capacitance gage. 

Richards and Prud’homme (1987) have described such a design 
for testing polymer solutions up to 70 atm. One application is 
in polymerization reactors; another is oil recovery with polymer 
pusher fluids. Christmann and Knappe (1976) describe a similar 
design that can test polymer melts at 500 atm. These levels are 
necessary to probe the pressure dependence of material functions. 

8.3 Data Analysis 
Section 8.2 described how different rotary rheometers are designed 
to control and to measure rotation rate, angular position, torque, 
temperature, and other variables. Equally important is the analysis 
of these measurements, conversion of the raw millivolts to material 
functions. Twenty years ago this was all done by hand, but today 
commercial rheometers spit out materials functions like G’ and G” 
in real time. Data analysis software is becoming a more and more 
important part of rheometer design. We have already seen that the 
inertia correction algorithms illustrated in Figure 8.2.1 1 can signif- 
icantly extend the performance of controlled stress rheometers. 

This section first considers the general features of data analy- 
sis software and future trends in this area. Then we focus on analysis 
of transient strain or stress tests, particularly sinusoidal oscillations. 
We will apply this analysis to data from rotational rheometers, but 
some of the strategies are also applicable to pressure-driven shear 
rheometers and extensional rheometers described in the following 
sections. 

Figure 8.2.2 is a good starting point for considering the de- 
sign of data analysis software. Let us say that the operator wants 
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to determine the q ( F )  function for her sample. Through the instru- 
ment keyboard she will enter the concentric cylinder dimensions 
into the analysis/control software which will calculate the range of 
shear stress available with the torque transducer and the shear rate 
range for the motor-controller. She will then select the shear rate 
program-for example, starting from the minimum rate and going 
to maximum rate in 3 or 4 steps per decade, holding for 30 seconds 
at each rate. 

The rest of the test will be automatic. Every 30 seconds the 
control computer will translate each desired shear rate to an angular 
velocity set point for the circuit that controls the motor speed. The 
tachometer sends back the true velocity, which the software uses 
with eq. 5.3.1 1 to calculate the shear rate. In some instruments 
the software may make corrections for wide gap using data from 
the preceding low shear rates (eq. 5.3.24). The voltage from the 
torque transducer is typically averaged over several seconds, then 
converted to shear stress with eq: 5.3.8. Viscosity is calculated and 
plotted versus shear rate as the test is running. 

To ensure that the viscosity data are true steady state values, 
the operator can command longer measuring times at lower shear 
rates and request that, for example, torque be averaged over only 
the last 5 seconds of the measuring time. The software can even be 
asked to keep measuring until the torque has reached steady state. 
Readings from clockwise and counter-clockwise rotation can be 
averaged for each shear rate. After the desired q(  p) data have been 
collected, the program can automatically change temperature and 
repeat the process. 

Many higher level control functions are starting to appear in 
rheometers. In Section 8.2.5 on environmental control we men- 
tioned gap control based on torsion when solid samples are tested 
as a function of temperature. Luckenbach (1992) describes a novel 
gap control procedure for testing asphalt and soft solids between 
parallel disks. At low temperatures torques are very high, so an 
8 mm diameter disk can be used. At higher temperatures, when 
torque falls below a certain level, the instrument brings a 25 mm 
disk in contact with the sample. This procedure permits measure- 
ment of G* from lo9 to lo3 Pa allowing testing from the solid to 
liquid state on one sample. The data obtained can then be used to 
construct the time-temperature master curve and fit to a relaxation 
spectra using the analysis software. 

Software can be used to control the test range-for example, 
taking more data when something rheologically interesting is hap- 
pening. A temperature scan can be made more slowly, or in smaller 
steps when tan S starts to change. This helps to accurately identify 
Tg. We usually don’t need much 9 data in the Newtonian region. 
Thus in the ~ ( p )  example given above, we can reduce the number 
of steps per decade or even cut off the shear rate sweep when ~0 is 
reached. 

Such types of analysis and control will probably be the great- 
est area for innovation in future rheometer design. Fitting of con- 

358 / RHEOLOGY 



stitutive equations will be done on line. After the general type of 
sample has been identified, the software will decide which type 
of test to run and over what ranges. It will compare the results to 
a library of relaxation spectra and even use molecular models to 
calculate polymer moleculat weight distribution. 

8.3.1 Sinusoidal Oscillations 
The most commonly measured viscoelastic material function is 
G*(w, T). It is so popular because sinusoidal oscillations can be 
used to follow viscoelastic changes with time, such as during curing 
and crystallization. As discussed below, cross-correlation analysis 
of the signal can provide accurate G' and G" values over a wide 
range of frequency and signal levels. 

There have been many designs for measuring the dynamic 
moduli (Ferry, 1980). Most of them fall into the three basic cat- 
egories illustrated in Figure 8.3.1. The simplest is shear wave 
propagation-how fast a pulsed deformation travels through a sam- 
ple. If the damping of the probe is measured, both G" and G' can 
be calculated. However, usually the damping per wave is small 

Figure 8.3.1. 
Methods for measuring G': 
(a) wave speed, (b) reso- 
nance, and (c) forced oscil- 
lations. K is a geometry con- 
stant free. 

I 
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and G’ is just the sample density times wave speed squared. G’ is 
measured at one frequency in the 10-1000 Hz range. Van Olphen 
(1956) and Buscall et al. (1982) have developed such a device for 
studying flocculation of colloidal systems (Rank Pulse Shearome- 
ter, 1992). Joseph (1990) has also developed a wave speed meter 
and used it to study many liquids. 

The second major design type also operates at resonance and 
thus is limited to one frequency. Shown in Figure 8.3. Ib is a freely 
decaying torsion pendulum. It is used primarily on elastic samples; 
that is, the damping per cycle is small enough that the decay can 
be measured over several cycles. The frequency range, about 0.01- 
25 Hz, can be controlled by varying I ,  the moment of inertia. Free 
torsion pendula have been widely used to measure the viscoelastic 
properties of solid polymers (Nielsen, 1977, Ferry, 1980). 

Forced resonance devices are better suited for lower elasticity 
samples like dilute polymer solutions. A mass is oscillated sinu- 
soidally to the resonant frequency of the sample-apparatus combi- 
nation. The resonant frequency with and without the sample and 
the energy used to drive at resonance allow calculation of G’ and 
G”. These devices operate at around lo00 Hz. Since both measure- 
ments are made on the oscillator, it can be conveniently immersed 
into a lab beaker or even process equipment as discussed in Sec- 
tion 8.6 (Nametre, 1990). Several different stiffness lumps have 
been mounted on one shaft to allow G’ and G” to be determined 
at several frequencies in one loading (Ferry, 1980; Knudsen et al., 
1992). 

Another even higher frequency resonant device is the quartz 
crystal, which can be immersed in the test liquid or a thin layer 
of liquid placed on the surface of the crystal. The latter design is 
PartiCUlarlY Useful for studying rheological changes during curing 
and drying of paint and ink films (Ferry, 1980). 

Devices in the third category, forced oscillations (Fig- 

Figure 8.3.2. 
Torque and strain waves are 
analog filtered, zero shifted, 
amplified and then digitized. 
The digitized data are come- 
lated against a reference sine 
wave of fixed amplitude. 
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ure 8.3.lc), are by far the most common and versatile. They are 
generally run at lower frequencies (0.001 - 500 rad/s). This is 
mainly because of limits of mechanical oscillators but also reflects 
the desire to maintain gap loading conditions (Schrag, 1977, see 
also Section 5.3). 

Figure 8.3.2 ilustrates how data are treated. Cross-cor- 
relation is the heart of the analysis. Each signal can be considered 
as a combination of 

R = R, (sin wt + #) + noise + harmonics (8.3.1) 

where sin wt is the reference wave. An analog filter removes 
the high frequency noise. The cross-correlating “beats” the sig- 
nal against the reference wave. 

$ lN wRsinot d t  = R,cos# (8.3.2) 

and 

$ l N w R c o s w t  dt = Rosin# (8.3.3) 

where N = number of cycles. As Figure 8.3.3 shows, noise rejection 
improves significantly with number of cycles. 

Figure 8.3.3. 
Filter characteristics of 

correlation: (a) one-wave 
integration and (b) ten-wave 
integration. 

Fourier integral cross- 0.8 - 
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Figure 8.3.4 
Comparison of three methods 
for measuring elastic modulus 
versus frequency G'(w): (a) 
time sequence of discrete sine 
waves, (b) three sine waves 
superposed on each other, 
(c) exponential pulse (thick 
line represents stress and the 
thin line represents strain), 
and (d) comparison of G' 
determined by each of the 
methods. From Berting et al., 
( 1990) 

Often it is desirable to collect G' and G" rapidly, for example 
if a sample is curing or crystallizing. When discrete sine waves 
(Figure 8.3.4a) are employed to collect the necessary data, the test 
duration can be rather long. To speed up the experiment, one can 
use features such as running the test with a multi-wave function 
which is a superposition of waves of several frequencies (Holly, et 
al. 1988; Figure 8.3.4b), or an exponential function (Figure 8.3.4~). 
A comparison of the discrete frequency data obtained from each of 
the three different experiments are shown in Figure 8.3.4d. In terms 
of the test time, the discrete frequency test took approximately 50 
min, the multi-wave function test took 16 min for 10 frequencies, 
and the exponential function took less than 10 min (Berting et al., 
1990). 

8.3.2 Transient 

Besides the sinusoidal oscillations, transient tests such as stress 
relaxation, start-up of steady shear flow, and cessation of steady 
shear flow are also important in the rheological characterization 
of polymeric liquids. The instrument limitations and features, and 
their effect on the data obtained in some types of transient tests, are 
examined in this section. Also, we shall illustrate the use of linear 
viscoelastic transformation to obtain, for example, stress relaxation 
data from tests such as start-up of steady shear flow and sinusoidal 
oscillations. 

In the stress relaxation test, the material is subjected to a step 
strain at time zero (inset, Figure 8.3.5), and the decay in the stress 
(or modulus) is monitored as a function of time (Figure 8.3.5). 
At short time, limitations due to electronic hardware can affect the 
data collection speed and the transducer inertia can affect the torque 
values, thereby affecting the quality of the data. At long time, the 
low torque signal and hysteresis of the torque transducer affects the 
data quality. 

Figure 8.3.6 illustrates the danger of using an electronic ana- 
log filter in eliminating high frequency noise from the torque signal 
for a low concentration xanthan solution in a Newtonian solvent 
(Mackay et al., 1992). The experiment employed was a stress de- 
cay test after the cessation of steady shear flow. Note that the steady 
shear flow was ceased at 100s. We expect an instantaneous relax- 
ation of the Newtonian solvent followed by the polymer relaxation. 
The analog filter hides the Newtonian relaxation. 

From Figure 8.3.5 we saw the limitation of the stress relax- 
ation test in obtaining long time data. Also, in some cases the 
limitations may be due to the type of instrument that is available. 
But, for long chain molecules the long time data becomes impor- 
tant. The use of linear viscoelastic transformations (Ferry, 1980) 
can be valuable in obtaining, for example, the long time stress re- 
laxation data based on experiments such as the start-up of steady 
shear or sinusoidal oscillations. Figure 8.3.7 compares the exper- 
imentally obtained stress relaxation data with that obtained by the 
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Figure 8.3.5. 
Shear modulus versus time 
after a step strain for a poly- 
dimethylsiloxane. The inset 
graph shows that the com- 
manded strain is reached in 
-3ms. Stress reaches a max- 
imum in -6ms due to trans- 
ducer inertia. Low torque sig- 
nal and transducer hysteresis 
are limiting at long time. 
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transformation of the stress growth and sinusoidal oscillation tests 
(Meissner, 1972). The good agreement between the different tests 
is noteworthy. Deviation of the r]+ transformed data (from start 
up of shearing) at short times is due to torsional compliance and 
small cone angles as predicted by eq. 8.2.2. In addition, it is worth- 
while to note that the transformed data allow the calculation of the 
relaxation modulus for longer times. 

8.4iPressure-Driven Rheometers 
As with drag flow rheometers, there are two basic design types: 
one features controlled drive pressure and measurement of flow 
rate, and the other uses controlled flow rate and measures pressure 
drop. Pressure is controlled by a hydrostatic head, external gas or 
hydraulic pressure, or even a weight. Flow rate can be controlled 
by motion of a driving piston. Whorlow (1992) has an extensive 
review of pressure driven rheometer design. 

In the first capillary rheometer, Hagen (1 839; Figure 6.1.1) 
controlled pressure by a gravity head. This is still the case with 
the common glass capillary viscometers. As indicated in Figure 
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Figure 8.3.6. 
Effect of analog filter on 
torque after cessation of 
steady shear for a dilute xan- 
than solution. From Mackay 
et al. (1 992). 
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Figure 8.3.7. 
Comparison of G(t) by differ- 
ent methods. Adapted from 
Meissner (1972). 
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Figure 8.4.1. 
Hydrostatic head viscome- 
ters. (a) In the Ostwald de- 
sign, liquid is filled exactly to 
mark C then sucked through 
the narrow capillary section 
to above mark A. The time 
for the meniscus to fall from 
A to E is proportional to vis- 
cosity. (b) The side arm of 
the Ubbelehde design elim- 
inates the need to fill with 
a precise volume. (c) The 
Cannon-Fenske design re- 
verses the flow from (a) 
and is used for opaque flu- 
ids. The dark meniscus rises 
from A to B during the tim- 
ing. (from Van Wazer et al., 
1963). 

8.4.1, the gravity head is provided by liquid in the bulb above the 
capillary. Since the height change in emptying the bulb is relatively 
small, pressure changes are small during the test. Glass capillaries 
are used for lower viscosity liquids: q < 10 Pass and typically 
q - 10 mPa s. Different diameters are used for different viscosity 
ranges to keep the flow time in the range of 1-5 minutes. Wall shear 
rates are typically about 100 s-' . Since gravity is usually used as 
the driving force, only one shear stress is available for a given 
diameter. Glass capillaries are used almost exclusively to measure 
relative viscosity changes, particularly of polymer solutions (e.g., 
ASTM D2857; Rodriguez, 1989). The liquids are assumed to be 
independent of shear rate, and thus single point data are sufficient. 
Temperature is controlled by immersing the capillary in a bath. Van 
Wazer et al. (1963, pp. 215-230) have an extensive discussion of 
glass capillaries. 

Another single point capillary instrument is the melt indexer 
shown earlier (Figure 6.2.14). It consists of a single capillary of 
rather low L /  D ratio and a plunger on which a weight is placed. 
This drives the molten polymer through the capillary at constant 
pressure and the extrudate is timed, collected, and weighed. Al- 
though the melt index apparatus can be used as a rheometer by 
employing two different length capillaries and different weights to 
vary the stress, typically it is used as an indexer (ASTM D1238; 
see Chapter 6 for more details). 

High pressure air or nitrogen can be used to provide a wide 
range of shear stresses. Extrudate can be cut and weighed or ex- 
truded onto a recording balance. Figure 8.4.2 show such an auto- 
mated instrument for high shear rate testing of coating liquids. 

Figure 8.4.3 shows a typical design of a capillary rheometer 
for polymer melts. The piston is controlled by a ball screw drive or 
in some cases by gas or hydraulic pressure. In some designs the ball 
screws are driven by a constant speed motor. In more sophisticated 
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Figure 8.4.2. 
An automated gas-driven cap- 
illary viscometer. A pres- 
sure transducer (not shown) 
records the head. Valve A 
opens the head to sample 
tank B .  Jacket C controls 
temperature. D is a ball 
valve, which opens flow to 
capillary E. Balance F (not 
shown) records the flow rate. 
From Grankvist and Sandas 
(1990; Oy Gradek Ab, Kauni- 
ainen, Finland). 

Figure 8.4.3. 
Qpical melt capillary 
rheometer (similar to com- 
mercial designs of Gottfert, 
Instron; Kayeness, Monsanto; 
Rosand, Seiko). 

D E 

designs the drive feeds back on plunger force or a transducer placed 
at the die entrance. If a slit die is used, pressure distribution can be 
measured with flush-mounted pressure transducers as shown earlier 
(Figure 6.3.1). Pressure transducer calibration and thermal stability 
are critical because accurate pressure differences are needed. 

Constaut velocity or force U 

RHEOMETER DESIGN / 367 



Figure 8.4.4. 
Methods for temperature 
control of long capillary 
dies. From Laun and Hirsch 
(1989). 

Temperature is controlled by band heaters on the barrel. Q p -  
ically a separate band is placed at the die end to reduce losses. Fig- 
ure 8.4.4 illustrates two methods for designing and heating long 
capillaries. At high shear rate, viscous dissipation can make tem- 
perature control very difficult. Small diameter capillaries minimize 
the problem (see Figure 6.2.12). 

Normally pressure-driven rheometers are used only to meas- 
ure steady shear viscosity. However, several devices have been 
developed that oscillate the flow rate sinusoidally (Thurston, 1961; 
Brokate and Gast, 1992). Typically oscillations are large amplitude 
and the strain field is nonhomogeneous, so G’ and G” cannot be 
measured directly. However, such rheometers have been shown to 
be sensitive to structure in low viscosity liquids (Vilastic, 1992). 

8.5 Extensional Rheometers 
Extensional rheometry methods are strongly connected to the in- 
strument design. The important designs for high viscosity samples 
were presented in Chapter 7. Meissner (1992) has reviewed de- 
signs for polymer melts. Figures 7.2.6 and 7.4.5 show designs of 
rheometers of the rod pulling type, where the sample is immersed. 
Designs for lubricated squeezing are shown in Figures 7.3.1,7.3.2, 
and 7.3.6. The most popular extensional rheometer design for high 
viscosity samples is the windup method (Figures 7.2.5, 7.4.2, and 
7.4.3). Typically the sample is a rod or rectangular strip floating 
on an oil bath, which provides support and temperature control. 
Meissner and Hostettler (1992) report that they can float rectangu- 
lar sheets on an air film, and this design is offered commercially by 
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Figure 8.5.1. 
Schematic diagram of 
the Cani-med Spin Line 
Rheometer (Jones et al., 
1987). Air pressure, A forces 
test liquid from the reservoir 
B through tube C to the spin- 
ning nozzle D, where it is 
drawn down by the rotating 
drum E. Liquid is scraped 
from the drum by F and falls 
into the beaker G. The feed 
tube C also acts as a force 
spring, whose deflection is 
measured by LVDT, H. Fiber 
diameter is recorded with 
a video camera near J .  The 
whole apparatus is contained 
in an environmental chamber. 

Figure 8.5.2 
Schematic of opposed-nozzle 
extensional rheometer. Step- 
per motor A moves a pair of 
syringes B, which suck (or 
blow) the test liquid from the 
beaker C through a matched 
pair of nozzles D. Screw E 
can translate arm F to change 
the gap between the nozzles. 
Arm G pivots around the in- 
let tube at H. Torque on the 
tube is measured by a re- 
balance transducer I .  From 
Rheometrics ( 199 1). 

Rheometrics. The importance of temperature uniformity in exten- 
sional testing of polymer melts is highlighted in Figure 7.2.7. 

In Chapter 7 we discussed the fiber spinning rheometer and 
its limitations. A specific design is pictured in Figure 8.5.1. In this 
design the sample is drawn by a rotating wheel. The same method 
is used to draw polymer melts extruding from a capillary rheometer 
(Gotlfert, 1989; see also Figure 7.5.2). Another method for pulling 
the sample is vacuum (Secor et al., 1989). 

A 
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As indicated in Figure 8.5.1, the tensile force is measured 
by the deflection of the feed tube. Secor et al. suspended their 
tube from an analytical balance. In the melt drawing, tension is 
measured on the rotating wheel. 

The other important commercial design for extensional meas- 
urements on low viscosity fluids is the opposed nozzle device shown 
in Figure 8.5.2 [Fuller et al., 1987; Mikkelsen et al., 1988). In ad- 
dition to the opposed-nozzle configuration, if the arm G is turned 
90°, the device can also be operated as fiber spinning and tubeless 
siphon rheometers (Cai et al., 1992). 

8.6 Process Line Rheometers 
As discussed in Chapters 10 and 11, rheology can be very sensi- 
tive to the microstructure of liquids. For example, the viscosity of 
entangled polymer melts depends on molecular weight to the 3.4 
power, qo - M:4. Equilibrium creep compliance J," is very sen- 
sitive to molecular weight distribution. The yield stress and low 
frequency G' are good indicators of the flocculation state of col- 
loids. Extensional viscosity can be an important indicator of bread 
dough quality (Padmanabhan, 1993). 

It is natural to try to use these sensitive indicators for process 
control, but there are some important design challenges in going 
from a lab measurement to the process line (Dealy, 1990). To be 
part of a continuous feedback control system, the sensor must be to- 
tally automatic and extremely reliable. Very rugged designs which 
have few moving parts are favored. The rheological sensor should 
not interrupt the process flow, causing dead zones where material 
may accumulate and degrade. Simultaneous temperature measure- 
ment and control around the sensor are required. Two rheological 
variables must be measured, typically pressure drop or torque and 
flow rate. However, it is possible to use a pair of stresses such as 
normal stress and shear stress or extensional and shear stress. Usu- 
ally a single point measurement will be used for control such as 
viscosity at the melt flow index shear stress, but more sophisticated 
control strategies can utilize multiple points. The user may also 
want to make a more complete rheological characterization on-line 
for each product batch. 

There are two basic types of process line rheometer: those 
that can operate directly in the process and those that pull a side 
stream off the process for analysis. The side stream may be either 
dumped or recycled back to the process. 

The simplest approach to in-line measurement is to monitor 
the pressure drop and flow rate over a flow channel of constant 
cross section in the process. This is more difficult than it might 
first appear. Getting a uniform section with a reasonable A p  can be 
difficult because of temperature gradients. A low pressure gradient 
in the process means that a longer section is needed for accurate 
measurement. Rather than trying to infer the shear stress by the 
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Figure 8.6.1. 
On-line concentric cylinder 
rheometer with torque sensor 
on the rotating bob. Simi- 
lar to commercial designs 
from Brookfield, Haake, and 
Mettler. 

pressure drop between two transducers, this variable can be directly 
measured by a wall shear stress transducer like the one shown in 
Figure 8.2.6. 

Flow rate is not trivial either. Invasive devices like turbines or 
gear pumps can produce excessive pressure drop and lead to fouling. 
They also are nonlinear at low viscosity. Such noninvasive devices 
as coriolis, ultrasonic meters, and magnetic meters can be used for 
particular liquids, usually in the lower viscosity range (Mattingly, 
1983). The process flow rate normally fixes the test shear rate. At 
this rate the viscosity (or other variable) may not be sensitive to 
the process changes. To get around this limitation, Pabedinskas 
et al. (1991) have developed an in-line, tapered slit with several 
transducers along its length that can measure viscosity over more 
than a decade in i /  at one process flow rate. 

It is also possible to mount an oscillating probe in the process 
line. As discussed in Section 8.4, these probes operate at relatively 
high frequency, which may not be sensitive to the process variable. 
These surface loading devices typically measure material within a 
few micrometers of the surface. Thus they should be located to 
have good flow over the surface. However, such high flow rates 
may damage the probe. 

An alternative approach is to measure two stresses. Lodge 
(1988) has shown how the pressure hole method can be used as an 
in-line rheometer. N I  is measureid in slit flow by two opposed pres- 
sure transducers as shown earlier (Figure 6.3.5). A third, recessed 
transducer downstream is used to get the shear stress. Together this 
gives N I  ( r ) ,  which is very sensitive to polymer concentration and 
molecular weight. Padmanabhan and Bhattacharya (1993) have 
proposed a combination of entrance pressure drop and wall shear 
stress. 

w" 
Dump or recycle 

- Valve or gear pump @ 
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Figure 8.6.2. 
On-line concentric cylinder 
rheometer with torque sen- 
sor on fixed bob. Designed 
for sinusoidal oscillations. 
From Zeichner and Macosko 
(1982). 

1 
I 

Figure 8.6.3. 
On-line capillary rheome- 
ter, flange mounted on a 
single-screw extruder: a, melt 
stream from extruder; b, gear 
pump; c, pressure transducer; 
d, thermocouple; and e, capil- 
lary. From Gottfert (1991). 
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Side stream or on-line methods provide greater flexibility 
in the type and temperature of rheological measurement. This is 
the area that has seen the most commercial development. Figure 
8.6.1 shows a common design for on-line viscosity measurement 
of slurries and polymer solutions. Often there is a holding tank or 
reservoir in the process where the viscometer may be mounted. A 
strong superposed cross flow will typically lead to reduction in the 
measured viscosity (recall Figure 2.4.4). 

Figure 8.6.2 shows a concentric cylinder design for polymer 
melts. The outer cylinder rotates or oscillates, while torque is meas- 
ured on the inner cylinder. To get a fresh representative sample and 
to avoid cross flow, the gear pump is operated intermittently and 
measurements taken intermittently (Zeichner and Macosko, 1982). 
The capillary or slit design shown in Figure 8.6.3 can be operated 
in the same way. 
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Figure 8.6.4. 
On-line slit rheometer with 
recycle. The conveying gear 
pump permits rapid sam- 
pling and flushing: (I melt 
stream from extruder; b, gear 
pumps in front of and behind 
c, the measuring capillary; 
d, pressure transducers; e, 
thermocouple; J additional 
gear pump; g, circulating 
melt stream; and h, melt back 
flow. From Gzttfert (1991). 

The on-line designs in Figures 8.6.1-8.6.3 typically dump the 
bypass stream. This can lead to plugging the exit port in addition 
to the problem of waste. Recycle schemes like the one shown in 
Figure 8.6.4 have been developed. With this design, a sample can be 
taken in less than 5 minutes from the process and the temperature 
can be more than 20°C different from the process as a result of 
the efficient heat transfer. This slit design also lends itself to on- 
line optical measurements such as infrared for composition or light 
scattering for gel particles. 

8.7 Summary 
The rheology literature is rich with homemade instruments. How- 
ever, today at least in the area of shear rheometry, there are a large 
number of excellent commercial instruments to choose from. Even 
if the user has an especially difficult material or measurement, a 
rheometer manufacturer will often help to modify an existing de- 
sign. 

The real challenge usually lies in wisely using the available 
instruments. Table 8.7.1 summarizes the experimental philosophy 
suggested in Figure 11.3 and throughout Chapters 5-8. The table 
outlines a check list to follow when dealing with new instruments, 
new types of material, and even new ranges of testing. One problem 
that is difficult to cover adequately is item 8 in Table 8.7.1: sample 
changes. These are typically the biggest single cause of “bad data.” 
The operator’s eyes and brains are the most important option on any 
rheometer. 

As indicated in Section 8.3, perhaps the most rapidly de- 
veloping area of rheometer design is interactive software control. 
Significant advances have also been made recently in extensional 
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TABLE 8.7.1 1 Typical Approach to Rheological Measurements 
1. Pick material function of interest. Then pick range of 

variables desired and test temperature (and see if it is 
possible to achieve) 

2. Pick a simple, controllable test geometry: a rheometer 
3. Analyze flow': 

Assume material is a continuum (i.e., particle size << smallest 
rheometer dimensions) 
Check literature on this flow geometry 
Solve equations of motion, energy balance 
Apply simple constitutive equations (especially for indexers) 

4. Assume homogeneous or simple stress field: 
No secondary flow or slip 
Check by birefringence, pressure profiles for new geometries 
Compare to predicted stress 

5 .  Determine stress from: 
Boundary force, shape 
Pressure 
Birefringence 

Boundary motion 
Bulk flow rate 
Check this by flow visualization, strain distribution, changing 
sample geometry 
Compare to predicted velocities, strains 

Pressure hole errors 
Secondary flow 
Instrument compliance 
Gap changes with temperature 

8. Watch for sampling changes: 
Prehistory before loading 
Air bubbles 
Slip, buckling 
Evaporation, settling, phase separation, crystallization, chemical 
reaction 

Indicate uncertainty (error bars) and limits of measurements 

aFor simple geometries this is done in the instrument software. Check a few 
points manually. 

6. Determine deformation from: 

7. Watch out for systematic errors: 

9. Report material function data! 

rheometry. Rheo-optics is also a fast changing area of rheometry 
and is the subject of our Chapter 9, the last in  Part 11. 

- 
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9 
In 1866 I made some attempts 
to ascertain whether the state 
of strain in a viscousjluid in 

motion could be detected by its 
action on polarized light. . . . 

It is easy. . . to observe the 
effect in Canada balsam. . . . 

James C. Maxwell ( I  873) 

I n  flowing liquids in which 
the same mechanism. . . gives 

rise to birefringence and to 
stress, it is reasonable to 

expect these to vary together 
when factors such as rate 

of shear and concentration 
of solute are altered. 

Arthur S. Lodge (1955) 

Figure 9.1.1. 
Representative stress- 
birefringence pattern (isochro- 
matics) for a high density 
polyethylene melt flowing 
into a slit die. From Han 
(1981). 

RHEO-OPTICS: 
FLOW 
BIREFRINGENCE 

Timothy P. Lodge 

9.1 Introduction 
Optical experiments of various kinds are being used increasingly 
across the spectrum of macromolecular science, and polymer rhe- 
ology is certainly no exception. In Figure 9.1.1, for example, the 
birefringence of a polymer melt is measured as a function of po- 
sition in the entrance region of a slit flow (Han, 1981). The light 
intensity patterns are essentially contour lines of the stress field 
and provide a direct picture of the spatial evolution of stress in the 
liquid. In the general case, a rheological experiment entails the 

r 
The Direction of Flow 
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measurement of a force (related to the stress) and either a displace- 
ment (related to the strain) or a velocity (related to the strain rate). 
In a rheo-optical experiment, the measurement of force is replaced 
by the measurement of some optical property of the sample. The 
results obtained from the two experiments usually are very closely 
related, but differences in both principle and practice render the two 
approaches complementary rather than redundant. 

Some of the important features of the rheo-optical approach 
are as follows 

1. The measured quantity is a direct reflection of molecular 
orientation and shape; in contrast, a mechanical experiment 
senses the dissipation and/or storage of energy. 

2. The measured quantity is decoupled from the applied field. 
In other words, the sample is subjected to a flow while an 
optical signal is monitored. This property has important im- 
plications in terms of sensitivity. In a mechanical experiment, 
the measured quantity-for example, the force-results from 
the displacement of both sample and apparatus, and the two 
contributions must be resolved. If the sample is a polymer 
solution, the solvent contribution must also be considered. 
In either case, if the polymer contribution is relatively small, 
it may be very difficult to extract with precision. In con- 
trast, optical experiments often can be designed such that the 
polymer contribution dominates the measured signal. 

3. Spatial resolution within the sample is possible. This is ob- 
tained either by appropriate positioning of the light beam or 
by the use of finite area detectors, as in Figure 9.1.1. In 
contrast, a mechanical experiment inherently integrates the 
response over the entire sample. 

4. Molecular labeling is possible. By appropriate manipula- 
tions, an optical experiment can sense the behavior of one 
selected component in a multicomponent fluid. For exam- 
ple, molecules can be labeled by refractive index, polariz- 
ability anisotropy, isotopic substitution, or chromophore at- 
tachment. This kind of specificity is impossible to achieve 
in a mechanical experiment. 

5 .  Optical experiments are very sensitive. Given the ready avail- 
ability of lasers, emitting approximately lozo photons per 
second, and photomultiplier detectors, which can respond to 
single photons, it is possible to make measurements of very 
weak signals with good precision. 

6. The inherent speed of optical detectors, in combination with 
various modulation schemes, can provide information on 
shorter time scales (e.g., submilliseconds) than most me- 
chanical techniques, permitting examination of either high 
frequency or transient responses. 

7. Optical experiments provide an independent means to assess 
the utility and applicability of rheological constitutive rela- 
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tions. For example, two models that give similar expressions 
for the stress tensor may differ markedly in their predictions 
for the birefringence properties. 
As is to be expected, the rheo-optical approach is not without 

significant restrictions. The two most prominent are: 
The sample must have suitable optical properties, particu- 
larly in terms of transparency and freedom from macroscopic 
contaminants. This problem can be severe for commercial 
products. 
Additional characterization is often required. Although the 
direct measurement of a modulus or a viscosity is often of im- 
mediate utility, in the optical case some additional measure- 
ments may be required to establish the relationship between 
the optical properties and the mechanical ones. For exam- 
ple, the stress-optical relation, to be discussed in Section 
9.4, predicts that the shear stress and first normal stress dif- 
ference may be obtained from birefringence measurements, 
but only after a quantity called the stress-optic coefficient is 
determined. 
These disadvantages notwithstanding, in many situations the 

appropriate rheo-optical method would be the ideal tool for rheo- 
logical characterization. A wide variety of experimental techniques 
have been developed and will be used increasingly as they become 
less mysterious to polymer scientists and engineers. In this intro- 
ductory chapter, the intention is to provide a sense of the breadth of 
opportunity in rheo-optics in addition to the necessary background 
information. In the next two sections, birefringence measurements 
are placed in the context of optical experiments in general, and the 
basics of light polarization are reviewed. In Section 9.4, the general 
principles of flow birefringence measurements are outlined, while 
nine illustrative examples of rheo-optical applications are discussed 
in Section 9.5. The subject cannot possibly be considered in detail 
in a limited space, so appropriate references are provided. 

9.2 Review of Optical Phenomena 
When incident electromagnetic radiation interacts with matter, three 
broad classes of phenomena are of interest. First, energy can be 
absorbed, with the possible subsequent emission of some or all of 
the energy. Second, the radiation can be scattered (i.e., change 
direction), with either no change in energy (elastic scattering) or a 
measurable change in energy (inelastic scattering). Third, the light 
can propagate through the material with no change in direction or 
energy, but with a change in its state ofpolarization. This last 
possibility is the basis for birefringence, which is the most relevant 
process from the rheo-optical perspective. Scattering experiments 
are also of very great importance in polymer science, while absorp- 
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tion and emission spectroscopy are used for the chemical analysis 
of polymers in entirely the same manner as for small molecule 
systems. 

9.2.1 Absorption and Emission Spectroscopies 

The probability of absorption of electromagnetic energy by a given 
molecule depends on whether the incident photon energy matches 
that of a quantum mechanically allowed transition between station- 
ary states of the molecule. Thus, the wavelength dependence of 
absorption efficiency is a diagnostic of chemical structure; infrared 
photons absorbed correspond to vibrational and rotational transi- 
tions, whereas ultraviolet and visible photons absorbed correspond 
to changes between electronic energy levels. The subsequent emis- 
sion of radiation (i.e., by fluorescence or phosphorescence) is also 
used in quantitative and qualitative chemical analysis. However, 
with the exception of linear dichroism to be discussed subsequently, 
neither absorption nor emission is of immediate relevance to rheo- 
optical methods, and these subjects are not discussed further here. 

9.2.2 Scattering Techniques 
In a scattering experiment, incident radiation is redirected when 
it encounters a change in the impedance of the medium. Thus, 
for light, x-rays, and neutrons, the scattered intensity depends on 
changes in refractive index, electron density, and nuclear scatter- 
ing cross section, respectively. For all three types of radiation, 
the physical description of the scattering process is identical, and 
all three are of central importance to polymer science. However, 
the measured quantities reflect the size, shape, and spatial arrange- 
ments of polymer molecules rather than their rheological properties 
directly. Thus, although simultaneous scattering measurements are 
now being performed in rheological apparatuses (a difficult exper- 
imental undertaking), the discussion of these techniques will be 
rather brief. 

Static Light, X-Ray, and Small-Angle Neutron Scattering 
In these experiments the time-averaged scattered intensity Z, is 
measured as a function of the scattering vector q. The net de- 
tected intensity can be computed as the superposition of the signals 
from each scattering center (e.g., each monomer unit). According 
to the spatial arrangement of the scatterers, the individual scattered 
waves may interfere constructively or destructively at the detector. 
Thus, Z,(q) is proportional to the so-called static structure factor 
S(q), which sums the waves with different phases from different 
locations. S(q), in fact, reflects the spatial Fourier transform of the 
distribution of scatterem (i.e., the pair correlation function), and 
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thus in a polymer system it is possible to determine the monomer 
distribution function. More commonly, one obtains the second mo- 
ment of this distribution, known as the mean square radius of gyra- 
tion. Furthermore, if the absolute scattered intensity is measured in 
the dual limits of zero scattering angle and zero concentration, the 
absolute weight-average molecular weight of the polymer sample 
can be determined. This is the classical approach developed by 
Debye, Zimm, and others (Hiemenz, 1984). Although light and 
x-ray scattering apparatuses are routinely available in polymer lab- 
oratories, neutron scattering experiments can be performed at only 
a handful of locations around the world. However, the particular 
advantage of neutron scattering is that the nuclear scattering cross 
sections of hydrogen and deuterium are very different, and thus the 
size and shape of isotopically labeled molecules in bulk systems 
can be determined. 

Dynamic Light Scattering 
Also known as quasi-elastic light scattering, this technique mon- 
itors the temporal fluctuations in Z,(q) (Berne and Pecora, 1976; 
Chu, 1990). These fluctuations result from random thermal mo- 
tions, which change the instantaneous spatial arrangement of 
molecules and thus the net scattered intensity. As these random 
motions result in microscopic concentration fluctuations, a mutual 
diffusion coefficient can be determined from the time constant of 
the decay of the time autocorrelation function of Z,(q, t ) .  Rapid 
advances in laser and autocomlator technology during the last two 
decades have made this experiment a routine characterization and 
research tool. 

Other Scattering Experiments 
Three other scattering experiments used in polymer science deserve 
mention for the sake of completeness; these are Raman scattering, 
Brillouin scattering, and forced Rayleigh scattering. The first two 
are inelastic; that is, the scattered radiation is of a frequency dif- 
ferent from that of the incident wave. Raman frequency shifts cor- 
respond to changes in vibrational or rotational energy states of the 
molecule and thus reflect the molecular chemical structure, much 
like infrared absorption spectroscopy. Brillouin scattering arises 
from propagating density fluctuations, or phonons, in the liquid. 
Thus the Brillouin spectrum contains information about the modu- 
lus of the material. Forced Rayleigh scattering is a relatively new 
technique that follows the decay by mass diffusion of a transient 
chemical diffraction grating created in a sample. It is a very pow- 
erful experiment, as tracer diffusion coefficients can be determined 
over a very wide range (from 10-'cm2/s to 10-'6cm2/s), and it has 
been applied to many different polymer systems (see e.g., Huang 
et al., 1987). 
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9.2.3 Birefringence and Dichroism 

The phenomenon of birefringence is the one of most importance 
to rheo-optics and is introduced in this section. Section 9.3 on 
polarization of light, explains the primary methods for measuring 
birefringence. Dichroism, although in fact an absorption process, 
is very closely coupled to birefringence and therefore is also de- 
fined here. 

A light wave propagates through a nonabsorbing medium 
with a speed u, which is reduced from the speed in vacuo, c (Born 
and Wolf, 1980; Hecht, 1987). The ratio c / u  defines the refractive 
index of the material, n. The wavelength of the radiation is also 
changed, from Lo in vacuo to A in the medium, with L = ho/n,  
but the frequency u remains constant. The change in speed results 
in a change in propagation direction at an interface between two 
materials of different n, as given by Snell’s law (see Figure 9.2.1). 

nlsinI,bl = n2sinI,b2 (9.2.1) 

This phenomenon is called refraction. The actual value of n, which 
is always greater than or equal to one, reflects the polarizability of 
the constituent molecules a, or, loogely speaking, the ability of the 
electric field of the light wave to distort the electron distribution of 
the molecules. In general, the more polarizable the molecules, the 
larger n will be. ppical  values for n for transparent liquids and 
glasses fall in the range 1.3-1.7. Most molecules actually possess 
an anisotropic polarizability, which can be represented as a tensor 
quantity a. This is the direct consequence of anisotropy in the 
chemical structure (see Denbigh, 1940); thus, nitrobenzene, chlo- 
roform, and biphenyl are anisotropic, whereas carbon tetrachloride 
and methane are isotropic (see Figure 9.2.2). By virtue of their 
chain structure, almost all polymers exhibit some degree of opti- 

Figure 9.2.1. 
Illustration df Snell’s law. 
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cal anisotropy. If anisotropic molecules in a material are oriented 
preferentially in one direction, the value of n will depend on the 
relative orientation of the electric field of the light (i.e., its polar- 
ization) to the molecular axes. This is the origin of birefringence 
or, as it is also known, double refraction. For when a beam of light 
containing two orthogonal polarizations enters a birefringent mate- 
rial, the two values of n experienced lead to two different angles of 
refraction. The birefringence An can be defined simply as n 1 - n2, 
where n 1 and n:, are the refractive indices of the material along two 
appropriately selected orthogonal axes. 

The crucial point from the preceding discussion is the neces- 
sity of producing a net orientation of anisotropic molecules in order 
to generate a measurable birefringence. In a quiescent liquid, all 
molecular orientations are equally likely (except in the particular 
case of liquid crystals), and therefore anisotropy in the molecu- 
lar property a does not lead to anisotropy in the material property 
n. However, in a polymer liquid under flow, a nonspherically sym- 
metric distribution of macromolecular orientation is induced. Even 
a slight perturbation to the equilibrium (random) orientation dis- 
tribution can produce a measurable birefringence. Birefringence 
in liquids can be generated by the application of various orient- 
ing fields; historically, when the field is hydrodynamic, electric, or 
magnetic, the resulting birefringence is referred to as the Maxwell, 
Kerr, or Couton-Mouton effect, respectively. The phenomenon of 
dichroism occurs when the wavelength of light entering a macro- 
scopically anisotropic material is such that it will be absorbed to 

Figure 9.2.2. 
Examples of molecules pos- 
sessing (a) isotropic polar- 
izability and (b) anisotropic 
polarizability. 

Isotropic 
polarizability : 

Anisotropic 
polarizability : 
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some extent. The value of the molar absorptivity also depends on 
the relative orientation of the light polarization and the so-called 
transition dipole of the molecules. The resulting variation in ab- 
sorption with polarization orientation is referred to as dichroism. 

9.3 Polarized Light 
According to Maxwell’s equations, light is a traveling electromag- 
netic wave; for our purposes, only the electric field component is 
of importance. For a beam propagating in the z direction, as will 
be assumed henceforth, the electric field amplitude JEl oscillates 
in the x-y plane, and the wave may be expressed in either of two 
equivalent ways: 

E(z, t)  = Emcos(2nut - k z )  (9.3.1) 

E(z, t) = Rc(Emej2n”’e-ikzl (9.3.2) 

where j = (-1)0,5, u is the frequency, and the wave vector k 
is given by 2nlA. The use of complex notation in eq.9.3.2 is 
for arithmetical convenience only; the observable quantity is the 
intensity of the beam, which is proportional to the electric field 
squared. Note that use of complex notation is potentially unreliable 
for nonlinear equations. In the complex notation, I - IE*EI, where 
E* is the complex conjugate of E (obtained by replacing j with 
- j ) .  The product of a number and its complex conjugate is always 
a real number. The frequency is the rate at which the electric field 
amplitude oscillates in time and is on the order of s-’ for visible 
light. (This oscillation is much too rapid to be detected directly and 
is not of further concern.) The term kz determines how the wave 
amplitude oscillates in space at a given instant of time; in other 
words, it keeps track of the spatial phase of the wave and is crucial 
to the subsequent development. Note that k depends on the value 
of n through the appearance of A, which is the wavelength of the 
light in the material. 

A light beam can be thought of as containing components 
with electric field orientations randomly distributed in the x - y 
plane. However, in a “plane-polarized” or “linearly polarized” 
beam, the electric field lies along one line in the x - y plane 
(Shurcliff, 1962; Azzam and Bashara, 1977; Born and Wolf, 1980; 
Hecht, 1987). Figure 9.3.1 illustrates schematically unpolarized, 
x-polarized, and y-polarized light. In the case of unpolarized light, 
it is also important that the phases ( k z )  of the components be ran- 
domly distributed throughout one cycle. To illustrate the impor- 
tance of the relative phases of the components, consider the sit- 
uation of a pure x-polarized wave and a pure y-polarized wave, 
each with an amplitude E,  but with a relative phase angle (that 
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is therefore independent of 2). We can write the two components 
as follows: 

Ex = E0cos(2nvt) (9.3.3) 

E,  = E,COS(~YTV~ - 9) (9.3.4) 

Light waves obey the principle of superposition, and thus the net ef- 
fect of the two waves can be computed simply by adding eqs. 9.3.3 
and 9.3.4 together. (Conversely, any given wave can be viewed 
as an appropriate sum of components along selected axes.) This 
sum depends critically on 4, as illustrated by the following specific 

Figure 9.3.1. 
Schematic illustration of (a) 
y-polarized, (b) x-polarized, cases. 
and (c) un-polarized light. 

Z 
Y 

Y 

Y 

X 

x-polarized 

Unpolarized 
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Figure 9.3.2. 
(a) E,. and Ex are in phase; 
the resultant is always 45" 
to the x and y axes; w = 
2nw. (b) E, and Ex are 180" 
out of phase; the resultant is 
always 45" to the x and y 
axes. (c) E,  and E, are 90" 
out of phase; the resultant 
sweeps out a circle in the 
x - y  plane. (d) E, and E., 
have an arbitrary phase shift; 
the resultant sweeps out an 
ellipse in the x-v Dlane. 

4 = 0" 
The two components are in phase. That means that whenever 

Ex is at its positive maximum ( E x  = E,),  so too is E, = E,. The 
resultant is a wave of amplitude (2>0.5 E, oscillating along the line 
at 45" to both the x and y axes. Thus, the resultant is also linearly 
polarized light, as illustrated in Figure 9.3.2a. 

= 180" (n rad) 
Now Ex achieves its positive maximum when E,  is at its most 

negative and vice versa. The resultant is still linearly polarized light, 
as shown in Figure 9.3.2b1 albeit oriented at 90" in the x-y plane 
from the resultant for q5 = 0. 

4 = 90" (nl2 rad) 
Here Ex has its positive and negative maxima when E ,  = 0, 

and vice versa. Note what happens when ( E x (  = E,/(2)0.5,  which 
occurs whenever 2nvt = in/4 with i = 1, 3, 5 ,  7, . . . . At that 
point, I E,  I also = E,/(2)0.5 because the n/2 relative phase shift 
is equal to the change in phase when i goes from one odd integer 
to the next. The resultant in this case is not confined to a line in 
the x-y plane; rather, it maps out a circle of radius E,, as shown 
in Figure 9.3.2~. This is circularly polarized light. Depending 

, 1  

on whether 4 is -90" or +90", right- or left-circularly polarized 

at=o at = d4 + +  at = Id2 at = 3d4 

Resultant 

Resultant 

Resultant 

Resuitant 
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light is generated, respectively. Thus, circularly polarized light 
is exactly equivalent to two copropagating beams of orthogonally 
linearly polarized light of equal amplitude, which are 90" out of 
phase with each other. The resultant vector sweeps out 2rc radians 
in the x-y plane every lO-I4s, which, as mentioned previously, is 
too rapid for optical detectors to sense. 

4 = anything 
In general, the resultant sweeps out an ellipse in the x - y  

plane; linearly polarized and circularly polarized light are just spe- 
cial cases of an ellipse when the minor axis is zero or equal to the 
major axis, respectively. An example is given in Figure 9.3.2d. 
Note also that when the amplitudes of Ex and E,  are not equal, it 
is impossible to generate circularly polarized light. 

In practice, circularly polarized light is produced by use of 
an element called a quarter-wave plate, which is nothing more than 
a carefully selected piece of birefringent material, usually mica. 
As stated earlier, birefringence means a difference in n along two 
axes in a material: An = nl - n2. Which axes are chosen as 
1 and 2? For light propagating along z, the value of n can be 
represented as an ellipse in the x-y plane, and the 1 and 2 axes 
can be chosen as the major and minor axes, thus giving An its 
largest value. (For any ellipse, there is a pair of orthogonal axes 
that would give An = 0 although the material is birefringent. In 
three dimensions, a refractive index tensor, n, can be defined, and 
an associated refractive index ellipsoid. However, in most rheo- 
optical experiments the light beam propagates along one of the 
principal axes of this ellipsoid, thus reducing the problem to two 
dimensions.) In a flow birefringence experiment, the 1 and 2 axes 
will be determined by the flow geometry and the beam propagation 
direction; note the possibility that An can be positive or negative. 
Consider two mutually orthogonal, linearly polarized beams, of 
equal amplitude and relative phase, entering the mica quarter-wave 
plate such that one beam is polarized along axis 1 and the other 
along axis 2.  They now propagate at different speeds, and the 
phase kz changes at a different rate for the two components. The 
phase difference between the two components after passing through 
a thickness L of the mica is easy to compute: 

S = k l L - k z L  (9.3.5) 

2rc An  L 
A0 

-- - 

Given that the birefringence An is a property of the material, it 
remains only to cut a thickness L such that S = n / 2 .  The quantity 
S is called the retardation, for obvious reasons; a quarter-wave plate 
retards one component by x / 2  rad, or one-quarter of a wave, relative 
to the other. Note that in a birefringence experiment, it is always 
a retardation that is measured directly, not the birefringence itself. 
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One other important point from this discussion of the quarter-wave 
plate: the orientation of the axes of the birefringent material relative 
to the incoming polarized beams is crucial. If the “fast” axis (i.e., 
the axis of lower n )  of the quarter-wave plate is along the y axis, 
the incoming beams must be x -  and y -  polarized exactly to produce 
circularly polarized light. This is exactly equivalent to one incident 
linearly polarized beam oriented at 45” to the x and y axes. Left- 
or right-circularly polarized light can be generated, depending on 
whether the incoming linearly polarized beam is 45” to the left or 
to the right of the quarter-wave plate fast axis. 

9.3.1 Transmission Through a Series of Optical Elements 

Consider a light beam propagating along the z axis through a se- 
ries of polarizers, wave plates, and arbitrary birefringent elements. 
Because of the necessity of specifying the orientation angles in the 
x-y plane as well as the nature of each element, the general solu- 
tion to the problem of identifying the polarization properties of the 
emerging beam quickly becomes very complicated when there are 
three or more elements. Some simplifying mathematical schemes 
have been developed, particularly the Jones and Mueller calculus 
(Shurcliff, 1962; Azzam and Bashara, 1977) and the scalar product 
mechanism set out by Thurston (1964). In the former, each element 
is replaced by a matrix that encodes its retardation and orientation, 
and the net result is obtained by simple matrix multiplication. In 
the latter, the projections along selected orthogonal axes are com- 
puted at each stage. By either method the problem can be solved 
directly, if not necessarily simply; however, for the purposes of this 
brief introductory chapter, only five particular situations are con- 
sidered and without recourse to these more elaborate methods. The 
general scheme is shown in Figure 9.3.3, where up to four optical 
elements are placed in series. In all cases, the first element is a 
linear polarizer oriented along the y axis, and the last element is 
another linear polarizer, the “analyzer,” with variable orientation. 
The intensity emerging from the first polarizer will be designated 
I , ,  and the transmitted intensity emerging from the analyzer Zf. 

The five important arrangements of the optical train are listed 
next. 

9 No intermediate elements, variable analyzer orientation. 

What is I ,  as a function of 0, the angle of rotation of the ana- 
lyzer axis away from the y axis? The answer is found by taking the 
projection of the electric field amplitude E,  onto the analyzer axis, 
which is just E,COS 8. Thus, the emerging intensity is proportional 
to (E,cos 8)’ or (Z0/2)( 1 + cos 20). This function is plotted as a 
function of 0 in Figure 9.3.4a. As expected, for crossed polarizers 
(0 = x / 2  or 3x /2 ) ,  the emerging intensity is zero. Note also that 
it is important to deal with electric field amplitudes until the last 
step, at which point the intensity should be computed. 
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Figure 9.3.3. 
Four optical elements in se- 
ries. The first element is a 
linear polarizer oriented along 
the y axis. The last element 
is a linear polarizer oriented 
at an angle 8 to the y axis. 

An intermediate linear polarizer P ,  of variable orientation, 
and the analyzer oriented along the x-axis. 
In this case, the polarizer and analyzer are crossed, and so in 

the absence of P, I, = 0. Clearly, also, when P is oriented with 
either the x or y axis, it will have no effect at all. However, the 
situation is different at all other angles. The electric field amplitude 
emerging from P is E,COS 8 ,  just as in the preceding arrangement 
(no intermediate elements). This becomes the amplitude incident 
on the analyzer; thus, the amplitude emerging from the analyzer is 
(E0cos8)cos(B - rc/2). Using trigonometric identities, it can be 
seen that I ,  = (Z0/4)(1 - cos228), as displayed in Figure 9.3.4b. 
Note the somewhat counterintuitive result that light can be obtained 
from crossed polarizers simply by insertion of another polarizer 
between them. 

An intermediate quarter-wave plate, variable analyzer ori- 
entation. 
Here we assume that the quarter-wave plate is correctly 

aligned to give circularly polarized light. This means that the fast 
and slow axes are oriented at f45"  to the y axis; the incident y -  
polarized beam is equivalent to two equal-amplitude, equal-phase 
beams oriented at f45"  to the y axis. In this case, it should be 

Y 
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obvious that It  is independent of analyzer orientation and (slightly 
less obviously) equal to ZJ2. 

An intermediate element of arbitrary retardation 6 ,  withprin- 
cipal axes at f45"  to the y axis, and the analyzer along the 
x axis. 
This is the first model in this series that could describe an 

actual birefringence experiment, in that 6 could be due to the orien- 
tation of polymer molecules. In this case the answer, which is not 
as straightforward to compute, is simply stated: Z, = (Z0/2)(1 - 
cos 6). This function is represented in Figure 9.3.4~. Just to estab- 
lish the plausibility of this result, consider some special cases. If 
6 = 0, or no birefringence, such as in a quiescent liquid, I, = 0, as 
expected. If 6 = n/2, the material acts as a quarter-wave plate, and 
the result is the same as the case of an intermediate quarter-wave 
plate. If S = n, a so-called half-wave plate, the element acts to 
rotate the plane of polarization by 90"; thus, I ,  = I,. 

A quarter-wave plate aligned to generate circularlypolarized 
light, followed by an element of unknown retardation 6, and 
the analyzer oriented along the x axis. 
This is the typical experimental configuration for birefrin- 

gence measurements on liquids. It is, in fact, a special case of Fig- 

Figure 9.3.4. 
Transmitted intensities from a 
series of optical elements, as 
described in the text. 
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ure 9.3.4~. For when the optical axes of two successive elements 
are aligned, their retardations simply add; note that in general it is 
not correct to add the retardations of two successive elements. Thus 
the net retardation in this case is 6, + n/2, which we can consider 
to be S in Figure 9.3.412. Now the advantage of the quarter-wave 
plate in this experiment can be explained. The measured intensity 
It changes most rapidly with changing 6, in the vicinity of 6 = n/2. 
In most situations, 6, << n/2, so it is important to achieve as high a 
sensitivity as possible. As a rough estimate, An is often about 
to lo-*, which for a 1 cm path length cell and visible light gives 
6, in the range of lo-' to radian. Values of An as small as 

can be determined (Morris and Lodge, 1986), an indication 
of the potential sensitivity of rheo-optical techniques. At the other 
extreme, values of An sufficiently large to make 6, > n can also 
occur (Figure 9.1.1 is an example). In this case, It can go through 
maxima and minima as 6, cycles through integer multiples of n. 

9.4 Flow Birefringence: Principles 
and Practice 
9.4.1 The Stress-Optical Relation 

The stress-optical relation (SOR) lies at the very heart of the use 
of flow birefringence in rheology (Janeschitz-Kriegl, 1969, 1983; 
AS. Lodge, 1955; Tsvetkov, 1964; Fuller, 1990). Given a polymer 
liquid undergoing flow, both a stress tensor T and an index of refrac- 
tion tensor n can be defined. The SOR comprises two statements 
about these tensors: 

The principal axes of the stress tensor and the refractive index 
tensor are collinear. 
The differences in principal values of the stress tensor and 
the refractive index tensor are proportional; the constant of 
proportionality is called the stress-optic coefficient, C. 
The SOR may be written as follows: 

n- c n > I = C { r  +PI)  (9.4.1) 

where < n > is the mean refractive index, p is the hydrostatic 
pressure, and I is the unit tensor. This expression becomes much 
more direct when we consider a shear flow, with x the flow direction 
and y the perpendicular to the shear planes. In this case, the z 
direction is neutral and the stress components can be represented 
as an ellipse in the x-y plane (recall Figure 1.3.1). Designating 
the principal values of the stress ul and u2 and the angle (< 45") 
between the flow direction and a principal axis, XI, as shown in 
Figure 9.4.1, the following relations hold: 

2q2 = A u  sin2x' (9.4.2) 
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Figure 9.4.1. 
Orientation of the stress ellip- 
soid in the x - y plane. 

y I  

I Y  

X 

t i  1 - 722 = AO cos 2 ~ ‘  (9.4.3) 

where ha = 01 - 02. These relations are illustrated in Example 
1.3.1 and can be obtained directly by recognizing that the stress 
matrix 7 in the x-y coordinate system is related to the diagonalized 
matrix Z by a rotation matrix U: 

uT * I:. u = 7 (9.4.4) 

where (recall Example 1.4. lc) 0 

cos X I  sin x ’  
U = (  -sin x ’  cos x ’  

The terms t12 and tl 1 - r22 correspond to the shear stress and the 
first normal stress difference, respectively. The SOR may now be 
rewritten 

(9.4.5) 
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where x ,  the orientation angle of the refractive index ellipsoid, is 
referred to as the extinction angle and is equal to x' by the SOR. 
Thus, eqs. 9.4.5 and 9.4.6 indicate that measurements of An12 
and x in a flow birefringence experiment are equivalent to meas- 
urements of the shear stress and the first normal stress difference, 
once the SOR has been established for the particular system and C 
is known. 

It is important to emphasize that the SOR is not the inevitable 
consequence of fundamental physical principles; rather, it is a very 
plausible hypothesis, which has extensive experimental support for 
polymer solutions and melts. In other words, there is no reason to 
assume that the SOR is valid under all possible flow conditions or 
for all possible polymer liquids. Some situations under which the 
SOR is expected to fail are mentioned in the next section. Many 
constitutive relations for solutions and melts predict that the SOR 
will hold, but even this apparent generality is somewhat misleading. 
The derivation of an SOR starts at a measurable molecular property, 
the optical polarizability of an isolated molecule a, and leads to a 
macroscopic refractive index tensor n, in a nontrivial way; several 
substantial assumptions are necessary. Most rheological models 
(for flexible chains) that proceed to an SOR assume the deriva- 
tion of Kuhn and GrUn (1942) for the polarizability anisotropy of 
a Gaussian subchain and thus in a sense make the same assump- 
tions for the optical half of the SOR (Larson, 1988). Therefore 
differences between constitutive relations and their predictions for 
an SOR usually stem from differences in the calculation of 1. 

For flexible homopolymer melts, the SOR is almost univer- 
sally valid. Examples are shown in Figure 9.4.2 for polystyrene, 
polyethylene, and a silicone oil (Janeschitz-Kriegl, 1969, 1983; 
White, 1990). Values of C are found to be independent of shear 
rate (even in the shear thinning regime), molecular weight, and 
molecular weight distribution; they do, however, depend on the 
identity of the monomer unit and also slightly on temperature and 
optical wavelength. Furthermore, C is independent of time follow- 
ing the onset of shear, as shown in Figure 9.4.2d for polystyrene 
(Janeschitz-Kriegl and Gortemaker, 1974). In solutions, C is in- 
dependent of polymer concentration, but depends slightly on the 
solvent employed. As discussed in the next section, however, the 
SOR for solutions applies only to the polymer contributions to n 
and t. These dependences for C can be understood in rather general 
terms. The magnitude of the measured birefringence is the product 
of two factors. The first is the degree of molecular orientation, and 
the second is the actual difference in refractive index along the two 
axes per degree of orientation. The first factor is proportional to 
the stress and is the basis for the SOR. The second factor reflects 
entirely the polarizability anisotropy of the monomer unit, and it 
determines the sign and magnitude of C. Thus, aligning relatively 
isotropically polarizable monomers, such as dimethylsiloxane, will 
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Figure 9.4.2. 
Steady shear viscosity (open 

and 
of the) stress-optical coef- 
ficient (solid symbols): (a) 
For melts of polystyrenes of 
nmow molecular mass distri- 
bution as functions of shear 
rate, 

have a much smaller effect on the refractive index than aligning 
more anisotropic monomers, such as styrene. The independence of 
C of molecular weight and concentration is therefore quite plau- 
sible. The dependence on solvent is a little more subtle and is 
thought to reflect differences in the way solvent molecules solvate 
the polymer chains and modify the local electric fields (Frisman 
et al., 1963; Tsvetkov, 1957). Some typical values of C are listed 
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Figure 9.4.2. (Continued) 
(b) for two high density 
polyethylenes of widely dif- 
fering molecular mass distri- 
butions, and (c) for a silicone 
oil; onset of melt fracture 
(M.F.) in capillary flow at 
tur = 0.39. x lO5Pa. From 
Janeschitz-Kriegl (1983). 
(d) absolute value of the 
stress-optical coefficient 
for a polystyrene melt after 
the onset of steady shear; 
An, x ,  and 712 reached 
their steady state values af- 
ter about 100-200 seconds. 
From Janeschitz-Kriegl and 
Gortemaker ( 1974). 

__cs q,s- '  
I 1 .- 

in Table 9.4.1 (Janeschitz-Kriegl, 1969, 1983; White, 1990). Note 
the very important point that C, and thus Anlz, can be negative. 
This simply reflects the fact that the refractive index can be greater 
along either the x or the y direction; polystyrene has a negative C 
because when the chain backbone is aligned, the more polarizable 
side groups are aligned on the average perpendicularly to the chain 
axis. 

W' 

9.4.2 Range of Applicability of the Stress-Optical Relation 

As mentioned earlier, the applicability of the SOR does not rest 
on fundamental physical laws. However, there are two important 
statements to emphasize. First, the observation of a breakdown of 
the SOR can be very informative about the molecular level contri- 
butions to the stress tensor, and second, in principle rheo-optical 
measurements can be at least as informative in regions where the 
SOR does not apply. Apparently, the SOR is successful when the 
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TABLE 9.4.1 I Stress-Optic Coefficients 

Polymer 

Typical Values 
for Polymer Melts 

(l0-’mZ/N) 

Polybutadiene +2.2 
Polydimethy lsiloxane 
Polyethylene + 1.2 to +2.4 
Polyisobuty lene +1.5 

Polypropylene +0.6 to +0.9 

+O. 14 to +0.26 

Poly isoprene +1.9 

Polystyrene -4 to -6 
Polyvinyl choride -0.5 

Adapted from Janeschitz-Kriegl(l983) and White ( 1  990). 

polymer contributions to t and n are each proportional to the aver- 
age dyadics < rr > or < uu >, where r is the end-to-end vector 
of a flexible subchain and u is the orientation vector for a rigid 
link (Janeschitz-Kriegl, 1969, 1983; Larson, 1988; Fuller, 1990). 
One can expect the breakdown of the SOR in at least four general 
situations: 

Homopolymer melts and solutions at very high shear rates 
(or very high frequencies in an oscillatory experiment). 
The failure of the SOR can be due to several effects, such as 

saturation of the orientation at very high shear rates or extra dissipa- 
tive mechanisms in the local dynamics (chain stiffness, internal vis- 
cosity, etc.) (Janeschitz-Kriegl, 1969, 1983; Larson, 1988; Fuller, 
1990). Nevertheless, it is apparently difficult in practice to achieve 
these conditions with conventional rheometers and birefringence 
apparatuses. 

9 Multicomponent systems. 
For mixtures of chemically different polymers, for solutions, 

and for block copolymers, a “macroscopic” SOR will not be ob- 
served in general. This can be understood simply in terms of the 
different values of C,  combined with the fact that upon changing 
shear rate or frequency, the individual components will not con- 
tribute to the total stress in constant proportions. However, it is 
possible to imagine “microscopic” SORs for each component, and 
if C is much greater for one component, it may be possible to mon- 
itor its behavior selectively. Examples of this strategy are given in 
the next section. 

Systems near, or passing through, a glass transition. 
A given polymer will exhibit different values of C above and 

below its glass transition, which may even differ in sign (Rudd and 
Gurnee, 1957); this is a consequence of the different conforma- 
tional rearrangements available in the two regimes. Furthermore, 
below the glass transition the SOR may well not hold for all but 
infinitesimal displacements. Thus, by the arguments given above 
one expects a breakdown of the SOR in the vicinity of such a transi- 
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Figure 9.4.3. 
Flow birefringence An ver- 
sus shear rate q for solu- 
tions of a polystyrene frac- 
tion of high molecular weight 
(M = 1.7 x lo7) in dioxane. 
Concentrations (g/IOO cm3) 
are given near the curves. 
From Frisman and Mao 
(1964). 

tion. Similarly, the onset of crystallization will also cause the SOR 
to fail. 

Systems in which form birefringence is significant. 
Form birefringence is a phenomenon that arises from a spa- 

tially anisotropic arrangement of domains with different mean re- 
fractive indices (Bullough, 1960; Onuki and Doi, 1986). It can 
occur in polymer solutions, block copolymer melts, and polymer 
blends, but presumably not in homopolymer melts. The effect 
may also incorporate contributions from anisotropic pair correla- 
tions on a very local scale, which can modify the internal electric 
field (Bullough, 1962). It can be thought of as a result of multiple 
scattering, in which the superposition of scattered waves from the 
various domains modifies the polarization state of the transmitted 
beam. In other words, even a suspension of perfect spheres can 
give rise to form birefringence if the spheres are arranged in an 
anisotropic manner. This phenomenon is generally very difficult 
to treat rigorously, but its contribution to the measured signal is 
always positive in sign and can be minimized by matching the re- 
fractive indices of the components (i.e., refractive index increment 
an/& = 0). Form birefringence increases with the size (molec- 
ular weight) of the dissolved molecules. There are two situations 
in which the form effect is likely to be a major factor: in dilute 
polymer solutions and suspensions and in microphase-separated 
block copolymer liquids. An example of the former is shown in 
Figure 9.4.3 for polystyrene solutions in steady shear (Frisman and 
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Mao, 1964). Because polystyrene has a negative C ,  the inrrinsic 
birefringence (i.e., that due to molecular polarizability anisotropy, 
and the primary subject of this chapter) should be negative. At 
low shear rates, however, the signal is positive, due to the form 
effect. At higher shear rate the intrinsic birefringence dominates, 
and the net response becomes negative. For block copolymers, the 
microdomains formed by microphase separation can give rise to 
substantial form effects, which could also be exploited as a means 
to examine such ordering transitions (Fredrickson, 1987). 

9.4.3 Geometries for Measuring Flow Birefringence 
This section provides a brief discussion of the experimental ge- 
ometries that have been used for flow birefringence measurements 
on polymer liquids. These techniques may be classified into three 
groups according to whether they determine birefringence in the 
x-y plane in shear, in the n-z plane in shear, or in elongation. The 
first category has been by far the most extensively employed. 

The discussion leading to eqs 9.4.5 and 9.4.6 was based on 
the assumption of a shear flow with the light beam propagating 
along the neutral z direction. There are three standard experimental 
realizations of this situation. 

Couette Flow 
In Couette flow, one of a pair of concentric cylinders is made to ro- 
tate. The liquid is confined in the narrow gap between the cylinders, 
and in the limit where the gap width is much less than the radius 
of curvature, the ideal case of parallel plane shear is approached. 
The light beam is directed through the gap along the direction par- 
allel to the axis of the cylinders. This approach has been used 
the most extensively of all geometries in flow birefringence meas- 
urements and is discussed in greater detail below (Thurston and 
Schrag, 1968: Janeschitz-Kriegl, 1969, 1983; Osaki et al., 1979; 
Frattini and Fuller, 1984). 

Cone and Plate 
In the cone and plate or Rheogoniometer geometry, the liquid is 
confined between a flat disk and a cone that rotates around its axis 
(Janeschitz-Kriegl, 1969, 1983). The angle between the cone and 
the disk is typically less than lo". For birefringence measurements 
to be effected, the rheological apparatus requires some modifica- 
tion. Rather than have the cone meet the plate at its apex, the center 
of the cone and plate is removed and replaced with a cylindrical 
annulus. Thus, the liquid is confined to an annular region, the bot- 
tom surface of which is the flat plate and the upper surface is part 
of the rotating conical section. The light beam comes up vertically 
into the center of the apparatus, where it is redirected by a prism 
to be horizontal and thus parallel to the flat surface. Windows in 
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Figure 9.4.4. 
Cross section through the 
most recent version of the 
cone and plate unit for meas- 
uring flow birefringence ac- 
cording to Van Aken et al. 
(1980): 1 linearly polarized 
light beam entering the ring- 
shaped gap; 2, reflection 
prism; 3, inner window; 4, 
outer window; 5, stationary 
plate; 6, rotor with conical 
front surface; 7, ring-shaped 
gap (gap angle 1"8', caus- 
ing a maximum gap width of 
E 0.4 mm); 8, blind hole for 
the thermocouple; 9, sample 
injection hole; 10, elliptically 
polarized light beam emerg- 
ing from the gap; and 1 1 ,  
analyzer. From Janeschitz- 
Kreigl (1983). 

the cylindrical annulus and outer containing wall permit the beam 
to pass through the sample. A schematic of the apparatus appears 
in Figure 9.4.4. 

Thin Fluid Luyer Transducer 
The geometry used for flow birefringence measurements in an oscil- 
latory shear (Miller and Schrag, 1975) consists of two flat, parallel 
surfaces, one of which is fixed; the other is made to oscillate in the 
plane parallel to the fixed surface. The liquid is confined to the thin 
layer between the surfaces. The light beam propagates through the 
layer in a direction perpendicular to the flow direction and parallel 
to the surfaces. This experimental arrangement and its application 
are discussed in detail below. 

In the case of an x-y shear flow, it is also possible to direct 
the light beam along either the x or the y axis, thus enabling de- 
termination of An23 or Anl3, respectively. According to the SOR, 
optical measurements of t22 - t 3 3  or t11 - t33 are then possible. 
When either quantity is combined with the first normal stress dif- 
ference obtained from the more common measurement of An I 2 and 
x ,  the second normal stress difference can be determined. Meas- 
urement of An 13 in the x-y plane has been achieved by at least two 
geometries. 

Parallel Glass Plates 
In this apparatus-ne of the first to be used for flow birefringence 
measurements of polymer liquids-one glass plane is translated 
parallel to another with the liquid contained between them (Dexter 
et al., 1961). Thus, the light beam can propagate directly through 
the apparatus along the y direction. 
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RHEO-OPTICS: FLOW BIREFRINGENCE / 401 



Figure 9.4.5. Capillary Slit 
Slit apparatus for the meas- 
urement of flow birefrin- 
gence (and velocity pro- 
files); A,  outer body; V, 
conical inner member con- 
taining the slit; W1, W,, 
windows; E, entrance to 
slit; and HI, Hz, H3, band 
heaters. From Janeschitz- 
Kreigl (1983). 

In this case, the liquid is directed through a slit of rectangular cross 
section with the long side of the rectangle much greater than the 
short side (Janeschitz-Kriegl, 1969, 1983). The light beam again 
passes through the long side walls, which are transparent. Unlike 
the case of parallel glass plates, the shear rate is not constant along 
the path length through the liquid; however, the flow geometry is 
well defined and the inherently integrating measurement can still 
be employed to evaluate the desired normal stress difference. This 
geometry is shown in Figure 9.4.5. 

Capillary Slit and the y-z Plane 
In the same apparatus as in Figure 9.4.5, the light beam is directed 
along the capillary slit axis. This rather delicate experiment has 
not been used extensively since the pioneering work in the 1960s 
(Janeschitz-Kriegl, 1969, 1983). 

Extensional rheometq is a very important subset of rheol- 
ogy, and flow birefringence in extensional flow has been measured 
using a variety of geometries. General observations that apply to 
measurements of extensional viscosity relative to shear viscosity 
are reflected also in optical measurements. In particular, it is usu- 
ally much harder to generate a well-defined extensional flow, either 
uniaxial or biaxial, than a shear flow; but on the other hand, chain 
deformations in extensional flow are usually much greater, giving 
rise to large birefringence signals. The analysis can also be some- 
what simpler than in shear flow, since the principal directions of the 
stress and refractive index tensors are always known. Three of the 
methods used to measure flow birefringence in extensional flows 
are now mentioned very briefly; some examples of their application 
are presented in Section 9.5. 

Four-Roll Mill 
Four cylindrical units that can rotate independently around their 
parallel axes are arranged as shown in Figure 9.4.6a (Frank et al., 
1976; Fuller and Leal, 1981; see also Fig. 7.7.2). When the sense 
of rotation is as shown, a stagnation point is generated in the center 
of the apparatus, and an elongational flow is created along the 
indicated direction. 

Cross-Slots Apparatus 
A piece of transparent material is machined to provide four per- 
pendicular, intersecting coplanar channels. The liquid is pumped 
with equal force in opposite directions toward the center along 
two collinear channels. The exiting streams along the two other 
channels generate an extensional flow along the axis of the exiting 
streams, as indicated in Figure 9.4.6b. Alternatively, two opposing 
jets can provide a well-defined extensional flow in an equivalent 
fashion (Farrell et al., 1980). 
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Spinning Apparatus 
In this case, a thin strip of liquid is drawn up between two counter 
rotating cylinders, and the light beam passes directly through the 
strip, permitting determination of An. 

9.4.4 Birefringence in Steady and Transient Couette Flow 
The Couette geometry is by far the most commonly employed for 
flow birefringence measurements, as mentioned above. Among 
the advantages of this geometry are the relative ease with which 
the optical beam can be introduced into the experiment, the wide 
range of shear rates available (by varying both rotation rate and 
gap width), and the very well-characterized flow profile that is 
developed. We do not address any of the mechanical aspects of this 
approach but make some remarks about the various types of optical 
configuration that have been used. 

There are several issues at stake in the measurement of flow 
birefringence in a Couette cell. First, there are two quantities to 
be determined, An12 and x .  For transient flows in particular, it 
is highly desirable to measure these two quantities simultaneously. 
Second, An 12 can have a positive or negative sign, and not all optical 
arrangements can make this distinction. Third, for large birefrin- 
gence signals, the retardation can exceed 2n; not all measurements 
schemes can sense this or count the “order” of the retardation (i.e., 
the number of cycles of 215 involved). All these factors need to be 
considered when selecting an appropriate optical detection method. 

It is instructive to consider the simplest method of measuring 
birefringence: using crossed polarizers surrounding the sample. 
The linearly polarized light strikes the sample and can be resolved 
into components along the principal axes of the sample’s refractive 
index ellipsoid in the x-y plane. These two components propa- 
gate at different speeds, developing a relative phase difference. As 
discussed in Section 9.3, this results in elliptically polarized light. 
With the analyzer at a fixed orientation, an intensity is measured 

Figure 9.4.6. 
Apparatuses for generating 

mill and (b) cross-slots. 
flow: (a) four-ro11 
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Figure 9.4.7. 
Optical train incorporating a 
polarization rotator. 

Rotating 
poluizer 

9 Sample 

Polarizer 

that depends on both An 12 and x . Then the analyzer and the po- 
larizer are rotated together through a measured angle. When the 
analyzer becomes parallel to either the fast axis or the slow axis 
of the sample, the polarizer is parallel to the other axis. Thus, the 
incident light is resolved into orthogonal components along axes in 
the sample with equal n, and no light will emerge from the analyzer. 
This results in the condition of extinction, with the rotation angle 
necessary to achieve extinction equal to x . The net intensity that 
was measured originally can now be interpreted in terms of An12 
and the known x . 

It should be apparent that the foregoing approach is rather 
limited: it cannot be used to determine the sign or the order of the 
birefringence, and two consecutive measurements must be made. 
A variety of improvements on it have been developed, generally in- 
volving the use of a quarter-wave plate. Although the quarter-wave 
plate can improve the sensitivity considerably and pennit resolu- 
tion of the sign of Anl2, the problem of requiring two separate 
measurements remains. A method to overcome this difficulty has 
been developed (Frattini and Fuller, 1984). In this case, a polar- 
ization rotator is incorporated into the optical train, as shown in 
Figure 9.4.7. The polarizer rotates at frequency w (with w >> t-', 
where r corresponds to the shortest time constant of interest in the 
sample), and thus the polarization incident on the sample rotates at 
frequency 2w. After the sample, a standard quarter-wave plate and 
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analyzer combination is used. The analysis of the system reveals 
that the net transmitted intensity is given by: 

I = - 10 (1  + (cos 2% sin 6)sin 2wt + (sin 2% sin 6)cos 2wt) (9.4.7) 
4 

and thus phase-sensitive detection at frequency 2w permits simul- 
taneous determination of x and the retardation 6. The signs of both 
An 12 and x can be determined, and the order of the birefringence 
emerges in the relaxation that follows the cessation of a shear flow. 
If the order is greater than one, the net intensity will oscillate as the 
signal decays through several orders. 

9.4.5 Birefringence in Oscillatory Shear Flow 
A cross-sectional view of the thin fluid layer (TFL) transducer is 
shown in Figure 9.4.8 (Miller and Schrag, 1975). The moving 

Figure 9.4.8. 
Cross-sectional view of the 
Miller-Schrag thin fluid 
layer (TFL) transducer, used 
to generate a precise sinu- 
soidally time-varying shear 
flow for the oscillatory flow 
birefringence experiment (see 
Section 9.4.6). 
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surface is a black glass plane rigidly attached to a vertical steel 
shaft. The shaft is attached to a solenoid that sits in a permament 
magnetic field; application of a sinusoidal current to the solenoid 
induces a sinusoidal vertical motion of the shaft. A second solenoid 
at the top of the shaft in an independent magnetic field develops 
an induced current proportional to the shaft velocity. This induced 
current is therefore directly related to the shear rate. The frequency 
range of the TFL is approximately 0.01-2500 Hz, with a maximum 
vertical displacement of the plane of about 1 mm. The gap width is 
usually between 0.1 and 1 mm, to maintain gap loading conditions 
(i.e., to keep the ratio of the shear wavelength to the gap width of 
order 50 or greater, which guarantees that the shear rate is constant 
across the gap: see Chapter 8). 

The optical train is illustrated in Figure 9.4.9 and follows the 
standard polarizer, quarter-wave plate, sample, analyzer mange- 
ment discussed in Section 9.3. However there is one important 
modification: the rotating analyzer is replaced by a beam-splitting 
prism and two detectors, allowing the simultaneous detection of 
both horizontal and vertical polarizations (Amelar et al., 1991). 
This modification is important for the following reason. The light 
emerging from the cell is elliptically polarized, with the magnitude 
of the ellipse oscillating at the motional frequency of the plane. 
Thus, both detectors sense an oscillating intensity, but the two de- 
tector signals are 180" out of phase with each other. Because the 
solution layer is so thin, the optical beam fills the gap. Any lateral 

Figure 9.4.9. 
Optical train for the oscilla- 
tory flow birefringence ex- 
periment. From Amelar et al. 
(1991). 
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or rotational component to the motion of the plane will therefore 
produce a modulation of the net transmitted intensity at the driving 
frequency. This contamination of the signal can be comparable in 
magnitude to the birefringence. However, this modulation is inde- 
pendent of polarization and therefore is in phase between the two 
detectors. Thus, subtraction of the two detector signals gives the 
birefringence signal alone. 

The detection of the two optical signals and the velocity of 
the moving plane is accomplished by a computerized data acqui- 
sition and processing system, which has been described elsewhere 
in detail (Moms and Lodge, 1986). Essentially, it acts as a digital 
lock-in amplifier, which utilizes the precisely known frequency of 
the desired signal component to reject contaminating random and 
coherent noise selectively. As a result, extremely small signals can 
be measured accurately, and the instrument is usually employed to 
examine very dilute polymer solutions and to run analyses at very 
low shear rates. In the latter limit, the extinction angle x is always 
45", which is assumed in the fixed analyzer orientation scheme em- 
ployed. However, in principle it is possible to monitor x directly 
and obtain information regarding the first normal stress difference 
in oscillatory shear as well. This can be achieved by rotating the 
axes of the analyzing prism through 45" and detecting the response 
at the second harmonic of the driving frequency. 

9.4.6 Experimental Considerations 
This section makes a few points concerning potential sources of 
error in flow birefringence measurements. 

Temperature Control 
Clearly, temperature control is always important in rheological 
measurements, as the material properties can be quite strong func- 
tions of temperature. Two particular situations deserve special men- 
tion. In the oscillatory flow birefringence (OFB) experiment, very 
viscous solvents such as chlorinated biphenyls are often used to 
bring the characteristic relaxation times of flexible chains into the 
frequency range of the apparatus. The viscosity of such solvents 
can change by several orders of magnitude over a temperature in- 
terval of 20-30°C. Thus in OFB instrumentation the temperature 
is routinely controlled to within f0.005"C. The other special case 
occurs in Couette flow at relatively high shear rates, when viscous 
heating can become significant (see Section 5.3). In this event, tem- 
perature gradients in the sample liquid can lead to thermal lensing 
or other alterations in the profile of the transmitted beam, which 
appear at the detector as spurious changes in intensity. This dif- 
ficulty has been dealt with in detail elsewhere (Janeschitz-Kriegl, 
1960). 
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Edge Eflects 
In either the Couette geometry or the TFL,, the beam must pass 
through a region of sample that is near the edge of the moving 
surface and therefore is experiencing a different flow pattern. The 
only safe way to assess the magnitude of this problem is to vary the 
path length through the sample by changing the relevant dimension 
of the moving part. If the resulting retardation increases linearly 
with increasing path length, with an intercept of zero retardation 
when extrapolated to zero path length, it is reasonable to assume 
that edge effects are negligible. Another constraint imposed on 
the experimental configuration by optical detection is the required 
absence of a free liquid surface along the light path. The combina- 
tion of lensing and scattering at the air-liquid interface is usually 
sufficient to prevent accurate evaluation of the polarization state of 
the transmitted beam. 

Window Birefringence 
Any rheo-optical instrument must have transparent windows for the 
entrance and exit of the light beam. All glass materials are bire- 
fringent at some level. The first step, therefore, is to hand-select 
window material of very low birefringence. Then it is important 
to design the mounting of the windows carefully. Most rigid ce- 
ments, for example, can introduce large stresses into glass when 
they harden, thus generating a substantial window birefringence. 
None of this would present a significant problem except that the 
principal axes of the window refractive index tensor are not known, 
and therefore it is not possible to perform a direct subtraction of 
the window contribution. (Recall that the retardations of optical 
elements in series can be added only when the principal axes are 
parallel.) In the case of concentrated solutions or melts, where the 
signals are relatively large, the window contribution is of course 
less significant. 

9.5 Flow Birefringence: Applications 
Sections 9.5.1-9.5.9 briefly discuss applications of rheo-optics that 
have been selected to illustrate the main points made in the preced- 
ing text and to demonstrate the breadth and power of rheo-optical 
experiments. 

9.5.1 Stress Field Visualization 
Rheo-optical methods provide a unique opportunity to examine 
the spatial and temporal evolution of the stresses in a liquid; an 
example was given in Figure 9.1.1 (Han, 198 1). A second example 
is shown in Figure 9.5.1 (Fuller, 1990). Here the birefringence was 
monitored as a function of time at various distances from the outer, 
rotating wall in a Couette cell. The rotation rate was stepped from 
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Figure 9.5.1. 8 

Optically measured shear ab 

the outer, rotating wall of a 

0 w 
X 

stress as a function of time 
for various distances from 

Couette cell. The solution 
was a 0.5 wt % mixture of 
polyst rene (molecular weight 

The other wall of the Couette 
cell was impulsively started 
to a speed of 5cm/s. The 
ratio y/L measures the dis- 
tance from the outer cylinder, 

tion. From Fuller (1990). Time (sec) 

...._, .---*-.-’ - y/Ir0.060 

------ y/lr0.446 - - p/b0.626 --- y/Lr0.004 

--- yp.=o.aea 
2x  10 Y ) in tricresyl phosphate. 

normalized by the gap separa- 0.00 0.06 0.10 0.16 

0 to 5 c d s  at t = 0. The different curves illustrate the propagation 
of the shear wave through the liquid, as the effect is first apparent 
near the moving surface. The wave speeds deduced from these 
measurements were in good agreement with theoretical analysis 
(Joseph et al., 1986). 

9.5.2 Extensional Flow 
Extensional flows are ubiquitous in processing operations and are 
well known to be “stronger” than shear flows in the sense of the ex- 
tent of deformation of individual chains (see Chapter 7). For dilute 
solutions, it has long been predicted that there is a “coil-stretch” 
transition at some critical value of the strain rate. Birefringence 
offers a sensitive means to detect such a transition, as shown, for 
example, in a series of papers (Farrell et al., 1980). Figure 9.5.2a 
illustrates this effect by means of a bright line, due to bi- 
refringence, in the region of greatest elongation rate between op- 
posing jets; the sample is a dilute polystyrene solution. Figure 
9.5.2b displays the measured retardation as a function of strain 
rate, for two solutions that differ in concentration, clearly reveal- 
ing the onset of a substantial deformation of the chain. The devel- 
opment of a plateau in the retardation with increasing strain rate 
after the transition, combined with numerical estimates of the bi- 
refringence, implies that the deformed state corresponds to a 
nearly completely extended and oriented chain. However, recent 
light scattering measurements of coil dimensions in elongational flow 
challenge this interpretation (Menasveta and Hoagland, 1991). 

9.5.3 Dynamics of Isolated, Flexible Homopolymers 
The oscillatory flow birefringence (Om) experiment yields a meas- 
urement of a quantity S*, which is directly related to the dynamic 
viscosity q* and dynamic modulus G* via the SOR 
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Figure 9.5.2. 
(a) Birefringent line between 
jets for a 0.1% solution of 
polystyrene observed with 
monochromatic light and 
crossed polarizer and analyzer 
at 45" to jet axis. (b) Retar- 
dation plotted as a function 
of strain rate t for concen- 
trations of 0.5 and 0.25%. 
Error bars, shown for one 
point only, are representative 
of the rest. From Farrell et 
al. (1980). 



Figure 9.5.3. 
Infinite dilution OFB proper- 
ties for polystyrene in Aro- 
clor 1248. From Lodge et al. 
(1982). 

(9.5.1) 

2CG* -- - 
j w  

where in all cases the asterisk indicates a sinusoidally time-varying 
quantity represented in complex notation; ,'* is the shear rate, and 
w is the drive frequency (= 2nu). The frequency dependence of 
S*, like that of q* or G*, can be used to examine the relaxation 
time spectrum of the polymer molecules in the sample. Extensive 
measurements at finite concentrations, and extrapolations to infinite 
dilution (Martel et al., 1983; Amelaret al., 1991), have revealed that 
this frequency dependence can be described extremely well using 
the bead-spring model of Rouse and Zimm (see Chapter 1 l), with 
exact eigenvalue calculations (Rouse, 1953; Zimm, 1956; Sammler 
and Schrag, 1988). Figure 9.5.3 displays an example of the infinite 
dilution OFB properties of a 390,000 molecular weight polystyrene 
in a chlorinated biphenyl solvent (Lodge et al., 1982). Note that 
measurements have been made at several temperatures and reduced 
to a master curve via time-temperature superposition (see Chapter 
11). In Figure 9.5.4 the longest relaxation time at infinite dilution, 
T;, is plotted as a function of molecular weight, along with the 
corresponding bead-spring model prediction (Amelar et al., 1991). 
Again, the agreement with theory is remarkably good, even down 
to very low molecular weights (< lo4). 
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Figure 9.5.4. 
Infinite dilution longest relax- 
ation time for polystyrene in 
Aroclor 1248. From Amelar 
et al. (1991). 
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9.5.4 Dynamics of Isolated Block Copolymers 

The OFB properties of block copolymers in solution can differ from 
those of homopolymers in at least two important respects. First, 
the (usually unfavorable) thermodynamic interactions among the 
blocks can perturb both the structure and dynamics of the chains, 
and second, the polymer dynamics will not follow a simple SOR, 
as discussed in Section 9.4. However, the latter issue has been 
dealt with explicitly, with interesting results. The Rouse-Zimm 
model referred to in Section 9.5.3 has been extended to diblock 
and triblock copolymers (Wang, 1978; Man et al., 1991). The pre- 
dictions of this model for q*, G*, and S* may all be expressed 
as a sum over discrete relaxation modes. The difference from 
the homopolymer case appears only in S*, where each normal 
mode now acquires its own optical weighting factor, which is a 
complicated function of the model parameters. For polymers in 
which the individual blocks have stress-optic coefficients of op- 
posite sign (e.g., styrene-isoprene, styrene-butadiene, styrene- 
methyl methacrylate), the mode optical weighting factors can also 
vary in sign, resulting in remarkable frequency dependences for S,,, 
and 8 .  An example is shown in Figure 9.5.5, where numerical pre- 
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Figure 9.5.5. 
(a) Predictions of the Wang- 
Man bead-spring model for 
the OFB properties of two 
block copolymers: curve 1 
is for an ABA (1 8-60- 18) 
triblock, curve 2 is for a 
composition-matched AE3 (36- 
60) diblock. The stress-optic 
coefficients for each block 
differ in sign and magnitude. 
The mechanical properties 
(b, 3 )  of the blocks are iden- 
tical, and therefore the re- 
laxation spectra for the two 
model chains are identical. 
(b) Predictions of the Wang- 
Man BSM for the OFB prop 
erties of two AB (8-12) block 
copolymers. The difference 
between the two curves is 
that in chain 1, f, = Ce, 
while in chain 2, C, = 1 .5Cn. 
The stress-optic coefficients 
for the two blocks differ in 
sign and magnitude. From 
Man et al. (1991). 
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+ 
Figure 9.5.6. 
(a) Bulk relaxation follow- 
ing a step strain as measured 
by stress and birefringence. 
The solid curves show the 
normalized relaxation mod- 
ulus for blends containing 
0, 10, 20, 30, 50, 75, and 
100 vol% long polymer. The 
symbols show the normalized 
birefringence relaxation for 
blends containing 0 (A), 10 

and 75 (x )  vol% long poly- 
mer. Note that the two inde- 
pendent measurements show 
close agreement. (b) Short 
chain dichroism relaxation for 
blends containing 0 (A), 10 
(+), 20 (01, 30(#), 50 (v), 
and 75 (x )  vol% long poly- 
mer. The solid curves are ar- 
bitrary smooth curves through 
the data. From Kornfield et 
al. (1989). 

(+I, 20 (01, 30 (#I, 50 (v), 

dictions are shown for two particular cases (Man et al., 1991). The 
first is a comparison between a diblock and a symmetric triblock 
with the same total composition, and the second is between two di- 
blocks that differ slightly in only one parameter (the local friction 
coefficient C). These results illustrate the unique potential of OFB 
for characterizing block copolymer architecture because in each 
case the two model chains differ only slightly, but the predicted 
responses are strikingly different. Preliminary results on styrene- 
diene block copolymers are in at least qualitative accordance with 
these predictions (Soli, 1978; Man, 1984). 

9.5.5 Dynamics of Block Copolymer Melts 
This rapidly developing field involves a fascinating array of phys- 
ical phenomena. The dominant feature is the so-called order- 
disorder transition or microphase-separation transition in which 
the interblock repulsion overcomes the entropic drive for molec- 
ular mixing, and the system spontaneously adopts a highly struc- 
tured morphology (Bates and Fredrickson, 1990). In surprising 
contrast to conventional theories, rheological measurements even 
50°C above such a transition suggest the existence of incipient do- 
mains (Bates et al., 1990a,b). Recently, Fredrickson proposed a 
model for the form birefringence of such block copolymer liquids 
in which the difference in refractive index between blocks should 
lead to a form contribution that could easily dominate the intrinsic 
birefringence (Fredrickson, 1987). As the transition is approached 
(e.g., by lowering the temperature), the form birefringence is pre- 
dicted to diverge; as yet, no measurements in this regime exist. 

9.5.6 Dynamics of a Binary Blend 

The combination of flow birefringence and flow dichroism has re- 
cently been exploited by Kornfield et al. (1989) to examine the 
dynamics of binary blends of low and high molecular weight poly- 
mers, specifically hydrogenated and deuteriated polyisoprenes. Be- 
cause the isotopic substitution has a negligible effect on the stress- 
optic coefficient, the flow birefringence measurements reflect the 
total stress; in this case, relaxation after an imposed step shear 
strain was examined. The dichroism measurements were made 
with an infrared light source tuned to the carbon-deuterium stretch 
at 2180 cm-I, where the hydrogenated polymer does not absorb 
significantly. Thus, the dichroism measurements reflect solely the 
orientation of the labeled component (either the short or the long 
chains). Figure 9.5.6a shows the birefringence relaxation for a se- 
ries of blends having different volume fractions of the longer poly- 
mer, compared to smooth curves representing the measured relax- 
ation modulus; the SOR is reasonably well obeyed. Figure 9.5.6b 
shows the dichroism relaxation from the labeled shorter chains in 
the same blends. The most interesting result is that the longest 
relaxation time of the shorter chains is a strongly increasing func- 
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tion of the volume fraction of longer chains. This contrasts with 
the predictions of the basic reptation model, for example, in which 
the short chain relaxation should be essentially independent of the 
presence of longer chains (see Chapter 1 1). These results have been 
interpreted in terms of a model of orientational coupling whereby 
the presence of oriented long chains biases (and therefore retards) 
the reptational relaxation of the shorter chains. 

9.5.7 Birefringence in Transient Flows 

An example of birefringence in a transient flow was given in Section 
9.5.1. Two additional examples are shown in Figures 9.5.7 and 
9.5.8. Both cases reveal a distinct stress overshoot often observed 
in mechanical shear measurements under similar conditions. In 
Figure 9.5.7, the birefringence is plotted as a function of time after 
the inception of flow for different shear rates in a Couette geometry. 
The sample was a high molecular weight polystyrene in chlorinated 
biphenyl. In Figure 9.5.8, the overshoot and subsequent “ringing” 
were observed after start-up of an extensional flow in a four-roll mill 
for different strain rates. The sample was a very dilute solution of 
high molecular weight polystyrene in tricresyl phosphate. Neither 
the ringing, nor the overshoot in extension itself, is predicted by 
many constitutive equations. 

9.5.8 Rheo-Optics of Suspensions 

The application of rheo-optics is by no means restricted to polymer 
solutions and melts. As an example, Figure 9.5.9 shows the bire- 
fringence of a dilute colloidal suspension (femc hydrous oxide) 
in glycerin as a function of shear rate times time (Johnson et al., 
1985). The data reveal the transient response both upon start-up 
of the shear (in a Couette cell) and upon reversal of the flow di- 

1 @ Figure 9.5.7. 
Amount of birefringence An 
at start of steady shear flow. 
Directions of pips represent 
rates of shear; pip up, 0.0066 
s-I with successive 45“ rota- 
tions clockwise representing 

0.118, and 0.214 s - ’ ,  respec- 
tively. Open and solid circles, 
respectively, indicate data ob- 
tained with 2 and 3 mm widths 
of cylindrical gap. From Osaki 
et al. (1979). 0 

- 
0.0118,0.0216, 0.038, 0.066, C 

1 00 1 0’ 1 o2 
t I s  
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Figure 9.5.8. 
Light intensity due to bire- 
fringence versus time af- 
ter the start-up of purely 
extensional flow for the 
polystyrene-tricresyl phos- 
phate solution. From Fuller 
and Leal (1981). 

rection. The oscillation is due primarily to the rotational period of 
the anisotropic particles, and the flow reversal produces a response 
that is nearly the mirror image of the earlier time behavior as the 
particles retrace their paths. The lack of perfect reversal is due 
predominantly to Brownian motion. 

9.5.9 Rotational Dynamics of Rigid Rods 

In this example (Mori et al., 1982). the experimental method is os- 
cillatory electric birefringence (Morris and Lodge, 1986), in which 
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Figure 9.5.9. 
Linear birefringence for a 
400 ppm PFeOOH suspen- 
sion in 97:3 glycerin-water. 
The experiment consisted 
of a flow reversal sequence 
with a shear rate of 4 S K I .  

Abscissa units are dimension- 
less time, shear rate times t .  
From Johnson et al. (1985). 

Figure 9.5.10. 
Frequency dependence of 
the steady Kerr coefficient 
for poly(y-benzyl glutamate) 
rods in m-cresol. From Mori 
et al. (1982). 
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the sample is subjected to a sinusoidally time-varying electric field. 
Thus, this measurement of the Kerr effect is not a rheo-optical 
measurement in the strict sense and is more directly analogous to a 
dielectric relaxation experiment. Nevertheless, the basic principles 
are similar, and the dynamic response is interpretable by a hydrody- 
namic theory. The sample, poly(y -benzyl glutamate), is a synthetic 
polypeptide with a large persistence length. The molecule has a 
permanent dipole moment oriented along its major axis, and thus 
the applied electric field drives the end-over-end tumbling mode. 
The frequency dependence of the steady Kerr coefficient K,, , de- 
fined as the birefringence normalized by the squared amplitude of 
the applied electric field, is displayed in Figure 9.5.10 for a range 
of concentrations (Mori et al., 1982). As the concentration is in- 
creased, the magnitude of K,, increases significantly, and the onset 
of the frequency dispersion shifts to lower frequencies, indicating 
a monotonic increase in the rotational relaxation time of the rods. 

9.6 Summary 
To conclude this introduction to rheo-optics in general, and flow 
birefringence in particular, it is appropriate to summarize the main 
points of the discussion. Birefringence in a polymer liquid results 
from the orientation of optically anisotropic monomer units upon 
imposition of a suitable flow. A postulated, intimate connection 
between the aspect ratios and orientations of the stress and refrac- 
tive index tensor ellipsoids, known as the stress-optical relation, 
allows one to extract shear and normal stress data from optical 
measurements. The stress-optical relation does not hold under all 
circumstances; but even when it does not apply, rheo-optical meas- 
urements can provide useful information about the system. The 
two primary experimental geometries for measurements of flow 
birefringence are the Couette geometry, which gives information 
about molecular response to steady and transient shear flows, and 
the thin fluid layer transducer, which permits measurement of dy- 
namic birefringence in a sinusoidally time-varying shear. However, 
a range of other geometries, including some for extensional flows, 
have been developed. A series of examples of applications of rheo- 
optics have been described very briefly. The systems of interest 
include suspensions, solutions, and melts, involving flexible ho- 
mopolymers and copolymers, and rigid rods. Related techniques, 
such as flow dichroism and electric birefringence, have also been 
mentioned briefly. 
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10 
SUSPENSION 
RHEOLOGY 

vrigid spheres are added to 
afluid, its viscosity coemient 

increases by afraction 
which equals 2.5 times the 

volumefraction of the 
suspended spheres. 

Albert Einstein (1906, 1911) 

Jan Mewis and Christopher W. Macosko 

10.1 Introduction 
A suspension, or perhaps more broadly a dispersion, consists of 
discrete particles randomly distributed in a fluid medium. Gen- 
erally we divide suspensions into three categories: solid particles 
in a liquid medium (often the word suspension is restricted to this 
meaning), liquid droplets in a liquid medium (or an emulsion), and 
gas in a liquid (or afoam). All these categories have great practical 
importance, from biological materials like milk and blood to paint, 
ink, ceramics, and many other industrial dispersions. 

The addition of a rigid sphere to a liquid alters the flow field, 
as indicated in Figure 10.1.1. This hydrodynamic disturbance, first 
calculated by Einstein, has a small effect on viscosity, shown by 
the lower curve in Figure 10.1.2. However, if the spheres are small 
(< 1 pm), colloidal forces between particles can become enor- 
mous. This is illustrated in Figure 10.1.2 for suspensions of Ti02 
and carbon black. Even at low concentration, viscosity can be 
increased more than an order of magnitude. 

Adding particles does not simply change the magnitude of 
the viscosity it also can introduce all the known deviations from 
Newtonian behavior. This is illustrated in Figure 10.1.3 with data 
from Laun (1984, 1988) on various concentrations of a polymer 
latex. The occurrence of shear thinning and shear thickening is 
very obvious in this figure. At high concentrations and low shear 
stress, the Newtonian plateau seems to disappear and to develop 
into a yield stress. At shear rates exceeding 103s-', the high con- 
centration samples display shear thickening. Not visible in the 
equilibrium viscosities are eventual time effects. By adjusting the 
interaction forces between the particles, the shear can induce grad- 
ual changes in aggregate structure. These give rise to gradual (i.e., 
time-dependent) changes in viscosity or rhixorropy. The interac- 
tion forces are potential forces, which are therefore elastic in nature. 
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Figure 10.1.1. 
Creeping flow around a 
sphere. From Taneda (1 979). 

This can be seen in the viscoelastic response during the oscillatory 
testing of colloidal suspensions. 

In this chapter we deal first with very dilute suspensions, in 
which particles never interact. For dilute suspensions many rig- 
orous theoretical results are available and a number of them have 

Figure 10.1.2. 
Log of relative viscosity 
( q / q S )  versus volume frac- 
tion of particles for TiOz, 
O.1pm in diameter, in linseed 
oil (circles) and for carbon 
black in mineral oil (squares) 

lute sphere result, eq. 10.2.4 

Mewis and Spaull (1976). 

100 

compared to the ideal di- 

(solid line). Adapted from 10 

(qIr 
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Figure 10.1.3. 
Viscosity versus shear stress 
for a polystyrene ethylacry- 
late latex at different volume 
fractions. From Laun (1984, 
1988). 

volume fraction 0 

5 

Shear stress z (Pa) 

been confirmed experimentally. We start with rigid spheres, then 
treat liquid droplets, and finally, rigid axisymmetric particles. In 
each case, the mutual interference between the flow field and the 
particle motion is discussed. It is shown how interfacial tension for 
emulsions, and rotary Brownian motion for nonspherical particles, 
lead even in dilute systems to non-Newtonian effects such as shear 
thinning and viscoelasticity. Interference from sedimentation, mi- 
gration, and inertia is pointed out. 

Nearly all systems of practical interest are nondilute. The- 
ories for such materials are less developed and can become ex- 
tremely complicated. Nevertheless, useful semiquantitative and 
even quantitative information is becoming available from new the- 
oretical approaches and from systematic experimental studies on 
well-characterized model suspensions. 

The treatment of nondilute systems starts in Section 10.4 with 
a review of the various interaction forces between particles. Hy- 
drodynamic effects, Brownian motion, electrostatic and polymeric 
repulsion, and van der Waals attraction are considered. The balance 
between these forces can be expressed by means of dimensionless 
groups, which are used to scale rheological experiments. Three lim- 
iting cases are covered systematically. First, attention is focused on 
the case in which only hydrodynamic forces and Brownian motion 
are present (i.e., Brownian hard particles). This section includes 
brief discussions of particle size distribution, non-Newtonian me- 
dia, and nonspherical particles. The second case includes the effects 
of repulsion forces, both electrostatic and polymeric. Finally, we 
consider the role of attractive forces, which cause particles to ag- 
gregate either reversibly or irreversibly. Very divergent rheological 
responses can be obtained in this manner, including yielding and 
thixotropy. The first results of applying some new concepts in an- 
alyzing complex microstructures on these materials are reviewed. 
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10.2 Dilute Suspensions of Spheres 
10.2.1 Hard Spheres 

As shown in Figure 10.1. l., the presence of a particle will modify 
the velocity distribution in a flowing liquid. Extra energy dissipa- 
tion will arise because of this and will be reflected in a proportional 
increase in viscosity. Einstein followed such reasoning in his clas- 
sic papers of 1906 and 191 1. 

The important assumptions for the analysis are as follows. 
1. Surrounding fluid or solvent is incompressible and Newton- 

ian and can be treated as a continuum. 
2. Creeping flow (i.e., negligible body forces, torques, and in- 

ertia). 
3. Neutral density, p, = p ,  (i.e., no settling). 
4. No slip between the particle and the fluid. 
5.  Rigid, spherical particles. 
6. Dilute (noninteracting) particles. 
7. No influence of walls. 
8. No particle migration. 
9. Velocity perturbations due to a particle are local; the average 

velocity field in the surrounding fluid is the same as if the 
particles were not present. 

Assumptions 1, 8, and 9, imply that there are three widely 
different length scales for suspension rheology (Brenner, 1972). 
The first assumption (continuous fluid) implies that the size of fluid 
molecules is much less than the suspended particle size: 

fluid molecules (5 1 nm) << a, radius of particles (10.2.1) 

To use the average velocity profile (assumption 9), the length 
scale of the velocity perturbations due to the particles must be small 
compared to the distance over which the velocity varies appreciably. 
In other words, the particle size must be much smaller than the scale 
of motion. 

a << scale of the main 
velocity variation 

d v / d x  
d2vldx2 

(10.2.2) 

In addition, to avoid wall effects on the velocity field around 
the particle (assumption 7), suspended particles must be much 
smaller than the viscometer gap. 

a << h ,  viscometer gap (10.2.3) 

With the assumptions given above and the velocity profile 
around a sphere, Einstein found the extra energy dissipated by 
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adding one particle to the fluid per unit volume. Then, assuming no 
interactions, he multiplied by 4, the volume fraction of particles, to 
obtain the very simple result for the viscosity of the suspension:* 

To get a complete constitutive equation for dilute spheres, we 
must solve for the stress tensor directly rather than for the energy 
dissipation. If the particles add only small perturbations to the main 
velocity field, the stress tensor can be divided into two parts: one 
due to the main flow and the other due to the particles (Batchelor, 
1970; Schowalter, 1978). 

t = t, + tp  (10.2.5) 

The stress from the main flow is determined by the New- 
tonian viscosity of the suspending fluid and the average rate of 
deformation tensor (recall assumption 9) 

t, = 2773 (10.2.6) 

- 
D is averaged over a volume large compared to the particle separa- 
tion, v >> a3/4. 

(10.2.7) 

For subsequent work with dilute suspensions we will drop the over- 
bar and assume that D is averaged according to eq. 10.2.7. 

The particle stress is a volume average of the stresses con- 
tributed by one particle. 

tp  = 1 V xi  Isi [n.(Tr) - q, (vn + nv)]dSi 

sum overall surface velocity 
t t .T (10.2.8) 

i particles stress perturbation 

Here S is the particle surface area, n is the vector normal to the 
particle surface, and r is the particle position. Equation 10.2.8 
is actually valid for particles of any shape, provided inertia and 
external couples can be neglected. The real problem is to solve 
this equation. The velocity field v can be quite complex. Happel 
and Brenner (1965) and Schowalter (1978) show how to evaluate 

*The first paper (1906) reported the front factor of the volume fraction to be 1. 
Einstein corrected this in 1911. 
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eq. 10.2.8 with the velocity field around a spherical particle. With 
this result and eq. 10.2.6, the stress becomes 

which agrees with the Einstein result for the shear viscosity. This 
constitutive equation is surprisingly simple. It states that particle 
size does not affect a suspension of dilute spheres. The spheres 
may be protein globules or basketballs as long as they are much 
smaller than the flow gap in our rheometer. We would need a very 
large rheometer to verify eq. 10.2.9 for a suspension of basketballs, 
but it should still hold. The only effect of temperature is through T ] ~  . 
There should be no shear rate dependence; the constitutive equation 
is Newtonian. 

10.2.2 Particle Migration 

Einstein’s result can be verified experimentally in the limit as 
4 -+ 0. However, doing so is not a trivial matter. Large spherical 
particles can be made rather easily, however, settling, migration, 
wall effects, and particle inertia can cause serious problems with 
such particles. A criterion for neglecting the effect of settling can 
be obtained from Stokes’ law (recall the falling ball viscometer in 
Chapter 5). The time required for a sphere to migrate 10% of the 
rheometer gap, h, under the influence of gravity, g, acting perpen- 
dicular to the gap is 

0.45 T], h 
tO. lh = 

lP, - P,, la2g 
(10.2.10) 

For 100 pm diameter spheres in water and a 10 mm rheometer gap, 
the particle density must be within 2% of that of water to prevent 
settling during typical measurements (lo00 s). As pointed out in 
Chapter 5, gravitational settling will affect torque readings in a 
concentric cylinder rheometer much less than in a cone and plate or 
parallel plate rheometer because in the concentric cylinders gravity 
normally acts parallel rather than perpendicular to the narrow gap 
of the rheometer. Thus, typically for concentric cylinders, h 2: 
50 mm, versus h = r sin B < 3 mm for cone and plate. 

However, inertia can still create difficulties. Lin et al. (1970) 
show that when the particle Reynolds number becomes large, inertia 
can alter the velocity field around the sphere, causing deviations in 
viscosity measurements: 

5 
T]  = q0(l  + 5 4 + 1.34 (10.2.1 1) 
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Thus a criterion for neglecting inertia in shear flow is 

Re, = - p ~ ~ u 2 < <  0.1 
BJ 

(10.2.12) 

Even if Re, is small, the stress field around a sphere can 
interact with the wall, causing it to migrate inward. Ho and Leal 
(1974) have analyzed this problem extensively for both drag (Cou- 
ette) and pressure-driven (plane Poiseuille) flow. They show that 
if the spheres are small enough and the flow rate is low, Brownian 
motion can keep the particles uniformly distributed. Their criteria 
for neglecting migration are 

(10.2.13) 

where h is the narrow gap of the flow, k is Boltzmann's constant, 
and TJ is 4umx in Couette and $urnax in PoiseuiIIe flow. Figure 
10.2.1 shows results of their calculations. In a concentric cylinder 

pPj2u4 c 0.1 for Couette flow K=- 
Figure 10.2.1. hkT c 0.01 for plane Poiseuille flow 
Concentration distribution 
across the shear gap for var- 
ious K values (eq. 10.2.13) 
in (a) Couette flow and (b) 
planar Poiseuille (slit) flow. 
From Ho and Leal (1974). 
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Figure 10.2.2. 
Some experimental viscos- 
ity results on dilute suspen- 
sions of rigid spheres: x,  
glass - 5 p m  in zinc iodide 
glycerin (Manley and Mason, 
1954); 0, polystyrene aque- 
ous latices, 0.42, 0.87 p m  
(Saunders, 1961); v, low 
shear rate, and A, high shear 
rate limits for nonaqueous 
polystyrene latices, 0.16- 
0.43 p m  (Krieger, 1972). 

rheometer, spheres move toward the centerline of the flow whilein 
a slit rheometer particles will concentrate about midway between 
the wall and centerline because of the nonunirorm shear rate. Mi- 
gration in tube flow will be similar. These results are in good 
agreement with experiments on large particles (Segre and Silber- 
berg, 1962; Halow and Willis, 1970). 

Looking at each of the foregoing criteria, we can see that as 
the sphere radius a decreases, the effects of settling and migration 
are smaller. Inorganic particles as well as polymer latices with very 
uniform size in the 0.01-10 pm range can be made (Woods et al., 
1968; van Helden et al., 1981). As we shall see in Section 10.4, 
with such small spheres colloidal forces can become significant. 
These also act to prevent migration, but they can lead to strong 
interparticle interactions. If interparticle repulsion forces are sup- 
pressed, particle agglomeration can occur. With care, all these 
problems can be controlled, and for polymer latices good agree- 
ment with Einstein’s result for shear viscosity has been obtained, 
as shown in Figure 10.2.2. However, we see that even neutrally 
buoyant spheres with low interparticle forces show deviations from 
eq. 10.2.9 at very low volume fraction. 

A more sensitive way to plot the data to test for the 5/2 coef- 
ficient of r#J and to examine the higher r#J terms is shown in Figure 
10.2.3. Frequently, the viscosity relation is expressed as a power 
series in q5 

5 
r7 = r7J1 + 2 r#J + kr#J* + . . .)  (10.2.14) 

10 

8 

- ‘ 6  
‘S 

4 

2 

I I I I I 
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Volume fraction @ 
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Figure 10.2.3. 5 

Figure 10.2.2 replotted as 
Data of Saunders (1961) from 

intrinsic viscosity according 
to eq. 10.2.15. The slope of 
k = 6.2 is the theoretical 

4 -  

and rearranged to give 

00 

00 

(10.2.15) 

These equations are used to define some common terminology in 
suspension rheology : 

- -  t7 - q, , the relative or reduced viscosity 
t7\ 

(10.2.16) 

-- - Q , ~ ,  the specific viscosity (10.2.17) t7 - t7, 
t7, 

and 

t7sp lim - = [ v ] ,  the intrinsic viscosity 
@-+O 4 (10.2.18) 

The intrinsic viscosity is 5/2 for the ideal rigid sphere case. The 
specific viscosity per unit volume, qP /q5 (without the limit), is often 
called the inherent viscosity. 

The higher order dependence on Cp for spheres, k in eq. 10.2.15, 
is shown in Figure 10.2.3. This departure from the Einstein equa- 
tion is due to hydrodynamic interactions between spheres and to 
other interparticle forces. We will examine these effects in Sec- 
tion 10.4, but first we look at the influence of particle shape on the 
rheology of dilute suspensions. 

Example 10.2.1 Latex Suspension 
A polystyrene latex of monodisperse 1.0 pm diameter spheres is 
diluted to a volume fraction of 0.05 in water. Specific gravity 
of the particles is 1.05; p,, = 1 . 0 5 ~ ~ .  (a) Using the constitutive 
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equation for dilute, noninteracting spheres, estimate its shear and 
extensional viscosity. (b) Determine whether settling, Partide n- 
ertia, or migration will present measurement problems in a narrow 
gap Couette rheometer: L = 50 mm, Ri = 25 rmn, R, = 26 mm, 
and 52 c 100 rad/s (see Figure 5.3.1 for Couette geometry). 

Solution 
(a) From Einstein’s equation, eq. 10.2.4, q / q s  = 1 + (2.5)(0.05) = 
1.13. Thus, a 5% suspension of spheres increases the viscosity of 
the water by 13%. Einstein’s equation was derived only for shear, 
but the full three-dimensional constitutive relation in eq. 10.2.9 
shows that dilute suspensions of spheres are Newtonian; thus the 
extensional viscosity will be simply q, = 3q = 3 . 3 8 ~ ~ .  We should 
note that even for a 5% suspension of spheres, particle interactions 
are measurable. This can be seen in Figure 10.2.3. These results 
indicate that because of hydrodynamic interactions, the reduced 
viscosity would be 1.15. See eq. 10.5.2 for further discussion. 
(b) From eq. 10.2.10, the settling time of this suspension, assuming 
gravity is in the direction of L, will be very long 

- 0.45( kg/ms)(0.05 m) - 0 . 4 5 ~ ~  L 
(pp - ps) (d2/4)g  

tO.lh = 1.8 x lo5 seconds 

(50 kg/m3)(25 x 10-14 m2)(9.8 m/s2) tO.lh = 

From the definition of the particle Reynolds number (eq. 10.2.12) 
and 3 in narrow gap Couette flow (eq. 5.3.11) 

~,,R;52Z(d/2)~ - (1.05 x lo3 kg/m3)(0.025 m/s)(5 x 
~ s ( &  - Ri) kg/ms)(0.001 m) 

m)252 Re, = - 

Re, = 6.6 x lo-% 

Thus, inertial effects are negligible. Following eq. 10.2.13, the 
migration criterion becomes 

~ , , ( R ; f i ) ~ ( d / 2 ) ~  - (1.05 x lo3 kg/m3)(6.25 x 10-4/s2)(6.25 x m4)Q2 K =  - 

K = 0.01522 

(Ro - Ri)LT (10-3 m)(1.38 x 10-23%)(298 K) 

By eq. 10.2.13, particle migration effects will be negligible for 52 c 
3 rad/s. 

10.2.3 Emulsions 
Many heterogeneous systems of practical importance consist of 
droplets of one liquid dispersed in another. Soaps, some paints, 
cosmetics, creams, mayonnaise, milk, and butter are all examples 
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c Figure 10.2.4. 
External streamlines around 2 
a fluid sphere in shear flow. 
Solid lines for qdr = 0 (a gas 
bubble); dotted line for qdr = 
00 (a rigid sphere) Note that 
the flow is less disturbed for 
a gas bubble. From Bartok 
and Mason (1 958). 

I I I 

-4 - 2  0 2 4 
Xj /a 

of emulsions. When these emulsions flow-for example through 
a pump or during spreading-the liquid inside the droplets also 
flows, rolling around in a “tank-tread-like” motion. This circulation 
causes extra dissipation over that in the suspending fluid, though not 
as much as in the case of rigid spheres, where particles disturb the 
flow more profoundly. We can see this difference in the streamlines 
shown in Figure 10.2.4. The higher the viscosity ratio (the ratio of 
viscosity of the droplet liquid to that of the suspending medium), 

l l d ,  = 9 d  Ill, (10.2.19) 

the more the streamlines will be deformed, approaching the rigid 
sphere case in the limit of high droplet viscosity. 

If the flow is strong enough, the hydrodynamic forces can 
overcome interfacial tension and cause the drop to change shape 
and even to break up. Mason and co-workers have studied droplet 
flow and deformation in detail (e.g., Goldsmith and Mason, 1967). 
Some drop configurations sketched from their movies taken at high 
deformation rates are shown in Figure 10.2.5. We see that when 
a drop is viewed along the principal axes of the deformation, up 
to the breakup region, its shape is the same for both extension and 
shear. But drop breakup depends on both the type of flow and the 
viscosity ratio. 

For small deformations the drop assumes an elliptical form 
as indicated in Figure 10.2.5. Taylor (1932) showed that the differ- 
ence between major and minor axes, 2a* and 2b, of the ellipsoid 
depends on 

~ ~~ ~~ ~ 

*Note that a is the radius for a sphere and the semimajor axis of an ellipsoid. 
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planar 

Figure 10.2.5. a) qF= I 
The influence of deforma- 
tion rate, type of flow, and 
viscosity ratio on the defor- 
mation of droplets in shear 
and extensional flow. At high 
deformation rates (right-hand 
shapes) drop breakup can 
occur. Adawed from Rum- 
scheidt and Mason 11961). I 2 3  

0 0 -  
@ @@@D *'*B shear 

4 5 

4 I 2 3  

shear 

planar 

shear 
I 2 3 4 

where r r 2 D  is the second invariant of the rate of deformation, 
eq. 2.2.16. The drop relaxation time A, is given by 

ar1.v A, = - r (10.2.21) 

where r is the interfacial tension. Interfacial tension tends to pull 
the drop back to a sphere of radius a, while the viscosity of the 
surrounding fluid q, slows down the motion. For typical oil-water 
emulsions q, = 1 rnPa.s, qdr 2: 3, r = 0.02N/m, anda 2 1 pm. 
Thus the droplet relaxation time is very short, Ad 'v 5 x 10-*s and 
even for relatively high shear rates, the deformation of a drop will 
be quite small. 

If the viscosity of the drop is very large, r]& >> 1, interfacial 
tension will have a negligible effect in shear flows. At high defor- 
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mation rates the drop will align with the flow and assume a limiting 
shape (Goldsmith and Mason, 1967) 

(10.2.22) 

This is shown for the shear case in Figure 10.2.5~. For lower 
viscosity drops, breakup can occur. Taylor (1932) argued that drops 
will burst when the hydrodynamic force exceeds the interfacial 
tension or 

Dburst > 11 2 (10.2.23) 

A more detailed theoretical study by Acrivos and Lo (1978) on 
droplet breakup supports this result. 

10.2.4 Deformable Spheres 
For small deformations it is possible to solve for the velocity field 
around a drop. However, in contrast to the case for rigid spheres, 
the circulation inside the drop must be considered. This results 
in less distortion of streamlines than with rigid spheres, as shown 
in Figure 10.2.4. With the velocity field, eq. 10.2.8 can be solved 
for the particle stress. Schowalter (1978) and Frankel and Acrivos 
(1970) show how to carry out this solution. The latter obtain a 
constitutive relation of the form 

where F is a function of qdr, A d ,  and the history of the deforma- 
tion through the convected derivative of D. For steady simple shear, 
eq. 10.2.24 reduces considerably to give shear rate independent ma- 
terial functions. The steady shear viscosity becomes 

T 1 = r l l ; 1 +  [ (',f,t:)4] - (10.2.25) 

Note that for large qdr the drop becomes "rigid" and the coefficient 
of 4 goes to 5 / 2, the Einstein result. In the other limit, a gas 
bubble, the coefficient is 1. 

For steady shear, eq. 10.2.24 gives a positive first normal 
stress coefficient 
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while the second is negative 

(10.2.27) 522 - 53, -- - f(o,)]o.b4 
Y 2  

where 

For steady uniaxial extension Frankel and Acrivos (1970) report 

We see that just going from rigid to deformable spheres leads 
to great rheological complexity: time dependence (through F in 
eq. 10.2.24). normal stresses, and an extensional viscosity that in- 
creases with rate. The new physical effect, interfacial tension, is 
responsible. Surface tension tends to restore the spherical shape 
that is distorted by the viscous forces of the surrounding fluid dur- 
ing flow. Hence, the former shape serves as a “memory” of the 
equilibrium condition and consequently as a source of viscoelastic 
effects like normal force differences and storage moduli. 

Some experimental results are available on model emulsions 
to test the viscosity relation. Nawab and Mason (1958) prepared 
fairly monodisperse butyl benzoate oil droplets, a 2: 3 pm, by 
electrical atomization. The droplets were suspended in various 
water solutions and stabilized with a nonionic surfactant. Viscosi- 
ties were measured in a capillary viscometer at shear rates of 200 to 
900 s-’. Their results are plotted in Figure 10.2.6. The agreement 
between theory and experiment for intrinsic viscosity (4 = 0 limit) 
is excellent. 

In Figure 10.2.6 all the intrinsic viscosities for dilute emul- 
sions lie between the solution for rigid spheres, qdr --t 00, on the 
high side and that for gaseous bubbles or foam, TI,,, + 0, on the 
low end. It is interesting to note that adding “nothing” to a liquid, 
in the form of small gas bubbles, actually raises the viscosity. In 
many emulsions the surfactant tends to form a stiff film around the 
droplet, making it more like a rigid sphere. In these cases the rigid 
sphere results may be closer to the real behavior. Another approach 
is to model the particle as an elastic ball (Roscoe, 1967; Goddard 
and Miller, 1967). Here non-Newtonian effects arise from the mod- 
ulus of the sphere G rather than from interfacial tension. The form 
of the equations is very similar to eq. 10.2.24 with Ad = q, /G,  and 
one obtains similar results. 

What about normal stresses? Because the viscosity is so low 
for the oil-in-water emulsions of Figure 10.2.6, eq. 10.2.26 predicts 
that the first normal stress coefficient will be - 1 0 - ~  P a 2 .  This is 
below the detection limit of typical measurements. It is interesting 
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Figure 10.2.6. 
Reduced viscosity versus 
volume fraction for several 
emulsions with varying vis- 
cosity ratios. Adapted from 
Nawab and Mason (1958). 
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to note that +?, the second normal stress coefficient, is negative 
and less than I + ,  1/2. This finding agrees with experimental results 
on polymer solutions and melts. Oscillatory experiments at high 
frequencies offer a better opportunity to test elasticity of emulsions, 
and some progress has been made in this direction (Oosterbroek 
et al., 1980). At high concentration, emulsions droplets (or gas 
bubbles in foam) interact strongly to form a network, which behaves 
like a weak solid with modulus proportional to r/a (Otsubo and 
Prud’homme, 1994). 

10.3 Particle-Fluid Interactions: 
Dilute Spheroids 
Look back at the assumptions we used in developing the constitutive 
relation for a suspension of dilute, rigid spheres. We now want 
to change the fifth one to consider axisymmetric particles. We 
generally divide such particles into two groups: prolate spheroids or 
rodlike particles, such as glass and graphite fibers, viruses, proteins, 
and even very stiff polymer molecules, and oblate spheroids or 
disklike shapes, such as red blood cells and mica flakes. Some of 
these are sketched in Figure 10.3.1. Most real suspension particles 
can be approximated fairly accurately by a spheroidal shape. We 
usually define a spheroid in terms of its axis ratio, rp = a / b ,  where 
a is the axis of symmetry. 

In comparison to suspensions of rigid spheres, the overwhelm- 
ing additional effect with axisymmetric particles is orientation. Ob- 
viously the orientation of a nonspherical particle with respect to the 
flow will greatly affect the velocity field around it and thus the par- 
ticle stress, z, in eq. 10.2.8. For example, if the particle is a rod 
with its long axis aligned in the flow direction, the alteration of the 
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streamlines will be much less than if the axis were perpendicular 
to the flow. 

10.3.1 Orientation Distribution 

Orientation of a spheroid is determined by the balance of hydrody- 
namic forces and rotary Brownian motion. Hydrodynamic forces 
tend to align the major axis with the flow, while Brownian motion 
tends to randomize the orientation. The relative importance of each 
is expressed in terms of the Peclet number Pe, the ratio of the time 
scales for Brownian motion (1 / 0,) to that for convective motion 
(1 / I  I;”). 

I l g  
Pe = - 

Dr 

= -  ‘ for shear flow 
D, 

(10.3.1) 

For rigid spheres the rotary Brownian diffusion coefficient is 

kT 
8nq,a3 

D, = - 

for circular disks 

3kT 
32q,? b3 

D, = - 

and for long thin prolate spheroids, r,, >> 1, 

3kT(ln 2rp - 1/2) 
8nq,a3 

D, = 

(10.3.2) 

(10.3.3) 

(10.3.4) 

Brenner (1974) gives D, for many other shapes. 
If the particles are small, shear rate and viscosity of the sus- 

pending fluid are low, so Brownian motion randomizes orientations 
completely and Pe = 0. With high viscosity and shear rates or 
with large particles, the disperse phase will orient with the flow as 
Pe --f oo, 

Figure 10.3.1. 
Prolate and oblate spheroids 
and related shapes of typical 
suspension particles. 

Prolate 

a- - = r p  < I  b 

) d  
(-= 

t 
DNA Glass fiber 

Oblate Erythrocyte Mica 

440 I RHEOLOGY 



Figure 10.3.2. 
Prolate spheroid with orienta- 
tion vector e along its major 
axis. The spherical coordi- 
nate system to describe e is 
shown with the Cartesian 
system of the shear flow of 
surrounding fluid. Both co- 
ordinate systems are fixed to 
the center of the particle. 

“r2 

I 

However, particles are never fully aligned. To calculate parti- 
cle stresses, we have to add contributions of the various orientations. 
Hence we have to keep track of the orientation distribution. The 
orientation of a particle can be described by a unit vector e parallel 
to its symmetry axis. Figure 10.3.2 shows e for a prolate spheroid 
with its azimuthal and polar angles 41 and 42. If all vectors e for 
particles occupying a given part of space are drawn from a single 
origin, their ends are points on a sphere with radius unity. The 
function f($q, 42) gives the number of points per unit area or the 
“point density” for a particular orientation. Figure 10.3.3 shows a 
schematic representation of f . 

The probability that e will lie within some solid angle dS2 = 
sin &dr$ld& is f(&, &)dS2. The probability that e will lie on the 
sphere is 1, so f(e) must obey 

(10.3.5) 

Figure 10.3.3. 
Representation of the distri- 
bution function as points on 
the surface of a sphere. 

* - - - - - - - - - -  

-f= pointshrea 
- - - _  . 
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Figure 10.3.4. 
Sequences of a rod, r,, = 
10, rotating in shear flow. 
Adapted from Goldsmith and 
Mason (1967). 

The function f is called the orientation distribution function. 
Changes in this function are governed by a dynamic conservation 
equation. It takes into account contributions to the rotational flux 
from Brownian motion djd) and from the hydrodynamic convection 
&) (Brenner 1972; Hinch and Leal 1972, Schowalter 1978; Bird 
et al., 1987) 

(10.3.6) 

The hydrodynamic convection can be expressed in terms of the 
angular velocity Q h  x e, whereas the Brownian term is determined 
by the product of the rotary diffusion coefficient Dr and the gra- 
dient V f :  

The solution of the conservation relation for the distribution func- 
tion must be done for each flow field of interest. This often neces- 
sitates numerical methods. Fortunately, the results for many im- 
portant cases are available from Brenner (1974) or Kim and Kanila 
(1991) for a range of spheroidal and other axisymmetric shapes. 

Mason and co-workers have measured the distribution func- 
tion for a number of axisymmetric particles. Figure 10.3.4 is typi- 
cal of their results for rodlike particles. For visualization purposes, 
their particles were always large enough so that Brownian motion 
was negligible D, << 1, and thus the Peclet number Pe >> 1. For 
this case, Jeffery (1922) calculated the trajectories 4, ( t )  

Integrating this gives 

and the period of rotation T as 

T = -  r P + -  :( :J 
( i d  (111) (iv) ( V )  (V I )  (vii) +, - 90. - 60. - 30. 0 30. so* so* 

( i  1 

(10.3.8) 

(10.3.9) 

(10.3.10) 

xlj2xl 
x 2  
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The excellent agreement between the calculated distribution func- 
tion and experiments such as those shown in Figure! 10.3.4, has been 
obtained (Karnis et al., 1966; Anczurowski and Mason, 1%7). 

10.3.2 Constitutive Relations for Spheroids 
The same basic approach used to calculate the constitutive equation 
for dilute suspensions of spheres can be applied to spheroids. The 
difficulty lies in calculating the particle stress rp  in eq. 10.2.8. Not 
only is the velocity field more complex, but r p  depends on the 
orientation. Thus, to get the bulk value of the stress contribution of 
the particles, we need to integrate over all orientations, weighting 
by the distribution function 

c r p  >= 1 t , f ( e ) d e  
e 

(10.3.11) 

Rotary Brownian motion enters in two ways: first, it alters 
f ( e )  according to eq. 10.3.7, and second, it contributes to the parti- 
cle’s angular velocity, which in turn alters r p  (Brenner, 1972). The 
final solution, except for limiting cases, must be numerical, so the 
results for various material functions can be given only in tabular 
or graphical form. A number of solutions for specific geometries 
exist. Brenner has unified and extended these solutions in an ex- 
tensive paper (1974). We reproduce some of his results in Figure 
10.3.5. For other geometries and material functions, the reader is 
referred to his work. 

Figure 10.3.5 shows calculations of the intrinsic viscosity 
(see eq. 10.2.18) versus Peclet number for both oblate and pro- 
late spheroids. We see that they both show considerable shear 
thinning. Qualitatively, as Pe increases, the hydrodynamic forces 
become strong enough to align the particles more with the shear 
flow direction, reducing their contribution to the viscosity. Good 
agreement has been found between these theoretical results and 
measurements of [4] versus 9 on rigid rod polymers and biological 
macromolecules (e.g., Whitcomb and Macosko, 1978; Bird et al., 
1987, p. 124). 

In the low Peclet limit (i.e., small particles and/or low shear 
rates), Brownian motion randomizes the orientation totally. For 
prolate spheroids the intrinsic viscosity becomes 

] + 8 (10.3.12) 
3 

$41 = [4l, = - + 1n2rp -0.5 In2rp - 1.5 5 

This result is accurate for rp > 10 (< 3% error). In the high Pe 
limit for prolate spheroids 

Pe-ca 
(10.3.13) 
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Figure 10.3.5 100 

prolate spheroids with re- - 
The variation of intrinsic vis- 
cosity of (a) oblate and (b) 

duced shear rate. Adapted 
from Brenner (1974). 
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The aspect ratio must be much larger, rp  > 100, for good accuracy 
here. Also, as indicated in Figure 10.3.5, this limit is approached 
slowly. 

The Brownian motion that gives rise to shear thinning in 
axisymmetric suspensions also results in normal forces. Particles, 
forced away from their equilibrium configurations by the flow, gen- 
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erate Brownian torques that are manifest as normal forces. “Intrin- 
sic normal stress differences” are defined as 

(10.3.14) 

(10.3.15) 

Note that Brenner (1974) uses tl 1 - t 3 3  = N1 + N2 rather than 
the usual tll - r22 = N1. Figure 10.3.6 plots [711 - t 3 3 ]  and 
[t22 - t33]  for various aspect ratios. We see that the normal stresses 
increase proportional to (Pe)2 and then level off at high Pe where 
full particle alignment is achieved. Note in Figure 10.3.6b that 
the second difference is about 0.1 of the first and opposite in sign. 
Brenner gives limiting relations for the normal stresses at high Pe 
that are accurate within 10% at rp = 10 and improve with increas- 
ing rp 

(10.3.16) 

(10.3.17) 

Figure 10.3.7 gives the intrinsic viscosity of prolate spheroids 
in uniaxial extensional flow. We define the intrinsic viscosity in 
extensional flow as 

17” - 317, 
[111” = - 

3 17,y 4 
(10.3.18) 

For 17, = 317, the Trouton limit, we see by comparing Figures 10.3.5 
and 10.3.7 that [q] ,  = [17]. In fact, at low Pe, the intrinsic viscosity 
is the same in extension as in shear. This is as expected because 
at low Pe there is no preferred orientation and extension does not 
differ from shear. However, at large positive Pe these cigar-shaped 
particles line up with the flow and increase the drag, thus producing 
extensional thickening. 

Why do we see the opposite effect with negative Pe? As 
discussed in Chapter 7, uniaxial compression is the same as equal 
biaxial extension. Unlike changing direction in shear, changing 
direction in extension can cause different a response with a non- 
Newtonian material. Prolate spheroids are a good example of this 
point. Particles in biaxial extension can take any orientation in the 
plane of stagnation, whereas in uniaxial extension particles tend 
to align along the symmetry axis. As sketched in Figure 10.3.8, 
uniaxial flow will align particles with the streamlines converging 
toward the particle ends. In biaxial flow particles align such that 
streamlines diverge from their ends. This produces less drag, and 
as Figure 10.3.7 indicates, results in compressional thinning. 
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Figure 10.3.6. t0,ooo 
The variation of intrinsic 
normal stress functions (a) 
[TI I - ~ 3 3 1  and (b) - Er22 - ~ 3 3 1  
with reduced shear rate for 
prolate spheroids of various 
aspect ratios. Adapted from 1 oooL-- Brenner (1974). 

0.1 1 10 I00 
Rotary Pdclet Number, P =+/Or  

(a) 

Brenner (1974) gives limiting relations for the extensional 
viscosities. The last term can be dropped for rp > 5.  

6 In 2rp -- (10.3.19) rp’ [ r l lu t -  = 3(ln2rp - 1.5) rp2 

5 61n2rp 
(10.3.20) r; +- - -  

[rllu-m = 12(ln2rp - 1.5) 2 rp2 

Spheroids will also show time-dependent rheological behav- 
ior through the time dependence of the orientation distribution func- 
tion in eq. 10.3.7. Including the a f / a t  gives rise to a convected 
derivative in the constitutive equations. Brenner (1974) gives re- 
sults for the problem of stress relaxation after steady shear of long 

446 / RHEOLOGY 



Figure 10.3.6 
Continued. 

Rotary P i c l e t  Number, P =+/Or  
(b) 

0 

Figure 10.3.7. 
Intrinsic viscosity of prolate 
spheroids in uniaxial exten- 
sional flow. From Brenner 
(1 974). 
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Figure 10.3.8. 
Different orientations of a 
prolate spheroid at the stag- 
nation plane in strong (a) uni- 
axial extension and (b) uni- 
axial compression or equal 
biaxial extension. In biaxial 
flow the particle can take any 
orientation in the stagnation 
plane, resulting in a lower 
drag force. 

thin spheroids. He shows that the shear and normal stresses drop 
instantaneously to less than 10% of the steady state values. This 
stress relaxation effect would be difficult to measure. 

With sinusoidal oscillations it is easier to measure short re- 
laxation times. Cerf (1951) and Scheraga (1955) solved the time- 
dependent constitutive relation for the case of sinusoidal shear and 
rp  >> 1. They used polymer solution notation: M = molecu- 
lar weight, which for an ellipsoid is 4/3n ab2pNAv, and c, mass 
concentration, rather than 4. They find for the reduced, intrinsic 
dynamic moduli 

where 

5M G’ 
[G’IR = - lim - 

3RT C+O c 

and 

5M 
[G”]R = - lim GI’ - wqf: 

3RT C+O 

(10.3.21) 

(10.3.22) 

(10.3.23) 

The relaxation time A is inversely proportional to Drr the rotary 
Brownian diffusion coefficient, eq. 10.3.4. 

or in terms of M 

c3 

Ic A = -  
48 D, 

(10.3.24) 

(10.3.25) 
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Figure 10.3.9. 
Reduced dynamic moduli 
for the ellipsoid models, eqs. 
10.3.21 and 10.3.22 compared 
to experimental results on 
tobacco mosaic virus. From 
Nemoto et al. (1975). 

I I I 

-2 -1 0 I 
log aq,M/RT 

Note that the form for G’ is the same as that for a Maxwell 
model, eq. 3.3.31, while that for G” shows liquid rather than solid- 
like behavior at high frequency. Figure 10.3.9 shows good agree- 
ment between [ G i ]  and [G:] and measurements on tobacco mosaic 
virus. DuPauw (1968) gives the virus dimensions as 2a = 300 nm 
and 2b = 18 nm (DuPauw, 1968). 

10.4 Particle-Particle Interactions 
When the volume fraction grows larger than 0.01, particles increas- 
ingly enter the neighborhood of other particles. The resulting dis- 
turbance of the flow increases the viscosity. At relatively small 
concentrations only binary interactions are likely to occur. With 
increasing concentration, more than two particles can interact si- 
multaneously. This causes the viscosity to grow at an increasing 
rate with concentration. Different kinds of force (described below) 
are active in particle interactions. Depending on their relative mag- 
nitude, the microstructure and the rheology of the suspension can 
vary widely. A suspension with 1 vol % of dispersed phase can be 
a fluid with approximately the viscosity of water, or it can respond 
as a solid, depending on the relative value of the various interaction 
forces. In this section, key scaling groups, which express the bal- 
ance between interparticle forces, are identified and used to classify 
the different types of suspension, which are discussed in Sections 

The relative motion of neighboring particles causes a hydro- 
dynamic interaction force, which is present in all flowing nondi- 

10.5-10.7. 
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lute suspensions. Most of the other interaction forces are relevant 
only for small particles. If the particle size is smaller than roughly 
1 pm, Brownian motion of the particles becomes noticeable. As 
we saw in Section 10.3 for dilute systems, rotary Brownian motion 
of nonspherical particles results in elasticity and shear rate effects. 
For nondilute systems, translational diffusivity plays a similar role, 
even for spherical particles. Interparticle distance and its distribu- 
tion (the so-called radial distribution function) must now substi- 
tute for what average orientation and orientation distribution meant 
for dilute suspensions of spheroids. The radial distribution func- 
tion constitutes the simplest measure of microstructure in nondilute 
suspensions of spherical particles. Its dependence on flow causes 
shear thinning and viscoelasticity in such suspensions (Russel and 
Gast, 1986). 

Additional interparticle forces exist in colloidal systems. 
They can be derived from a potential because they depend only 
on interparticle distance. Hence they act as springs and as such 
can cause pronounced elastic effects. However, the spring force 
depends on interparticle distance, and the springs even “rupture” 
when the particles move too far apart. This results in a highly 
nonlinear material response. During flow, the potential forces will 
affect the interparticle distances and consequently the frictional 
forces and the viscosity. We review each of these forces briefly in 
Sections 10.4.1-10.4.4. More thorough discussion can be found in 
Russel et al. (1989). 

10.4.1 Dispersion Forces 
Several potential interparticle forces can be distinguished. Disper- 
sion (Lea, London-van der Wads) forces always exist because of 
interactions between induced dipoles in the molecules of neigh- 
boring particles (Mahanty and Ninham, 1976). Integration of the 
interactions between all induced dipoles in two bodies results in 
an expression for the total attraction force. It is characterized by 
the Hamaker constant A, which depends on the material compo- 
sition of the particle. In principle, it can be calculated from the 
frequency-dependent polarizability of the material, and it deter- 
mines the attraction forces in vacuum. For particles with Hamaker 
constant A, in a medium with Hamaker constant Ai, an effective 
A,,, can be calculated from 

A,,, = (A: - A?)’” (10.4.1) 

The potential VD,  from which the dispersion forces between 
two particles can be derived, is of the general form 

VD = -A,,,Hg (10.4.2) 

where Hg is a function of particle geometry and of interparticle 
distance H. For identical spheres, the potential is proportional to 
1/H at close contact and to 1/H6 at large distances (Figure 10.4.1). 
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Figure 10.4.1. 
Interaction potential for dis- 
persion forces (dipole attrac- 
tion) and electrostatic repul- 
sion (Vo: attraction from 
dispersion forces; VE:  elec- 
trostatic repulsion; V,: total 
interaction potential). 

Figure 10.4.2. 
Distribution of ions around a 
charged particle (dashed line 
separates Stem layer from the 
diffuse double layer). 
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10.4.2 Electrostatic Forces 

In aqueous media, particles can be electrically charged (e.g., by 
transfer of ions between the particles and the water phase). As a 
result, the ions in the water that have sign opposed to that of the 
particle charge (the counter ions) will be drawn toward the particle. 
Immediately near the surface, a monolayer composed of such ions 
develops, forming a narrow double layer with the particle surface 
(the Stem layer). Outside this layer the concentration of counter- 
ions gradually decreases toward the bulk concentration in the wa- 
ter; these counterions make up the diffuse double layer, as shown 
schematically in Figure 10.4.2. Equally charged particles repel 

+ -  
+ - + 

+ 
+ 

- + 
+ 
- + 

+ 
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each other electrostatically. The net repulsion force will depend 
on the surface charge and the screening effect of the double layer. 
As for the dispersion force, the electrostatic repulsion force can be 
derived from a potential ( V E ) .  For small surface potentials (+o) 

and thick double layers, the potential energy for identical spheres 
is approximated by (e.g., Hunter, 1989) 

(10.4.3) 

where @o is the surface potential. The Debye-Huckel constant K 

is given by 

(10.4.4) 

where e is the charge of an electron, noi the concentration of ions 
of type i far from the particle, zi the valence of ions of type i, and 
E the dielectric constant of the medium. 

The factor K has the dimension of l/length. Its inverse meas- 
ures the thickness of the double layer, which is determined by the 
concentration of ions in the water phase (eq. 10.4.4). An electro- 
static repulsion becomes noticeable when particles approach close 
enough for the double layers to overlap (K H 2 2). 

The total interaction potential for electrostatically stabilized 
systems is the sum of the attraction and repulsion potentials VD 
and VE.  A possible net result, V,, is shown in Figure 10.4.1. The 
attraction forces dominate at both small and large distances. Close 
to the surface is a deep minimum (primary minimum) caused by 
the very steep rise of the attraction forces near the surface and by 
the existence of a supplementary repulsion of a different nature 
very close to the surface. The deep minimum means that if another 
particle can approach to such a distance, it will be in a very sta- 
ble position, resulting in a permanent aggregate (sometimes called 
agglomerate). If the potential barrier outside this potential well 
is sufficiently large, particles are kept from falling in the primary 
minimum. Outside the barrier there can be another shallow min- 
imum (secondary minimum). Particles are then only weakly kept 
in position, and aggregation there is reversible. The energy in this 
secondary minimum is less than a few kT; hence Brownian motion 
is strong enough to eventually deflocculate the particles again. 

10.4.3 Polymeric (Steric) Forces 
When a polymer layer is present at the surface of the particles 
(either adsorbed or chemically grafted), a repulsion force can be 
created when the layers on two neighboring particles overlap. This 
happens whenever the polymer molecules would rather become 
more compact than mix as the two layers are squeezed together 
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Figure 10.4.3. 
Interaction potential for poly- 
merically stabilized suspen- 
sion (Vo: attraction from dis- 
persion forces; Vs: polymeric 
repulsion; V, : total interac- 
tion potential). 

(Figure 10.4.3). The simplified theories predict apotential V, (e.g., 
Napper, 1983) 

akT(1/2 - x ) S 2  
Hs us 

vs = (10.4.5) 

where x is the interaction parameter according to the Flory- 
Huggins theory (see Flory, 1953), If, is a function of interparticle 
distance, which also contains polymer and system characteristics, 
6 the thickness of the stabilized layer, and us the volume of medium 
or solvent molecule. 

The interaction parameter should be smaller than 1/2 to pro- 
vide a repulsion. This requires the medium to be a good solvent for 
the free dangling polymer. Polymeric repulsion occurs only when 
polymeric stabilizer layers overlap. The thickness of these layers is 
often of the order of 10 nm. In contrast, electrostatic double layers 
can be much thicker if the ion concentration of the medium is low 
(eq. 10.4.4). Also, the polymer repulsion potential is quite steep. 
As a result, the total potential for polymerically stabilized sys- 
tems (Figure 10.4.3) shows no deep primary minimum. A shallow 
minimum, similar to the secondary minimum for electrostatically 
stabilized systems, is possible. 

If polymer molecules are dissolved and moving freely in 
the medium, they can favor flocculation rather than stabilization. 
Whenever the interparticle distance becomes smaller than the di- 
mensions of the polymer molecules, the gap is depleted of these 
molecules for thermodynamic reasons. As a result, the particles 
are forced even closer together and become flocculated (depletion 

Interparticle distance 
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flocculation). Polymers can also flocculate particles by other mech- 
anisms, which are discussed further by Napper (1983). 

The forces described above are responsible for most colloidal 
effects. Other forces could be present and are briefly mentioned 
here. The most relevant ones result from external fields (e.g., grav- 
ity, electrical, or magnetic fields). While acting on the particles, 
they can cause dramatic changes in structure and behavior, includ- 
ing particle migration and special types of aggregation. They of- 
fer the possibility of increasing the viscosity by applying an ex- 
ternal field (e.g., electrorheological or magnetorheological effects 
described for example in Block and Kelly, 1988). 

10.4.4 Scaling 

The magnitudes of the colloidal forces range widely. Depending 
on which one dominates, the resulting structure and the rheology 
can change drastically. The relative importance of the various con- 
tributions can be expressed by means of the dimensionless groups 
used in scaling arguments (Krieger, 1972; Russel, 1980). 

The hydrodynamic forces are always proportional to the vis- 
cosity of the medium. Therefore, suspension viscosities are scaled 
with the viscosity of the suspending medium, meaning that relative 
viscosities are used. As for dilute systems, the balance between 
Brownian motion and flow can be expressed by a Peclet number. 
Here the translational diffusivity Dt has to be used, but that does 
not change the functionality (for spheres, D, is proportional to D,). 
A dimensionless number is obtained by taking the ratio of the time 
scales for diffusion (Of) and convective motion ( 9 ) .  This is again 
a Peclet number: 

Pe = - rlsya3 for shear flow 
kT 

(10.4.6) 

As with dilute suspensions, inertia effects can be estimated from a 
particle Reynolds number, eq. 10.2.12. 

The other colloidal forces can be compared by taking ratios 
of characteristic energies, that is, A for the dispersion force, ~ $ r z u  
for electrostatic repulsion, and as2( 1 / 2 - x ) k T / u ,  for polymer 
stabilization. A comparison with Brownian motion (Russel, 1980) 
leads to the following dimensionless groups: 

For dispersion forces: 

A 
kT 
- 

For electrostatic repulsion forces: * 
kT 

(10.4.7) 

(10.4.8) 

454 / RHEOLOGY 



For the polymeric repulsion (note kT cancels out): 

(10.4.9) (1/2 - x) as2 

v s  

Sections 10.5-10.7 discuss the rheology of the major classes 
of suspensions. The classification is based on the relative magni- 
tude of the various interaction forces. First we consider the case 
in which only Brownian motion interferes with the always-present 
hydrodynamic forces during flow. Such “Brownian hard spheres” 
are not easy to produce. The repulsion forces can easily be made 
small, but then the attractive dispersion forces usually start to dom- 
inate. Krieger and co-workers (Krieger, 1972) have systematically 
reduced the electrostatic repulsion and found a region in which 
Brownian motion dominates the residual attraction forces. De Kruif 
et al. (1985) have produced similar results by nearly matching the 
Hamaker constant of particles and medium, thus requiring only a 
minor steric stabilization. 

In Section 10.6 we consider strongly stable colloidal sus- 
pensions, which occur when electrostatic or polymeric repulsion 
forces become larger than dispersion or Brownian forces. Finally, 
in Section 10.7, we treat the case of dominating attraction forces 
that result in aggregating particles and aflocculated suspension. 

10.5 Brownian Hard Particles 
10.5.1 Monodisperse Hard Spheres 
In this section we discuss systems for which potential interaction 
forces can be ignored, leaving only hydrodynamic and Brownian 
forces. Large particles are a limiting case of this group, namely 
when hydrodynamic forces totally dominate other forces, includ- 
ing the thermal motion. For Brownian hard spheres the potential 
force between particles is zero whenever the particles are not touch- 
ing. Once contact has been made it suddenly becomes an infinite 
repulsion because the particles are assumed to be rigid. Among the 
dimensionless groups of Section 10.4, only the relative viscosity, 
the Peclet number, and eventually the particle Reynolds number are 
relevant in this case. If we neglect particle inertia, the Peclet num- 
ber is the only relevant flow parameter. General viscosity curves of 
nondilute suspensions were shown in Figure 10.1.3. As indicated 
in Figure 10.2.2, two Newtonian regions can be detected, sepa- 
rated by a shear thinning region. At higher concentrations shear 
thickening might appear at a certain level of shear. In this latter 
condition, more complex structural changes occur, and other phe- 
nomena should be taken into account (Barnes, 1989; Laun et al., 
1991). 

In the two Newtonian regions, no length or time scales are 
left in the scaling. Hence, the corresponding relative viscosities 
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should be universal for monodisperse hard spheres: they should 
not depend on shear rate, medium viscosity, temperature, or parti- 
cle size. In between these regions, the Peclet number provides a 
suitable scaling factor for the shear rate. At a given volume frac- 
tion, the T], versus Pe curve should be universal for suspensions of 
monodisperse hard spheres, assuming that effects like particle iner- 
tia can be ignored. On the low shear Newtonian plateau, Brownian 
motion cotally dominates the structure. This means that the relative 
positions of the particles during flow are identical to those at rest. 
From model experiments (Krieger, 1972; de Kruif et al., 1985) that 
approximate Brownian hard spheres, the curves of the plateau vis- 
cosities versus volume fraction are known (Figure 10.2.2). They 
can be used for all suspensions of Brownian hard spheres. The 
Krieger-Dougherty relation (Krieger, 1972) offers an adequate ex- 
pression for the concentration dependence of the viscosity: 

where x = 0 (low shear plateau) or 00 (high shear plateau), 
+mo = 0.63 (maximum packing at low shear rates), and 4mm = 
0.71 (maximum packing at high shear rates). 

Ab initio calculations for nondilute systems become very 
complicated. Einstein derived the linear term in the concentration 
law for the viscosity in 1906 and 191 1. The quadratic term, which 
is the first interaction term, was published in 1977 by Batchelor: 

rlr = 1 + 2.54 + 6.242 + 0(43) (10.5.2) 

Equation 10.5.2 fits available data (see Figure 10.2.3 and de 
Kruif et al., 1985) within measurement accuracy. Higher order ex- 
pansions do not seem to be useful because they are applicable over 
increasingly small concentration regions. Various approaches are 
being used to compute viscosities at higher concentrations. The 
hydrodynamics for multiple particle interactions become very in- 
volved. They have been studied mainly by simulation (e.g., Brady 
and Bossis, 1988; Phillips et al., 1988). Other workers have used 
an approach based on nonequilibrium thermodynamics (Russel and 
Gast, 1986). Finally, Woodcock (e.g., 1984) uses molecular dy- 
namics simulations, ignoring the medium viscosity, to calculate 
the flow-induced structure and then the viscosity. 

The Peclet number of eq. 10.4.6 is based on the diffusivity of 
an isolated sphere (i.e., Stokes’ law for the hydrodynamic effect). 
This is obviously incorrect in a concentrated suspension, where 
the presence of other particles can have an enormous effect on the 
mobility. The viscous resistance a particle encounters will be the 
sum of all hydrodynamic interactions with all neighboring particles. 
This resistance is much higher than that given by Stokes’ law and 
should be comparable with the global viscosity of the suspension. 
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Figure 10.5.1. 
Reduced viscosity versus re- 
duced shear stress for suspen- 
sions of polystyrene spheres, 
4 = 0.50, solid line, in 
water; open circles, in ben- 
zyl alcohol; solid circles, 
rn-cresol. Replotted from 
Krieger (1972). 
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On this basis Krieger (1972) has suggested substituting suspension 
viscosity for the medium viscosity in eq. 10.4.6. The resulting 
correction of Pe is really a reduced shear stress rr ,  as can be seen 
in eq. 10.5.3: 

v y a 3  ra3 
kT kT 

- r r = - -  - (10.5.3) 

As shown in Figure 10.5.1, the viscosity versus reduced shear stress 
curves can be described rather well by the semi-empirical relation 
(Krieger, 1972) 

The location of the shear thinning region on the reduced stress 
axis can be characterized by the value of a critical reduced stress rc 
(i.e., the reduced stress for which the viscosity reaches the average 
value between the two Newtonian values). This critical stress in- 
creases with concentration up to volume fractions of 0.50 and then 
decreases to zero at maximum packing (Figure 10.5.2). 

Woodcock (1984) has argued that scaling is of limited use be- 
cause in all real flows of concentrated suspensions, particle inertia 
or kinetic energy is important (see also Woodcock and Edwards, 
1984; Barnes et al., 1987). Using molecular dynamics simula- 
tions, Woodcock has generated results for the changes in structure 
during flow. The complex effect of shear on structure has been 
demonstrated experimentally (e.g., Ackerson, 1986). Depending 
on concentration and shear rate, a colloidal suspension can have 
the structure of a gas, a fluid, a glass, a mesomorphic system, or a 
crystal. The structure of flowing suspensions is currently studied 
intensively with scattering techniques using light, X-rays, and neu- 
trons (Markovic et al., 1986; Johnson et al., 1988; Ackerson et al., 
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Figure 10.5.2. 
Critical shear stress for shear 
thinning, Brownian hard 
spheres. Data from de Kruif 
et al. (1985). 
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1990) and via nuclear magnetic resonance imaging (Graham et al., 
1991). 

The reduced shear stress is proportional to u3 (eq. 10.5.3). 
When the particle radius becomes larger than 1 pm, the critical 
shear stress and consequently the shear thinning region shift rapidly 
to extremely low values and essentially become experimentally in- 
accessible. The lack of Brownian motion for these large particles 
also eliminates the reversibility in structural changes, which com- 
plicates experiments. At the same time, particle inertia becomes 
more important. The combination of these effects gives rise to a 
number of complex phenomena: for example, migration toward 
areas of low shear stress and wall slip, especially at higher concen- 
trations (Leighton and Acrivos, 1987). Measurements also become 
less consistent (Woodcock, 1984; Cheng, 1984): reproducibility is 
poorer and the results depend on measurement geometry. It should 
also be kept in mind that the hydrodynamic interactions, and con- 
sequently the viscosity, depend on the type of flow. The Brownian 
motion provides a driving force to bring the structure back to its 
equilibrium condition. Hence it serves as a “memory” or source 
for elastic phenomena. The effect is usually too small to gener- 
ate noticeable normal stress differences, but it gives rise to storage 
moduli in oscillatory flow (van der Werff et al., 1989). 

10.5.2 Particle Size Distribution 

In the dilute concentration region, where particles hardly ever feel 
each other, the particle size distribution is not important. For mod- 
erate concentrations experimental evidence suggests a minor effect 
of this parameter. Close to the maximum packing, however, the 
effect becomes very large (Figure 10.5.3). This can be understood 
on the basis of the drastic increase in maximum packing when bi- 
modal or multimodal particle size distributions are used. The effect 
can be predicted if the maximum packing, calculated or measured, 
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Figure 10.5.3. 
Relative viscosity for bimodal 
distributions of hard spheres 
as function of the proportion 
of small particles (&), The 
parameter is the ratio of parti- 
cle radii. Note that increasing 
total volume fraction 4 from 
0.6 (dashed line) to 0.65 has 
a large effect. After Chong et 
al. (1971). 
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is introduced in the Krieger-Dougherty equation (eq. 10.5.1) for 
monodisperse systems. Commercially bimodal or trimodal distri- 
butions are used to minimize the viscosity in highly concentrated 
suspensions. 

10.5.3 Nonsphencal Particles 
In principle, some types of nonspherical particles could be packed 
more tightly than spheres, although they would start to interact at 
lower concentrations. In reality, higher viscosities are normally 
found with nonspherical particles. The concentration law is ap- 
proximately exponential at low to moderate concentrations, but 
equations similar to eq. 10.5.1 can still be used as well. The em- 
pirical value of &, can be much smaller than that for spherical 
particles (e.g., 0.44 for rough crystals with aspect ratios close to 
unity: Kitano et al., 1981). If fibers are used, this value drops even 
further, down to 0.18 for an aspect ratio of 27 (see also Metzner, 
1985). The decrease with aspect ratio seems to be roughly linear. 
Homogeneous suspensions of fibers with large aspect ratios are dif- 
ficult to prepare and handle. As in dilute systems, the type of flow 
will determine the extent of the shape effect. Extensional flows are 
discussed below. 

Doi and Edwards (1986) have used a tube model to describe 
flow of semidilute suspensions of rods. Predicted behavior is qual- 
itatively similar to their theory for entangled, flexible polymer 
chains (see Chapter 11). This approach has also been extended to 
describe the rheology of nematic liquid crystalline polymers (Doi 
and Edwards, 1986; Larson, 1988). 
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10.5.4 Non-Newtonian Media 

In industrial applications, particles are often suspended in non- 
Newtonian media, especially in polymer fluids. There are basic dif- 
ferences between suspensions in Newtonian and viscoelastic media. 
The latter seem to suppress particle rotation, and the radial distri- 
bution function can change as well because of the altered flow and 
stress profiles near and in between particles. In addition, segrega- 
tion of particle sizes has been reported (Michele et al., 1977). Up to 
moderate concentrations, the power law index of the shear thinning 
region does not change with concentration (Nicodemo et al., 1974; 
Mewis and de Bleyser, 1975). A slight decrease in power law can 
sometimes be detected, for which there is also some theoretical ev- 
idence (Jarszebski, 1981). Hence, to a first approximation, adding 
particles to a shear thinning fluid does not alter the general shape 
of the viscosity curve, except for the additional colloidal effects 
discussed above. However, a purely vertical shifting of the curves, 
assuming a constant relative viscdsity, independent of shear rate, 
does not work. The shifting is always less in the shear thinning 
region than in the Newtonian region. In addition, the onset of shear 
thinning shifts to smaller shear rates with increasing concentration. 

Both phenomena can be understood if the local shear rate in 
the fluid around the particles is considered. Local rates increase 
more with concentration than the average shear rate does and thus 
reduce the apparent medium viscosity. The resulting shift in the 
curves can be partially compensated if the relative viscosities are 
calculated from medium and suspension viscosities at equal values 
of the shear stress, rather than at equal shear rates. 

The elastic properties of a viscoelastic medium also change 
when particles are added. These changes are qualitatively similar 
to those of the viscosity (Mewis and de Bleyser, 1975). In the non- 
Newtonian region, elasticity increases less than viscosity. Hence 
filled polymers are always less elastic than the suspending polymers 
under processing conditions. Reviews available on suspensions 
in non-Newtonian media include Metzner (1985) and Kamal and 
Mute1 (1985). 

10.5.5 Extensional Flow of Ellipsoids 

Relative particle motion, and consequently particle interaction and 
viscosity, depend in principle on the type of flow. For nearly spher- 
ical particles the effect seems to be limited, except perhaps near the 
maximum packing. Long slender particles, especially long fibers, 
provide a totally different picture. In extensional flow they orient 
more or less in the flow direction, depending on Brownian motion, 
as discussed in Section 10.3 for dilute suspensions. The presence 
of a fiber will affect the flow of the part of the fluid that is near 
the particles, actually within a sphere having the fiber length as its 
diameter. With large aspect ratios, a small volume fraction of fibers 
can affect a large volume of medium. When the affected volumes 
of neighboring particles overlap, the increase in viscosity becomes 
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Figure 10.5.4. 
Stress-strain rate curves for 
extensional flow of glass 
fibers suspended in poly- 
butene (4 = 0.1 to I%, 
r, = 282,586, and 1259). 
Adapted from Mewis and 
Metzner ( 1974). 
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very large. This constitutes one of the very few cases in which 
an adequate ab initio theory is available for strong interaction ef- 
fects in suspensions. Batchelor (197 1) calculated for the uniaxial 
extensional viscosity qu of a suspension with interacting fibers 

3 + w r j  
tl, = vs [ ln(rp,+)] assuming L >> H >> D (10.5.5) 

where rp = L I D ,  the aspect ratio, and H is the distance between 
the parallel fibers. 

Equation 10.5.5 predicts large contributions from the parti- 
cles to the stresses within the range of its validity. This has been 
verified experimentally (Mewis and Metzner, 1974), as is shown in 
Figure 10.5.4. Polymeric media themselves can give rise to high 
stresses in extensional flow. Possibly the introduction of particles 
then tends to transform local stretching in shearing motion. In the 
latter mode the medium is shear thinning. As a result, the sus- 
pension viscosities could be smaller than expected from eq. 10.5.5 
(Chan et al., 1978; Goddard, 1978). 

10.6 Stable Colloidal Suspensions 
In Section 10.5 we considered systems in which colloidal forces, 
with the exception of Brownian motion, did not play a role. Disper- 
sion forces are always present in real materials; a repulsion force 
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is required to keep small particles from aggregating together. This 
section discusses systems in which the repulsion forces dominate 
the attraction forces, creating stable colloidal dispersions. Electro- 
static and polymeric stabilization are treated separately. 

10.6.1 Electrostatic Stabilization 

In the case of electrostatic stabilization, the total interaction po- 
tential is the sum of the contributions from the dispersion forces 
and the electrostatic forces. To ascertain stability, the electrostatic 
forces should be larger than the dispersion forces at long range. 
As discussed in Section 10.4, aggregation nonetheless can occur 
in such a material if a particle has sufficient energy to overcome 
the repulsive energy barrier. This is possible at high shear rates 
(flow-induced flocculation), whereas at intermediate shear rates 
the hydrodynamic forces might be capable of deflocculating sus- 
pensions that are flocculated in the secondary minimum (van de 
Ven and Mason, 1976; Zeichner and Schowalter, 1977). In this 
section the suspension is always assumed to be stable. 

The presence of electric charges affects the rheology in differ- 
ent ways. In dilute systems flow will distort the charge cloud around 
the particles and thus produce additional stresses. This so-called 
primary electroviscous effect has been modeled over a wide range 
of conditions by Shenvood (1980). In nondilute systems, charged 
particles can interact. When electrostatically stabilized particles 
approach each other, the repulsion force increases gradually, con- 
trary to the case of Brownian hard spheres, in which the repulsion 
suddenly jumps from zero to infinity upon contact (“soft” versus 
“hard” repulsion). During flow, the repulsion forces keep particles 
farther apart than in the neutrally stable systems discussed in Sec- 
tion 10.5. As a result, the energy dissipation-and consequently 
the viscosity-become larger. This phenomenon is called the sec- 
ond electroviscous effect. The case of relatively dilute systems has 
been studied well. The viscosity-concentration relation then con- 
tains the linear term from the dilute systems and a quadratic term 
for binary particle interactions. In eq. 10.5.2 the numerical coef- 
ficient for the quadratic term was given as 6.2 for Brownian hard 
spheres. In the case of electrostatic stabilization, the corresponding 
coefficient can be expressed as a function of the length H,, which 
measures the distance of closest contact between two particles for 
the case of electrostatic repulsion in the limit of low shear rates 
(Russel, 1978) 

H, = (:)In[ a ] 
ln(a/ln a) 

(10.6.1) 

where cx = ~ Y T E @ , U * K  exp(2a~) lkT  
Figure 10.6.1 shows that the effect of electrostatic stabiliza- 

tion on viscosity can be very pronounced for low ionic strengths. 
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Figure 10.6.1. 
Effect of electrostatic repul- 
sion on the coefficient of 
the #2 term in the viscosity- 
concentration law. After Rus- 
sel (1980). 

This result also provides a qualitative indication about the effect of 
electrostatic stabilization and its parameters in more concentrated 
systems. The importance of the Debye-Huckel constant K is obvi- 
ous. At higher concentrations and higher shear rates, the excluded 
volume around a particle is no longer given exactly by eq. 10.6.1. 
However, the equation is still suitable as a scaling factor. Electro- 
static forces are not a function of shear rate; therefore their effect 
is larger at low shear rates than at high ones. This leads to shear 
thinning and eventually to the appearance of yield stresses (Krieger 
and Eguluz, 1976). 

If the repulsion is strong enough, the particles position them- 
selves as far apart as possible. This can lead to a lattice structure and 
the formation of colloidal crystals. These solidlike materials are 
characterized by a frequency-independent storage modulus (e.g., 
Russel and Benzing, 1981), which again depends strongly on the 
repulsion forces. In more dilute systems, or when the repulsion 
forces are smaller, the behavior under oscillatory flow can be that 
of a viscoelastic fluid, displaying a nearly Maxwellian behavior. 
Hence, a characteristic relaxation frequency can be determined, 
as well as a limiting high frequency modulus, both of which de- 
pend again strongly on the Debye-Huckel constant (Goodwin et 
al., 1984). The relation between stability parameters and rheology 
is quite well understood now for electrostatically stabilized dis- 
persions (Goodwin et al., 1982). It is even possible to calculate 
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Figure 10.6.2. 
Effect of particle size (i.e., 
softness) on the low shear 
rate viscosity of suspensions 
containing sterically stabi- 
lized particles. Polymethyl 
methacrylate latex in decalin, 
stabilizer layer thickness, 9 
nm; particle diameters: 0 ,  

475 nm; 0, 376 nm; 0, 129 
nm; and A, 84 nm. From 
D’Haene (1991). 
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the interparticle potential from the modulus-concentration curves 
(Buscall et al., 1982). 

10.6.2 Polymeric (Steric) Stabilization 
The polymeric repulsion force is relatively “hard”; that is, it in- 
creases quite rapidly with decreasing interparticle distance. It is 
also a short-range force, as it drops to zero where the polymer 
layers do not overlap. If these layers do not deform much, the rhe- 
ological behavior resembles that of Brownian hard spheres. The 
results for hard spheres can be used as a first approximation, sub- 
stituting for the volume fraction an effective volume fraction that 
includes the stabilizer layer 8: 

3 

4eff = f#J( 1 + :) (10.6.2) 

This corresponds roughly to the case of electrostatic stabi- 
lization if H, is replaced by the thickness of the stabilizer layer. 
For small particles this layer can be a substantial part of the effec- 
tive volume. In that case the deformability of the stabilizer layer 
can become significant, especially at high shear rates and at high 
volume fractions. The viscosity curves will still resemble those for 
hard spheres, but the viscosity will drop systematically below that 
for the hard spheres (Figure 10.6.2). This is especially clear near the 
maximum packing (Mewis et al., 1989). Viscosity-concentration 
curves, like those of Figure 10.6.2. can be superimposed if the 

0 0.2 0.4 0.6 0.8 1 .o 
Effective volume fraction eefl 
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Figure Storage 10.6.3. modulus versus fre- 102 8 
quency for the same 84 nm 
polymethyl methacrylate dis- 

10.6.2 at several &ff. After 
Frith et al. (1990). 

persions as shown in Figure Y 
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ratio #eff/#max is used instead of &ff. The scaling for hard spheres 
can still be used to describe the effect of temperature and medium 
viscosity (Willey and Macosko, 1978). 

As was the case for electrostatic repulsion, polymer repulsion 
shows up directly in elasticity measurements (Figure 10.6.3). At 
intermediate concentrations Maxwellian-like behavior is encoun- 
tered again: the slope in Figure 10.6.3 changes from 2 below the 
relaxation frequency to zero above this frequency. The average re- 
laxation time becomes extremely sensitive to the volume fraction 
when the maximum packing is approached (Frith et al., 1990). With 
relaxation frequencies below the measuring range, a solidlike re- 
sponse is recorded. Only a plateau modulus can be measured. The 
latter is much smaller than the values measured for hard spheres 
at the same effective volume fraction (Frith et al., 1990). The 
plateau modulus-concentration curve reflects the increasing repul- 
sion when the particles come closer together. Such a curve can 
be used to calculate the interparticle potential, as was the case for 
electrostatically stabilized dispersion (Mewis and D’Haene, 1993). 

10.7 Flocculated Systems 
10.7.1 Structure in Flocculated Dispersions 

Once the attraction forces have become larger than the repulsion, 
and also larger than Brownian motion, particles can remain together 
when they collide, lying in the primary or secondary minimum dis- 
cussed in Section 10.4. The resulting aggregates or flocs have a very 
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complex structure that has long evaded theoretical treatment and 
experimental analysis. Theories have been developed on an intu- 
itive basis, especially by Hunter and co-workers (Firth and Hunter, 
1976). They used a Bingham model to correlate rheological pa- 
rameters to interparticle forces and floc structure. For aqueous 
systems of moderate concentration, they could reproduce empiri- 
cal relations like the dependence of Bingham yield stress on the 
square of the surface potential, the square of the volume fraction, 
and the inverse of particle radius. 

Considerable progress has recently been made in this area 
(e.g., Meakin, 1983; Weitz and Oliveria, 1984). Most of the flocs 
do not have homogeneous internal structures. The center is usually 
more dense than the outer regions; hence the mass does not change 
with the third power of the radius r as in normal objects with con- 
stant density. Still they are often self-similar in the sense that their 
mass m, or the number N of particles in a floc, grows as 

m - N - r D  (10.7.1) 

where D is smaller than 3, the Euclidean dimension. Structures 
that obey eq. 10.7.1 are called fractal objects. Substructures of 
different sizes taken from a given fractal object look similar if they 
are observed under a magnification that has been adjusted to give 
them the same size. 

Fractal aggregates have been extensively investigated bycom- 
puter simulation. Various assumptions can be made, each of which 
leads to a specific fractal dimension D. Witten and Sander (1983) 
simulated the convective diffusion of single particles toward a cen- 
tral floc, assuming aggregation at each collision. This situation 
gave a fractal dimension of 2.5. Taking into account the fact 
that several flocs exist which can themselves collide and aggre- 
gate (Meakin, 1983), a more open structure is obtained (D = 1.8). 
If the particles or clusters do not always stick on first contact, a 
sticking probability must be introduced. This leads to more com- 
pact flocs as particles or flocs can penetrate further into other flocs. 
For cluster-cluster aggregation, this results in a value of 2.1 for D. 
Reversible flocculation, in which particles or clusters can detach 
and connect again, also should give rise to more dense flocs. 

The fractal dimension of flocs can be deduced experimentally 
from measurements such as electron micrographs or from scattering 
measurements (e.g., Weitz and Oliveria, 1984; Pusey and Rarity, 
1987). Measured values lie within the range of the theoretical pre- 
dictions. When the flocs are formed during flow, they are expected 
to generate more dense and more complex structures. Flow may 
cause breakdown of the outer regions of the flocs and the forma- 
tion of more dense units. Experimentally, higher D-values are in- 
deed measured for flow-induced flocculation (Sonntag and Russel, 
1986). Eventually the floc might also lose its fractal nature. 

Ultimately growing flocs can touch, thereby forming a space- 
filling network of particles. This phenomenon is studied by means 
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of percolation theory (de Gennes, 1976; Feng and Sen, 1984). De- 
pending on the assumed structure and on the physical property 
under consideration, one finds a lower concentration limit for net- 
work formation, the percolation threshold &, and a concentration 
law for properties such as conductivity, elastic modulus, and yield 
stress. As long as the network is not broken down, the system will 
react as a solid. Often rupture is initiated at extremely small strains 
(e.g., Beyond this strain the material gradually weakens to 
become ultimately fluidlike. 

10.7.2 Static Properties 
Space-filling networks of particles normally display a frequency- 
independent modulus. Near the percolation threshold, theory pre- 
dicts a relation (de Gennes, 1976; Feng and Sen, 1984) 

with n between 2 and 4.5. 
This relation is often valid only on a very narrow concentra- 

tion region. Over wider ranges either an exponential or a power law 
relation between G and 4 is found theoretically (de Gennes, 1976; 
Pate1 and Russel, 1988) and experimentally (Sonntag and Russel, 
1986; Buscall et al., 1987; Navarrete, 1991). For the power law 
index, experimental values of 2.4 to 4.4 have been reported. Figure 
10.7.1 shows an example. 

Figure 10.7.1. 
Storage modulus versus vol- 
ume fraction relation for a 
flocculated silica-methyl lau- 
rate system. From Van der 
Aerschot and Mewis (1992). 
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Figure 10.7.2. 6 
Relation between the power 
law indices of the concen- 
tration laws for modulus 
and yield stress: compar- 
ison between experiment 
(rectangles) (van der 
Aerschot, 1989) and theory 
(lines). From Patel and Rus- 
sel (1988). 

3 
3 P 3 -  

E 
h 

h 
b 2  

pc 

0 1  I I I 1 I 

- 

- 

- 

- 

0 3 6 
Power for yield stress 

Yielding is more difficult to measure and to model. For 
strongly flocculated systems, Buscall et al. (1987) measured the 
yield stress under compression and found a concentration law quite 
similar to that for the shear modulus. This relation differed, how- 
ever, from that for the yield stress in shear. Patel and Russel ( 1988) 
predicted nearly identical power law indices for modulus and shear 
yield stress. This prediction has been confirmed experimentally 
(Figure 10.7.2), albeit for reversibly flocculated systems. The the- 
ory is based on the classical yielding criteria. Reversible systems do 
not follow these criteria as yielding becomes a kinetic phenomenon. 
The yield stress then depends on shear history (Mewis and Meire, 
1984). 

10.7.3 Flow Behavior 
There are major experimental difficulties with flocculated suspen- 
sions. Evidence exists that flow between concentric cylinders can 
be quite heterogeneous (Toy et al., 1991). For many systems SUUC- 
tural changes are not reversible. Here we consider only systems in 
which the structural changes are reversible; otherwise an equilib- 
rium viscosity curve cannot be defined. Reversibility is caused by 
attractive forces and Brownian motion. In such systems the flocs 
gradually break down when shear rate or shear stress are increased, 
thus causing pronounced shear thinning. At very low stress levels, 
all or most of the rest structure persists and the response is either 
elastic or viscoelastic. Whether it ever becomes really solidlike 
remains a matter of debate (Barnes and Waiters, 1985). In any case 
the viscosity reaches extremely high levels, even at low volume 
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Figure 10.7.3. 
Viscosity versus shear stress 
for flocculated 2.5% sil- 
ica particles in methyl lau- 
rate: open triangles, stress- 
controlled cone and plate 
instrument; others symbols, 
shear rate controlled. Replot- 
ted from Van der Aerschot 
and Mewis (1992). 
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fractions (Figure 10.7.3). Then the mechanism of motion is creep 
rather than flow, meaning that a particle network exists at all times 
and that motion is based on subsequent local rearrangements of 
the structure. The pioneering work of Rehbinder and co-workers 
in this area should be mentioned (Fedotova et al., 1967). These 
authors measured systematic reductions in elasticity and viscos- 
ity at critical conditions of strain or stress. They were the first to 
measure dramatic drops in viscosity. A remarkable lo9 decrease 
for less than 10% change in shear stress is shown in Figure 10.7.3! 
At the highest shear rates, a Newtonian region is regained when the 
flocs cannot be broken down further. Another example of viscosity 
data on flocculated systems is shown for iron oxide in mineral oil 
in Chapter 2 (Figures 2.5.3 and 2.5.4). Recently some progress 
has been made in relating interaction forces to the viscosity curve. 
Especially for relatively weak interactions a square well approxima- 
tion for the potential can be used to correlate the data. (Woutersen 
and de Kruif, 1991). A somewhat different approach was followed 
by Buscall et al., (1990). 

A reversible change in floc structure requires a finite amount 
of time, resulting in time-dependent viscosities. This phenomenon 
is called thixotropy (Mewis, 1979). Figure 10.7.4 demonstrates 
the response of a thixotropic system to stepwise changes in shear 
rate. Under a sudden increase in shear rate, the viscosity gradually 
decreases while the structure breaks down to smaller flocs. If a 
sudden decrease is applied, the initial structural units are below the 
new equilibrium size and therefore they gradually grow, causing 
a gradual increase in viscosity. Qualitatively this behavior can be 
described by structural models, including a kinetic equation for the 
changes in structure. However, no adequate quantitative models are 
generally valid. Thixotropy can be understood on the basis of the 
underlying structure. Shear initially reduces the network to indi- 
vidual flocs, which are then gradually further reduced in size. The 
flow around and through an aggregate has been discussed by Adler 
(1978), who also attempted to calculate the resulting rheology for 
aggregating particles. Gradual erosion seems to be the dominating 
structural change. If the flow stops, the aggregates will grow again, 
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Figure 10.7.4. 
Shear stress transients for 
stepwise changes in shear rate 
(s-') for treated sepiolite (a 
claylike mineral): 0, 0.4 + 
20; 0, 4 + 20; e, 40 + 20; 
+ 1 -+ 10; x ,  4 + 10; 
@, 40 + 10. From Van der 
Aerschot (1989). 
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but by sticking together rather than by a reverse process of erosion. 
Hence breakdown and recovery of structure do not proceed through 
the same intermediate states, giving rise to a complex dependency 
of structure on shear history. This complexity can be detected by 
various techniques, including rheological (Mewis et al., 1975) and 
dielectrical (Mewis et al., 1987). 

Weakly flocculated systems are the most common encoun- 
tered in industry and, as we have seen, the most complex rheo- 
logically because of the flow-dependent floc size and long time 
constants. Such systems continue to be an active area of research. 

10.8 Summary 
Suspensions, especially colloidal suspensions, can display all 
known rheological phenomena from shear thinning or thickening to 
time-dependent normal stresses and strong extensional effects. Par- 
ticle shape, interparticle forces, and the resulting microstructure are 
responsible for this behavior. For dilute suspensions our theoreti- 
cal understanding is very good. Theories are emerging for both the 
structure and rheology of colloidally stable, concentrated suspen- 
sions. In addition, scaling principles, that can reduce and interpret 
many of the data are available. This progress has been confirmed 
with systematic measurements on well-characterized model sys- 
tems. Measuring problems arise with very concentrated systems 
and with large particles (migration, wall effects, nonlinearities). 

For flocculated systems the state of the art is less satisfactory. 
The role of the interaction forces is understood qualitatively, but 
quantitative models are still in their initial stages of development. 
Also, experimentally flocculated systems are more difficult to han- 
dle. They can cause inhomogeneities and instabilities because of 
extreme shear thinning. The complex effect of shear history and 
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the slow rate at which equilibrium is reached often make low shear 
data difficult to reproduce. It is also more difficult to test theories 
because of the difficulty in generating model systems whose prop- 
erties as well as structure are well characterized. The emergence of 
fractal and percolation theories provided new opportunities which 
are still being explored. Elasticity has been closely linked with 
percolating structures. Attempts have been made to link viscosity 
with fractal structures. Suitable approaches to manipulate com- 
plex rheological properties, such as yield stress and thixotropy, are 
essentially still lacking. Even measuring these properties is not a 
totally unambiguous process. 
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11 
RHEOLOGY OF 
POLYMERIC 

Given the complexity of 
polymer molecules, the theories 
are astonishingly simple, . . . it 

is reasonable to attack the 
problem of interacting 
macromolecules with a 

confrdence which would not 
be justified for say liquid 
benzene, let alone water. 

Masao Doi and 
Sam F: Edwards ( I  986) 

LIQUIDS 
Matthew Tirrell 

11.1 Introduction 
At one time or another, virtually everyone who has tried to syn- 
thesize, fabricate, or utilize polymeric materials has encountered 
the peculiar flow properties of polymeric liquids. Depending on 
the nature of the encounter, it may have been amusing, intellec- 
tually challenging, or totally exasperating. These adjectives more 
or less describe the relationship that has developed between poly- 
meric liquids (Figure 1 1.1.1) and the science of rheology. The study 
of the flow properties of polymeric liquids (polymer rheology or, 
more elegantly, macromolecular hydrodynamics) has been and is 

Figure 11.1.1. 
Model suggested by Kimmich 
et al. (1988) for a polyethy- 
lene melt. 
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an extremely incisive tool in elucidating various levels of macro- 
molecular structure. By the same token, accurate description, mea- 
surement, and classification of the flow behavior of macromolec- 
ular liquids is directly useful in polymer processing and has been 
a tremendous stimulus to the science of rheology. In this chapter 
we connect macromolecular structure to rheology. Our treatment 
is necessarily brief. For deeper treatments of this important and 
challenging topic, see Bird et al. (1987), Doi and Edwards (1986), 
or des Cloizeaux and Jannink (1990). 

11.2 Polymer Chain Conformation 
We begin by considering the liquid state conformation of a typ- 
ical synthetic polymer, such as a polymer chain consisting of n 
bonds of identical length 1 joined at fixed valence angles 8. Linear 
polyethylene or vinyl polymers (-CH2 - Cy"-),, fit this model 
rather well. Polymers with heterobackbone atoms, such as nylons 
and polyesters, can also be described by this model if n is taken 
as the number of repeat units, 1 the length of a repeat unit, and 8 
some average angle between repeat units (see Flory, 1969). The 
end-to-end distance vector r may be expressed as the sum of the n 
bond vectors 1. 

n 

r = El; 
i = l  

Then 

n n  

(1 1.2.1) 

(1 1.2.2) 

Now we must realize that the polymer chain conformation is dy- 
namic, constantly changing as a result of Brownian movement. If 
we wish to deal with some equilibrium conformational property of 
a macromolecule, we must define average properties such as 

n n  

If the chain were completely freely jointed (8 'unrestricted), 
then the average projection of one bond vector on any other, given 
by the average dot product 1; . l,, would be zero. Then 

- 

- 
1; . l j  = 0 for i # j 
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so 

(1 1.2.4) 
i = l  

Thelmportant result here is that the mean-square, end-to-end vec- 
tor 6 is proportional to chain length (molecular weight), n. This 
result also can be derived from consideration of a random walk of 
n steps of length I (Flory, 1953). If fixed valence angle 8 is consid- 
ered, the result is 

- 1 -case 
1 +case r2 = n ~ (  ) 

For the tetrahedral angle 6 = 109.5”, we get 

(1 1.2.5) 

( 1  1.2.6) 

and 7 is still proportional to molecular weight. For a complete dis- 
cussion of conformational statistics of macromolecules, see Hory 
(1953), Volkenshtein (1963), Birshtein and Ptitsyn (1966), Flory 
(1969), and Yamakawa (1971). 

Equations 11.2.4-1 1.2.6 describe what are termed the “un- 
perturbed” dimensions of polymer molecules, in reference to the 
conformation obtained in the absence of interactions with solvent 
or some imposed field, such as velocity gradient. Unperturbed 
dimensions exist in bulk amorphous or molten polymers or in so- 
lutions at the so-called theta temperature, To. For most synthetic 
polymers a characteristic ratio can be defined as 

(11.2.7) 

where the subscript o refers to unperturbed dimensions. Experi- 
mentally, C is found to be in the range 4-10 for most synthetic 
polymers (Flory, 1969), C increasing with chain stiffness. Note 
is still proportional to n, now with an empirical coefficient. 

Up to this point we have discussed only the effects of the 
chemical structure-that is, bond angles, bond lengths, and steric 
factors-on the size of a polymer molecule in a solution or melt. 
These are the factors that go into 3. It is also possible to describe 
the same factors in terms of an “equivalent freely jointed chain.” 
By this we mean the following. Suppose we write 

- 
r,” = N L ~  (11.2.8) 

where N and L refer to the number and length of what we call 
“statistical segments.” These segments may be made up of more 
than one monomer unit. Comparing eqs. 11.2.7 and 11.2.8 we see: 
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Figure 11.2.1. 
Vectorial representation in 
two dimensions of a freely 
jointed chain. A random 
walk of 50 steps. (a) Two- 
dimensional random coil rep- 
resented as a random walk. 
(b) Representation of a hin- 
dered chain in two dimen- 
sions. A random walk of 50 
steps with series between 
successive bonds limited to 
fn/2. The scale in (b) is 
identical to that in (a) for an 
unrestricted random walk of 
the same number of steps. 
From Flory (1953). 

We also know that N L  must equal nl; thus we obtain the relations 
L = Cl and N = n / C .  Therefore, the stiffer chain (higher C) may 
be said to have longer (and consequently fewer) statistical segments. 
This statistical segment idea is represented by the dashed lines in 
Figure 1 1.2. lb. 

Before turning to the flow properties, let us briefly discuss 
the effect of solvent on the conformations of polymers because 
conformations also affect the rheology. 

In addition to the effects of chain stiffness on 7, if a macro- 
molecule is placed in a good solvent, its average dimensions ex- 
pand, that is, 

- 
y 2  = (1 1.2.9) 

Polymer solution thermodynamics (Flory, 1953) also can be used 
to show that the expansion factor 01 is given by 

(1 1.2.10) 

where A is a combination of constants and thermodynamic param- 
eters, T is absolute temperature, and M is molecular weight. Two 
points here are relevant to our future discussion: (1) at T = To, 
a5 - a3 = 0 and 01 must be unity; therefore, r2 = r:, and un- 
perturbed dimensions are obtained; (2) above To, 01 is greater than 
1 and depends on molecular weight, at most to the 1/10 power. 
Nonetheless, for high molecular weight polymers, the hydrody- 
namic volume of a polymer can be increased by a factor of 5 or 
more on dissolution in a good solvent. These points will be im- 
portant in our discussion of the molecular weight dependence of 
polymer intrinsic viscosity. 

- -  
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11.3 Zero Shear Viscosity 
1 1.3.1 Dilute Solutions 

We can construct a useful and reasonably accurate theory of in- 
trinsic viscosity of dilute polymer solutions, building directly on 
the Einstein result for viscosities of dilute suspensions of spheres 
(Chapter 10). Recalling this result in a slightly different form: 

where n2/  V is number of molecules (n2) per unit volume of solu- 
tion (V), and Vsph is the volume of the molecular sphere. Clearly, 
n2/ V = c N A , / M ,  where c is concentration, M molecular weight, 
and NA, Avogadro's number. Now we need to decide on the ap- 
propriate Vsph for a randomly coiling macromolecule. It should be 
proportional to the cube of the root-mean-square end-to-end dis- 
tance: 

- 
(Vsph)random coil = kl (r2)3'2 ( 1 1.3.2) 

Combining, we get 

2.5 kl 
(1 1.3.3) rl - rls 

rls c 
-- 

M - [rll = 

The constants 2.5 kl and NA, are usually lumped into one constant 
called @ to give what is known as the Flory-Fox equation (Flory 
and Fox, 1951) 

- 
(11.3.4) 

( r2)3 /2  
[rll = 

Experimentally, @ is found to be approximately constant for all 
synthetic polymers with a value of 2.0 to 2.6 x mol-' . The best 
theory (Yamakawa, 197 1) predicts @ to be asymptotically constant 
at 2.25 x mol-' . From eq. 11.2.7,2 is proportional to M, so 
we have 

[rl] 0: M I f 2  (11.3.5) 

at the theta condition. Experimentally, intrinsic viscosity appears 
to depend on molecular weight, as the Mark-Houwink relation 
suggests: 

[ q ]  = K M a  (11.3.6) 

The constant a varies between 0.5 and 0.8 for different polymer- 
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solvent combinations. The theoretical justification for this variation 
can be seen by combining eqs. 1 1.2.9 and 1 1.3.4: 

(11.3.7) 

Since from eq. 11.2.10, a, o( M0.O to 

we can write 
and ( z ) 3 / 2 / M  c( M0.5, 

These results form the basis of utilization of intrinsic viscosity as 
a molecular weight measuring technique. Values of K and a from 
eq. 11.3.6 are extensively tabulated in the Polymer Handbook of 
Brandrup and Immergut (1989). 

It is worthwhile to keep in mind that this development treats 
the hydrodynamic (but not the thermodynamic) interactions be- 
tween polymer molecule and solvent as if the polymer were an 
impenetrable sphere. This seems to provide an accurate picture for 
dilute solutions, but certainly not the only imaginable one. The de- 
gree to which the medium permeates and flows through the domain 
of the polymer molecule (the nature of the hydrodynamic interac- 
tion) is a sophisticated and much-discussed problem in theoretical 
macromolecular rheology (Bird et al., 1987). 

Up to this point, we have neglected the effect of shear rate 
on the measured viscosity. More will be said about this later, but 
it is important to realize that we have been discussing zero shear 
rare intrinsic viscosity. Hydrodynamic forces are capable of per- 
turbing the average dimensions of a polymer molecule and will 
qualitatively alter the observed rheological behavior. As noted in 
Chapters 6 and 8, intrinsic viscosities are most often measured in 
gravity-driven capillary viscometers. Typical shear rates are of the 
order of 100 s-'. When planning an intrinsic viscosity measure- 
ment for molecular weight determination, care should be taken to 
ensure that data representative of zero shear rate behavior are ob- 
tained. It may be necessary to obtain values of [q] at several shear 
rates and extrapolate to zero shear rate. 

1 1.3.2 Nondilute Polymeric Liquids 
The intrinsic viscosity discussed in Section 1 1.3.1 is, strictly speak- 
ing, an infinite dilution value. To account for increasing solution 
viscosity with increasing concentration, an expansion in powers of 
concentration is usually used, as is also done to account for con- 
centration effects in suspension rheology: 

q = qs( l  + [qlc + k"qI2c2 + * a *I (11.3.8) 
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We see that the proper definition of [77] for polymers is 

Plots of ( q  - qs) /qsc  versus c are usually very linear at low 
concentration (justifying truncating the series), and the slopes of 
these plots are found to vary with solvent quality; [qI2k’ is known 
as the Huggins constant (Huggins, 1942) after the person who made 
this observation. Experimentally, k’ is independent of molecular 
weight for long chains, with values of roughly 0.30 to 0.40 in good 
solvents and 0.50 to 0.80 in theta solvents. 

The literature on viscosity of polymer solutions at low and 
high concentrations of polymer suggests very clearly that two fun- 
damentally different types of intermolecular interaction need to be 
considered (Graessley, 1974). We have seen that the viscosity be- 
havior of low concentration solutions in many ways resembles that 
of a suspension of discrete rigid particles. As concentration is in- 
creased from infinite dilution, intermolecular effects are introduced 
by the interactions of the flow fields in the neighborhood of each 
molecule, as in the case of rigid particles (Section 10.5; see also 
Happel and Brenner, 1965). This interaction seems to depend on the 
volume occupied by the molecules, or alternatively, on the degree 
of overlap of the individual molecular domains. If we have n2/ V 
interpenetrable polymer molecules per unit volume, then n2 Vsph/ V 
loses its artificial interpretation of eq. 1 1.3.1 as an “equivalent hard 
sphere” volume fraction and now in a more concentrated regime 
represents the average number of other molecules with centers ly- 
ing within the pervaded volume of any one molecule. From eqs. 
11.3.2 and 11.3.3 

and using n2/ V = cNA,/M, we get 

( 1 1.3.9) n2 
V 

-vsph = 0.4 C[v] 

So we see that a good rule of thumb for predicting when con- 
centration effects will become important is when the coil overlap 
parameter c[v]  (or c M a )  is near unity. 

A relation that fits viscosity data well in the coil overlap 
region is the Martin equation: 

(1 1.3.10) 

Note that if k = k’, eq. 11.3.8 may be viewed as a power series 
expansion of eq. 11.3.10. Experimentally, k is often quite close 
to k’. 

RHEOLOGY OF POLYMERIC LIQUIDS / 481 



1 1.3.3 Coil Overlap 
A second source of intermolecular interactions arises from segment- 
segment contacts between molecules. This mode of interaction has 
become popularly known as entanglement. 

We have more to say about entanglement later. Here we note 
that in practice, the coil overlap considerations leading to eq. 1 1.3.9 
seem to be the dominant type of intermolecular interaction in the 
concentration range 1 < c [q ]  c 10. Figure 11.3.1 shows some 
data correlated with the use of the Martin equation (eq. 11.3.10). 
Above c [q ]  w 10, this second mode of interaction known as en- 
tanglement begins to dominate, and other viscosity correlations are 
more effective. 

It is useful to think about the various concentration regimes as 
illustrated in Figure 11.3.2 for a thermodynamically good solvent. 
We refer to the concentration regimes, following deGennes and co- 
workers (1979) as dilute (c x c*),  semidilute (c* < c < c’), and 
concentrated (c =- c* )  . We can estimate where these boundaries 
occur and gain much useful information about polymer conforma- 
tional properties through the use of a sort of dimensional analysis 
which physicists call scaling laws. Equations 11.2.9 and 11.2.10 
can be combined to show that, in very good solvents (a! >> 1): 

Figure 11.3.1. 
Viscosity at various con- 
centrations and molecular 
weights in the low to mod- 
erate concentration range. 
Polystrene4ecalin and p l y -  
methyl methacrylate-xylene 
are theta or near-theta sys- 
tems; the remainder are good 
solvent systems. Note that 
the c [q ]  reduction is some- 
what better in theta solvents, 
and that the Martin equation, 
which would give a straight 
line in the figure, is a some- 
what better representation for 
theta solvents. Adapted from 
Graessley (1 974). 

- 
.,’ rv M1.2 (1 1.3.1 1) 

The symbol - signifies “depends on” and is meant to give a func- 
tional dependence, not an equality. Thus eq. 1 1.3.1 1 states that the 

lo2 

loo 

PMMA-Chlorobenzene 

0 2 4 6 8 1 0  

c [rll 

482 I RHEOLOGY 



Figure 11.3.2. 
Concentration regimes in 
good solvents. 

C < C *  

Coils have 
infinite dilution 
radii 

mean-square, end-to-end distance depends on molecular weight 
(chain length) to the 1.2 power. This is an example of a scaling 
law derived from fundamental physical arguments. What we hope 
to do now is derive further functional dependences from this law 
combined with some plausible physical insights. 

A simple illustration is an estimation of the overlap threshold 
c*. We expect c* to be comparable with the local concentration 
within a single chain, thus 

( 1 1.3.12) 
no. of monomer unitskhain M 

C* = -- 
pervaded volumekhain (7 )3 /2  

or using eq. 1 1.3.1 1 

1 - M-4/5  - -in good solvents ( 1  1.3.13) 
M 

( M  1.2)3/2 [VI 
c* - 

(The readers should convince themselves that this is essentially the 
same argument that led to eq. 1 1.3.9.) We can go further to obtain 
information about the semidilute regime. A quantity of interest 
here is the correlation length 6 ,  that is, a mean distance between 
monomer units (Figure 11.3.3) on separate chains. 

We can determine how 6 varies with concentration from scal- 
ing arguments and a few simple physical considerations. First, we 
expect that for c > c*, the solution structure on the length scale 
will not depend on molecular weight because we are looking only 
at rather small sections of the molecule. Second, at c = c*, we 

' 

approximately the same as the isolated coil size 
Thus we are led to the scaling form: 

c = c* 

Coils begin to 
overlap; no 
contraction 

( 1  1.3.14) 

(1 1.3.15) 

C * < C < C ?  C = C S  C > C S = p  

Coils contract Coils achieve E mean coil 
8 dimensions, 0 size 
no further 
contraction 

(c) (dl (el 

RHEOLOGY OF POLYMERIC LIQUIDS / 483 



Figure 11.3.3. 
Magnified view of Figure 
11.3.2a-c. 

By our first supposition that { is independent of M, we must then 
choose m so that this is so: 

(1 1.3.16) 
3 
4 

m = - and 6 - c-3/4 

Thus the average distance between monomers decreases like 
c-3/4 above c*. This can be measured experimentally by scattering, 
and data support this scaling law (Wiltzius et al., 1983). 

We can also use these techniques to determine how the radius 
of an individual coil changes with concentration. Look at Figure 
1 1.3.4. We visualize an individual chain as a succession of “blobs”, 
each of molecular weight Mb. Inside each blob the coil is swollen 
so that the contour length of the coil (and therefore Mb) within each 
blob is related to the size of the blob 6 by 

6 - (1 1.3.17) 

where N b  is the number of monomer units per blob ( N b  = Mb/M,) .  
Using eq. 11.3.16, we find 

N~ - c-514 (11.3.18) 

At distance x >> 6 ,  the chain is ideal; thus, we can use the 

Figure 11.3.4. 
Representation of polymer 
chains as a series of blobs of 
molecular weight Mh. 

blob (g monomers) 
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Figure 11.3.5. 
Chain dimensions versus 
concentration according to 
the proposal of Daoud et al. 
( 1975) and Graessley ( 1980). 

statistical segment idea of eq. 11.2.7 to express the mean-square, 
end-to-end distance 

(1 1.3.19) 

where n is the total number of monomer units per chain; hence 
n/& is the number of blobs or statistical segments, and the length 
of a blob is the length of a statistical segment. Combining the 
resultsofeqs. 11.3.16, 11.3.18,and 11.3.19, wefind 

(1 1.3.20) 

Thus, in the semidilute regime the coils shrink with concentration 
according to c-Il4. This shrinking has been observed experimen- 
tally by Daoud et al. (1975): see Figure 11.3.5. 

Shrinking does not continue indefinitely; the chain reaches 
its unperturbed minimum (6) dimensions at concentration cs. From 
eq. 11.3.20 we expect 

- 1 14 
rZ(c) = 7 ( 0 )  (") 

C 
(11.3.21) 

Thus we further expect 7 ( c )  to reach its 6 value at c = cs, so 

( 1 1.3.22) 
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or 

or 

c$ = C*(r*(O) 

So the molecular weight dependence of c$ is 

(11.3.23) 

(11.3.24) 

That is, cs is independent of molecular weight. Its magnitude can be 
estimated by combining eqs. 11.3.12, 11.2.10, and 11.3.24. Figure 
11.3.5 plots T ( c )  versus log (c). 

As we shall see, the transition from nonentangled to entan- 
gled rheological behavior requires a minimum molecular weight 
independent of concentration and, for any given molecular weight 
entanglement may occur before or after cs, the semidilute to con- 
centrated transition. The various regimes are illustrated in Figure 
1 1.3.6. 

10 Figure 11.3.6. 
Concentration-molecular 
weight diagram of viscoelas- 
tic regimes for polybutadi- 
ene in a good solvent. After 
Graessley (1980). 

lo5 

M 

10 

Concentrated 
entangled 

\ Concentrated 
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11.4 Rheology of Dilute Polymer Solutions * 

To obtain more insight into factors governing macromolecular hy- 
drodynamics, it is useful to study the dynamics of some simplified 
model macromolecules, which come in varying degrees of com- 
plexity. We discuss only the simplest to see what kind of useful 
information can be obtained. 

What we are trying to do is examine how macromolecular 
structural features are altered by hydrodynamic forces and how this 
in turn affects the macroscopic rheology of the bulk fluid containing 
them. What macromolecular features are we trying to include? At 
the least, we should examine the dynamics of a model that stretches 
and aligns like a random coil, has viscous drag interactions with 
the solvent, and has the springiness or entropy elasticity associated 
with macromolecular conformation. The tools we use to formulate 
our model will be those of statistical mechanics, but they should be 
readily comprehensible. 

1 1.4.1 Elastic Dumbbell 
We analyze the rheology of elastic dumbbell suspensions. This is 
the simplest kinetic theory system that can be studied and serves 
as an introduction to the flexible chain molecule theories of Rouse, 
Zimm, and others. We consider a dumbbell consisting of two 
“beads,” labelled “1” and “2,” joined by a “connector,” which we 
will take to be elastic (see Figure 11.4.1). The position and ori- 
entation of the dumbbell are specified by the position vectors of 
the centers of the two beads with respect to a laboratory-fixed co- 
ordinate system; these are designated rI and r2, respectively. In 
place of rl and r2 it is usually convenient to use a position vector 
r, = (1 / 2)(rl + r2), which gives the location of the center of 
mass of the dumbbell, and a vector R = r2 - rl , which gives the 
interbead separation and orientation of the dumbbell. The vector 
R has components X I ,  x2, and x3 in Cartesian coordinates. 

Next we summarize the parameters used to characterize the 
dumbbell suspension: 

t7s = 

no = 
m =  
c =  

the viscosity of the Newtonian solvent in which the 
dumbbells are suspended 
the number of dumbbells per unit volume 
the mass of one bead of the dumbbell 
the friction coefficient of a bead as it moves through 
the solvent; this is defined as the force acting on the 
bead divided by the velocity of the bead with respect 
to the solvent; if Stokes’ law is used, then 6 = 
6nqsr, where r is the radius of the bead 

*For a more complete treatment of this subject, see Bird et al. (1987). 
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Figure 11.4.1. 
Elastic dumbbell. 

H = the spring constant of the Hookean spring, which we 
assume joins the two beads; in other words, we are 
assuming that the tension in the connector FC is given 
by a linear spring law FC = HR, where force is pro- 
portional to separation 

So what do we have so far? We have a model macromolecule that: 
(1) has viscous drag interactions with the surrounding solvent, (2) 
has variable R, which describes how the macromolecule stretches 
and aligns when subjected to flow, (3) accounts for elasticity with a 
spring connector, and (4) includes the possibility for concentration 
and molecular weight effects through no. 

The dumbbells are to be suspended in a Newtonian solvent 
that is flowing with some kind of velocity distribution. For ex- 
ample, for shear flow the velocity distribution is u1 = kx2;  for 
uniaxial extension flow u1 = 2ix1,  u2 = 4 x 2 ,  u3 = 4 x 3 .  Both 
kinds of flow are homogeneousflows for which the velocity com- 
ponents are linear combinations of the Cartesian coordinates [or to 
put it differently, the rate of deformation tensor D = (Vv + Vv') 
is independent of position]. Hence, if we wish to formulate a ki- 
netic theory valid for shear flows, elongational flows, and some 
other flows as well, we might as well set up the theory to handle all 
homogeneous flows. This means, then, that we consider a solvent 
velocity distribution given by v = K . r, where K is a traceless 
tensor (K has to be traceless because we are considering only in- 
compressible fluids for which V . v  = 0). Written out in component 
form the solvent velocity field is 

Specification of the K ' s  then gives the flow field. 
To develop a theory for dilute solutions, we can consider that 

the dumbbells all move independently. We further assume that the 
effect of the suspended dumbbells on the rheological properties of 
the solution can be obtained by finding the statistical contribution of 
one dumbbell. The dumbbell on which we focus our attention will 
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be located with its center of gravity at the origin of the coordinate 
system r = 0; there v = 0, and it is assumed that the center of gravity 
of the dumbbell does not drift away from r = 0. 

If the dumbbell is in a solvent with v = 0 everywhere (a fluid 
at rest), the dumbbell nonetheless will rotate continually because 
of the Brownian forces acting on it. However, all angular orienta- 
tions are equally likely. On the other hand, if the solution is being 
sheared, then the dumbbells will tend to be aligned and all orien- 
tations are not equally likely. This idea leads to the notion of a 
distribution function, which we will call Q(R,t). This function has 
the meaning: 

Q(R,t)dR is the probability that at time t ,  the dumbbell will 
have a configuration (a bead-bead separation vector) in the 
range between R and R + dR.  

This formulation is adequate if the molecule does not experience 
spatially varying external fields. 

In other words, if we have a collection of similar systems 
[i.e., systems consisting of one dumbbell with its center of grav- 
ity at r = 0 in the flow field v = (KT)], then *(XI, x2, xg, t )  
dxIdx2dx3 gives the percentage of systems in the collection whose 
bead-bead separation vector has components in the ranges x1 to 
XI + d x l ,  x:! to x2 + dx2, and x3 to x3 + dx3. Clearly, for ev- 
ery specified flow situation (steady shear flow, oscillatory shear 
motion, stress relaxation after cessation of steady shear flow, elon- 
gational stress growth, etc.), Q(R, t )  will be different. Once Q(R,t)  
is known, the stresses can be found. Hence, we have to know how 
the stresses are related to the distribution function Q(R,t) ,  and we 
have to know how to get Q(R,t) .  

For dumbbell suspensions the main outline of this story can be 
told rather simply although no attempt will be made to give detailed 
derivations since they may be found elsewhere (Kirkwood, 1967; 
Bird et al., 1971, 1987). The basis of the kinetic theory involves 
just three equations, which we now summarize for dumbbells with 
any kind of connector (rigid or elastic). 

Equation of Motion (or Force Balance) for the Beads 
We can write an equation of motion for each bead in the form 

mass x acceleration = viscous drag + Brownian motion 
force + force of one bead on 
another through the connector 

When these two equations are written down, the equation for bead 
“2” may be subtracted from that for bead “1” to get an equation in 
terms of the bead-bead separation vector: 

a 
m R  = e(R - [K . R ] )  - 2kT-1nQ - 2F‘ (1 1.4.1) 

aR 
inertial viscous Brownian connector 

or drag or tension 
acceleration fluctuating 
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The Brownian motion term involves the distribution func- 
tion Q(R,t). Whereas the flow field tends to orient the parti- 
cles, the Brownian forces tend to randomize the orientations. The 
term in R may be omitted because accelerations are usually quite 
small. The quantity F‘ cannot be specified until the force law 
for the connector is known. For our case with Hookean springs, 
FC = HR. The notation a/aR means the vector having components 
(a lax , ,  a /axz ,  a/ax3) ,  that is, the gradient operator in R space 
(the configuration space of the molecule). 

Equation of Continuity for @(R,t) 
When a dumbbell leaves one orientation, it has to end up in another 
orientation. This simple idea enables us to write an equation of 
continuity for the distribution function. The derivation is quite 
similar to that of the equation of continuity in hydrodynamics. The 
result is 

-=-(&.Rw) aw 
at 

(1 1.4.2) 

When eq. 11.4.1 is solved for R and the result substituted into 
eq. 11.4.2, we get a partial differential equation for @. This “dif- 
fusion equation,” as it is often called, must be solved after the flow 
field (the K ’ s )  has been specified. 

2kT a 2 
aR c [ K . R ] @  - -- ~ aR@ - -F‘@] (11.4.3) - aw 

at 
_ - _ - .  

Expression for the Stress Tensor 
The stress tensor t of the dilute suspension will be made up of 
two parts: ts,  the solvent contribution (which is just qs(2D) for a 
Newtonian solvent), and t,,, the particle (or polymer) contribution. 
The particle (i.e., the dumbbell in this case) in turn will contribute 
in two ways to the stress transmitted across an arbitrary plane in 
the fluid: 

. Any dumbbell that straddles the plane will contribute to the 
stress because of the tension in the connector (Figure 1 1.4.2a). 
. Any bead that flies across the plane will contribute to the 
stress because of the momentum transported by the bead itself 
(Figure 11.4.2b). 

When these two ideas are translated into mathematical terms (Bird 
et al., 1987), the final result is: 

r p  = no -= F‘R > + n,kT I (11.4.4) 

particle connector momentum 
contribution tension transported 

to stress contribution by beads 
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Figure 11.4.2. 
(a) Stress contribution by 
connector tension. A dumb- 
bell of orientation R inter- 
sects an arbitrary plane in 
a suspension of dumbbells; 
the plane is moving with the 
local fluid velocity u.  The 
magnitude of the vector R is 
equal to the distance between 
the centers of the beads, and 
n is a unit vector normal to 
the plane. (b) Stress contri- 
bution by bead convection. A 
bead of a dumbbell crosses 
an arbitrary surface and con- 
tributes to the stress tensor T 
(From Bird et al., 1971). 

We see that the second term on the right-hand side contributes 
only an isotropic pressure to the total stress. We also see that if the 
Hookean spring law is used, we get 

r p  = n,H < RR > + n,kT I (11.4.5) 

where RR is a tensor formed by taking the “dyadic” product of R 
with itself. The “dyadic” has the following components: 

So we see that the stress contribution is related to the average dimen- 
sions of the molecule in the three directions. Specifically, for simple 
shear flow, u1 = yx2, the shear stress component tp,2 is given by 
the average product of the molecular dimensions in direction of 
flow (1) and direction of the velocity gradient (2). respectively: 

tp,2 = n,H < ~ 1 x 2  > (1 1.4.6) 

Thus a positive first normal stress difference reflects an ex- 
pansion of the molecular dimensions in the flow direction (1) rela- 
tive to those in the direction of the velocity gradient (2): 

and a negative second normal stress difference implies an effective 
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contraction of the dimensions in the (2) direction relative to those 
in the (3) direction: 

c€ 

< RR >= / 1 / RR Y(R, t)dxldx2dx3 
-m 

This can be taken as the deBnition of an average value, that is,* 

m 

< X >= / / X Y(R, t )  dxldx2dx3 
-m 

This value seems to require knowledge of the distribution function 
\I, by solving the partial differential eq. 11.4.3. We can get around 
this requirement by multiplying eq. 1 1.4.3 by RR and integrating 
both sides. This gives a differential equation for < RR >, not 
containing W: 

a 4kT 4 
- < RR > -(KT. < RR >)-{< RR > *K) = -I-- < RF" > 
at 6 4  

(11.4.9) 

Since K is homogeneous, VK = 0. Thus, the left-hand side is the 
upper-convected time derivative referred to in Chapter 4 (eq. 4.3.2), 
which is often designated by v over the tensor 

V 4kT 4 < RR >= -1 - - < RF" > 
4 6  

or for a Hookean spring: 

V 4kT 4H 
< R R > = - I - - < R R >  

6 6 

(1 1.4.10) 

( 1  1.4.1 1) 

Combining this with eq. 1 1.4.5, we can get an equation for the stress 

( 1  1.4.12) 

V 
(Note that I = -2D.) 6/4H has the units of time and is referred 
to as the relaxation time for the dumbbell, A. 

( 1  1.4.13) 

This is the constitutive equation or rheological equation of state 
for the elastic dumbbell suspensions. It is identical to the upper- 
convected Maxwell model, eq. 4.3.7. The molecular dynamics have 
led to a proper (frame-indifferent) time derivative and to a definition 

V 
tp + A t p  =- nokTA2D 

*Nore that this definition of the average is equivalent to that given in eq. 11.2.3 
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of the relaxation time in terms of the molecular parameters 5 and 
H. It is easy to show that H = 3kT/ < r,' >, so that the relaxation 
time is given by 

( < r , ' >  
12kT 

A =  (1 1.4.14) 

The rheological predictions that derive from this simple molecular 
model are very similar to the upper-convected Maxwell model; see 
example 4.3.3. Recall that r = r ,  + r p  = qs 2D + r,,. We obtain: 

Steady shear viscosity 

(1 1.4.15) TI2 

Y 
rl = - = qs +nokTA 

First normal stress coefficient 

~ I I  - ~ 2 2  

Y 2  
$1 = - = 2nokTA2 

Second normal stress coefficient 

r22  - r33 
$ 2 = - = 0  

Y 2  

(1 1.4.16) 

(1 1.4.17) 

We see first of all that this model predicts independent of 
shear rate. This serious deficiency results from the oversimplified 
molecular model. There are four classes of intramolecular effects 
(we are still saving the intermolecular effects until later) we have not 
included; when they are included, however, they will give a shear 
rate dependent viscosity (Williams, 1975; Larson, 1988) incorpo- 
rating: (a) hydrodynamic interaction, (b) reduced excluded volume 
effects, (c) nonlinear spring force law, and (d) internal viscosity. Ef- 
fect a refers to the perturbation of the velocity field in the vicinity 
of a bead by the presence of a nearby bead. These effects have 
been incorporated into the Zimm model version of the bead-spring 
theory (Zimm, 1956). Zimm uses the Oseen tensor (Happel and 
Brenner, 1965) to model these hydrodynamic interactions between 
beads. Effect b refers to the expansion of the coil by deformation 
and the consequent reduction of intramolecular segment-segment 
contacts. Effect c results from the fact that a real coil is not in- 
finitely extendable and frequently is embodied theoretically by the 
Finite Extensibility Nonlinear Elastic connector force, which is a 
connector of variable stiffness from the elastic dumbbell (b = 00) 

to rigid rod (b  = 0), where b = HRi/kT (Bird et al., 1987). 
Effect d refers to the polymer coil sluggishness of the response of 
the polymer coil to the deforming forces. Inclusion of any of these 
effects leads to shear thinning viscosity prediction. This behavior 
is, of course, experimentally observed (Figure 11.4.3). 

This simple model does predict a finite positive first nor- 
mal stress coefficient in qualitative agreement with observations. 
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Figure 11.4.3. 
Illustration of shear thin- 
ning. Experimental data 
of intrinsic viscosity of 
a series of monodisperse 
poly (a-methylstyrene) 
samples in toluene: 
(filled in square M = 
694,000; square M = 
1,240, OOO; circle M = 
1,460, OOO; filled in circle 
M = 1,820, OOO, the data 
being taken from Noda et al. 
(1968). The theoretical re- 
sults for Hookean and rigid 
dumbbells also are shown; 
the other four curves are 
the theoretical results for the 
FENE dumbbells for several 
values of the dimensionless 
stiffness parameter b. From 
Bird et al. (1976). 

1 .o 

zo 0.95 
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n 
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0.90 

I I 1 I I 
Hookean dumbbell 
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Second normal stress coefficients have not yet been reliably de- 
termined, and thus eq. 11.3.17 is difficult to evaluate at this time. 
They do seem to be finite, small (- 0.1 N I ) ,  and negative. 

The elongational viscosity prediction is 

3nokTA 
tle = 3tls + 

(1 + A€)(l - 2A€) 
(1  1.4.18) 

giving an qe that increases with k, going to 00 as k + 1 / 2A. 
This is also presently difficult to evaluate experimentally because a 
steady constant strain rate elongational flow is difficult to achieve. 

The dynamic properties are 

nokTA G" 
1 + A2wZ w 

= -  (1 1.4.19) tl' = tls + 

nokTA2w G' 
1 + A W  w 

-- q'' = - ( 1  1.4.20) 

Plots of some of these functions are shown in Figure 11.4.4. The 
qualitative behavior is quite reasonable. 

Figure 11.4.4 shows that experimentally ~ ( p )  and ~ ' ( w )  and 
Ir]*(w) I are all very similar functions. Other predictions for some of 
the linear viscoelastic functions are recoverable steady state shear 
compliance 

nokTA2 - (1 1.4.21) Yr J f = - -  
ro (vS +nOkTAl2 

and stress relaxation modulus 

(1  1.4.22) 
1 
3 

G ( t )  = - nOkTe-'lA 
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Figure 11.4.4. 
Dynamic viscosity, absolute 
complex viscosity, and steady 
state viscosity for narrow dis- 
tribution polystyrene. Data 
obtained at 25°C on a 0.071 
g[mL solution of polystyrene 
(M, = 860,000) in Aroclor 
316. Adapted from Bird et al. 
(1976). 

The final prediction that comes from the model of the Hookean 
elastic dumbbell concerns the molecular conformation changes in- 
duced by flow. In shear flow the prediction is 

(1 1.4.23) i l  - = 1 + 2P2h.2 

(1 1.4.24) 

Thus, in contrast to the constitutive relations, which have their ori- 
gins in continuum mechanics, molecular theories give results on the 
conformational properties as well as the macroscopic rheological 
properties. 

1 1.4.2 Rouse and Other Multibead Models 

The results of the simple Hookean elastic dumbbell lack realism 
because they have only a single relaxation time. This is the chief 
virtue of the Rouse model (Rouse, 1953; Ferry, 1980). It consists 
of N beads connected by N - 1 linear springs (refer back to Figure 
1 1.4.1). Its rheological predictions are exactly the same as those in 

eqs. 1 1.4.15-1 1.4.22 if h is replaced by hi and C is inserted before 
N 

i=l 
all terms involving hi.  This introduces the idea of a relaxation time 
distribution where 

for large N (1 1.4.25) 
h 

2 sin2(in/2N) 
hi = 

1 .o 

0 
lo2 lo3 

+* or a* (dimensionless shear rate or frequency) 
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Equations for J,“ at G(t) now are 

Figure 11.4.5. 
“Breadth” of relaxation pro- 
cess even for a monodis- 
perse polymer: loss mod- 
ulus versus log frequency 
for a narrow distribution 
polystyre_ne melt reduced to 
160°C (Mu, = 21,500). The 
dashed line is an approxi- 
mate resolution of the ter- 
minal relaxation peak. The 
constructed line (- . - + -) 
is G” versus w calculated 
from the Rouse model. From 
Graessley (1974). 

This is an improvement in fitting the data on linear viscoelastic 
properties (see Figure 11.4.5) but does not help in the lack of non- 
linear prediction. We see that the recoverable shear compliance is 
governed by the breadth or relative spacings of the relaxation time 
distribution. It is important to realize that the idea of a relaxation 
time distribution is independent from the idea of a molecular weight 
distribution. Even a monodisperse polymer sample will have a dis- 
tribution of relaxation times as a result of the various internal de- 
grees of freedom or modes of motion of the chain molecule. For 
the bead-spring models all the relaxation times are of the form 

6 A+- 
4H 

which are readily related to measurable molecular properties (Ferry, 
1980) 

I 

1 o-2 10-l loo lo1 lo2 

0 (d) 
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Figure 11.5.1. 
Stress relaxation modulus 
for methyl acrylate-methyl 
methacry late copolymers. 
Dashed line illustrates a typ- 
ical Rouse theory prediction. 
Adapted from Fujino et al. 
(1961). 

where q0 is the zero shear viscosity. Note that h depends basically 
on molecular weight and temperature. 

11.5 Concentrated Solutions and Melts * 
As we move away from dilute solutions to more concentrated sys- 
tems, we can no longer look at isolated molecules, and a significant 
theoretical problem is: How does one model intermolecular entan- 
glement? Before attempting to answer this question, let us look at 
some experimental evidence indicative of entanglement. 

1 1.5.1 Entanglements 
Look at Figure 1 1.5.1. The plateau between log E = 6 and 8 is due to 
entanglements. The Rouse theory (surprisingly!) is able to model 
the terminal (long time) portion of this type of curve rather well, 
but shows no plateau. This is due to entanglements. They are very 
pronounced in the G’ data of Figure 11.5.2. These entanglements 
also show up as an additional loss peak (Figure 11.4.5) in tan S or 
G”. There is a new relaxation appearing for polymer liquids above a 
critical molecular weight and/or concentration. The Rouse theory 
is unable to account for this because it considers intramolecular 
effects only. 

Figure 11.5.3 shows another important feature of macro- 
molecular rheology in the entanglement regime. That is, an abrupt 
change in slope of the zero shear viscosity-cM curve. This break 

I 

h 

“E 

R P 

3 
a 
w 
W 

I I 

1 0 - l ~  loo lo5 10 lo 

*This section relies heavily on reviews by Graessley (1974, 1982). 
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also occurs in the zero shear viscosity-molecular weight curve for 
polymer melts (see Figure 11.5.4). It can be seen that 

9 

8 -  

Figure 11.5.2. 
Storage modulus versus fre- 
quency for narrow distri- 
bution polystyrene melts 
of increasing molecular 
weight, reduced to 160°C by 
temperature-frequency super- 
position. Molscular weight 
ranges from M, = 8900 
(L9) to M, = 581,000 (L18). 
From Onogi et al. 1970). 

PS 160°C 

n 
e4 

3 

q0 = K M3.4 M > M ,  

where M, is the molecular weight at the break point. M ,  has been 
interpreted as being a critical molecular weight for the formation of 
effective entanglement couples. Other methods exist for estimating 
the spacings between entanglement couples from linear viscoelastic 
measurements (Ferry, 1980). 

Entanglements have become part of the folklore of polymer 
science; the idea they represent is a particular type of intermolecular 
interaction, to be distinguished from the coil overlap type of inter- 
action mentioned earlier. However their exact topological character 
is quite difficult to define. 

Entanglements arise from segment-segment contacts between 
molecules. The number of intermolecular contacts per unit volume 
is proportional to cz. Since the number of polymer molecules per 
unit volume is proportional to c / M ,  the number of intermolec- 
ular contacts per molecule is proportional to c M .  Thus we see 
that because c [q ]  or cM' (coil overlap) and c M  (entanglement) 
involve different combinations of c and M ,  in principle it should 
be possible to experimentally distinguish between the two types of 
interactions. Figure 11 5 5  compares both data reduction schemes 

7 -  

1 I I I I I I I I 
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Figure 11.5.3. 
Viscosity versus the prod- 
uct c M ,  for polystyrenes at 
concentrations between 25 
and 100%. Data at the vari- 
ous concentrations have been 
shifted vertically to avoid 
overlap. From Graessley 
(1974). 

I I I I 
lo3 lo4 lo5 lo6 

C 4 W  

for concentrated polymer solutions ( c [q ]  =- 10); the cM correla- 
tion deduced from entanglement considerations is clearly superior 
in the concentrated regime. 

We will mention only the barest essential features of the nu- 
merous entanglement theories (Graessley, 1974). We begin with 
the first theoretical attempt to capture the entanglement effect. It 
is necessary to know what factors control the number of entangle- 
ments per unit volume, the entanglement density, in steady flow. 
Relative motion is imposed on the system as molecules, which had 
been close enough to entangle extensively, separate. The net num- 
ber of entanglements for any particular molecule, therefore, must 
depend on its rate of entanglement formation with approaching 
molecules. Thus, the entanglement process may be conceptualized 
as a kinetic process. If the entanglement process is modeled as a 
first-order kinetic process (Lodge, 1956), then some of the elastic 
character associated with entanglements is well-mimicked, but a 
shear rate independent viscosity function is obtained. However, 
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Figure 11.5.4. 
Qpical viscosity-molecular 
weight dependence for molten 
polymers. x ,  is proportional 
to the number of backbone 
atoms and M,. From Berry 
and Fox (1968). 

" 
0 1 2 3 4 5 6  

log 1 0 ~ ~ ~ ~  

we should realize from our earlier discussion that entanglement ki- 
netics should not even be expected to be a first-order process, since 
by nature, entanglement is a bimolecular process. 

Imagine two initially widely separated chains, rapidly brought 
together and maintained at some fixed (center-of-mass) separation. 
Although considerable overlap in domains occurs, one can imag- 
ine the chains being relatively undisturbed in a gross sense by each 
other's presence. To a casual observer both chains exhibit ran- 
dom thermal motions, and nothing essential changes with time. 
However, a change is occurring in that the chains are becoming 
increasingly entangled. This might be observed (hypothetically) 
by attempting to separate the chains after some passage of time 
and noting the initial amount of force resisting the separation. (See 
Figure 11.5.6a.) 

This process may be understood by noting that for any pair of 
chains close enough to entangle extensively, the majority of confor- 
mations available to the two chains furnishes a high entanglement 
density. However, at the instant the chains are brought together, the 
conformation is necessarily an improbable one because it involves 
no entanglement. Thus the passage of the pair to a high entan- 
glement density involves a succession of diffusive rearrangements. 
The chains enter progressively more probable states with respect to 
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Figure 11.5.5. 
Viscosity versus (a) C M t 6 8  
and (b) caw for polystyrenes 
at concentrations between 25 
and 100%. The data have 
been shifted vertically to pro- 
duce superposition at high 
molecular weights. From 
Graessley (1 974). 
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entanglement density, approaching some equilibrium entanglement 
density as the conformations become increasingly independent of 
the initial conformation. 

The formation of entanglements between chains requires the 
thermal motion of rather sizable sections of the chains. Further- 
more, at least two or three sequential movements should be nec- 
essary to produce loops for entanglement. Thus, entanglement 
kinetics may be sluggish initially; on the other hand, once entan- 
glement has begun to occur, a relatively rapid growth to the equi- 
librium amount of entanglement is to be expected. The series of 
random motions required to form the first entanglement loop leads 
to other entanglement loops nearly simultaneously. Furthermore, 
other sections of the same chains would be diffusing also and would 
be expected to begin producing entanglements at approximately the 
same time. Figure 11.5.6b shows qualitatively the presumed be- 
havior of the entanglement density with time, averaged over many 
pairs of chains. This type of process is known in physics as a 
cooperative process. 

Returning to the system of molecules in steady flow, we 
can see that the entanglement density between any two passing 
molecules will depend on the characteristic time necessary for 
entanglement compared to the “contact” time between the two 

0- 

8 
0- 
0 

0 
0 

0- 
0 

8 
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molecules. Two molecules may be thought of as approaching each 
other in a shear field. When they are sufficiently close, entan- 
glements begin to occur at a finite rate. As the molecules pass, 
disentanglement occurs. An entanglement density for the bulk ma- 
terial may be defined to characterize the number of entanglements 
that exist at any instant, averaged over the material. For an en- 
tanglement to exist, two molecules must first be within a certain 
distance of each other. Second, the molecules must remain within 
this sphere for a finite time; otherwise, no entanglement will oc- 
cur. The greater the shear rate, the more rapidly two molecules 
move relative to each other. Hence, the entanglement density is 
reduced by high shear rate, because fewer molecules will remain in 
the “entanglement sphere” for a sufficiently long time at high shear 
rate. 

This model, which was among the very first proposed to 
explain some aspects of entangled polymers, is mainly aimed at 
understanding some of the important and dramatic, nonlinear rhe- 
ological properties, particularly the shear rate dependence of vis- 
cosity (Graessley, 1974). The approach was difficult to extend to 
viscoelastic effects quantitatively and has been abandoned in favor 
of the reptation model. 

1 1 S . 2  Reptation Model 

In 1971 DeGennes proposed a new model for molecular motion 
in concentrated polymer systems, one that now dominates all the- 
oretical considerations (Lodge et al., 1990). His model is known 
as “reptation” because it describes macromolecular motion much 
like that of a snake moving in a contorted “tunnel” formed by the 
surrounding polymer molecules (Figure 11.57). The basic idea is 

Figure 11.5.6. 
(a) Schematic of an entangle- 
ment and (b) plot of entangle- 
ment density versus time. 

/ 
I 
\ 
\ 

502 I RHEOLOGY 



Figure 11.5.7. 
The idea of reptation in poly- 
mer solutions (taken from ar- 
ticles by Klein, 1978, and de 
Gennes, 1979). A given poly- 
mer chain C entangled with 
other chains CI - C4 (top) 
may be regarded as enclosed 
within a virtual pipe (bot- 
tom), defined by the locus of 
the constraints imposed on its 
motion by the other chains. 
6 is the mean permitted dis- 
placement of a segment of C 
in a direction normal to the 
“pipe axis,” and the points 
(63) in the middle figure rep- 
resent cross sections through 
CI - C4 in a plane parallel to 
the paper. Since each of the 
chains C ,  - C4 may itself be 
regarded as being in a similar 
pipe, the mean separation of 
the cross sections (8) is also - 6 .  

that in an entangled polymer fluid a monomer unit can move only 
in one direction, either by Brownian motion or in response to an 
applied force: that is, along its axis (see Figure 1 1.1.1). If we de- 
scribe the probability P as finding a particular segment at some 
position s at time t ,  in a coordinate system where s is measured 
along the chain axis (an arc length coordinate), then P satisfies this 
simple one-dimensional diffusion equation: 

with the boundary conditions 

P ( s ,  0) = 6(0) 

P(s ,  r )  = 0 as s --f f o o  

u 

u 

(1 1.5.1) 

/Monomers 

Blobs 
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where S is the delta function, meaning the first segment is at the 
origin, and Do is the diffusion coefficient for motion along the 
chain. We expect Do - 1/M; that is, the resistance to motion of a 
“rope” along its axis is proportional to the length of the rope. The 
solution to eq. 1 1.5.1 is 

e - ~ 2 / 4 D , , t  (1 1.5.2) 
1 

(4rr Dot)’12 
P ( s ,  t )  = 

The mean-square displacement of s at time t is 

(11.5.3) < s 2 > = 7 s2 P ( s ,  t )d s  = 2D0t 

-W 

We define a time A=,, as the time required for a chain to 
completely renew its configuration, that is, the time for the chain 
to diffuse one chain length L along s. We recognize that this will 
also be the longest relaxation time of the polymer liquid. From eq. 
11.5.3 we see 

(11.5.4) 

From which the molecular weight dependence follows directly 
( L  Iv M) 

(1 1 S . 5 )  

This is to be compared with the prediction of the Rouse theory for 
the relaxation times J..R,,,,~~ (eq. 1 1.4.25) 

Rouse : A R ~ , , ~  - N2 
deGennes : Amp ,., N 3  

One can also estimate the self-diffusion coefficient 

(1 1 S.6) 

(1 1.5.7) 

This molecular weight dependence of D has been seen experimen- 
tally in melts by Klein (1978) and in concentrated solutions by 
Leger et al. (1981). Reviews of diffusion behavior are available 
(Tirrell, 1984; Kausch and Tirrell, 1989). One can also deduce 
the molecular weight dependence of the viscosity by a nonrigorous 
but plausible argument. Suppose the entire fluid behaves as a sim- 
ple viscoelastic solid (Maxwell element); then its relaxation time 
would be 
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( 1  1 .S.8) rl A = -  
E 

We expect the modulus E to be independent of overall molec- 
ular weight-to depend only on the molecular weight between 
“entanglements”-that is, Mb, the weight of a blob. We reach 
the conclusion 

rl - EA - MOM3 - M 3  (1 1 .S.9) 

Of course this is not the 3.4 power observed experimentally (Fig- 
ure 11.5.2), but it is the closest of any molecular theory. Many 
suggestions have been made to explain the exact molecular weight 
dependence (Lodge et al., 1990). 

This derivation of the viscosity has been made much more 
rigorous (but still reaches the same conclusion) by Doi and Edwards 
(1 978). They derive a constitutive relationship from this “reptation” 
molecular picture (Larson, 1988). Their result can be expressed as 
a complete constitutive equation in the form 

t = GoM(r)Q(E) ( 1  1.5.10) 

where 

Average values are calculated in the usual way by integrating 
over the distribution function: 

G, = 3cNkT (equilibrium or plateau modulus) 

8 M ( r )  = c -e-v=lL, (memory function) 
P W  p W  

1 PP Q(E) = - < - > (strain measure) 
< P >  P 

and where p = E - u and E is an afine deformation tensor and 
u is a unit vector along the chain axis. This constitutive equation 
resembles a K-BKZ or Wagner-type model (Chapter 4) in that the 
time and strain portions are separable. It models stress relaxation 
well [although M(r) is rather too close to a single exponential]. 
It predicts a non-Newtonian viscosity that depends too strongly on 
shear rate ( q  - )j-3/2 at high 9) and predicts an infinite extensional 
viscosity at finite extension rate. M m c c i  and Hermans (1980) 
discuss some possible improvements. 

11.5.3 Effects of Long Chain Branching 

Branched macromolecules obviously cannot reptate the way lin- 
ear macromolecules do, since the long branches anchor the chain. 
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For chain motion or relaxation to occur, the branched chain must 
pull out pieces of its arms as illustrated in Figure 11.5.8. This is 
much slower than ordinary reptation. DeGennes (1979) has shown 
that the longest relaxation time now depends exponentially (!) on 
molecular weight instead of varying like M 3 .  Doi and Kuzuu (1980) 
have derived a constitutive equation for branched polymers that 
parallels the Doi-Edwards model. The strain-dependent function 
Q(E) does not change. However, the relaxation function M ( t )  
is changed markedly. Compared with linear polymers, the maxi- 
mum relaxation time is longer and the relaxation spectrum is more 
diffuse. See Figure 11.5.9. Exactly this has been observed experi- 
mentally (Graessley et al., 1981; Roovers and Graessley, 1981). 

In terms of viscosity, branched polymers have lower zero 
shear viscosity than linear polymers of the same total molecular 
weight (M > Me) when the branches are short (Mb < M e ) .  When 
Mb > Me,  the branched chain viscosities overtake those of the 
equally massive linear chains. 

1 1.5.4 Effect of Molecular Weight Distribution 
It is worthwhile to mention, at last, the effect of molecular weight 
distribution (MWD) on rheological properties. We will limit our 
discussion to the steady shear viscosity q and the recoverable shear 
compliance J,". 

Viscosity of polymer systems approaches a limiting constant 
value at low shear rates. The onset of shear rate dependence is usu- 
ally quite sharp for monodisperse polymers. However, the broader 

Figure 11.5.8. 
Star polymer relaxation pro- 
cess. Individual arms cannot 
reptate; rather, they relax by 
retracting from the tubes cre- 
ated by entanglements with 
surrounding polymers. 
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Figure 11.5.9. 
G' and GI' for branched 
(solid lines) and linear 
(dashed lines) polymers 
CY = M - / M , .  From Doi 
and Kuzuu (1980). 
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the molecular weight distribution, the more diffuse the onset of 
shear rate dependence. This may actually present problems in de- 
termining the zero shear viscosity, for example, in a broad MWD 
polyethylene. Figure 11.5.10 illustrates this behavior. 

Equation 11.4.26 shows that J," is governed by the relative 
spacings or breadth of the relaxation time distribution (RTD). Cer- 
tainly, as the MWD gets broader so will the RTD. Consequently, the 
compliance goes up. This means that for the same average molec- 
ular weight, a sample with broader MWD will be more compliant. 
According to the Rouse theory, J," c RTIM should be constant at 
0.4 for monodisperse polymers. Figure 11.5.1 1 shows some exper- 
imental data that are better characterized by (Graessley, 1974) 

0.4Mlc RT 
J," = [ 1 + 0.08 (cM/pM,) 2 1'12 

(1 1.5.1 1) 

The Rouse theory also predicts that J," should increase with poly- 
dispersity as: 

( 1 1.5.12) 
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Figure 11.5.10. 
Comparison of reduced vis- 
cosity versus reduced shear 
rate for a broad ( 0 )  and a 
narrow MWD polyethylene 
(Graessley, 1974). Notice 
how polydispersity broadens 
the transition from Newtonian 
to non-Newtonian behavior. 

Figure 11.5.11. 
Recoverable shear compliance 
for several polymers. Lines 
represent experimental data 
(Graessley, 1974). Asymptote 
of 0.4 is the Rouse number. 

1 .o 

0.4 

J O R T  e - 
M 0.1 

0.01 

Experimentally, it is found that 

(1 1.5.13) 

This uncertainty may be due in part to the difficulties of obtaining 
“equilibrium” values for J,“ with the different techniques used to 
measure it. 
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TABLE 11.6.1 / Parameters Characterizing Temperature Dependence of a7 for Various 
Polymer Systems* 

TO c20 T8 
Polymer (K) CP (deg) (K) 

General 
Poly isobuty lene 
Polyvinyl acetate 
Polyvinyl chloroacetate 
Polystyrene 

Poly(u-methyl styrene) 

Polymethyl acrylate 

Polyhexene- 1 
Polydimethy lsiloxane 
Pol yacetaldehyde 
Polypropylene oxide 
Zinc phosphinate polymer 
Styrene-n-hexy I methacry late copolymer 
Styrene-n-hexy I methacry late copolymer 

Rubbers 
Hevea rubber 

Polybutadiene, cis-trans 
Polybutadiene, high cis 
Polybutadiene, cis-trans-vinyl 
Polybutadiene, high vinyl 
Styrene-butadiene copolymer 
Butyl rubber 
Ethylene-propylene copolymer 
Ethy lene-propylene copolymer 
Polyurethane 
Polyurethane 

Methacry late Polymers 
Methyl (atactic) 
Methyl (isotactic) 
Methyl (conventional) 

Ethyl 
n-Butyl 
n-Hexyl 
n-Octyl 
2-Ethyl hexyl 

Diluted Systems 
Polystyrene in decalin 62% 
Polyvinyl acetate in tricresyl phosphate 50% 
Poly(n-butyl methacrylate) in diethyl phthalate 50% 

298 
349 
346 
373 
373 
445 
441 
324 
326 
218 
303 
243 
198 
373 
373 
373 

248 
298 
298 
298 
263 
298 
298 
298 
298 
298 
283 
23 1 

38 1 
323 
388 
493 
373 
373 
373 
373 
373 

29 1 
293 
273 

8.6 1 
8.86 
8.86 

12.7 
13.7 
13.7 
16.8 
8.86 
8.86 

1.90 
17.4 

14.5 
16.2 
6.94 
7.1 1 
6.56 

8.86 
5.94 
3.64 
3.44 
5.97 
6.23 
4.57 
9.03 
5.52 
4.35 
8.86 

16.7 

34.0 
8.90 

32.2 
7 .OO 

11.18 
9.70 
9.80 
7.60 

11.58 

8.86 
8.86 
9.98 

200.4 
101.6 
101.6 
49.8 
50.0 
49.3 
53.5 

101.6 
101.6 
51.6 

222 
24 
24 
66.6 

192.6 
156.4 

101.6 
151.6 
186.5 
196.6 
123.2 
72.5 

113.6 
201.6 
96.7 

122.7 
101.6 
68.0 

80 
23.0 
80 

173 
103.5 
169.6 
234.4 
227.3 
208.9 

101.6 
101.6 
153.1 

205 
305 
296 
370 
373 
445 
441 
276 

218 
150 
243 
198 
324 
277 
287 

200 

172 
161 
205 
26 1 
210 
205 
242 
216 
238 
22 1 

38 1 

388 
378 
335 
300 
268 
253 
284 

206 

*Adapted from Ferry, 1980 
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Figure 11.6.1. 
qcr is zero shear viscosity at 
break point in Figure 11.4.2. 
Note the transition to expo- 
nential T dependence far 
from T,[T, /T 2 0.851. 
Adopted from Van Krevelen 
(1990). 
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11.6 Temperature Dependence 
Finally, it is worthwhile to discuss the temperature dependence 
of polymer melt flow properties, because much useful structural 
information can be obtained from it. Temperature dependence also 
was discussed in Section 2.6.4. 

As with all liquids, the viscosities of synthetic polymer melts 
decrease with increasing temperature. However the form of the 
temperature dependence is rather complex. At elevated tempera- 
tures, well above any transition temperatures, the viscosity follows 
a simple exponential relation (the Andrade-Eyring equatioh): 

(1 1.6.1) 

where E ,  is an activation energy for viscous flow. Here viscosity 
is governed by the baniers to relative slip of molecular planes. For 
melts of glassy polymers in the region of T, to T, + 100, an equation 
of the Williams-Landel-Ferry (WLF) form is usually appropriate: 

where subscript r refers to conditions at some arbitrary reference 
condition, often taken as T,. CI and C2 are constants. Values 
for many polymers are tabulated in Table 1 1.6.1. This equation is 
a direct result of the dependence of viscosity on free volume for 

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 .o 
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Figure 11.6.2. 1 o - ~  Storage compliance of poly 
(n-octyl methacrylate) in 
the transition zone between 
glasslike and rubberlike con- 
sistency plotted logarith- 

at 24 temperatures as indi- 
cated. The shifting of one 
data point from 80 to l W C ,  
the reference temperature, us- 
ing eq. 11.6.2 is illustrated. 
Adopted from Ferry (1 980). 

mically against frequency 1 o-6 
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plotting the data of Figure 
Composite curve obtained by 

11.6.2 with reduced variables, 
representing the behavior over 
an extended frequency scale. 
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glass-forming materials. The transition between the two types of 
behavior is shown in Figure 11.6.1 (Van Krevelen and Hoftyser, 
1976). 

This WLF temperature dependence forms the basis for hor- 
izontal shifting of linear viscoelastic properties to the so-called 
time-temperature superposition. Figures 1 1.6.2 and 1 1.6.3 illus- 
trate this shifting. Other examples of time-temperature superposi- 
tion are given in Figures 2.4.1,4.2.3,4.4.2, and 4.4.4. 

The activation energy for viscous flow E ,  for many linear 
polymers is about 6-7 kcal/mol. Introduction of long chain branch- 
ing seems to just about double this value (Small, 1975). 

11.7 Summary 
We have seen in this chapter that considerable insight can be gained 
into the behavior of polymers by treating them through a succession 
of simple models. Einstein sphere models capture global hydrody- 
namic properties such as intrinsic viscosity. To mimic internal de- 
grees of freedom, and ultimately some aspects of linear viscoelastic 
properties, the bead-spring models are powerful. In concentrated 
solutions and melts it appears useful to consider entangled macro- 
molecules moving as snakes (reptation) rather than as spheres. 

With these generally accepted, but not necessarily accurate, 
conceptual models in hand, major efforts are going into molecu- 
lar modeling of more complex real behavior. This is the state of 
the art. Some important areas of current work include nonlinear 
viscoelasticity, branched polymers, blends of different molecular 
weights, and chemical composition. Deep problems remain, such 
as the definitive explanation of the 3.4 power law for the molecu- 
lar weight dependence of melt viscosity and proper description of 
concentrated solution rheology. 
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A

ABS polymer melt 253 257

Absorption spectroscopies 382

AC synchronous motor 339

Adhesive 185

Affine deformation 26

Aggregating particles 462 465 469

Alignment of rheometer fixtures 347

Angular displacement 191

Angular momentum 17

Annulus. See also Axial annular flow

     pressure driven flow through 89 105

     rotating drag flow 89 105

Apparent viscosity Extension 317 319 328

     shear 187 219 243 245 246

Apparent wall slip 194

See also Wall slip

Area change. See Material area change

Asphalt 358

Attractive forces 427

Automated testing 358

Average relaxation time 465

See also Relaxation time

Axial annular flow 89 105 183 266 267 275 276

     second normal stress difference IN 267

Axisymmetric contraction 326 327 330

See also Entrance flows

Axisymmetric particles 439

Axisymmetric stagnation flow 320 321
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B

Bagley plots 250

Balance rheometer 231

Band viscometer 186

Bead-spring model 411 487

Bearing runout 346 347

Bernstein-Kearsley-Zapas

equation. See Kaye-

Bernstein, Kearsley.

Zapas

Biaxial extension 105 144 274 297 301 308 326

333

Bimodal distribution 459

Binary particle interactions 462

Bingham, Eugene 1

Bingham plastic 92 95 104 171 466

Birefringence 222 277 278 323 379 384 389

392 398 415

     applications of 408

     windows of 408

BKZ equation. See Kaye-

Bernstein, Kearsley, Zapas

Blobs 484 505

Block copolymers 398 412 415

Blood 66 95

Blow molding 285

See also Tube inflation

Boger fluid 157 330 331

Bohlin VOR rheometer 340

Boltzman superposition principle 111

Bouncing putty. See Silly Putty
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Boundary conditions,

     at gas-liquid interface 99

     at liquid-liquid interface 99

     motion of a surface 52

     no-penetration 99

     no-slip 99

     tractions at a surface 53

Brabender 276

Bread dough 370

Brillouin scattering 383

Brinkman number 103 204 216

Brookfield Viscometer 223 339

Brownian forces 489

Brownian hard particles 427 455

Brownian motion 417 427 430 440 458 476 489

503

    rotary 440 443

Bubble collapse 287 317 319 320 332

Buoyancy bath for extensional

rheometry 293 294

C

Capacitance transducer 339 340 350

Capillary rheometer 89 238 239 247 248 257 266

275 277 280 364 366 367 369

    Bagley plot 250

    barrel 249

See also Capillary rheometer, reservoir

    degradation in 249

    die 183 276

    end correction 250

    end effect 250

    friction 248
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Capillary rheometer (Cont.)

    gas-driven 248

    gravity-driven 248

    inertia correction 251

    melt fracture 244 246

    normal stress 249

    piston 248 249

    reservoir 248 249

See also Capillary rheometer, barrel

    Reynold’s number 247 251

    sample prehistory 249

     shear heating 252

     shear rate 240

     shear stress 247

     slip velocity 246

     stick-slip flow 246

     tube 237

     turbulence 247

     viscous dissipation 252

     wall slip 244 246

Carbon black 425 426

Carboxymethylcellulose solution 194

Carreau model 86 272 273 324

Carri-med Spin Line Rheometer 369

Casson model 95 102 106

Cauchy deformation tensor 30 76

     as length change 60

     invariants, simple shear 36

     normal stresses in shear 40

Cayley Hamilton theorem 41 83

Cessation of steady shear flow 363 365

Chain length 504

Chain stiffness 478
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Characteristic equation 41

See also Eigenvalues; Tensor

Characteristic ratio 477

Charged particles 462

Circular hole 263

Clay coating 251

Cluster-cluster aggregation 466

Coating flows 157

Coatings 186

Coil overlap 482 498

Coil-stretch transition 326 409

Collagen 326

Colloid, associated 170

Colloidal crystals 463

Colloidal forces 425

     relative importance 454

     scaling 454

Colloidal suspensions 426 461

Colloidal systems 450

Complex viscosity.

See Dynamic viscosity

Complex modulus

See Dynamic modulus

Compliance 119 127

See also Creep compliance

     transducer 344

Compression 260 287

Compressional thinning 445

Concentrated

     effects 480

     solutions and melts 497

     suspensions 92 104 194 225

     suspensions, temperature

dependence of 102
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Concentration laws 468

Concentric cylinders 183 200 220 275 276 277 278

347 355

     birefringence in 400

     conicylinder 201

     conical bottom 200

     Deborah number 203

     eccentricity 203 347

     elastic instability 202

     end effects 200 201

     first normal stress difference 196

     geometry 356

     inertial correction 197

     inertial forces 202

     large gap 191 193 196

     narrow gap 191 193 196 201 202 204

     normal stress 190 195 196 198

     normal stress climbing 202

     pressure hole correction 197

     pressure hole error 196

     rheometers 188 190 193 280 338 348 430

     secondary flow 196 202 203

     shear heating 203 204

     shear rate 191

     shear strain 191

     shear stress 190

     surface tension 202

     Taylor number 202

     Taylor vortices 202 203

     viscometer 194 349 353

     viscous dissipation 203

     wide gap 191

     Weissenberg number 203

     working equations 189
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Cone and plate 220 222 276 277 278 279 280

347 355 356

     birefringence in 400

     derivation of shear rate 81

     drowned edge 213

     eccentricity 212 215

     edge effect 213

     edge failure 213 214

     evaporation 216

     geometry 216 212

     inertia 209 210

     instrument stiffness 213

     misalignment 212 215

     normal force 213 215

     normal stress differences 208

     normal stresses 212

    pressure hole, error in 213

     rheorneter 138 205 275 338 430

     sea of liquid 213

     second normal stress

difference 208

     secondary flow 209 210 212

     shear heating 216

     shear rate 206 207

shear stress 206

     working equations 206

Conformational statistics 477

Conservation of mass. See Continuity equation

Constitutive equations 1 4 6 19 505

     nonlinear 137

Constitutive relations 437 505

     for spheroids 443

Contained bobs 276
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Continuity equation 45 46 99

     in several coordinate systems 48

     in uniaxial extension 71

Control interactive 358

     real time 358

Controlled strain rheometer 339 342 349 352

Controlled stress rheometers 339 349 350 352

Correlation length 483

Couette 181

     birefringence in 403

     cell 403 416

     flow 183 194 195 196 198 203 276

     flow birefringence in 400

     geometry 202 419

     rheometer 181 190

See also Concentric cylinder rheometer

     viscometer 191 203

See also Concentric cylinder rheometer

Couton-Mouton effect 385

Cox-Merz relation 141 277

Creep 109 119

     compliance 119

     recovery 121

Creeping flow past a sphere 426

Criminale-Ericksen-Filbey equation 148

Cross model, typical

parameters of 86

Cross-correlation 361

     analysis 359

Crystalline solids 44

Currie, integral equation 165

Cylinder

     neoHookean 50

     torsion of a rubber 50
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D

Damped torsion oscillator 342

Damping function 161 163

Data analysis 357

DC motors 339 340

Deborah number 136 170 176 203

Debye-Huckel constant 452 463

Deformable spheres 437

Deformation 175

     gradient tensor, F. 25 68

     gradient tensor, components of 26

     tensor 146

See also Finger; Cauchy

Dichroism 384 415

Die swell. See Extrudate swell

Differential constitutive

equations 149

Dielectric relaxation 419

     constant 452

Diffusion coefficient 383 448 504

Diffusivity,

     rotational 440

     translational 454

Dilute

     polymer solutions 114

     solution 124

     suspensions 426

     suspensions of spheres. See Spheres

     xanthan solution 365

Dimethyl silicone oils 294

Dispersion 425

     forces 450 454 461

     forces, interaction potential for 451
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Displacement functions, time

derivatives of 70

Divergence operator ∇ 46

Doi-Edwards model 165 459 506

Double Couette 201

Double layer 451

Double-step strain 163

Drag 178

     cup motor 349 350

     flow 181

     flow indexers 222

     flow rheometers 181 338

Drop breakup 435

     deformation 435

     interfacial tension 436

     relaxation time 436

Droplet flow 435

Ductless siphon 3 332

See also Tubeless siphon

Dumbbell 149 490

      suspensions 489

Dyad product 11 59 69

 Dynamic light scattering 383

Dynamic modulus G', G" 122

    of common materials 124

    via birefringence 409

Dynamic viscosity 123 277

E

Eccentric rotating disks 227 228 229 230 231

    displacement functions for 80

    neoHookean solid between 61

    Newtonian fluid between 79

    velocity components between 80
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Eccentric rotating cylinders 231

Eccentric rotating geometries 226 231 275

Eccentric rotating rod 226

Edge effects 184 185 213 220

    in birefringence 408

Edge failure 214 215 222 278 280

Effective volume fraction 464

Eigenvalues, of a tensor 22

Einstein, Albert 425

Elapsed time 112

Elastic 425

Elastic dumbbell 149 487

Elastic instability 202

Elastic liquid 195 198 261

Elastic modulus 1 6 38 122

Elastic scattering 381

Elastic solid 6 59 109

Electric charges 462

Electric field 386

Electric heating 356

Electromagnetic radiation 381

      wave 386

Electrorheology 454

Electrostatic, double layer 451

      forces 451

      repulsion 427 463

      repulsion forces 454

      stabilization 462

Ellis model 86 204 267

Elongation rate 175

Elongational viscosity 285 315 494

See also Tensile

viscosity; Extensional viscosity
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Emission spectroscopies 382

Emulsions 138 425 434

      viscosity ratio in 435

End clamps 291

     end effects due to 292

End correction 250

End-to-end distance 479 483

     vector 476 477

Energy Internal 43

     strain 43

     dissipated 123

     dissipation 127 428

     equation 100

Entanglement 486 497 498 500 501 505

     theories 499

Entrance flows 287 326 327 331 332

     Binding’s analysis 327 330

     Cogswell’s analysis 327 329

     sink flow analysis 327

Entrance pressure drop 259 327 333 371

Entropy elasticity 487

Environmental control 352

Epoxy 291

     adhesives 292

     resins 270

Equations of motion 45 99

See also Continuity equation;

Momentum equations

Equations of motion for beads 489

Equibiaxial extension 287 297 304 305

     working equation 300

Equibiaxial viscosity 299 317

See also Biaxial

extensional viscosity
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Equilibrium creep compliance 370

ERD. See Eccentric rotating disks

Excluded volume 493

Exit pressure 261 262 275

Exponential, pulse 363

Extension 285 287

See also Uniaxial; Planar; Biaxial

     birefringence in 409

     rate 71 175 193

See also Strain rate, extension

     ratio 6 31

Extensional

    flow 145 285 327 459 460 461

    flow, start-up of 416

    flow of ellipsoids 460

    geometries 287

    indexers 308

    material function 285

    methods, comparison 332

     rheology 332

     rheometers 291 295 332 368

     rheometry 285 288 308 314 368

     rheometry, birefringence in 402

     stress 370

     thickening 137 142 144 324 330 445

     thickening, inelastic models 91

     thinning 330

Extensional viscosity 142 175 176 255 257 285 287

289 314 326 327 329 330 370

446

See also Tensile viscosity;

Elongational viscosity

     start up 144

     steady state 144
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Extensional viscosity indexer 326

Extinction angle 395 404 407

Extra stress tensor, T 19

Extrudate swell 239 254 255 260 261

Extruders 225

F

Factorability

     in constitutive equations 160

     time-strain 160

Falling ball 184 187 188 276 430

Falling cylinder 185

Fano flow 315

Ferranti Shirley viscometer 216

Fiber spinning 285 287 308 309 310 312 314

321 330 370

     rheometer 369

     working equations for 311

Fiber-filled suspension 270

Fibers 460

Film,

     blowing 285

     stretching 62

Finger deformation tensor, B 29 146

     invariants of 35 36 37 41 158 165

     in simple shear, components of 31

     time derivative of 76

     in uniaxial extension, components of 31

Finite deformation tensors 24

See also Cauchy deformation tensor;

Deformation gradient;

Finger deformation tensor;

Finite strain tensors
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First normal stress coefficient 182 277 278 279 493

First normal stress difference 196 254 261 262 267 275 394

401 407 491

Fixture expansion 355

Flame throwers 135

Flexible subchain 398

Flocculation 453 462

Flocculated

     dispersions 465

     silica-methyl laurate system 467

     suspensions 468

     systems 465 470

Flocs 465 466 468

     structure of 466 469

Flory-Huggins equation

See Intrinsic viscosity

Flory-Fox equation 479

Flow

     activation energy of 101

     behavior 468

     birefringence 24

     dichroism 419

Foam 425

     production 285

Food products 94

Force rebalance transducer 342 344 347

Forced oscillations 359 360

Forced resonance 360

Form birefringence 415

     in block copolymer melts 399

     in polymer solutions 399

     in suspensions 399
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Four-roll mill 416

     birefringence in 402

Four-roller apparatus 322

Fractal aggregates 466

      dimension 466

      objects 466

Frame indifference 29

Friction coefficient 415

G

Gap loading conditions 406

Gas convection 356

Gas convection oven 353 354 355

Gels 194

General elastic solid 40

     anisotropic constitutive equations of 44

General linear viscoelastic model

See Linear viscoelasticity

General viscous fluid 83

     normal stresses in shear flow of 84

General viscous model 170 176

     extensional thickening 91

Giesekus differential

constitutive equation 167

Glass capillary viscometer 364 366

Glass fibers 461

Glass transition 101

     effect on stress-optical coefficient 398

Glass, viscosity of molten 78 285

Gleissle mirror rules 141 278

Glycerin 203 312 313 314

Glycerin-water solution 326

Gravity 50 99 189 276 430
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Green deformation tensor 30

See also Cauchy deformation tensor

H

HDPE.

See High density polyethylene

Half-wave plate 392

Hamaker constant 450

Hard repulsion 462

Heat capacity 100

Helical screw rheometer 224 225

Hencky strain 289

Herschel-Bulkley model 97

High density polyethylene 222 246 247 262 318 320 330

See also Polyethylene

High shear rates 186 220

High shear rheometer 185

Hole pressure 263 264 266 275

     inertia correction for 264

     normal stress from 265

Homogeneous flow 177 184 285 488

     rheometer 176 287

     sample 294

Hooke’s law 1 6

Hookean solid 38

See also NeoHookean

Hookean spring 488

House paint 92

Huggins constant 481

Hydrodynamic effects 427

    forces 487

    interaction 449 493

Hydroxypropylcellulose 319
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I

Identity tensor, I 18

In-line measurement 370

In-line rheometer 371

See also Process line rheometers

Incompressible materials 19 30 37 38 41 47 75

Index notation 12

Index of refraction tensor n 393

Indexers 177 275

Induction heating 356

Inelastic model 272

Inelastic scattering 381

Inertia 209 210 229

    correction 197 251 264 352

    forces 202

Inflation methods 306

Inflation of a tube 57

See also Tube inflation

Infrared absorption spectroscopy 383

Inhomogeneous stress field 45

Ink films 360

Inks 186

Instrument inertia 350 351

    stiffness 213

Integral constitutive equation 153 158

See also Lodge rubber-like liquid

Interacting fibers 461

Interaction forces 425

    parameter 453

    particle-fluid 439

    particle-particle 449

    potential 451
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Interfacial tension 53 99 294 427 436 438

Intermolecular effects 481

Internal energy 100

Internal viscosity 493

Interparticle forces 450 466

    potential 464

Interrelations, between shear

material functions 140 141

Intramolecular effects 493

Intrinsic normal stress differences 445 446

Intrinsic viscosity 443 444 445 447 479 480

Invariants

B 354 158 165

D 74 83 89

example calculation 23

tensor 22 35

See also Cauchy; Finger; Stress etc.

tensors 22 35

vector 20

w 74

Inverse deformation tensors 33 60

Iron oxide suspension 94 469

birefringence of 418

Irrotational flows

See also Extensional 74

IUPAC. See Polyethylene

J

Johnson-Segalman differential

equation 167 169
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K

Kaye-Bernstein, Kearsley,

Zapas (K-BKZ) equation 139 158 161 163 165 166 505

Kepes balance rheometer 231

Kerr effect 385

Ketchup 93

Kinetic energy 20

Krieger-Doughert y

equation 459

relation 456

L

Labeled polymers, for dichroism 380 415

Larson differential equation 167

Latex 425 427

suspension 277

LDPE. See Low density polyethylene;

Polyethylene

Length change. See Material length change

Leonov differential equation 167

Light

scattering, dynamic 383

scattering, static 382

waves 387

Limit of linear viscoelasticity 109

Limiting viscosity 109

Linear variable differential transformer 342

Linear viscoelastic model

(LVE), compared to

upper-convected

Maxwell 151

Linear viscoelasticity 111 113 116 126 156 170 175

176 363 496
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Liquid bath 355

Liquid crystalline polymers 249

    crystals, nematic 459

Liquid droplets 427

Lodge equation 152 170

Lodge integral 166

Lodge-Meissner relationship 142 160 172

Lodge rubber-like liquid 153 156 158 172

    extension 155

    second normal stress 156

    start-up of shear 153 154

    upper-convected Maxwell model 156

London-van der Waals 450

Long chain branching 505 512

Longest relaxation time 411

Loss modulus 122

Low density polyethylene 255 260 272 274 292 295 296

307 315 320 330

See also Polyethylene

Lubricated compression 297 303 332

See also Lubricated squeezing

Lubricated dies 322

    flow 324

    planar squeezing 303

    planar stagnation flow 322 323

    squeezing 298 299 300 333

See also Lubricated compression

M

Macromolecular conformation 487

Magneto rheology 454

Margarine 92
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Mark-Houwink relation 479

See also Intrinsic viscosity

Martin equation 481 482

Mass conservation 45

See also Continuity equation

Master curves 101

Material area change 29 37

Material derivative 46

Material displacement functions 34

     vectors 25

Material functions 175 176 177 184 279 280 288

337 357

general elastic solid 42

neoHookean solid 42

Material length change 30 37

Material time derivative 146

Matrix notation

See Tensor, matrix notation

Maxwell 170

effect (birefringence) 385

element 504

model; 113 172 273

See also Upper-convected

Maxwell

model, spring and dashpot 117

Maxwell orthogonal rheometer 227

See also Eccentric rotating disks

Mayonnaise 3 92

Melt fracture 244 246 253 257

Melt index 256 257

Melt indexer 177 366

Membrane tension. See Interfacial tension

Memory function 111 156
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MFI. See Melt flow index

Microemulsions 138

Microphase-separation transition 415

Migration of particles in shear 458

Mirror rules 141 278

Misalignment of shear rheometers 212 215 222

Mixers 225

Modulus 1 6 38 122 468

factorable 160

Molecular, labeling 380

orientation 380

Molecular weight 479 498

See also Polymer, molecular

weight distribution

distribution 506

Moment of inertia 360

Momentum conservation

See Momentum equation

Momentum equation 99

boundary conditions 52

for solids 50

Monodisperse hard spheres 455

Mooney tester 217 223 276

Mooney-Rivlin constitutive equation 42 43

planar extension 61

sheet inflation 62

strain energy function 43

Multiwave function 363

Multiaxial extension 303 305
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N

Nahme number 103 252 257

Narrow gaps

      concentric cylinders 191 193 202 204

      parallel plates 222

Neck formation 93

Nematic liquid crystalline polymers 459

NeoHookean model 38 92 158 170 172 176 228

      application to viscoelastic liquids 59

      film stretching 62

      normal stresses 7

      planar extension, example 55

      shear 7

      sheet inflation 62

      simple shear 40

      strain energy function 43

      tension 6

      torsion of a cylinder 51

      tube inflation 57

      uniaxial extension 38

Networks 467

Newton’s law of viscosity 66 104

See also Newtonian fluid

Newtonian 172 216 324

      behavior 425

      constitutive equation. See Newtonian fluid

     fluid 77 83 93 110 152 176 200

202 210 223 243 248 250 260

262 264 266 271 280 299 319

     liquid 195 204 212 216 229 254 312

313 326 342

     plateau 425

     viscosity 2 65 187 243
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Nondilute 427

     suspension 455

Non-Newtonian fluids 210 212 427 460

Nonhomogeneous flow 238

Nonhomogeneous rheometers 177 193

Nonisothermal flow 102

Nonlinear rheological properties 502 135

Nonlinear spring force 493

Nonlinear viscoelasticity 110 176 135

Nonspherical particles 427 459

Normal force 213 215 444

     across an interface 53

     transducer 347

Normal stress 8 19 163 195 196 198 212

220 255 260 261 262 265 268

280 345 370 438

       emulsions 438

       in shear 138

       intrinsic 445

       relaxation after step strain 142

       rod climbing 202

       rubber, neoHookean 40

       shear 3 83

       slit, birefringence 402

       suspensions 444

Normal stress coefficients 139 199

Normal stress difference 19 20 137 162 208 260 263

289

Numerical simulations 168

O

Oldroyd-B constitutive

equation 157 172
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On-line 370

See also In-line

       capillary rheometer 238 372

      concentric cylinder

rheometer 371 372

       slit rheometer 373

Opposed-nozzle 323 324 326 333 369 370 409

Opposing jets. See Opposed-nozzle

Optical

      anisotropy 385

      encoder 340 350

      train (of elements) 390 404 406

Orientation 439

      distribution function 440 441 442

Orifice die 327

See also Entrance flow

Oscillating disk curometer 223

Oscillatory flow birefringence 401 405 409 417

Oseen tensor 493

P

Packing

See Particle, maximum

Paint 360 425 434

Papanastasiou 97

      integral equation 165

      viscoplastic models 97

Parallel disks 52 183 217 220 222 276 278

280 355 356

    comparison to other shear rheometers 276

    cup 220

    eccentricities 222

    edge effects 220

     edge failure 222
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Parallel disks (Cont.)

     geometry 351

     misalignment 222

     narrow gaps 222

     normal stress 220 221

     rheometer 220 338 348

     secondary flow 220 222

     shear heating 220

     viscosity 220

     wall slip 220

     working equations 218 276

Parallel plates. See Parallel

disks; Sliding plates

Particle

     axisymmetric 439

     fluid interactions 439

     inertia 430

     maximum packing 456

     migration 430 433

     migration in Couette flow 431

     migration in Poiseuille flow 431

     orientation 439

     particle interactions 449

     stress tensor 429

     volume fraction 429 456

Particle size

     compared to scale of motion 428

     compared to viscometer gap 428

     distribution 427 458

PDMS. See Polydimeth ylsiloxane

Peltier elements 356

Percolation theory 476

Percolation threshold 467
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Perfluorinated polyethers 294

Phan Thien-Tanner differential equation 167

Phenyl silicone oils 294

Piezoelectric transducers 343 245

Pitch 285 358

Planar contraction 326 327 328 330

Planar extension 144 287 304 305 306 308 321

     neoHookean 55

     steady 105

Planar squeezing 303

Planar stagnation flow 320 322 326

Plastic material 92

See also Bingham plastic

Plastometer

See Squeezing flow;

Parallel disks

Plateau modulus Ge 109

Platinum resistance thermometer 353

Poiseuille flow 183 276

See also Capillary

Poisson’s ratio 40

Polarizability 450

anisotropic 380 384 395

Polarization 384

orientation 386

rotator 404

Polarized light 386

See also Polarizer, analyzer for

circularly 388 390 392

linearly 386 388 390

phase angle 386

plane 386

Polarizer, analyzer for 390 404 406
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Polyacrylamide solution 208 209 210 267 268 278 309

312 313 316 317 327 330

Polyacrylonitrile-butadiene-styrene 85

Poly(γ-benzyl glutamate) 418

Polybutadiene 130 140 301

Polydimethylsiloxane 1 13 125 126 215 229 277

278 297 298 301 302 364

Polydispersity of molecular weight 508

See also Molecular weight

Polyethylene 139 141 142 159 168 250 271

329 330 331 332 346 347 397

extensional thickening 142

IUPAC 160 165

          long chain branched 142

Polyethylene oxide solution 214

Polyimide adhesives 292

Polyisobutene solution 198

Polyisobutylene 131 145 157 199 304 306 316

polyisobutylene in decalin 203

solution 139 195 230 265

Polymer 464

blends, birefringence of 415

blends, dichroism of 415

chain conformation 476

coil. See Coil

concentrated solutions. See Coil overlap

contribution to refractive

index 380 398

contribution to stress 398

dilute solution 156

      filled 170

      intrinsic viscosity 478

      melts 101 138 214 217 225 248 261

278 280 295 305 308 315 323
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Polymer (Cont.)

      molecular theory 114

      molecular weight 479 498 508

      processing 45 62 89 100 144 170 224

238 252 254 270 285 303 308

320 370 436

      repulsion between adsorbed polymer 427 455 464

      semidilute solutions 482

      solution thermodynamics 478

      solutions 194 197 261 277 280 297 308

313 326

      steric forces 452

      unperturbed dimensions of 477 478 485

Polymethyl methacrylate latex (dispersions) 465

Polyolefins 292

Polystyrene 142 265 279 292 302 396 427

    in chlorinated biphenyl solvent 411

    latex 432 433

    melt 278 324

    melt, extensional viscosity 67

    solutions 164 323 326 409

    tricresyl phosphate solution 417

Polyvinyl chloride 257

Potential forces 425

Power law model 84 92 93 102 105 192 200

271 273

See also Shear thinning; Carreau, Cross

    flow through a tube 87

    fluid 187 197 204 216 225 242 243

251 267

    importance of II2D 89

    index 193 460

    suspensions 460

    typical parameters of 86
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Pressure driven flows 18 178 181 238

    rheometers 181 364 368

Pressure hole 148

    error, for normal stresses 196 197 214 261 262 263 264

267 268 371

Pressure hydrostatic 18 21

Pressure transducers 259 262 267 367

Pressurized rheometer 356 357

Principal directions 23

Principal extensions 34

Principal strains 34

Principal stresses. See Stress tensor

     example calculation 23

     rotation angle 24

Process control 370

Process flow. See Polymer

processing

Process line rheometers 370

See also On-line

rheometer; In-line

rheometer

Pseudoplastic. See Power law

PVC. See Polyvinyl chloride

Q

Quarter-wave plate 389 391 392 404 406

Quartz crystal for G′ 360

Quasi-elastic light scattering 383

R

Radial distribution function 460

Radius of gyration 383

See also Polymer coil
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Raman scattering 383

Rank pulse shearometer 360

Rate of deformation tensor 2D 73 146

     as time derivative of Finger

or Cauchy tensor 76

     invariants of 75 89

     rate of length change 75

     stretch measure 75

Rate of elongation (extension) 175

Rate of strain. See Strain rate

Rayleigh scattering, forced 383

Rebalance transducer 341 345

Recessed bob 201

Recoverable shear compliance 494 496 506 508

Recoverable strain 109 254

Reduced dynamic moduli 449

Reduced intrinsic dynamic moduli 448

Reduced shear stress 457

Reduced viscosity. See Viscosity

Refractive index 380 384

Refractive index tensor n 389

Reiner-Rivlin fluid 83

Relative viscosity. See Viscosity

Relaxation, modulus 109 111 181

     modulus. common materials 118

     spectrum 115 126

     spectrum, curve fitting 128

     spectrum, errors 128

Relaxation time 113 120 340 492 493 496 504

     distribution 114 155 495 507

Reptation model 416 502 505

Repulsion forces, electrostatic 427

     polymeric 427
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Resistance heaters 356

Resonance frequency 359

Retardation of light 389 392 393

Retarded motion expansion 148

Reynolds number 247 251 254 264 326

Rheological sensor 370

Rheology, definition 1

Rheometer. See also Capillary;

Concentric cylinder;

Cone and plate, Parallel

disks, Slit

     control, interactive 358

     definition of 175 275

     homogeneous 175 176

     nonhomogeneous 175

     shear 175

Rheometry 175

Rheo-optics 381 419 379

     advantages of 380

     application to suspensions 416

     applications of 408

     limitations of 381

     sensitivity of 380 393

     spatial resolution 380

     speed of 380

     test constitutive equations 380

Rigid axisymmetric particles 427

Rigid spheres 427

Rod climbing 3 135 138 148 195

     nod  stress coefficient 199

     second-order fluid 198 200

     surface tension 199

Rod pulling. See Uniaxial extension
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Rodlike particles 124

Rolling ball viscometer 187 188

Rotary Brownian motion 427 443

Rotary variable capacitance transformer 341

Rotating cantilever rod 227

Rotating clamps 292 293 304

Rotating disk in a sea of fluid 223

Rotating vane 223

    secondary flow 224

    wall slip 224

Rotation tensor, R 29 72

Rotational rheometer 188 276 338 339 345 349 352

356

Rotor inertia 352

Rouse model 114 411 487 495 497 504

Rubber 124 185 286 291 303

See also Tube inflation

    membranes 53

    natural 6 42

    silicone 7 52

    thin sheets 53

Rubber-like liquids 45

S

Salad dressing 94

Scaling laws 454 465 482 484

Scattering techniques 382

Screw extruder 224

Second normal stress

difference 208 267 269 275 401

See also Normal stresses

    negative coefficient 182 491 493

    ratio to first 139
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Second-order fluid 136 146 150 152 170 198 200

    extensional 147

    simple shear 147

Secondary flows 196 202 203 209 210 212 220

222 224

Segment-segment contacts 493

See also Polymer

Semidilute polymer solutions 482

Settling 189 276 430

Self-diffusion coefficient 504

Shear 307

See also Simple shear

Shear flow 326

Shear heating 203 204 220 252 257 260

Shear history 470

Shear material functions 181 275

Shear modulus 38 159 467

See also Elastic modulus

     relaxation 164

Shear plate rheometers

See Sliding plate

Shear rate 72 175 191 204 240

Shear rate dependence of viscosity 502

See also Power law; Shear thinning

Shear rates, common processes 78

Shear rheometers 175 178 181 279 373

Shear sandwich rheometer.

See Sliding plate

Shear start-up 154

Shear steady 115

See also Shear rate

Shear step strain 153

Shear strain 7 191
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Shear stress 8 162 163 187 190 206 247

370 394

     growth 115

     overshoot in start-up of shear 140

     transducer 345

Shear thickening 67 85 425

Shear thinning 66 85 92 137 139 224 425

457 460 463 493

Shear thinning models

See Power law, Cross, Ellis Carreau, Bingham

Shear viscosity 176 242 257 280 287 299 306

309 329 330

See also Viscosity

Shear wave 409

    propagation 359

Shear yield stress 468

See also Yield stress

Sheet inflation 61

Sheet stretching 287 303 306

Shift factor 114 509

See also Time-Temperature

superposition

Shoemaker’s wax 285

Silicone 397

See also Polydimethylsiloxane oil 197 215 216 322

Silly putty 2

Simple extension. See Uniaxial

Simple shear 40

See also NeoHookean

     Cauchy tensor 1

     displacement functions 28

      Finger tensor 31

      inverse deformation tensor 34
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Simple shear (Cont.)

      of Newtonian fluid 77

      rate of deformation tensor 74

      steady 71 74

      velocity gradient 71

      vorticity 74

Sink flow analysis 327 329

Sinusoidal oscillations 121 340 359 363

See also Dynamic modulus;

Viscosity

Sliding cylinders rheometer 185

Sliding plate rheometer 183 184 185 276 338 339 344

401

Slip 194 246

See also Wall slip

      elastic solids 53

      velocity 257

Slit rheometer 238 257 259 261 265

      birefringence in 402

      die 367

      flow 183 222 276

      melt fracture 257

      shear heating 257

      slip 257

      viscous dissipation 258

     working equations 258

Small-angle Neutron

scattering 382

Sodium carboxy-

methylcellulose 224

Soft repulsion 462

Software for data analysis 357

Solid body rotation 28 32 36

     velocity gradient 72
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Spheres 425

     constitutive relation for 437

     dilute 428 479

     energy dissipation 428

     glass 432

     hard 428

Spheroid, constitutive relation for 443

Spinning drop 296 297

     tensiometer 296

Spring and dashpot

representation 117

Squeezing flow 270

Stagnation flows 287 320 322 323 326 332

    axisymmetric 320 321

    birefringence in 402 409

    lubricated dies 322

    planar 320 321 322

Start-up of shear 162

Start-up of steady shear flow 115 140 150 363 416

See also Steady shear, Shear

Static light scattering 382

Statistical polymer segments 477 478 485

Steady shear 154 162

     start up by birefringence 409 416

     viscosity 181 277 278 368 493 506

Steady simple shear 184

Steady straining 175 177

See also Strain rate

Steady uniaxial extension flow

See Uniaxial

Step shear strain 153

Stick-slip flow. See Slip

Storage modulus, G′

See Dynamic modulus
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Stokes’ law 487

Strain 32

See also Cauchy tensor;

Finger tensor; Deformation

tensor invariants

See Invariants

     large 175

     small 175 467

     step 153

Strain-energy function 42 159

Strain gage, (transducers) 343 345

Strain rate. See also Shear

rate; Extension rate 175

Strain reversal 164

Strain softening 161

Strain tensor, E 32 38

See also Cauchy tensor; Finger tensor;

Deformation tensor

Stress balance See also Momentum equation 50

Stress distribution 379

Stress ellipsoid 20

Stress field visualization, by

birefringence 408

Stress growth 115

See also Steady shear;

Shear; Uniaxial extension

Stress-optic coefficient 381 393

     independent of shear rate, Mw concentration 395

     of block copolymers 412

     typical values for polymer melts 398

Stress-optical relation 393 395 397 419

Stress overshoot. See also Start-up of steady shear 416
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Stress relaxation 109 111 118 160 340 363 494

    nonlinear 164

    shear 164

Stress tensor 19 490

    calculation on a shear plane 14

    due to particles 429

    eigenvalue of 22

    extra, τ 19

    invariants of 22 23

    on a surface, calculation 15 60

    principal directions 20 23

    principal stress 20

    symmetry of 17

    total, T 19

Stress vector, magnitude 15

Stressing viscosities 145

Stretch tensor, V 29 72

See also Upper-convected derivative

Structure of flowing

suspensions 457 465 469

Surface tension 199 202 227

See also Interfacial tension

Suspensions 138 280 425

in non-Newtonian media 460

Symmetry. See Stress tensor

Syrup 94

T

Tachometer 339 340

Tangential annular flow 267 268 275

    first normal stress

difference 267

Taylor number 202
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Taylor vortices 202 203

Temperature control, birefringence in 407

    capillary rheometers 368

    extensional rheometers 294

     shear rheometers 352

Temperature dependence of viscosity 100 510

     in suspensions 465

Temperature-frequency superposition.

See Time-temperature superposition

Temperature gradient in rheometers 354 356

Tensile stress difference 296

Tensile viscosity 285

See also Extensional viscosity ;

Elongational viscosity

Tensor

as a dyad 11

as a machine 11

     characteristic equation of 22 41

     index notation 12

     matrix notation 11 12

     transpose of 17

Tenter frame. See Film stretching 62

Thermal conductivity 100

Thermodynamics, second law 165

Thermoforming 285

See also  Sheet inflation

Thickening. See Extensional or shear

Thixotropy 250 251 425 427 469

Three-point bending 355

Tilted open channel 268

Tilted rotating cone and plate 231

Tilted rotating hemispheres 231
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Time-temperature superposition 114 411 498 512

     shift factor 114 139 509

     viscosity data 101

Titanium dioxide suspensions 426

Torque 216

     measurement 342

     rheometers 225 226

     transducers 343 355

Torsion bar 342

Torsion pendulum 360

Torsion rectangle test

geometry 355

Torsion wire 188

Torsion of a solid cylinder 50

Torsional flow 183 276

Transducers

     inertia 342 344 363

See also Inertia stiffness 347

Transient

     equibiaxial viscosity 304 306

     extensional viscosities 286

     flow, birefringence in 416

     normal stresses 346

     planar viscosity 306 307

     response 339

     shear viscosity 181

     shear 175

      tests 363

      viscosity 351

Translational diffusivity 454

Trouton ratio 67 142 145 287 291 445

See also Extensional viscosity

Truncated cone and plate 348
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Tube flow 105

See also Capillary

power law model 87

Tube inflation 306 308

Tubeless siphon 315 321 370

Turbulence 247

Two-viscosity model 96

U

Uniaxial compression 297

Uniaxial extension 27 67 144 151 154 285 288

291 297 304 306 308 320

      boundary conditions 53

      displacement functions 27

      Finger tensor 31

      invariants of Finger and Cauchy tensor 35

      inverse deformation tensor 34

      NeoHookean solid 38

      Newtonian fluid 79

      principal extension 35

      rate of deformation tensor 73

     steady 70 73 105

     Trouton ratio 79

     velocity gradient 70

     working equations 290

Uniaxial extensional viscosity 148 290 296 306 307 309 310

312 315 317 320 327

Unit tensor. See Identity tensor

Unlubricated flow 322 324

Unperturbed dimensions of polymer coil 477 478 485

Upper-convected Maxwell

(UCM) equation 149 155 156 166 172

     start-up of  steady shear 150

     uniaxial extension 150
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Upper-convected time

derivative, of Finger tensor 146

     of rate of deformation 146

van der Waals attraction 427 450

V

Vane fixture 224

Velocity gradient 191

Velocity gradient tensor, L 68

     as derivative of F, deformation gradient 69

     in curvilinear coordinates 69

Viscoelastic liquid 109 176 212 229 269

Viscoelastic model, general 111

Viscoelastic solid 110 115 504

Viscometer defined 175

Viscoplastic models 92

     Papanastasiou’s Modification 97

Viscosity 204 220 242 259 262 275 425

455 465 469

See also under most of these subheadings

     common materials 78

     definition 78

     dilute spheres 426 429

     dynamic 141

     emulsions 439

     extensional 175

     flow activation energy 100

     integral of relaxation spectra 114

     intrinsic 433 443 444 445 480

     Krieger-Dougherty relation 456

     molecular weight 479 498

     Newton’s law of 2 65

     polymer solutions 481
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Viscosity (Cont.)

     pressure dependence 100

     reduced 433 439 457 479

     relation between steady and dynamic 141

      relation between steady and start-up 141

      relative 426 459

      shear 176

      solvent 487

      specific 433

      spheroid 443 444 445

      start-up 140

      steady shear 175

      temperature dependence 100 103

      time-dependent 116 469

See also Thixotropy

      transient shear 140 175

      units of 78

      zero shear rate limit, 114

      zero shear 127

Viscous dissipation 100 102 203 204 258 261 368

See also Shear heating

Viscous modulus 122

See also Sinusoidal oscillations

Viscous stress tensor. See Stress tensor

Volume change 37

von Mises criterion 93

Vorticity tensor 73

W

Wagner, integral equation, 165

Wall shear stress 371

Wall slip 194 224 244 246

See also Slip; Apparent wall slip
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Wave speed 359

Weissenberg, Karl 135

Weissenberg number 203

Weissenberg Rheogoniometer 337 339 345

Weissenberg-Rabinowitsch equation 240 243

White and Metzner, differential equation 167

Williams-Landel-Ferry (WLF) equation 101 510

Wohler fatigue tester 226

Working equations 189 206

      capillary rheometer 241

      compression 300

      fiber spinning 311

      slit rheometer 258

      uniaxial extension 290

X

Xanthan gum solution 66 309 363

X-ray scattering 382

Y

Yield stress 92 276 280 370 425 427 468

      criteria 93

      does it exist? 98

      in tension 105

      microstructural basis 98

      modeled with a critical shear rate 97

      modeled with an exponential

function 97

Yogurt 66 92

Young’s modulus 39
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Z

Zero shear viscosity 187 497

See also Viscosity

Zimm model 411 487

Zinc iodide suspensions 432




