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Directors’ Preface 

‘Soft and Fragile Matter’ covers colloids, polymers, surfactant phases, emulsions, and 
granular media. Recent advances in all these areas have stemmed from enhanced experi- 
mental and simulation capabilities, and fundamental theoretical work on nonequilibrium 
systems. The aim of the 53rd Scottish Universities Summer School in Physics was to 
address experimental, simulation and theoretical studies of soft and fragile matter, fo- 
cussing on unifying conceptual principles rather than specific materials or applications. 
In fact, several of these unifying principles are only just being recognised as such within 
the soft matter community. For example, ‘jamming’ in colloids under flow (and perhaps 
under gravity) is related to fundamental work on driven diffusive systems. Likewise ‘ag- 
ing’, found experimentally in soft gels, dense emulsions etc., relates to general concepts 
of glassy dynamics. Since these links are not yet fully worked out, several of the articles 
in this volume address relevant conceptual principles from a more general perspective. 

The diversity of soft materials listed above was matched by that of participants at the 
School itself. Lecturers had been chosen, from among the leading international scientists 
in the field, with specific regard to their pedagogical skills. A careful attempt was then 
made to coordinate the content among the various courses. Most lecturers were asked to 
spend at least the first of their three lectures covering some particular area of the subject 
at an introductory level. The assignments were as follows: Pine, experimental methods; 
Khokhlov, polymers; McLeish, rheology; Frenkel, colloids; Kremer, simulation; ROUX, 
surfactants; Bray, phase kinetics; Mukamel, driven systems; Kob, structural. glasses; 
Bouchaud, slow dynamics; Nagel, granular matter. Collectively, the lecturers managed 
to carry their audience from the basic foundations of the subject to a representative 
sample of topics at  the forefront of current research. Most participants felt that they had 
learned a great deal from the School. 

SUSSP53 was held in the School of Physics and Astronomy and John Burnet Hall at 
the University of St Andrews, close to the ancient town’s pubs, shops, beaches, historical 
monuments and golf courses. A busy social programme kept everybody occupied outside 
of the formal sessions, and featured a memorable ceilidh as well as a whisky-tasting 
evening. We are grateful for the help of many individuals (particularly Nigel Wilding 
and Stefan Egelhaaf) and organisations (particularly NATO, the EC, EPSRC and NSF) 
in contributing so much to the success of the School. The staff of John Burnet Hall 
provided a high quality and very friendly service. Secretarial assistance was ably provided 
by Leanne O’Donnell. 

Michael Cates and Wilson Poon 
Edinburgh, February 2000 
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Editors’ Note 

To achieve the same ease of communication in this Proceedings volume as occurred 
at  the School itself is a challenging, if not impossible, goal! Nonetheless, the articles have 
been carefully edited with that aim in mind-for example by adding cross-references in 
many places where relevant introductory material is to be found in a different article. 
The sequence of the articles follows roughly that of the School’s lectures, though of 
course the latter were interleaved in a way the articles cannot be. Thus, following an 
introductory survey (Poon) the volume can be informally subdivided into three sections: 
methodologies and phenomena of soft condensed matter (six chapters, Pine to Etoux 
inclusive); modern concepts of nonequilibrium statistical physics (four chapters, Bray to 
Bouchaud); dynamics and metastability in colloidal and granular systems (four chapters, 
Lekkerkerker to Cates). The aim of this volume, like that of the School, is to lead the 
reader from basic principles to a selection of the most recent developments in this diverse 
and fascinating field. We hope this has been achieved, in many cases within the course 
of a single chapter. 

Michael Cates and Martin Evans 
Edinburgh, February 2000 
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1 

A day in the life of a hard-sphere 
suspension 

Wilson C K Poon 

University of Edinburgh, UK 

1 Introduction 

This summer school has a very fashionable title: the terms ‘soft matter’ and ‘fragile 
matter’ are very recent additions to the physics vocabulary. P-G de Gennes was one 
of the first to use the term ‘soft matter’ to refer to the study of colloids, polymers and 
surfactants in his Nobel lecture [l] in 1991. ‘Fragile matter’, in at least one of the senses 
used in this School, is even more recent [2] (see, this volume). The adjectives ‘soft’ 
and ‘fragile’ used to describe matter share another characteristic: they both refer to how 
materials respond to mechanical disturbances. 

The school is devoted to understanding three particular aspects of soft and fragile 
matter, as detailed in the subtitle: nonequilibrium dynamics, metastability and pow. What 
I want to do in this introductory lecture is first to give some reasons why one might expect 
systems described as soft or fragile matter to be suitable for the investigation of these 
particular aspects of nonequilibrium physics. Then, in the main part of the lecture, I will 
illustrate all of these aspects with what is possibly the simplest model system: a colloidal 
suspension of hard spheres. 

1.1 

The understanding of systems in thermal equilibrium is one of the major achievements 
of twentieth-century physics. We have a recipe to do this starting from a knowledge 
of the microscopic pair interaction, U ( r ) .  First calculate the partition function, given 
by 2 = J drl . . . d r ~  exp[-U(r)/k~T].  Then take its logarithm to give the (Helmholtz) 
free energy: F = -kBTlnZ. The equilibrium behaviour of the system is obtained by 
minimising F .  The calculation of Z is, of course, a hard mathematical problem, and 
a large amount of physical insight (and computer time!) is needed to make progress. 
Nevertheless, the general recipe is available. 

Nonequilibrium physics and soft matter 
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2 Wilson C K Poon 

The situation is very different when we come to the behaviour of systems away from 
equilibrium. The general question can be stated as follows. What happens when we 
apply a perturbation, transient or continuous, (change its temperature, shake it, etc.) to 
a system in thermal equilibrium? Here, relative to where we have got to with equilibrium 
statistical mechanics, we are still fumbling in the dark. Kubo’s judgement [3] in this 
regard is an understatement: “The foundation of nonequilibrium statistical mechanics is 
perhaps far more difficult to establish than that of equilibrium statistical mechanics.” 

Apart from the lack of suitable theoretical foundation and mathematical tools, another 
reason for the slow progress in understanding nonequilibrium systems is the lack of exper- 
imental models. This is where ‘soft matter’ comes in. Colloids, polymers and surfactants, 
sometimes also known as ‘complex fluids’, have one characteristic in common: they in- 
volve a mesoscopic length scale between the atomic (w lnm) and the bulk (w 1”). On 
this intermediate length scale one finds structures such as suspended particles/droplets, 
macromolecular coils, and self-assembled structures such as micelles and bilayers. The 
presence of this intermediate length scale in complex fluids gives rise to three reasons why 
they make ideal candidates for the investigation of nonequilibrium physics. 

Firstly, the upper end of the mesoscopic length scale, R w lpm, is comparable to 
the wavelength of visible light, so that direct imaging using optical microscopy is fast 
becoming a standard tool in complex fluid investigations. Secondly, the relaxation time 
of complex fluids, t ~ ,  the time taken for an entity (e.g. a colloidal particle or a polymer 
coil) to diffuse over a length scale comparable to its size, scales according to R2 N Dt. 
We can estimate the diffusion coefficient D by using the Stokes-Einstein relation for a 
sphere of radius R suspended in a solvent of viscosity q: D = kgT/61rqR. This gives 

with values in the region of lms to 1s. Corresponding relaxation times in atomic ma- 
terials are in the picosecond range. These relaxation times are, of course, modified by 
interactions. Typical attractions in complex fluids are of the order 1 to 2 0 k ~ T ,  so that 
the Boltzmann factor amplifying the elementary relaxation time t is never.much bigger 
than lo8. The upshot is that the characteristic times over which nonequilibrium complex 
fluids evolve are likely to be in the range of lms to 1 year. 

Thirdly, complex fluids are ‘soft’, an adjective to be discussed by McLeish, this volume. 
Here I note that their mechanical response is mainly governed by entropy, so that a typical 
modulus (of a colloid for example) is given by 

G N ~ B T / R ~  , ( 2 )  

which is of the order of 10-3-1 Pa. We can also estimate the effect of a shear rate of ;Y by 
appealing to a dimensionless group known in the colloid community as the Peclet number: 
Pe o( tR+. If Pe < 1, Brownian relaxation dominates; if Pe > 1, shear dominates. Using 
Equation 1, we get 

In this expression, we recognise q+ to be a stress. For a stress equal to the mechanical 
modulus we have just estimated from Equation 2, we get Pe N 10. Therefore relatively 
high shear rates are easily achieved, so that we can study highly nonequilibrium flow 

Pe N 61rq@j/kgT. (3) 
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A day in the life of a hard-sphere suspension 3 

behaviour in complex fluids. In particular, we will later see that it is in thinking about 
the high-shear response of colloids that one definition of the concept of ‘fragile matter’ 
was first given. 

For these reasons, as well as the stunning ingenuity of synthetic chemists in preparing 
well-characterised systems ‘to order’, there is now a growing realisation that complex fluids 
are ideal laboratories for nonequilibrium physics. In what follows, I want to introduce the 
themes of the Summer School by describing nonequilibrium dynamics, metastability and 
flow in perhaps the simplest possible complex fluid-a suspension of hard spheres. 

Since my aim is simply to give examples of a range of phenomena, I will not attempt to 
provide a complete set of references; in each example, I will give representative references 
with a bias towards papers with extensive bibliographies for further reading. 

2 Hard-sphere colloids 

All of the experiments which I will describe are performed using a model system developed 
originally by IC1 for paints, and first used for academic research by Ron Ottewill and his 
group in Bristol [4]. They are suspensions of polymethylmethacrylate (PMMA) spheres 
( R  5 lpm) with chemically-grafted coatings of poly-12-hydroxystearic acid (PHSA) of 
thickness NlOnm. A large body of research over the last two decades has shown that 
the interaction between two such particles is almost perfectly hard-sphere like [5]: there 
is no interaction until the coated particle surfaces touch, whereupon over a very short 
spatial range ( w  10nm) a strong entropic repulsion develops. In particular, they show the 
equilibrium phase behaviour expected of hard spheres (to be reviewed in more detail by 
Frenkel, this volume). At low volume fractions (the fraction of the total volume V occupied 
N spheres of radius R is 4 = 4aR3N/3V) the equilibrium state is a colloidal fluid- 
particles adopt an amorphous arrangement and can (given time) diffuse throughout the 
sample volume. At high volume fractions, the equilibrium state is a colloidal crystal; this 
is easily detected because colloidal crystallites appear iridescent in white light due to the 
Bragg reflections from crystal planes. Within the interval 4~ = 0.494 < 4 < 4~ = 0.545, 
the fluid at  4~ and crystal at 4~ coexist. 

Before moving on to describe nonequilibrium dynamics, metastability and flow in this 
model system, I just want to mention briefly two examples of on-going work on the equi- 
librium properties of hard spheres, if only to show that despite having a firm theoretical 
foundation, equilibrium statistical mechanics is far from a closed subject. First comes 
the structure of hard-sphere crystals. These are made of hexagonally-packed layers stack- 
ing on top of each other. Given the short-range nature of the interparticle potential, we 
expect very small free-energy differences between the infinitely many possible stacking 
sequences (the two most well-known ones being face-centred cubic ABCABC and hexag- 
onal close packed ABAB; random hexagonal stacking corresponds to a random sequence 
of A,B,C).  Calculating these free energy differences is a big challenge for equilibrium 
simulations, which is only recently beginning to be met [6]. Secondly, real suspensions 
never have particles of uniform size, in which case they would be monodisperse. The 
effect of having a distribution of particle sizes, known as polydispersity, is to render the 
system an infinite-component one, giving rise to formidable challenges in attempting a 
theoretical description that are, again, only recently being attended to [7]. 
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4 Wilson C K Poon 

2.1 Metastability 

Given the small mechanical moduli of colloidal crystals ( n ~  ksT/R3),  they can easily be 
shear-melted to a metastable fluid state: the stresses involved in shaking a bottle of col- 
loidal crystals are equivalent to putting a few hundred Mount Everests on top of a block of 
copper! Out of this metastable colloidal fluid are nucleated ordered domains of colloidal 
crystallites. Visually, in a test tube that has been shaken, one sees iridescent crystallites 
appearing throughout the bulk over times of minutes to hours. The emergence of crys- 
talline order in a hard-sphere system may be the simplest symmetry-breaking transition 
open to study in the laboratory. Until recently, the decay of the metastable fluid towards 
equilibrium crystals has been studied exclusively by diffraction. This is a matter of neces- 
sity in atomic materials, and a matter of tradition in colloids [8]. A particular drawback 
of diffraction methods is that by the time Bragg peaks are visible, the initial symmetry- 
breaking nucleation step is already long over. What is observed is growth averaged over 
many crystal nuclei, with information on nucleation only available by more or less indi- 
rect inference and extrapolation. Recently direct microscopic observation has been used 
to study the nucleation of crystallites from metastable colloidal fluids: see Figure 1. For 
example, in the group in Edinburgh, Mark Elliot [9] has captured the genesis and evolu- 
tion of an almost-critical nucleus in a PMMA colloid in real-time and with single-particle 
resolution. 

Figure 1. Optical micrograph of a colloidal crystallite nucleating out of a surrounding 
disordered, metastable colloidal fluid. The particle diameter is N l p m .  This image was 
taken 48pm from the bottom of a suspension confined to a 100pm-thick capillary. Taken 
from [9]. 
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A day in the life of a hard-sphere suspension 5 

Such microscopic observations have the potential of testing a number of intriguing 
theoretical predictions. For example, it has often been suggested that the structure of 
the initial crystal nucleus may well be different from that of the final bulk crystal [lo]. 
Simulations have also cast doubt on the single-particle picture of nucleation implicit be- 
hind classical nucleation theory [ll]. Neither of these results are particularly amenable to 
testing by diffraction experiments: direct observation of individual early-stage nuclei are 
necessary. 

As  formed, hard-sphere colloidal crystals are made of randomly-stacked hexagonal 
layers. In some experiments (see e.g. the preliminary report in [5]), these random-stacked 
crystallites were observed to ‘ripen’ towards a face-centred cubic structure over days and 
months. This is consistent with recent simulations reporting fcc stacking to be that with 
the lowest free energy (by N 10-3k~T per particle or thereabouts) [6]. If this is so, then 
randomly-stacked colloidal crystals are long-lived metastable structures. The kinetics and 
mechanism of such ‘ripening’ is not well understood. 

2.2 Nonequilibrium dynamics 

The phase diagram of hard spheres has already been reviewed: fluid for 4 < 0.494, crystal 
for # > 0.545, and fluid-crystal coexistence between those two volume fractions. Thus, 
for all volume fractions above 0.545 all the way to the closest possible packing density 
(4” = ~/3a M 0.74) the equilibrium thermodynamic state is crystalline. Experi- 
mentally, however, homogeneous nucleation of colloidal crystallites is not observed above 
# - 0.58 [12]. This has been interpreted as a glass transition. (Note that even above 
4 = 0.58, heterogeneous crystallisation, e.g. at sample tube walls, is still observed.) 

This ‘glass transition’ appears to be associated with a seizing up of dynamics at  all but 
the shortest length scales, as revealed by dynamic light scattering (DLS). DLS measures 
the normalised intermediate scattering function 

where 

(This quantity is discussed in Section 2.2 of the article by Pine, this volume, where the 
notation gE(T) is used.) The static structure factor is S(q) E F(q, 0). N is the number 
of particles in the scattering volume, assumed to be large, and rj(t) is the position of 
particle j at time t. The normalisation ensures that f(q,T) = 1 at short times. In 
a system that is ergodic over the experimental time window, i.e. one that explores all 
configurations many times over, f(q, 7) + 0 as T + 00. Essentially, the rate of this decay 
to zero gives information about the diffusive dynamics of density fluctuations at length 
scale 2 ~ / q .  The DLS signature of the glass transition in a hard sphere suspension is 
that f(q, T )  fails to decay to zero at all scattering vectors. The most careful DLS studies 
of the hard-sphere glass transition to date have been performed by van Megen and co- 
workers using the P M M A  system [13]. One interesting conclusion to emerge from these 
careful measurements is that many of the predictions of mode-coupling theory (MCT),  
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6 Wilson C K Poon 

a highly mathematical construction involving the structure factor S(q) that implies a 
dynamical transition at high densities (see , this volume), are substantially correct 
for this system. Of even more interest for this School (see , this volume) van 
Megen et al. [13] detected ‘aging’-slower dynamics were observed at a longer ‘waiting 
time’, the time elapsed since the system was prepared before the commencement of the 
experimental (here DLS) measurements. 

2.3 Flow and fragility 

Concentrated suspensions, like other complex fluids, are non-Newtonian. In particular, 
the suspension viscosity is a function of shear rate. A convenient dimensionless shear rate, 
the Peclet number, has been introduced in Equation 3. Consider a hard-sphere suspension 
at 4 N 0.5. At Pe + 0, the exists a well-defined low-shear limit viscosity. At Pe N 0.1, 
shear thinning starts to occur-the viscosity decreases rapidly with shear rate until Pe 
N 1, whereupon it remains more or less constant for many decades of Pe. At very high 
shear rate, a sudden and dramatic increase in viscosity (factor of 10 or more) is often 
observed [14]. This phenomenon is known as shear thickening. 

Figure 2. A schematic representation of a suspension subject to shear osy. Under strong 
shear, stress-bearing tforce chains’ of particles form (dark and shaded circles), leading to 
‘jamming’ of the suspension. Taken from [2]. 

In a recent publication [2], Cates and co-workers interpreted shear thickening as due to 
the formation of ‘force chains’ in the system, leading to ‘jamming’see Figure 2. These 
stress-bearing force chains render the suspension solid-like with respect to the particular 
imposed shear stress, but not with respect to any other stress pattern; if the stress pattern 
is changed, the system will immediately flow and jam again, a characteristic which Cates 
et al. proposed to call fragile. 

2.4 An exampl6DWS echo study of hard-sphere glasses 

Recently, a UK-French team have carried out an experiment on hard-sphere suspensions 
that involves all three aspects of metastability, nonequilibrium dynamics and flow, as 
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A day in the life of a had-sphere suspension 7 

reviewed individually in the last three sections. Haw et al. [15] used the new technique of 
diffusing wave spectroscopy (DWS echo) to study the yielding and flow of a hard-sphere 
colloidal glass under oscillatory shear. DWS echo will be discussed in much more detail by 
its inventor, David Pine, in his lectures on experimental techniques (see , section 2.2.3, 
this volume). Briefly, the technique studies the statistics of the speckle pattern formed 
when laser radiation (wavelength A) from different multiple-scattering paths through a 
turbid medium (here a dense PMMA suspension at # -0 .5746)  interfere with each other. 
If each of the N scatterers in the medium moves by a distance N X/N, the new speckle 
pattern will be completely decorrelated with the original pa t te rn-on  average, we expect 
a bright speckle in the original pattern to become dark (and vice versa). If N is large, 
DWS echo then provides a means of detecting very small movements. 

Now consider a scattering medium under oscillatory shear. The correlation function 
of the speckle pattern will decay from unity to zero once the shear has moved scatterers 
by a distance N A / N ,  and remain at zero throughout the shear cycle. If the medium 
behaves elastically, so that at the beginning of the next cycle all scatterers are back at 
their positions at  beginning of the previous cycle, then the correlation function will recover 
fully the value unity: the speckle pattern at t = to  + T is exactly the same as that at 
t = to  (where T is the shear period). A plot of the correlation function against time will 
therefore give a series of peaks of unit height (echoes) with time period T.  If, however, 
portions of the scattering medium deform plastically, so that scattering centres do not 
recover their positions after a shear cycle, the echo-peaks will have less than unit height. 

Using this method, Haw et al. found that there is essentially no decrease in the height 
of the echoes in a hard-sphere colloidal glass until a volume-fraction-dependent critical 
shear amplitude is reached. At 4 = 0.585, for example, there is little decrease in the 
echoes until the peak-to-peak shear amplitude is N 0.3. Simultaneous static scattering 
experiments showed that at  and above this amplitude, rapid crystallisation of the colloidal 
glass occurred. This behaviour is quite different from that of dense emulsions (see Pine, 
this volume). 

3 Conclusion 

The purpose of this brief survey of ‘a day in the life of a hard-sphere suspension’ is to 
show that even the simplest conceivable complex fluid shows fascinating physics in the 
areas of metastability, nonequilibrium dynamics and flow. Many of the ideas encountered 
in this survey will recur throughout the School. 
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Light scattering and rheology of 
complex fluids driven far from 
equilibrium 

David J Pine 

University of California at  Santa Barbara, USA 

1 Introduction 

In these lectures, we explore two examples of systems driven far from equilibrium by 
the application of shear. With these two examples, we investigate different experimen- 
tal strategies which are designed to probe directly the connection between macroscopic 
non-linear rheology and the microscopic structure and dynamics of a broad range of soft 
materials. The study of these systems illustrates the importance of performing simul- 
taneous measurements of the microscopic structure, flow, and rheological properties of 
soft materials when such systems are driven far from equilibrium by shear flows. There 
are several reasons for this. First, the flows are frequently inhomogeneous. Such inho- 
mogeneities can arise from various mechanisms; the two most frequently observed and 
discussed are hydrodynamic instabilities and flow-induced phase transitions. Other dif- 
ficulties can also arise for the case of virtually any flow that is not a pure shear flow. 
In pure extensional flows, for example, the nonlinear rheological properties of the fluid 
under study can modify the flow field in ways that are extremely difficult to predict. 
Thus, without a detailed knowledge of the flow field, it  is virtually impossible to develop 
a meaningful theory. Second, systems do not always tend towards a steady state. Even 
when they do, the steady state is not necessarily characterised by any general principle 
of detailed balance to constrain the theory which one can construct. Furthermore, the 
structures that develop under shear often do not resemble the structures found in the 
same system in equilibrium. That is, the nonequilibrium structures frequently cannot 
be described as perturbations of the equilibrium structures. Therefore, as important as 
microscopic structural measurements are for understanding and developing theories for 
systems in equilibrium, they become even more important when systems are driven far 
from equilibrium. 

The systems we study are solutions of worm-like micelles and oil-in-water emulsions. 
These two systems exhibit many of the generic properties that soft materials exhibit 
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under shear flow including a shear-induced phase transition, inhomogeneous flows, plastic 
deformation, and yielding. We explore these phenomena in these two systems with a 
combination of optical and light scattering techniques, and with rheological measurements. 

In Section 2, we review some important aspects of basic light scattering theory. We 
then discuss some general characteristics of light scattering when the system under study 
is subjected to a steady or oscillatory shear flow. We conclude our discussion of light 
scattering with an overview of diffusing-wave spectroscopy (DWS), that is, dynamic light 
scattering (DLS) in the multiple scattering limit. 

Next (Section 3) we discuss the results of some recent experiments on shear thickening 
in dilute and semi-dilute solutions of wormlike micellar solutions. We also present a 
phenomenological theory for shear thickening in these systems which captures many of 
the salient features of our experiments. Our discussion of the experiments and theory is 
preceded by a brief overview of wormlike micellar solutions. 

Finally, we present in Section 4 results from some recent experiments which examine 
microstructural changes in dense glassy emulsions when they are sheared beyond the limit 
of linear response. 

2 Light and other scattering techniques 

Scattering techniques are among the most powerful and widely used methods for probing 
the microscopic structure and dynamics of matter. In soft condensed matter, the most 
commonly used scattering techniques are X-ray, neutron, and light scattering. The choice 
of which scattering technique to use depends first and foremost on the length scale of the 
structures that one wishes to probe. The length scales directly probed by the various 
scattering techniques are set by the wavelength of the radiation. The smallest length 
scale that can be directly measured by scattering is X/2  where X is the wavelength. As 
discussed latep, larger length scales are probed by varying the scattering angle. For X-ray 
and neutron scattering, where the wavelengths used are typically - I.&, the upper limit is 
about lOOOA,  which can be achieved by working at very small scattering angles. For light 
scattering, where the wavelength is N 0.5pm, the upper limit us usually several microns 
although length scales of up to N 200pm have been achieved recently. 

Another consideration in choosing which scattering technique to use has to do with how 
the radiation interacts with matter. X-rays are scattered by fluctuations in the electron 
density. Therefore, substances containing heavier elements scatter more strongly than 
substances rich in the lighter elements. For example, substances containing a great deal 
of hydrogen and relatively low concentrations of heavier elements scatter X-rays weakly. 
By contrast, neutrons interact primarily through the nuclear interaction, which varies 
more or less randomly from one nuclear species to another. It so happens that neutrons 
are scattered by hydrogen much more strongly than are X-rays. In fact, hydrogen and its 
heavier isotope, deuterium, scatter in such a way that they partially cancel one another. 
Thus, by judiciously adjusting the concentration and location of hydrogen and deuterium 
within a molecule, one can adjust the overall scattering strength and even selectively 
scatter from hydrogen atoms at specific molecular locations. Such ‘contrast matching’ 
has proven to be a powerful tool for probing the structure of polymers and other complex 
fluids. Neutrons also have magnetic moments and therefore couple to the spin of nuclei. 

Copyright © 2000 IOP Publishing Ltd.



Light scattering and rheology of complex fluids driven far from equilibrium 11 

Thus, systems with magnetic properties can be probed with neutrons. By contrast, light 
is scattered by fluctuations in the dielectric constant of a material. Light is an especially 
useful probe of soft materials because they frequently contain structures with length scales 
comparable to the wavelength of light. In fact, the ‘softness’ of many and perhaps even 
most soft materials is derived from the fact that they are made up of structures whose 
fundamental length scales are comparable to optical length scales. 

One other characteristic of light scattering is that light is typically scattered much 
more strongly than are X-rays or neutrons. A simple quantitative measure of the scatter- 
ing strengths of light and X-rays is the mean spatial fluctuation in the dielectric constant 
A€/€. For a typical sample probed by light scattering A€/€ N 0.1; for X-ray scatter- 
ing A€/€ N lo-’. Thus, light is scattered much more strongly than X-rays. (Neutron 
scattering strengths are roughly comparable to X-rays.) One consequence of this is that 
multiple scattering is frequently an important consideration for light scattering exper- 
iments whereas it is almost never important for X-ray or neutron scattering. In fact, 
multiple scattering is such a common occurrence in light scattering experiments that 
techniques have been developed to cope with and in some cases even exploit multiple 
light scattering. Further on in these lectures (Section 2.2) we will discuss diffusing-wave 
spectroscopy (DWS), a technique which exploits multiple light scattering to probe very 
small particle movements. We now turn to a discussion of basic light scattering theory. 

2.1 Static light scattering 

The basic principles of light scattering can be understood by first considering scattering 
from two nearby particles as illustrated in Figure 1. Coherent light from a laser is incident 

Figure 1. Schematic for scattering of light from two particles. 

from the left onto the two particles. Light scattered through an arbitrary scattering angle 
0 is collected by a detector which is sensitive to the intensity of the light that falls on 
its surface. Light scattered from the top particle will in general have travelled a different 
distance from the laser to the detector than that from the bottom particle. Thus, the 
scattered electric fields from the two particles will not be in phase with each other. Since 
the wavelength of the scattered light is unchanged (i.e. the scattering is elastic), the 
difference in phase is given by the magnitude of the wavevector, k 27r/X, times the 
difference in path lengths As, where X is the wavelength of light in the sample. F’rom 
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,  the difference in path lengths is As = (ko/ko) . A r  - (k,/ka) Ar. In writing 
down this expression for As, we have made the approximation that the distance between 
particles is small compared to the distance between the particles and the detector. Thus, 
the paths from each of the two particles to the detector are essentially parallel. This is 
usually an excellent approximation. Noting that k = ki = ko, the phase difference A$ is 

Aq5 = kAs = (ko - ki) . A r  = q .  A r ,  (1) 

where the scattering vector is defined by q = ko - b. Clearly, if A 4  N T ,  the light 
scattered from the different particles interferes destructively. If A$ N 0, the scattered 
light interferes constructively. Thus, the relative phase between the light scattered from 
different particles is sensitive to particle positions on the length scale of the wavelength of 
light. This is the essential physics which underlies the sensitivity of light scattering to the 
spatial structure of the scatterers. One additional note: as can be seen from the geometry 
of the scattering diagram in Figure 1, the magnitude of q is related to the scattering 
angle 8 by 

(2) 
e 

q = 2ksin-.  
2 

To obtain a quantitative expression for the scattered intensity from N particles, we 
first add the contributions from all particles within the scattering volume to obtain the 
total electric field at  the detector: 

where the absolute phase for each path 9% = q.r, is measured relative to an arbitrary fixed 
origin (as we will see below, the scattered intensity does not depend on the choice of the 
origin of the coordinate system). For simplicity, we have assumed that the amplitudes of 
the scattered fields E, are all identical and equal to E, as would be the case for identical 
spherical particles much smaller than the wavelength of light. The scattered intenszty is 
proportional to the square modulus of the electric field: 

N N N 

r = l  j = 1  1.J  
I d ( q )  0: lEdI2 = IE,(' et"'* e-'q') = lE,I2 e2q ('I-')) . (4) 

Thus, it is apparent that the scattered intensity is dependent on the relative positions 
of the scatters and, as expected, is not sensitive to our choice of coordinate systems for 
calculating the phase of the scattered light. Static light scattering experiments measure 
the average of the scattered intensity. Therefore, it is useful to extract from the ensemble 
average of Equation 4 that part which contains the structural information in which we 
are interested. To this end, we define the statzc structure factor, 

and note that I(q) cx S(q). The static structure factor S(q) can be calculated without 
recourse to scattering theory as it contains only information about the average relative 
positions of particles. Thus, S(q) is the quantity that connects static light scattering 
measurements with theory. 
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Figure 2. Static liquid structure factor for Odifferent volume fractions: solid line, 4 = 0.1; 
dotted line, I#J = 0.2; dashed lane, I#J = 0.3 (calculated for hard spheres using the Percus- 
Yevick approximation). 

2.1.1 Liquid structure factors 

In order to develop some intuition abaut the results of scattering experiments, it is useful 
to consider a few examples. First, we consider scattering from a disordered liquid [l, 21. 
In Figure 2, we show S(q) for a liquid of hard spheres at  three different volume fractions. 
Because a liquid is isotropic, the structure factor can only depend on the magnitude 
of q. We can better understand the origin of the oscillations in S(q) by considering its 
relationship to the radial distribution function g(r ) ,  

where n = N/V is the average particle density. Physically, n g ( r )  can be thought of 
as the average density of particles a distance r from the centre of an arbitrary particle. 
Thus, if we consider the spatial structure of a liquid as illustrated in , we see 
that g(r)  must be zero near the origin since no other particle can occupy the same space 
as our reference particle out to some finite distance, roughly comparable to the particle 
diameter. At a radius corresponding to the first coordination shell, there is a higher than 
average probability of finding another particle so g ( r )  must exceed unity. Between the 
first and second coordination shells, the density will again fall below the average density 
in a dense liquid because of packing constraints. At the second coordination shell, g ( r )  
will once again rise above unity but not as high as the first peak. This diminishing of 
the height of the peaks (and depth of the valleys), as the distance from the centre of the 
labelled particle increases, arises because the correlations in the particle positions die off 
due to the accumulation of space in which they can fluctuate relative to a central labelled 
particle. At large distances, all correlations die off in a liquid and g ( r )  tends towards 
unity. 
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Figure 3. Radial distribution function g ( ~ )  and real space distribution of particles (inset). 
Dashed circles indicate the location of the first peak (long dashes) and first minimum (short 
dashes). 

The static structure factor S(q) is, according to Equation 6, the Fourier transform of 
g(r ) .  Therefore, we can understand the origin of the oscillations in S(q) at finite q as 
merely reflecting the short-range correlations between particles due primarily to packing 
constraints arising from the repulsive core of the potential. Thus, the first peak in S(q) 
occurs in the vicinity of 27r/d where d is the interparticle spacing (for the special case 
of hard spheres, the peak is near 2a/a  where a is the particle radius since particles 
have no reason to prefer the mean interparticle over any other spacing greater than the 
particle diameter). The structure factor is most interesting for diatomic and more complex 
molecules, as well as for mixtures of particles, since they show non-trivial correlations for 
wavevectors exceeding N 27rla. For spherical particles, such correlations reflect the details 
of the interparticle potential and are otherwise not particularly interesting. While it may 
not be apparent from ,  the interesting part of S(4) occurs for values of q much less 
than 27r/d since these smaller values of q reflect the long range interparticle correlations. 

2.1.2 Scattering from fractal clusters 

A useful and intuitive way of characterising the structure of many disordered materials is 
to specify their fractal dimension. A structure’s fractal dimension is defined according to 
how the mass of the object scales with its radius. Trivial examples are given by: (1) a line 
for which m N T ~ ,  (2) a flat sheet of paper for which m N T ~ ,  and (3) a dense solid object 
for which m N r3 .  In these examples of simple one, two, and three dimensional objects, 
m N ~ ~ f ,  where df is the dimensionality of the object. This concept can be generalised to 
include many structures found in nature for which m N ~ ~ f ,  where df is not an integer. A 
compelling example, studied extensively by light scattering, is clusters of colloidal spheres 
formed by irreversible aggregation when they collide while undergoing Brownian motion 
in a solvent. Their structure is illustrated schematically in  From experiment and 
extensive computer simulation it is found that when the potential barrier to the formation 
of aggregates is small, such that particles almost always stick irreversibly the first time 
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Figure 4. (a) Fractal cluster. The amount of mass m enclosed within increasinglgl larger 
spheres of radius r scales as m N rdf where d ,  is the fractal dimension. (b) Static structure 
factor S(q) for a fractal cluster. 

they come in contact, fractal clusters with a fractal dimension of d f  M 1.7 form [3]. When 
the barrier to the formation of aggregates is large, such particles stick irreversibly only 
after many close encounters and fractal clusters with a fractal dimension of d f  x 2.1 form. 

To determine the scaling properties of the radial distribution function of a fractal 
object, recall that n g ( r )  is the average density of particles a distance r from a given 
particle. Thus, taking m(r) to be the total mass within a sphere of radius r ,  we can write 

mass in a spherical shell of radius r 
n g ( r )  = volume of a spherical shell of radius r 

m(r f d r )  - m(r) 1 dm 1 
4rr2 dr 4rr2 dr  r2 

- - - --- 0; + d i - l ,  

Thus, we see that g(r)  scales with radius according to 

When this result is substituted into Equation 6, we find that 

S(q) N q-df . 

This result applies to a wide variety of structures. For example, it is well known that 
a random walk has a fractal dimension of d f  = 2. Thus, for an isolated polymer chain 
whose conformation is well described by a random walk, it is found experimentally that 
S(q) - q-* over a wide range of q [4, 51. Such conformations only occur at a specific 
temperature Te, called the theta temperature, where the net effective interactions between 
monomers in the chain vanishes (i.e. the second virial coefficient B2(Te) is zero; see 
Khokhlov, this volume). As the temperature is increased, the polymer coil generally 
expands, because of an increased favourable interaction between the monomers and the 
solvent. In this range, experiments show that S(q) - q-5/3 indicating a smaller fractal 
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Figure 5. Structure factor for a random polymer coil. 

dimension consistent with an expanded conformation, i.e. closer to a straight line [4, 51. 
A schematic representation of S(q) for an isolated polymer coil is shown in Figure 5. 
Note that S(q) exhibits the q-df scaling only over a finite range of q. At large q, when 
q is comparable to an inverse monomer diameter, the scaling behaviour ceases and S(q) 
reflects the microscopic correlations between monomers in a chain. At small q,  when q is 
comparable to the inverse radius of gyration R;' of the polymer chain, S(q) flattens out, 
reflecting the featureless random correlations of isolated polymer chains. Thus, on length 
scales greater than R,, the isolated chains behave like an ideal gas. Although we have 
used the example of an isolated polymer chain, the concepts discussed here are applicable 
to mans other systems. For example, the structure factor for a fractal aggregate exhibits 
similar cutoffs at small and large values of q because of the finite size of the cluster and 
the structure of the individual particles, respectively. Such cutoffs are observed in all 
physical realisations of fractal structures. 

2.1.3 Scattering from density fluctuations 

Up until now, we have considered the scattering of light only by particles. More generally, 
light is scattering by spatial fluctuations in the dielectric constant. From this point of 
view, the scattering of light by particles arises because the particles cause fluctuations 
in the dielectric constant. Indeed, if particles are suspended in a solvent with the same 
dielectric constant as the particles, there will be no scattering of light by the particles. 
In most systems, spatial fluctuations in the dielectric constant are, to within a very good 
approximation, equivalent to fluctuations in the particle concentration or fluctuations 
in the density. More importantly, useful insights into light scattering can be gained 
by viewing the scattering as originating from specific Fourier components of the spatial 
fluctuations in the density (of particles, molecules, etc.) .  In fact, it can be shown that 
scattering at a particular value of q corresponds to scattering from sinusoidal density 
fluctuations of the form exp(2q.r). 

Consider scattering from a particular Fourier component exp(2q.r) as illustrated in 
 Light is incident from the left and is scattered by sinusoidal fluctuations with 
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laser 

Figure 6. Scattering of light b y  sinusoidal density fluctuations. Light scattered at a 
scattering wavevector of q = ko - k, is scattered b y  sinusoidal density fluctuations An N 

exp(iq r) with wavelength d = 27r/q. 

wavelength d = 2w/q  in the dielectric constant. The orientation of the fluctuations is 
determined by the direction of the wavevector q. The planes of constant phase are oriented 
at an angle a = 812 with respect the direction of the incident light. Thus, one can view 
the light as being reflected from the fluctuations in the dielectric constant with the angle 
of incidence a equal to the angle of reflection a. The scattering of light can be viewed as 
Bragg scattering from these sinusoidal fluctuations. In this case the Bragg condition can 
be expressed as 

2dsina = mX. (9) 

In this equation we take m = 1 since higher order Fourier components are absent in 
a sinusoidal fluctuation. Thus substituting Q = 012, d = 27r/q, and X = 2r/k gives 
the equation q = 2ksin8/2 which is Equation 2. This illustrates how light scattering 
from the sinusoidal fluctuations in the dielectric constant is consistent with the idea that 
such fluctuations are effectively at the Bragg condition for scattering. Note how this 
also illustrates that scattering of light at a particular wavevector q specifies not only 
the wavelength of the fluctuation that is probed by light scattering but also its spatial 
orientation. We are now in a position to consider how changes in the microstructure of a 
complex fluid caused by shear flow can be probed by light scattering. 

2.1.4 The effects of shear flow on fluid structure 

As a simple example of how shear flow can affect the structure of a complex fluid, we 
consider a droplet of oil suspendedin water. In the absence of flow, the droplet will 
assume a spherical shape in order to minimise the interfacial (or surface tension) energy 
between the droplet and the water. Upon the application of a planar shear flow, v, = +y, 
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Figure 7. Effect of shear flow on the shape of a droplet. (a)  A spherical droplet (b) is de- 
formed by shear flow. (e) Planar shear flow can be decomposed into a linear superposition 
of pure extensional (dotted lines) and pure rotational flows (solid lines). 

the droplet will distort. To understand how the droplet distorts, it is useful to write 
the shear flow as a linear superposition of pure extensional flow and pure rotation (see 
McLeish, this volume) As illustrated in Figure 7, planar shear flow can be decomposed 
into a linear superposition of pure extensional and pure rotational flows such that fluid 
elements are transformed according to r = r = (2 + E) - r where: 

and 

where the rotation frequency w is half the strain rate + = au,/ay. The effect of the 
extensional flow 5 is to distort the droplet along a line oriented 45" to the x-axis while 
the effect of the rotational flow Q - is merely to rotate the droplet. 

To understand the effect of flow on a concentration fluctuation, consider the following 
thought experiment. Imagine that a spherical fluctuation instantaneously comes into 
existence in a shear flow at time t = 0. The initial effect of the shear flow will be to 
stretch the droplet along a line oriented 45" to the x-axis and then to rotate it slightly 
towards the z-axis. How far the droplet is ultimately stretched and rotated depends on 
the relaxation rate r or lifetime 7 = l/r of the fluctuation compared to the shear rate 
+. If r >> +, then the fluctuation will be stretched only slightly and hardly rotated at 
all away from 45" before it disappears. If r << +, then the fluctuation can be stretched 
much more and can be rotated until it is essentially aligned with the z-axis. Of course, the 
degree to which the droplet is stretched also depends on the surface tension of the droplet, 
its radius, and on the relative viscosities of the fluid inside and outside the fluctuation. If 
the fluctuation in concentration is not very large, as is typically the case, then the droplet 
can be expected to deform affinely (which means that it follows locally the macroscopic 
applied shear flow field). In any case, the degree to which the droplet is rotated depends 
primarily on the whether its lifetime T is short or long compared to the time it takes for 
the droplet to be distorted and rotated towards the z-axis. The two limiting cases, in 
which r >> + and I? << + are illustrated in  and 
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Figure 8. Effect of shear f low on the shape of fluctuations and the resulting scattering 
patterns. (a)  A fluctuation where r >> i.. (b)  A fluctuation where r << i.. (c) Scattering 
pattern corresponding to (a). (d)  Scattering pattern corresponding to  (b). 

It is also useful to consider how light is scattered from such fluctuations and what 
the resulting scattering patterns would be. Thus, we imagine that we perform a light 
scattering experiment on the fluctuations illustrated in Figure 8. We arrange the exper- 
iment so that the scattering wavevector q always lies in the s-y plane. Following our 
discussion in Section 2.1.1, we expect that the scattering patterns will be related to the 
Fourier transforms of the real-space distribution of matter. In Figure 8(c) and (d), we 
illustrate schematically the basic symmetries of the scattering patterns that would result 
from scattering from the fluctuations shown in Figure 8(a) and (b). One can view the 
scattering as being qualitatively similar to what one would obtain from diffraction from a 
slit oriented in the same fashion as the concentration fluctuation. Thus, the narrow parts 
of the fluctuations result in scattering over a broad range of angles and the wide parts 
of the fluctuations result in scattering over a narrow range of angles (or equivalently, a 
broad or narrow range of q vector-recall Equation 2). 

2.2 Dynamic light scattering 

Dynamic light scattering (DLS), as its name suggests, probes the temporal evolution of 
the concentration fluctuations measured in static light scattering. To understand the 
basic ideas behind dynamic light scattering we once again consider scattering from two 
particles as illustrated in Figure 9. As in the case of static scattering, the relative phase at 

Figure 9. Schematic fo r  dynamic light scattering of two light p a t h  f r o m  two particles. 
The  filled and open circles indicate the positions of the two particles at t imes t and t + r, 
respectively. 
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the detector of the light scattered from the two particles determines the degree to which 
there is constructive or destructive interference. As the particles move, the differences in 
the path lengths Ar between the pair of particles changes, causing their relative phases at 
the detector to change. Thus, as the particles move, the intensity of light at  the detector 
fluctuates in time. The typical time scale for the duration of a fluctuation is determined 
by the time it takes the relative phase difference between the two paths to change by 
approximately unity. This means that Ar(t+.r) -Ar(t) 1: X/sin(8/2). If we assume that 
each particle moves randomly and independently of every other particle, then to within a 
factor of order unity this condition can be expressed more simply in terms of the motion 
of a single particle as r(t + T )  - r(t) N A/  sin(8/2). Thus the lifetime of a fluctuation is 
determined by the time it takes particles to move approximately the wavelength of light, 
or somewhat farther depending on the scattering angle 8. 

We can generalise this analysis to a collection of N scatterers. In that case the electric 
field at  the detector becomes 

N 
Ed(t) = E, e'qrt(t) , (12) 

1=l 

where for simplicity we take the scattering amplitude to be the same for all scatterers 
as would be the case for a collection of identical spherical particles. The intensity of the 
scattered light is proportional to the square modulus of the electric field at  the detector: 

N 

I ( t )  = 1 ~ ~ 1 2  e*q[rt(t)-r>(t)l . (13) 
b3 

We see that for N scatterers the scattered intensity is determined by the differences in 
phases between pairs of light paths, just as for the case of a pair of particles discussed 
above. Since the scattering volume (i .e.  the volume of sample from which scattered 
light is collected) is typically much larger than spatial extent of fluctuations, the sum 
in Equation 12 represents a sum over many independent fluctuations. Thus, the electric 
field E d ( t )  in Equation 12 is the sum of many independent random variables, and, by the 
central limit theorem [6], is a random Gaussian variable. Since I ( t )  0: IEdI2, this means 
that the intensity of scattered light is distributed according to P ( I )  = exp(-I/(I))/(I). 
In  we plot the intensity of the scattered light as a function of time obtained 
from Equation 13 for 2000 randomly diffusing particles. It is interesting and important to 
note that the fluctuations do not diminish as the number of particles increases; in fact, the 
amplitude of the intensity fluctuations actually increases. It is this feature of scattered 
light that makes dynamic light scattering feasible, since there are on the order of lo'* or 
more scatterers in a typical scattering experiment. As stated previously, the duration of 
a typical fluctuation is given by the time it takes for the phase of the light scattered from 
a particle to change by order unity, i.e. q .  [r(t + T )  - r(t)] 

The temporal evolution of the intensity fluctuations of the scattering light reflects 
the stochastic motion of the scatterers. For example, if we heat the sample so that 
the scatterers move more rapidly, the intensity of the scattered light will fluctuate more 
rapidly. To extract this information, we need some quantitative means for characterising 
the statistics of the temporal fluctuations of the scattered light. This is most frequently 
done by calculating the temporal autocorrelation function g I ( t ,  T )  of the scattered light: 

q -  Ar(T) - 1. 
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time (arbitraw units) 

Figure 10. Intensity us. time for light scattering from a suspension of 2000 daffusion 
particles. The average intensity of this plot is unity and the charactek-tic time of the 
fluctuations in approximately 15 time units. 

where the brackets indicate a temporal average taken over the duration of the experiment. 
Alternatively, it is often convenient to introduce the temporal autocorrelation function of 
the scattered electric field g E ( t ,  T )  defined as 

For scattered fields with Gaussian statistics, these two correlation functions are related 
by the Siegert relation [6]: 

g l ( t ,  T )  = 1 + IgE( t ,  (16) 

To obtain a statistically meaningful sampling of the temporal fluctuations, an experiment 
should ideally acquire data over a time scale which is long compared to the time scale 
of the longest relaxation time of the system. If the system is stationary, that is, if its 
dynamics do not change with the passage of time, then g I ( t , r )  will be independent of 
t and will depend only on 7 .  In this case, we can write g l ( t , T )  = g l ( T ) .  For T + 0,  
g l ( T )  + ( 1 2 ( t ) ) / ( I ( t ) ) 2  = 2, where the last equality follows for the typical case where the 
scattered electric field obeys Gaussian statistics (as discussed above). For T much greater 
than the duration of the longest lived fluctuation of the system T M ,  the scattered intensity 
at time t + T becomes independent of the scattered intensity at  time t ,  and ( I ( t  -t T)I (~))  
factorises into ( I ( t  + T))( I (~))  = ( I ( t ) ) 2 .  Thus, for T + 00, g I ( T )  + 1. 

Therefore, we expect that the correlation function g I ( t , r )  will in general decay from a 
value of two for T = 0 to unity for T >> TM or, equivalently, that g E ( t ,  T )  will decay from 
unity for r = 0 to zero for r >> TM.  The time over which these correlation functions decay 
and the functional form of the decay will depend on the dynamics of the system. As an 
example, we consider a system whose dynamics are governed by simple diffusion. In this 
case, we imagine that fluctuations in the concentration of particles (scatterers) given by 
bc(r, t )  I c(r,  t )  - (c) is governed by the diffusion equation 

d --bc(r, t )  = DV26c(r, t )  , at 
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where D is the diffusion coefficient of the concentration fluctuations. Because light is scat- 
tered by sinusoidal fluctuations in the concentration of scatterers, it is useful to consider 
the spatial Fourier transform of Equation 1 7  

where 
6c(q, t )  = 1 6c(r, t )  eiq'r dr 

V 
Solving Equation 18 for 6c(q, t ) ,  we find 

(19) 

6c(q, t )  = 6c(r, 0) e-Dqzt . (20) 

Thus, we find that spatial fluctuations in the concentration with a wavelength of 2r/q 
relax with a time constant of 1/Dq2. The temporal autocorrelation functions for scattered 
light reflect this dynamics. 

Starting from Equations 12 and 15 and writing the phase of the scattered light as 
$(t) q . r,(t), we can calculate g E ( T )  and, via Equation 16, g r ( T ) :  

where we define the change in phase for a scattering from a single particle as A $ ~ ( T )  
q -  [r,(t + T )  - r,(t)]. In passing from Equation 21 to Equation 22, we have assumed that 
interactions between particles are not important so we can ignore terms in the sum where 
i # j. The sum in Equation 23 is a sum over light paths through the sample where each 
path involves exactly one scattering event from a particle and at a wavevector q. Thus, 
if all the particles are identical, then all the paths are statistically equivalent and we can 
simplify Equation 22 by writing it as the ensemble average over a single path: 

Equation 25 follows from Equation 24 if, as is usually the case, the distribution of phase 
differences A$ is Gaussian. Since A$(T) = q - r 

I A P ( d )  = S $ ( a T ' ( T N  9 (26) 

where the factor of 113 comes from performing the 3-d angular average (cos' O)e,# over 
the unit sphere. For simple particle diffusion, the mean square displacement is given by 
(AT'(T)) = ~ D T  which leads to the result 

(27) gE(q,T) = e-i$(Ar2(T)) = e-DqZT 
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or equivalently 

Note the similarity of these results to Equation 20. For interacting particles, similar results 
are often obtained with the additional modification that the diffusion coefficient D be- 
comes q-dependent. Thus, fluctuations of different wavelengths relax with a q-dependent 
relaxation rate of q2D(q). 

(28) 
e-2Dqz7 91(q, .) = 1 + 

2.2.1 

In these lectures, we are particularly interested in examining the dynamics of systems 
driven away from equilibrium by the application of shear flow. Thus, it is natural to 
ask what happens to g r ( t ,  r )  for a system subjected to shear. To simplify the discussion, 
we first consider the case where the scatterers are randomly distributed throughout the 
sample and move only in response to an imposed shear flow (e.g. there is no Brownian 
motion). The detailed analysis of dynamic scattering from a system undergoing shear is 
complex. But the basic ideas can be understood by noting that dynamic light scattering 
is sensitive to deferences in particle velocities. This is easily appreciated by studying 
 from which it is evident that the relative phases of light scattered from different 
particles do not change if all the particles move with the same uniform motion. In a 
homogeneous shear flow, however, particles move with different velocities depending upon 
their relative positions within the scattering volume. The particles the farthest apart along 
the velocity gradient and within the scattering volume have the greatest velocity difference 
AV. This can be written as AV = +d, where d is a vector, directed along the velocity, 
whose magnitude is the distance across the scattering volume in the velocity gradient 
direction. Thus, to within numerical factors of order unity, the characteristic decay time 
rs of g E ( 7 )  for a sheared system is l/q . AV = (+q. d)-'. To within the same level of 
approximation, the decay of the correlation function is given by g ~ ( r )  N exp[-(q.d+r)*) 
Note that for homogeneous shear flow, the correlation function decays with a Gaussian 
time dependence rather than the simple exponential time dependence found for diffusion. 
This result simply reflects the fact that in a shear flow, the separation between pairs of 
particles grows linearly in time whereas for diffusion, the separation between particles 
grows as the square root of time. 

We now consider what happens when there is Brownian motion. For shear rates 
much smaller than the slowest relaxation rate ri', that is for +TM << 1, the internal 
dynamics of the system relaxes on time scales much faster than the rate at  which shear 
can alter the structure of the system. In this case, the Brownian motion is unaffected 
by the presence of the shear flow. The more interesting situation is the case where the 
shear rate is sufficiently high to alter the structure of the system before it can relax 
by its usual equilibrium dynamics, that is, when +TM >> 1. In this case, there will be 
two contributions to the decay of g E ( r ) :  the decay resulting from the shear flow itself 
(discussed in the previous paragraph) and the decay resulting from the Brownian motion 
(possibly modified by the presence of the shear flow). The ratio of the characteristic decay 
times for these processes is given by 

Dynamic light scattering in steady shear flow 

Scattering volumes for sheared systems are typically no smaller than 50pm. If we take 
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d N 50pm and q N 106cm-', then q d N 50. Thus, in the physically interesting case 
when ~ T M  N 1, the time scale for the decay of g E ( r )  from the shear motion rs can be 
expected to be approximately 50 times faster than the time scale TM of decay due to the 
intrinsic dynamics of the system. Thus, the physically interesting change in the system 
dynamics due to shear flow is masked by the effect of the shear flow itself on the decay of 
gE(r). In principle, this problem can be circumvented by making q perpendicular to d. 
In practice, however, this is very difficult to achieve. Moreover, it limits measurement of 
the change in the system dynamics only to those fluctuations which are in the direction 
perpendicular to the velocity. Therefore, one must seek other methods for measuring the 
change in the system dynamics arising from the application of shear flow. Such methods 
have been developed, and are discussed in the next section. 

2.2.2 Dynamic light scattering in oscillatory shear flow 

To develop a method to measure the dynamics of a system under shear flow, we exploit 
the fact that shear flow is deterministic and reversible, while Brownian motion is not. 
First, we consider light scattering from a system undergoing oscillatory shear flow where, 
as in the previous section, there is no Brownian motion. Suppose our system consists of 
randomly distributed non-Brownian spheres suspended in a liquid undergoing sinusoidal 
planar shear flow with a period T e: 7s. For decay times such that TS < r c T we can 
ignore the fact that the shear flow is oscillatory. In this cam, g E ( r )  decays on a time scale 
rs N (+q-d)-' in the same way as it would for steady shear flow (here, +j should be taken 
to be some characteristic shear such as the RMS shear rate). 

Upon the reversal of the flow field, however, the situation becomes qualitatively dif- 
ferent from that of steady shear flow; the suspended particles retrace their trajectories so 
that they return to their same exact positions every period T.  Therefore, the scattered 
light will always be perfectly correlatu with itself an integral number of periods T ago. 
Thus, the temporal autocorrelation function will consist of a series of echoes spaced one 
period apart. The height of the echoes will be unity as long as the particles return to 
precisely the same position they were at  one period ago. The width of the echoes will 
be twice the width of the initial decay arising from the shearing motion. A correlation 
function corresponding to this situation is illustrated in  by the dotted lines. 

With the addition of Brownian motion, there is irreversible movement of the scatterers 
between echoes and the echoes do not return to their full height. The attenuation of 
the echos is a quantitative measure of the irreversible motion and is determined by the 
nonequilibrium dynamics of the system, as illustrated in Figure 11. In the simplest case, 
when ~ T S  < q r ~  << 1, the envelope which determines the attenuation of the echoes is 
exponential and simply given by the equilibrium decay gI(r) = 1 + exp(-2Dq27). The 
physically interesting case occurs when +TM becomes comparable to or exceeds unity. 
In this case, one generally expects the dynamics of the system to depart from their 
equilibrium behaviour; normally, relaxation rates increase as the shear provides more 
efficient paths for fluctuations to relax as compared to the equilibrium case. We will 
provide examples of how such measurements can be used to probe glassy emulsions in 
Section 4. 

Copyright © 2000 IOP Publishing Ltd.



Light scattering and rheology of complex fluids driven far from equilibrium 25 

delay time 

Figure 11. Appearance of echoes in the intensity autowrrelation function for oscilla- 
tory shear pow. In the absence of irreversible motion of the scatterers, the echoes are 
unattenuated (dotted line). When there Q irreversible motion, the echoes are attenuated 
(solid line). The envelope of the echo heights (dashed line) is determined by  the amount 
of irreversible motion. 

2.2.3 Diffusing-wave spectroscopy 

Many complex fluids and fragile materials consist of structures with characteristic length 
scales comparable to or larger than the wavelength of light. Examples of such systems 
include colloidal suspensions, emulsions, and foams which are typically made up of micron- 
sized solid, liquid, or gas particles, respectively, in a liquid matrix. The presence of such 
structures leads to spatial fluctuations in the refractive index (or dielectric constant) on 
a length scale comparable to light. As a result, there is multiple scattering of light such 
that all but the thinnest samples of such materials are opaque. If such a material does not 
absorb light significantly, these materials appear white (this is typically the case). Thus 
normal light scattering, which requires that the light be scattered no more than once, is 
not feasible. 

Presently, there are two methods that have proven useful for extracting quantitative 
information from light scattering on systems which multiply scatter light. The first is a 
dynamic light scattering technique which uses two lasers with different wavelengths. The 
lasers and optics are aligned in very clever way so as to discriminate against multiply 
scattered light. In this scheme, only singly scattered light contributes significantly to the 
dynamical signal even though there may be significant multiple scattering. The technique 
is difficult to set up and costly to instrument. Nevertheless, it is a powerful tool provided 
there is sufficient singly scattered light to provide a measurable signal. 

The second approach, called diffusing-wave spectroscopy (DWS) [7], is completely dif- 
ferent. Instead of discriminating against multiply scattered light, one exploits it. The 
primary task is to describe the transport of light sufficiently well that quantitative in- 
formation can be extracted from a measurement. Fortunately, and perhaps surprisingly, 
such an enterprise is not difficult. In fact, the experiments are exceedingly simple to 
instrument-even simpler and less costly than conventional single scattering experiments. 

The determination of the electromagnetic fields inside a sample which exhibits a high 
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light from 
laser 

scattered light 
to  detector 

Figure 12. Schematic for multiple dynamic light scattering of two light paths from many 
particles. The filled and open circles indicate the positions of the particles for the two 
paths at times t and t + r, respectively. Particles not involved in the scattering of the two 
represented light paths are present but not shown for clarity. 

degree of multiple scattering is a complex task. Fortunately, it is not necessary to specify 
the electromagnetic field everywhere within the sample in order to extract useful infor- 
mation about the sample from the multiply scattered light. Instead, it is sufficient to 
consider a single pair of light paths through the sample, in much the same way as we did 
for singly scattered light in  Consider two light paths consisting of light scat- 
tered many times by different particles while passing through a sample as illustrated in 
Figure 12. The time of flight for the light through the sample is essentially instantaneous 
since it occurs on a time scale of loops or less, which is much less than any time scale we 
will be interested in for the motion of the particles. Nevertheless, light emerging from the 
sample after having scattered many times will have a phase that depends on the precise 
optical path length through the sample. The intensity of the scattered light at the de- 
tector will depend on the exact relationship between all these phases of the light coming 
from different paths through the sample. A s  the particles within the sample move, the 
path lengths for the light through the sample change. This, in turn, changes the phase 
relationships between the different pairs of light paths incident on the detector and causes 
the light intensity to fluctuate, just as in the case of single scattering DLS. 

As for DLS, we seek to characterise the fluctuations in the scattered light arising from 
the motion of particles by calculating the correlation function g E ( r )  (recall that we can 
obtain g I ( r )  using the Siegert relation given by Equation 16 The calculation proceeds 
similarly to our calculation in the single scattering case. In fact, we write g E ( r )  just as 
we did before, starting with the sum over scattering paths represented in Equation 23: 

where we emphasise that here, as in the single scattering case, the sum is over the number 
of light scattering paths Np through the sample. In contrast to the situation for single 
scattering, however, here each path consists of many scattering events, as depicted in 
Figure 12. Moreover, different scattering events within a path occur at different wavevec- 
tors whereas for the case of single scattering, each path involved scattering from a single 
particle and at a single wavevector which was the same for all paths. 
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Let us denote the number of scattering events in the i-th path as ni. Then, the phase 
difference A ~ , ( T )  for a given path in Equation 30 involves a sum over all the n, scattering 
events for that path. That is, 

j=1 j=1 j=1 

where Ar = rj(t + T )  - rj(t). In the case of multiple scattering, paths may have any 
number of scattering events but only those paths with the same number of scattering 
events can be regarded as statistically equivalent. Thus, the analysis of multiple light 
scattering is somewhat more complicated than for the case of single scattering. 

The first step in the analysis of Equation 30 is to consider only paths with a given 
number of scattering events n = ni (dropping the now superfluous subscript). Next, 
we note that the statistical distribution of phases A$,, for paths of a given length n is 
Gaussian. In the case of multiple scattering, this is an even better approximation than for 
the case of single scattering because here the phase is the sum of many random variables; 
by the central limit theorem, such a sum should obey Gaussian statistics (in the limit of 
large n). The contribution to the total correlation function gE(T)  for all the paths having 
a given number of scattering events n is: 

where Nn/Np is the fraction of paths with exactly n scattering events. The mean square 
phase difference for paths with n steps is obtained by squaring and averaging over Equa- 
tion 31: 

where we have made the assumption that only the diagonal terms in the squared sum are 
non-zero, consistent with our assumption that the position and motion of different par- 
ticles are independent. The averages over q2 and AT-(T)’ factorise because the scattering 
wavevectors are independent of the particle motion. 

To obtain the full correlation function for light paths of all orders, we sum Equation 32 
over all path lengths: 

Note that in passing from Equation 30 to Equation 36 we have changed the sum from a 
sum over all paths to a sum over all path lengths with each path length weighted by the 
fraction of paths N,/Np with a given number of scattering events n. 

The sum in Equation 36 cannot in general be performed analytically. Therefore, we 
approximate the sum over the number of scattering events n in a path by passing to the 
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continuum limit and performing an integral over the length of a path s = nl, where 1 is 
the mean free path between scattering events. The fraction N,,/Np of paths consisting of 
n scattering events becomes the fraction (or probability) P(s)  of paths of length s. The 
mean square phase difference undergoes the following transformation: 

(37) 

(38) 

1 
-(A&)) 2 = &?2)(Ar2(7)) 

S = - 2k2(1 - cos8) (Ar'(7)) 61 
S 

= -k2(Ar2(7)) 31* , (39) 

where we have used the fact that ( q 2 )  = 2k2(1 - cos@) and that the transport mean free 
path is given by 1' E 1/(1 - cos8). Here 8 is the scattering angle and k E 27r/X. From 
the definition of 1* it is clear that I* 2 1.  Physically, 1* is the length scale over which 
the direction of scattered light is randomised, i.e. the characteristic length scale over 
which scattered light loses memory of its initial direction of propagation. Since scatterers 
comparable to or larger than the wavelength of light tend to scatter preferentially in the 
forward direction, several scattering events may be required to randomise the direction 
of light propagation. In this case, 1* > 1. For small particles where the scattering is 
essentially isotropic, 1* N 1. 

Using these results, we can convert the sum in Equation 36 to an integral over path 
lengths: 

m 

(40) g E ( 7 )  = /d P(s)  e-k2(A"'(7))8/(31*) ds . 
For diffusing particles where (Ar2(7))  = 6D7, Equation 40 can be rewritten as 

To evaluate Equation 41, one must determine the distribution of path lengths P(s) .  For 
samples which exhibit a high degree of multiple scattering, the path the light takes in 
traversing the sample can be described as a random walk. Typically, the transport occurs 
over a length scale much greater than the mean free path I* (typically I* N 102pm and 
sample dimensions N 103pm). In this limit, where the characteristic dimension traversed 
by random walk is much larger than the basic step length, the random walk can be 
described by diffusion. Using these ideas, Equations 40 and 41 can be solved for a variety 
of situations. 

Consider, for example, a sample confined between two parallel glass plates a distance 
L apart with light from a laser incident on one side. If one detects scattered light emerging 
from the opposite side of the samples, then one obtains [7] 

where 
X = LdiqGqqJ. 1* 

For the case of particles (scatterers) which diffuse with a diffusion coefficient D, 
(43) 

x =  ;m. (44) 

Copyright © 2000 IOP Publishing Ltd.



Light scattering and rheology of complex fluids driven far from equilibrium 29 

In this case, the decay of the correlation function is approximately exponential with char- 
acteristic decay time of (l*/L)'/Dk2. For single scattering, the characteristic decay time 
is 1/Dq2 N 1/Dk2.  Thus, the decay of the correlation function for multiple scattering is 
faster than the decay for single scattering by a factor of approximately ( L / l * ) 2 .  Physi- 
cally, this acceleration of the decay is easy to understand. For both single and multiple 
scattering, the correlation function decays in the time that it takes the phase A$(T) of 
the scattered light to change by approximately 1. For the case of single scattering this 
means that a particle must move by a distance N l / q  N X or roughly the wavelength of 
light. For the case of multiple scattering, each particle in a given path must move only 
X/n, where n is the number of scattering events in a typical light path, in order for the 
entire path length to change by approximately the wavelength of light. This is reflected 
in Equations 26 and 34 for the mean square phase change for single and multiple light 
scattering, respectively; Equation 34 has a factor of n which is not present in Equation 26. 
Since the end-to-end distance for a random walk scales as the square root of the number 
of steps, the decay of gE(T) is a factor of (L/I*)' faster for multiple scattering than for 
single scattering. 

Thus, perhaps the single most important difference between single and multiple dy- 
namic light scattering is the fact that multiple dynamic light scattering, or DWS. is much 
more sensitive to very small particle motions. For a typical DWS transmission experiment 
where (L/1*) N 10, the characteristic distance a typical particle moves in a decay time 
decay is X/n N X/(L/1*)2 N A / l O O  or about 50A. With some effort and care, RMS particle 
motions on much smaller scales can be resolved, with the current record being somewhat 
less than l w .  We will return to our discussion of DWS in Section 4 where we illustrate 
the use and sensitivity of DWS in a study of the response of disordered emulsions to os- 
cillatory shearing motion. In the next section, we present the results of some experiments 
on shear thickening which demonstrate, among other things, how single light scattering 
can be used to study complex fluids and fragile materials. 

3 Shear thickening in wormlike micellar solutions 

Solutions of wormlike micelles exhibit a fascinating range of rheological behaviour. Above 
the overlap concentration, their linear rheological behaviour is deceptively simple. A fairly 
complete theoretical description based on a modified reptation picture is available and has 
been remarkably successful in describing a wide variety of experiments [8]. In this section, 
however, we are concerned with another class of wormlike micellar systems, micellar solu- 
tions near and below the overlap concentration which exhibit nonlinear shear thickening. 
The shear-thickening behaviour is quite dramatic and continues to puzzle researchers after 
more than 15 years of intensive research [9, lo]. Before reviewing the behaviour of these 
systems, we briefly review some basic ideas concerning wormlike micellar solutions. 

3.1 Basic properties of shear-thickening micellar solutions 

Surfactants are molecules with a dual personality: one part of the molecule is hydrophilic 
or water-loving and the other part is hydrophobic or water-hating. They are useful in a 
variety of contexts, most notably perhaps in promoting the mixing of chemically incom- 
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patible liquids by reducing the interfacial tension between the two liquids. Our interests, 
however, lie elsewhere. The surfactants we are interested in consist of molecules with 
fairly compact hydrophilic ionic polar head groups, and hydrophobic hydrocarbon tails 
which typically have about 16 carbon molecules. Below a certain concentration called the 
critical micelle concentration or CMC, the surfactants exist as single molecules in aqueous 
solution; the CMC is typically on the order of 1mM but can be significantly lower or higher. 
Above the CMC, these molecules form small aggregates, typically spherical just above the 
CMC, but often taking on other shapes as the concentration is increased. 

Aggregates of surfactants form in order to hide their hydrophobic tails from the sur- 
rounding water. They do this by forming a sphere, for example, with all the tails on the 
inside of the sphere and all the polar heads at the surface of the sphere where they are in 
contact with the water. They can accomplish the same thing by forming other shapes as 
well, including cylinders, lamellae, and other more complex structures. Which structure 
forms depends on the surfactant concentration, the size of the head group relative to 
the tail, and the surfactant and solvent interactions; see Roux, this volume, for a fuller 
discussion. A cylindrical micelle is illustrated schematically in Figure 13. 

2 nm 
4 nm 

Figure 13. Surfactants and micelles at different length scales. (a) Surfactant molecule 
with hydrophilic head group and polar tail. (b)  Cross section of a cylindrical micelle with 
the hydrocarbon tails shielded f rom the water by the polar head groups at the surface. (c)  
Random coil formed by a long cylindrical wormlike micelle. 

The question of whether aggregates form or not involves a competition between energy 
and entropy. When aggregates form, the overall energy is reduced because the surfactant 
tails are shielded from the water. However, the formation of aggregates reduces the 
number of possible configurations and decreases the entropy. At low concentrations, 
entropy almost always wins and there are no micelles. As the concentration in increased, 
however, energetic considerations become increasingly important such that micelles begin 
to form above the CMC. 

We are interested in cylindrical wormlike micellar solutions. These are systems where 
the shape of the surfactant head group, size of the tail, and interactions favour the for- 
mation of cylindrical aggregates. These cylinders can grow very long and flexible such 
that they resemble a long linear polymer chain. The basic differences between wormlike 
micelles and polymers are: (1) micelles typically have a diameter of about 4nm, or about 
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ten times greater than a typical polymer; (2) micelles are dynamical entities whose length 
is determined by an equilibrium process-by contrast, the length of a polymer is fixed at  
the time of synthesis. The dynamical nature of wormlike micelles has several important 
ramifications. First, the distribution of the length L of wormlike micelles is thought to be 
broad, typically exponential [P(L)  - exp ( -L / (L) )] .  Moreover, (L) in general increases 
with surfactant concentration. Thus, as surfactant concentration increases, the mean size 
of micelles increase leading to a situation where different micelles begin to overlap. As 
for conventional polymers, at concentrations above the overlap concentration c*, there is 
a dramatic increase in viscosity and in the concentration dependence of the viscosity. A 
second important consequence of the dynamical nature of micelles is that they sponta- 
neously break and reform in equilibrium. The rate a t  which this process occurs depends 
on the scission energy and the temperature; external disturbances such as shear flow can 
be expected to alter this process. 

The specific systems we are concerned with here are ionic wormlike micelles formed 
from CTAB (cetyltrimethylammonium bromide) or closely related surfactants, and NaSal 
(sodium salicylate), typically a t  or near a 1:l molar ratio. NMR measurements reveal 
that when the CTAB forms cylindrical micelles in the presence of NaSal, the NaSal is 
incorporated into the micelle at nearly a 1:l molar ratio. This means that the micelle has 
both positively and negatively charged ions, resulting from the dissociation of Br- from 
the CTAB and Na+ from the NaSal. This leaves a highly ionic solution where Coulomb 
interactions are likely to be important. 

The basic shear-thickening rheology which interests us is illustrated in the two plots 
in Figure 14. In Figure 14(a) we show the response of a wormlike micellar solution to 

Ei g o  ~ 0 I ' t ' " ' ' ~ ' l  
0 100 200 300 400 500 0 20 40 60 80 1 0 0  

time (s) shear rate (s 1 

Figure 14. Basic rheology illustrating shear-thickening in solutions of wormlike micelles. 
(a) Slow increase in the viscosity measured after the application of a steady shear rate 
of approximately 80s-l. (b) Long-time steady-state measured viscosity exhibiting sharp 
increase above a critical shear rate of approximately 3 7 ~ ' .  

the sudden application of a steady shear rate [ I l l  121. At first, nothing unusual occurs, 
but after tens of seconds the measured viscosity begins to rise until, after approximately 
200s, the system reaches a steady state plateau with a viscosity which is about 3 times 
larger than the viscosity of the original solution. The long-time steady-state viscosity 
obtained by repeating this experiment for different shear rates yields the data plotted in 
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Figure 14(b). The most striking feature of these data is the existence of a critical shear 
rate + above which shear thickening is observed and below which nothing extraordinary 
happens. This shear-thickening is observed for concentrations well below the overlap 
concentration c* up to concentrations which are 2-3 times c*. 

3.2 

Shear-thickening systems such as those discussed above have proven notoriously difficult 
to understand. One problem that was not well appreciated until recently is that such 
systems frequently become spatially inhomogeneous on length scales comparable to the 
sample dimensions when they undergo a shear-thickening transition. When this occurs, 
the system can develop large-scale zones or ‘bands’ with different rheological properties. 
Thus, conventional macroscopic rheological measurements alone are not sufficient to un- 
derstand the mechanical behaviour of the system; one must be able to probe the spatial 
structure as well. Moreover, since such transitions often exhibit slowly evolving rheoiog- 
ical changes accompanied by simultaneous structural changes, it becomes paramount to 
have a means for making simultaneous rheological and structural measurements. 

Because of these concerns, we developed a transparent Couette cell rheometer and 
a light scattering technique for following rheological and structural changes in shear- 
thickening systems as they occur. Our apparatus is illustrated schematically in Fig- 
ure 15 [ll, 121. The sample is contained between two concentric quartz cylinders having 

Light scattering microscopy and rheology 

I 
time 

Rheometer 

spherical lens 

11 

Figure 15. Experimental setup for light scattering microscopy. 

diameters on the order of 25” and a gap between them of approximately lmm. A 
portion of the sample is illuminated by a sheet of laser light formed by passing the laser 
beam through a spherical and then through a cylindrical lens as illustrated in Figure 15. 
The laser beam is directed radially inward towards the cell such that the illuminated vol- 
ume has a width determined by the gap, is several millimetres high, and is about 50pm 
thick. Light scattered through approximately 90” from this sheet of light is collected by 
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Figure 16. Effective viscosity us. time after the commencement of shear flow. Data 
obtained at constant average shear rate. Images obtained at a succession of times show 
the growth of another phase as a region of increased scattering (brighter) which proceeds 
from the inner cylinder (left side of images) and grows towards the outer cylinder (right 
side of images). White arrows indicate the progression of the interface of the bright phase. 

a CCD camera such that an image of the scattering volume is formed on the CCD array. 
Regions of the sample which scatter light more strongly than other regions will appear 
brighter on the image. The resolution of the image is about 30pm. At this resolution, an 
equilibrium sample is expected to be spatially homogeneous and therefore should exhibit 
uniform brightness across the illuminated volume. 

In Figure 16, we show measurements of the transient effective viscosity of a micellar 
solution along with a succession of images obtained from our light scattering microscope. 
The left sides of the images correspond to the inner cylinder and the right sides to the 
outer cylinder of the Couette cell. After about 739, a bright region appears on the left 
side of the image just as the apparent viscosity begins to  increase. As time proceeds, the 
measured viscosity increases and the bright region moves to the right towards the outer 
cylinder such that it fills an ever increasing fraction of the gap. Eventually, the bright 
phase appears to fill the entire gap and all the shear is confined to a very thin layer. It 
also appears that the bright phase is more viscous than the dark phase. 

If one of the two phases which appears in Figure 16 is more viscous than the other, 
then the velocity profile will not be constant across the gap. To investigate this possibility, 
we measure the velocity profile across the gap of the Couette cell using our light scattering 
microscopy apparatus. To effect these measurements, we rotate the plane of the sheet of 
laser light incident on the cell by 90" about the axis along the direction of propagation of 
the laser beam-see Figure 15. Thus, the sheet of light is oriented horizontally across the 
gap rather than vertically as in the previous measurements. We then seed the sample with 
a very small concentration of polystyrene microspheres and follow their motion in time as 
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Figure 17. Velocity profiles in a Couette cell at 4 tames after the commencement of shear 
flow. The anner cylinder is on the left (0.0) and the outer cylinder is on the right (1.0) 
an each of the plots. The numbers at the lower left corners indicate the tame in seconds 
that have passed after the commencement of shear pow. 

they traverse the illuminated sheet. By measuring the distance that each particle moves 
in successive video frames (30 frames/s), we are able to map out the velocity profile across 
the gap of the Couette cell. Figure 17 shows the results of such a measurement for an 
experiment in which a steady shear flow is applied to an equilibrium sample. The velocity 
profile is shown at  4 different times. Immediately after the commencement of shear flow, 
the velocity profile is linear across the gap as can be seen in Figure 17(a); thus, the velocity 
gradient is constant. The subsequent velocity profiles shown in Figures 17(b)-(d) reveal 
that the velocity gradient in the bright phase is much smaller than in the dark phase near 
the outer portion of the cylinder; that is, the bright phase is more viscous than the dark 
phase. In fact, to within the experimental precision, the velocity gradient in the bright 
phase is zero. Thus, we refer to the bright phase as a ‘gel.’ We emphasise, however, that 
our referring to it as a gel is simply a matter of convenience as the experiments strictly 
reveal only that the velocity gradient within the bright phase is very small. After about 
10 minutes, the gel appears to fill the gap and all the flow is confined to a narrow slip 
layer next to the outer cylinder as can be seen in Figure 17. Later on, a slip layer appears 
at the inner cylinder as well although we do not wish to focus on such features here. 

With the picture provided by our measurements of a gel growing from the inner cylin- 
der and a few simple assumptions, we can already begin to understand some of the quali- 
tative features of the discontinuous jump in the apparent viscosity. First, we see that the 
gel only begins to grow when a certain critical shear rate qc is exceeded. Consider then 
what happens when a shear rate q o  > qc is applied to a sample which has been at  equi- 
librium. We note, first of all, the stress in a Couette cell is greatest a t  the inner cylinder 
(we shall explain this in greater detail a little further on). Thus, it is not surprising that 
the gel begins to form at the inner cylinder. Since there is essentially no flow in the gel, 
and the average shear rate across the gap of the Couette cell is held constant, the shear 
rate 91 in the remaining liquid must increase such that 91 > TO > qC. Thus, even more 
gel is formed. We might expect this proceas to continue until the surfactant available to 
form gel from the fluid phase is exhausted. In this way the gel phase can grow across the 
cell and cause the observed increase in the apparent solution viscosity. 

Suppose that instead of keeping the shear rate constant that we keep the stress constant 
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Figure 18. Effective viscosity us. time after the commencement of shear pow. Data 
obtained at constant shear stress. Images obtained at a succession of times. (a) Stress 
= 0.6Pa: White arrows indicate the progression of the interface of the bright phase as it 
grows from the inner cylinder. (b) Stress = 1.6Pa: White phase appears homogeneously 
throughout the gap without a visible interface. 

what happens to the rheology and structure of the sample. The results of one experiment 
where we hold the stress fixed at 0.6Pa is shown in Figure 18. Initially after startup, the 
rheology and light scattering images look similar to those obtained under constant shear 
rate; the apparent viscosity increases as the viscous phase grows from the inner cylinder. 
An important difference, however, is that the gel phase stops short of the outer cylinder 
and remains in approximately the same position indefinitely. Thus, the gel and liquid 
phases can coexist at steady state for a constant applied stress. 

If the experiment is repeated at a higher stress but still less than 1.2Pa, the data 
are qualitatively similar to those obtained at  0.6Pa and displayed in Figure 18 with the 
apparent viscosity increasing in proportion to the growth of the gel phase across the gap. 
At a stress of 1.2Pa, the gel phase appears to fill the gap, just as in the case for constant 
shear rate. Once again, there is a very thin slip layer near the outer cylinder. 

The situation changes somewhat when the experiment is repeated at  higher stresses. 
Consider the data in Figure 18 obtained for a startup experiment performed at a constant 
stress of 1.6Pa. In this case, the bright phase begins to appear after approximately 30s but 
without any readily visible interface just as the apparent viscosity begins to rise. Indeed, 
by the time 34s have passed, the bright phase is clearly visible throughout the gap but 
with only about a 20% rise in the apparent viscosity. As time passes, the apparent 
viscosity increases dramatically. Meanwhile the bright phase continues to fill the gap 
but its brightness appears to decrease somewhat in intensity. Thus, it appears that in 
contrast to data obtained at lower shear rates, a t  these higher shear rates the bright 
viscous phase nucleates homogeneously throughout the gap in small isolated droplets. As 
time progresses, these droplets connect and percolate throughout the gap causing the 
dramatic observed increase in the apparent viscosity. This interpretation of the data is 
also consistent with the observed brightness of the gel phase which is brightest around 34s 
before the apparent viscosity has risen significantly. At this stage, the isolated droplets 
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Figure 19. Steadg state stress us. average shear rate for data obtained under constant 
shear rate (open symbols) and constant stress (closed symbols). 

create large fluctuations in the concentration of surfactant. When the droplets of gel 
phase begin to interconnect, the fluctuations in concentration are reduced thus reducing 
the strength of the light scattering. 

Figure 19 summarises the shear thickening behaviour discussed thus far. Note that 
there is a range of stresses between the critical stress a, and a higher stress ad where there 
exist steady states under controlled stress but not under controlled shear rate. These data 
correspond to the situation represented in Figure 18(a) where the gel and fluid phases 
coexist and both occupy a finite fraction of the gap. It is clear from the data in Figures 19 
and 18 that the shear thickening seems to be better characterised by a critical shear stress 
rather than a critical shear rate. As can been seen in Figure 19, the average shear rate 
actually decreases when the system begins to shear thicken. Moreover, inside the gel, the 
shear rate is essentially zero. If it were the shear rate that controls the formation of gel, 
then the gel would immediately dissolve upon formation because of the low shear rate 
inside the gel. Nevertheless, the gel remains. Note, however, that under all circumstances, 
the gel phase is only observed when the shear stress is greater than a critical shear stress 
oc as shown in Figure 19. Thus, the data strongly suggest that it is the shear stress and 
not the shear rate which controls determines the overall steady state of the system. The 
reader should be cautioned that this does not mean that the shear rate does not play any 
role in the kinetics of the nucleation and growth of the gel. It would seem, however, that 
the shear rate cannot act as a state variable for the long time steady behaviour of the 
system. 

The determinative role of stress is also evident in the cases where homogeneous rather 
than heterogeneous nucleation occurs. The main point here is simply that stress decreases 
as r-' in a Couette cell. This follows from the fact that the torque must be balanced at  
every point in the gap. (The torque I? is given by I? = r F ,  where r is the radial distance 
from the axis of the Couette cell of a point in the gap and F is the force at that point. 
Since the force is related to the stress by o = F/(B.rrrh), where h is the height of sample 
in the gap, a = r / (2r r2h)  or a 0; r -2 . )  Thus, when the applied stress is near the critical 
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Figure 20. Quench experiments showing the response of the stress after a sudden decrease 
in shear rate. The system as prepared at a steady state shear rate of $0 = 44s-' as indicated 
b y  the solid circle in the inset; the shear rate is then suddenly reduced to one of four lower 
shear rates indicated b y  the open circles and squares (see text). 

in the gap, = r / ( 2 m 2 h )  or D c( r-'.) Thus, when the applied stress is near the critical 
stress, gel can only be nucleated where the stress is greatest-near the inner cylinder. 
When the stress in increased so that the stress is well above the critical stress throughout 
the gap, gel nucleates everywhere. While this is an appealing argument and probably at  
least partially correct, it must also be pointed out that the shear rate also decreases with 
radius, though with the weaker dependence of $ - r-'.  For this and reasons previously 
discussed, one should not ignore the role of the shear rate in nucleation. 

Thus far we have examined only the formation of the gel phase upon the commence- 
ment of shear flow. We can also ask what happens if, after a steady state has been reached, 
the shear rate is suddenly decreased to a value below the critical shear rate. In Figure 20 
we show the results of several experiments in which the shear is suddenly decreased after 
the system has achieved a steady state at a shear rate well above the critical shear rate. In 
each experiment, the stress falls immediately by an amount which is linearly proportional 
to the decrease in the applied shear rate. This essentially instantaneous response is fol- 
lowed by a slower decrease in stress which can last several minutes or longer. In the first 
experiment, labelled (a) in Figure 20, the shear rate is suddenly decreased to a shear rate 
just a little greater than the critical shear rate. In this case, the gel remains intact and 
reaches a new steady state in about 100s. When the shear rate is decreased to a value just 
below the critical stress, as shown in trace (b) in Figure 20, the stress appears to come 
to a new steady state at  a point along the upper branch of the steady state curve shown 
in the inset (open circle). The system remains there for a few minutes before relaxing to 
the lowest stress on the steady state curve consistent with the applied shear rate (open 
square). In this state, there is no gel. The data shown in trace (c) are similar to trace 
(b) though there is no obvious plateau as the stress relaxes to the low-stress state where 
the gel has disappeared. Finally, when the shear rate is reduced to a value well below the 
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relaxes fairly rapidly (within a few minutes) to its fluid gel-free state. 
At the present time, the microscopic origin of shear thickening in these micellar systems 

is unknown. Various mechanisms have been suggested, the most developed of which is 
based on the idea that alignment of the micelles by the imposed flow causes the length of 
the micelles to grow and to thereby increase the viscosity of the solution. Here, the basic 
idea has to do with a competition between entropy, which favours many short micelles over 
fewer longer micelles, and end cap energy, which seeks to minimise the number of micelles 
ends by forming fewer long micelles. The basic problem is that these theories produce 
only a mild shear thickening which is much smaller than that observed in experiments. 
These theories do not take into account the Coulomb interactions which are thought to be 
important in these systems because of the high degree of ionised species which are typically 
present in micellar solutions which shear thicken. Other suggestions have been offered as 
well, including a very interesting proposal involving the existence of closed micellar loops 
which are broken by shear flow. Presently, there is insufficient experimental evidence 
which strongly points to any particular theory. 

Recently, there has been some progress in developing phenomenological theories which 
seem capable of reproducing much of the observed rheological behaviour, including co- 
existing phases of a very viscous and less viscous phase under controlled stress. No 
microscopic mechanism for shear thickening is proposed in these models. Instead, these 
models posit the existence of a shear-induced phase transition along with an equation of 
motion for the interface between the two phases. Then, by employing simple constitutive 
equations for the rheological behaviour and enforcing conservation of mass, one can re- 
produce much of the observed phase and rheological behaviour of these systems, including 
re-entrant rheological curves similar to Figure 19 and discontinuities in the steady-state 
stress observed under constant shear rate. These models are significant because they can 
significantly limit the kinds of phase behaviour possible, and thus can serve as a guide 
to the development of more sophisticated microscopic models. In this way, they resem- 
ble descriptions of equilibrium systems based on classical thermodynamics ratherthan 
statistical mechanics. 

In concluding this section, we summarise the most significant results of these exper- 
iments. First is the observation that shear thickening occurs by the nucleation of a new 
viscous phase. At shear rates and stresses just above qc and ocr the nucleation of the 
new phase is inhomogeneous and the system divides itself into macroscopically distinct 
regions of high and low viscosity. Second, shear stress rather than shear rate seems to 
be the more useful variable for describing the steady state of the system. Third, the 
shear-thickening transition seems to have the character of a first order phase transition. 
One should exercise caution, however, in applying equilibrium concepts such as phase 
transitions to systems and processes which are manifestly nonequilibrium. Nevertheless, 
for these systems the concept of a nonequilibrium phase transition seems to have some 
value. (See also ROUX, this volume.) 

Finally, it is useful to emphasise the utility of augmenting rheological measurements 
with structural measurements in systems which shear thicken. Indeed, simply by learning 
that these systems divide themselves into two distinct phases when they shear thicken, 
we have made significant progress towards our ultimate understanding of them. 

Copyright © 2000 IOP Publishing Ltd.



Light scattering and rheology of complex fluids driven far from equilibrium 39 

4 Yielding and rearrangements in glassy emulsions 

Fragile materials are characterised by a high degree of sensitivity to external forces and 
typically yield under very mild shear stresses. In most cases, the response of the material 
is elastic up to some yield stress beyond which the response is more complex, depending 
upon the system under consideration. In this section, we consider the response of one 
realisation of such a material, namely emulsions, and study the structural rearrangements 
which occur when such a system is strained beyond its elastic limit. Before discussing the 
specific experiments, we provide a brief review of emulsions and their properties. 

4.1 Emulsions 

Emulsions are multicomponent systems which in their most basic form consist of three 
components: oil, water, and a surfactant. In fact, the two liquid components need not be 
oil and water, but can be any two liquids which are mutually insoluble (or which at most 
exhibit only very limited mutual solubility). Nevertheless, the vast majority of emulsions 
consist of water and some insoluble oil. 

Emulsions are usually formed by mechanical mixing which creates a dispersion of oil 
droplets in a continuous background of water or a dispersion of water in a background 
of oil. The latter system is often called an ‘inverse emulsion’. The smallest droplet size 
that can be achieved by mechanical mixing is typically about O.lpm. Such a mixture is 
not in equilibrium, however, and will demix unless measures are taken to suppress the 
subsequent coalescence of droplets. Suppressing coalescence is the role of the surfactant 
which, when mixed with the oil and water, goes to the interface between the droplets and 
the surrounding fluid. In some cases, the surfactant is electrically charged which results 
in a repulsive interaction between droplets. In other cases, the surfactant provides a steric 
or entropic barrier between droplets. In either case, the surfactant provides an effective 
repulsive interaction which acts as a barrier to coalescence by keeping the droplets from 
coming into contact. Thus, emulsions are kinetically stabilised against coalescence and 
do not represent the lowest energy state of the system. Normally, the lower energy state 
consists of a system which is completely phase-separated into macroscopic regions of oil 
and water with the surfactant dissolved in one of the phases, and perhaps existing as 
micellar solution. Alternatively, the system may form a thermodynamically stable mi- 
croemulsion, in which case it can be difficult to maintain the systems as a nonequilibrium 
emulsion. Thermodynamically stable microemulsions differ from emulsions in that they 
consist of much smaller droplets (typically about IOnm), are thermodynamically stable, 
and can usually form spontaneously without the addition of mechanical energy. Never- 
theless, our interest here is focused on emulsions which are metastable and which, with 
proper selection of materials, can remain stable indefinitely. 

When prepared by mechanical mixing, emulsions usually have a wide distribution of 
droplet sizes. Numerous methods have been developed for producing emulsions with a 
high degree of monodispersity. For example, various fractionation schemes have been 
developed by which a polydisperse emulsion can be successively divided into fractions 
consisting of particles all within a fairly narrow range of diameters. With some effort, 
samples with 10% polydispersity can be achieve in this manner. Other schemes, mostly 
mechanical, also exist whereby emulsions can be produced with polydispersities in the 
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10-30% range. These schemes require more specialised equipment but are capable of 
producing much greater quantities of monodisperse material. In the experiments we 
discuss in this section, the emulsions have a polydispersity of about 10%. This level of 
polydispersity prevents the emulsion droplets from forming an ordered crystal. Thus, the 
emulsions discussed here are amorphous at all concentrations. 

When the volume fraction 4 of droplets in an emulsion is not too high, emulsions be- 
have very similarly to colloidal dispersions of solid particles. They are subject to the same 
thermal forces, for example, and exhibit Brownian motion just as do solid colloidal par- 
ticles. The situation changes, however, when the volume fraction of droplets approaches 
and exceeds random close packing. For nearly monodisperse spheres, random close pack- 
ing occurs at volume fraction q5rcp of about 0.63. For 4 << &,, emulsion droplets exist 
as isolated spheres. But as 4 approaches increasingly less space is available to each 
particle. For q5 > &p, no more room is available and particle motion is arrested. It is still 
possible to mechanically deform the system, however, because the droplets themselves are 
deformable. We now review the mechanical behaviour of random close packed emulsions. 

4.2 Mechanical properties of random close packed emulsions 

For sufficiently small strains, one expects a random close packed emulsion to exhibit 
linear viscoelastic behaviour. That is, one expects the system to respond elastically, but 
not without some viscous dissipation arising from shearing of the liquid in the emulsion. 
Such behaviour can be characterised by a complex frequency dependent elastic shear 
modulus G ( w )  (see McLeish, this volume). To understand the physical meaning of G ( w )  
we consider the following simple experiment. Suppose an emulsion is confined between 
two parallel plates which are spaced a distance apart which is much greater than the 
droplet diameter (a spacing of N lmm is typical). The top plate is moved back and forth 
sinusoidally producing a time-dependent shear strain across the sample which is given by 
y(w,t) = Re[yoexp(iwt)] where w is the frequency and 70 is the strain amplitude. One 
then measures the time-dependent stress ~ ( w ,  t )  on the bottom plate which for a linear 
viscoelastic material can be written as ~ ( w ,  t)  = G ( w ) r ( w ,  t ) .  Because the system exhibits 
both viscous dissipation and elastic response, the stress is in general not completely in 
phase with the applied strain. Thus, G ( w )  is complex and is written as G ( w )  = G' (w)  + 
G"(w),  where G'(w) characterises the in-phase elastic response of the system and G"(w)  
characterises the out-of-phase dissipative or viscous response of the system. 

At small strains, close packed emulsions deform elastically like any elastic solid with 
an elastic modulus G' (w)  = Gb which is independent of frequency. By contrast, the 
dissipative response which is characterised by the loss modulus G"(w) becomes smaller 
as the frequency is reduced reflecting the fact that viscous dissipation depends on the 
velocity gradient rather than the displacement. In the limit low frequencies, G " ( w )  = qw 
where 71 is the zero-frequency (or zero-shear-rate) viscosity of the emulsion. 

At low strains, measurements of G' (w)  and G"(w) are independent of the strain ampli- 
tude yo as expected for a linear viscoelastic material. As the strain is increased, however, 
the response becomes nonlinear and amplitude dependent, signalling the onset of yielding 
and plastic flow. Mason et al. [13] have studied the linear and nonlinear rheology of 
concentrated disordered emulsions as well as yielding and flow. As expected they find 
normal linear viscoelastic behaviour at low strain amplitudes consistent with an elastic 
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solid as described above. Above a concentration-dependent strain amplitude, they find 
that the emulsions do yield. They also find that there is a dramatic increase in the 
dissipation associated with the onset of nonlinear behaviour and yielding. One expects 
that this increased dissipation is associated with irreversible rearrangements of droplets. 
Unfortunately, the rheological measurements do not provide any direct measurement of 
such droplet motions. For this, we turn to light scattering. 

4.3 Light scattering in emulsions in an oscillatory shear flow 

The basic phenomenon we wish to investigate is the irreversible movement of emulsion 
droplets subjected to an oscillatory shear flow; the basic idea is to use dynamic light scat- 
tering. As discussed previously in Section 2.2.2, a light scattering measurement performed 
on a sample undergoing oscillatory shear flow leads to a series of echoes in the temporal 
correlation function of the scattered light. Although the experiments described in Sec- 
tion 2.2.2 were discussed in the context of single light scattering, all the concepts apply 
equally well to multiple light scattering, that is, to DWS. The only pertinent difference is 
that multiple light scattering is much more sensitive to particle motion and can therefore 
detect much smaller irreversible particle movements. Therefore, we expect to obtain data 
qualitatively similar to that displayed in Figure 11. 

w 

Figure 21. Schematic of D WS transmission measurement of sheared emulsion. Coherent 
light from a laser is expanded and directed towards the bottom glass plate on which the 
emulsion is placed. The upper glass plate is moved back and forth using a precision piezo- 
electric device. Apertures assure that light from on the order of one speckle is collected b y  
the detector. 

In Figure 21, we show a schematic of the experimental setup for a DWS transmission 
experiment. Light from a laser is multiply scattered by the emulsion contained between 
two glass slides. For the case shown, multiply scattered light which is transmitted through 
the sample is detected and sent to an electronic correlator. The glass slides are roughened 
to ensure that the emulsion does not slip when the upper slide is oscillated back and forth. 
Backscattering DWS experiments are carried out using the same cell but, in that case, 
multiply scattered light is collected from the same side of the sample as on which the light 
is incident. 
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Figure 22. Temporal correlation function obtained using diffusing-wave spectroscopy 
on  an emulsion undergoing oscillatory jlow. (a)  Initial decay of the correlataon functaon 
arising from the shearing motion. (b) First echo in correlation function centred at a delay 
tame of one period of the imposed oscillatang shear jlow. 

In Figure 22, we show data obtained from an emulsion subjected to an oscillatory 
shear flow with a strain amplitude of "yo = 0.010 and frequency of 57.8Hz (&l = 0.85). 
The figure shows the initial decay of the correlation function and the first echo. Between 
these two features, the correlation function is essentially zero. Note that the widths of 
the initial decay and the echo are much narrower than the delay time between them. 
The width of the peaks is set by the characteristic shear rate "yow and the thickness of 
the cell [14]. Because of the narrow widths of the peaks, it is essential that the clocks 
running the correlator and the shear flow be synchronised. This can be accomplished, for 
example, by using the clock for the correlator as the master clock to which the shear flow 
is synchronised using a phase-locked loop. Alternatively, two separate clocks may be used 
if they are both sufficiently stable over the duration of the experiment. 

To extract useful information from the correlation functions we measure, we need an 
expression for the correlation function. Recall that in Section 2.2.3 we derived expressions 
for g E ( T )  as an integral over light paths through the sample which had the form: 

where x depended on the type of motion that the scatterers execute. For example, in 
Equation 40, x = (k2/3)(Ar2((7)) where (Ar'(7.)) is the mean square displacement of the 
scatterers. For oscillating shear flow, it can be shown that this reduces to, 

where "y(q, )  is the initial value of the strain [14, 151. For oscillatory flow, the particle 
motion is not stationary but depends on which part of the strain cycle the systems is at. 
A typical electronic correlator, such as the one used in these experiments, calculates g I ( 7 )  

from the data stream in a manner which essentially assumes the process producing the 
data is stationary. Thus, it  continually updates the time 70 at which it starts calculating 
the correlation function. Therefore, to account for the fact that an oscillating shear flow is 
not stationary, we must integrate the theoretical correlation function over all initial values 
of the strain. This will allow comparison with data taken from the correlator. Thus, we 
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substitute Equation 46 into Equation 45, and integrate the intensity correlation function 
over all initial strains (one oscillation period): 

The integral in Equation 47 can be performed numerically to obtain the shapes of the 
correlation functions we measure. We determine the transport mean free path 1* by mea- 
suring the total transmitted intensity [7, 161. As stated previously, g I ( r )  is insensitive to 
I* in the transmission geometry and the initial decay of the correlation function essentially 
depends only on the strain amplitude 70 and frequency w .  Thus, we can compare our 
data to the theoretical expression given in Equation 47 without any adjustable parame- 
ters. The result of this comparison is shown in Figure 22(a) where the circles represent 
the data from the experiment and the solid line the theoretical result obtained from Equa- 
tion 47. The agreement between theory and experiment is remarkable and confirms our 
theoretical description of the decay of the correlation function due purely to shear flow. 

In writing Equations 46 and 47, we have assumed that there is no motion other than 
the affine displacement of scatterers with the applied strain. If this is the case, then the 
scatterers should all return to their exact same positions when the shear is reversed thereby 
causing an echo in the correlation function at  a delay time of the period of oscillation. 
Furthermore, the shape of the echo should be governed by the same process that governs 
the initial decay discussed above. Thus, the shape of the echo should be described by 
Equations 46 and 47. In Figure 22(b) we show a fit of the data to Equations 46 and 47 
where the only adjustable parameter is the echo height about which we have no a priori 
knowledge. Once again, the theory fits the data very well. 

We now turn to the decay of the echo heights under the application of the oscillating 
shear. In Figure 23(a), we show a correlation function for a sinusoidal shear flow with 
a strain amplitude of 70 = 0.05. Because of technical limitations in the instruments 
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Figure 23. Temporal correlation function obtained using diffusing-wave spectroscopy on 
an emulsion undergoing oscillatory pow.  (a) Correlation function showing initial decay 
and multiple echoes. The strain amplitude is yo = 0.05. (b) Initial decay and first echo in 
correlation function on an expanded time scale. The strain amplitudes are yo = 0.01 (cir- 
cles), 0.02 (triangles), and 0.06 (squares). The use of slightly different strain frequencies 
leads to the slightly shifted peak positions of the echoes. 

Copyright © 2000 IOP Publishing Ltd.



44 David J Pine 

used to calculate the correlation function from the experimental data train, only the 
first, second, fourth, eighth, and sixteenth echoes were determined in these experiments. 
The other echoes exist, as confirmed by other experiments, but were not determined in 
the measurement displayed. The first echo is less than unity, as expected, because of 
irreversible motion of at least some of the droplets. There is one quite unexpected feature 
of these data, however, and that is that all the echos have the same height. This is in 
stark contrast to the behaviour illustrated in Figure 11 where the echo heights decayed 
exponentially consistent with particle diffusion. Indeed, light scattering experiments on 
colloidal suspensions under an oscillating shear exhibit the expected exponential decay 

Although all the echoes have the same height for a given strain amplitude T ~ ,  the 
height of the echoes decrease with increasing 70, as shown in Figure 23(b). For all strain 
amplitudes, however, the echo height is constant for as large of delay times as we can 
measure. We also note that this same behaviour is observed for backscattering DWS 
measurements as well. 

The fact that the echoes do not decay after the first echo means that there is a finite 
fraction of the emulsion which undergoes reversible periodic motion. If this were not the 
case, there would not be any echoes. It also means that there is another fraction of the 
emulsion for which undergoes irreversible motion. That is, the trajectories of some fraction 
of the emulsion droplets are chaotic. This is why the echo heights are less than unity. 
Finally, the fact that the echo heights do not change in time means that these two fractions 
of emulsion droplets are disjoint sets. If a droplet undergoes a reversible trajectory after 
one shear cycle, then it does so indefinitely. Similarly, if a droplet undergoes an irreversible 
trajectory after one shear cycle, then it does so indefinitely. Thus, under oscillatory shear 
the system partitions itself into fragile regions which are fluid-like and elastic regions which 
are solid-like. Furthermore, these regions maintain their identity and integrity over time. 
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Figure 24. (a)  Echo height from DWS backscattering experiments us. strain amplitude 
for dzfferent volume fractions. (b) Comparison of the critical strain amplitude us. volume 
fraction obtained from D WS measurements (solid symbols) to yield strains obtained from 
rheological measurements by Mason et al. [13] (open symbols). 

The dependence of the echo heights on strain amplitude is shown in Figure 24. This 
plot shows that the echo height decays monotonically as a function of increasing strain 
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amplitude. Thus the volume fraction of droplets that rearrange under strain increases as 
the amplitude of the strain increases. 

Mason et d. [13] found using rheological measurements that the emulsion yields above 
some critical value of the strain amplitude. To make contact with their measurements, 
we plot the data they obtained for the yield strain vs. volume fraction of droplets in 
Figure 24(b). In the same Figure, we also plot the volume fraction at which the echo 
heights drop to one half their initial value. While this criterion is somewhat arbitrary, the 
good agreement between the two data sets support the idea that yielding is associated 
with particle rearrangements in the emulsion. 

To obtain a quantitative measure of the fraction of emulsion that undergoes rearrange- 
ments we must analyse the shape of the correlation function and the echo heights in more 
detail. Basically, there are three contributions to the shape of the correlation function: 
(1) the decay arising from the oscillatory straining motion which we have already dis- 
cussed, (2) the spontaneous decay of the correlation function caused by Brownian motion, 
and (3) droplet rearrangements caused by the oscillating strain. The spontaneous decay 
arising from Brownian motion is observable only at  the lower volume fractions, where 
there remains some room for the particles to move. This contribution to s(t) is given 
by ( k 2 / 3 )  (Ar2(t)) where (Ar2(t))  is the mean square displacement caused by Brownian 
motion and can be determined from the decay of g2(r) in the absence of shear. 

The contribution to the decay of the correlation function arising from rearrangements 
can be determined in the following way [MI. In the absence of a rearrangement event, we 
assume that there is no decay of the height of the echo. That is, the length of a light path 
through the sample is exactly the same as it was one oscillation period ago unless the 
path intersects a region in the sample that undergoes a rearrangement. In the cme that 
it does intersect a region that has undergone a rearrangement, the phase of that path is 
completely randomised. This assumption is justified by the fact that the droplet sizes are 
comparable to the wavelength of light and any rearrangement of even a small group of 
droplets is virtually certain to change the path length through the sample by at least one 
wavelength. Thus, the height of the echo is simply determined by the fraction of paths 
that have not been randomised after a delay time 'T, where 'T is an integral number of 
oscillating periods. If the number of rearrangements of a given size a occur randomly at a 
rate R per unit volume, then the rate at  which rearrangements occur within a light path a 
is proportional to the product of R and the volume swept out by the light path  SI*^, since 
1* is the shortest length scale over which one can describe the transport of light within 
the diffusion approximation. In addition, CY will scale as a3/l*3 since larger rearrangement 
events will randomise more paths. Thus, a x R ( ~ l * ~ ) ( a ~ / l * ~ )  = (a3R)(s/l*). This means 
that the contribution to the decay of the correlation function of paths of a given length 
s is exp(-cur) = exp[-(a3R)(s/l*)r]. This can be written in simpler form by noting 
that at any given delay time, the volume fraction @ of the sample that has undergone an 
irreversible rearrangement is = aR3r. Thus, in Equation 45, to within factors of order 
unity, Z ( T )  x a(.). 

Putting together the three contributions to the decay of the correlation, we obtain 

Substituting this into Equation 45, we can use this result to extract from the echo height 
the volume fraction which has undergone irreversible rearrangements @(r). Note that in 
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Figure 25. Volume fraction @ of emulsion sample undergoing irreversible rearrangements 
us. strain amplitude. The solid symbols were obtained from backscatten’ng data and the 
open symbols from transmission data. The volume fraction of droplets for each sample is 
indicated in the legend. 

general, this quantity can have a time dependence, and is written explicitly as having 
one in Equation 48. The fact that the echo heights do not change in time simply re3ects 
the fact that the volume fraction which undergoes irreversible rearrangements remains 
constant in time. 

In Figure 25, we plot the volume fraction of emulsion 0 that has rearranged as a 
function of strain amplitude 70. Data obtained in both transmission and backscattering 
are plotted. At large strain amplitudes, there is some discrepancy between the transmis- 
sion and backscattering measurements suggesting that the volume fraction of emulsion 
which undergoes irreversible rearrangements increases near the walls of the sample. As 
expected, the emulsions which have a lower volume fraction of droplets undergo more re- 
arrangements at a given strain amplitude than do emulsions with a higher volume fraction 
of droplets. By comparing our measurements of @ ( Y O )  shown in Figure 25 to the mea- 
surements of yield strain by Mason et al. [13] we estimate that yielding occurs in these 
emulsions when approximately 4% of the emulsion droplets have undergone irreversible 
rearrangements. 
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Polymer physics: from basic 
concepts to modern developments 
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1 Basic concepts of polymer physics 

1.1 Fundamentals of the physical viewpoint in polymer science 

Polymer chains of different chemical structure have, of course, different properties. How- 
ever, there are many common properties characteristic of large classes of polymer systems. 
For example, all rubbers (cross-linked polymer networks, see below) exhibit the property 
of high elasticity, all polymer melts are vdscoelastic, all polyelectrolyte gels absorb a large 
amount of water, etc. Such properties can be described on a molecular level by taking 
into account only the general polymeric nature of constituent molecules, rather than the 
details of their chemical structure. It is these properties that are studied using polymer 
physics. For a more complete introduction, and many further references, see Grosberg 
and Khokhlov 1994; Grosberg and Kliokhlov 1997. 

What are the main factors governing the general physical behaviour of polymer sys- 
tems? Three of them should be mentioned in the first place. 

-CH,-CH$H,XH,- pd~@Ylene) 

-CH,<H-CHrFH- poly(v1nyI chloride) 

Figure 1. Common polymer chains 

CI CI 

First of all, polymers are long molecular chains. In Figure 1 three of the most common 
polymer chains with carbon backbones are shown. One can see that small atomic groups 
(monomer units) are connected in linear chains by covalent chemical bonds. The chain 
structure of constituent molecules is the first fundamental feature of polymer systems. 
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In particular, this means that monomer units do not have the freedom of independent 
translational motion, and therefore polymers do not possess the entropy associated with 
this motion (the so-called translational entropy). This is sometimes expressed as follows: 
polymer systems are poor in entropy. 

Second, the number of monomer units in the chain N ,  is large: N >> 1 (otherwise 
we have an ‘oligomer’, not a polymer). For macromolecules synthesised in the chemical 
laboratory, normally N = 102-104. For biological macromolecules the values of N can 
be much larger, for example, the longest polymer chains are those of DNA molecules: 
N N 109-1010. Such large objects can be seen by a normal optical microscope (if DNA 
is labelled with fluorescence dyes), since the linear size of DNA coil turn out to be larger 
than the wavelength of light. 

Figure 2. Polymer chains are generally flexible, they normally take the configuration of 
the coal (right), not of the rigid rod (left). 

Third, polymer chains are generally fiedble (see Figure 2), they normally take the 
conformation of a random coil, rather than that of a rigid rod. We will discuss in detail 
the notion of polymer chain flexibility in Section 1.2. 

In summary, their chain structure, the large number of monomer units in each chain, 
and chain flexibility are the three main factors responsible for the special properties of 
polymer systems. 

1.2 Flexibility mechanisms of a polymer chain 

1.2.1 Rotational-isomeric flexibility mechanism 

Let us consider the simplest polyethylene chain (Figure 1) and let us ask ourselves for 
which conformation do we have the absolute energetic minimum? Such a conformation 
corresponds to a straight line and is shown schematically in Figure 3. For this confor- 
mation all the monomer units are in the so-called trans position. This would be the 
equilibrium conformation at T = 0. 

Figure 3. The rectilinear (all trams) conformation of a polyethylene chain. 
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At T # 0, due to the thermal motion, deviations from the minimum-energy confor- 
mation are possible. According to the Boltzmann law, the'probability of realisation of a 
conformation with the excess energy U over the minimum-energy conformation is 

What are the possible conformational deviations from the structure shown in Figure 3? 
For a carbon backbone the valency angle y (see Figure 4) should be normally considered 
as fixed (for different chains 50" < 7 < 80"). However, rotation with fixed y by changing 
the angle of internal rotation cp (see Figure 4), is possible. Any value cp # 0 gives rise to 
deviations from the rectilinear conformation, i.e. to chain flexibility, though usually there 
are only two or three preferred values of cp corresponding to different rotational isomers. 
This kind of flexibility is called the rotational-isomeric flexibility mechanism. 

Figure 4. The valency angle y and angle of internal rotation cp for a carbon backbone. 

1.2.2 Persistent flexibility mechanism 

Another flexibility mechanism can be realised when rotational isomers are not allowed, 
e.g. in a-helical polypeptides or DNA double helix. The conformations of these chains 
are stabilised by hydrogen bonds and internal rotation is impossible. In this case small 
thermal vibrations around the equilibrium conformation play the most important role. 
Via their accumulation over large distances along the chain, these vibrations give rise to 
the deviations from the rectilinear conformation, i.e. to the chain flexibility. This is a 
persistent flexibility mechanism; it  is analogous to the flexibility of a homogeneous elastic 
filament. 

1.2.3 Freely-jointed flexibility mechanism 

Another mechanism of flexibility is realised in the so-called freely-jointed model of a poly- 
mer chain. In this model the flexibility is located in freely-rotating junction points: p in 
Figure 4 takes any value. This mechanism is not very characteristic of real chains, but it 
is frequently used for model theoretical calculations. 
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Figure 5 .  %ical confomation of a polymer coal of freely-jointed segments. 

1.3 

In Figure 5 a typical conformation of a polymeric coil is presented. It was constructed 
on the computer for the freely-jointed model by allowing each subsequent segment to be 
oriented in an arbitrary direction with respect to the previous one. n o m  this picture one 
can draw the following conclusions: 

Portrait of a polymer coil 

The volume fraction occupied by the monomer units inside the coil is very small. 
There are many 'holes' inside. 

jectory is analogous to the trajectory of a Brownian particle. 
By the manner of our construction of Figure 5 it is easy to realise that chain tra- 

A single coil conformations of the type shown in Figure 5 can be realised in real experiment 
in dilute polymer solutions when polymer coils do not overlap. 

1.4 Size of an ideal freely-jointed chain: the random coil 

By definition, in the ideal polymer chain we take into account only the interactions of 
close neighbours along the chain. The interactions of monomer units which are far from 
each other along the chain are neglected. Polymer chains behave as ideal ones in so-called 
B-conditions (see below). 

Consider an ideal N-segment freely-jointed chain with each segment of length 1 (see 
Figure 6). The size of such a chain can be characterised by its end-to-end vector R. How- 
ever, this vector will change rapidly in the course of the thermal motion. An important 
characteristic is the average size R of a polymer coil. This average cannot be defined as 
(R) since all the segments orientations are equiprobable, therefore (R) = 0. That is why 
the size R of coil is usually characterised by the root-mean-square end-to-end distance: 
R N Jm. Let us calculate this value for our model. The end-to-end vector is the sum 
of the segments vectors (see Figure 6): 

N 

R = C u i  
i=l 
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Figure 6. The model of freely-jointed chaan. 

Thus the square of the end-to-end distance is: 

and the average of this value 

In the last equality in Equation 4 we have separated the terms with a = j from all the other 
terms. Taking into account that (lui12) = l 2  and (ui . uj),+j = 0 (because the orientations 
of different chain segments in the freely-jointed chain model are not correlated), the final 
result is 

Note that the mean square end-to-end distance is much less than the contour length L of 
the chain: R << L = NI. Thus, the conformation is far from the rectilinear one. Because 
R in Equation 2 is the sum of many random variables, its three components are each 
gaussian distributed; an ideal chain forms a random walk or gaussian coil (Figure 2). 
Note that Equation 5 can be also rewritten as (R2) = L1 since L = N1. 

1.5 

The conclusion R N N'12 is actually valid for an ideal chain with any flexibility mechanism 
(not only for a freely-jointed chain model). For example, let us consider the model with 
fixed valency angle y between the segments of length b and free internal rotation (see 
Figure 4). As follows from Section 1.2, this model is close to a real chain with the 
rotational-isomeric flexibility mechanism. 

It can be shown that for this model 

Size of an ideal chain with fixed valency angle 

where b is the bond length. We see that the average size of the chain is still proportional 
to N'I2, and in this model the chain is also in the gaussian coil conformation. This is a 
general property of ideal polymer chains, independent of the model for chain flexibility. 
At y < 90" the value of R is larger than for a freely-jointed chain, while at y > 90" the 
reverse is true. 
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1.6 

We have seen above that for any ideal chain (R2) N N N L (at large values of the contour 
length L) .  Therefore, the ratio ( R 2 ) / L  should be independent of L and should give a 
measure of chain flexibility. By definition, the Kuhn segment length of a polymer chain is 

Kuhn segment length of a polymer chain 

introduced as 
(R2) 1 = - (at large L )  L (7) 

so that the equality ( R 2 )  = L1 is exact by definition. 
The physical meaning of 1 follows from comparison of this equality with Equation 5 ,  

valid for a freely-jointed chain. The comparison shows that if we try to choose a freely- 
jointed equivalent to a given chain with the same values of (R2) and L,  the segment 
length for this equivalent chain should be equal to 1. Thus 1, the length of an equivalent 
segment, represents an approximately straight subunit of the chain. It is a quantitative 
characteristic of chain flexibility. 

1.7 

It can be shown that for the model of Figure 4, as well as for most of other polymer 
models, the orientational correlations of the chain as a function of the contour distance 
obey 

where I9 is the angle between unit vectors u(0) and u(s) (see Figure 7) .  We see that these 
correlations decay exponentially along the chain; the characteristic length of the decay, [, 
is called the persistence length of the chain. The physical meaning of this characteristic 

Persistence length of a polymer chain 

(cosd) exp(-s/T), (8) 

Figure 7. Illustration for the definition of persistence length of a polymer chain. 

follows from Equation 8. At s << we have (cosI9) = 1, so the chain is approximately 
rectilinear, while a t  s >> [we obtain (cosd) x 0, so that the memory of chain orientation 
is lost. 

It is worthwhile to note the advantages and disadvantages of using 1 and 7 as quan- 
titative characteristics of chain flexibility. The advantage of 1 is that it can be directly 
experimentally measured (the values of (R2) and L can be determined from light scatter- 
ing (Grosberg and Khokhlov 1994)). The advantage of Tis that  it has a direct microscopic 
meaning (see Figure 7). Depending on what is more important in th_e specific problem, one 
may choose Tor 1. One can show that always T Y  I ;  in most cases, I is approximately 1/2. 
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1.8 Stiff and flexible chains 

Let us choose the Kuhn segment length 1 to characterise stiffness. The value of 1 is 
normally larger than the contour length per monomer unit lo.  The ratios l / l o  for some 
common polymers are shown below. 

poly(ethy1ene oxide) 

poly(methy1 methacrylate) 
poly(viny1 chloride) 
poly( styrene) 
poly( acrylamide) 
cellulose diacetate 
poly (para-benzamide) 
DNA (in double helix) 
poly(benzy1 glutamate) (in a-helix) 

Poly (ProPY lene) 

- 
2.5 
3 
4 
4 
5 
6.5 
26 
200 
300 
500 - 

From a macroscopic viewpoint, a polymer chain can be always represented locally 
as some filament which is characterised by two microscopic lengths: the Kuhn segment 
length 1 and the filament’s characteristic diameter d. (This describes the thickness of the 
filament.) Depending on the ratio between these two lengths, we can now introduce the 
notion of stiff and flexible chains. Stiflchains are those for which I >> d, while for flexible 
chains 1 N d. Some examples of stiff chains are DNA, helical polypeptides, aromatic 
polyamides etc. Examples of flexible chains are polyethylene, polystyrene, etc. -in fact, 
most polymers having a single-chain carbon backbone. 

2 Swelling and collapse of single chains and of gels 

2.1 Basic physical effects 

If polymer chains are not ideal, interactions of non-neighbouring monomer units (the 
so-called volume interactions) should be taken into account. If these interactions are 
repulsive, the coil swells with respect to its ideal dimensions. If monomer units attract 
each other, contraction of the macromolecule is observed. In many cases this contraction 
leads to the ‘condensation’ of polymer chain upon itself, with the formation of a ‘dense 
droplet’ conformation, which is called a polymer globule. The transition to this collapsed 
conformation (Figure 8) is called the coil-globule transition. 

Figure 8. Coil-globule transition. 
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good solvent 

a 

Figure 9. Polymer gel 

poor solvent - 
b 

in a good (a)  and poor ( b )  solvents. 

The same type of phenomenon can be observed in polymer gels, which are cross-linked 
polymer networks swollen in a solvent. Gels of linear size of lmm to lcm are normally used 
in experiments, although it is possible to prepare ‘microgels’ of up to lOOnm size. The gel 
as a whole is actually one giant three-dimensional molecule. Suppose that such a gel is in 
contact with a large volume of solvent (Figure 9). If the monomer units of the gel repel 
each other (in other words, polymer chains prefer to be in contact with solvent molecules, 
rather than with each other), the gel should swell to minimise polymer-polymer contacts 
(Figure sa). This is the so-called situation of a good solvent. If, on the contrary, monomer 
units are mutually attracting (poor solvent case), the gel should collapse (Figure 9b). In 
this way the number of unfavourable polymer-solvent contacts is minimised. 

One can see that the phenomena shown in Figures 8 and 9 are similar in nature. 
There is some advantage in studying conformational transitions in the gels. Since all 
the gel chains are connected in one integrated spatial framework, one can observe the 
corresponding molecular processes just by direct visual recording of the macroscopic di- 
mensions of the gel sample. The main disadvantage here is connected with the extremely 
slow equilibration in macroscopic gels: for samples with a size of about lcm the equili- 
bration time T may be several days. This can be diminished by using smaller gels: one 
can show that T N L2, where L is the linear dimension of the gel sample. 

2.2 Concept of the 0-temperature 

Let us consider the simplest model of polymer chain shown in Figure 10: In this model, 
the chain is represented as a chain of N beads each of volume v on an immaterial filament. 
This model is not very realistic, although it would become so if only a small fraction of 
monomers on a real chain were subject to volume interactions, so that each was separated 
by several persistence lengths from its neighbours along the chain. This allows one to 
w u m e  a short stretch of gaussian chain between successive beads, whose mean-square 

Figure 10. Model of beads on a Gaussian filament. 

Copyright © 2000 IOP Publishing Ltd.



Polymer physics: from basic concepts to modern developments 57 

us 

Figure 11. Typical interaction potential for the model of beads. 

end-to-end distance is denoted a’. 
The beads interact with a pair potential U ( r ) .  A typical ‘Lennard-Jones type’ potential 

is shown in Figure 11. The dependence of U ( r )  at small values of r corresponds to the 
repulsion due to the hard-core volume of the beads (excluded volume) and the tail at  large 
r describes the Van-der-Waals attraction between the beads. The characteristic energy 
scale of this potential can be estimated as its value at  the minimum E .  It is easy to see 
that: 

1. At high values of T ,  &/kBT (< 1 and only repulsion matters. The coil should swell 
with respect to the ideal dimensions; this phenomenon is called the excluded volume 
effect. In this case the so-called swelling coeflcient of the coil, a, is larger than 
unity: 

In the history of polymer science the dependence of (R’) (or a2) on the number 
of monomer units, for chains with excluded volume, has been studied in detail by 
experiment, theory and simulation. Computer experiments (e.g. for lattice models) 
give in three dimensions (R2)  N N6/5 ,  i.e. a’ N N1/5. Therefore, the excluded 
volume effect is very significant, it  even changes the character of the dependence of 
(R2)  on N from that of ideal chains ((R’) N N ) .  

2. At low values of T I  such that &/kBT >> 1, attraction dominates. The coil should 
shrink and form a condensed globule (the coil-globule transition). 

3. At intermediate values of T, the effect of repulsion and attraction should compensate 
each other and the coil should adopt ideal-chain (unperturbed) size. This happens 
at the so-called 8-temperature. 

Let us consider the concept of @-temperature in more detail. The free energy of a coil 
is the sum of energetic and entropic contributions: 

F =  E - T S .  (10) 
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The entropy of an ideal coil can be written in the well-known Flory form (see McLeish, 
this volume): 

3 k ~ R ~  S=-- 
2a2 N 

As to the energy E ,  contrary to the case of ideal coil, for the present case it is not equal 
to zero (or to a constant). 

To write down the expression for E we should note that the concentration of monomer 
units inside the polymer coil n N N / R 3  is very small for long chains (proportional to N-1/2 
if they are nearly ideal). Therefore, we can write the expression for E as an expansion in 
powers of n: 

This is the virdal expansion, and the coefficients B, C, . . . are the virial coeficients. From 
the statistical physics of nearly-ideal gases, we know that coefficients B ,  C, . . . describe 
binary, ternary, etc. interactions of monomer units, and that they can be expressed in 
terms of the interaction potential U ( T ) .  For example, the second virial coefficient B(T)  
is given by 

B(T) = - J [I - exp ( - U ( r ) l k ~ T ) ]  d 3 r .  

The typical behaviour of B(T)  is shown in Figure 12. At high temperatures B - z' > 0, 
where w is the volume of a monomer unit. When the temperature is lowered the value of B 
decreases due to the contribution of the second term in the integrand of Equation 13 and 

E = NkBT(Bn+Cn2 + .  ..). (12) 

(13) 
1 
2 

Figure 12. The characteristic dependence of second tirial coeficient on temperature. 

finally at  some T = 8 we have B(8) = 0. (In gases, this is called the Boyle temperature.) 
Since B(T) is approximately linear through the @temperature, we may approximate in 
this region 

(14) 

Since for large values of N the concentration n inside the coil is very small, we can 
with very good accuracy retain only the first term of the virial expansion (Equation 12): 

E = NkBTBn. (15) 

But at the temperature T = 0 the value of B is equal to zero, therefore E = 0, thus 
F = -TS, and the chain adopts the conformation of an ideal coil. At T > Q the energy 
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of interaction, Equation 15, is positive, repulsion dominates and the coil should swell. 
According to the terminology introduced above, this is the regime of good solvent. On the 
other hand, at T < 0 the free energy of interactions is negative, which means that the 
attraction prevails and therefore a coil shrinks to a globule. Thus, T < €3 is the regime 
of poor solvent. In this case it is necessary to  go beyond Equation 15 and include higher 
terms. 

Note that the complete compensation of interactions a t  the Q-point is a specijc poly- 
mer property (not valid for gases) connected with low polymer concentration in the coil. 
Only for polymer coils (in a t  least three dimensions) can the third and higher virial 
coefficients can be neglected at the Q-point itself. 

2.3 The excluded volume problem 

Let us consider the polymer coil far above the @-point in the good solvent region, and let 
us calculate the swelling of the coil by excluded volume. The free energy for this system 
can be approximated in the form 

+ const. (16) F = E - T S  = NkBTBn - T S  = N ~ B T B ~  + - N ~ ~ B T R ~  
( 3 7r R3) 2Na2 

Where for the second term the Flory expression for the entropy of an expanded coil 
was used (see Equation 11). The excluded volume repulsion (first term) induces the 
coil swelling, while entropic elasticity (second term) opposes it. Minimisation of F with 
respect to R gives the equilibrium coil size. Setting dF/dR = 0 gives (omitting all 
numerical coefficients) 

= 0 .  (17) 
kBTBN2 ~ B T R  +- - 

R4 Na2 

The last equation may be written in the second form because at high temperatures B N U .  

It follows that 
cy N R/N112a N (u /~~) ' ' 'N ' / ' '  >> 1 .  (19) 

Equations 18 and 19 are in agreement with the results of computer experiments for the 
lattice models mentioned earlier, and also with real experimental data on dilute swollen 
chains. (Much more sophisticated theories are possible, but these barely change the 
R N N3/5 dependence: see, e.g., Grosberg and Khokhlov 1994.) Therefore, we conclude 
that the polymeric coil swells due to the excluded volume, in spite of the extremely low 
polymer concentration in the coil. This illustrates the high susceptibility of long polymer 
chains to any perturbation, in particular to the excluded volume interactions. 

2.4 Coil-globule transition 

Now let us consider the whole range of temperatures below the good solvent region of the 
previous section. When the temperature is lowered below the Q-point, the coil-globule 
transition (or polymer collapse) should take place as is depicted in Figure 8. The interest 
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in the globular form of macromolecules was initially aroused by molecular biophysics, 
since most protein-enzymes are polymeric globules. Denaturation of globular proteins 
was sometimes considered to be analogous to the transition from globule to coil. 

The theory of the coil-globule transition developed by Lifshitz et al. (1978) gives the 
following results: 

1. The coil-globule transition takes place in the vicinity of the @point, in fact at  
-7 N u ~ / ( u N ' / ~ )  << 1. This is only very slightly lower than the $-temperature. It 
is enough to have a very weak attraction to induce the transition into a globule, in 
contrast to the case of condensation in gases. The reason is that, due to the chain 
connectivity, independent motion of monomer units is impossible: a polymer coil is 
poor in entropy compared to a gas (or a solution) of its monomers. 

2. For a rigid chain the collapse transition is discrete, while for flexible chains it is 
continuous. 

3. For a negative second virial coefficient, B < 0, the globular state is stable and 

(a) The size of the globule R N N1I3 (cf. with R N N1/2 for ideal coil and R N N3/5  
for the coil with excluded volume). So the monomer density within a globule 
is independent of N .  

(b) In the globule far from the @point (1.1 N 1) the volume fraction of monomer 
units is generally not small. This is a dense liquid droplet. 

(c) The globule swells as the Q-point (and the coil-globule transition point) is 
approached, so that a description in terms of only B and C (the second and 
third virial coefficients) becomes valid in the vicinity of the transition point. 

4. Experimentally, the coil-globule transition was observed for many polymer-solvent 
systems. A very convenient system is polystyrene in cyclohexane, since the 0- 
temperature for this case corresponds to Q = 35°C. 
The main difficulty for the experimental observation of the coil-globule transition of 
individual chains is the possibility of intermolecular aggregation and formation of a 
precipitate. To avoid this, the concentration of polymer in the solution should be 
very small (e.g. for polystyrene-cyclohexane system it should be less than 10-4g/l). 

3 Statistical physics of polyelectrolyte systems 

3.1 Introduction 

Polyelectrolytes are polymer molecules having charged units. A monomer link can be 
charged following dissociation which results in a charged unit and a low molecular weight 
counterion. The number of counterions is then equal to the number of charged units. As 
a rule, dissociation occurs when molecules are dissolved in highly polar solvents of which 
water is the most important one (dielectric constant E M 81). 

Polyelectrolytes are classified into strongly and weakly charged ones. In strongly 
charged polyelectrolytes, every link (or a considerable fraction of the links) carries a 
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charge. Therefore, Coulomb interactions among monomers predominates over the non- 
electrostatic (e.g., Van der Waals) interactions. Charged macromolecules with a small 
fraction of charged units are called weakly charged polyelectrolytes. For weakly charged 
polyelectrolytes a nontrivial competition between Coulomb and non-electrostatic interac- 
tions takes place. 

It is normally assumed that the potential arising from Coulomb interactions involving 
two elementary charges e separated by a distance T is given by the Debye-Hiickel potential 

e2 
u ( T )  = - eXp(-T/TD), 

&T 

where E is the dielectric constant of the solvent and rD = ( ~ k ~ T / 4 . r m e ~ ) ' / ~  is the so- 
called Debye-Hiickel radius, or screening length. Here n is the total concentration of low 
molecular weight ions in the solution, including not only dissociated counterions, but also 
the counterions and coions of any low molecular weight salt that has been added. The 
screened Coulomb potential (20) is the main result of the Debye-Huckel theory (Landau 
and Lifshitz 1980). However, this theory is only applicable if the electrostatic effects are 
sufficiently weak (see below); specifically, the expression for T g  assumes that the Coulomb 
potential experienced by the counterions and coions is small compared to  BT. 

3.2 

Compared with the theory of neutral polymers, polyelectrolytes pose complications: 

Main complications in the theory of polyelectrolytes 

1. There are additional parameters (linear charge density of the chain, salt concentra- 
tion, pH etc.) which essentially influence the polyelectrolyte behaviour. 

2. Coulomb interactions are generally not weak (so that Debye-Hiickel approximation 
may be not valid). This is usually a problem for strongly charged polyelectrolytes. 
The most important new effect emerging as a result of this fact is the phenomenon 
of counterion condensation (see below). 

3. In addition to screening of Coulomb interactions due to point-like ions there is also 
screening by extended polymer chains themselves. This complicates the character 
of electrostatic interactions in polyelectrolyte systems. 

4. Interplay of Coulomb and Van-der-Waals interactions for weakly charged polyelec- 
trolytes can lead to the formation of regular nanostructures with different morphol- 
ogy (spherical micelles, cylinders, lamellae, etc.) controlled by slight modulation of 
external parameters (salt concentration, pH, temperature, etc.). 

These complications can be addressed using several basic concepts. Among these, the 
most important are: counterion condensation, the electrostatic persistence length, and 
translational entropy of counterions. These concepts will be considered in the following 
sections. 
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e 

Figure 13. Illustration of the phenomenon of counterion condensation. 

3.3 Counterion condensation: Manning mechanism 

The condensation phenomenon can be explained as follows. Let us suppose that we have 
a charged line (polymer chain) of charges e separated by a distance a along the chain 
(Figure 13). The linear charge density of such a chain is p = e/a. Let us assume that 
some counterion experiences the field of this charged line. The question is, whether it is 
thermodynamically favourable for such a counterion to approach the charged line (min- 
imising its electrostatic energy) or whether the opposite option is preferable (maximising 
the entropy of translation). 

Let us suppose that in some initial state the counterion is confined to a cylinder of 
radius r1 around the charged line (see Figure 13), while in a proposed 'final' state it is 
confined within a cylinder of radius r2 > r1. The gain in the free energy of translational 
motion is then 

AF1 N kBTln- N kBTln-, 

where VI and V2 are the volumes of the initial and final cylinders. On the other hand, 
the increase of the radius of the cylinder leads to a decrease of the average energy of 
attraction of counterions to the charged line. According to the formulae of electrostatics 
this decrease is 

(21) 
v2 r2 
Vl r1 

p r2 ea ~2 

E T I  Ea r1 
AF2 N -e- In- N -- ln-.  

One can see that both AF1 and AF2 are proportional to ln(r2/r1). Therefore the net 
result depends on the coefficients before the logarithm. If 

e2 
EakBT 

U=- < 1, then AFl > 14Fzl (23) 

and this means that the gain in translational entropy is more important; the counterion 
goes to infinity. On the other hand, if 

U > 1, then IAFzI > AFl (24) 
and the counterion should approach the charged line and condense on it. 

Now we take the second, third and further counterions, and repeat for them the above 
considerations. As long as the linear charge density pee of the original charges plus its 
condensed counterions satisfies the inequality (peffe/EkBT) > 1 (compare Equation 24) 
the counterions will condense on the charged line, decreasing p e ~ .  When the number of 
condensed counterions neutralises the charge of the line to such an extent that 

Peffe - 
U& = - - 

EkBT 
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P 

Figure 14. The dependence of the effective charge on the line as a function of its initial 
charge. 

the condensation of counterions stops. All the remaining counterions are floating freely 
in the solution. The plot of the effective linear charge of the line as a function of initial 
linear charge is shown in Figure 14. 

One can see that in the presence of counterions there is a threshold 

(26) 
* E ~ B T  p =- 

such that it is impossible to have a charged line with an effective linear charge density 
above this threshold. 

The effect of condensation of counterions should be always taken into account in the 
consideration of polyelectrolytes in solution. Especially for strongly charged polyelec- 
trolytes, some fraction of the counterions is always condensed and neutralises partially 
the strong electric field of the charged chain. Only the remaining fraction is free to par- 
ticipate in the Debye screening of electrostatic interactions according to the formula (20). 

e 

3.4 Electrostatic persistence length 

The Coulomb interaction stiffens the chain of a strongly charged polyelectrolyte, that is, 
it leads to an increase in the persistence length 1 of the chain from 10 to a new value 10 + 1,. 
The contribution 1, is called the electrostatic persistence length. 

That the Coulomb interaction leads to an effective renormalisation of the persis- 
tence length can be illustrating using Figure 15, in which a chain is shown for the case 
a << rg << 1. (This corresponds to a strongly charged polyelectrolyte, with a moderate 
concentration of a low-molecular-weight salt in the solution.) In this case two types of 
Coulomb interaction are possible: 

1. Interaction between the charges separated by a distance < r g  along the chain. (This 
is a short range repulsion, tending to increase the persistence length.) 

2. Interaction between the charges separated by a distance > 1 along the chain. (Such 
charges approach one another closer than the distance T D  as a result of random 
bending of the chain; their interaction should naturally be classified with the volume 
interaction.) 
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Figure 15. Persistence length renonalisation in a polyelectmlyte chain. 

This subdivision into short-range and volume interactions is quite unambiguous for 
T D  << I ,  because links separated by a distance exceeding TD but less than 1 can neither 
interact directly (because of the Debye screening) nor draw together as a result of chain 
bending. Thus, for a << rg << I ,  it is the short-range part of the Coulomb interaction 
that brings about an increase in the persistence length. 

To determine the quantity l e ,  let us first derive the persistence length for an uncharged 
persistent chain from the energy of slight bending of a rod-like section of the chain. The 
bending energy of a section having length L described by a tangent u(s) (Figure 7) can 
be written as 

where b is an effective bending modulus for a unit length of the chain, and p ( s )  is the 
curvature of the chain fragment as a function of contour length s (with 0 < s < L) .  
Because the filament can be assumed to bend with an approximately constant radius of 
curvature, Ip( % cp/L (with cp the total angular deflection) we can find from Equation 27 
that AFo(L, 9) bcp2/2L. The elastic persistence length 10 can be defined according to 

AFo(L N l o ,  cp N 1) 11 k B T ,  (28) 

i.e. lo = b f k B T ;  it is proportional to the bending modulus and grows as the temperature 
decreases. 

In the charged chain, an additional repulsion of the links (20) occurs so that the 
bending energy cost increases: 

b' cp2 v A F  = AFo + A F e  N -- L ,  1 = - = 1  0 + 4  
k B T  

and as a consequence the persistence length is increased, too. The expression for the 
electrostatic persistence length 1, has the form (Odijk 1977) 

(30) 
ur;/(4a), at U < 1 (no condensation) 
T ; / ( ~ U U ) ,  at U > 1 (condensation takes place). 
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Taking into account that for typical cases U N 1 and r D  >> a (if the salt concentration is 
not very high), we reach the conclusion that 1, >> r D ,  so that the stiffening of the polymer 
chain because of electrostatic interactions occurs on length scales much larger than the 
Debye radius r D  (despite the fact that this interaction only acts over a radius TD). In 
many cases, provided that the corresponding uncharged chains are not too stiff, we obtain 
I ,  >> l0,so that the electrostatic contribution to the persistence length prevails. 

Note that in the regime of counterion condensation, the quantity I ,  is independent of 
the linear charge density p = e/a of the polymer chain, as it should be, because the charge 
density in excess of e/a is compensated by the counterions condensing onto the chain. 

3.5 Ionic gels: role of translational entropy of counterions 

A schematic representation of a polyelectrolyte gel is shown in Figure 16. It consists 
of polyelectrolyte molecules cross-linked by covalent chemical bonds into an integrated 
spatial network swelling in a solvent (usually in water). 

Figure 16. Schematic picture of a polyelectrolyte gel. 

Figure 16 shows that a polyelectrolyte gel contains counterions together with charged 
monomer units that together ensure that a macroscopic gel sample as a whole is electrically 
neutral. When a gel swells in a large volume of water, it appears advantageous for the 
counterions to abandon the network and go out of the gel into the surrounding solution, 
because it would lead to substantial translational entropy gain. However, this is not 
the case since the principle of electro-neutrality of macroscopic gel samples would be 
violated. So, the counterions have to remain inside the network where they exert an 
osmotic pressure. This counterion pressure is responsible for two of the most important 
physical effects taking place in polyelectrolyte gels swelling in water. 

Firstly, the osmotic pressure results in very considerable gel swelling: one gram of a 
dry polymer may consume hundred of grams of water absorbed by the gel. This allows 
polyelectrolyte gels to be used as so-called super-absorbents of water. Uses include diapers, 
retention of soil moisture, dust immobilisation, etc. 
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Figure 17. The dependence of the volume of a polyelectrolyte gel V on the volume fraction 
$ of poor solvent added to  water. VO is the volume corresponding to the gel swollen in. 
pure water. 

Secondly, the excessive swelling of polyelectrolyte networks in water explains their 
sharp contraction upon deterioration of solvent quality and leading to a several-hundred- 
fold jumpwise decrease in the gel volume (see Figure 17). 

This phenomenon is called gel collapse. It is connected with the coil-globule transition 
of the polymer chains in a gel, translated into collapse of a gel as a whole. The stronger 
the charge of the gel, the sharper is the collapse. This is easy to understand since the 
collapsed phase is stabilised by attractive forces between uncharged units. Therefore, the 
collapsed gel volume displays only weak charge-dependence whereas the volume of swollen 
gel grows considerably with increasing charge due to osmotic pressure of counterions. Thus 
the amplitude of the jump in volume between these two states should increase with the 
increase of the degree of charging of the gel chains. 

3.6 Possible states of counterions in a polyelectrolyte network 

The properties of weakly charged ion-containing polymer networks differ essentially de- 
pending on the state of the counterions. 

First, depending on the surrounding medium (e.g. its dielectric constant) counterions 
can either be free, or stay bound to the chains forming ion pairs with the correspond- 
ing ions on the polymer chain, Figure 18. The first regime is called the polyelectrolyte 
regime and was considered in the previous section. In this case the counterions can move 
freely (independently of the polymer chains) and the properties of the gel are essentially 
determined by the translational entropy of counterions. 

The second regime, when counterions stay closely bound to the chain, is called the 
ionomer regime. This corresponds to counterion condensation, except that we allow for 
the presence of discrete charges on the chain backbone instead of treating it as simply a 
charged line. (A counterion binding to an opposite charge on the backbone forms an ion 
pair.) This regime is realised by decreasing the dielectric constant E (increasing U), which 
can be achieved by increasing of the volume fraction of polymer in the system: usually the 
dielectric constant is a decreasing function of polymer concentration in water solutions. 
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Figure 18. Possible states of counterions in a polyelectrolyte network. 

The formation of ion pairs in polyelectrolyte gels leads to two simultaneous effects: 

1. Due to the decrease of the concentration of mobile counterions inside the gel the 
corresponding osmotic pressure also decreases; this fact favours the formation of 
collapsed phase. 

2. Ion pairs attract each other due to the dipole-dipole interactions, and form so-called 
multiplets which act as additional physical cross-links. 

Ion pairing with subsequent aggregation of ion pairs into multiplet structure leads to 
the appearance of a new super-collapsed state of the gel. In contrast to the ordinary 
collapsed state of gels in poor solvents, the super-collapsed state corresponds to the state 
of a practically dry gel (Khokhlov and Kramarenko 1996). 

3.7 Truly free versus trapped counterions in solutions and gels 

The inhomogeneous spatial distribution of the immobilised charges on polymer chains 
creates potential wells for the counterions. As a result some of the counterions becomes 
trapped, and only a subset of them remain ‘truly free’. The simplest example of such 
inhomogeneous systems is the dilute polyelectrolyte solution, Figure 19. 

Figure 19. Dilute polyelectrolyte solution as a n  example of an inhomogeneous polyelec- 
trolyte system. 
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Figure 20. Gel collapse curues fo r  individual polyelectrolyte macromolecules (solid lines) 
and for  macromolecules an the gel (dotted lanes). 

The conformational behaviour of each individual molecule in the solution is determined 
mainly by the balance between the following physical factors. The presence of some 
fraction of counterions within the molecules, as well as non-screened charges on the chain, 
exerts osmotic pressure leading to the swelling. On the other hand, the elasticity of 
the chain and the osmotic pressure of truly free counterions (those moving in the solution 
exterior to the chain) oppose the swelling. The interaction of neutral monomeric links can 
change the balance between swelling and collapse of the chain, depending on the solvent 
quality. The swelling ratio Q as a function of relative temperature deviation from the 0- 
point, T, is presented in Figure 20 (Kramarenko et al. 1997). In the good solvent regime, 
T > 0, the fraction ,B of counterions retained within the coil is close to zero; the condition 
of electro-neutrality of a single chain is totally violated, and the conformation of the chain 
is determined by electrostatic repulsion between charges along the chain. For comparison, 
the curves for ,b = 1 (chain swelling in gel) are shown by dotted lines. In this case the 
main reason for the increase of Q is the osmotic pressure of the counterions. On the other 
hand, in a poor solvent, 7 < 0, the collapse of the chain induces localisation of some 
of the counterions within the chain to compensate the increasing charge density of the 
globule. However, the swelling ratio is determined mainly by non-Coulomb interactions 
of uncharged monomer links, and cy does not depend strongly on the value of B in this 
regime. 

Another polyelectrolyte system where inhomogeneities play an important role is a 
charged gel with the electric charge unevenly distributed in space. This inhomogeneity 
is an inherent property of most charged gels, connected with the statistical nature of 
distribution of subchain lengths and crosslink points (and therefore of the local polymer 
density). Experiments show that osmotic pressure and the swelling ratio of an inhomo- 
geneous gel is less than that of a homogeneous gel, and this difference increases with 
increasing inhomogeneity (this can be studied, for example, by decreasing monomer con- 
centration during gel synthesis). 
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Figure 21. Comparison of the swelling ratios of an inhomogeneous gel a and homoge- 
neous gel (Ilhmo as function of the degree of gel inhomogeneity. 

The explanation of this effect is the fact, already mentioned, that an inhomogeneous 
profile of polymer concentration creates also an inhomogeneous profile of immobilised 
charge. In this way, electrostatic potential wells are formed, and some of the counterions 
are trapped in these potential wells and do not contribute to the osmotic pressure. Such 
counterions can be called osmotically passive, since only the truly free counterions create 
the osmotic pressure. The fraction of osmotically passive ions can be rather high, and 
consequently the osmotic pressure and the swelling ratio of an inhomogeneous gel can be 
significantly smaller than those of a homogeneous gel. 

One should note that there are several mechanisms leading to the existence of osmoti- 
cally passive ions. The traditional mechanism is the Manning condensation of counterions 
on charged network subchains, described in Section 3.3 above, when the condensed ions 
are confined to the molecular vicinity of the polymer chains, and obviously are osmotically 
passive. Another mechanism is counterion trapping in large-scale inhomogeneities, as just 
described. In the first approximation, one can assume that the Manning condensation 
simply renormalises the charge of the polymer chains (or the fraction of charged monomer 
units), and then the remaining mobile ions can be partitioned between osmotically active 
and osmotically passive ones. 

A simple theory of collapse of inhomogeneous gels taking into account the existence 
of osmotically passive ions has been developed by Zeldovich and Khokhlov (1999) within 
the framework of a two-phase model similar to those used for single polyelectrolyte chains 
and microgels. Figure 21 compares the swelling ratio of an inhomogeneous gel a to 
the swelling ratio of a similar homogeneous gel ck'homo as a function of the degree of gel 
inhomogeneity. The degree of inhomogeneity is defined here as the ratio of a maximal 
no,l and minimal n0,2 local density of gel. We see that the higher is the inhomogeneity, 
the less the inhomogeneous gel is swollen with respect to a homogeneous gel. This is a 
manifestation of counterion trapping: the higher is the inhomogeneity, the deeper are the 
potential wells, the more counterions they trap, and the less the gel swells. 
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4 Conformat ion-dependent sequence design 
(engineering) of AB-copolymers 

4.1 Introduction 

The history of the polymer industry in the twentieth century shows a shift in main em- 
phasis from the development of polymers as construction materials, in the beginning 
and in the middle of the century (1920-1980), to the development of polymers as func- 
tional materials. The best known applications of such an approach are super-absorbents, 
systems for controlled drug release, polymer electrolytes for lithium batteries, polymer 
membranes with enhanced selectivity, polymer adhesives etc. In the last ten years the 
so-called ‘smart’ polymeric materials have gained increasing attention (responsive gels as 
soft manipulators, polymer sensor systems, field-responsive polymer materials etc.). For 
these functional polymer systems the functions are becoming more complex and diverse; 
many involve copolymers in which different monomers are of different chemical species. If 
now we ask ourselves which of the known polymers perform the most complex and diverse 
functions, the answer is clear: these are biopolymers (e.g. DNA and globular proteins) 
which are responsible for extremely complicated functions in living systems. Therefore, 
if we want to move in that direction for synthetic polymer systems, we must look at  the 
ideas implemented already in nature. Here we discuss one of the ideas of this kind. 

We will consider several particular examples of a novel approach to the design of 
specific primary sequences for copolymer chains where the basic idea came from compar- 
ison with real proteins. This approach is based on the concept of ‘colouring’ with two 
‘colours’ (A and B) the monomeric units of a homopolymer, taken initially in some well- 
defined conformation (globular conformation, conformation of an adsorbed chain, etc.). 
The choice of colour depends on the spatial position of the unit in this ‘parent’conforma- 
tion. Our computer simulations show that copolymers with AB-sequences generated in 
this way acquire a number of special functional properties, which distinguish them from 
the AB-copolymers with random or block primary structures. (‘Primary’ structure refers 
to the permanent chemical structure along the chain backbone; a ‘block’ is a stretch of 
pure A or pure B.) In a sense, we can say that some functional features of the parent con- 
formation are ‘memorised’ (or ‘inherited’) and then manifested in other conditions. This 
special conformation-dependent AB-sequence design (engineering of AB-copolymers) can 
in principle be achieved not only in computer simulations, but in the chemical laboratory 
as well. Further studies in this direction may have an important impact both in the prob- 
lem of obtaining of AB-copolymers with special functional properties and in the problem 
of understanding of basic principles of biomolecular evolution at its early stages. 

4.2 Protein-like AB-copolymers 

The general idea just outlined above will be first illustrated taking as an example a 
globular conformation of a polymer chain. 

The primary structure in real globular proteins is known to be highly specific. Globular 
proteins/enzymes functioning in living systems are the products of molecular evolution. 
Their primary structures involve 20 possible types of monomeric units (20 amino-acid 
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residues), therefore globular proteins are much more complicated objects than typical 
AB-copolymers. However, the most essential distinction between different monomeric unit 
of proteins is that some of these units are hydrophobic, while others are hydrophilic or 
charged (Dickerson e t  al. 1969, Grosberg 1997). Thus in a very rough approximation it is 
possible to represent a globular protein as a kind of AB-copolymer. The spatial (ternary) 
structure of such a copolymer in the native state would then normally correspond to 
the structure in which hydrophilic units (A-type) cover the globular surface and prevent 
different globules from aggregation, while hydrophobic units (B-type) constitute the dense 
globular core. 

Because the hydrophobic links should be in the core and hydrophilic ones should lie 
on the surface, there should be some long-range correlations within the primary struc- 
ture, since these correlations are related to the spatial conformation of the globule. It 
is therefore interesting to ask whether it is possible to have a synthetic AB-copolymer 
with long-range correlations in primary structure analogous to the correlations in evolved 
proteins. 

So, we are looking for preparation of such an AB-sequence that in the most dense 
globular conformation, all the B-units form a dense core while all the A-units are on the 
surface, i.e. such a sequence mimics one of the properties of a real protein what allows us 
to call the desired copolymer chain a protein-like AB-copolymer. Such copolymers should 
have interesting physical properties, for example, they should not precipitate when the 
dense globular conformation is formed. This is not the case for ordinary macromolecules 
(Lifshitz 1978, Grosberg e t  al. 1994; see also Section 2.4). 

4.2.1 

It is very easy to prepare such protein-like sequences in computer simulation (Khokhlov 
et al. 1998a,l998b,1998~,1999); the main steps of the real laboratory experiments should 
probably be the same. A computer realisation of the procedure is illustrated in Figure 22. 

Preparation scheme for protein-like AB-copolymers 

Figure 22. Colouring procedure f o r  preparation of protein-like copolymer 

We take some particular conformation of a usual homopolymer coil with excluded 
volume, and switch on a strong attraction of monomeric links to let the chain collapse 
into the conformation of a homopolymer globule (Figure 22, left part). Next we take 
an ‘instant snapshot’ of the globule and assign the colour index A to those units that 
are on the surface of the globule and call these units hydrophilic, and assign the index 
B to the units in the core of the globule and call these units hydrophobic. Then we fix 
this primary structure (Figure 22, middle part; the structure shown in this figure will be 
further referred to as the parent globule). Finally, the last step is to remove the uniform 
strong attraction of monomeric units, and to add different interaction potentials for A- 
and B-units (Figure 22, right part). 
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4.2.2 Coil-globule transition for AB-copolymers with different structures 

Let us consider the coil-globule transition for the protein-like copolymer thus formed, 
which occurs when one introduces attraction between hydrophobic B-units (hydrophilic 
A-units remaining repulsive to each other and to hydrophobic units). The Monte Carlo 
computer simulation was performed using the bond fluctuation algorithm (Carmesin 1988; 
see also Kremer, this volume). The coil-globule transition was realised upon the increase in 
attraction interaction between B-links (which is equivalent to a decrease of temperature). 
We studied primary sequences with an A/B composition ratio of 50/50. 

We compared the coil-globule transition for three types of sequence: (i) our protein- 
like sequences; (ii) random AB-copolymers of the same A/B ratio but an entirely random 
sequence; (iii) random-block AB-copolymers, with the same A/B ratio and also the same 
degree of blockiness, i.e. with the same mean length of the blocks of A- and B-links as for 
protein-like copolymers. This comparison was done to distinguish the effects connected 
with the block lengths (visible in Figure 22) from the effects coming from the presence of 
long-range correlations between blocks, within the primary sequence. (Such correlations 
are, by construction, absent in case (iii).) 

The data for temperature dependences of the mean energy per monomeric unit and of 
the specific heat are presented in Figure 23. We have found the transition for protein-like 
copolymers to occur at higher temperatures and to be more abrupt than that for either 
random or random-block copolymers (the peak of specific heat is narrower and higher for 
the protein-like copolymer). The kinetics of the coil-globule transition is also faster for 
protein-like copolymers (i.e. protein-like copolymers form the dense globule faster than 
random and random-block ones, under similar 

O- 
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0 1 2 3 4  

T T 

Figure 23. The temperature dependences of the mean energy per monomeric unit (a) and 
of the specific heat (b)  for copolymers with chain length N = 512 and primay sequences 
as indicated. 
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Figure 24. Typical snapshots of the globular structures for (a) protein-like, (b) random, 
and (c) random-block copolymers. 

What is the reason for such effects? To answer this question let us look at the mor- 
phology of different globules. In Figure 24, typical snapshots are shown for globular 
conformations obtained for the three types of copolymers at  equilibrium at low tempera- 
ture. (The hydrophilic A-links are shown in a darker colour than the hydrophobic ones.) 
It can be seen that for protein-like AB-copolymers, practically all B-units are concentrated 
in the dense core of the globule which is stabilised by long dangling loops of hydrophilic 
A-links. On the other hand, the core of the globules formed by random and random-block 
AB-copolymers is much looser, and approximately 30% larger in average size than that 
for our designed AB-copolymers. A fraction of the hydrophilic A-links are now inside the 
core, and those of them which belong to the surface form very short dangling loops which 
apparently are not sufficient to prevent the aggregation of such globules in the solution. 

It is reasonable to assume that the formation of the dense core shown in Figure 24 for 
protein-like copolymer globules is facilitated by the fact that the dense globule preexisted 
in the parent conditions shown in Figure 22 (middle part). Since all the B-links in this 
parent core are fitting next to each other, there is no connectivity obstacle to reassembly 
of most of this core when the effective attraction between the B-units is switched on. In 
other words, we can say that the protein-like copolymer inherited some important features 
of the parent globule which were then reproduced in the other conditions. 

4.3 Membrane-protein-like copolymers 

As a second criterion for colouring monomeric units inside a dense homopolymer globule, 
we have introduced a model for AB-copolymers which mimic some properties of membrane 
proteins. It is well known that real membrane proteins are located inside the cell mem- 
brane in such a way that some fraction of the amino-acid units (mainly the hydrophobic 
and uncharged ones) are located inside the bilipid layer of the membrane, while the other 
amino-acid units are located in water environments inside and outside the cell. 

In our simple model, we assigned colour index B to monomeric units which lie within 
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Figure 25. The parent conformation of the membrane-protein-like copolymer (left part) 
and the conformation obtained after equilibration in computer simulation (right part). 

the intersection of a parent globule and a narrow flat slab. So, the B-part of the parent 
conformation takes the form of a narrow disk. We have taken 30% of all links to  be of B- 
type. In the left part of Figure 25 we present a snapshot of an original parent conformation 
of our AB-copolymer globule. We marked both hemispheres of outer A-links (70% of the 
whole amount) of the original globule into two different colours (black and grey) to see 
whether the parent micro-segregated structure can be reestablished after the equilibration 
procedure. 

In our Monte Carlo computer simulation (performed for chains of length of N = 256 
monomeric units) we have indeed found that such a chain shows the effect of stability 
of the parent micro-segregated structure. A typical conformation obtained (after the 
procedure of decollapse, and recollapse under the influence of selective interactions) of 
the same chain is shown in the right part of Figure 25. A spherical B-core is formed 
instead of original disk-like B-core which is, of course, natural due to isotropy of the 
selective interaction potential. But one can see definitely, that the grey units have many 
more contacts with each other than with the black units and vice versa, i.e. the grey and 
black units are segregated from each other, even though both are of species A. In other 
words, we can again say that the copolymer chain with a specially designed primary 
sequence has inherited or memorised some important structural features of the parent 
globule, which were then reproduced under other conditions. 

4.4 ABC-copolymers: proteins with an active enzymatic centre 

As the third criterion for preparation of the primary structure of a copolymer chain, 
we have studied ABC-copolymers prepared by a ‘triple colouring’ of some particular 
homopolymer globule in the following way: we assigned colour index A to the surface 
monomeric units, index B to the inner monomeric units (as was previously described for 
protein-like copolymers), and index C to those inner monomeric units which lie inside 
a small sphere whose centre does not coincide, however, with the centre of mass of the 
parent homopolymer globule (see Figure 26). 

Our idea was to prove whether such a parent conformation can be reassembled in the 
course of an equilibration procedure, for suitable sets of interaction parameters, so as to 
restore the originally given distance between the centres of the B-core and C-core. This 
would show whether the position of the C-links within the primary sequence, along with 
a specially chosen interaction potential, can lead to a stable reconstruction of the spatial 
conformation of the whole chain. 
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Figure 26. The  colouring procedure f o r  ABC-copolymer modelling proteins with active 
enzymatic centre. 

We performed computer simulations for a chain of N=256 monomeric units using 
attractive interaction potentials for B and C-links (the attraction for C-link was taken 
stronger that that for B-links). We have found in our computer experiment that such 
ABC- copolymers normally restore their original structure with B- and C-cores both 
present, although we have not succeeded up to now in finding an interaction potential 
which would allow us to get the centre of C-core at  the same distance from the centre of 
B-core as in the original conformation. Nevertheless, we have definitely found effective 
restoration of the 'active centre' (C-core) after the following procedure: we switch off the 
attraction between C-links and let them dissolve inside the dense B-core. If the attraction 
between C-links is restored we observe the reassembly of the C-core once again. 

4.5 Adsorption-tuned AB-copolymers 

Let us now generalise the above idea. The primary structure of protein-like copolymer 
was generated by a colouring procedure for a homopolymer chain in the globular state. 
However, special primary sequences can be obtained not only from globulars conformation; 
any specajic polymer chain conformation can play the role of a parent. 

The simplest example of this kind is connected with the conformation of a homopoly- 
mer chain adsorbed onto a plane surface. Let us colour the links in direct contact with 
the surface in some typical instant snapshot conformation (see Figure 27). This corre- 
sponds to the assumption that the surface catalyses some chemical transformation of the 
adsorbed links. Then we will end up with AB-copolymer for which the sequence design 
was performed in the parent adsorbed state. After desorption such AB-copolymer will 
have special functional properties: it will be tuned to  adsorption. 

Indeed, we have performed Monte-Carlo computer experiments along the lines of 
the sequence design scheme outlined above (Zheligovskaya et al. 1999) for chains of 32 

Figure 27. Preparation of adsorption-tuned p r i m a y  sequence. 
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Figure 28. The average number of adsorbed type-B segments us. the attraction energy to 
the surface, EB for the adsorption-tuned (ATC), random-block (RBC), and random (RC) 
copolymer chains of length N = 32 with the number of type-B segments NB = 8. 

monomer units. In the conformations of the adsorbed homopolymer chain 8 units which 
are closest to the surface were identified and denoted as B-units, the others were desig- 
nated as A-units. Then we studied the adsorption behaviour of the AB-copolymer chain 
obtained in this way on a plane surface with a specific attraction for B-units, and com- 
pared it with the behaviour of the corresponding random and random-block copolymers 
(for details, see Zheligovskaya et al. 1999). 

In Figure 28 we plot the average number of adsorbed B-units versus the energy of their 
attraction to the surface, EB.  It can be seen that the number of adsorbed segments (at 
a given value of E B )  is always highest for the designed AB-copolymers. In other words, 
due to the memorising of some functional features of the parent conformation, we have 
indeed obtained an AB-copolymer 'tuned to adsorption' on a plane surface. 

4.6 Some generalisations and conclusions 

One can imagine the analogous colouring procedure for a chain adsorbed on a small 
spherical colloidal particle. In this case a copolymer chain with the primary sequence 
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tuned to the absorption of a small droplet of organic solvent, or a colloidal particle of 
given size, could be obtained. Such a copolymer could be called molecular dispenser. 
Indeed, when in equilibrium contact with an organic fluid, such a copolymer will absorb a 
small droplet of this fluid, with a volume approximately equal to the volume of the parent 
colloidal particle, because for such size of the droplet the maximal number of hydrophobic 
links will be in contact with the fluid, leading to maximal gain in interaction energy per 
monomer. If exposed instead to contact with a solution of colloidal particles of different 
sizes such a molecular dispenser will select the particles of size equal to the parent particle. 

In conclusion, we have presented several evidences for the fact that an AB-copolymer 
chain, with a primary sequence prepared on the basis of a particular conformation of a 
homopolymer chain by some colouring procedure, preserves a memory of its parent spatial 
conformation. These memorised features are then manifested under other conditions. 
Such an interrelation can be regarded as one of the possible mechanisms of molecular 
evolution: a biopolymer acquires some special primary sequence in the parent conditions 
and then (in other conditions) uses the fact that primary structure is tuned to perform 
certain functions. 
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1 Introduction to rheology 

From our earliest days we explore the physical properties of the world around us, by 
exciting mechanical deformations in it and observing the response. Dropping ceramic 
basins on a hard floor, pouring water from one bottle into another, pouring shampoo 
from a soon-to-be-empty bottle onto anything, turning free-running sand into a sludge by 
adding water-all these are experiments in the 3-year old’s rheology laboratory. When 
we get older we add some numbers, a few equations, some sophisticated experimental 
methods and some impressive terminology like ‘spectroscopy’. If you still enjoy playing 
around in sandpits then you might also enjoy those aspects of molecular theory which 
form the main topic of these lectures. 

In the most general terms, rheology is the measurement and study of the relationship 
between the deformation of a material (measured by its strain) and its mechanical re- 
sponse (measured by stress). The relation between the strain (or strain history) of the 
material and its present state of stress is called the constitutive equation. A central goal of 
molecular rheology is to derive such equations from models of the underlying mesoscopic 
or microscopic physics, and perhaps also predict the results of direct structural measure- 
ments on systems under flow. An alternative, pragmatic approach, sometimes suitable 
for engineering applications, is to look for phenomenological constitutive equations that 
approximate to the behaviour of a given material. For a more thorough introduction to 
both approaches, see [l]. 

1.1 Why is rheology a good probe of soft matter? 

Condensed matter falls broadly into two classes: hard matter and soft matter. Hard mat- 
ter comprises most metals, ceramics, minerals, and materials below their glass transition 
temperature. It has the following attributes: 
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All bulk deformations, including volume-preserving ones, couple directly to the 
strain of covalent (or metallic) bonds. 

. There is no observable ‘viscoelastic’ regime of time scales with behaviour interme- 
diate between solid and liquid. 

The material breaks catastrophically at  strains that are still very small: typically 
less than one percent. 

On the other hand, soft matter (polymers, gels, colloids, liquid crystals, foams, crystals 
with defects) reacts to strain in a qualitatively different way: 

Bulk deformations that are volume-preserving, such as simple shear, do not nec- 
essarily deform covalent bonds. (Such deformations are locally ‘non-affine’: bonds 
can rotate, rather than stretch or bend.) They are offered far less resistance by the 
material than volume-changing strains. 

Soft materials can maintain large bulk strains (tens or hundreds of percent) without 
failure, so exhibiting interesting nonlinear response. 

After a deformation, structural equilibrium is recovered by a series of processes 
spanning a wide range of time scales (e.g. entangled polymers). 

Flow itself may induce structural transitions that are non-catastrophic, but contin- 
uously or discontinuously change the material properties (e.g. flow-aligning block 
copolymer phases, shear-t hinning in polymers, flow-induced nematic transitions in 
liquid crystals). 

In summary, a continuous response or evolution of the structure in soft matter exists over 
far wider ranges of time scales and strains than in hard matter. This remark applies in 
particular to volume-preserving strains, which we now examine in more detail. 

1.2 

In Figure 1 we consider examples of two types of strain that give rise to qualitatively 
different stress response in soft matter. Weak response arises in volume-preserving defor- 
mations (that do not couple to stretch of covalent or metallic bonds), and strong response 
in volume-changing ones (that do). For our purposes, the weak responses are the inter- 
esting ones. In terms of the displaced lengths 1 and the original side lengths L of the 
cube of material, both shear strain (left) and bulk compressive strain (right) are given by 
the dimensionless ratio l / L .  The shear stress (force in strain direction per unit area of 
displaced side) is o in the shear case, and the bulk stress (normal force per unit area on 
the strained side) is Ap in the compression case. These are given in terms of the shear 
modulus (G) and bulk modulus ( B )  by respectively: 

Volume preserving and non-preserving strains 

In ‘hard’ condensed matter, both these moduli arise from distortion of covalent or 
metallic bonds; estimating the density and stiffness of these we find G k: B ”N 10l1Pa. 
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Figure 1. Shear and compressional strains. 

On the other hand, in ‘soft’ condensed matter this is only true of the bulk modulus, so 
that G << B M 10’lPa. Often the shear response is dominated by structures with a char- 
acteristic length scale much larger than a covalent bond, whose free energy is dominated 
by entropy (or else by an even balance of entropy and enthalpy). A good first estimate 
of G in such cases is G N kBT/V,, where V, is the ‘structural volume’ (or inverse number 
density) of structures whose principal degree of freedom couples to the shear strain and 
controls the free energy cost of deformation. 
Example: A weak polymer gel has approximately one cross-link per (10nm)3, implying 
that G x k ~ T / l O - ~ ~ m ~  x 500Pa. 

1.3 Strain and strain rate 

We now refine and quantify our description of deformation in soft materials. Both strain 
and stress are 2nd-rank tensor quantities as each relates two vectors. In the case of strain, 
these two vectors can be chosen to be an embedded spatial vector and its displacement 
by the deformation. In the deformation of a continuous body, any embedded vector X(r) 
is transformed to a new vector X’(r) (Figure 2). 

Figure 2. Illustrating the deformation of a continwm body. 

We define the strain tensor by this transformation, as follows: - 
X‘ = - E * x . (2) 

For small enough deformations we may write E = + e so that the field of embedded 
displacement vectors U obeys U E X’ - X = gTX. -Fora uniform deformation we may 
write this BS g = V u  or e;j = Viuj. Volume-preserving deformations have det(5) - = 1, 
which becomes, for small displacements, the condition that n(g)  - = 0. 
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If the strain is time dependent, there is a velocity field v(r) that generates the local 
= Vv. Embedded vectors now change deformation rate through its spatial gradient 

with time, X' = X'(t), so that v(X') = 4 - 3 X' af;d 

xr(t + 6 t )  = (1 - -  + k6t)  . X'(t) = (1 + $6t )  * g t )  ' x . (3) 
But we also have Xr(t + 6t) = E(t + 6 t )  . X by definition of E. Comparing this with 
Equation 3 and defining the timederivative of E( t )  - by the usuallimit, gives 

aE _ -  --$*E 
dt - -  (4) 

Note that the tensor $ is by definition aVu/dt = Vv where v(r) is the velocity field, 
defined above. TherefGre we can identify 6 - with K. - 

The differential Equation 4 is just a tensorial version of the familiar first-order linear 
equation af /at = Kf, and, in the case where - is constant (steady flow), has the solution 

- E(t) = exp(K:t) 3 ( 5 )  

where we use the initial condition that E(0) - = 1, - and where the exponential of a tensor is 
defined by its series expansion 

1 1 1 + M + - M2 + -M3 + .. .. . exp(M) - - -  2!= 3!" 

1.3.1 Examples 

There are two very important examples of volume-preserving deformations in soft matter, 
shear and extension. Shear occurs in sliding, or lubricating flows; extension in stretching 
flows such as the forming of fibres and films. 
Shear 
A shear flow with velocity along x and gradient along y ,  of shear rate .4 = avz/ay,  has a 
deformation rate tensor (in Cartesians) 

==+ E ( t )  =exp(Kt)  = o 1 o . .-( - ; i )  - - (::I) 
The shear flow does not generate exponential separation of embedded points (as Equa- 
tion 5 might suggest) because the displacements of embedded vectors are always orthog- 
onal to the vectors themselves. 
Uniaxial extension 
In contrast, a uniaxial extensional deformation (as occurs when pulling out a thread, 
during fibre-spinning for example), with extension along the x-axis and extension rate 
t = dv,/dx, gives exponential separation of points and has the representation 
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Planar extension 
There is a second important extensional flow, termed planar extension (as occurs in some 
film-forming processes). This has a neutral direction in which there is no deformation 
(in common with shear flow), yet exponential separation of embedded points (in common 
with extensional flow): 

K = [ t  -i 0 0  0 )  =+ g(tl-( ,it 0 ! ) .  
- - 

0 0 0  

In such a deformation (with t positive) fluid is pulled inward along f y  and stretched 
outward along fz, with z neutral. 

1.4 Stress 

In deformed matter, forces are transmitted across any surface embedded in the material. 
The stress, like strain, is tensorial because both the locally transmitted force per unit area, 
and the local surface element (characterised by its normal) are vectors. We therefore define 
the stress tensor a so that the force dF  acting across a small area element d A  of unit 
normal n is givenTy (Figure 3) 

Alternatively, oiJ gives the i-th Cartesian component of the force per unit area across the 
j-th face of a small cube embedded locally in the material. 

Like many physical rank-2 tensors, q is symmetric. Indeed, the torque (in the z- 
direction) on a small cube of side 1 is 13pzg - oYz). These two stress components must 
cancel, because the moment of inertia of such a cube scales as M12 N 15, which would 
otherwise lead to a divergent angular acceleration as E 4 0. 

d F  = a . n d A .  - (6) 

F igure  3. Illustrating the definition of the stress tensor. 

1.4.1 Examples  

Hydros ta t ic  pressure 
For a fluid at static equilibrium, one has = -PI, so that p = -(1/3)Tr(q). The 
pressure field is not normally interesting in soft matt&, as it acts as a Lagrange multiplier 
for the conservation of volume. 
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Newtonian fluid 
The simplest constitutive equation for a fluid is that suggested by the tensorial symmetry 
of the strain rate and stress tensors, and the requirement of symmetry in E. These, 
combined with an assumption of linear response, and of incompressible flow, give in 
general = 17 (K + ET).  This characterises the fluid by a single number only, 7, the 
viscosityTSo in the case of simple shear 

Note that the pressure term just adds to the stress arising from the shear. Often we speak 
of the ‘deviatoric stress’ a’ = a- (1/3) Tr(g)l, which captures the stress arising from the 
material structure as it responds to a volumepreserving deformation. We will often drop 
the prime in what follows. 
Rubbery solid 
A similar argument can be applied to an isotropic solid, allowing for the fact that the 
stress is now linearly proportional to the strain itself, rather than the strain rate. At 
small strains, this gives a = G(e+ g T )  for the deviatoric stress; G is the elastic modulus. 
An extension of this model tolarge strains, useful for rubbery solids, is to write a - = 
G(E - E T ) .  Expanding for small e = E - recovers the previous result to linear order, plus 
a cGnGibution to the isotropic pressure. 
A Maxwell model 
The ‘rubbery solid’ constitutive equation just found may be generalised to a continuously- 
deformed material with a single viscoelastic relaxation time T ,  by writing the following: 

- - -  

Thus, if K vanishes (for example after a step-strain measurement: see below), the devia- 
toric stress decays to zero like exp[-t/r]. In steady shear (with ;i = av,/dy) the stress 
tensor becomes: 

G(l  + 2 ( ~ ; 1 ) ~ )  Gr;1 0 

O G  

- - U =  ( Gr+ 
0 

Exercise: Check this last result, and think about the physics of the proposed consti- 
tutive equation and the consequences of the predicted ‘first normal stress difference’: 
OZI - Oyy # 0. 

1.5 Rheometry 

Rheometers are designed to impose on a material either shear fiow (easy) or extensional 
flow (more difficult). A rotational device that generates a spatially uniform shear flow is 
the ‘cone-and-plate’ rheometer, Figure 4. 
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Figure 4. 
between cone (white) and plate (grey). 

Schematic of a cone-and-plate shear rheometer. The sample (black) lies 

The cone is rotated at  instantaneous angular velocity w.  The material in the gap 
at  distance r from the axis has a velocity in the tangential direction that is zero at  the 
bottom plate and wr at the top plate. (We assume non-slip boundary conditions.) The 
local separation of the plates obeys h ( r )  = a r  where a is the angle between plate and 
cone, which must be small. If so, the local shear rate is + = ave/az = w r / a r  = w / a :  
a uniform shear field. Maintaining such uniformity is especially important in non-linear 
deformation, where the material response may differ for different strains and strain rates. 
The shear force is measured from the torque.on the rotor, and normal stress differences 
can also, in principle, be monitored (e.g. from the upthrust on the cone). 

Figure 5. Schematic of a moving-belt extensional rheometer (sample in  black). 

Extensional rheometers (Figure 5 )  have been much harder to develop to the point 
where reproducible data is obtainable. This is due to the necessity of free surfaces over 
most of the sample in an extensional flow. However, extensional rheometry gives an 
important measure of the non-linear flow of many materials, that is independent of the 
shear response. For example, branched entangled polymers (see Section 3 below) may 
be strain-hardening in extension (the effective ‘viscosity’, which is the ratio of stress to 
strain rate, increases with strain), but strain-softening in simple shear. An illustration is 
in Figure 6. Here the extensional stress difference oxx - ouu, divided by the extensional 
strain rate i, is plotted against time, for two experiments at  constant strain rate (started 
suddenly at  time zero). On the same graph are the corresponding transient shear ex- 
periments, showing This way of representing data ensures that the curves within 
each set superimpose at early times, when the deformations are purely linear. The upper 
curves show strong extensional ‘hardening’ at  the higher of two extension rates, but no 
hardening at  the lower rate. The lower curves (for shear) all show softening. In this 
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lo' t - -1 ,  
: 

Figure 6. Time dependent shear (lower curues) and extensional (upper curues) stresses 
normalised b y  deformation rates ouer a range of rates. Lines are from a non-linear gen- 
eralisation of a model of branched polymers discussed in Section 3. 

case the polymer melt is composed of monodisperse molecules of identical ('H-shaped') 
branched structure. 

1.6 Time dependence 

The stress-growth curves of Figure 6 indicate that viscoelastic materials do not achieve 
a steady state of stress in a steady flow (or vice versa) until a certain relaxation time 
has elapsed. This relaxation arises from dynamic processes intrinsic to the materials 
themselves and can be a very sensitive (if indirect) probe of structural dynamics in soft 
matter. The most common experiments measure the time dependence of materials in 
linear deformation. 

1.6.1 

In a step strain measurement, at time t = 0 a small strain y (usually shear) is suddenly 
imposed and sustained. The resulting (shear) stress component a( t )  decays with time, and 
is measured. If the material is in a true linear response regime, one has o(t)  = G(t)y .  The 
function G(t)  is the time dependent relaxation modulus, and is monotonically decreasing 
with time. 

We will normally restrict ourself to isotropic materials, in which G(t)  is a scalar func- 
tion of time. Lamellar, nematic and other ordered phases of surfactants and block co- 
polymers will have special directions in which measurements of G(t)  may give very differ- 
ent results. However, polycrystalline samples of these materials recover isotropic rheology. 
Very few materials exhibit a single-exponential relaxation modulus G(t )  0: exp[- t /~] ,  

Step-strain response and relaxation modulus 
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which is the linear response result of the Maxwell model (Equation 7). Many more can 
be described in terms of a sum of relaxation modes: 

N 

G(t)  = z g i e - t / r t  . (8) 
i = l  

The relaxation modulus G(t)  may be measured directly, but this suffers from two major 
drawbacks: (i) the initial step-strain is never quite instantaneous, degrading measurements 
of short relaxation times; (ii) the signal to noise ratio a t  long times is very weak, degrading 
measurements of long relaxation times. 

The same information may instead be extracted from other flow histories, so long as 
the material properties are time-independent. That is, to each incremental strain dy( t ’ )  
applied prior to  time t there is a corresponding incremental stress d o ( t )  = G(t - t ’ )dy( t ’ ) .  
We say that the material then has Time Translation Invariance (TTI-see the lectures of 
Bouchaud, this volume). Exceptions to this class are materials that are not in equilibrium 
(even in the absence of a flow), but which ‘age’ towards it on time scales longer than the 
length of the experiment. Using TTI we may write (suppressing tensor indices) 

a( t )  = lim x G ( t  - t’)by(t’)  = 
67-0 dt‘ 

67 
(9) 

which is the linearised constitutive equation between shear strain y ( t )  and stress o( t ) .  

1.6.2 Frequency-dependent modulus 

The most common strain history used to extract the equivalent of G ( t )  is the harmonic 
oscillation y(t) = Re (yOeawt). Then using Equation 9 we write 

(10) 
t 

azy(t) = Re ([, G(t - t’)yoiweiwt’dt’ = Re (YoG*(w)eiwt) , 

with the ‘complex modulus’ G*(w) defined by 
M 

G*(w) = iw G ( t ) e - i w t d t .  (11) 

The form of Equation 10 means that the stress will be simple harmonic a t  frequency U ,  

but not in phase with the strain. If we write G * ( w )  = G’(w)+iG”(w) ,  then we can identify 
the real part G‘ as the in-phase (elastic) part of the modulus and the imaginary part G” as 
the out-of-phase (dissipative) part. In general both will be frequency-dependent, crossing 
over from viscous (dissipative) behaviour at low frequencies to elastic behaviour at high 
frequencies. Before giving examples, let us summarise these two ideal limits: 
Ideal newtonian fluid (viscosity 7 )  

Ideal elastic solid (modulus Go) 
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1.6.3 Examples 

The Maxwell model 
Now we can interpret what the frequency-dependent experiment will give us for the 

simplest model of a viscoelastic fluid, with a single relaxation time G ( t )  = GOe-t/T. The 
integral over t is readily done to yield 

w2r2 w r  
G’(w) = Go- G”(w) = Go- 

1 +w*r2 ’ 1 + w2r2 ‘ 

Note that the correct elastic and viscous behaviour are recovered at high and low frequency 
respectively. The characteristic time emerges as the inverse of the frequency at which the 
curves for Gf,Gff cross (or where G” is maximum, in this case). The result for the steady 
state viscosity is 9 = Gr. More generally, Equation 9 gives the exact integral for the ratio 
of stress to strain rate in steady state as 9 = JF G(t)dt, so it is always true that 77 N Gr 
where G is an effective modulus and r a characteristic relaxation time. 
Polymeric matter 

We finish this survey with a few examples of the elastic and loss modulus for polymeric 
materials. It is possible in many such cases to extract effective information on relaxations 
covering many decades of frequency, because of time-temperature superposition. For most 
polymers above both their melting point and glass temperature T,, the time scales of all 
viscoelastic relaxations shift with temperature by the same factor aT = exp[A/(T - TO)], 
with material-dependent values of A and To. (This is the Volgel-Fulcher, or WLF form; 
see e.g. the lectures by Kob, this volume). Up to 12 decades in frequency are then 
accessible for polymers with very low T,, by superposing data of different T .  

1 1  I 

I A 8 P I  5Mk 100 

Figure 7. Linear viscoelastic moduli G‘ and G” as functions of oscillation frequency w ,  
of monodisperse melts of polystyrene, polyisoprene and polybutadaene of similar degree of 
entanglement (MIM,). 

In Figure 7 we show results for three chemistries of near-monodisperse linear polymer 
melts. Note that the data are, as usual for such experiments, plotted on log-log axes 
in which the Maxwell model would have G“ with slopes of 1 and -1 each side of the 
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Figure 8. Near-Maxwell behaviour of a wormlike surfactant solution. 

maximum (see Equation 12). The slope in the data is much shallower on the right, 
indicating the presence of some shorter relaxation times (Equation 8) but there is still 
clearly a dominant time at  the crossover from viscous to elastic behaviour. 

There is one family of polymer-like systems with a near-Maxwell behaviour: the self- 
assembled wormlike surfactant micelles. These entangled polymers support an additional 
dynamics of breaking and reforming, that narrows the viscoelastic spectrum towards a 
single exponential (Figure 8); see [l]. 

Finally we examine the effect of a change of molecular topology on the linear rheology. 
Figure 9 compares G*(w) for a linear and three-arm star architecture of polyisoprene melt. 
As before, the linear polymer has a strong dominant relaxation time, but the branched 
variety is quite different: the maximum in G"(w) is no longer anywhere near the crossover 
point, indicating a much broader superposition of relaxation modes. The terminal time 
is also much longer in the case of the star polymer. We will examine the reasons for this 
critical effect of branching in Section 3. 

2 Rheology of linear polymer chains 

For a fuller account of the material in this section see [7]. 

2.1 Entropic elasticity 

First we recap briefly the statistical physics of a polymer chain (as covered in the lectures 
by Khokhlov, this volume). Each chain is a random walk in space modelled by some local 
rule for spatial links; an example is the freely jointed chain. The step length of the chain 
corresponds to the Kuhn length of the polymer which we denote b. (This is the shortest 
independently orientable segment length, usually 4 or 5 monomers long.) Suppose the 
whole walk has N links and end-to-end vector R(N). From the theory of random walks, 
( R ( N ) 2 )  = Nb2 where R = IRI. Also P(R) must have a Gaussian form (since R is a sum 
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Figure 9. Comparison of G' and G" for a linear (top) and star polymer melt of similar 
molecular weight polyisoprene [3]. Note the much broader range of relaxation times for 
the star polymer. 

of many independent random vectors). So 

P ( R ) d 3 R  = (-) 3 3'2 exp (=) -3R2 d 3 R .  
2.irNb2 

Now define a macrostate by the end-to-end vector R. The microstates are the different 
random walks of given R. In a freely flexible chain, each has the same energy, so the 
number of microstates obeys n(R) = OtotdP(R). Since the entropy of the walk is given 
by S = k~ In Q we have S(R) = S(0)  - 3ksR2/2Nb2. The free energy of the chain is 
then F ( R )  = U - T S  where U ,  the internal energy, is a constant: therefore we have 
F ( R )  = const. + 3ksTR2/2Nb2. Finally the entropic force ('Brownian tension') on the 
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Thus a random walk polymer, or ‘Gaussian coil’ is like a Hookean spring with stiffness 
K proportional to T I N .  In dilute solutions, polymer chains are not gaussian (Khokhlov, 
this volume), except a t  the Theta temperature. However, it transpires [7] that in con- 
centrated solutions and polymer melts, the excluded volume interaction responsible for 
chain swelling is screened. (Although such chains remain selfavoiding at short distances, 
the driving force for chain swelling, is to decrease the probability of contacts within the 
chain. This is removed a t  high density: most collisions are with other chains, and swelling 
does not reduce the probability of these.) Chains in concentrated solutions and melts are 
gaussian a t  large enough distances, and Equation 14 applies to them. 

2.1.1 Stress tensor 

Equation 14 will enable us to calculate the stress tensor in any polymeric fluid provided 
the following conditions are met: (i) we know the instantaneous configuration of the 
chains at scales above some characteristic number fi of links; (ii) the configurations have 
achieved a local equilibrium for chain segments at smaller scales than this; (iii) we may 
average over many subchains (of fi links) within a local volume large enough to define a 
macroscopic stress, but small enough to define uniform physical conditions for the polymer 
chains within it.  

is the i-th component of total force 
per unit area transmitted across a plane whose normal lies in the j - th  direction. Now 
consider a small cubic volume in a polymeric fluid of side L (Figure 10). It contains @ / N  

Recall that component U;, of the stress tensor 

L 

. 
L 

Figure 10. Contrabutzon of a szngle subchazn to the stess tensor. 

subchains of length N ,  where C is the monomer concentration (we drop the tilde on R).  
The probability that one subchain of end-to-end vector R cuts a given 3-plane across 
the volume is just R,/L (the fraction of the sample length L in the 3 direction spanned 
by its end-to-end vector). The z-th component of force transmitted by this chain across 
the j-plane is, from Equation 14, K&. So its contribution to  the mean local stress utJ 
is n&R3/L3. The sum over all subchains may be replaced by the average (...) over the 
ensemble multiplied by the number of subchains, @ L 3 / N :  
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We will find it convenient to work with a continuous representation of the chains R(n )  
that maps the arclength position of the n-th monomer onto its spatial position €2.. Then 
we may identify R / N  for a (small) subchain with dR/an. The formula for the stress 
tensor becomes pleasingly simple: 

The second moment average (...) that governs the stress now needs to be calculated 
under various different assumptions for the dynamics. For example, it is sometimes pos- 
sible to identify subchains containing N monomers that have end-to-end distributions 
P(R) fixed by external constraints (as in a network, when N is the number of monomers 
between cross links) or by dynamics at a particular time scale (as in an entangled melt, 
when N is the number of monomers between entanglements), but which are equilibrated 
at all smaller length scales. In this case the natural unit of arc length is the coarse-grained 
step length of the segments f i b .  Writing nb = s ’ f i  the stress may be calculated from 
any known distribution of (coarse-grained) chain tangent vectors as: 

aij = 3 k ~ T -  -- 
N as’ as! . 

Each sub-chain thus contributes kBT  of stress, distributed tensorially via the second 
moment of its orientation distribution. 

2.2 Dynamics 

In polymer solutions and melts, the stress formula (Equation 16 or 17 above) is always 
appropriate given the validity of the three criteria listed at  the start of Section 2.1.1, and 
the applicability of the Gaussian chain approximation. But there are important physical 
regimes in which the dynamics themselves differ qualitatively. 

(i) Unentangled Chains. In the first regime, topological interactions between chains are 
not important because the chains are not sufficiently overlapped. Note that entanglement 
is only achieved at remarkable degrees of (spatial) overlap: even in the melt, chains must 
be several hundred monomers long, in order to see entanglement. The unentangled regime 
divides into two classes depending on whether long-range hydrodynamic interactions are 
important for the drag on the chains. If not, there is just local dissipation due to frictional 
forces as the chains slide past one another. Rouse [8] proposed this simplest case as a 
model for dilute solution, but it actually finds its realisation in low molecular weight melts 
and concentrated solutions. In dilute solution the more complex issue of hydrodynamic 
interaction dominates. We will not deal with this subject here, but the relevant model 
was devised by Zimm [9]. 

(ii) Entangled Chains. In this case the dissipation is local on the scale of the entangle- 
ment spacing (whether in melt or concentrated solution) but the chains’ motion is severely 
restricted by the topological constraints of their surroundings-two chains may not cross 
each other. Rouse’s formulation of the local drag needs to be supplemented by a model 
of these topological restrictions. The most powerful approach has proved to be the tube 
model of Doi, Edwards and de Gennes (see below and [7]). This entangled regime also 
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divides into two classes, but now depending on the topological structure of the chains 
themselves, that is, whether they are linear or branched. The branched case offers a nice 
example of hierarchical dynamics in soft condensed matter (see Section 3 and [2]). 

Starting below for unentangled chains, we will outline the calculation of two aspects 
of the polymer dynamics, one microscopic and one macroscopic. The first is the mean- 
square monomer displacement as a function of time $(t) = (IR(n, t) - R(n, O)lz) averaged 
over all chains and monomer positions. This may be measured directly via NMR in some 
circumstances, and by scattering experiments indirectly [7]. The second aspect is the 
linear rheological response G(t) and its frequency-dependent representations, G’(w) and 
G”(w). In each case, we first use a formal approach in which the Brownian motion of chains 
is handled using a random thermal force on the monomers (a ‘Langevin’ equation). Then 
we discuss the result using simple physical arguments. 

2.3 The Rouse model 

In this simplest fundamental model of polymer dynamics we assume: 

Gaussian chains, in which the force on a monomer or subchain n is the net en- 
tropic force from its neighbours. In the continuum language, this is equivalent to  a 
thermodynamic force a t  each point on the chain (d/an)naR/dn = na2R/dn2. 

Local drag: the drag force on a Kuhn segment comes from frictional drag against 
the background; this force is CaRlat, with ( a drag coefficient. 

Brownian motion: a random force f acts on each monomer or subchain, with corre- 
lation time much faster than any polymer dynamics. 

2.3.1 A toy calculation: the Rouse-dumbell model 

Suppose for a moment that the drag acts only on two points, at the extremities of a 
(sub)chain of N segments, R1 and R2. This simplified model will help us solve the full 
Rouse model below. The force balance for the two drag centres is: 

The random forces have correlations in time that are just delta-functions on the polymer 
time scale: (fl(t)fI(t’)) = 71!6(t - t’) with 71 a constant (likewise for fz). This coupled 
system of equations is easilyhiagonalised, with the following co-ordinates: 

1 
RCM = -(RI + Rz) , 2 

r = (R1-RZ). 
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These represent the centre-of-mass motion of the molecule and the spatial separation of 
the drag points, respectively. In these variables the equations read: 

BRCM(t )  fCM(t), ccM at 

e%$ = - 2 n r ( t )  +fr ( t ) ,  

with new random forces defined appropriately, and ( C M  = 2C. 
The first (centre-of-mass) co-ordinate is subjected to a history of random forces that 

generate random displacements. The final value cf RcM(~)  after such a history is clearly a 
sum of a large number of random variables; it will therefore have a Gaussian distribution. 
We recognise the physics of simple diffusion. The mean square displacement can be 
calculated by direct integration of the dynamical Equation 22:  

where the diffusion constant is given in terms of the noise by DCM = 7]CM/2&. By the 
Einstein relation D = k ~ T / c ,  this sets the variance of the noise as  CM = 2 k ~ T c c ~ .  

The second co-ordinate is the relative separation of the chain ends, and describes an 
overdamped Hookean spring with a Brownian force. This time the solution is via the 
Green function for the 1st order ODE, Equation 23: 

r(t) = r(0)eWtiT + G(t, t’)fr(t’) dt‘ = r(0)e-t/T + (26) I’ 
with r = c/2n a relaxation time. The second moment of r is found via a double integral 
(compare Equation 2 4 ) :  

(where r = 1.1). Equation 29 says that the initial separation is ‘forgotten’ in a character- 
istic time given by T = CNb2/6k~T. As t -+ CO, we must recover the equilibrium value of 
the chain end separation, as given by the equipartition theorem: 

s o  we find that the noise variance must be qT = 4 k ~ T c .  
Exercise: Calculate the (tensorial) correlation function (r(t)r(t’)) for the ‘dumbell’ 
molecule. [Answer: ( k ~ T / ~ ) ! e - l “ - “ ’ l / ‘ . ]  - 
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2.3.2 The Rouse model and its normal modes 

Now we have the tools we need to attack the Rouse model proper, in which frictional 
drag is uniformly distributed along the chain. The balance of entropic, drag and random 
forces on a chain of N segments is the Rouse equation: 

d R  $R 
at an2 

(0- = K- + f ( n ,  t )  . 

As before, the noise force on each monomer is related to its frictional drag by a (gener- 
alised) Einstein relation: 

( f ( n ,  t ) f ( m ,  t’)) = 2Cok~T!b(n - - m)6(t - t’) . (31) 

The Rouse dynamical Equation 30 is diagonalised by the transformation: 
CO 

R(n, t )  = Xo(t)  + 2 Xp(t)  cos (y)  , 
p = l  

v n  N 
X,(t)  = R(n,t)cos (7) dn. 

0 

(32) 

The Xp(t)  are the time-dependent amplitudes of the ‘Rouse modes’ of the polymer chain. 
These are just the (vector-amplitude) Fourier components of the chain path R(n,  t )  with 
respect to the arclength co-ordinate. We may re-write the dynamics by substituting 
Equation 32 for the Rouse modes into the Rouse Equation 30. The essential point is that 
the operator $/an2 becomes just ( ~ T / N ) ~  in the new modes. Then we operate from 
the left with the integral operator ( 2 / N )  sr dm cos ( p m / N )  and use the orthogonality 
result for Fourier modes, ( 2 / N )  

Each mode amplitude is then found to obey a decoupled Langevin equation, which 
reads (for p 2 1) : 

cos ( p ~ m / N )  cos ( p ’ ~ m / N )  dm = bppt(l + d P o ) .  

(33) 
6 k ~ T p ~ ~ ~  ax, - C - - - kpXp  + fp ( t )  with kp = and Cp = 2NC0, N b2 p at 

whereas the decoupled centre-of-mass mode ( p  = 0) satisfies 

and undergoes simple diffusion. Each of the internal modes behaves exactly like the one 
internal mode of the dumbell molecule, with a noise term which can be calculated ei- 
ther by Fourier-transforming the spatial noise terms, f ( n ,  t ) ,  or by observing that their 
strength must be sufficient to maintain an energy equipartition of k ~ T / 2  (for each Carte- 
sian component) per mode. Either calculation gives 

( f p f q )  = 2CpkgT!6pqb(t - t’) .  (35)  

A key result is the time correlation function of the mode amplitudes (see the exercise 
on the Rouse dumbell above), which is: 

( X p ( t )  X,(t’)) = - bp,e-lt-t’l’7P . - ( k:pT> 

Copyright © 2000 IOP Publishing Ltd.



96 Tom McLeish 

Each mode has its own relaxation time rP = C/kp that decrease rapidly (as l / p 2 )  with 
p. The longest of these relaxation times, 71 = C N 2 b 2 / 3 r 2 k ~ T ,  has special significance. I t  
is known as the Rouse t ime, and often denoted TR. It is the time for relaxation of the 
overall shape of the molecule, and is also the time for a Rouse chain to diffuse a distance 
of order its own size. 

2.3.3 Monomer motion in the Rouse model 

What does the local motion of this model chain look like? We expect for short intervals 
that the chain contour may have adjusted locally, but retain a very similar global config- 
uration (see Figure 11 for an illustration from video microscopy of giant DNA molecules). 

Figure 11. Two fluorescence-labelled DNA chains in solution undergoing Rouse motion. 
The  t ime lapse between frames is about 1 second. 

We need to calculate the correlation function I#J(t) G (IR(n, t )  - R(n, 0)12), so write it 
in terms of the Rouse modes whose dynamics we already know: 

2 W W 

-Xo(O) - 2 ~ X 9 ( O ) C O S ( ~ ) ~ )  9= I (37) 

where the first term in the second expression is centre-of-mass diffusion. 

non-zero), so direct substitution gives 
From the last section, we know all the correlations (and only those with p = q are 

4 k ~ T  1 p $(t)  = 6DcMt  + - - cos ( ) (1 - kl p=l P2 N 

The first term is just the centre-of-mass diffusion of the entire chain, the second the 
contribution from the internal modes. Now, for times t << TR, the amplitudes of the 
modes in the sum decay slowly with p ,  so permitting us to replace the sum with an 
integral. Also we may average the cos2 function over monomers (n) to get a factor of 1/2. 
We then find: 

(39) 

(40) 

Copyright © 2000 IOP Publishing Ltd.



Rheology of linear and branched polymers 97 

Here cy = J z - ~ / ~ (  1 - e-z))dt is a coefficient of order unity. The result is remarkable: each 
monomer executes an ‘anomalous’ or subFickian diffusion, such that its mean square 
displacement goes as t’I2 rather than t (as for ordinary diffusion). This behaviour persists 
until times of order the Rouse time, after which each monomer is carried by the (faster) 
centre of mass motion of the whole molecule. 

2.3.4 

In some ways, the structure of the Rouse modes is misleading: they seem to imply longer 
range correlations along the chain than in fact exist. The sub-Fickian diffusion arises 
physically from the absence of such correlations. To diffuse a distance A&, the n- 
t h  monomer requires its motion to be correlated with the (A&)2/b2 other monomers 
in the region spanned by A&. This arises as a straightforward consequence of their 
connectivity. All other monomers have motions uncorrelated with it, so cannot contribute 
to the effective drag for that motion, which is teff = f,o(A&)2/b2. Thus, from the law of 
normal diffusion and the Einstein relation Dee = kBT/GR,  we obtain 

So what is going on? 

The ‘extra-drag’ effect runs out of new monomers when the chain has diffused its own 
radius of gyration, which is at  the Rouse time. After this the drag saturates at a level 
set by the entire chain, and all monomer motions become correlated as ordinary (centre- 
of-mass) diffusion takes over. So a log-log plot of the monomeric displacement looks like 
Figure 12. 

sub-Fikkian 

Figure 12. Monomer diffusion with time an the Rouse model. 

2.3.5 

The (deviatoric) stress formula we derived above (Equation 16) has a very simple repre- 
sentation in terms of the Rouse modes: 

Stress relaxation in the Rouse model 
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where, on Xpi ,  the first suffix is the mode index and the second a Cartesian one. To find 
G(t) ,  we consider a step strain in shear of size y. As the step is applied, all the vector 
mode amplitudes X p ( t )  deform affinely: in a fast enough strain, the chain co-ordinates 
follow the applied shear. (For a proof, see [7] . )  Hence X,, (O+) = Xp,(O-) + yX,(O-), 
giving 

Each mode then decays back to equilibrium with its own time constant rp = r 1 / p 2 ,  giving 
for the time dependent modulus: 

Again, for times t << TR, the modes are effectively continuous and the sum is approxi- 
mated well by the integral l d p e x p  ( - 2 p ' t l ~ ~ )  N (t/Tl)-'/'. So we find that, until a final 
crossover to exponential decay beyond the Rouse time, the Rouse model has a relaxation 
modulus which is a power-law (G(t)  N t-'/'). From Equation 11, we then have also 
G'(w) N G"(w)  N ~ ' 1 ' .  This form can be seen, for example in the high-frequency parts 
of the polyisoprene linear and star rheology data we saw in Figures 7 and 9. 

In conjunction with the physics we used to understand the scaling of monomer diffu- 
sion, this behaviour follows from our argument (Section 1.2) for the modulus in soft mat- 
ter. We estimated this as ~ B T  per effective degree of freedom (one that couples to strain on 
the relevant time scale). In this case, after a time t ,  we allot ksT of modulus to each unre- 
laxed subchain. Such a chain contains n(t) monomers where n(t) N (A&(t))'/b' N t'''. 
The number of such subchains thus decays as t-'/', giving G N t-'/', until the sub- 
Fickian regime ceases. The expected behaviour on a log-log plot is therefore as shown 
in Figure 13. Note that the longest relaxation time scales with molecular weight as N 2 ,  
but the viscosity scales as CkgTN.  This is because at the longest relaxation time, the 
remaining stress is carried only by the lowest Rouse mode: the density of these modes is 
one per chain, or C / N .  

Figure 13. Stress relaation in the Rouse model. 

Copyright © 2000 IOP Publishing Ltd.



Rheology of linear and branched polymers 99 

2.4 Entangled chains: reptation dynamics 

Now we consider the motion of a chain in a forest of topological constraints arising from 
its neighbours. The chain behaves as if it were confined to a tubelike region along its 
contour. The tube diameter a will depend on the concentration of polymer (in a way 
that is still not clarified theoretically, but experimentally goes like a N C l / ’ ) .  Only the 
chain ends are free to explore the melt without the constriction of the tube, as shown in 
Figure 14. 

Figure 14. Reptation of a linear polymer chain in a tube arising from topological con- 
straints with its neighbours. 

At small times and small distances, the presence of the tube will not be felt, so G ( t )  
and monomer displacements a t  early times will be unchanged. This is true only until the 
Rouse time re of pieces of chain that just span the tube-these are called ‘entanglement 
segments’ and have Ne monomers with az 2: Nebz. (This Ne is directly proportional 
to the ‘entanglement molecular weight’ Me encountered in Figure 7 . )  After that, each 
section of tube will constrain the enclosed piece of chain to the orientation of the piece 
originally present there, until the tube section is traversed b y  a free end. So a good way 
to understand G ( t )  is to view the stress as carried by tube segments. 

There is a typical waiting time for the arrival of a free end, because Brownian motion 
for t > ‘re causes 1-dimensional curvilinear diffusion of the chain along the tube contour, 
termed reptation. To evacuate all the tube occupied a t  t = 0 (when a stepstrain might be 
applied), the waiting time is ‘rd N L2/D,  where L = Nbz/a (the length of the random walk 
coarse-grained on the scale of a ) ,  and where D, = ksT/NCo, is the curvilinear diffusion 
constant. (This coincides with the centre-of-mass diffusion constant for the whole Rouse 
chain in free space [ 7 ] . )  So we expect ‘rd N N3b4Co/ksTa2. For time scales between re and 
‘rd (a range that grows as ( N / L V ~ ) ~ ) ,  we expect a near-plateau in G ( t ) ,  with an amplitude 

To calculate G ( t )  more precisely within the tube model, we calculate the survival 
probabilities for segments of original tube during stress relaxation. (Although the chain 
is constrained by new tube as it moves out of the old one, the new tube segments are 
isotropically oriented and do not contribute to  the deviatoric stress.) In the frame of the 
chain, a given tube segment behaves as a particle diffusing on the curvilinear coordinate 
x with diffusion constant D, that is absorbed by boundaries at 0 and L. So if Q ( x ,  x’, t) 
is the probability that a tube segment initially a t  position 2’ on the chain has diffused 
to x a t  time t without encountering a chain end, it will obey the diffusion equation, 

of Go N CkBT/Ne. 
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Figure 15. Stress relaxation in the tube model. 

D,d2Q/dx2 = as/&, with Q(x,x’,O) = b(x - x’) as initial condition and Q(O,x’, t )  = 
Q(L, x’, t) = 0 as boundary conditions. 

This is equivalent to the Fourier problem of heat diffusion through a slab with cooled 
faces. To solve it, we expand in the normalised eigenfunctions that obey the boundary 
conditions, $,(x) = m s i n ( p . r r x / L )  (for integer p): 

00 

Q(x ,  x‘, t )  = xl)dp(x) . (45) 

Substituting into the diffusion equation gives the time dependence of the ‘coefficients 
up(t) = up(0) exp (-p2t/rd). This gives a precise meaning to the disengagement (repta- 
tion) time Td:  

L2 N3b4[0 
T d d = - -  -- 

r2D,  r2kBTa2’ 
The final ingredient is to find the initial amplitudes ~ ~ ( 0 ) :  

up(0) = dP(s)\k(s,x’,O)ds = I” 
So, using Equation 45 the final solution for the survival probability is 

* ( x ,  21, t )  = O0 2 sin ( p7rx’ d) sin ( vx d) exp (-) -p2t . 
Td p=l 

(46) 

(47) 

To find the stress remaining we must calculate the mean survival probability of all 
tube segments (regardless of their initial and final values x ,  x’): 

8 G(t)  = Go lL dx I” dx‘ Q ( x ,  X I ,  t )  = Go -e-plt/‘d . 
p odd r2p2 (49) 

As expected, the result is nearly single-exponential, and certainly in qualitative accord 
with the data in Figure 7. However, the prediction for the density of higher modes 
(decaying rapidly, as P - ~ )  is less than that experimentally seen. Approximating the sum 
in Equation 49 with an integral, we find G”(w) - w-l/’ at frequencies higher than 1 / 7 d ,  

whereas Figure 7 shows a flatter decay. 
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2.5 Some comments on Rouse and reptation dynamics 

The existence of modes with shorter relaxation times than the reptation time ~ d ,  arises 
from the greater rapidity with which tube segments originally near a chain end are evac- 
uated, compared with those near the middle of the chain. The calculation above ignores 
all fluctuations of the total path length of the molecule along the tube (the chain is as- 
sumed to translate with its centre-of-mass) so would not be expected to estimate this 
contribution accurately. It turns out that the approximation of fixed path length is di- 
rectly related to the difference between the cubic dependence of ~ - d  on N predicted above 
(Equation 46) and the experimentally observed result, Td N M3.4 [2, 71. Moreover, an 
accurate calculation of these fluctuations becomes necessary to make any progress at  all 
with entangled branched polymers (Section 3 below). 

The two types of polymer dynamics presented above have established themselves as 
rather fundamental. For example, at  long enough length scales, the dynamics of an 
unconstrained random walk with any local rule for its motion becomes equivalent to 
the Rouse description (see also Kremer, this volume). Similarly, reptation arises quite 
generally in the constrained case (another example is in polyethylene crystals!). Moreover 
the two dynamics are ‘orthogonal’ in their natural mathematical representations: Rouse 
modes do not diagonalise reptation dyanamics nor vice versa (despite our use of Fourier 
modes, which superficially resemble the Rouse modes, en route to Equation 49). However, 
in real polymer melts and entangled solutions both dynamics co-exist. This is because 
the tubes themselves are not permanent objects, but are subject to local rearrangement 
as constraints from neighbouring chains are released. Without this additional relaxation 
mechanism, the tube model overpredicts the alignment of chains in a strong shear flow, 
and severely underestimates the shear stress. Various authors have developed a formalism 
in which the chains reptate within tubes that behave as Rouse objects. While it is clear 
how to do this for weak flows (e.g. [ll]), the nonlinear case remains the subject of current 
work, which it is hoped will provide a powerful formalism for melts at high shear rates. 

3 Branched entangled polymers 

In this section, we bring together several themes of this volume that converge in the study 
of entangled branched polymers. (For a fuller overview, see the recent review article [2].) 
They will furnish us with an attractive example of ‘slow dynamics’ with the following 
characteristics: 

Configurations relax by activated diffusion from entropic traps. 

Dynamics are exponentially slow in a tunable parameter (in this case the molecular 
weight of dangling arms). 

The relaxation is highly co-operative. 

The barrier distributions can be tailored accurately by chemistry in real experiments. 

0 The activated dynamics has hierarchical features dependent on polymer branching. 
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The resulting theory is quantitative for linear response, with just two parameters 
required from experiment. These depend on local chemistry; results for polymers of 
all architectures then follow. 

There are natural extensions to non-linear rheology (not described here) 

3.1 A preliminary exercise: diffusive barrier crossing 

In many physical problems featured in this volume (see e.g. the lectures of Bouchaud 
and of Frenkel) we need to know the mean waiting time for escape of a single degree 
of freedom, such as a diffusing particle, over a barrier. This is usually written T 21 

TO exp[U/k~T],  where U is the barrier height and TO some intra-trap diffusion time. This 
is often good enough, but there are instances where an accurate expression for TO is needed, 
and branched polymers are one such case. 

Consider a potential well U ( x )  with a single minimum at x = 0. We want to calculate 
the average first passage time of a particle through a position s > 0, given that it is 
introduced at  x = 0 at t = 0. This is equivalent to the mean lifetime of the particle if an 
absorbing wall is placed at x = s, or, equivalently, if the potential U ( x )  is replaced by one 
which drops abruptly to -cu at x = s (so a particle crossing this point never returns). In 
this language, s marks the top of the barrier over which particles escape (Figure 16). 

Figure 16. Potential and steady-state distribution function for particles diffusing over 
the barrier at x = s. 

To solve this problem we imagine introducing a steady current j S ( x )  of diffusers at  the 
origin, and wait until a steady-state number density n(z)  of diffusers has been established. 
Then the total number of particles in the distribution is just the ‘supply’ current multiplied 
by the mean survival time 7 .  So 

T ( S )  = r 1’ n ( z ) d x .  (50) 
3 -w 

We assume that the diffusion constant is D and work in units of ksT for the energy. Then 
in the diffusive limit, n(t, x )  satisfies 

at steady state. In IC > 0 we may integrate this once directly to  give 
an dU j - + n- = -_ ax ax D ,  
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and once more by using an integrating factor e’ to give (setting U ( 0 )  = 0) 

For negative z, there is no net current in steady state: the mean current solely transports 
material from the origin to the absorber at z = s > 0. Hence the density for z < 0 
obeys the equilibrium (Boltzmann) distribution, with the prefactor chosen to match the 
solution in z > 0. So 

+) = Le-%) D l’eu(z’)dz’ for z < 0 .  (54) 

Now integrating n(z )  over all z (where it helps to reverse z,z’ in the order of integration), 
and using Equation 50, we find 

This exact solution for the mean lifetime can be further approximated when the barrier 
is high ( U ( s )  >> 1) .  For now the inner (z) integral in Equation 55 is completely dominated 
by the contribution near the origin where U is at its minimum, and a good approximation 
is the Gaussian integral found by expanding U to second order in z. The outer (2)  integral 
is likewise dominated by the contribution near the upper limit. This may be expanded in 
terms of U’(s) (or U”(s) if the first derivative is zero at s) to give an exponential integral. 
The final result is I 

7 ( s )  CY - kBT \i - kBTT exp[U(s ) /k~T] .  
DU’(S) 2U”(O) 

Here factors of kBT have been restored. This shows the prefactor T O ( S )  of the dominant 
exponential activation factor is not necessarily close to  a naive estimate of the diffusion 
time ( T ~  N s 2 / D ) ,  especially when the potential barrier is large. We will find below that 
in the case of branched polymers escaping from topological traps, the full dependence 
of the pre-exponential factor on U ( z )  is essential to producing quantitative results from 
theoretical models that can be compared to experimental data. 

3.2 

We have already seen the large effect of introducing a branch point into the molecules of a 
polymer melt, in the relaxation modulus shown in Figure 9, where star polymers and linear 
chains are compared. There are equally remarkable differences in the way the viscosity 
77 varies with molecular weight. Instead of the N3.4 dependence of linear polymers, the 
viscosity increase for stars is dominated by an exponential growth. Comparison between 
different chemistries indicates that it is always the number of entanglements along the 
star polymer arms that matters (77 N exp[vN,/N,], with N, the size of an arm and U a 
constant). More remarkably, the number of arms (providing that this a t  least 3 and not 
more than 30 or so) affects neither the viscosity (Figure 17) nor the relaxation spectrum. 

The relaxation spectrum is vastly broader for star polymer melts than linear chains 
(Figure 18). As the molecular weight of the arms is increased, so the near-plateau in 

Experimental rheology of star polymers 
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Figure 17. Log-log plot of the viscosities of star polyisoprenes with molecular weight of 
the arms. The line represents accumulated data from linear polymers[3]. Stars of different 
numbers of a m  fall onto the same plot. 

I 

Figure 18. Data on series of PI star polymers from [3] and corresponding theoretical 
predictions using the theory of id]. 

G"(w) grows towards lower frequencies with the same exponential dependence as the 
viscosity. Other qualitative effects emerge in the rheology of more general branched 
polymers. The important industrial material 'low density polyethylene', which has a tree- 
branched structure, exhibits severe extensional hardening (compare Figure 6) in constrast 
to melts of linear chains, and often sets up quite different patterns of flow in complex 
geometries [2]. 
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3.3 A h b e  model for star polymers 

The qualitative prediction of the tube model for star polymers is clear to see, and was 
identified long ago by de Gennes [5 ] .  The branch point suppresses reptation because 
double-occupation of a single tube by two arms is entropically unfavourable (one of the 
arms sacrifices its configurational entropy at  length scales larger than a ) .  However, the 
basic mechanism for configurational (and stress) relaxation is unchanged-tube segments 
must be visited by chain ends. In entangled star polymers this can only happen by 'path 
length fluctuations' in which a free end retraces its way back down the tube contour 
before re-emerging again into new tube. To make way for the retracting end, the arm 
must effectively shorten, which it does by creating unentangled loops within, or emerging 
from, the tube. In so doing all previously occupied tube from the original point occupied 

Figure 19. Dominant relaxation processes an (top) linear and (bottom) star entangled 
polymers showing arm retraction and tube reconfiguration. 

by the free end, to its point of deepest retraction, is reconfigured (and corresponding 
stresses relaxed). Clearly, shallow retractions will happen much more frequently than 
deep retractions-this is the origin of the huge spread in relaxation times observed in star 
polymers (Figure 18). The deepest retractions themselves will become exponentially rare 
as the molecular weight of the arm increases-this is the origin of the molecular weight 
dependence of the retraction times in Figure 17. In other words, there is an effective 
potential well against which the free end moves along the tube. Moreover, we can see 
that the stress relaxation occurs without diffusion of the branch point itself, and occurs 
independently in each arm. The picture therefore gives also a qualitative understanding 
of the observed independence of the number of arms. 

To make all this quantitative we need to calculate the effective potential in which the 
entangled path length of the arm executes its random motion. One way to construct the 
potential proceeds by noting that the entropy loss (z kg per tube segment) of constraining 
an entangled polymer to its tube is quantitatively equivalent to applying a (constant) 
tension of 3 k ~ T l a  along its length [7]. The free energy change associated with withdrawing 
an end is the work done against this tension. The entropic chain tension arises in a physical 
way: at  time scales short enough for the tube constraints to be effectively permanent, 
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each chain end is subject to random Brownian motion (at the scale of an entanglement 
strand) such that it may make a random choice of exploration of possible paths into 
the surrounding melt. Only one of these choices corresponds to retracing the chain back 
along its tube, shortening the so-called ‘primitive path’ (or curvilinear tube contour). Far 
more choices correspond to extending the primitive path. The net effect is as though to 
pull on the chain end with the stated tension, which is sustained by the free ends. The 
equilibrium length of the primitive path is the one that balances this tension against the 
entropic spring force. 

We can, then, write a potential V ( z )  for the length of the primitive path z by including 
both the (quadratic) curvilinear entropic-elastic term and the (linear) end-tension term 
as follows: 

r::s2 + const. , 3ksT SkBT U ( z )  = - 2  - -2 = - 
2Nb2 a (57) 

where L = N b 2 / a  is the equilibrium primitive path length of the chain and s = L - z  is the 
co-ordinate that measures the retraction of the free end from its equilibrium position. This 
quadratic potential will determine the fluctuation dynamics of an arm of an entangled star 
polymer: it gives the free energy paid for a retraction of the free end a distance s along 
the tube. Whenever this happens, the tube orientation is relaxed for all tube segments 
whose primitive path distance from the branch point is between L - s and L. 

The observations above can be turned into a semi-quantitative theory for star-polymer 
stress-relaxation [5] which is amenable to more quantitative refinement [6]. The key 
observation is that the diffusion equation for stress release, which arises in linear polymers 
via the passage of free ends out of oriented tube segments, is modified in star polymers 
by the potential U(s ) .  Each position along the arm, s, will possess its own characteristic 
stress relaxation time ~ ( s )  given by the average first passage time of the diffusing free end 
to s. 

But this is just the problem we addressed in the ‘preliminary exercise’ above! In 
Figure 16, the curve for U ( s )  is now the quadratic potential (Equation 57) given by the 
tube model, and simple substitution of the arc-length potential into the general result 
(Equation 56), using a2 = (4/5)Neb2 [7], gives for the longest relaxation time of a star 
with arm size N,: 

where re is the Rouse time of an entanglement segment. (Note: the prefactor in Equa- 
tion 58 is not insignificant!) 

The relaxation modulus in this case can be written 

where p(s ,  t )  is the survival probablity of the tube segment at s (the probability that it 
has not been visited by the free end before time t). To a good approximation this is 
just exp[-t/r(s)], and for highly entangled arms we can approximate it further by a step 
function in s. For consider the state of relaxation at any time t intermediate between 
r ( a )  (the relaxation time of the first tube segments near the end of the arm) and T(L) 
(that of the core-segments of the star). At t ,  some internal tube segment will typically 
be just in the process of reconfiguration via its first ‘visit’ by the free end. This segment 

Copyright © 2000 IOP Publishing Ltd.



Rheology of linear and branched polymers 107 

will have an arclength co-ordinate s given roughly by ~ ( s )  = t. All segments exterior to 
the segment s ( t )  (given by the inverse of the function ~ ( 5 ) )  are almost certain to have 
relaxed, because their relaxation time scales are exponentially shorter than the current 
time t ,  while segments nearer to the core are conversely almost certainly unrelaxed. 

Unfortunately, although qualitatively promising, this version of the theory fails dis- 
astrously at  the quantitative level. A glance at the polyisoprene (Me = 5000) star data 
(Figure 18) will suffice: the sample with the longest arm molecular weight (105,000) is 
predictied to carry an exponential factor in T(L) (Equation 58) of approximately 10l8. 
Yet this factor must describe roughly the width of the ‘relaxation shoulder’ in G”(w) in 
Figure 18, which is only 6 decades broad. The problem lies with the need to account for 
‘constraint releasel-a small correction in the case of linear polymers (Section 2.5), but 
which in the case of star polymers becomes quite dominant. Fortunately it is also much 
simpler to treat in the case of star polymers, as we see next. 

3.4 Hierarchical constraint release in star polymer melts 

The great significance of constraint release to the dynamics of entangled star polymers 
arises from the very broad distribution of relaxation time scales we have discussed above. 
Fortunately, the same breadth of time scales provides a simple way of calculating the 
effect [4, lo]. As a consequence of the exponential separation of relaxation time scales 
along a star arm, by the time the population of tube segments of some s is relaxing, all 
segments at  s‘ < s (nearer a chain end) have renewed their configurations, typically many 
times. So chain segments at  s (and those of s’ > s) effectively do not entangle with these 
fast segments at  the time scale ~ ( s )  and beyond. Alternatively we can say that the tube is 
widened due to this effective dilution of the entanglement network: fast-relaxing segments 
act as solvent for the slower ones [2]. 

The new information necessary to make this approach quantitative is the dependence 
of the entanglement parameter Ne on the concentration @ of unrelaxed segments. This is 
known from experiments on dilution of polymer melts (by theta-solvents: see the lectures 
by Khokhlov, this volume) to be approximately N e ( @ )  = Nee/@, which corresponds to 
the approximately quadratic concentration dependence of Go N @’. (See [4] for a more 
general treatment.) At any stage in the relaxation dynamics of a melt of identical star 
polymers, therefore, when a segment s is currently relaxing for the first time, the effective 
Ne is N e ( s )  = Ne0/(l  - s /L ) .  To recompute the relaxation times ~ ( s )  with the dynamic 
dilution assumption, we consider the activated diffusion in a hierarchical way: to retract 
from s to s + ds, the attempt frequency is T ( S ) - ~  (the rate of relaxation events at  level s), 
and the barrier height for progressing from s to s + ds is [U(s + ds; N,(s))  - U ( s ;  N e ( s ) ) ]  
where the notation for U indicates the dependence (through the tube diameter) on the 
‘running value’ of Ne.  Taking the limit of ds small gives the differential equation 

where Ne is held constant for the partial derivative on the right hand side. (The latter 
is found by differentiating Equation 57 with respect to s = L - z and substituting for a 
in terms of Ne.)  Integration of the result for dU/ds gives a renormalised potential U ( s )  
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which is now (in units of ~ B T )  a cubic in s : 

15 N 2 
Ue+) = --(2 - -z3) 8 Ne 3 '  

where we write z = s / L  for the fractional arm length retracted. The terminal time and 
viscosity are dominated, as we saw above, by the potential at  complete retraction Ue~(1). 
In units of kBT this was previously (15/8)(Na/Ne) (see Equation 58) but is now given by 
(15/24)(Na/Ne), in far closer agreement with experiments: the 18 decade shoulder for G" 
in Figure 18 becomes 6 decades, as observed. 

Equation 59 for G(t) also needs modifying since each element of chain ds contributing 
to the stress relaxation now does so in an environment diluted by (1 - s / L ) ,  so Equa- 
tion 59 picks up this factor within the integrand as a coefficient of p ( s , t ) .  The shape 
of the relaxation spectrum predicted by this procedure does indeed fit rheological data 
on pure star melts better than the previous theory [4], especially when corrected at  high 
frequencies by a crossover to nonactivated tube loss very near the free end. The curves 
through the experimental points in the data for G"(w) on the PI stars in Figure 18 were 
calculated via this scheme, using literature values of the two fitting parameters required, 
7, (a horizontal shift on the figure) and Go (a vertical shift). They fit the data with- 
out further adjustment. Indeed, a great strength of this remarkably powerful theoretical 
framework is that in principle, only these two parameters are required for all molecular 
weights and architectures of a given chemistry. For example, there are straightforward 
generalisations of the above to bimodal blends of two star polymer fractions of different 
arm molecular weight. Without any change of parameters these account well for data on 
carefully-synthesised samples [ 121. 

3.5 General chain architectures 

The picture of hierarchical retraction dynamics with dynamic dilution can be generalised 
in a straightforward way to arbitrarily branched polymer 'trees'. For structures with many 
branch points a simplification is to treat the relaxation in discrete stages, calculating the 
time scales at  which arm retraction has penetrated to each layer of the tree. At each stage 
the effective geometry of the molecule simplifies, as faster relaxing (outer) segments cease 
to be part entangled network, but instead dilute the current value of Ne. 

For example, the Cayley tree of n layers and functionality f [13], contains f" segments 
in its outermost layer and (fn+' - f)/(f - 1) segments altogether. (In such a tree, each 
stem branches into f stems, with no dead ends until the nth layer is reached, at  which 
point all stems terminate.) The effective concentration of unrelaxed segments after m 
levels have relaxed is C(m)  = (f"-"+l - f)/(fns' - f )  N f-" when n is large. Solving 
the retraction problem from level m to level m + 1 (with the approximation that the 
effective concentration at level m is valid throughout that stage of the hierarchy) gives 
the recurrence relation 

7,+1 = 7m e x ~ [ 4 N ~ / ~ + ~ ~ ) f - " l ,  (62) 

with solution 
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Here IJ = 15/8 and N, the number of monomers between branch points on the tree. At 
this level of approximation we may also take G(t )  N Go[C(m(t))12. This leads to the 
logarithmic form of stress relaxation 

e 
G(t)  = Go In (*) , t 

where T , , , ~  is a (finite) limiting relaxation time ( T ~  as m -+ CO), and 8 is a branching- 
dependent exponent with a value of 2 in this case. It turns out that other, less regular, 
tree-like structures also have this form of G(t)  but with different values for 8. For example, 
the ensemble of randomly-branched trees predicted to occur at the classical mean-field 
gelation point has t9 = 4 [14]. 

Experimental verification for more general architectures with well-controlled materials 
has so far only proceeded to two-level branching. A number of groups have studied 
polymers shaped like the letter H in the melt; extra arms can be added at the same two 
junctions to make a ‘pom-pom’ polymer [15][16]. In the H-polymer case the frequency- 
dependent rheology directly reflects the chain structure (once the polymers are well- 
entangled) with features in G” (U)  arising from both outer arms and the central ‘cross-bar’ 
(at lower frequencies). These are shown in Figure 20. The theory (solid curves) does 
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Figure 20. Linear viscoelastic data for a n  H-polyisoprene melt  with molecular weights 
for a m s  of Ma = 20000 and the cross-bar of M, = 111000 (synthesised by J.  Allgaier 
1151). Solid and dashed lines are the theory with and without polydispersity respectively. 

indeed grasp the quantitative form of the rheology, once it is realised that the cross-bar 
motion is actually reptation, in spite of the branched nature of the polymer! For at long 
time scales when the outer arms have completely relaxed, only the cross-bar sections of 
the molecules remain topologically ‘active’ and so behave as linear polymers in tubes with 
a diameter set by their mutual entanglements only (see Figure 21). 

The sharpness of the peak in G ” ( w )  at low frequencies in the H-polymer data arises 
precisely from the narrowness of the mode distribution in reptation of a linear chain (Equa- 
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. *e. a..: 

* ..... - ..... .. . .....” . . . ;  

Figure 21. Successive stages in the configurational relaxation of an entangled H-polymer. 
In the final stage it reptates as a linear chain. 

tion 49). One additional important insight arose from studies on these highly monodis- 
perse model materials-the role of residual polydispersity. Even the small (10% level) 
variation in molecular weights of the arms in the specially polymerised polyisoprene H- 
molecules had a significant quantitative effect on the linear relaxation spectrum. This 
is because the diffusion constants of the branch points depend exponentially on the arm 
molecular weight. This greatly amplifies the contribution of the few arms that are sig- 
nificantly longer than the average, incresing relaxation times overall. The calculation is 
straightforward for small polydispersity, and produces the full curves in Figure 20 (dashed 
curves are for the purely monodisperse case). 

3.6 Conclusions 

Although at first sight very complex, the system of entangled flexible branched polymers 
seems to give rise to a rather simple picture of hierarchical dynamics for configurational 
relaxation, needing only two parameters for each chemistry of polymer. The remarkable 
slowness of trapped dynamics results in molecular relaxation times on a time scales of 
seconds and even hours, for moderate molecular weights. Hierarchical dynamics can 
produce features very well separated in time scale even though they arise from relatively 
close molecular ‘neighbours’ along the chain backbone. An exciting challenge for the next 
few years lies in the application of this branch of soft condensed matter physics to the full 
complexity of industrial materials. 

Copyright © 2000 IOP Publishing Ltd.



Rheology of linear and branched polymers 111 

References 
[l] Larson R G, 1999, The Structure and Dynamics of Complex Fluids (Clarendon Press, 

[2] McLeish T C B and Milner S T, 1999, Adv Polym Sci 143, 195. 

[3] Fetters L J, Kiss A D, Pearson D S, Quack G F, Vitus F J ,  1993, Macromolecules 26, 647. 
[4] Milner S T and McLeish T C B, 1997, Macromolecules 30, 2159. 
[5] de Gennes P G ,  1975, J Phys (Paris) 36, 1199. 

[6] Pearson D S and Helfand E, 1984, Macromolecules 19, 888. 
[7] Doi M and Edwards S F, 1986, The Theory of Polymer Dynamics (Clarendon Press, Ox- 

[8] Rouse P E, 1953, J Chem Phys 21, 1272. 
[9] Zimm B H, 1954, J Chem Phys 24, 269. 

Oxford). 

ford). 

[lo] Ball R C and McLeish T C B, 1989, Macromolecules 22, 1911. 

[ll] Viovy J L, Rubinstein M and Colby R H, 1991, Macromolecules 24, 3587. 

[12] Blottiere B, McLeish T C B, Hakiki A, Young, R N and Milner S T, 1998, Macromolecules 

[13] McLeish T C B, 1988, Europhys Lett 6, 511. 

[14] Rubinstein M, Zurek S, McLeish T C B and Ball R C, 1990, J Phys (Paris) 51, 757. 

[15] McLeish T C B, Allgaier J, Bick D K,  Bishko G, Biswas P, Blackwell R, Blottibre B, 
Clarke N, Gibbs B, Groves D J, Hakiki A, Heenan R, Johnson, Kant R, Read D J and 
Young R N, 1999, Macromolecules 32, 6734. 

31, 9295. 

[16] Archer L A and Varshney S K, 1998, Macromolecules 31, 6348. 

Copyright © 2000 IOP Publishing Ltd.



113 

Introduction to colloidal systems 

Daan Frenkel 

FOM Institute for Atomic and Molecular Physics, The Netherlands 

1 Introduction 

Karl Marx has said that, in history, things always happen twice: the first time as a 
tragedy, the second time as a farce. This comment of Marx applied to Napoleon I and 111. 
However, if we strip the subjective interpretation (tragedy or farce) from this sentence, 
it could apply to many phenomena in physics. In physics, there often appears to be 
a similarity between phenomena on very different length and time-scales but, on closer 
inspection, there are important, even qualitative differences. Examples abound: in some 
respects, light waves resemble ripples on a pond but, in most respects, they are totally 
different. The Bohr model of the atom resembled a planetary system but, of course, the 
differences are so important that, in the end, they led to the demise of the Bohr model. 
These two examples illustrate an important point: in physics, analogies are very useful 
in formulating an approximate description of a phenomenon-but even more interesting 
than the analogy itself, is its breakdown. 

In many ways, colloids behave like giant atoms, and quite a bit of the colloid physics 
can be understood in this way. However, much of the interesting behaviour of colloids is 
related to the fact that they are, in many respects, not like atoms. In these lectures, I 
shall start from the picture of colloids as oversized atoms or molecules, and then I shall 
selectively discuss some features of colloids that are different. My presentation of the 
subject might seem a bit strange, because I am a computer simulator, rather than a 
colloid scientist. Colloids are the computer simulator’s dream, because many of them can 
be represented quite well by models-such as the hard-sphere and Yukawa models-that 
are far too simple to represent molecular systems. On the other hand, colloids are also 
the simulator’s nightmare, or at least challenge, because if we look more closely, simple 
models do not work: this is sometimes true for the static properties of colloids (e.g. in 
the case of charged colloids) and even more often, in the case of colloid dynamics. 

What are colloids? Usually, we refer to a substance as a colloidal suspension if it is a 
dispersion of more-or-less compact particles with sizes within a certain range (typically, 
lnm-lpm). However, it would be more logical to classify colloids according to some phys- 
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ical criterion. To this end, we should compare colloidal particles with their ‘neighbours’: 
small molecules on one end of the scale, and bricks on the other. What distinguishes 
colloids from small molecules? I would propose that the important difference is that for 
the description of colloids, a detailed knowledge of the ‘internal’ degrees of freedom is not 
needed-in particular, the discrete, atomic nature of matter should be irrelevant. That is 
not to say that the chemical nature of the constituent atoms or molecules is irrelevant- 
simply that, in order to describe a colloid, we do not need to know the detailed microscopic 
arrangement of these constituents. This definition has the advantage that it allows for 
the fact that particles may behave like colloids in some respects, and like ‘molecules’ in 
others. For instance, we cannot hope to understand the biological function of proteins if 
we do not know their atomic structure. However, we can understand a lot about the phase 
behaviour of proteins without such knowledge. This ambiguous nature of macromolecules 
may persist even at length scales that are usually considered colloidal. For instance, for 
the biological function of the Tobacco Mosaic Virus, the precise sequence of its genetic 
material is important. But its tendency to form colloidal liquid crystals depends only on 
coarse-grained properties, such as shape, flexibility and charge. 

Let us next consider the other side of the scale. What is the difference between a col- 
loidal particle and a brick? The behaviour of colloids is governed by the laws of statistical 
mechanics. In equilibrium, colloidal suspensions occur in the phase with the lowest free 
energy, and the dynamics of colloids in equilibrium is due to thermal (Brownian) motion. 
In principle, this should also be true for bricks. But in practice, it is not. In order for 
bricks to behave like colloids, they should be able to evolve due to Brownian motion. 
There are two reasons why bricks do not. First of all, on earth, all particles are subject 
to gravity. The probability of finding a particle of mass m at a height h above the surface 
of the earth is given by the barometric height distribution: 

P ( h )  = exp(-mgh/kBT) , (1) 

where m is the effective mass of the colloidal particle (i.e. the mass, minus the mass of 
the displaced solvent), T is the temperature and k~ is Boltzmann’s constant. The average 
height of the colloid above the surface is equal to ( h )  = kBT/(mg). For a lkg brick at 
room temperature, (h)  = O(10-20) cm. This tells us something that we all know: bricks 
don’t float around due to thermal motion. One way to delimit the colloidal regime is to 
require that ( h )  is larger than the particle diameter. Suppose we have a spherical particle 
with diameter c and (excess) mass density p,  then our criterion implies 

For a particle with an excess density of lg/cm3, the above equality is satisfied for a 
value of U M lpm,  i.e. on earth. In the microgravity environment that prevails in space, 
much larger particles would behave like colloids (not bricks though, because it is virtually 
impossible to reduce all accelerations to less than lO-’Og). Another way to make large 
particles behave like colloids on earth, is to match the density of the solvent to that of 
the particle. Yet, even if we could succeed in doing all this for a brick, it would still not 
behave like a colloid. Colloidal particles should be able to move due to diffusion (i.e. 
thermal motion). How long does it take for a particle to move a distance equal to its 
own diameter? In a time t ,  a particle typically diffuses a distance m. For a spherical 
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particle, the diffusion constant is given by the Stokes-Einstein relation D = kBT/(37r?p) ,  
where 7 is the viscosity of the solution. Hence, a particle diffuses a distance comparable 
to  its own diameter in a time 

= . (3) 

For a lpm-colloid in water, this time is of the order of one second. For a brick, it is of 
the order of ten million years. Hence, even though bricks in zero-gravity may behave like 
colloids, they will not do so on a human time-scale. Clearly, what we define as a colloid, 
also depends on the observation time. Again, 1 micron comes out as a natural upper limit 
to the colloidal domain. 

In summary, a colloid is defined by its behaviour. For practical purposes, the colloidal 
regime is between 1 nanometre and 1 micrometre. But these boundaries are not sharp. 
And the lower boundary is ambiguous: a particle may behave like a colloid in some 
respects, but not in others. 

2 Forces between colloids 

Most colloidal suspensions are solutions of relatively large particles in a simple molecular 
solvent. Yet, the description of the static properties of such a solution resembles that of 
a system of atoms in vacuum-somehow, the solvent does not appear explicitly. At first 
sight, this seems like a gross omission. However, as pointed out by Onsager [l], we can 
eliminate the degrees of freedom of the solvent in a colloidal dispersion. What results 
is the description that only involves the colloidal particles, interacting through some 
eflective potential (the 'potential of mean force') that accounts for all solvent effects. 
Below, I briefly sketch how this works. Consider a system of N,  colloids in a volume V a t  
temperature T .  The solvent is held at constant chemical potential p,, but the number of 
solvent molecules N, is fluctuating. The 'semi-grand' partition function of such a system 
is (with p = l / k B T )  

W 

P,, V, T )  = ~XP(PP~N,)Q(N,, N,, V, T )  . (4) 
N,  =O 

The canonical partition function Q(N,, N,,  V, T) is given by the classical expression for a 
mixture 

where qid,a is the kinetic and intra-molecular part of the partition function of a particle 
of species a,  and rNc ( r N S )  denotes a 3N, (3N,)  dimensional vector specifying a complete 
set of colloid (solvent) coordinates. The qid,a terms are assumed to depend only on 
temperature, and not on the inter-molecular interactions (sometimes this is not true, e.g. 
in the case of polymers-I shall come back to that point later). In what follows, I shall 
usually drop the factors qid,a (more precisely, I shall account for them in the definition of 
the chemical potential: i.e. pa -+ pa + kBTlnqid,a). The interaction potential U ( r N c ,  r N 8 )  
can always be written as U,, + U,, + U,,, where U,, is the direct colloid-colloid interaction 
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(i.e. U(rNc , rN*)  for N ,  = 0), U,, is the solvent-solvent interaction (i.e. U(rNc , rNa)  for 
N ,  = 0), and U,, is the solvent-colloid interaction U(rNC,  r N a )  - UCe(rNC) - U,,(rNa). With 
these definitions, we can write 

and hence 

We can rewrite this in a slightly more suggestive form. If we define the usual canonical 
and grand-canonical partition functions for solvent alone as 

(8) 

%,V,T) E exP(Pl.lsNs)Qs(N,,V,T), (9) 

1 
Qs(N8, VI T )  N,! 1 drN' exp[-PU~s] I 

m 

N,  =O 

then 

where 

Note that this quantity still depends on all the colloid coordinates, rNC: it is the average 
over solvent coordinates of the Boltzmann factor for the solvent-colloid interaction. We 
now define the eflectiwe colloid-colloid interaction as 

U,$(?") = U~(T") - b T I n  ( e ~ p [ - ~ ~ ~ , ( r ~ ~ ) ] ) , , , ~ , ~  . (12) 

We refer to U&," (rNc) as the potential of mean force. Note that the potential of mean force 
depends explicitly on the temperature and on the chemical potential of the solvent. In 
the case where we study colloidal suspensions in qhed solvents, the potential of mean 
force depends on the chemical potential of all components in the solvent (an important 
example is a colloidal dispersed in a polymer solution). 

At first sight, it looks as if the potential of mean force is a totally intractable object. 
For instance, even when the colloid-solvent and solvent-solvent interactions are pairwise 
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additive, the potential of mean force is not. (Note that we have, thus far, not even assumed 
pairwise additivity). However, we should bear in mind that even the ‘normal’ potential 
energy function that we all think we know and love, is also not pairwise additive-that is 
why we can hardly ever use the pair potentials that describe the intermolecular interac- 
tions in the gas phase to model simple liquids. In fact, in many cases, we can make very 
reasonable estimates of the potential of mean force. It also turns out that the dependence 
of the potential of mean force on the chemical potential of the solvent molecules is a great 
advantage: it will allow us to tune the effective forces between colloids simply by changing 
the composition of the solvent. (You all know this: simply add some vinegar to  milk, and 
the colloidal fat globules in the milk start to aggregate.) In contrast, in order to change 
the forces between atoms in the gas phase, we would have to change Planck’s constant or 
the mass or charge of an electron. Hence, colloids are not simply giant atoms, they are 
tunable giant atoms. 

We shall now briefly review the nature of inter-colloidal interactions. It will turn out 
that, almost all colloid-colloid interactions depend on the nature of the solvent and are, 
therefore, potentials of mean force. 

2.1 Hard-core repulsion 

Colloidal particles tend to  have a well-defined size and shape. They behave like solid 
bodies-in fact, many colloidal particles are fairly solid (e.g. the colloids that Perrin used 
to  determine Avogadro’s number were small rubber balls, silica colloids are small glass 
spheres and PMMA colloids are made out of plastic). Solid bodies cannot interpenetrate. 
This property can be related to the fact that, at short range, the interaction between 
(non-reactive) atoms is harshly repulsive. This is due to the Pauli exclusion principle. 
This hard-core repulsion is about the only colloid-colloid interaction that is essentially 
independent of the solvent. In fact, colloidal crystals can be dried and studied in the 
electron microscope because the Pauli exclusion principle works just as well in vacuum as 
in solution. However, there are also other mechanisms that lead to ‘hard-core’ repulsion 
in colloids: for instance, short-ranged Coulomb-repulsion between like-charged colloids, 
or entropic repulsion between colloids that have a polymer ‘fur’, or even solvent-induced 
repulsion effects. All these repulsion mechanisms are sensitive to the nature of the solvent. 
We shall come back to  them later. 

2.2 Coulomb interaction 

The Coulomb interaction would seem to  be the prototype of a simple, pairwise additive 
interaction. In fact, it is. However, for every charge carried by the colloidal particles, there 
is a compensating charge in the solvent. These counter charges ‘screen’ the direct Coulomb 
repulsion between the colloids. I put the word ‘screen’ in quotes because it is too passive a 
word to  describe what the counterions do: even in the presence of counterions and added 
salt ions the direct, long-ranged Coulomb repulsion between the colloids exists-but it is 
almost completely compensated by a net attractive interaction due to the counterions. 
The net result is an eflective interaction between the colloids that is short-ranged i.e. it 
decays asymptotically as exp(-w)/T, with K. the inverse screening length ( K .  = 1 / ~ g )  that 
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appears in the Debye-Huckel theory of electrolytes: 

where 6 is the dielectric constant of the solvent and pt is the number density of ionic 
species i with charge 4%. (Here, and below, we used rationalised units for electrostatics, 
rather than SI units). 

The first expression for the effective electrostatic interaction between two charged 
colloids was proposed Derjaguin, Landau, Verweij and Overbeek (DLVO) [2]: 

2 

1 (13) 
exp(nR) exp(-nr) 

VCoulomb = ( Q1 + KER ) ~r 

where r is the distance between the two charged colloids, Q is the (bare) charge of the 
colloid and R is its ‘hard-core’ radius. Ever since, there have been attempts to improve 
on the DLVO theory. However, the theory of the effective electrostatic interaction be- 
tween colloids is subtle and full of pitfalls. Usually, the electrostatic interaction between 
like-charged colloids is repulsive. However, under certain conditions it can be attractive. 
Sogami and Ise [3] have reported many experiments that provide evidence for such at- 
traction. These authors suggested that this attraction should even be present at the level 
of the effective pair interaction. Recently, however, detailed experimental information 
has become available [4] that suggests that the Coulomb attraction between like-charged 
colloids is not present in the interaction between an isolated pair of colloids in the bulk 
solvent. At present, experiment and theory both suggest that all attractive interactions 
are either mediated by the presence of confining walls [5-71, (but see, however, [8]) or, in 
the bulk, they are due to many-body effects [9]. In addition, fluctuations in the charge dis- 
tribution on the colloids may lead to dispersion-like attractive interactions (see e.g. [lo]) 
that are also non-pairwise additive. Having said all this, the old DLVO theory usually 
yields an excellent first approximation for the electrostatic interaction between charged 
colloids. 

2.3 Dispersion forces 

Dispersion forces are due to the correlated zero-point fluctuations of the dipole moments 
on atoms or molecules. As colloids consist of many atoms, dispersion forces act between 
colloids. However, it would wrong to conclude that the solvent has no effect on the dis- 
persion forces acting between colloids. After all, there are also dispersion forces acting 
between the colloids and the solvent, and between the solvent molecules themselves. In 
fact, for a pair of polarisable molecules, the dispersion interaction depends on the polar- 
isabilities (a1 and ~ 2 )  of the individual particles 

where h y  is a characteristic energy associated with the optical transition responsible for 
the dipole fluctuations in molecule i (in what follows, we shall assume the frequency vi 
to be the same for all molecules). The net dispersion force between colloidal particles 
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in suspension depends on the difference in polarisability per unit volume of the solvent 
and the colloid. The reason is easy to understand: if we insert two colloidal particles 
in a polarisable solvent, we replace solvent with polarisability density p,a, by colloid 
with polarisability density peac. If the two colloidal particles are far apart, each colloid 
contributes a constant amount proportional to -psa,(pcac-p8a,)  to the dispersion energy. 
However, if at short inter-colloidal distances there is an additional eflective colloid-colloid 
interaction that is proportional to - (peac - psa , )2 / r~c ,  then this leads to an attractive 
interaction irrespective of whether the polarisability density of the colloids is higher or 
lower than that of the solvent. On the other hand, in a colloid mixture, the dispersion 
force need not be attractive: if the polarisability density of one colloid (denoted by c1) is 
higher than that of the solvent, and the polarisability density of the other (denoted by 
c2) is lower, then the positive-definite square (peac - p , ( ~ , ) ~  is replaced by the negative 
product (pc lac l  - psas)(pc2ac2 - psa , )  and hence the effective dispersion forces between 
these two colloids are repulsive. 

The polarisability density of bulk phases is directly related to the refractive index. For 
instance, the Clausius-Mosotti expression for the refractive index is 

Hence, if the refractive index of the solvent is equal to that of the colloidal particles, 
then the effective dispersion forces vanish! This procedure to switch off the effective 
dispersion forces is called refractive index matching. In light-scattering experiments on 
dense colloidal suspensions, it is common to match the refractive indices of solvent and 
colloid in order to reduce multiple scattering. Thus, precisely the conditions that minimise 
the dispersion forces are optimal for light-scattering experiments. 

Colloids are not point particles, therefore Equation 14 has to be integrated over the 
volumes of the interacting colloids, to yield the total dispersion interaction 

where A is the so-called Hamaker constant. In the simple picture sketched above, A would 
be proportional to (pea,-  CY,)^. However, in a more sophisticated theoretical description 
of the dispersion forces between macroscopic bodies (see e.g. the book by Israelachvili [ll]), 
the Hamaker constant can be related explicitly to the (frequency-dependent) dielectric 
constants of the colloidal particles and the solvent. This analysis affects the value of the 
constant A but, to a first approximation, not the functional form of Equation 16. 

2.4 DLVO potential 

Combining Equations 13 and 16, we obtain the DLVO potential that describes the inter- 
action between charged colloids 

(17) 

This potential is shown in Figure 1. Note that, at short distances, the dispersion forces 
always win. This suggests that the dispersion interaction will always lead to colloidal 
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Figure 1. The DLVO potential has a deep minimum at short distances. At larger 
distances, the Coulomb repulsion dominates. This leads to the local maximum in the curve. 
At still larger distances, the dispersion interaction may lead to a seconday minimum. 

aggregation. However, the electrostatic repulsion usually prevents colloids from getting 
close enough to fall into the primary minimum of the DLVO potential. The height of 
this stabilising barrier depends (through K) on the salt concentration. Adding more salt 
will lower the barrier and, eventually, the colloids will be able to cross the barrier and 
aggregate. 

Density matching-an intermezzo 

In addition to refractive index matching, it is useful to try to match the density of the 
solvent to that of the colloid. This has an utterly negligible effect on the interaction 
between colloids. But, as far as gravity is concerned, density-matched colloidal particles 
are neutrally buoyant-that is they behave as if they have a very small (ideally zero) 
positive or negative excess mass. This is the mass that enters into the barometric height 
distribution (Equation 1). Hence, by density-matching, we can study bulk suspensions of 
colloids that would otherwise quickly settle on the bottom of the container. 

2.5 Depletion interaction 

One of the most surprising effects of the solvent on the interaction between colloids, is 
the so-called depletion interaction. Unlike the forces that we have discussed up to this 
point, the depletion force is not a solvent-induced modification of some pre-existing force 
between the colloids. It is a pure solvent effect. It is a consequence of the fact that the 
colloidal particles exclude space from the solvent molecules. To understand it, return to 
Equation 12: 

Let us consider a system of hard particles with no additional attractive or repulsive 
interaction. In that case, all the contributions to the second term of the eflective potential 
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in Equation 12 are depletion interactions. These interactions can be attractive, even 
though all direct interactions in the system are repulsive. 

To illustrate this, consider a trivial model system, namely a 2-dimensional square 
lattice with at  most one particle allowed per square [12]. 

‘sdvem 

t 
‘Collold’ 

Figure 2. Two-dimensional lattice model of a hard-core mixture of large colloidal particles 
(grey squares) and small solvent particles (black squares). Averaging over the solvent 
degrees of freedom results i n  a net attractive interaction (depletion interaction) between 
the ‘colloids’. 

Apart from the fact that no two particles can occupy the same square cell, there is no 
interaction between the particles. For a lattice of N sites, the grand-canonical partition 
function is: 

tnt} 2 

The sum is over all allowed sets of occupation numbers { n i }  and pc is the chemical 
potential of the ‘colloidal’ particles. Next, we include small ‘solvent’ particles that are 
allowed to sit on the links of the lattice (see Figure 2). These small particles are excluded 
from the edges of a cell that is occupied by a large particle. For a given configuration 
{ n i }  of the large particles, one can then calculate exactly the grand canonical partition 
function of the small particles. Let M = M ( { n i ) )  be the number of free spaces accessible 
to the small particles. Then clearly: 

where z, exp(Pps) is the fugacity of the small particles. M can be written as 

M ( { n i ) )  = N d  - 2 d x  ni + x ninj , 
i (4 
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where we have given the result for general space dimension $; Nd is the number of links 
on the lattice and the second sum is over nearest-neighbour pairs and comes from the fact 
that when two large particles touch, the number of sites excluded for the small particles is 
4d-1, not 4d. Whenever two large particles touch, we have to correct for this overcounting 
of excluded sites. The total grand-partition function for the mixture is: 

r 1 

where we have omitted a constant factor (1 + z , ) ~ ~ .  Now we can bring this equation into 
a more familiar form by using a standard procedure to translate a lattice-gas model into 
a spin model. We define spins si such that 2ni - 1 = si or ni = (si + 1)/2. Then we can 
write Equation 21 as 

This is simply the expression for the partition function of an Ising model in a magnetic 
field with strength H = (p,-dlog(l+z,)/P) and an effective nearest neighbour attraction 
with an interaction strength J = log(1 + z,)/(4@). 

There is hardly a model in physics that has been studied more than the Ising model. 
In two dimensions, the partition function can be computed analytically in the zero field 
case [13]. In the language of our mixture model, no external magnetic field means: 

(1 + Z s y  = Z,, 

where z, = exp @pc, the large particle fugacity. 
Several points should be noted. First of all, in this simple lattice model, summing over 

all solvent degrees of freedom resulted in effective attractive nearest neighbour interaction 
between the hard-core colloids. Secondly, below its critical temperature, the Ising model 
(for d > 1) exhibits spontaneous magnetisation. In the mixture model, this means that, 
above a critical value of the fugacity of the solvent, there will be phase transition in which 
a phase with low (n,) (a dilute colloidal suspension) coexists with a phase with high (n,) 
(concentrated suspension). Hence, this model system with purely repulsive hard-core 
interaction can undergo a demixing transition. This demixing is purely entropic. 

2.6 Depletion flocculation 

Let us next consider a slightly more realistic example of an entropy-driven phase separa- 
tion in a binary mixture, namely polymer-induced flocculation of colloids. Experimentally, 
it is well known that the addition of a small amount of free, non-adsorbing polymer to 
a colloidal suspension induces an effective attraction between the colloidal particles and 
may even lead to coagulation. This effect has been studied extensively and is theoretically 
well understood [14-171. As in the example discussed above, the polymer-induced attrac- 
tion between colloids is an entropic effect: when the colloidal particles are close together, 
the total number of accessible polymer conformations is larger than when the colloidal 
particles are far apart. 
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To understand the depletion interaction due to polymers, let us again consider a system 
of hard-core colloids. To this system, we add a number of ideal polymers. Ideal, in this 
case means that, in the absence of the colloids, the polymers behave like an ideal gas. 
The configurational integral of a single polymer contains a translational part ( V )  and 
an intramolecular part, Zint, which, for an ideal (non-interacting) polymer, is simply the 
sum over all distinct polymer configurations. In the presence of hard colloidal particles, 
only part of the volume of the system is accessible to the polymer. How much, depends 
on the conformational state of the polymer. This fact complicates the description of the 
polymer-colloid mixture, although numerically, the problem is tractable [18] . 

To simplify matters, Asakura and Oosawa [14] introduced the assumption that, as far 
as the polymer-colloid interaction is concerned, the polymer behaves like a hard sphere 
with radius Rc. (Here RG is the radius of gyration, which is comparable to other char- 
acteristic measures of polymer size, such as the RMS end-to-end distance; see Khokhlov, 
this volume.) What this means is that, as the polymer-colloid distance becomes less than 
&, most polymer conformations will result in an overlap with the colloid, but when 
the polymer-colloid distance is larger, most polymer conformations are permitted (this 
assumption has been tested numerically [HI, and turns out to be quite good). -4s the 
polymers are assumed to be ideal, it is straightforward to write down the expression for the 
configurational integral of Np polymers, in the presence of N, colloids at  fixed positions 
TNc : 

where I/eff is the effective volume that is available to the polymers. Equation 10 then 
becomes 

where zp exp(Ppp). Clearly, the effective colloid-colloid potential is now 

u,s(TNc) = ucc(TNc) - P - l Z P l / , f i ( T N c ) .  (25) 

This equation shows that the correction to the colloid-colloid interaction is due to the fact 
that the volume available to the polymers depends on the configuration of the colloids. 
The reason why this should be so is easy to understand. Consider two colloids of radius 
R at distance T~ >> 2(R + RG). In that case, every colloid excluded a spherical volume 
with radius R + RG to the polymers (see Figure 3). 

Equation 25 shows that the depletion attraction increases with the polymer fugacity 
or, what amounts to the same thing, with the osmotic pressure of the polymers in solution. 
The more polymer we add to the suspension, the stronger the attraction. The range of 
the attraction depends on the size RG of the polymers. The larger RG, the longer the 
range of the attraction. If we model polymers as mutually interpenetrable spheres with 
radius RG, then the explicit expression for the depletion interaction between a pair of 
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Figure 3. Hard-core colloids exclude a shell with thickness RG to the ideal polymers 
in the solution. When the colloids are far  apart, the excluded volumes simply add up. 
At shorter distances, the excluded volumes overlap and the total volume available to the 
polymers increases. 

colloids is, for 2R < T < 2(R + RG), 

where we have subtracted a constant term from the potential (namely the contribution of 
two colloids at  a distance r >> 2(R + &)). Equation 26 shows clearly that, by changing 
the size of the added polymers and their concentration, we can change both the range and 
the strength of the attractive interaction between the colloids. In Section 3,  I shall discuss 
the effect of this tunable attraction on the phase behaviour of polymer-colloid mixtures. 

One final comment is in place: the true depletion interaction is not pairwise additive. 
This is clear if we consider three colloidal spheres: if the three exclusion zones overlap, 
the total excluded volume is larger than would be estimated on basis of the pair-terms 
alone. Hence, three-body forces yield a repulsive correction to the depletion interaction. 
Note that three-body forces are only important if &/R is large enough to get the three 
exclusion zones to overlap. This holds a fortiori for the 4-body forces (that are, again, 
attractive), etc. This feature of the depletion interaction does not depend on the details 
of the Asakura-Oosawa model. In fact, direct simulations of hard colloids and (lattice) 
polymers [18] show exactly the same effect. 

2.7 Why colloidal materials are soft 

Let me return to the picture of colloids as giant atoms. We now know that this is an 
oversimplification-the origins of the effective interaction between colloids often have no 
counterpart in atomic physics. Yet, if we ignore all these subtleties, there are similar- 
ities. Both atoms and colloids have an effective hard-core diameter: o, for atoms, oc 
for colloids. Typically, oc/oa = O( lo3). The characteristic interaction energies between 
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colloids E ,  are of the order of the thermal energy kBT. For atomic solids, the interaction 
energy E,, depends on the nature of the interatomic interaction: it may vary from a value 
comparable to kBT for van der Waals crystals, to a value of the order of electron-volts 
for covalently bonded materials (e.g. diamond). Knowing the characteristic sizes and the 
characteristic interaction energies of the particles, is enough to give an order-of-magnitude 
estimate of various physical properties (basically, this is simply an over-extension of van 
der Waals’ Law of Corresponding States). For instance, the elastic constants of a solid 
have the dimensions [energy/volume]. That means that the elastic constants of a dense 
colloidal suspension are of the order k~T/n : .  For an atomic van der Waals solid, the 
elastic constants are of the order kBT/ai. In other words: the force needed to deform a 
colloidal crystal is a factor uI/ni x lo9 smaller than for an atomic crystal held together 
by dispersion forces (and these are the softest atomic crystals). Clearly, colloidal matter 
is very easily deformable; it is indeed ‘soft matter’. 

2.8 Polydispersity 

All atoms of a given type are identical. They have the same size, weight and interaction 
strength. This is usually not true for colloids. In fact, all synthetic colloids are to 
some degree polydisperse, i.e. they do not all have the same size (or mass, or shape, or 
refractive index). This polydispersity is usually a complicating factor: it makes it more 
difficult to interpret experimental data (e.g. X-ray or neutron scattering, or dynamic 
light-scattering). In addition, it may broaden phase coexistence regions and, in some 
cases even completely wipe out certain phases. However, polydispersity is not all bad: it 
also leads to interesting new physics. For instance, sometimes polydispersity may induce 
a new phase that is not stable in the monodisperse limit [19]. In general, the effect of 
polydispersity on the stability of phases is most pronounced in the high-density limit. In 
that limit, polydispersity may lead to a frustration of the local packing. 

3 Colloidal phase behaviour 

In Section 2, I explained that the interactions between colloids can often be tuned. It is 
possible to make (uncharged, refractive-index matched, sterically stabilised) colloids that 
have a steep repulsive interaction and no attraction. These colloids behave like the hard- 
core models that have been studied extensively in computer simulation of simple fluids. 
But it is also possible to make (charged) colloids with smooth, long-ranged repulsion. 
And, using for inst,ance, added polymer to induce a depletion interaction, colloids can 
be made with variable ranged attractions. Finally, colloids need not be spherical. It is 
possible to make colloidal rods and disks. Below, I briefly discuss some of the interesting 
consequences that this freedom to design the colloid-colloid interaction has for the phase 
behaviour. 

3.1 Entropic phase transitions 

The second law of thermodynamics tells us that any spontaneous change in a closed system 
results in an increase of the entropy, S. In this sense, all spontaneous transformations of 
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one phase into another are entropy driven. However, this is not what the term ‘entropic 
phase transitions’ is meant to describe. It is more common to consider the behaviour of 
a system that is not isolated, but can exchange energy with its surroundings. In that 
case, the second law of thermodynamics implies that the system will tend to minimise its 
Helmholtz free energy F = E - T S ,  where E is the internal energy of the system and T 
the temperature. Clearly, a system at constant temperature can lower its free energy in 
two ways: either by increasing the entropy S ,  or by decreasing the internal energy E.  

In order to gain a better understanding of the factors that influence phase transitions, 
we must look at the statistical mechanical expressions for entropy. The simplest starting 
point is to use Boltzmann’s expression for the entropy of an isolated system of N particles 
in volume V at an energy E ,  

S = kglnR , 

where k g ,  the Boltzmann constant, is simply a constant of proportionality. R is the total 
number of (quantum) states that is accessible to the system. In the remainder of these 
lecture notes, I shall often choose my units such that kg= l .  The usual interpretation 
of Equation 27 is that R,  the number of accessible states of a system, is a measure 
for the disorder in that system. The larger the disorder, the larger the entropy. This 
interpretation of entropy suggests that a phase transition from a disordered to a more 
ordered phase can only take place if the loss in entropy is compensated by the decrease in 
internal energy. This statement is completely correct, provided that we use Equation 27 
to define the amount of disorder in a system. However, we also have an intuitive idea of 
order and disorder: we consider crystalline solids ordered, and isotropic liquids disordered. 
This intuitive picture suggests that a spontaneous phase transition from the fluid to the 
crystalline state can only take place if the freezing lowers the internal energy of the system 
sufficiently to outweigh the loss in entropy: i.e. the ordering transition is ‘energy driven’. 
In many cases, this is precisely what happens. It would, however, be a mistake to assume 
that our intuitive definition of order always coincides with the one based on Equation 27. 
In fact, the aim of this section is to show that many ‘ordering’ transitions that are usually 
considered to be energy-driven may, in fact, be entropy driven. I stress that the idea of 
entropy-driven phase transitions is an old one. However, it has only become clear during 
the past few years that such phase transformations may not be interesting exceptions, 
but the rule! 

In order to observe ‘pure’ entropic phase transitions, we should consider systems for 
which the internal energy is a function of the temperature, but not of the density. Using 
elementary statistical mechanics, it is easy to show that this condition is satisfied for 
classical hard-core systems. Whenever these systems order at a fixed density and temper- 
ature, they can only do so by increasing their entropy (because, at  constant temperature, 
their internal energy is fixed). Such systems are conveniently studied in computer simula- 
tions. But, increasingly, experimentalists-in particular, colloid scientists, have succeeded 
in making real systems that behave very nearly as ideal hard-core systems [24]. Hence, 
the phase transitions discussed below can, and in many cases, do occur in nature. Below 
I list examples of entropic ordering in hard-core systems. But I stress that the list is far 
from complete. 
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3.2 Computer simulation of (liquid) crystals 

The earliest example of an entropy-driven ordering transition is described in a classic 
paper of Onsager [l], on the isotropic-nematic transition in a (three-dimensional) system 
of thin hard rods. Onsager showed that, on compression, a fluid of thin hard rods of 
length L and diameter D m u s t  undergo a transition from the isotropic fluid phase, where 
the molecules are translationally and orientationally disordered, to the nematic phase. In 
the latter phase, the molecules are translationally disordered, but their orientations are, 
on average, aligned. This transitions takes place a t  a density such that ( N / V ) L 2 D  is of 
order unity. Onsager considered the limit L I D  + CO. In this case, the phase transition 
of the hard-rod model can be found exactly [33]. At first sight it may seem strange that 
the hard rod system can increase its entropy by going from a disordered fluid phase to 
an orientationally ordered phase. Indeed, due to  the orientational ordering of the system, 
the orientational entropy of the system decreases. However, this loss in entropy is more 
than offset by the increase in translational entropy of the system: the available space for 
the centre of any one rod increases as the rods become more aligned. In fact, we shall 
see this mechanism returning time and again in ordering transitions of hard-core systems: 
the entropy decreases because the density is no longer uniform in orientation or position, 
but the entropy increases because the free-volume per particle is larger in the ordered 
than in the disordered phase. 

The most famous, and for a long time controversial, example of an entropy-driven or- 
dering transition is the freezing transition in a system of hard spheres. This transition had 
been predicted by Kirkwood in the early fifties [ZO] on the basis of an approximate theoret- 
ical description of the hard-sphere model. As this prediction was quite counter-intuitive 
and not based on any rigorous theoretical results, it met with wide-spread skepticism 
until Alder and Wainwright [ Z l ]  and Wood and Jacobson [22] performed numerical simu- 
lations of the hard-sphere system that showed direct evidence for this freezing transition. 
Even then, the acceptance of the idea that freezing could be an entropy driven transition, 
came only slowly [23]. However, by now, the idea that hard spheres undergo a first-order 
freezing transition is generally accepted. 

Since the work of Hoover and Ree [25], we have known the location of the thermody- 
namic freezing transition. We now also know that the face-centered cubic phase is more 
stable than the hexagonal close-packed phase [26], but by only 1 0 - 3 k ~ T  per particle. To 
understand how little this is, consider the following: if we used calorimetric techniques 
to determine the relative stability of the f c c  and hcp phases, we would find that the free- 
energy difference amounts to some lo-" cal/cm3! Moreover, computer simulations allow 
us to estimate the equilibrium concentration of point defects (in particular, vacancies) in 
hard-sphere crystals [27]. At melting, this concentration is small, but not very small (of 
the order of one vacancy per four-thousand particles). 

The next surprise in the history of ordering due to entropy came in the mid-eighties 
when computer simulations [28] showed that hard-core interactions alone could also ex- 
plain the formation of more complex liquid crystals. In particular, it was found that a 
system of hard sphero-cylinders (i.e. cylinders with hemi-spherical caps, see Figure 4) 
can form a smectic liquid crystal, in addition to the isotropic liquid, the nematic phase 
and the crystalline solid [29]. In the smectic (A) phase, the molecules are orientationally 
ordered but, in addition, the translational symmetry is broken: the system exhibits a 
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Figure 4. Snapshot of a hard-core smectic liquid crystal. 

one-dimensional density-modulation. (See also Roux, this volume.) Subsequently, it was 
found that some hard-core models could also exhibit columnar ordering [30]. In the latter 
case, the molecules assemble in liquid-like stacks, but these stacks order to form a two- 
dimensional crystal. In summary, hard-core interaction can induce orientational ordering 
and one-, two- and three-dimensional positional ordering. 

3.3 To boil-or not to boil ... 
Why do liquids exist? We are so used to the occurrence of phenomena such as boiling 
and freezing that we rarely pause to ask ourselves if things could have been different. Yet 
the fact that liquids must exist is not obvious a priori. This point is eloquently made in 
an essay by Weisskopf [31]: 

The existence and general properties of solids and gases are relatively easy 
to understand once it is realised that atoms or molecules have certain typical 
properties and interactions that follow from quantum mechanics. Liquids are 
harder to understand. Assume that a group of intelligent theoretical physicists 
had lived in closed buildings from birth such that they never had occasion to 
see any natural structures. Let us forget that it may be impossible to prevent 
them to see their own bodies and their inputs and outputs. What would they 
be able to predict from a fundamental knowledge of quantum mechanics? They 
probably would predict the existence of atoms, of molecules, of solid crystals, 
both metals and insulators, of gases, but most likely not the existence of liquids. 

Weisskopf's statement may seem a bit bold. Surely, the liquid-vapour transition could 
have been predicted a priori. This is a hypothetical question that can never be answered. 
But, as I shall discuss below, in colloidal systems there may exist an analogous phase 
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transition that has not yet been observed experimentally and that was found in simulation 
before it had been predicted. To set the stage, let us first consider the question of the 
liquid-vapour transition. In his 1873 thesis, van der Waals gave the correct explanation for 
a well known, yet puzzling feature of liquids and gases, namely that there is no essential 
distinction between the two: above a critical temperature T,, a vapour can be compressed 
continuously all the way to the freezing point. Yet below T,, a first-order phase transition 
separates the dilute fluid (vapour) from the dense fluid (liquid) [32]. It is due to a 
the competition between short-ranged repulsion and longer-ranged attraction. From the 
work of Longuet-Higgins and Widom [35], we now know that the van der Waals model 
(in which molecules are described as hard spheres with an infinitely weak, infinitely long- 
ranged attraction [34]) is even richer than originally expected: it exhibits not only the 
liquid-vapour transition but also crystallisation (Figure 5). 

Figure 5.  Phase diagram of a system of hard spheres with a weak, long-range attraction 
(the ‘true’ van der Waals model). The density is expressed in units where o is the 
hard-core diameter. The ‘temperature’ r is expressed in tenns of the van der Waals a- 
term: r = kBTvo/a, where vo is the volume of the hard spheres. (Hence the van der 
Waals mean-field equation of state reads ( p  + a N / V ) ( V  - Nvo) = NkBT). Plotted is the 
coexistence line: below this, vapour-liquid or fluid-c ystal coexistence occurs. 

The liquid-vapour transition is possible between the critical point and the triple point, 
and in the van der Waals model, the temperature of the critical point is about a factor 
two large than that of the triple point. There is, however, no fundamental reason why 
this transition should occur in every atomic or molecular substance, nor is there any 
rule that forbids the existence of more than one fluid-fluid transition. Whether a given 
compound will have a liquid phase, depends sensitively on the range of the intermolecular 
potential: as this range is decreased, the critical temperature approaches the triple-point 
temperature, and when T, drops below the latter, only a single stable fluid phase remains. 
In mixtures of spherical colloidal particles and non-adsorbing polymer, the range of the 
attractive part of the effective colloid-colloid interaction can be varied by changing the 
size of the polymers (see Section 2.6). Experiment, theory and simulation all suggest 
that when the width of the attractive well becomes less than approximately one third of 
the diameter of the colloidal spheres, the colloidal ‘liquid’ phase disappears. 
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Figure 6. Sequence of phase diagram for a system of spherical particles as the inter- 
action range is varied. The range of the interaction decreases from left to right in the 
sequence. Diagram A is normal for a simple molecular substance (the liquid-vapour lane 
ends in a critical point while the liquid-solid line continues indefinitely). In diagram B, the 
liquid-vapour line is metastable Only, but can have dynamical consequences (see Section 
5) (dotted). In diagram C, there is an isostructural solid-solid coexistence line. 

Figure 6 shows schematically the evolution of the phase-diagram of a system of spher- 
ical particles with a variable ranged attraction. As the range of attraction decreases, the 
liquid-vapour curve moves into the metastable regime. For very short-ranged attraction 
(less than 5% of the hard-core diameter), a first-order iso-structural solid-solid transition 
appears in the solid phase [36].  It should be stressed that phase diagrams of type B 
in figure 6 are common for colloidal systems, but rare for simple molecular systems. A 
possible exception is C,, [37]. Phase diagrams of type C have, thus far, not been observed 
in colloidal systems. Nor had they been predicted before the simulations appeared (this 
suggests that Weisskopf was right). 

4 Colloid dynamics 

For the computer simulator, the study of colloid dynamics is a challenge. The reason is 
that colloid dynamics spans a wide range of time-scales. No single simulation can cover 
all time-scales simultaneously. Below, I shall discuss two aspects of colloid dynamics that 
clearly illustrate the time-scale problem. The first is colloidal hydrodynamics. The second 
is homogeneous nucleation of a new phase from a metastable phase. 

4.1 

Colloid dynamics is a research field in its own right (see e.g. [38]). Clearly, I cannot cover 
this field in a few pages. I therefore wish to focus on a few simple concepts that are useful 
when thinking about the dynamics of colloidal particles. The analogy between colloids 
and atoms that is useful when discussing the static properties of colloidal matter, breaks 
down completely when discussing the dynamics. The reason is that atoms in a dilute 
gas phase move ballistically, colloids in a dilute suspension move diffusively. In order to 
understand the motion of colloids, we have to consider the hydrodynamic properties of 
the surrounding solvent. Just imagine what would happen if kinetic gas theory applied 

Hydrodynamic effects in colloidal suspensions 
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to the motion of colloids: then the frictional force acting on a spherical colloid would be 
caused by independent collisions with the solvent molecules, and we would find that the 
frictional force is proportional to the velocity of the colloid, v (which is correct) and the 
effective area of the colloid (.a2) (which is wrong). In fact, the true frictional force on a 
colloid moving at a constant velocity v is given by the Stokes expression 

Ffrict = -67rqav , (28) 

where r ]  is the viscosity of the solvent and a the radius of the colloid. 
The Stokes relation can be derived from hydrodynamics, however this derivation does 

not make it intuitively obvious why the friction is proportional to a rather than to a’. 
Below, I shall give a hand-waving derivation that is more intuitively appealing (although 
the answer is not quite right). We start with the assumption that the time evolution of 
any flow field u(r, t )  in the solvent obeys the Navier-Stokes equation for an incompressible 
fluid 

+ u(r, t )  . Vu(r, t )  = qV2u(r, t )  - Vp(r, t )  , 

where u(r, t )  is the flow velocity at  point r and time t ,  d ,  is the mass density of the solvent 
and p(r, t )  is the hydrostatic pressure. I shall consider the case that u(r, t )  is ‘small’ (low 
Reynolds-number regime, see [38]). Then we can neglect the U + Vu term. Let us now 
consider the situation where the solvent is in contact with a flat surface (see Figure 7).  
Initially, both fluid and wall are at  rest. At time t = 0, the wall is given a tangential 

Figure 7. When a wall is suddenly given a tangential velocity v,,ll, the transverse velocity 
field penetrates diffusively into the bulk fluid. 

velocity V,,II. We assume that this velocity is parallel to the y-direction. The normal to 
the surface defines the z-direction. In this geometry, the equation of motion for the flow 
field reduces to 

But this is effectively a diflusion equation for the transverse velocity. The ‘diffusion coef- 
ficient’ is equal to ( r] /d , )  v. This diffusion coefficient for transverse momentum is called 
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the kinematic viscosity. The larger U is, the faster transverse momentum diffuses away 
from its source. Diffusion equations typically show up when we consider the transport of 
a quantity that is conserved, such as mass, energy or (in this case) momentum. 

Let us now use this concept of diffusing momentum to estimate the frictional drag on 
a sphere. To simplify matters, I shall pretend that the transverse momentum is a scalar 
rather than a vector. Clearly, this is wrong, but it will not affect the qualitative answer. 
A moving sphere acts as a source of transverse momentum. The transverse momentum 
flux j~ is related to the gradient in the transverse velocity field ( U T )  by 

In steady state, v 2 u T ( T )  = 0. If the transverse velocity were a scalar, the solution to this 
equation would be 

where uo is the velocity of the colloidal sphere. The transverse momentum current density 
is then 

The frictional force on the sphere is equal to minus the total rate at  which momentum 
flows into the fluid 

Ffrict = -47rr’j~ = -47rqauo , 

which is almost Stokes’ law (the factor 47r instead of 68 is due to our cavalier treatment 
of the vectorial character of the velocity). 

This trivial example shows that the conservation of momentum is absolutely crucial for 
the understanding of colloid dynamics. A second result that follows almost immediately 
from Equation 29 is that the flow velocity at  a distance r from a moving colloid, decays 
as 1/r. Through this velocity field, one colloid can exert a drag force on another colloid. 
This is the so-called hydrodynamic interaction, and is very long ranged. Again, for a 
correct derivation, I refer the reader to [38]. 

Having established a simple language for the discussion of colloid dynamics, we can 
make estimates of the relevant time-scales that govern the time evolution of a colloidal 
system. The shortest time-scale T,, is usually not even considered. It is the time-scale 
on which the solvent behaves as a compressibke fluid. If we set a colloid in motion, this 
will set up a density disturbance. This density modulation will be propagated away as a 
sound wave (carrying with it one third of the momentum of the colloid 1381). This sound 
wave will have moved away after a time T, = a/c ,  (where c, is the velocity of sound). 
Typically, T~ = U(lO-’os). The next time-scale is the one associated with the propagation 
of hydrodynamic interactions: TH.  It is of the order of the time it takes transverse 
momentum to diffuse a typical interparticle distance: TH = U ( P - ~ / ~ / V ) ,  where p is the 
number density of the colloids. In dense suspensions, the typical inter-particle distance is 
comparable to the diameter of the colloids, and then TH = (3(a2/v) .  Usually, this time- 
scale is of the order of lo-%. Next, we get the time-scale for the decay of the initial velocity 
of a colloid. If we assume (somewhat inconsistently, as it will turn out) that this decay 
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is determined by Stokes' law, we find that the decay of the velocity of a colloid occurs on 
a time-scale T,, = O(M,/rp), where M,  is the mass of a colloid. Since M,  = (47ra3dc/3), 
where d, is the mass density of the colloid, then we can write T,, = O ( d , a z / ~ ) .  In a dense 
suspension, = (d , /d , )rH.  This means that, for a neutrally buoyant colloid, there is no 
separation in time-scales between T, and T H .  

The final time-scale in colloid dynamics is the one associated with appreciable dis- 
placements of the colloids. As the colloids move diffusively, and as the diffusion constant 
is related to the Stokes friction constant by D = k~T/(67rqa) ,  the time it takes a colloid 
to diffuse over a distance comparable to its own radius is TR = O(a2/D)  N U(77a3). This 
TR is of the order of milliseconds to seconds. Clearly, there is a wide time-scale separation 
between TR and the other times. For times that are much longer than r, and T H ,  we can 
pretend that the colloids perform uncorrelated Brownian motion. However, this is not 
quite correct: even though the hydrodynamic interactions have long decayed, they render 
the effective diffusion constant of every colloid dependent on the instantaneous configu- 
ration of its neighbours. This is one of the reasons why the theory of colloid dynamics is 
not simple [38]. 

Let me, however, conclude this section on colloid dynamics with something that can 
easily be understood on the basis of diffusion of transverse momentum. The Stokes- 
Einstein relation provides an expression for the frictional force acting on a colloidal particle 
that moves at  velocity v, through the solvent: Ffrict= -67r77avC. At first sight, it appears 
that this equation allows us to compute the rate at  which the initial velocity of a particle 
decays 

8% Mc- at = -67rqav, , 

and the solution to this equation is 

vc( t )  = vc(0) exp ( -- " t ) .  

This answers looks reasonable. It even yields the correct expression for the diffusion 
constant. Indeed, using the Green-Kubo relation between the self-diffusion constant and 
the velocity-autocorrelation function (v, ( O)vz(t)): 

we find D = k ~ T / ( G r q a ) ,  as it should. Still, Equation 32 is wrong. Velocity fluctuations 
of colloidal particles (or, for that matter, even atoms [39])  do not decay exponentially, 
but with a power law. 

In terms of the diffusive transport of transverse momentum, this is easy to understand. 
Consider a colloidal particle of mass M, having an initial velocity v,. Part of the initial 
momentum of the particle is carried away by sound waves (in fact, one third of the initial 
momentum). The remainder is converted to transverse momentum and is transported 
away diffusively. After a time t ,  the transverse momentum has diffused over a typical 
distance a. That means that (two-thirds of) the initial momentum of the particle, 
Mcv, is now contained in a spherical volume with radius a. This volume has a total 
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mass proportional to d,(~t)~/~. The average flow velocity of the fluid in this volume is 
equal to its momentum divided by its mass: 

The velocity of the colloidal particle is equal to this average flow velocity. Hence, for long 
times, the velocity-autocorrelation function of the colloidal particles decays as 

where we have used (v:(O)) = kBT/Mc.  As is clear from Equation 35, the velocity cor- 
relation function of a colloidal particle decays as t - 3 / 2 .  Several points should be noted: 
first of all, the decay described by Equation 35 can be, and has been, observed exper- 
imentally (see e.g. [40]). The power-law decay of the velocity auto-correlation function 
only describes the asymptotic behaviour. A similar analysis can be applied to the decay 
of the angular momentum of a rotating colloidal particle (in that case, the decay goes as 
f 5 i z  [41]). The presence of a wall perturbs the diffusion of transverse momentum. Using 
arguments very similar to the one above, one may then derive new power-law exponents 
for the decay of rotational and translational velocity correlation functions [42]. 

5 Metastability and nonequilibrium dynamics 

It is well known that liquids can be supercooled before they freeze and vapours can 
be supersaturated before they condense: the resulting phases are metastable. Similar 
phenomena arise in colloids too. In what follows, we discuss the escape from such a 
metastable phase. 

5.1 

A homogeneous phase can be supercooled because the only route to the more stable state 
is via the formation of small nuclei. The free energy of such nuclei is determined not 
only by the difference in chemical potential between vapour and liquid, which drives the 
nucleation process, but also by their surface free energy. In classical nucleation theory 
(CNT) [43][44] it  is assumed that the nuclei are compact, spherical objects, that behave 
like small droplets of bulk phase. The surface free energy term is always positive, because 
of the work that must be done to create an interface. Moreover, for small droplets this 
term dominates and hence the free energy of a nucleus increases with size. Only when 
the droplet has reached a certain critical size, does the volume term takes over, and the 
free energy decrease. It is only from here on that the nucleus grows spontaneously into a 
bulk liquid. The free energy of a spherical liquid droplet of radius R in a vapour is then 
given by 

Homogeneous nucleation in colloidal suspensions 

(36) 
4 
3 AG = 4aR27 + -rR3pAp, 

where y is the surface free energy, p is the particle number density in the bulk liquid, and 
A p  is the difference in chemical potential between bulk liquid and bulk vapour. Clearly, 
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the first term on the right hand side of Equation 36 is the surface term, which is positive, 
and the second term is the volume term, which is negative; the difference in chemical 
potential is the driving force for the nucleation process. The height of the nucleation 
barrier can easily be obtained from the above expression, yielding 

This equation shows that the barrier height depends not only on the surface free energy 
y (and the density p ) ,  but also on the difference in chemical potential Ap. The difference 
in chemical potential is related to the supersaturation. Hence, the height of the free- 
energy barrier that separates the stable from the metastable phase depends on the degree 
of supersaturation. At coexistence, the difference in chemical potential is zero, and the 
height of the barrier is infinite. Although equally likely to be in the liquid or vapour 
phase, once the system is one state or the other, it will remain in this state; the system 
simply cannot transform into the other state. 

Macroscopic thermodynamics dictates that the phase that is formed in a supersat- 
urated system is the one that has the lowest free energy. However, nucleation is an 
essentially dynamic process, and therefore one cannot expect a priori that on supersat- 
urating the system the thermodynamically most stable phase will be formed. In 1897, 
Ostwald [45] formulated his step rule, stating that the crystal phase that is nucleated 
from the melt need not be the one that is thermodynamically most stable, but the one 
that is closest in free energy to the fluid phase. Stranski and Totomanow [46] re-examined 
this rule and argued that the nucleated phase is the phase that has the lowest free-energy 
barrier of formation, under the conditions prevailing. The simulation results discussed 
below suggest that, even on a microscopic scale, something similar to Ostwald's step rule 
seems to hold. 

5.2 Coil-globule transition in condensation of dipolar colloids? 

The formation of a droplet of water from the vapour is probably the best known exam- 
ple of homogeneous nucleation of a polar fluid. However, the nucleation behaviour of 
polar fluids (including polar colloids) is still poorly understood. In fact, while classical 
nucleation theory gives a reasonable prediction of the nucleation rate of nonpolar sub- 
stances, it seriously overestimates the rate of nucleation of highly polar compounds, such 
as acetonitrile, benzonitrile and nitrobenzene [47, 481. In order to explain the discrep- 
ancy between theory and experiment, several nucleation theories have been proposed. It 
has been suggested that in the critical nuclei the dipoles are arranged in an anti-parallel 
head-to-tail configuration [47,48], giving the clusters a non-spherical, prolate shape, which 
increases the surface-to-volume ratio and thereby the height of the nucleation barrier. In 
the oriented dipole model introduced by Abraham [49], it is assumed that the dipoles 
are perpendicular to the interface, yielding a size dependent surface tension due to the 
effect of curvature of the surface on the dipole-dipole interaction. However, in a density- 
functional study of a weakly polar Stockmayer fluid, it was found that on the liquid (core) 
side of the interface of critical nuclei, the dipoles are not oriented perpendicular to the 
surface, but parallel [50]. 

We have studied the structure and free energy of critical nuclei, as well as pre- and 
postcritical nuclei, of a highly polar Stockmayer fluid [51]. In the Stockmayer system, 
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the particles interact via a Lennard-Jones pair potential plus a dipole-dipole interaction 
potential 

Here E is the Lennard-Jones well depth, o is the Lennard-Jones diameter, pi denotes the 
dipole moment of particle i and rij is the vector joining particle i and j. We have studied 
the nucleation behaviour for reduced dipole moment ,U* = lpl/@ = 4, which is close 
to the value for water. We have computed [51] the excess free energy Ail of a cluster of 
size n in a volume V, at  chemical potential p and at temperature T, from the probability 
distribution function P(n) 

PAQ(n, p,  V, 2’) - ln[P(n)] = - ln[N,,/N]. (39) 

Here fl is the reciprocal temperature; N,, is the average number of clusters of size n and 
N is the average total number of particles. As the density of clusters in the vapour is 
low, the interactions between them can be neglected. As a consequence, we can obtain 
the free-energy barrier at any desired chemical potential ,U’ from the nucleation barrier 
measured at a given chemical potential p via 

BAil(n, P‘, v, T )  = PAR(? P, v, T )  - P(P’ - P b  + In [P(P’) /P(P)I  1 (40) 

where p = N / V  is the total number density in the system. 
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Figure 8. Comparison of the barrier height between the simulation results (open circles) 
and classical nucleation theory (straight solid lane) for a Stockmayer fluid with reduced 
dipole moment ,U* = 14/fi3 = 4 and reduced temperature ksT/E = 3.5. The chemical 
potential diference between the liquid and the wapour is Ap. 

Figure 8 shows the comparison between the simulation results and CNT for the height 
of the barrier. Clearly, the theory underestimates the barrier height. As the nucleation 
rate is dominated by the height of the barrier, our results are in qualitative agreement 
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with the experiments on strongly polar fluids [47, 481, in which it was found that CNT 
overestimates the nucleation rate. But, unlike the experiments, the simulations allow us 
to investigate the microscopic origins of the breakdown of classical nucleation theory. 

In classical nucleation theory it is assumed that already the smallest clusters are com- 
pact, more or less spherical objects. In a previous simulation study on a typical nonpolar 
fluid, the Lennard-Jones fluid, we found that this is a reasonable assumption [52], even for 
nuclei as small as ten particles. However, the interaction potential of the Lennard-Jones 
system is isotropic, whereas the dipolar interaction potential is anisotropic. (On the other 
hand, the bulk liquid of this polar fluid is isotropic.) We find that the smallest clusters, 
that initiate the nucleation process, are not compact spherical objects, but chains, in which 
the dipoles align head-to-tail (Figure 9). In fact, we find a whole variety of differently 

Figure 9. The 
dipolar particles align head-to-tail. Right: critical nucleus. The chain has collapsed to 
form a more-or-less compact, globular cluster. 

shaped sub-critical clusters in dynamical equilibrium: linear chains, branched-chains, and 
‘ring-polymers’. Initially, as the cluster size is increased, the chains become longer. But, 
beyond a certain size, the clusters collapse to form a compact globule. The Stockmayer 
fluid is a simple model system for polar fluids and the mechanism that we describe here 
might not be applicable for all fluids that have a strong dipole moment. However, it is 
probably not a bad model for colloids with an embedded electrical or magnetic dipole. 
The simulations show that the presence of a sufficiently strong permanent dipole may 
drastically change the pathway for condensation. 

Left: sub-critical nucleus in a supercooled vapour of dipolar spheres. 

5.3 

Proteins are notoriously difficult to crystallise. The experiments indicate that most pro- 
teins only crystallise under very specific conditions [54-561, otherwise remaining indef- 
initely as metastable, fluid suspensions. Moreover, the conditions are often not known 
beforehand. As a result, growing good protein crystals is a time-consuming business. 
Interestingly, there seems to exist a similarity between the phase diagram of globular 
proteins and of colloids with short-range attractive interactions [57]. In fact, a series of 
studies [58-611 show that the phase diagram of a wide variety of proteins is of the kind 
shown in Figure 6B. Rosenbaum and Zukoski [57, 621 observed that the conditions un- 
der which a large number of globular proteins can be made to crystallise, map onto a 
narrow temperature range of the computed fluid-solid coexistence curve of colloids with 

Crystallisation near a metastable critical point 

Copyright © 2000 IOP Publishing Ltd.



138 Daan Frenkel 

short-ranged attraction [63]. If the temperature is too high, crystallisation is hardly ob- 
served at  all, whereas if the temperature is too low, amorphous precipitation rather than 
crystallisation occurs. Only in a narrow window around the metastable liquid-vapour 
critical point, can high-quality crystals be formed. In order to grow high-quality protein 
crystals, the quench should be relatively shallow, and the system should not be close to a 
glass transition. Under these conditions, the rate-limiting step in crystal nucleation is the 
crossing of the free-energy barrier. Using simulation, it is possible to study the nucleation 
barrier, and the structure of the critical nucleus in the vicinity of this metastable critical 
point [64]. 

We performed si.mulations on a model system for particles with a short-ranged attrac- 
tion, for a number of state points near the metastable critical point. These state-points 
were chosen such that on the basis of classical nucleation theory the same height of the 
barrier could be expected. In order to find the free-energy barrier, we have computed the 
free energy of a nucleus as a function of its size. However, we first have to define what we 
mean by a ‘nucleus’. As we are interested in crystallisation, it might seem natural to use 
a crystallinity criterion. However, we expect that crystallisation near the critical point 
is influenced by critical density fluctuations within the metastable fluid. We therefore 
used not only a crystallinity criterion, but also a density criterion. We define the size of 
a high-density cluster (be it solid- or liquidlike) as the number of particles, N p ,  within a 
connected region of significantly higher local density than the particles in the remainder 
of the system. The number of these particles that is also in a crystalline environment is 
denoted by Ncrys. In our simulations, we have computed the free-energy ‘landscape’ of a 
nucleus as a function of the two coordinates N p  and Ncrys. 

Figure 10 shows the free-energy landscape for T = 0.89Tc and T = T,. We find that 
away from T, (both above and below), the path of lowest free energy is one where the 
increase in Np is proportional to the increase in Ncrvs ( Figure 1OA). Such behaviour is 
expected if the incipient nucleus is simply a small crystallite. However, around T,, critical 
density fluctuations lead to a striking change in the free-energy landscape ( Figure 10B). 
First, the route to the critical nucleus leads through a region where Np increases while 
Nmys is still essentially zero. In other words: the first step towards the critical nucleus 
is the formation of a liquidlike droplet. Then, beyond a certain critical size, the increase 
in N p  is proportional to Ncrys, that is, a crystalline nucleus forms inside the liquidlike 
droplet. 

Clearly, the presence of large density fluctuations close to a fluid-fluid critical point 
has a pronounced effect on the route to crystal nucleation. But, more importantly, the 
nucleation barrier close to T, is much lower than at either higher or lower temperatures 
(Figure 11). The observed reduction in AG* near T, by some 30kaT corresponds to an 
increase in nucleation rate by a factor 1013. Finally, let us consider the implications of 
this reduction of the crystal nucleation barrier near T,. An alternative way to lower the 
crystal nucleation barrier would be to quench the solution deeper into the metastable 
region below the solid-liquid coexistence curve. However, such deep quenches often result 
in the formation of amorphous aggregates [57,61,62,65-681. Moreover, in a deep quench, 
the thermodynamic driving force for crystallisation (pliq - pcryst) is also enhanced. As a 
consequence, the crystallites that nucleate will grow rapidly and far from perfectly [55]. 
Thus the nice feature of crystal nucleation in the vicinity of the metastable critical point 
is, that crystals can be formed at a relatively small degree of undercooling. It should be 
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Figure 10. Contour plots of the free-energy landscape along the path from the metastable 
fiuid to the critical crystal nucleus, for our system of spherical particles with short-ranged 
attraction. The curves of constant free energy are drawn as a function of Np and Ncrys 
(see text) and are separated b y  5 k ~ T .  If a liquidlike droplet forms in  the system, we 
expect N p  to become large, while Ncrys remains essentially zero. In contrast, for a normal 
crystallite, we expect that Np is proportional to Ncrys. Panel A shows the free energy 
landscape well below the critical temperature (TIT, = 0.89). The lowest free-energy path 
to the critical nucleus is indicated b y  a dashed curve. Note that this curve corresponds 
to the formation and growth of a highly crystalline cluster. Panel B: The same, but now 
for  T = T,. I n  this case, the free-energy valley (dashed curve) first runs parallel to the 
Np axis (formation of a liquid-like droplet), and moves towards a structure with a higher 
crystallinity (crystallite embedded in  a liquid-lake droplet). The free energy barrier for  this 
route is much lower than the one shown in A .  

stressed that nucleation will also be enhanced in the vicinity of the fluid-fluid spinodal. 
Hence, there is more freedom in choosing the optimal crystallisation conditions. Finally, 
I note that in colloidal (as opposed to protein) systems, the system tends to form a 
gel before the metastable fluid-fluid branch is reached. A possible explanation for the 
difference in behaviour of proteins and colloids is discussed in [69]. 
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Figure 11. Variation of the free-energy barrier for homogeneous crystal nucleation, as 
a function of T/T,, in the vicinity of the critical temperature. The solid curve is a guide 
to the eye.  The simulations show that the nucleation barrier goes through a minimum 
around the metastable critical point (see text). 

5.3.1 Microscopic step rule 

Ostwald formulated his step rule more than a century ago [45] on the basis of macroscopic 
studies of phase transitions. The simulations suggest that also on a microscopic level, a 
‘step rule’ may apply and that metastable phases may play an important role in nucle- 
ation. We find that the structure of the pre-critical nuclei is that of a metastable phase 
(chains/liquid). As the nuclei grow, the structure in the core transforms into that of the 
stable phase (liquid/fcc-crystal). Interestingly, in the interface of the larger nuclei traces 
of the structure of the smaller nuclei are retained. 

5.4 

The reader may have noticed that I have discussed the subject of homogeneous nucleation 
without ever discussing the actual dynamics of the barrier-crossing process. The reason is 
that usually (well away from the gelation point) the barrier height completely dominates 
the variation of the nucleation rate. However, in a full description of nucleation in colloids, 
the actual dynamics of the barrier crossing process should be taken into account. (See 
McLeish, this volume, for similar remarks in a different, polymeric context.) Computa- 
tionally, this is feasible, but non-trivial-after all, the dynamics of colloids in suspension 
is itself quite complex. But the techniques to study this problem exist. 

Concluding remarks on nucleation dynamics 

6 Conclusion 

Finally: I realise that my introduction to colloid physics has been biased and superficial. 
Biased because, as a simulator, I tend to focus on idealised models. Superficial because, 
wherever I could, I gave quick-and-dirty explanations instead of decent derivations. As 
much as possible, I have tried to refer the reader to the ‘correct’ literature. But, as these 
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lectures are not meant t o  be a n  exhaustive review, I have surely omitted many more 
relevant references than I have quoted. I hope that  both the reader and the offended 
authors will forgive me. 
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1 Introduction 

This school covers a huge area of modern chemical physics. For all the questions con- 
sidered] computer simulation methods are becoming] or are already, important scientific 
tools. To give an introduction one can choose a number of different approaches ranging 
from a somewhat complete, but certainly superficial overview to the deep discussion of 
a few examples. For the present contribution I try to combine both approaches, accept- 
ing the necessary shortcomings. After a general introduction on simulation strategy and 
characteristic length scales, the basics of Monte Carlo and molecular dynamics will be 
introduced. Later on, as examples, I will discuss the simulation of polymer melts and 
networks as well as first attempts towards a multiscale modelling of polymeric materials. 
A number of nice reviews and books, some extensive] exist [l-111. Thus, the present 
article can also be viewed as a guide to the literature. 

There are two basic concepts that are used in computer simulations of materials. A 
conceptually direct approach is the molecular dynamics method. One numerically solves 
Newton’s equations of motion for a collection of particles, which interact via a suitable 
interaction potential. Through the equations of motion, a natural time scale is built in. 
The simulation samples phase space determinis t ical ly .  Though this sounds very simple, 
there are many technical and conceptual complications, which I will come back to later. 
The second approach] the Monte Carlo method, samples phase space stochastically. Monte 
Carlo is intrinsically stable but has no inbuilt time scale. There are ways to rectify this 
(discussed below). 

These two very different basic approaches are both used to explore the statistical p rop  
erties of systems and materials. Nowadays many applications employ hybrid methods, 
where combinations of both are used. Before going into details we first ask when each kind 
of model is appropriate. To do this we must discuss the different time and length scales 
relevant for the question under consideration. Figure 1 illustrates this for the example of 
polymers. 
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Macroscopic Semi macroscopic Mesoscopic 
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TEIO' - i o d  sec T 3 0-13sec chemical reactions 
Entropy dominates Energy dominates excited states 

Figure 1. The different time and length scales an polymer problems. 

Starting from the top of Figure 1 one first observes domain structures. On this level a 
continuum description is appropriate and one should not use 'particle based' simulation 
techniques. Looking more closely one could observe a marked chain in a melt or dense 
solution of otherwise identical chains as a very pale shadow. The typical extension of the 
shadow is given by the diameter of the overall coil, as indicated. Looking more closely 
more of the chain structure is revealed. This is the universal entropy-dominated coil 
regime. Typical experimental time scales are indicated. Only if one again looks much 
more closely can the chemical details of the polymers be identified. There the behaviour is 
governed by the local chemical details and is energy-dominated. The lower time boundary 
is given by the highest frequency' which usually is from the C-C bond oscillations. To 
study reactions, or excited states, details of the electronic structure have to be considered. 
Here we deal with the three 'middle levels' of the above scheme. Typical coarse-grained 
simulations are situated somewhere in between the coil and the microscopic regime. 

At a first sight it is tempting to simulate a melt of polymers with all details of the 
chemical structure of the monomers included. For instance, the chain diffusion constant 
D could be measured by monitoring the mean square displacement of the monomers or of 
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the centre-of-mass of the chains. This, however, is tempting only a t  the very first glance. 
Even with the largest computers, one would need an exceedingly large amount of computer 
time. As is true for many disordered, complex materials, polymers can be characterised 
by a hierarchy of different length and time scales, spanning an extremely wide range [12]. 
Figure 1 illustrates that the typical range easily can exceed ten decades in time. On the 
microscopic level the properties are dominated by the local oscillations of bond angles and 
lengths. (To study chemical reactions or excited states, one requires quantum chemistry 
methods that are beyond the scope of the present paper.) Their typical time constant of 
about sec requires a simulation time step of 10-’5s. On the semi-macroscopic level 
the behaviour is dominated by the overall relaxations of conformation of the chains or even 
larger units (domains etc.).  These times, depending on chain length and temperature, 
can easily reach seconds and, if one approaches the glass transition, even longer. To 
cover such a range within a conventional computer simulation is certainly impossible. 
On the other hand, it is important to relate the chemical structure of a system to its 
macroscopic properties. Thus, a long standing challenge within the modelling of complex 
materials is to apply ‘multi-scale’ methods to cover the range from microscopic to the 
semi-macroscopic regime [8, 11, 121. 

2 Basics of computer simulations 

2.1 Molecular dynamics (MD) 

MD simulations date back to the early fifties. (For a rather complete overview see [l].) 
Consider a cubic box of volume V = L3 containing N identical particles of mass m. In 
order to avoid surface effects and (as much as possible) finite size effects, one typically uses 
periodic boundary conditions; the particle number density is p = N / L 3 .  The first simu- 
lations employed hard spheres of radius &, which have volume fraction pv = (4/3)nRip. 
The ‘excluded volume’ interaction potential U(rtJ), with rtJ the distance vector between 
two particles i and j ,  is given by 

Since the interactions are athermal ( U / ~ B T  is independent of T )  the only relevant 
variable is the volume fraction pv. The particles are assigned random initial velocities 
with the condition that their total momentum is zero. Then one performs on the computer 
a (conceptually) simple collision dynamics. The temperature defines the time scale via 
the equipartition theorem: m(li1,2)/2 = 3 k ~ T / 2 .  The simulation progresses the system to 
the point where two particles meet. At each such collision the necessary momentum and 
energy exchange is performed, and the run continues. (Since the hard sphere potential 
is the most anharmonic one possible, the system equilibrates very fast.) It is clear that 
for large systems this dynamics requires very small time steps, as very many collisions 
occur. Since all the sequential collisions have to be taken care of, such a programme 
cannot easily be parallelised, an important feature for modern large-scale applications. 
For some time, the hard sphere problem was mainly of historical interest. However, with 
the development of modern colloid science (see e.g. Frenkel, Lekkerkerker, and Chaikin, 
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this volume) hard sphere simulations became very important again. On the computer, 
‘microgravity experiments’ are a little easier than in space; however, our systems are still 
somewhat smaller! 

Many of the technical problems discussed above can be avoided if one replaces the 
hard sphere potential by a soft sphere potential, such as the Lennard Jones potential 
ULJ(rij), dervied originally for interactions of noble gases. In its simplest form, for two 

Usually, a cutoff T, is introduced for the range of the interaction. This typically varies 
between 2.5 0 (a classical LJ interaction with an attractive well) and 2lI60 where only 
the repulsive part of the potential remains. The unit of energy can be chosen as E ,  the 
unit of length 0 and of mass m. This defines the ‘LJ-units’ of temperature [TI = c / k B ,  

time [t] = ,/2m/. and number density [p]  = K ~ .  In many practical programs 0, m, E 
are set to one. 

The straightforward MD approach is now to integrate Newton’s equations of motion: 

Since energy in such a simulation is conserved, we generate the microcanonical ensemble. 
Again the average kinetic energy defines the temperature T via CimilriI2/2 = 3 N k ~ T / 2 .  

A simple but very efficient and stable integration scheme for Equation 2 is the Verlet 
algorithm. With a simulation time step bt << 27~/w,,, where U,,, is the highest char- 
acteristic frequency of the system (e.g. the Einstein frequency of an LJ crystal) we have 
(with m = 1 in one dimension) 

T i ( t  + bt)  = T , ( t )  + & + a @ )  + 4 q t )  bt2 + - q t )  6t3 , 2 6 (3 )  

(4) 

Addition and subtraction of these two equations yields 

Thus, the position and velocity calculations have an algorithmic error of O(6t4), O(bt3) 
respectively. There are many variants of this basic method used throughout the literature: 
one can follow the realistic time evolution of a system, as long as the forces/potentials 
are realistic and as long as classical mechanics is sufficent. If the system is ergodic, 
which is not trivial and requires ‘mixing of modes’ (there is the famous Fermi-Pasta-Ulam 
problem, where one asks how anharmonic a potential has to be in order to equilibrate 
a one dimensional chain of particles [24]) one can equate ensemble averages to averages 
over time steps: 
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for any physical quantity A of interest. This is the basis for simulating a microcanonical 
ensemble [7], also called the NVE ensemble, where all extensive thermodynamics variables 
of the system, namely N ,  V, E are kept constant. Nowadays, most applications employ 
other ensembles such as the canonical (NVT), the isobaric-isothermal (NPT) or even 
the grand canonical (pPT) ensemble. As a general rule, in order to avoid two-phase 
coexistence and equilibration problems one should choose an ensemble which has as many 
intensive variables kept constant as possible. 

So far only equilibrium MD simulations have been mentioned. In addition there is 
a huge literature on different nonequilibrium simulations to study the shear viscosity of 
liquids [13, 141 or other transport properties like heat conductivity [15]. 

2.2 Monte Carlo simulations 

The classical version of MD simulation, just outlined, is a fully deterministic simulation 
technique. While there are many variants of the classical MD which add stochastic terms 
(see below) the other extreme, namely purely stochastic sampling, corresponds to the 
classical Monte Carlo (MC) approach. 

Let’s come back to the basic problem of hard spheres. We have seen that the only 
relevant parameter is the volume fraction in this athermal case (if one is only concerned 
with structural information). Then one can replace the ballistic motion of spheres by a 
stochastic one. Starting from a particular configuration, randomly a sphere is selected and 
displaced by a random jump. If this new configuration does not comply with excluded 
volume constraints the move is rejected, if it does, it is accepted. Then one starts the 
whole procedure again. Once every particle had a chance to move once (on average), our 
Monte Carlo step is complete. This is the most basic Monte Carlo simulation (see e.g. 
[l, 16, 17, 181). Since for hard spheres there is no energy involved, all states have the 
very same probability Pq. Also if the system is in state 2,  the probability W ( z  + y) of 
it jumping into y is the same as that from y to 2 .  So the dynamics trivially fulfils the 
detailed balance condition 

W ( S  + g)peq(x) = W(Y + x)peq(y). (8) 

To discuss a few more basic aspects of MC simulation let’s go back to the ‘fruit fly of 
MC simulations’, the 2-d Ising model [l, 17, 181. Consider a two dimensional square lattice, 
with spins on each lattice site. Each spin can assume two states Si = f l ,  corresponding 
to the ‘spin up’ and the ‘spin down’ state. The energy function (Hamiltonian) is 

H( { Si})  = - J Si Sj + h Si 
( i ~ )  i 

where ( i , j )  denotes all nearest neighbour pairs, J is the coupling constant, and h is an 
applied external field. Any observable A,  e.g. the magnetisation, is given on average by 
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A direct method of calculation would be to sample all possible states. There are 
however 2Lz states, L being the lattice linear dimension, making this impossible for large 
systems. (For small systems such enumeration can lead to  very good results!) Instead we 
sample phase space stochastically. Taking a spin at random, we flip the spin and calculate 
the energy change. With P ( z )  the Boltzmann probability of the orginal state and P ( y )  
that of the new state, detailed balance is obeyed if 

This is normally a sufficient condition for a MC simulation to relax into thermal equilib- 
rium, though this may take a very long time. (However, we will see later that in some 
cases improper choice of ‘moves’ can lead to a non-ergodic behaviour with equilibrium 
only attained on a subspace!) Algorithms without detailed balance will not be discussed 
here (but see Mukamel, this volume). 

The Metropolis criterion is the one most frequently used to accept or reject a move: 

Since only the ratio of the rates W is relevant, r is an arbitrary constant between zero 
and one. A random number T ,  equally distributed between 0 and 1, is used to decide upon 
the acceptance of a move. If T < W(z -+ y) the move is accepted, otherwise rejected. 
(Usually I? = 1 is chosen so that any move that lowers the energy is accepted.) This is the 
basic MC procedure, which allows the sampling of phase space, and equilibrium averages 
to  be found from Equation 7 .  

In many cases, however, one also would like to gain information on the dynamics of 
a (model) system. How can one use MC simulations, without an intrinsic time scale, to 
obtain information on the dynamics? The method described before evolves a system from 
one state to another by a local spin flip. By this local stochastic flips the magnetisation 
changes with ‘time’. This can also be seen as a dynamic MC method based on a stochastic 
Markov process, where subsequent configurations z -+ z’ -+ z” -+ ... are generated with 
transition probabilities W ( z  -+ z’), W(z’  -+ z”) ... To a large extent the choice of the move 
is arbitrary, as long as one can interpret it as a local basic unit of motion. As seen before, 
the actual choice of W is somewhat arbitrary as well: the prefactor r in Equation 12 can 
vary. r actually can be interpreted as fixing an attempt rate, r = T ; ~ ,  for the moves and 
so introduces a time scale. Thus we reinterpret the transition probability W ( z  -+ y) as a 
transition probability per unit time [3, 191. To compare the simulated dynamics with an 
experiment, the basic task is to properly determine 70 (e.g. from the diffusion of chains 
in a polymer melt). It is obvious, however, that this (overdamped) simulation does not 
include any hydrodynamic effects (see Frenkel, this volume) since there is no momentum 
involved. (There are very interesting more advanced methods like ‘dissipative particle 
dynamics’ and ‘lattice Boltzmann MC’ which are currently being developed to repair this 

Using this interpretation, ensemble averages can again be written as time averages: 
[20, 21, 221.) 

M 
A ( z ( t i ) )  E ~ /’ &‘A (z ( t ’ ) )  t - to t o  

1 ( A )  = ~ 

- MO ZZM0+l 
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where we can interpret one attempted move per particle as one time step. Typically, the 
first configurations in a simulation are not characteristic equilibrium configurations. One 
first has to ‘relax’ the system into equilibrium, meaning the data for the first MO steps 
are omitted. In this interpretation the dynamic Monte Carlo procedure is nothing but a 
numerical realisation of a Markov process described by a master equation 

with P ( z ,  t )  the probability of being in microstate z at time t. The condition of detailed 
balance is sufficient to ensure that Peq(z) = exp[-H(z)/kBT]/Z is the unique steady- 
state solution of the master equation (so long as all states are mutually accessible). Thus 
P ( z , t )  must relax towards Peq(z) as t + CO irrespective of the starting state. Note 
however that the choice of a ‘good’ starting state can save enormous amounts of CPU 
time (reducing MO). 

So far, the two extreme cases for classical, particle-based computer simulations were 
discussed: microcanonical MD and MC. There are many approaches in between. Here I 
just want to mention them. The techniques range from 

pure MD where Newton’s equations of motion are solved: mx = - V U ,  via 

MD coupled to a heat bath and a friction (‘Langevin MD’, ‘Noisy MD’), where 
one solves mi = -VU - <x + f ( t )  with C a friction and f a random force, via 

Brownian Dynamics (BD) where one solves <x = -VU + f ,  via 

Force biased MC, where attempted moves are selected from the beginning ac- 
cording to local forces, to 

plain MC as described above. 

3 Polymer simulations 

3.1 General considerations 

Now let us turn to some specific questions related to polymers. Compared to simulations 
of small molecules, polymers (like many other forms of soft matter) require special at- 
tention due to the huge number of intra-molecular degrees of freedom. This causes both 
computational advantages and disadvantages. Polymers are, of course, chain molecules 
built of repeat units called monomers or (by physicists) ‘beads’. Examples range from the 
simple, widely used, PE to the technically very important but more complicated BPA-PC, 
which is used, among other things, for compact discs: 

PE (CH2)N polyethylene 
PS (CH2 ( CH(CsH5))N polystyrene 
P E 0  ((CH2)20), polyethylene oxide 
BPA-PC ( C,&C(CH3)2CSH4C03)N bisphenyl A polycarbonate 
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While three out of the above examples are only soluble in organic solvents, PE0 is also 
water soluble. Chemistry and biology of course provide many more complex examples. 

The molecular weight of a single polymer molecule can easily reach N lo5 Daltons 
(several thousands of monomers). Full scale MD simulations are not suitable (Figure l), 
but in any case, would be restricted to the study of a very few specific systems. Even then 
it is very difficult to determine proper intra- and inter-molecular interaction potentials, 
and one would also need an effective and computationally convenient parametrisation for 
them. In particular the complicated inter-chain or polymer-solvent interactions are only 
poorly understood at present. 

Despite these seemingly tremendous complications, the situation is not that bad. To 
what extent do we really need the chemical details? Figure 1 gives a caricature of the 
various relevant scaling regimes. It also illustrates universality. Properties, which are 
governed by length scales larger than a few Kuhn lengths are independent of the chemistry. 
For example in the limit of long chains of N monomers the mean squared end-to-end 
distance ( R 2 ( N ) )  = AN’”. The exponent v is universal, and takes values 0.588 N 6/5 in 
a good solvent (for d = 3) and 0.5 in the melt or in a Theta solvent (see Khokhlov, this 
volume). The chemical details are hidden in the prefactor A.  This suggests a relatively 
satisfactory situation, namely for most physics questions one can confine the simulation 
to the simplest and, for computational purposes, fastest models. In many cases we just 
need the monomer-monomer excluded volume and the chain connectivity. These models 
are often called coarse-grained models. Later on, we will face the problem of ‘mapping 
properties back to a given chemical system’ in order to determine amplitudes (like A )  as 
well. 

Figure 2. Typical models for polymers used in simulations; (a)  SAW o n  lattice, (b) pearl 
necklace, (c) bead-spring model. 

We now apply the previously described techniques to coarse-grained polymer mod- 
els. Typically, three classes of models are used for computer simulations of polymers, see 
Figure 2. The first and historically most widely used model of a single chain is the self- 
avoiding walk (SAW) on a lattice [3]. In such a walk, each lattice point can be occupied 
only once; it is trivial to introduce nearest-neighbour energies and other generalisations. 
The second model is the direct generalisation of this for continuous space, the pearl neck- 
lace model.  The chain consists of hard spheres of diameter CO and a fixed bond length &. 
The third variant is a bead-spring model, mainly used in MD simulations: the monomers 
are particles which interact with, in most cases, a purely repulsive Lennard Jones inter- 
action (Equation 1). For the bonded nearest-neighbours along the chain, an additional 
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spring potential is added which, together with the repulsion, determines the bond length 

The purpose of a simulation is to generate statistically independent conformations 
(equilibrium) or to follow the time evolution of a given global conformation (dynamics). 
Again, the most natural ansatz would be to simply perform a MD simulation, where 
Newton’s equations of motion (Equation 2) for a bead spring model are solved numerically. 
However, this direct approach cannot be used for an isolated chain. The reason lies in 
its structural properties: a linear-chain polymer without excluded volume interactions 
has the structure of a random walk (harmonic chain). Its structure and dynamics can be 
described by eigenmodes, the Rouse modes, which decouple [23]. Thus solving Equation 2 
exactly, without excluded volume or external noise, would never equilibrate the chain. 

For a chain with excluded volume, the Rouse modes are no longer eigenmodes. How- 
ever, the deviations, which affect the large length scales, come mainly from ‘long range’ 
contacts between monomers which are far apart along the chain but close by in space. For 
long chains the internal monomer density decays with a power law N1-d”.  (The chains are 
fractal objects with a fractal dimension d f  = l / u ;  see Pine, this volume). Consequently, 
these ‘long range’ collisions, which cause the swelling of the chains, are very infrequent: 
equilibration is not guaranteed. The single SAW is an example of the direct relevance of 
the aforementioned Fermi-Pasta-Ulam problem, which to date is not yet solved [24]. 

Thus the natural MD approach can only be used for a chain interacting directly with 
solvent or other chains, or for chains with long range interaction potentials. To avoid this 
problem one has to couple the motion of chain beads to a stochastic process, for example 
a heat bath comprising a friction and a random force. In the overdamped limit this results 
in Brownian dynamics. The other approach is the dynamic Monte Carlo method, where 
again the conformation changes come from local stochastic jumps. Both approaches follow 
realistically the (Langevin) dynamics of a chain. Though this leads to information about 
chain dynamics as well as statics, this should be avoided if the dynamic information is not 
needed. To illustrate this, we compare in Table 1 a simple liquid (or a lattice gas) and a 
polymer melt of the same density and total number of particles. The comparison in the 

e.  

particles 
density 
CPU time per timestep 
equilibration distance 
physical relaxation time 

CPU time for relaxation 

Liquid I Polymer melt 

0: Ntot 

Ntot 

a Ntot 

a: ( R 2 ( N ) ) 1 / 2  a: N1/’ 
TN a N’, 2 5 z 5 3.4 
(varies with chain length) 
a Ntot . N Z  

PO 

Table 1. An illustration of the time scales in polymer simulations 

Table assumes that we are not close to a critical point of the liquid, where critical slowing 
down occurs. But in fact, the exponent z = 2 . .  . 3 . 4  in the relaxation time r N N z  
of polymers is analagous to that for critical slowing down [23, 251. (In the language 
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of critical phenomena the inverse chain length corresponds to (2' - TC)/Tc.)  This N- 
dependent slowing causes significant problems since N values of interest start a t  around 
50 to 100. As a result there is one important rule for polymer simulation: if possible, 
avoid algorithms with realistically slow physical dynamics. (However, if one wants to 
study chain dynamics itself, there is no alternative: see Section 4.) 

3.2 How to generate conformations 

Having demonstrated that the methods which follow the realistic dynamics are not very 
useful for single isolated chains, we now try to generate the conformations by a purely 
stochastic process. 

3.2.1 Simple sampling techniques 

First let us consider SAWs on a lattice. To fulfil the excluded volume requirement each 
lattice site can only be occupied once; but otherwise each conformation of an N-step 
walk has the same probability. If we fix the first step, then each new step is taken with 
probability l / ( q  - l), where q is the coordination number of the lattice, and we account 
for the fact that backward steps are ruled out. 

This most naive way of generating conformations with equal probability is called simple 
sampling. Each time an attempted new bond hits a site which is already occupied, 
one has to start again at the beginning. Otherwise, different SAW conformations will 
receive different probabilities, generating an (attractive) effective interaction among the 
monomers. Each sampled conformation is therefore taken randomly out of the q ( q -  l)N-l 
possible random walk paths, which do not include direct back-folding, whereas the total 
number of SAWs on a lattice is given by [3] 

Z ( N )  = ciJq$N7-1 N >> 1 (14) 

with qeff < q - 1 and CO a number of order unity. The critical exponent y is dimension- 
but not lattice-dependent (y zz 7/6 for d = 3, and 4/3 for d = 2). Typical numbers for qeff 
are 2.6385 (square, p = 4),  2.879 (diamond, q = 4) and 4.6835 (simple cubic, q = 6) [3]. 
Thus the success rate of the sampling process, A ( N )  = Ao(qeE/ ( q  - l))N NT-', decays 
exponentially with N .  A typical value for A is e.g. A(100) = 0.03 on the diamond lattice. 
This illustrates that simple sampling is only useful to get a rough estimate for chain 
properties like qeff and y. 

The first improvement was suggested as early as 1955 by Rosenbluth and Rosen- 
bluth [26]. Their idea of biased sampling is to look ahead for a t  least one step in order to 
overcome the attrition. More modern approaches look several steps ahead or implement 
this idea within in a dynamical scheme [8, lo]. Here I explain two alternatives, which can 
mainly be used for isolated chains. 

3.2.2 Dimerisation 

The dimerisation approach (Figure 3) [27, 281 allows a simultanous determination of 
both the exponents 7 and U. The idea is to begin by generating many short SAWs of 
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Figure 3. Illustration of the dimerisation method. 

length No. These walks can then be combined randomly. For every step the success rate 
&in for a binary assembly of walks of length NI, and NZ = N - N I  is Pbin(N1, N2) = 
Z ( N ) / ( Z ( N 1 ) Z ( N 2 ) ) .  Using Z c( qNiVy-' we get Pbin(IV1, N z )  = N7-' / (N1N2)7-';  ob- 
viously &in is optimal for N 1  = Nz = N / 2 .  The original procedure, where short walks 
were generated and then stored, is computationally not very efficient. It is more direct 
to  generate each sub-walk by simple sampling, as follows [3, 291. After a S24W of N1 
monomers is generated we continue. If the next N I  steps violate the excluded volume 
condition within the second piece, we start at N1 again. Only an overlap with the first iV1 
monomers makes it necessary to start at the very beginning. This defines a very efficient 
hierarchical procedure. 

Batoulis and Kremer generalised this approach to study good-solvent properties of 
star polymers [29]. In particular, the dependence of y on the number f of arms of the star 
is interesting and very difficult to  estimate analytically. Using this method we were able 
to  give precise results for ~ ( f )  and also size statistics such as the mean radius of gyration, 
and the mean hydrodynamic radius (RH) = N - z ~ i & j ( l / ~ z j ) .  For R H ,  very strong 
corrections to scaling are observed, which explain deviations of experiments such as light 
scattering from the asymptotic power law behaviour. Figure 4 shows the extrapolation of 
the hydrodynamic radii as a function of N - ' J 2 ,  which was thought to be the correction 
to the scaling for this quantity. The correct value is 1 - v [30]. 

3.2.3 Pivot algorithm 

For this algorithm [31, 321, as illustrated in Figure 5 ,  a point on the chain is chosen 
randomly and one part of the chain is rotated at random. As with dimerisation, this can 
easily be done for both lattice and off-lattice systems. Given a chain of length N and a 
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Figure 4. The extrapolated hydrodynamic radii as a function of N1i2 129,’. 
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Figure 5. Illustration of the pivot algorithm. 

pivot point a t  position Nl, then the acceptance rate p is given by the probability that the 
new conformation has no overlaps. On a lattice this needs a simple U ( N )  check, while in 
continuous space this is more difficult. On lattices, especially for d = 2, one has to take 
care that the choice of moves does not contain hidden conservation rules. The approach 
is then ergodic as shown by Madras and Sokal [31] who claim an No.2 power law for the 
‘relaxation time’ of the mean-square end-to-end distance. This method was used to obtain 
very precise estimates of the exponent v, v = 0.7496 & 0.0007 (d  = 2: exact value 3/4) 
and v = 0.592 & 0.003 ( d  = 3), which is about as accurate as the results coming from 
dimerisation. For the single isolated SAW there is probably no better way to generate 
very quickly many conformations that are globally different. 

However there is no ‘free lunch’. As soon as the concentration is increased, either due 
to other chains or monomer-monomer attraction along the same chain, the acceptance rate 
is dramatically reduced. A more subtle aspect is that this method relaxes large length 
scales very fast, while short ones need a longer time. For example, nearest-neighbour 
bond correlations need up to O(N2)  moves to relax completely. For many problems it is 
essential to cover the equilibration of the short as well as the long distances. This can 
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be overcome in two ways (depending on the model). One is a hybrid method of pivot 
moves and molecular dynamics simulations (for bead spring models) [33]. For fixed bond 
lengths it is sufficient instead to generalise the pivot approach so that not only tails of 
the chain, but also internal pieces of arbitrary length, are rotated. The choice of lengths 
is then adjusted to the density, so that the acceptance rate stays above 10%. This version 
can be applied to ring polymers as well. 

3.2.4 Many-chain methods: generalised reptation algorithms 

In semidilute solutions or melts the generalised pivot algorithm will only produce accept- 
able success rates for moves involving a small number of monomers. Eventually it joins 
the class of dynamic algorithms, which follow realistically the very slow physical dynamics 
of the system. This is certainly not what we are looking for in the present context. 

The generalised reptation algorithm is an effective way to simulate dense solutions, 
and also for single chains, in the collapsed regime for T < 0, the Theta temperature (see 
Khokhlov, this volume). The method is explained here for a single lattice chain. The 
original idea of the ‘slithering snake’ goes back to Kron in 1965 and Wall and Mandel 
1975 [34]. One randomly takes an end monomer and tries to add it a t  the other chain- 
end with a random orientation. If the new chain fulfils the SAW condition, the move is 
accepted, otherwise rejected. In this way the chain moves (forward and backward) like a 
snake along its own contour. (The algorithm resembles, but should not be confused with, 
the physical ly  realistic reptation dynamics of polymer melts: see McLeish, this volume, 
and below.) For this method detailed balance is fulfilled trivially, but on a lattice, only 
a subspace of all conformations is reached. (This subspace excludes conformations where 
both chain ends are completely surrounded by other monomers.) In continuous space 
this problem is absent. The extension to many chains as well as interacting chains is 
trivial. One can also introduce a grand canonical version by allowing the chain length to 
fluctuate. The use of pointers allows for very fast and efficient codes. 

How fast is the relaxation of a chain conformation in CPU time? To estimate this, let 
us look a t  the position of the middle monomer of the chain. At first this does not move. A 
measure of the relaxation time Tgpu is the time until this space point is not on the chain 
for the first time. For random walks this first passage time follows the same power law 
as a one-dimensional diffusion along the chains. Since each move only requires a constant 
N-independent number of operations we get Tgpu c( N Z  for ideal chains. (To simulate 
this is a good check on the program.) This method is O ( N )  faster than algorithms with 
‘realistic dynamics’ such as the Rouse model (see below), whose real relaxation time is 
TN N N 2  giving N 3  in CPU time. 

Somewhat more complicated is the situation for SAWs. In physical time one ex- 
pects for the diffusion constant D 0; N - ’ .  With R2 0; N2” and DTN % R2 we expect 
TgPu N TN N N1+’” for this algorithm. This is, however, not correct. Numerically one 
finds for the autocorrelation function of (R’) a relaxation time of TN o( N2.” ( d  = 2) 
and N2.02 (d = 3) instead of N2.5 and NZ.l8 respectively. This result, although of advan- 
tage for simulations, is not completely understood. The explanation is probably in the 
difference between diffusion times and first passage times [35]. In addition, it should be 
kept in mind that because of the SAW condition, SAWs are correlated objects! 
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3.3 More complex single polymer problems: two examples 

The above methods are the basis for many applications to more complicated chemical 
designs or molecular architectures. Branched polymers were already mentioned. There 
is however a whole zoo of other systems available: H-shaped objects, comb polymers, 
double stranded polymers etc. .  Two other interesting classes are copolymers, especially 
random copolymers, often dicussed in the context of protein folding, and charged poly- 
mers (see Khokhlov, this volume). For both, simulation studies are becoming more and 
more important. Here I want to discuss two applications on the level of single chains: 
polyampholytes, and the collapse transition of PE0 in water under pressure. In both cases 
a somewhat specialised model of a single chain is needed, but the simulation methods are 
essentially the ones described above. 

Many biopolymers are on average neutral, however they contain, from a physicist’s 
view, randomly distributed charges, of either sign, along the backbone. The simplest 
model of such a polyampholyte chain [36] treats electrostatics and excluded volume only. 
A chain with an extensive number of excess charges of one sign, is certainly stretched, 
while one might expect the opposite from an overall-neutral chain. Analytical theories 
give contradictory results and are only approximate. 

To approach the problem Kantor and coworkers [36] looked a t  a random copolymer, 
where the comonomers are either positively or negatively charged. With N monomers, 
on the average there is an excess charge of n. The authors used a simple cubic lattice 
simulation to study chain conformations as a function of temperature (with fixed dielectric 
constant of the background ‘solvent’). They found that in the limit of very long chains 
(and/or low temperatures) those chains with less than O ( n )  excess charges will collapse, 
while the others will be expanded (Figure 6). 

For standard, uncharged polymers, chain conformation changes continously as a func- 
tion of temperature and/or solvent quality. But there are contrasting examples as well. 
PE0 is soluble in water under normal atmospheric pressure but separates out under high 
pressure. There is a Flory type theory, which relates this phase separation/collapse tran- 
sition to  the destruction of the hydration shell around the oxygen under pressure [39]. If 
this hydration shell is destroyed, one is left with the strong hydrophobic interaction of 
hydrocarbon backbone and the water. Within a simulation this can be taken account of 
by a simple model [40], where the monomers have an internal degree of freedom. The 
situation with a hydration shell corresponds to the good solvent case and a fairly large 
excluded volume. If the hydration shell is destroyed, the excluded volume is smaller and 
the monomers attract each other, since water is a very poor solvent for the hydrocarbon 
part of PEO. We now can study the conformations as a function of temperature for a 
given (pressure-dependent) activation barrier for the hydration shell. It turns out that 
already on the single chain level the collapse transition becomes discontinuous. 

Figure 7 illustrates this for the chain form factor S(q). Right at the phase transition 
point one gets an energy distribution function with two maxima. Dividing the configura- 
tion space at the minimum yields two coexisting sets of conformations. The figure shows 
S(q) averaged separately for the two subsets and clearly displays a collapsed and an ex- 
panded structure. Most of these runs were performed with the slithering snake algorithm 
combined with a Metropolis update of the hydration shell. 
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Figure 6. Left, (a-d): Typical conformations of a polyampholyte chain with an asymmet- 
ric charge distribution as a function of interaction strength (temperature), from [36]. Note 
that this picture holds for  isolated, finite length chains only. At finite concentration, due 
to the overall neutrality of the whole system, oppositely charged chains and agglomerates 
will cluster step by step [37, 381. Right: (a,d) conformations of a chain that is neutral 
overall. 

4 Polymer dynamics 

To obtain information about dynamics, we have to follow the slow, physically realistic, 
simulation path. There are many tricks to vectorise or simplify the algorithms, but these 
only influence the prefactors of the power laws shown in Table 1. Faced with a naturally 
very slow process, we are forced to employ extremely simple models. 

To test the applicability of any chosen method we need a basic model for dynamics, 
the Rouse model [23]. This is still the only model on a ‘molecular level’, which can be 
solved analytically. The Rouse model treats the dynamics of a Gaussian random walk 
in the overdamped (Brownian) limit. All the complicated inter-chain and intra-chain 
interactions are summarised in the viscous and random forces from the heat bath. Thus, 
we totally disregard excluded volume and topological constraints beyond the plain chain 
connectivity. This model, which represents the dynamics of molten but unentangled 
(short) chains can readily be solved analytically (see McLeish, this volume). 

Here we recap the essentials. With ri the position of the i-th monomer, the Rouse 
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Figure 7. Static structure function for N = 100 at the collapse transition point for the 
simple PE0 model. The bigger spheres denote the hydrated monomers. For the expanded 
configurations these are equally distributed all over the chain, while for the collapsed ones 
only a few surface sites remain available to  build up a solvation shell. The asymptotic 
slopes for the two cases of q-1/0.588 (swollen coil) and q-4 (collapsed globule) are indicated 
by straight lines; from [do]. 

equation of motion is 

(15) 
d r  . 
dt C L = -  4 2 r i  - ri+l - ri-l) + f i ( t )  . 

Here C is the monomeric friction constant, K the bond spring constant and f i ( t )  the 
random (heat bath) force with ( f i )  = 0, and (via the fluctuation dissipation theorem) 
( f i ( t ) f j ( O ) )  = 2CT6(t)&. In the discrete version, the Rouse amplitudes X,, are given by 

with relaxation times (for large N )  

Eigenmodes decay exponentially, ( X p ( t ) X , , ( 0 ) ) / ( ~ X ~ ~ )  = e x p ( - t / r p ) ,  resulting in an over- 
all chain diffusion constant D = kBT/CN and a single chain dynamic structure function 
S(q, t )  scaling as In(S(q, t ) / S ( q ,  0 ) )  cx -q2&/6. 

The most natural quantity to measure from a simulation is the mean square displace- 
ment of the individual monomers, gl( t )  = (Iri(t) - r,(O)l*). One finds (see Figure 8) 
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Figure 8. A sketch of the monomer mean square displacements for the standard Rouse 
model and for the reptation model. The time and length scales are indicated for the 
reptation case. 

while the centre of gravity of the chain always follows r h ( t )  0: t .  
This model is a basis for the dynamic interpretation of stochastic algorithms. Besides 

the standard requirements for MC procedures (detailed balance etc.) we need the following 
property (for an extensive discussion of details see [3]): to simulate polymer dynamics, 
any algorithm with stochastic (or other artificial) dynamics must involve only local moves, 
and must yield Rouse dynamics for Gaussian random walks. Below we concentrate on 
lattice models; however, the generalisation to continuous space is obvious. 

f f 
a--.&*--. e-----. 

Figure 9. Typical kink jump moves for a dynamic Monte Carlo simulation. 

The standard procedure is the kink jump method, Figure 9, as follows: (i) select 
monomer at  random; (ii) select trial local move at random; (iii) check the move is topo- 
logically permitted; (iv) implement a Metropolis check; (v) decide on acceptance; (vi) 
start over again. 

In a simulation we are mainly interested in SAWS, but to check the validity of a 
method for dynamics we need to recover Rouse behaviour for ideal, Gaussian chains. To 
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check a given set of local move rules for the SAW, the test for Rouse behaviour is actually 
performed on non-reversing random walks (NRRWs). NRRWs are walks which do not 
allow direct back-folding but do not have any long range excluded volume interaction. 
(Such walks are ideal Gaussian coils on large length scales, but have the same local 
conformations as SAWS and consequently the same set of local moves.) 

To achieve Rouse dynamics, the set of local moves must contain moves which create 
new bond vectors {b,} inside the chain. In Figure 9, there are 2-bond moves and 3-bond 
moves. The 2-bond moves only exchange positions of bonds along the chain but do not 
change the set of bond vectors. For rings, an algorithm only containing such moves would 
never equilibrate, while for open chains new bond vectors could only diffuse in from the 
freely rotating chain ends. This would increase the relaxation time at least by a factor of 
N .  Local rotations, such as the 3-bond move, are needed, so that {bi} is not conserved 
and Rouse behaviour recovered. The minimal number of bonds involved in d = 3 varies 
from 2 in continuum or on the fcc lattice to 4 on the diamond lattice. But in d = 2, 
for the 180" rotation of the 3-bond move we again only exchange bonds. To circumvent 
this difficulty, one can use off-lattice models, where both the bond lengths and angles 
vary. For such a model, the excluded volume constraints are usually time consuming to 
evaluate. Distances have to be calculated at every time step between several monomers. 
This results in the loss of the main advantage of the MC methods compared with the MD. 

A now frequently used alternative approach is the bond fluctuation (BF) method of 
Carmesin and Kremer [41], which combines advantages of lattice simulations and contin- 
uous space. Figure 10 illustrates the method for d = 2 and d = 3. Each monomer consists 

Figure 10. An illustration of the bond fluctuation model f o r  a 2-d branched polymer 
and for a 3-d linear polymer. Typical elementaw moves are indicated. Each monomer is 
represented by a square (cube) of four (eight) occupied sites on a 2-d (3-d) unit lattice. 

of 2d lattice sites. In addition to the excluded volume interaction, the bond length 1 is 
restricted to a maximum extension to avoid bond crossing. On the square lattice, one 
has the constraint that 1 < 1 < fl. For d = 3, the situation is slightly more com- 
plicated. In this case a set of 108 different bonds are allowed [42, 43, 441. Since each 
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monomer occupies 2d sites, but every jump only requires 2d-' empty sites, the method 
works effectively a t  high densities. (It also suffers less from non-ergodicity problems than 
the standard methods do.) For the 3-d study of the dynamics of polymer melts, densities 
as large as 0.5 were used, although higher densities are no problem. This corresponds to 
a very high physical chain density. Skolnick et al. [45] find for SAWS on a simple cubic 
lattice a t  4 = 0.5 a static screening length for the excluded volume interaction of about 
12 monomers, indicating that they are in a semi-dilute regime, whereas Paul et al. [46] 
find for BFM, and Q = 0.5 ( d  = 3) a value of about 2. On a scale larger than a trimer the 
excluded volume interaction is already screened as it is in a polymer melt (see McLeish, 
this volume). 

A first serious application was the study of a 2-d melt of chains [47]. There one would 
expect the chains to segregate for entropic reasons [25]. In a Monte Carlo study using 
the bond fluctuation model chains of up to  N = 100 monomers at a density of up to  
80% occupied lattice sites were investigated. Figure 11 shows the segregation procedure 
clearly. 

100 

8 0  

60 

4 0  

20 

20 4 0  60 80 I [  

Figure 11. A 2-d polymer  mel t  with N = 100 and @ = 0.8 f o r  a n  almost completely 
equilibrated sample [47,l. 

More interesting, however, is the dynamzcs of the d = 2 melt. The chains cannot cut 
through each other; on the other hand, they are compact objects with ( R 2 ( N ) )  0: N cx Rd. 
One finds a typical 2-d soft sphere liquid with an average of 6 chains surrounding a given 
chain. The Rouse model does not take into account any constraints on motion besides 
the connectivity. A first test is to measure the Rouse mode relaxation spectrum. The 
autocorrelation function for each mode shows an almost perfect single exponential decay. 
On the other hand we can also measure the diffusion constant Do of the chains directly 
from the mean square displacements. Each test yields an independent estimate of the 
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monomeric friction constant C ,  which should be consistent, if the Rouse model describes 
the motion. For d = 2, however, one finds that > CO, and that (mode is governed by 
the conformational relaxation of the chain, while Do is controlled by motion of the chain 
without really reorganising its internal conformational structure. Recently this picture 
was impressively supported by experiments on 2-d confined DNA molecules [48]. An 
extension, which puts these results into a much wider perspective, is 2-d polymer glasses 
[49]. It could be shown, for this case, that time temperature superposition (see McLeish, 
this volume) directly followed from the Rouse dynamics. 

More relevant to most actual experiments, of course, is the study of 3-d melts, where 
one wants to test the concept of chain reptation. Besides standard kink-jump and BF MC, 
another alternative is to perform a MD simulation. Simulations using the MD method 
usually employ the bead-spring model [50, 91, with, in addition, each monomer weakly 
coupled to a heat bath. (Technically, this is a hybrid method or ‘noisy MD’.) Each 
polymer chain consists of N monomers of mass m connected by an anharmonic spring. 
The monomers interact through a repulsive Lennard-Jones potential given by Equation 1 
with r, = 2If6a. For connected monomers we add an attractive interaction 

For melts the parameters K = 30e/a2 and & = 1.50 usually are chosen, while in solution 
softer potentials are mostly used [9]. 

In this algorithm, the equation of motion for monomer i is 

Here r is the bead friction which acts to couple the monomers to the heat bath, and Wi(t) 
describes the random force actingon each bead, with (Wi(t)W,(t’)) = &,b(t-t’)!2k~T!?. 
Strict MD runs for polymers typically exceed the stability limits of a microcanonical 
simulation; these small damping and noise terms extend stability and define a canonical 
ensemble. We have used r = 0 . 5 ~ ~ ’  and T = 1.06 in most cases and m = 1. This value of 
I? is large enough to stabilise the run but small enough not to produce in itself Rouse-like 
behaviour on length and time scales of the order of a few bond lengths. Thus r and W 
are not be confused with C and f in the Rouse Equation 15 for a single chain; in this 
simulation, the Rouse friction is dominated instead by collisions with other chains. The 
program can be vectorised [51, 521 or parallelised [53]. Most older runs used a predictor- 
corrector scheme and Gaussian random numbers. One can however use equally distributed 
random numbers, so long as these have the correct mean value and second moment. The 
use of a Verlet algorithm then allows for time steps as large as 0.0127- yielding up to about 
300000 particle timesteps per second for a typical vector processor or more than 100000 
particle steps per processor or on a Cray T3E. With this method a huge variety of systems 
have been studied. Most recently a melt of chains of length N = 10000 was simulated 
[54, 551. 
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4.1 MC versus MD for melts 

Which method is best to use for studying the dynamics of dense polymeric systems? I 
think that the choice should be between the BF Monte Carlo method and MD, or variants 
of these two approaches. For the athermal case (hard core repulsion only) we can compare 
the CPU time to reach the crossover time for entanglements -re (see Section 4.2 below) 
as a measure of the relative speed of the algorithms. By doing this we estimate that BF 
Monte Carlo is somewhat faster than MD on vector computers. However the inclusion 
of soft interactions has a much stronger effect on slowing down BF than it does for MD. 
(The main speed advantage of the MC comes from the simple acceptance test for the 
moves compared to the more complicated force calculations of MD.) Which method to 
use therefore depends on the particular question under consideration, whether it is better 
to work in the continuum (for example, to study shear flow), and whether it is acceptable 
to have stochastic dynamics on all time scales: using MD, the Rouse behaviour for short 
chains (or early times) is a consequence of the interactions, while it is built in explicitly 
in MC. If one is interested in the behaviour of gels or polymer networks under swelling or 
elongation, or the forces between polymer brushes [56, 571, then a continuum simulation 
using MD is probably more appropriate; generally speaking, the MD method is more 
flexible. Note also that with increasing computer power, workstations are becoming more 
and more important. They typically do not take advantage of especially fast integer 
arithmetic, reducing even further the advantage of the BF MC approach compared to  
continuum methods. 

4.2 

The dynamics of polymer melts is observed experimentally to change from an apparent 
Rouse-like behaviour to a dramatically slower dynamics for chains exceeding the charac- 
teristic length Ne.  (For longer chains, one observes a much slower diffusion, D K N - 2 ,  
and an increased viscosity, 77 0: N3.4.) There are several theoretical models which try to 
explain this behaviour. However, only the reptation concept of Edwards and de Gennes 
[23] and variants of this approach take the non-crossing of the chains explicitly into ac- 
count. This approach is the only one which, at least qualitatively, can account for a wide 
variety of different experimental results, such as neutron spin echo scattering, diffusion 
and viscosity. While it cannot explain all experimental data it does remarkably well, 
particularly considering its conceptual simplicity. 

The idea of reptation is that the topological constraints imposed by the surrounding on 
each chain cause a motion along the polymers own coarse-grained contour. The diameter 
of the tube, to which the chain is constrained, is the diameter of a subchain of length Ne, 
namely dT 0: N:/?-. The chains follow the Rouse relaxation up to the time T~ 0: N,'. For 
longer times the constraints become dominant and the chain moves along its own contour. 
To leave the tube, the chain has to diffuse along the tube a distance of the order of its 
own contour length, dTN/Ne. In order to leave this original tube the chain needs a time 
Td cx N 2 ( N / N e ) ,  giving D K N - 2  and 17 K N3.  The difference between the predicted 
and the measured exponent for 77 is still not completely understood. For the mean square 
displacements of the monomers, g ~ ( t ) ,  the model (Figure 8) predicts (a) the standard 
Rouse behaviour g 1 ( t )  0: t1I2 for t 5 re K A':; (b) the Rouse relaxation along the tube 
with g l ( t )  K t ' /4 for t 5 TN 0: N 2 ;  (c) the diffusion along the tube with g 1 ( t )  0: t"' for 

Dynamics and flow of melts: reptation 
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t 5 7d c( N3 and (d) the free diffusion of the chains. These four distinct regimes are a 
direct consequence of the reptation model. (For a more general discussion of this and the 
competing but less successful concepts, and a rather complete list of references see [9].) 
Below we review a few results, which have been obtained recently by both MD and MC 
simulations. 

The transition from Rouse to reptation can be identified from the centre-of-mass dif- 
fusion constant, 

kBT D ( N )  = - , N < N e ,  
NC 

D ( N )  c( N - * ,  N B N , .  (21) 

Here ( is the monomeric friction coefficient. Several forms exist in the literature for the 
prefactor of the second expression and the crossover. To compare results from different 
simulations and also experiment, a plot of D(N)/DRo,se(N) versus N / N ,  or M / M e  re- 
spectively should give one universal curve since Ne is thought to be the only characteristic 
scale at the crossover. Here D R ~ ~ ~ ~  = kaT / (N  and Me is the experimental entanglement 
molecular weight. This mapping is important for our understanding, since experiment 
and simulation use different methods to estimate Me or Ne. In simulations Ne is deter- 
mined by the crossover towards the t1/4 regime in g 1 ( t ) ,  while normally, experimentally, 
the plateau modulus from the stress relaxation function is used (McLeish, this volume). 
The scaling of the different data onto one curve shows that Ne resulting from the plateau 
modulus is typically about a factor of 2.3 larger than that from the mean square displace- 
ments. Figure 12 shows the results for simulation and experiment [9, 54, 551. The MD 
simulations were performed at a density of p = 0 . 8 5 ~ ~  and the MC simulations [46] at 
two different volume fractions q5 = 0.4,0.5. The experimental data are NMR measure- 
ments of Pearson et al. [58]. Both simulations and the experiment show a clear crossover 
from the Rouse D ( N )  0: N - l  behaviour towards the D ( N )  0; N v 2  regime. From these 
numbers it is clear that the simulations are in a position to analyse the crossover towards 
the reptation regime in some detail and, increasingly, to reach the fully entangled regime. 

As mentioned earlier, a signature of reptation is the mean square displacement of 
the monomers, not just that of the chain centre of mass. (Experimentally the monomeric 
motion can either be observed by various NMR techniques [59,60] or by neutron scattering 
[61, 621.) Figure 13 shows data on both quantities from the bead-spring MD simulations 
of Putz et al. [55] for a variety of chain lengths. For short times, all the data collapse onto 
one single curve, indicating that initially the monomers do not feel the constraints acting 
on the full chain to which they belong. Only for larger times does one find the crossover 
to a slower motion. It is important to notice that this crossover occurs, within the error 
bars, at the same times and monomer displacements, independent of chain length, at  least 
for the longer chains, which shows that Ne and 7, are independent of N as expected. For 
longer times the slope in Figure 13 is around 0.26 for the longest chain, a little larger than 
the t1i4 expected from the reptation model. Using for the crossover g1(Te) = 2(Ri(Ne)) 
the data of Figure 13 give Ne M 35 and T~ x 18007 from the MD data. Within the 
reptation model one would expect the t1/4 regime to hold up to the Rouse time of the 
chain. (For a detailed discussion see [9, 231.) For the earlier MD results [63, 641 on chains 
of N 5 150 the chains were too short to observe a clean indication of a crossover from 
Rouse to reptation, since N/N,  M 4.3. 
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Figure 12. Scaled diffusion constant D(N)/DR(N) versus scaled chain length NINe,p 
for polystyrene (e) (Me,p = 14600, T = 485 K ) ,  polyethylene (m) (Me,p = 870, T = 448 
K ) ,  PEE2 (filled A), (Me,p = 992, T = 448K), our bead spring model (A) (Ne,p = 72), 
the bond-fluctuation model for = 0.5 (0) and tangent hard spheres at @ = 0.45 (0). All 
data are scaled with Ne,p from the plateau modulus or with 2.2 Ne from g 1 ( t ) ,  from 1551. 
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Figure 13. Open symbols: mean square monomeric displacements g 2 ( t ) .  (This is defined 
as for  g I ( t )  but is measured in centre of mass frame of each chain and averaged over 
the five middle monomers of the chain). Closed symbols: mean square centre of mass 
displacement g 3 ( t ) .  Chain lengths are N = 350 (m), N = 700 (0) and N = 10000 (A). 
The straight lines show some power laws to guide the eye.  The local reptation power laws 
g z ( t )  cc t1l4 and g 3 ( t )  0: t’I2 are verified with remarkable clarity. From Ref. 1551. 
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Above we have discussed a variety of different equilibrium simulations, which try to 
follow the motion of individual chains. Kroger and co-workers [65] used the MD simulation 
model to perform NEMD (nonequilibrium MD) simulations, where the sample is subject 
to a steady shear or stress. They were able to cover chains of up to N = 100 monomers 
or equivalently about 3Ne. While this is too short to study e.g. the viscosity or the shear- 
alignment of highly entangled chains, changes from Rouse to the entangled regime were 
observed. Such methods will probably become much more important with the coming 
generation of faster computers, allowing realistic simulation of melt flow behaviour. 

Despite considerable effort it  is still not known what an entanglement means physically, 
and how it can be derived from first principles. However, the reptation model does appear 
to work quite well. 

5 Network structures 

There has been extensive research on polymer networks for many years. A major problem 
is that it is experimentally not feasible to collect the necessary structural information 
in order to allow an unambiguous test of theoretical predictions. By simulation it is 
possible to analyse in detail the structural properties. This allows for a more thorough 
investigation of the effects of the non-crossing of the chains. One expects the consequences 
of conserved topology to be even stronger in crosslinked systems than in uncrosslinked 
ones. (This should hold for dilute polymer gels as well as for dense networks; however due 
to the importance of hydrodynamic effects, gels are even more complicated to simulate.) 
There have been various simulations on the properties of dense polymer networks. These 
simulations range from rather rigid model systems, where the crosslinks cannot move, 
to highly complicated, fully mobile randomly crosslinked polymer melts [56, 661. The 
simulation techniques used are both MD and (lattice) MC. More recently also the swelling 
behaviour of networks has been investigated [54]. 

Duering et al[67] and Everaers and Kremer [68,69, 701 and Putz [54, 71, 721 performed 
MD simulations on a variety of different model networks with two different interaction 
potentials. These different simulations were used to study the influence of the possibility 
of chains crossing each other, the influence of different kinds of disorder (strand length, 
connectivity, topology) as well as the elasticity and relaxation as a function of the strand 
length. 

Figure 14 illustrates the three different classes of networks. The fint system, an equi- 
librated polymer melt with randomly placed crosslinks, certainly resembles most closely 
many experimental systems such as those produced by radiation crosslinking or vulcan- 
isation. These systems have several kinds of disorder. The strands between subsequent 
crosslinks are extremely polydisperse, with an exponential distribution of strand lengths. 
Only a few crosslinks per chain are needed to give a gel-fraction which is nearly loo%, 
though the elastically active part of the network is significantly smaller. In this case 
there are many dangling chain ends or even some dangling clusters, like little trees which 
are connected to the network by only one strand. These dangling pieces are expected 
to be responsible for the extremely slow decay (in the time-dependent modulus G(t), for 
example) seen in most experiments. In addition, trapped loops and knots may play an 
important role in both linear and nonlinear elasticity, while the length of the shortest 
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Figure 14. Sketches of the typical network topologies considered in simulations. Left: 
interpenetrating networks; centre: end-linked chains; right: random cross-links. 

chemical pathway through the network cluster is expected to be of special relevance in 
nonlinear elasticity (since extension of a sample beyond this length forces breakage of 
covalent bonds). Although it is possible to identify the elastically active part of the clus- 
ter unambiguously [67], such disordered systems are extremely difficult to analyse in a 
systematic manner. 

A somewhat more idealised case is an end-crosslinked polymer melt [67, 711. Such sys- 
tems have been considered experimentally as well [73]. There one starts with a monodis- 
perse melt. After equilibrating, the chains are kinetically crosslinked at the ends. By 
this route, all strands in the network have the same length. (In a different type of end- 
linking, each free end binds instead to a randomly selected neighbour bead.) Now there 
are only two sources of quenched disorder in the system. One involves permanent topo- 
logical links, the second, the distribution of chemical pathways through the system, which 
again is highly polydisperse, either at the level of individual network strands, or that of 
a percolating chemical pathways across the system. 

Finally one can consider highly idealised networks, which certainly are somewhat re- 
mote from experiments, where the only source of disorder is the occurrence of knotted 
loops. These are the interpenetrating lattice networks, in which each subnet is an or- 
dered diamond lattice that interpenetrates other, similar nets [68, 69, 701. They can be 
analysed and investigated in a variety of ways in order to shed some light on the role of 
entanglements and conserved topology. The effects of disorder in networks are especially 
important under strong elongational stress. There they dominate the nonlinear regime, 
as Figure 15 illustrates. 

6 Further reading 

There are many other interesting polymer simulation problems, which were not discussed 
above. An extensive overview can be found in a recent book edited by K. Binder [74]. For 
a more microscopic approach the recent book edited by Monnerie and Suter [ll] provides 
an interesting set of papers. Here we summarise these fields briefly. 

Polyelectrolytes. The simplest charged polymers are not polyampholytes (see Sec- 
tion 3.3) but weakly charged polyelectrolytes. The whole field of macromolecules with long 
range interactions is still not well developed in spite of many years of research [75, 76, 771 
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Figure 15. Visualisation of the stress distribution in a highly extended polymer net- 
work [70] from a simulation of randomly interpenetrating polymer networks with diamond 
topology. The only source of disorder in this particular system are random knots. The 
‘shortest topological paths’ (thick lines) carry most of the stress. 

(see also Khokhlov, this volume). Simulations start to give some clear answers, which 
await a better theoretical understanding. Until now we have been able to handle up to 
about 1000 chain monomers and 1000 counterions [78, 791. 

Tethered chains. There is a huge literature on polymers that stick with either one 
or both ends to another object. The most common classes, polymer networks and star 
polymers, were discussed above. For details of simulations on the other classes of tethered 
chains see [80]. If the polymers are not connected to a centre molecule, but stuck to a 
surface/interface, one speaks of a polymer brush. Such brushes range from amphiphilic 
monolayers, where the chains are very much stretched (e.g. layers of a membrane) to 
rather soft systems. In addition a huge body of recent work considers tethered surfaces 
or membranes (two dimensional polymer sheets). A discussion of these topics would, 
however, require a review of its own. 

Phase separation. Polymers in melts and dense solutions interpenetrate each other 
strongly. However, they are ‘poor in translational entropy’ (Khokhlov, this volume), so 
that even a very small repulsion between unlike polymers leads to phase separation. Even 
deuteration is sufficient to derive phase separation from similar protonated chains. Phase 
separation has attracted much simulation activity over the years; for a review see [74]. 

Block co-polymers. A block co-polymer consists of two or more stretches of different 
polymer linked together in a single chain. As a function of composition they can show 
lamellar phases, crystalline ordered phases of spheres, bicontinous phases and so on. (See 
Roux, this volume, for the surfactant analogues.) Most simulations so far were done 
using a quasi grand canonical approach, derived from blend simulations. Recently, also 
the dynamics was studied by MD simulation [81]. 
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7 Linking the scales 

A simulation eventually should provide complete information about the properties of the 
system under investigation. This goes beyond the generic problems discussed so far. Thus 
we have to link different scales: we want to relate the chemical structure of a system to 
the overall behaviour of the material [12]. One of the long-standing challenges within the 
modelling of complex materials is to apply methods which allow coverage of the range 
from the microscopic to the semi-macroscopic regime. Recently, methods were developed 
which map polymers to a mesoscopic level and then reintroduce the atomistic structure 
[82, 83, 841. 

Below I first describe a mapping procedure to go from a microscopic description of 
a polymer chain to the mesoscopic description, which allows fairly effective simulation 
on a coarse grained level. The study of three modifications of one polymer structure, 
namely polycarbonates, approaching the glass transition from above, allows a test of the 
sensitivity. To check the quality of this approach, the chemical details of the chains 
will then be reintroduced into the coarse-grained conformations and results compared to 
neutron scattering results. 

Thereafter, first steps toward the next level of description are discussed. Starting from 
the conformations of polymer chains on the coarse-grained level, each chain is mapped 
onto an extended soft particle with only three internal degrees of freedom. The aim is 
to provide a general a.pproach to simulating specific polymers without losing the essential 
parts. Unlike other approaches all methods will be within continuous space and not 
confined to  a lattice structure. 

7.1 Coarse graining 

We describe a systematic approach to renormalise the intra-chain interactions towards a 
coarser level for three different polycarbonates [82]. The three modifications of the basic 
polycarbonate structure are BPA-PC, BPZ-PC, and TMC-PC (Figure 16). Although the 
backbone sequence is the same these have remarkably different physical properties. For 
the first two (BPA and BPZ) the glass transition temperature TG is roughly the same 
(TG 420K), while the third one has a glass transition temperature which is about 80 
to 100 K higher, around 500 K. On the other hand, BPA-PC is ductile while BPZ-PC 
is brittle; TMC-PC is less ductile than BPA but much less brittle than BPZ. This is 
also reflected in the difference of the generalised activation energy within a Vogel-Fulcher 
fit (see Kob, this volume, and Equation 24 below): BPA and TMC have roughly the 
same activation energy while BPZ has a significantly higher one. Not only are the glass 
transition properties different, but also the entanglement chain lengths Ne in the melt are 
significantly different. For BPA-PC an extremely short entanglement length of Ne = 7 
monomers is reported. This length increases through Ne = 9 monomers (BPZ) to Ne = 14 
monomers for TMC-PC. In particular, the extremely short entanglement length for BPA- 
PC is not understood. Considering other well-studied polymers like polyethylene or PDMS 
(polydimethylsiloxane), one would expect it to be larger by a factor of at least 5 to 10. 
Whether this is the result of a special local chain structure (banana shaped repeat units 
joined by almost pivot-like junctions) is beyond the scope of the present discussion, but 
is a matter of current studies. 
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Figure 16. Three modifications of BPA repeat units tested for the coarse graining proce- 
dures. From top to bottom: BPA-PC, BPZ-PC, TMC-PC. 

The coarse graining procedure is explained in detail here for BPA-PC. Ideally, the 
method is parameter free and as simple as possible. In addition we would like to stay 
as close as possible to the chemical structure in order to be able to reintroduce the 
chemical details later without too many problems. The coarse-grained monomers have 
to be designed to be easily be identified with specific chemical groups of the polymer 
itself. Considering the chemical structure of the three different polycarbonates a 2:l  
mapping onto spherical beads seems to be a first reasonable choice, as illustrated in 
Figure 17. The resulting coarse-grained structure then only has four relevant internal 
degrees of freedom: the bond length C between carbonate and isopropylidene group, 
a, the carbonate-isopropylidene-carbonate bond angle, p, the isopropylidene-carbonate- 
isopropylidene bond angle and 19, the torsion angle. 

To arrive at the coarse-grained interactions from the microscopic model one can imag- 
ine a number of empirical fitting procedures. Here, we follow a different route. The coarse- 
grained potentials not only have to include energetic aspects of the microscopic model but 
also entropic terms from the different possibilities of local conformations. We first use 
intra-chain distribution functions to construct the bonded potentials in the coarse-grained 
model. Knowing the potential functions of the detailed chemical system, it is rather 
straightforward to perform an MC simulation to a very high accuracy at  a given temper- 
ature of the conformations of individual free random walks. The probability distribution 
functions of conformations of such a model system are only dependent on temperature and 
originate from the bonded interactions along the backbone of a chain. The potentials for 
the microscopic models are derived from ab initio quantum chemistry calculations. Using 
the microscopic model to generate configurations, we sample the probability distribution 
function P(C, CY, p, 29) for the coarse-grained model in the limit of single isolated random 
walks. 

The coarse-grained distribution function is temperature dependent via the Boltzmann 
weights of the different states of the microscopic model. The most crucial assumption 
now is, that the distribution function of the set of variables factorises into independent 
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Figure 17. Illustration of the mapping procedure for a 2:l mapping where the repeat unit 
of a BPA-PC chain is replaced b y  two monomers of a generalised bead spring chain. The 
geometrical centres of the carbonate group and the geometrical centre of the isopropylidene 
group respectively are mapped onto the centres of the new spherical bead [82]. 

distribution functions of the individual variables: 

P(4 Q l  P ,  8)  = P ( ~ ) P ( ~ ) P ( B ) P ( ~ )  ‘ 

The distribution function P is determined at  each temperature separately, and may be 
written 

U is a generalised potential function at that temperature, already expressed in units of 
kBT.  (In effect, this allows one to keep the simulation temperature at k B T  = 1, which 
is of technical advantage for molecular dynamics simulations.) From Equation 22 we get 
the forces 

d 
de 

Fe = - - lnP( l )  
d F,, = -- l n P ( 0 )  . . .  

da (23) 

as they originate from the conformations of the coarse-grained model. This approach 
avoids the fitting of a functional form of the coarse-grained potential functions to the 
microscopic parameters. The only fitting procedure is a smoothing for potentials in order 
to get rid of the scatter in the sampling and to stabilise the resulting force. There is no 
need to determine the partition function explicitly, since it only shows up as a constant 
in the potential and thus does not alter the resulting forces. 

Using this model we can now simulate dense polymer systems. The volume of the 
effective hard-sphere beads of the coarse-grained model is adjusted to give the same Van- 
der-Waals volumes as in the experimental case (normalised to the simulation density). In 
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the case of BPA-PC the carbonate group and the isopropylidene group are represented 
by spheres with a radius of 3.02A and 3.11A respectively. No further specific excluded 
volume interactions, nor any directional interaction is taken into account. The simulation 
density is adjusted to the experimental mass density in every case, and then the volume 
held constant; after this, there is no freedom left to adjust parameters. 

If this procedure is to reproduce the essential aspects of the different chemical species, 
then not only should the static structure which comes out of this simulation compare well 
to the experimental systems, but also the dynamics. A detailed discussion of the dynamic 
properties is given elsewhere, but note that for the range of temperatures which we are 
investigating here, it seems reasonable to assume that the simulation time scales linearly 
with the physical time. (Possible deviations originating from the different shape of the 
potentials instead of taking different temperatures are neglected at this stage.) 

MD melt simulations were performed as described before (Equation 19). The excluded 
volume interactions of the monomers are taken into account through a repulsive Lennard- 
Jones interaction. For the present system the background friction r is about 100 times 
weaker than the monomer-monomer friction. For static properties, the mapping between 
simulation and physical units requires a length, fixed by equating the the mass density in 
simulation and experiment. Starting from a mass density of ppc = 1.05g/cm3 (BPA-PC 
at 500 K )  and the simulation number density of p i l . i ~  = 0 . 8 5 ~ - ~ ,  we arrive a t  a length 
scaling of F = 5.56A for the present case. 

To compare the dynamic properties, a time scale is also required. This is found by 
using the Rouse model to calculate the melt viscosity in terms of the centre-of-mass 
diffusion constant of the chains, and equating this to the observed viscosity at some 
reference temperature. This is possible as we have one case where the highest experimental 
temperature and the lowest simulation temperature coincide. For the present example one 
gets T = 2.21 x lo-'' seconds, where T is the simulation (Lennard-Jones) time unit. The 
simulation time step is typically 6t = 0.017. However, the absolute comparison of dynamic 
quantities should only be taken as indicative since the experimental systems and the 
simulations systems comprise different chain lengths, and also the effect of polydispersity 
might alter this absolute scale by some prefactor. 

Compared to other molecular dynamics simulations of microscopic models, the sim- 
ulation time step is roughly three orders of magnitude larger than usual. Taking the 
simplicity of the potentials and the short range nature of the interactions into account 
the resulting speed-up is of order lo4.  The simulated systems typically comprised be- 
tween 1000 and 10000 model monomers on chains of 20 or 60 model monomers. For our 
cubic simulation box this means that one can easily simulate systems of up to 125A3. As 
it turns out, the inter-chain interactions strongly modify the angular distribution func- 
tions compared to the isolated chain. These and other static properties are discussed in 
Section 7.2 below, where chemical detail is reintroduced. 

For the coarse-grained model we first check the dynamical properties as a function of 
temperature, especially approaching the glass transition temperature. The properties of 
many materials when approaching the glass transition temperature are well described by 
the so-called Vogel-Fulcher behaviour 

D = Doexp (--) A0 
T - TVF 
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Simulation (N=20) 
Experiment 

A0 

Simulation (N=20) 
Experiment 

given here for the tracer diffusion constant D of the chains: A0 is a generalised activation 
energy and T ~ F ,  the so called Vogel-Fulcher temperature, typically is about 80 degrees 
below the calorimetric glass transition temperature. The prefactor Do is a hypothetical 
high temperature diffusion constant. For the present situation DO is easy to determine, 
because it simply corresponds to the freely jointed polymer melt with athermal excluded 
volume, and all the chemistry dependent intra-molecular interactions set to zero. (Exten- 
sive computer simulations are available for that case.) 

Figure 18 gives a Vogel-Fulcher plot of the three polycarbonate modifications. The 
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Figure 18. Vogel-Fulcher plot of the chain diffusion constants D for the three diflerent 
polycarbonate modifications, as indicated in the figure, for  N = 20 model monomers [82]. 

results qualitatively match the experimental situation, namely that the Vogel-Fulcher 
temperature for TMC-PC is about 80-100 degrees above the Vogel-Fulcher temperature 
of BPZ-PC and BPA-PC while the generalised activation energy, which in Figure 18 is 
the slope of the lines, is roughly the same for BPA and TMC but is different for BPZ-PC. 
Even quantitatively the results are not that different from the typical experimental value 
as Table 2 shows. 

I TVF I BPA-PC I TMC-PC I BPZ-PC 1 

Table 2. Activation energies A0 (below) and Vogel-Fulcher temperatures T ~ F  (above) 
for experiment and simulation. While the shift for  TVF (simulated) is consistent with 
expectations, the deviations (about 30%) for  the experimental determination of A0 are 
probably due to  the large polydispersity of the typical commercial samples. 
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Figure 19. Coherent structure function S(q) in absolute units in comparison to amor- 
phous cell simulation and neutron scattering data [82, 841. 

7.2 Restoring chemical detail 

There are various ways to check the quality of the resulting structures with respect to 
experiment. A typical test would be to compare the mean square end-to-end distance 
(R2) to results from scattering experiments. However, since the experimental samples 
are highly polydisperse, the resulting answers from scattering experiments are somewhat 
questionable [85]. Furthermore, a crucial check is the direct comparison of conformations 
of systems. To compare the conformations resulting from the simulations unambiguously 
to experiment, we reintroduce the chemical details into the coarse-grained chain [83, 841. 
This is one of the reasons why it was important to devise a mapping procedure which 
stays near to the chemical structure of the objects. We have a one-to-one correspondence 
of the model monomers to the different parts of the chemical repeat unit of the chains. 

To reintroduce the details we use a commercial package since the details of the force 
fields are no longer essential. We start out with a chemically detailed chain with the 
correct bond angles and bond lengths, but free torsion angles. Then the chain is placed in 
the system and rotated via the torsional degree of freedom along the path of the coarse- 
grained chain. The structure is then optimised by a steepest descent method in energy 
space. By this approach, all coarse-grained chains are mapped onto their chemically 
detailed counterparts individually. The deviations of the minimised structure from the 
starting structure are extremely small: (A?) = 0.01A2. In a second step, all chains 
are combined and, to allow for the introduced Van-der-Waals interaction, are locally 
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Figure 20. Comparison of experiment and simulation for the same case as above (see 
Figure 19)) but now for a system with deuterated methyl groups [82, 841. 

equilibrated within a short MD run. This local equilibration of course only includes 
motion on a very small distance. 

Since for the resulting local packing structures the-polydispersity effects of the exper- 
imental melts should not be that important, we now can calculate the structure function 
of the whole system and compare it directly to neutron scattering. The neutron scattering 
structure function S(q) is given by (Pine, this volume) 

For this comparison all atoms of the systems are explicitly included with their correspond- 
ing scattering length b. 

Figures 19 and 20 give two typical examples for BPA-PC. In Figure 19 we show the 
results for a fully protonated system and compare the data to both neutron scattering 
and a previous (amorphous cell) simulation. Figure 20 gives the example where the 
methyl groups are deuterated. Other structure functions show the same agreement with 
experiments. For TMC-PC the density fluctuations are greater than for BPA-PC which 
leads to smeared out peaks for the structure factor. The partially deuterated examples 
show that the simulations are able to reproduce details of the scattering curves down to 
the smallest values of q allowed by the box size. 
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8 An even coarser view on polymers 

So far, all models considered allow the correspondence of a bead of a polymer to one or to 
a few repeat units of a given chemical species. This still means that the number of degrees 
of freedom that have to be considered is proportional to the number of monomers of a 
given chain, causing enormous problems if one wants to try to simulate big systems (many 
chains instead of many monomers). To arrive at a situation where we can simulate many 
chains we go back to Figure 1. There, three levels of description were illustrated. I have 
discussed the microscopic and the mesoscopic regime and, in one case, the link between 
the two. Now we want to consider another step, namely to try to  map the chains from 
the mesoscopic system up to the semi-macroscopic regime where we replace the chains by 
soft ellipsoidal particles which can strongly overlap in the melt [86, 121. For such a model 
each chain is represented by a soft ellipsoid which varies its size and shape. 

We separate the free energy of a system into an intra-chain part and an inter-chain 
part. For the total free energy F we make the ansatz: 

The first sum runs over all M chains of the system. First let us consider the intra- 
chain part of the free energy. In a melt, the allowed conformations of a polymer chain 
are the same as a self-avoiding walk in ‘vacuum’. (The change from self-avoiding to 
ideal random walk statistics in a melt is a result of the inter-chain interactions causing 
reweighting of configurations, but not of the intra-chain conformational distribution.) 
Thus, we characterise the intra-chain contribution to the free energy by the number of 
states which correspond to a specified moment of inertia tensor of the chain. Denoting 
this R and its eigenvalues RI ,  R2, R3 (with RI > Rz > R3), we generate microscopically, 
in a similar manner to that described in the previous sections, a probability distribution 
P(R) .  To each belongs an average intra-chain monomer density distribution p(r,I?) 
which is sampledas well. Here r is the position vector from the centre-of-mass in the 
principal frame. The averaging for p is carried out over all conformations with a given B. 
Taking into account that the set of allowed conformations of individual chains in the melt 
and for the isolated chain are identical, the intra-chain contribution to the free energy 
from chain i is simply given by 

Now we assume that the inter-chain interaction is given by the pairwise overlap of 
the ellipsoids of the different chains. Since each inertia tensor corresponds to a density 
distribution, we can write for the inter-chain free energy contribution of the pair ij 

Here each of the two density distributions is centered on the centre-of-mass of the corre- 
sponding chain, and E ( N )  is an adjustable parameter accounting for the binary excluded 
volume as well as the overlapping contribution of the probability distributions. For tech- 
nical details refer to [86]. 
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Figure 21. Evolution of the sample averaged (RL) as a function of Monte Carlo t ime 
(4000 particles of N=50). The initial value of E ( N )  = C = 1.0 was changed to values 
indicated after 600 M C  steps. The indicated melt value corresponds to  a comparable system 
with explicit chains with repulsive Lennard Jones interactions and a number density of 
0.85 C T - ~  [86]. 

Here we test this idea for simple coarse-grained polymer models. An extension to a 
more refined coarse-grained model for e.g. polycarbonate should be straightforward and is 
an objective of future work. Typical systems consist of 10000 chains of N = 100 monomers. 
The simulation procedure is a standard Metropolis Monte Carlo procedure as described 
in Section 3. The ellipsoidal particles are first randomly distributed in the system, with a 
distribution of shapes corresponding to isolated SAWS. Then MC simulation is performed 
such that the ellipsoids can move in space (translation) and can change both the length 
and the orientation of their principal axes (shape deformation). Figure 21 gives a typical 
evolution plot of the ensemble averaged-squared radius of gyration of our ellipsoids, as a 
function of Monte Carlo time steps, for different parameters E ( N ) .  

The adjustment of E allows a precise mapping of the ellipsoidal model onto the explicit 
chain models a t  a given density. To show not only that the end-to-end distance of the 
ellipsoidal system in the melt agrees with the explicit chain simulation, but also that 
the chain statistics correspond to Gaussian statistics, we scale the resulting probability 
distribution function of the radius of gyration for different chain lengths within the random 
walk scaling scheme. Figure 22 shows this for chain lengths between 25 and 100. Various 
other control investigations such as the scaling of the correlation hole (the locally reduced 
density of other chains produced by the self-density of the chain under consideration) 
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Figure 22. Scaled distribution functions of R2,(N) versus the Gaussian normalised value 
of I& for chain lengths as dndicuted [86]. 

support the conclusion that our chains are now Gaussian. In a very similar way as in 
earlier studies on phase separations of polymers, one can introduce an E ( N )  which is able 
to distinguish between two different species. By doing this one is able to investigate 
phase separation kinetics and morphology development of huge polymer samples. The 
next step will be the reintroduction of the explicit chains in order to complete the scheme 
as indicated in Figure 1. 
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1 Introduction 

In what follows we give an overview of the basic properties of surfactants in solution and 
present some recent developments concerning the effect of flow on the lyotropic lamellar 
phase. In Section 2, we will briefly show how some simple ideas can lead to a qualitative 
understanding of the phase behaviour of surfactant solutions. Section 3 describes the 
effect of flow on two types of lamellar phase and details the shear-induced structures that 
result (the so-called ‘onion’ textures). We present in Section 4 the viscoelastic properties 
of these structures and conclude with some theoretical models describing the dynamics of 
a lamellar phase under flow (Section 5). 

2 Phase diagrams and membrane elasticity 

A classical binary phase diagram (surfactant + water) exhibits a succession of isotropic, 
liquid crystalline, and crystalline phases as a function of temperature and composition [l]. 
Figure 1 shows such a phase diagram for the binary mixture of sodium laurate and wa- 
ter. Besides complicated phases at  very low water concentration (which correspond to 
hydrated solids), the phase diagram contains three main phases: the lamellar phase which 
is a periodic stack of fluid membranes made of the surfactant molecules (lyotropic liquid 
crystal), the hexagonal phase made of infinite tubes placed on a two-dimensional tri- 
angular lattice (lyotropic liquid crystal) and the isotropic liquid phase made of spherical 
micelles. (Note that liquid crystal phases are called ‘lyotropic’ when controlled by con- 
centration as well as temperature.) Although these are the most common phases found 
in surfactant solutions, many other structures have also been described, certain of them 
very recently [2-51. most interesting ones, we should note the cubic phases [2] correspond- 
ing either to a crystal of spherical micelles or to more complex structures (e.g. bilayers 
wrapped on a triply periodic ‘minimal surface’). The most intriguing structures, and the 

+Co-authors: Annie Colin, Jacques Leng and Anne-Sophie Wunenburger. 
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Figure 1. A typical phase diagram where, as a function of the surfactant concentration, 
one has successively the isotropic micellar phase (I), the hexagonal phase (H) and the 
lamellar phase (L). Other regions are biphasic domains. 

ones which were the most difficult to characterise, are complex isotropic liquid phases such 
as the microemulsion phases [3), the sponge phase [4] and the phase of giant micelles [5]. 

The complexity of the structure and phase behaviour of these systems has been an 
experimental and a theoretical challenge. In the last 30 years, a tremendous amount of 
work has been done leading to a rather unified picture of the way these systems behave. 
From a theoretical point of view, the direct relation between the microscopic properties 
of the surfactant and the phase diagram is not accessible. However, it has been very 
useful to introduce, as proposed by Canham [6] and Helfrich [7], an intermediate step 
in the statistical physics description of the properties of surfactants in solution. This 
intermediate description corresponds to the idea that the physics is dominated by the 
interfacial properties of the hydrophobic/hydrophilic domains. The microscopic structure 
of the various phases was then attributed to a competition between the curvature energy 
of the microscopic interface and the entropy (thermal fluctuations). The importance of 
the curvature energy arises because, for self-assembled structures which are at thermal 
equilibrium, there is no surface tension at  the hydrophobic/hydrophilic interface. (Surface 
tension is instead the signature of bulk phase separation.) Despite this, the interfacial 
area is almost fixed: the forces opposing stretching and compression would rapidly become 
large if the area was changed. Consequently, the first term that matters in the small 
deformation of the interface is the curvature energy, whose energy scale is most often 
close to kBT. Therefore this term in practice controls most of the deformations of the 
interface. 

The concept of curvature energy applied to surfactants in solution turns out to be 
remarkably efficient. While better adapted to describe dilute phases (mainly because, in 
that case, the interface becomes very thin compared to the characteristic length of the 
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structure), this concept remains qualitatively valid for more concentrated phases. In all 
cases, it is a good guideline in trying to understand the phase behaviour and general 
properties of surfactants in solution. 

The main problem with this model is that it relates the stability and the structure of 
the different phases to three phenomenological parameters which do not have an obvious 
relationship with the surfactant molecules. These parameters are the spontaneous radius 
of curvature Q, the mean curvature rigidity IE and the Gaussian curvature rigidity &. The 
energy cost of deforming a surface S, describing the surfactant film, therefore reads: 

where c1 and c2 are the two principal radii of curvature of the deformation. Some effort has 
been devoted to working out microscopic models that link the phenomenological elastic 
constants to the geometry of the surfactant molecules and these attempts are qualitatively 
successful. Mechanical models [8], models based on the microscopic description of the 
molecules (91, and simulations [lo] have all been quite useful in understanding the role of 
the surfactant geometry. Since the most common interfacial shapes are spheres (micelles), 
cylinders (hexagonal phase) and planes (lamellar phase), it is useful to calculate the elastic 
energy for these simple cases. One can also quite easily calculate the curvature energy for 
the unit cell of a cubic minimal surface, which we call a ‘cubic element’ below. 

General properties emerge from such calculations. In particular, we can notice that 
if the spontaneous radius of curvature is zero (for surfactant bilayers, this is the case by 
symmetry), the elastic energy of a sphere is not a function of its size: Fsph. = 4n(2r; + E ) .  
This property can easily be generalised (for example to the cubic element) and in general, 
the bending energy of a finite object is invariant under a change of scale, whenever CO = 0. 
Moreover, it has been known since the XIX century that the Gaussian curvature term, 
Js clczdS, is a function of the global topology of the surface and not directly dependent 
on the local curvatures (this is the Gauss-Bonnet theorem). Since for = 0 the curvature 
energy, Equation 1, is based on a quadratic expansion around a flat surface, one expects 
the energy of a sphere and of a cubic element both to be positive. This fixes a range of 
stability for the values of K and R,  namely 2~ > -R > 0. If R becomes less than - 2 ~ ,  an 
instability towards very small spheres will develop. Otherwise, if il becomes larger than 
zero, there is instead an instability towards small cubic elements: a periodic surface of 
very small lattice constant will arise. 

The effects of thermal fluctuations on the surfactant aggregates are different depending 
upon the shape of those aggregates. For spherical objects (micelles), the fluctuations will 
mainly stabilise the isotropic liquid phase of micelles against the ‘crystal’ of micelles or 
other more organised phases (liquid crystals). For cylindrical objects, depending upon 
the value of the elastic constant of these ‘rod-like’ micelles, one can have either flexible 
or rigid systems. If the persistence length (Khokhlov, this volume) of the rods is very 
large, one will only find cylindrical aggregates in a liquid crystalline arrangement such 
as the hexagonal phase. However, if the persistence length is small enough (typically 
smaller than 1000 A), one can find a phase where the cylindrical micelles are disordered 
and polymer-like. Just as for regular polymers, this isotropic liquid phase can be found 
either in dilute or semi-dilute regimes. In such cases, the flexible cylindrical micelles can 
make a random walk in space and most of their static and dynamic properties can be 
understood within a model of so-called ‘living’ (i.e. self-assembled) polymers [ 5 ] .  
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Similar ideas apply when surfactants instead form membranes (either monolayers or 
bilayers). Because K and il have the units of energy, it is possible to compare directly 
their value to k B T .  Indeed, as shown first by de Gennes [ll], one can thereby define 
a persistence length for fluctuating membranes. This persistence length E varies expo- 
nentially with the ratio n / k B T  and consequently, only values of K not much larger than 
kBT  lead to a microscopic persistence length ( lo2 5 5 5 104A). Relatively small changes 
in n differentiate between what we term ‘rigid’ systems, where the persistence length is 
quite large (> lOpm), and ‘flexible’ systems, where the persistence length is typically less 
than lpm. 

The easiest way to understand qualitatively the phase diagram of a rigid system is 
to realise that many of the properties come from a competition between the spontaneous 
radius of curvature and the geometrical length resulting from the choice of the concentra- 
tion of the species. Indeed, for a general system made of water, oil and surfactant, and 
making the reasonable assumption that all‘the surfactant lies at  the water/oil interface, 
it is quite easy to show that in each case (spheres, cylinders and planes) the characteristic 
length of the structure (radius of the sphere, radius of the cylinder, or thickness of the oil 
and water layers) is completely determined by the respective concentrations. 

The simplest model is then to take into consideration just the bending energy. It is 
possible to calculate the most stable structure depending upon the concentration (for a 
given spontaneous radius of curvature Q). The result is, naturally, found to be the struc- 
ture whose curvature best matches the spontaneous radius of curvature. Consequently, 
for this very simple model of ternary mixtures with no other term apart from the bending 
energy, one can already finds phase transitions from spherical micelles, to a hexagonal 
phase, and from there to a lamellar phase by changing the respective surfactant/oil con- 
centrations. Taking into account entropy of mixing and interactions can change the phase 
diagrams, but this simplest behaviour already gives some reasonable results [12]. 

Figure 2. Schematic drawing of a lyotropic lamellar phase. It consists of a periodic 
stacking of membranes (repeat distance d ) ,  each of a thickness 6 ,  separated by a solvent. 

One of the key questions concerning the lamellar phase is to determine the capacity of 
this phase to be swollen, i.e. the capacity to change the repeat distance d of the lamellar 
phase (Figure 2) by adding more solvent. Experimentally, depending on the system, the 
maximum repeat distance can vary from 50 Angstroms to several thousand Angstroms. 
In order to understand what happens to a lamellar phase when it is swollen with a solvent 
(either water or an organic solvent), we need a reasonable description of the interactions 
between the membranes. There are several reviews on membrane-membrane interactions 
which list all the attractive and repulsive interactions that have been calculated. Most of 
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them have also been measured (electrostatic, Van der Waals, steric.,.) [13]. 
One of the most interesting and quite recently discovered long range repulsive in- 

teractions comes from the thermal undulations of the membranes. Indeed, Helfrich in 
1984 predicted that two membranes subjected to thermal fluctuations should develop a 
repulsive interaction coming from the multiple collisions they will develop one against the 
other [16]. This interaction, entropic in origin, has been quantitatively measured by sev- 
eral techniques in sufficiently flexible lamellar phases [13]. Competition between attractive 
and repulsive interactions can lead to phase transitions, explaining why a lamellar phase 
cannot be swollen indefinitely. Whereas the competition between electrostatic and Van der 
Waals interactions can be calculated following the DLVO theory (Frenkel, this volume), 
the competition between attractive Van der Waals interactions and repulsive undulation 
forces is much more complex to model, but leads to very interesting behaviours [14, 151. 

The phase separation with excess solvent is not the only kind of phase transition that 
a lamellar phase can experience upon dilution. When a lamellar phase, made of flexible 
membranes, is swollen with a single solvent, the characteristic repeat, distance increases 
because of the undulation forces acting as a repulsive interaction on the membranes. 
However, when the d-spacing of the lamellar ordering reaches a length which is comparable 
to the membrane persistence length [, the lamellar phase melts into a sponge phase. (The 
sponge phase contains a web of bilayer which divides space into two solvent domains. For 
swelling with equal amounts of oil and water, the an'alogous phase is the microemulsion.) 
This phase transition, which corresponds to a change in topology, is also influenced by the 
Gaussian curvature rigidity ( e )  which controls the energy cost of handle formation [4, 171. 
Upon adding more solvent the sponge phase itself swells and it eventually undergoes 
another phase transition to a vesicle phase [4]. 

The effect of fluctuations on flexible membranes, once analysed in detail, leads to 
a universal phase diagram where the lamellar, sponge, vesicle phases and their phase 
transitions can be understood in terms of a competition between curvature energy and 
entropy [18]. While a lot has been done and understood, some open questions remain and 
new systems have been studied showing interesting behaviours. We will just cite, as an 
example, the fact that an extremely dilute microemulsion phase, with a characteristic size 
of several thousands of Angstroms, has recently been found. This phase cystall ises upon 
further swelling into a three dimensional ordered phase [19], unlike most ordered phases 
which melt upon swelling. 

3 Effect of shear on lyotropic lamellar phases 

Some years ago, in studying the effect of shear on lyotropic lamellar phases, a new hydro- 
dynamic instability was described [20-241 .This instability leads to a phase of multilamellar 
vesicles compactly packed in space (the so-called onion tezture). Evidence for the struc- 
ture of this metastable phase and some dynamics properties such as the viscoelasticity 
are described in what follows. In the current section, we will briefly describe the basic 
experimental facts leading to the formation of the onion texture. Then, we will give some 
details of its viscoelastic behaviour (Section 4) and develop the theoretical description of 
the lamellar-to-onion transition (Section 5). 

As discussed above, a lyotropic lamellar phase is made of surfactant and water (Fig- 
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ure 2), and sometimes contains an additional hydrophobic component (oil). It is a very 
common phase, most often found for relatively high concentration of the surfactant [l], 
while in certain special cases, very dilute lamellar phases can be prepared due to long 
range repulsive interactions between membranes [25]. The symmetry of the phase is that 
of a ‘smectic A’ in the nomenclature of the liquid crystalline phases. When present, the 
hydrophobic compound swells the bilayers. In all the cases, the lamellar phase behaves 
macroscopically as a viscous liquid whose viscosity varies tremendously depending upon 
the formulation, and also (because of uncontrolled defects in the packing) on the Sam- 
ple preparation [23, 261. Upon dilution with extra water, two main behaviours can be 
described [25]. The dilution of the lamellar phase is limited either by a phase transition 
to an isotropic liquid phase (micellar phase or sponge phase) or by a phase transition 
to another liquid crystalline phase. In a limited number of interesting cases the lamellar 
phase reaches a maximum uptake of water and subsequently phase coexists with excess 
(virtually pure) water. This arises whenever phospholipids are used as the surfactant. 

3.1 Shear diagrams 

To understand the effect of flow on such phases, we have studied using rheophysics meth- 
ods the structure of lyotropic smectic A phases submitted to a simple shear (Figure 3). 
Using a number of structural probes under shear, such as scattering techniques (light 
scattering [21], neutron [22], X-ray [27]; see Pine, this volume) or dielectric measure- 
ments [28], it was possible to show that the effect of shear can be described using a shear 
diagram. This diagram, which can be considered as a generalisation of the phase diagram 
for out-of-equilibrium systems, describes the effect of shear as a succession of station- 
ary states of orientation separated by dynamic transitions. Indeed, while always staying 
thermodynamically within the stable lamellar phase, the sample experiences a series of 
transitions modifying the orientation of the lamellae with respect of the direction of the 
shear. These different orientations correspond to differing spatial organisations and den- 
sities of the topological defects that are anyway present in most smectic samples. Each 
transition thus brings a modification of what is named the texture of the phase. Conse- 
quently, it is not a traditional phase transition but has to be viewed as an instability. It 
is different, however, from the classical hydrodynamic instabilities observed when a fluid 
is submitted to shear (convection rolls, etc.) because the resulting texture involves no 
length scale directly related to the size of the shear apparatus. Instead, structure forms 
on some microscopic (micron) length scale related to the intrinsic properties of the fluid. 

Shear gradient 

Velocity 
Vorticity 

Figure 3. Characterisation of the geomety  of a simple shearflow. The orientations that 
the membranes of a lamellar phase adopt under shear are described using this geometry. 
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Figure 4. Representation of the shear diagram of a typical lamellar phase (made of 
water, dodecane, pentanol, sodium dodecyl sulphate). The  horizontal axis represents the 
concentration of dodecane (the bilayers are swollen upon addition of dodecane), which 
f i e s  the characteristic distance d between the lamellae, and the vertical axis represents 
the shear rate. 

Figure 4 is a schematic representation of the shear diagram obtained in the case of a 
lamellar phase made of water, dodecane, pentanol and sodium dodecyl sulfate (SDS) [21]. 
At very low shear rate, the phase is more-or-less oriented with the membranes parallel to 
the velocity direction. Defects however remain in the velocity direction as well as in the 
vorticity direction. At high shear rate, the orientation is basically very similar but the 
defects in the velocity direction have disappeared. In the intermediate regime, a new and 
interesting orientation appears. The membranes are broken into pieces by the flow and 
the phase organises itself into a phase of multilamellar vesicles all of the same size. We 
called these vesicles onions because of their multilamellar structure. Figure 5 presents 
freeze fracture picture of the phase after shearing it [24]. This picture reveals that onions 
are truly discrete entities and also shows that they adopt a polyhedral shape. While not 
‘universal’, such a phenomenology is quite general and has been encountered in many 
systems [29, 301. 

Figure 5. Electron-microscopic picture of freeze fracture sample obtained after shearing 
a lamellar phase. The  size of the onions i s  typically f p m  [2.4]. 
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3.2 

Several techniques can be used to demonstrate the existence of the onion texture besides 
the sophisticated electronic microscopy technique. Direct observation of the texture using 
a regular optical microscope equipped with crossed polarisers is certainly the easiest one. 
Figure 6 shows a typical texture of a sheared lamellar phase in the onion state [21]. 
One easily observes a regular modulation of white and black, with a characteristic length 
corresponding to the size of the onions. This characteristic length varies with the shear 
rate until it reaches very small scales below the optical resolution (typically lpm). A 
uniform grey colour is then observed. 

Techniques used to study structures under flow 

Figure 6. Typical texture of the onion phase observed using an optical microscope between 
crossed polarisers. 

The characteristic size is easily detectable using a laser beam and a screen placed at  a 
few centimetres from the sample [Zl].  Figure 7 presents the small angle patterns obtained 
when sending a laser beam through the onion texture onto an observation screen [20, 211. 
This technique allows the measurement of sizes from 1pm to more than 50pm [20, 21, 
301. Below the micron size scale, a more specialised set-up must be used allowing the 
experimentalist to access to larger scattering angles. 

Figure 7. Small-angle light scattering patterns observed in the onion texture b y  increasing 
the shear rate (from left to right). The ring of scattering is directly related to the onion 
size which obeys D - ?-'I2. (see Reference 21 and Figure 8.) 
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The narrow ring of scattering observed on the screen shows the presence of a single 
characteristic length scale. Since the sample is birefringent, it  is most probably a modu- 
lation of the orientation of the layers which is responsible for the contrast, with the index 
of refraction varying from its ordinary value to its extraordinary one as one traverses the 
characteristic length. The ring is obtained only if circularly polarised light is sent through 
the sample. Otherwise, using a linearly polarised beam and crossed analyser, a pattern 
of four blobs is observed because of the coupling between the polarisation of the incident 
light and the birefringence of the phase. 

The position of the ring in reciprocal space is related to the characteristic size of the 
modulation. It corresponds directly to the onions diameter D through the classical Debye 
relation: 

where n is the index of refraction of the phase (the average one), X is the light wavelength 
and 0 the scattering angle. The width of the peak is an indication of the uniformity of 
the size: the narrower it is, the narrower is the size distribution. For the main cases 
which have been studied, the size within a given sample does not vary more than 20% in 
radius [21]. The fact that the ring intensity is uniform in all directions is an indication 
that the onions are disordered. Indeed, they adopt a kind of amorphous arrangement 
(liquid-like). Because the position of the ring varies with the shear rate, it is possible to 
measure how the onion size evolves with the shear. Figure 8 represents such an evolution 
for a liquid-like structure. The size is inversely proportional to the square root of the 
shear rate : D N ?-'I2. This is an easy way to control experimentally the onion size. 
Depending upon the formulation (the surfactant choice) and the shear rate, sizes ranging 
from 0.2pm to more than 50pm have been found. 

n 

E a 
W 

Q 

Figure 8. 
system, as a function of the inverse of the square root of the shear rate [21]. 

Evolution of the size of the onions for the SDS-dodecane-water-pentanol 
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Figure 9. Evolution of the small angle light scattering patterns as a function of the shear 
rate. (a) + = lOs-l, the ring is isotropic and corresponds to an ensemble of monodisperse 
multilayered vesicles with no long-range order. (b) + =  OS-', the ring of scattering is 
replaced b y  six dots. The organisation now exhibits a long range order. (c) 9 = 2OOs-l, 
small angle pattern after the transition of size. The characteristic size of the vesicles is 
now much bigger and several orders of scattering can be easily seen. (d) + = Os-l, same 
as (c )  but after a rapid arrest of the shear. The long range order is kept and even more 
pronounced. (e) = Os-', same as (d) but after a few oscillations of small amplatude 
(made by  hand). The long range order is even better, more than 5 orders of diflraction 
can be seen. 

3.3 Ordered structure of the onion phase under shear 

An interesting system made of SDS, octanol and brine exhibits a more complex be- 
haviour [30]. In addition to the steady states previously described, this system exhibits 
several new transitions. First, a transition between the disordered state described above 
and an ordered state can be observed. Second, a transition between two states of ordered 
multilayered vesicles, differentiated by the size of the vesicles, has been found. The tran- 
sition between these two states is observed as a jump from small to big vesicles when 
either the shear rate or the temperature is increased. This transition, which is in general 
discontinuous (the size jumps abruptly), becomes continuous (smooth size evolution) at  
a critical temperature. 

The system studied is a quaternary lyotropic lamellar phase whose phase diagram has 
been published [31]. A single sample is studied under shear (85.6% of brine at 20g/l of 
NaC1, 6.5% of SDS, 7.9% of octanol, in weight). This system is studied both as a function 
of temperature and shear rate. Let us first described what is observed in reciprocal 
space using small angle light scattering. Above q w ls-l, an isotropic ring of scattering 
(Figure 9a) appears characteristic of the multilayered vesicle state. This ring corresponds 
to the characteristic size of the close packed vesicles. Its radius increases with increasing 
q, indicating that the vesicle size decreases with the shear rate. The isotropy of the 
ring is the signature of no long-range order in the positions of the vesicles. Above a 
well-defined shear rate of lOs-l, a modulation in the radial intensity of the ring appears, 
leading to a well-defined pattern of six spots above 50s-' (Figure 9b). This is the so-called 
layering transition which corresponds to the ordering of the multilayered vesicles in planes 
exhibiting an hexagonal order (in-plane). This transition does not affect the onion size 
since the dots appear on the ring: the size of the onions before and after the transition is 
practically the same and is around 3-4pm at the transition. After the transition, the size 
evolves very slowly with the shear rate, still decreasing when the shear rate increases [30]. 
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When a shear rate of 200s-' is reached, a new phenomenon is observed. The previous 
pattern of six dots evolves toward two rings of scattering: one at the previous position and 
a new ring appears at smaller angles. With time, the former ring of scattering disappears 
and a clear new set of dots is seen at  a much smaller angle than the previous one. After 
some time (typically from 20 minutes to two hours), the pattern shown on Figure 9c is 
observed under shear. This new pattern corresponds to an ordered structure of onions 
similar to the state previously described, but constituted of much bigger onions (around 
10pm at T x 24°C). Moreover, even under shear, several orders of diffraction can be 
observed (up to 3-4). In contrast to the previous ordered state, this pattern persists once 
the shear is stopped (Figure 9d). The quality of the long range order can even be improved 
significantly by applying small amplitude oscillations to the shear cell (Figure se). We 
have been able to keep this ordered structure after the shear has been stopped for several 
days. The exact nature of the structure of this phase has recently been studied in more 
detail and consists of a so-called random stacking structure [32] (see Section 4).  

The transition between small and big vesicles can be mapped in the (?,T) plane. 
Figure 10 shows the shear diagram obtained from these measurements. The two regions 
of ordered vesicles (small and big) are separated by a line corresponding to a discontinuous 
transition. This line ends on a critical point at  x  OS-', T x 26°C. The decrease of the 
small angle position of the ring or the Bragg peaks is the signature of the large increase 
in size of the onions. Direct space imaging can also be observed, confirming that the 
transition does involve a change in the onion size [30]. 

t 
\ e  Jump of size 

Continuous . \ 

Figure 10. Shear diagram of the jump-of-size transition. The full circles are the ex- 
perimental points, the dotted lane is a guide for the eye and the circle around the dot 
is the location of critical point above which the discontinuous transition is replaced b y  a 
continuous evolution. 
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4 Viscoelasticity of the onion texture 

As described above, onions give an opportunity to precisely control the defect texture of a 
lamellar phase on macroscopic length scales. We present below the viscoelastic behaviour 
of the onion texture for the two spatial organisations as a function of the radius of the 
droplets. Whereas the elasticity of the amorphous organisation is like that of concentrated 
emulsions, the ordered texture exhibits an unusual and still unexplained elastic behaviour. 
(For an introduction to viscoelasticity, see McLeish, this volume.) 

4.1 Viscoelasticity of soft cellular materials 

In terms of viscoelasticity, onions can be described as monodisperse soft spheres under 
pressure. They adopt a polyhedral shape (Figure 5 )  and belong to a wider class of 
cellular structures [33]. When the structure is ordered, the shape of the onions is the so- 
called Wigner-Seitz cell of a crystalline (or random stacking) lattice [24]. The structural 
analogy with dry foams or concentrated emulsions is obvious, and, indeed, the onion 
phase can be considered as a foam of lamellar droplets in the dry limit (the volume 
fraction of the dispersed droplets is close to unity). Linear viscoelastic properties of soft 
cellular materials have been intensively studied during the past 5 years, and since it is 
now possible to obtain a good degree of monodispersity, the comparison with theoretical 
studies is meaningful, though mainly limited to the disordered case. For many soft cellular 
systems, linear viscoelastic measurements reveal storage and loss moduli in nearly constant 
ratio (GI"'' x 10) with a weak dependence on the frequency within the experimental 
window ( 10-2Hz-10Hz). For compressed emulsions or dry foams, the elastic response 
to an infinitesimal deformation is due to the increase of the surface area of each bubble 
compared to the unstrained configuration. A calculation for a monodisperse disordered 
foam, based on Plateau's laws [34], leads to G' = 0.55u/R where o is the surface tension 
of the film and R the radius of bubbles [35]. This result is well verified by experiments 
on fairly monodisperse emulsions [36], where it is found that G' x 0.6u/R. (Even for a 
polydisperse sample G' x 0.5u/R was found [37].) As we will see in the next sections, 
onions also can be considered as having an effective surface tension U when subjected to 
a strain, and a similar scaling law for G' with onion size R is therefore expected. 

Whereas the elasticity of soft cellular materials seems to be well understood, their 
dissipation processes remain unclear. The simple fact that G" is very often constant at 
low frequency (and sometimes increases) suggests a broad spectrum of dissipation at  lower 
frequencies, probably due to slow relaxations of the glassy structure. This behaviour may 
be difficult to incorporate within a linear approximation. Furthermore, each attempt 
to describe fully the dissipation has led to an underestimation of G"(w) compared to 
experimental values both in the emulsion case [38] or the onion one [39]. Finally, attention 
has to be paid to the interpretation of experimental data since, on the one hand, the rather 
elastic behaviour of such materials (G' >> G") makes it very difficult to determine G" 
accurately, and on the other hand, the existence of a linear regime for such disordered 
systems remains uncertain [40]. 
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Figure 11. Viscoelastic behaviour as a function of the frequency for three sizes of the 
amorphous onion texture. (U 
O.S7pm, o 0.5pm, A f.4pm). 

Open symbols correspond to GN and solid ones to GI. 
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Figure 12. Evolution of G6 as a function of 1/R for two dilution of the lamellar phase. 
The behaviour is linear, with GL(l/R + 0 )  # 0. 

4.2 The onion texture: results 

We have first conducted viscoelastic measurements on the amorphous onion texture in 
the linear regime. For each onion size, the extent of the linear strain regime is measured 
at  different frequencies (U = 0.1 and 1 Hz). For the biggest onions, we find that the 
strain should not exceed 0.5% to remain in the linear regime, at  least so far as the storage 
modulus G' is concerned. The typical result is shown in Figure 11, for three different sizes 
of onions in the disordered case. G' depends only weakly on frequency and the value of 
the plateau modulus G; decreases when the size increases. 

We investigated how the onion size influences G6 by tuning the shear rate of the onion 
preparation. By this method R varies from 0.3pm to more than 20pm depending on the 
system. In Figure 12 G6 is plotted as a function of 1/R, and a linear behaviour with a 
non-zero contribution for 1/R + 0 is clearly exhibited. As we shall see, this offset can 
be interpreted as arising from the elastic frustration present within a randomly distorted 
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Figure 13. Loss modulus of the amorphous onion texture as a function of the frequency 
in the size-independent regime, for three dilutions of the lamellar phase. (0 d=65 A ,  A 
d=93 A ,  o d=156 A). 

packing of lamellar phase onions [44]. The loss modulus G" exhibits a size dependent 
shallow minimum followed by a high-frequency rise (Figure 11). The high-frequency 
behaviour of G" has been studied carefully for one lamellar phase at two different dilutions 
(changing the smectic period d and therefore the stiffness of the phase) and is reported 
in Figure 13. One observes that the behaviour is a power-law Gi f (w)  N A d ,  where b is 
a weak function of the dilution ( b  M 1/2) and the coefficient scales as A N l/d3. 

4.2.1 Dissipation 

In the range of accessible frequencies, the behaviour of the loss modulus G" suggests 
a cross-over between slow modes of structural relaxation (on the onion scale) at  low 
frequency and fast modes (probably related to thermal fluctuations of the membranes 
within onions [39]) at higher ones. The structural modes suggest glassy behaviour. 
Indeed, when the strain amplitude is raised, G" starts to show an increase, rather than a 
plateau, at low frequencies, even though the elastic response (G') remains unaltered. In 
other words, the dissipation increases markedly when the deformation increases, although 
still in an apparent linear response regime for the elasticity. This behaviour is consistent 
with some recent experiments on emulsions where it has been shown that some droplets 
follow irreversible paths when the whole sample is subjected to an oscillatory strain [40]; 
see also Pine, this volume. The notion of a 'linear regime' has therefore to be questioned. 
The frequency dependence of the loss modulus is also in qualitative agreement with a 
recent theory invoking disorder and metastability in 'soft glassy materials' [41]. 

The high-frequency behaviour does not show the same sort of nonlinearity, but its 
form remains unexpected. A full calculation of the contribution of thermal fluctuations 
within lyotropic lamellar phases [39], which should apply in the range of high frequencies, 
predicts that G"(w) N QW (neglecting here some weak logarithmic correction in U), where 
Q is the viscosity of the solvent (typically Pas).  Neither the power law nor the 
order of magnitude are in agreement with our experiments. An alternative approach is 
offered by Liu et al. [42]. They assume that a macroscopically applied shear strain does 
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not produce an affine deformation because droplets are randomly packed. Instead, some 
regions slip rather than deforming, and this increases the viscous dissipation. They find 
a contribution which varies as u1f2, which may dominate the high-frequency behaviour. 
Nevertheless, we do not expect this contribution to be relevant at the very high volume 
fraction occupied by the onions (4 N 0.99), so the origin of the observed power law remains 
unexplained. 

4.2.2 Elasticity 

The elastic properties of onion textures are probably better understood. Basically, onions 
are compressed lamellar droplets adopting a polyhedral shape. The energy cost of their 
deformation can be expressed in terms of the elastic constants B and K of the lamellar 
phase. B is the bulk compression modulus (at constant chemical potential) and K = n/d 
is the bulk bending elastic constant [43] of a smectic stack of fluid layers. A typical length 
can be extracted from this competition, the so-called ‘de Gennes penetration length’ X 
which is expressed through the ratio between K and B: 

In a polyhedral onion, the deformation is concentrated along planes of strong curvature, 
of thickness A, radiating from the centre of each onion towards its edges (Figure 5). In 
such a structure, a rough estimate of the stored energy per unit of volume is: 

The first factor in (3) is the curvature cost within the deformed regions, whereas the 
second is the ratio of the volume in which the deformation is stored to that of a whole 
onion. The same calculation also gives the modulus scaling as G’ N m / R ,  since this 
is (roughly) the stored energy density that can couple to an applied strain (see McLeish, 
this volume). The quantity has the dimensions of a surface tension and indeed 
plays the role of an eflective surface tension for small deformations of a smectic droplet. 
So this result is closely analogous to the one given previously for emulsions. 

Glassy state 

It is argued in Reference [44] that an additional feature contributes to the elasticity. This 
additional term arises from the glassy aspect of the phase (not included in the previous 
estimate, Equation 3) and reflects an excess of stored elastic energy quenched in such 
an organisation. Indeed, the onions of the amorphous texture are randomly deformed 
by an additional local strain of characteristic magnitude yo compared to an ordered, 
symmetrical conformation. The main point of the argument is that this quenched strain 
yo interacts in an intricate manner with a macroscopic deformation, and contributes to 
the elastic modulus [44]. In simple words, non-symmetric, distorted onions are sensitive 
to the direction in which they are deformed, in contrast to the symmetric onions in an 
ordered packing. This model predicts that the disorder contribution to G’ is which is 
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independent of onion size. (Only in the case of an onion phase without quenched strains 
does "(02 vanish.) The elastic modulus of an onion phase is finally predicted to be: 

where a = $B in the glassy state, cy = 0 in an ordered state, and P is a phenomenological 
parameter possibly reflecting the geometry. 

In Figure 12, one sees that the agreement with such a description for the glassy state 
is qualitatively good. Indeed the agreement is even quantitative since experiments have 
shown that a N l/d3 [44], the same scaling as B (assuming that 70 does not depend on 
d). Nevertheless, examining carefully several lamellar phases, some points remain unclear. 
First, 70 depends on the studied lamellar phase, and varies from 3% to more than 10%. 
The quantitative origin of "yo is not known (it is introduced phenomenologically) but it 
may come from residual polydispersity or other effects. 

Second, the parameter /3 also depends on the studied system. More precisely, it 
varies from 0.1 to 0.6 depending on the lamellar phase. (Note that the value fi = 0.6 is 
extremely close to the elasticity of compressed emulsions). Indeed, this result suggests 
that the simple dimensional analysis of Equation 3 is not accurate enough. This model 
however catches the main features of the elasticity of the amorphous onion texture. 

Ordered phase 

Onions may be ordered under shear (Figure 9) in the same way as colloidal suspensions, 
and the phenomenology is quite similar. At rest, the resulting structure has been fairly 
well characterised using light and small angle neutron scattering. It consists of hexagonal 
layers of onions, stacked in one direction in a random ABC sequence without any long- 
range correlation. This structure is intermediate between the classical face-centred cubic 
(ABCABC) and hexagonal close packed (ABABAB) crystalline structures. However, 
the structure contains a certain amount of disorder, firstly via some dislocations (but 
in a negligible manner compared with a glass), secondly because the structure is indeed 
amorphous in the direction of the stacking of hexagonal layers. 

We have conducted viscoelastic measurements on this structure, and typical spectra 
have exactly the same features as in Figure 12. In Figure 14, G6 is plotted as a function 
of 1/R for ordered and disordered textures. 'The result is quite surprising since it shows 
that Gb,, is only very weakly dependent on R and does not vanish when 1/R + 0. 
The model of Equation 4, which is in reasonable agreement with experiments for the 
amorphous organisation, predicts exactly the opposite, namely Gbrde, N 1/R. Although 
unexpected and certainly not understood, this result suggests that the physical origin of 
the elasticity may be different in the two cases. 

Keeping in mind that the glassy state is correctly described, let us envisage two possible 
hypotheses. First, the model predicts a = 0 only for symmetric onions (the effect of 
positive and negative strain must be identical for each onion). Our structure, even if 
crystalline, does seem to be a random sequence of hexagonal layers, but the exact sequence 
statistics have not been established. It is possible to imagine some sequences which are 
not symmetric with respect to the strain direction and the symmetric assumption fails. 
The second hypothesis lies in the elasticity of crystals [45]. The proper expression of 
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Figure 14. Elastic modulus of onions as a function of their size and the type of order 
(full symbols, ordered texture - open symbols, amorphous texture). 

the response to a strain has to be expressed in a tensorial form. On the one hand, the 
corresponding elastic tensor derives from the symmetry of the crystal and may be strongly 
altered by the stacking sequence. On the other hand, it is possible to find some particular 
direction where the response to a strain depends very weakly on the elastic constants, 
and therefore on the size of the onions. This result however needs to be clarified. 

5 Theoretical models of the onion transition 

We finally wish to summarise our theoretical understanding of onion formation under 
shear. Although the formation of the onion texture remains largely unclear, two mecha- 
nisms have been proposed to explain its origin. The most recent explanation is described 
by Zilman and Granek [46]. This mechanism involves the coupling of the short wavelength 
undulations of the lamellar phase to the flow. These short wavelength undulations give 
rise to a long range repulsive interaction, the undulation force, and are thus responsible 
for the stability of the lamellar phase. The authors argue that the shear stress generates 
an effective force which acts to reduce the excess area of the membranes and suppress the 
undulations. This decreases the equilibrium layer spacing and is equivalent to applying a 
dilational strain proportional to the shear rate. At low shear rate, the dilation is balanced 
by the elastic forces. Above a critical shear rate, the dilation becomes so high that the 
lamellar phase buckles to give a sinusoidal modulation (see below). To flow, the system 
then has to find another type of organisation: the onion state appears. This model may 
explain the lamellar-to-onion transition (I/II) in Figure 4. 

This mechanism is attractive but some points remain unclear. The dilational stress 
induced by the shear is assumed to be proportional to a high effective viscosity, and not 
to the water viscosity between the smectic layers. This allows the authors to calculate 
a critical shear rate in good agreement with the experiments. Unfortunately, the exact 
nature of this high viscosity is not modelled. Moreover, the system is assumed to track 
the states of minimum free energy (under the effective dilation). As suggested by the 
authors, a dynamic analysis taking into account hydrodynamic processes is needed to 

Copyright © 2000 IOP Publishing Ltd.



202 Didier Roux 

better describe this instability. 
The second mechanism is mainly based on the work of Oswald and Klkman [47-503 

which show that the static undulation instability, due to a dilational strain of the smectic 
phase, remains when the smectic phase is weakly sheared. (This extends, to the case 
of shear, the well-known undulation instability which was found in controlled dilation 
experiments without shear [51-541.) The main hypothesis is that it is this undulation 
instability which leads directly to the onion state [23]: the dilation is a real, and not 
an effective, one. In contrast Granek and Zilman [46], Oswald and Ben Abraham have 
performed a dynamic analysis of this instability but their expansion is valid only at small 
shear rates. The instability occurs because the gap between the two sliding surfaces in 
the shear apparatus is not uniform (at least, not at the scale of the lamellar spacing). At 
equilibrium, the spatial variations of the gap lead to the formation of defects. Dislocations 
appear to change locally the number of layers. At low shear rates, the dislocations are 
assumed to move with the flow by permeation. (Permeation is the diffusion of surfactant 
and/or solvent in a direction normal to the fluid layers.) The lamellar phase exhibits 
a high viscosity due to the dissipation taking place during this permeation process. At 
higher shear rates, the permeation process is too slow to allow the dislocations to flow. 
The lamellae are therefore subjected locally to either a dilational or a compressive strain 
perpendicular to the layers, leading to the undulation instability. On the one hand, the 
undulation in the direction of the vorticity is not affected by the flow. On the other hand, 
in the direction of the flow, the critical dilational strain increases as a function of the 
shear rate. It is very unlikely that the undulation pattern is able to flow because of the 
very high density of defects such as parabolic focal conics [55]. At this stage, the onion 
state appears. 

Both mechanisms described above assume the formation of onions to be governed by 
a dilational strain. According to the work of to Zilman and Granek, this dilatation is 
inherent and due to the effect of shear on the lamellae. However, as in the case of the 
second mechanism described above, a dilation can also be due to experimental conditions. 

Although these works might be able to describe the 1/11 transition, to date no descrip- 
tion has been given for the second transition between the onion state to the high-shear 
orientated state: II/III. Following the work of Oswald we tried to answer to the question: 
what happens to the lamellar phase when the sample is dilated while simultaneously being 
strongly sheared parallel to the layers? 

In our model [56] the dilation can either be due to the spatial variations of the gap 
or induced by an inherent mechanism. We describe the flow using the Navier-Stokes 
equation where a volume force density due to the smectic elasticity is added [57, 581. The 
fluid is incompressible and the flow is coupled to the layer displacement by a permeation 
equation (the permeability is neglected). We assume that the sample is subjected to a 
dilational strain perpendicular to the lamellae. Through a linear analysis, we show that 
undulations may grow in the direction of the flow and of the vorticity, as found in the 
previous works. This may lead to the appearance of the onion phase. At higher shear 
rates, we find evidence that the undulation along the flow disappears whereas it persists 
in the vorticity direction. Such a pattern describes the structure of the lamellar phase 
in domain 111. This work allows us to draw a theoretical phase diagram which describes 
quantitatively the transition II/III [56].  
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Coarsening dynamics of 
nonequilibrium phase transitions 
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University of Manchester, UK 

1 Introduction 

Systems quenched from a disordered phase into an ordered phase do not order instan- 
taneously. Instead, the length scale of ordered regions grows with time (‘coarsening’) as 
the different broken symmetry phases compete to select the equilibrium state. To fix our 
ideas, it  is helpful to consider the simplest, and most familiar, system: the ferromagnetic 
Ising model. Consider a temperature quench, at time t = 0, from an initial temperature TI 
above the critical point Tc to a final temperature TF below Tc. At TF there are two equi- 
librium phases, with magnetisation *MO. Immediately after the quench, however, the 
system is in an unstable disordered state corresponding to equilibrium at temperature TI. 
The theory of phase ordering kinetics is concerned with the dynamical evolution of the 
system from the initial disordered state to the final equilibrium state. 

The first point to note, which underlies the whole field, is that in the thermodynamic 
limit, final equilibrium is never achieved. This is because the longest relaxation time 
diverges with the system size in the ordered phase, reflecting the broken ergodicity. In- 
stead, a network of domains of the equilibrium phases develops, and the typical length 
scale associated with these domains increases with time t. Furthermore, the resulting do- 
main patterns look statistically similar at all (sufficiently long) times, apart from a global 
change of scale. This is the phenomenon of ‘dynamic scaling’. 

For pedagogical reasons, we have introduced domain-growth in the context of the Ising 
model, and will continue to use magnetic language for simplicity. A related phenomenon 
that has been studied for many decades, however, by metallurgists, is the spinodal decom- 
position of binary alloys, where the late stages of growth are known as ‘Ostwald ripening’. 
Similar phenomena occur in the phase separation of fluids or binary liquids, although in 
these cases the phase separation is accelerated by the earth’s gravitational field, which 
severely limits the temporal duration of the scaling regime. The gravitational effect can be 
moderated by using density-matched binary liquids and/or performing the experiments 
under microgravity. All of the above systems, however, contain an extra complication 
not present in the Ising ferromagnet. This is most simply seen by mapping an AB alloy 
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onto an Ising model. If we represent an A atom by an up spin, and a B atom by a down 
spin, then the equilibrium properties of the alloy can be modelled very nicely by the king 
model, There is one important feature of the alloy, however, that is not captured by the 
Ising model with conventional Monte-Carlo dynamics. Flipping a single spin in the Ising 
model corresponds to converting an A atom to a B atom (or vice versa), which is inad- 
missible. The dynamics must conserve the number of A and B atoms separately, i.e. the 
magnetisation (or ‘order parameter’) of the king model should be conserved. This will 
influence the form of the coarse-grained equation of motion, as discussed in Section 2.2 
and lead to slower growth than for a non-conserved order parameter. 

In all the systems mentioned so far, the order parameter (e.g. the magnetisation of 
the Ising model) is a scalar. In the last few years, however, there has been increasing 
interest in systems, such as nematic liquid crystals, with more complex order parameters. 
Consider, for conceptual simplicity, a planar ferromagnet, in which the order parameter 
is a vector confined to a plane. After a quench into the ordered phase, the magnetisation 
will point in different directions in different regions of space, and singular lines (vortex 
lines) will form at which the direction is not well defined. These ‘topological defects’ 
are the analogues of the domain walls in the scalar systems. We shall show that, quite 
generally. an understanding of the relevant topological defects in the system, combined 
with the scaling hypothesis, will take us a long way towards understanding the forms of 
the growth laws and scaling functions for phase ordering in a wide variety of systems. 

In these lectures I will present an introduction to the theory of phase ordering kinetics. 
They are based on a review article written a few years ago [l] with some additions to 
incorporate recent developments. In the first lecture (Section 2) I discuss the dynamical 
models used to describe phase ordering, or phase separating, systems, and discuss the 
initial instability that leads to either ‘spinodal decomposition’ or ‘nucleation and growth’ 
when the system is cooled through the equilibrium transition temperature. In the second 
lecture (Section 3) the scaling phenomenology is discussed in general terms, and dynamical 
equations are derived for the evolution of the interface, (or domain walls) in phase-ordering 
and phase-separating systems. Rom these equations application of the dynamical scaling 
hypothesis leads to the growth laws which describe the coarsening of domains in these 
systems. In the final lecture (Sections 4-6) a more general approach is described which can 
deal with systems, such as nematic liquid crystals, that are not described by a scalar order 
parameter. A discussion of the topological defects, analogous to domain walls, which occur 
in these systems is followed by a general approach to the derivation of coarsening growth 
laws. The lecture ends with a discussion of spinodal decomposition under a uniform shear 
flow, illustrated with results from an exactly soluble model. 

2 Dynamical models 

2.1 Lattice models 

The simplest model of order-disorder transitions and phase separation is the Ising spin 
model on a lattice, with Hamiltonian H = -J  S,S,, consisting of spins, S,, located on 
the sites of a lattice and interacting with their nearest neighbours through ferromagnetic 
( J  > 0) or antiferromagnetic ( J  < 0) interactions. With the identification of the up and 
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down spins with species A and B of a binary alloy (or binary fluid without hydrodynamics), 
the case J < 0, which leads to a two-sublattice antiferromagnetic ordering, models the 
order-disorder transition in an alloy, while J > 0 models phase separation. 

The Ising model does not have an intrinsic dynamics, but a dynamics can be imposed 
by defining transition rates between spin configurations. Consider two spin configurations, 
‘1’ and ‘2’, and let W(1+2) be the transition rate from 1 to 2. For a system in equilibrium, 
the ‘detailed balance’ condition, PlW(142) = P2W(2+1), must be satisfied for each 
pair of states, where P, (i = 1 , 2 )  is the probability of finding the system in state i. 
It follows that W(1+2)/W(2--+1) = PZ/Pl = exp(-AE/ksT), where AE = E2 - El 
is the energy difference between the states. Two commonly used transition rates are 
the Metropolis algorithm W(1+2) = max[l, exp(-AE/kBT)], and the Glauber (or ‘heat 
bath’) algorithm W(1+2) = [l+exp(AE/k~T)]-’ ,  both of which satisfy detailed balance. 

For the non-equilibrium coarsening dynamics of interest here, detailed balance is still 
necessary in order that the system approach equilibrium locally (i.e. within domains) at  
finite times after the quench, and globally at  infinite time. (See Mukamel, this volume, 
for a discussion of ‘driven’ systems, where this does not hold.) If the order parameter 
(e.g. magnetisation) is not conserved, a single spin flip is the elementary move between 
configurations. For a conserved order parameter, ‘Kawasaki dynamics’ is appropriate, 
where the elementary move is the interchange of a nearest-neighbour pair of oppositely 
aligned spins. In the alloy context, Kawasaki dynamics corresponds to interchanging A 
and B atoms on adjacent sites, while single spin-flip dynamics corresponds to changing 
an A atom (say) into a B atom. While the latter is obviously unphysical, it leads to no 
difficulties when (for J < 0) the corresponding order parameter is the antiferromagnetic 
‘staggered magnetisation’ which is not a conserved quantity. 

For numerical simulations, both the lattice models and the coarse-grained models 
described below can be used. For analytical purposes, however, working with coarse- 
grained models is an essential step to furthering one’s understanding. Such models are 
familiar as the Ginzburg-Landau models used to study critical phenomena. Their form is 
dictated by the required symmetries and conservation laws. 

2.2 Coarse-grained models 

It  is convenient to set up a continuum description in terms of a coarse-grained order- 
parameter field (e.g. the ‘magnetisation density’) $(x, t ) ,  which we will initially take to 
be a scalar field. A suitable Landau free-energy functional to describe the ordered phase 

where the ‘potential’ V ( 4 )  has a double-well structure, e.g. V ( 4 )  = (l-&)z (see Figure 1). 
We will take the minima of V ( 4 )  to occur at  4 = hl, and adopt the convention that 
V ( f 1 )  = 0. The two minima of V correspond to the two equilibrium states, while the 
gradient-squared term in (1) associates an energy cost to an interface between the phases. 

In the case where the order parameter is not conserved, an appropriate equation for 
the time evolution of the field q5 is 

= v2 q5 - V’(q5) , 6F 
at 64 

-- _ -  - 
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ng 
Figure 1. Top: symmetric double well potential for a scalar order parameter. (For a 
vector order parameter, an equivalent but rotationally symmetric potential is used; with 
two components, this resembles a ‘mexican hat’.) Bottom: order parameter profide across 
a domain wall. 

where V’(4) dV/dd.  A kinetic coefficient I?, which conventionally multiplies the right- 
hand side of (2) ,  has been absorbed into the timescale. Equation 2, a simple ‘reaction- 
diffusion’ equation, corresponds to simple gradient descent, i.e. the rate of change of C$ is 
proportional to the gradient of the free-energy functional in function space. This equation 
provides a suitable coarse-grained description of the Ising model, as well as alloys that 
undergo an order-disorder transition on cooling through Tc, rather than phase separating. 
Such alloys form a two-sublattice structure, with each sublattice occupied predominantly 
by atoms of one type. In king model language, this corresponds to antiferromagnetic 
ordering. The magnetisation is no longer the order parameter, but a ‘fast mode’, whose 
conservation does not significantly impede the dynamics of the important ‘slow modes’. 

When the order parameter is conserved, as in phase separation, a different dynamics 
is required. In the alloy system, for example, it is clear physically that A and B atoms 
can only exchange locally (not over large distances), leading to diffusive transport of the 
order parameter, and an equation of motion of the form 

which can be written in the form of a continuity equation, OtC$ = -V j, with current 
j = -XV(6F/6C$). In (3), we have absorbed the transport coefficient X into the timescale. 

equation and the Cahn-Hilliard equation respectively. A more detailed discussion of them 
in the present context can be found in an article by Langer [2]. The same equations 
with additional Langevin noise terms on the right-hand sides, incorporating the effects 
of thermal fluctuations, are familiar from the theory of critical dynamics, where they are 
‘model A’ and ‘model B’ respectively in the classification of Hohenberg and Halperin [3]. 

Equations 2 and 3 are sometimes called the Time-Dependent-Ginzburg-Landau (TDGL) 

Copyright © 2000 IOP Publishing Ltd.



Coarsening dynamics 209 

The absence of thermal noise terms in (2) and (3) indicates that we are effectively 
working at T = 0. A schematic Renormalisation Group (RG) flow diagram for T [l] has 
stable RG fixed points at 0 and CO, and an unstable fixed point at Tc. Under coarse- 
graining, temperatures above Tc flow to infinity, while those below Tc flow to zero. We 
therefore.expect the final temperature TF to be a~ irrelevant variable (in the scaling 
regime) for quenches into the ordered phase. This can be shown explicitly for systems 
with a conserved order parameter [4, 51. For this case the thermal fluctuations at  TF 
simply renormalise the bulk order parameter and the surface tension of the domain walls: 
when the characteristic scale of the domain pattern is large compared to the domain 
wall thickness (i.e. the bulk correlation length in equilibrium), the system behaves as if 
it were T = 0, with the temperature dependence entering through T-dependent model 
parameters. 

In a similar way, any short-range correlations present at TI should be irrelevant in the 
scaling regime, i.e. all initial temperatures TI are equivalent to TI = CO. Therefore we 
will take the initial conditions to represent a completely disordered state. For example, 
one could choose the ‘white noise’ form 

where ( . . e )  represents an average over an ensemble of initial conditions, and A controls 
the size of the initial fluctuations in 4. The equivalent initial condition for lattice models is 
(Si(O)Sj(O)) = d,j, again equivalent to TI = CO. The above discussion, however, indicates 
that the precise form of the initial conditions should not be important, as long as only 
short-range spatial correlations are present. 

The challenge of understanding phase ordering dynamics, therefore, can be posed as 
finding the nature of the late-time solutions of deterministic differential equations like 
(2) and (3), subject to random initial conditions. A physical approach to this formal 
mathematical problem is based on studying the structure and dynamics of the topological 
defects in the field 4. This is approach that we will adopt. For scalar fields, the topological 
defects are just domain walls. Before proceeding to a detailed analysis of domain-wall 
motion, however, we first set the scene by carrying out a linear stability analysis of the 
coarse-grained equation of motion. 

2.3 Linear stability analysis 

To first order in 4, (2) reads &$/at = V2q5 - V”(O)$, where V”(0) is the curvature at  
the unstable maximum of V ( $ ) ,  i.e. V”(0) < 0. Fourier transforming this equation, and 
solving, gives &(t) = exp(wkt) $k(O), where wk = IV”(0)I - kZ. It follows that all Fourier 
components with k < k, = Jiv.(oll are unstable, i.e. grow exponentially with time. 
(Including thermal noise does not change this conclusion.) The linear analysis will break 
down, however, at times of order IV”(O)l-’. Beyond this time, domains of the equilibrium 
phases will form and the subsequent dynamics will be controlled by the motion of the 
domain walls. 

The conserved order parameter case is more interesting. In this case, we can take as 
initial condition a state which, up to small spatial fluctuations, is spatially homogeneous: 
$ ( x , t )  = $0. To determine whether this state is stable against small fluctuations we 
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write $(x, t )  = $0 + J(x, t )  in (3) and linearise in 4. After Fourier transforming and 
solving we obtain once more an exponential dependence of & on time, but this time with 

If $0 corresponds to a point in the central part of the potential, between the two 
inflection points, then V”($O)  < 0. In that case we have unstable growth for all k such 
that k < I C ,  = JIM, with a maximum growth rate at k = k , / 2 .  Phase separation 
through unstable growth is called ‘spinodal decomposition’, and the two inflection points 
of the potential are called ‘spinodal points’. If, on the other hand, $0 lies outside this 
region, such that V”($o) > 0, small fluctuations in the initial condition decay away to zero. 
(Again, thermal fluctuations do not change the main conclusion of this linear analysis.) 

In the latter case, however, the phase separated state in which a fraction (1 + & ) / 2  of 
the majority phase, $ = 1 (we are assuming $0 > 0), coexists with a fraction (1  - 40)/2 
of the minority phase, $ = -1, has a lower free energy than the homogeneous phase, 
because the volume free energy gain outweighs the cost of creating an interface between 
the phases. The uniform state is therefore only metastable. The free energy can be 
lowered by the nucleation of a ‘critical droplet’ of the minority phase. The critical droplet 
is an unstable solution of the time-independent equation V 2 p  = 0, where p = bF/@ 
is the chemical potential. Since no current flows, a solution where p is a constant is 
required. Furthermore, p = V’($) - V2q5 implies (by considering regions far from the 
droplet, where $ = $0) that 1 = V’($o). In the interior of the droplet, far from the 
boundary, p = V’($-), where $- is the value inside the droplet. 

The radius, R,, of the critical droplet can be determined as follows. The equation 
p = V’($)  - V2$ = V’($O) gives dL$/dr2 + (2 / r )d$ /dr  - U’($) = 0, where U ( 4 )  = 
V($)  - V‘($O)$ is an effective potential, with minima at  6- and $0. Multiplying by 
d$/dr ,  integrating from zero to infinity, and recognising that d$/dr vanishes at  r = 0 
and r = 00, and is sharply peaked at r = R,, gives (2/R,) J,”(d#/dr)2dr = AU, where 
-AU = U($-)-U($o) is the free energy gain per unit volume in the interior of the droplet. 
Thus R, = 2o/AU, where CT = J(d$/dr) ’dr is the surface tension (see Section 3.3). 

A simpler way to get the same result is to note that the net free energy change to 
create a droplet of radius R is AF(R)  = 4rR2 U- (4rR3/3)AU, the first and second terms 
corresponding to surface and volume free energies respectively. This function has a max- 
imum value AF(R,) = (16.rr/3)a3/(AU)’ at a radius R, = 2a/AU. Clearly the droplet 
can freely expand once R > R,. The activation barrier for droplet creation is AF(Rc),  so 
the activation rate per unit volume is proportional to exp[-AF(R,)/k~Tl. This process is 
called ‘homogeneous nucleation’ (see Frenkel, this volume, for an application to colloidal 
systems). 

Since AU + 0 as do -+ 1, nucleation becomes rarer as time progresses, as more and 
more material of the minority phase get mopped up by the nucleating droplets, pushing 
the value of 4 in the background majority phase towards its saturated value. Subsequent 
growth is by the ‘evaporation-condensation mechanism’, whereby small drops (whose size 
is below the current value of R, defined by the background value of 4) evaporate, and 
material condenses onto the larger drops. This mechanism is discussed in more detail 
below. 

wk = -k2[V”($o) + k 2 ] .  
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3 Scaling and growth laws 

3.1 The scaling hypothesis 

Although originally motivated by experimental and simulation results [6-91, for ease of 
presentation it is convenient to introduce the scaling hypothesis first, and then discuss its 
implications for observed growth laws and scaling functions. Briefly, the scaling hypothesis 
states that there exists, at  late times, a single characteristic length scale L( t )  such that the 
domain structure is (in a statistical sense) independent of time when lengths are scaled by 
L(t) .  It  should be stressed that scaling has not been proved, except in some simple models 
such as the one-dimensional Glauber model [lo] and the n-vector model with n = M [ll]. 
However, the evidence in its favour is compelling. 

We shall find, in Section 5, that the scaling hypothesis, together with a result for the 
tail of the structure factor, is sufficient to determine the form of L( t )  for most cases of 
interest. 

Two commonly used probes of the domain structure are the equal-time pair correlation 
function 

C(r, t )  = M X  + r, t )  $(XI t ) )  7 

S(k, t )  = ($k(t) $ -k ( t ) )  . 

(5) 

(6) 

and its Fourier transform, the equal-time structure factor, 

Here angle brackets indicate an average over initial conditions. The structure factor can, 
of course, be measured in scattering experiments. The existence of a single characteristic 
length scale, according to the scaling hypothesis, implies that the pair correlation function 
and the structure factor have the scaling forms 

where d is the spatial dimensionality, and g(y) is the Fourier transform of f(z). Note that 
f (0)  = 1, since (at T = 0) there is perfect order within a domain. 

At general temperatures T < T,, C(0,  t )  = M 2 ,  where M is the equilibrium value 
of the order parameter. (Note that the scaling limit is defined by r >> E ,  L >> [, with 
T / L  arbitrary, where [ is the equilibrium correlation length). We can extract the factor 
M 2  explicitly by writing C(r, t )  = M 2  f(r/L).  The statement that T is irrelevant then 
amounts to asserting that any remaining temperature dependence can be absorbed into 
the domain scale L,  such that the function f(z) is independent of T .  The scaling forms 
(7) are well supported by simulation data and experiment. 

3.2 Two-time scaling and aging 

For future reference, we note that the different-time correlation function, defined by 
C(r, t ,  t’) = ($(x + r,t) d(x, t’)), can also be written in scaling form. A simple gener- 
alisation of (7) gives [12, 131 

C(r, t ,  t’) = f ( r / L ,  r /L’)  , (8) 
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where L ,  L’ stand for L(t)  and L(t’). Especially interesting is the limit L >> L‘, when (8) 
takes the form 

c ( r ,  t ,  t’) 3 (L’/L)’ h ( r / ~ )  , L >> L’ , (9) 

where the exponent x, first introduced by Fisher and Huse in the context of non-equilibrium 
relaxation in spin glasses [14], is a non-trivial exponent associated with phase ordering 
kinetics [15]. It  has recently been measured in an experiment on twisted nematic liquid 
crystal films [16]. The autocowelation function, A(t, t’) = C(0,  t ,  t’) is therefore a function 
only of the ratio L’/L, with A(t) N (L’IL)’ for L >> L’. 

The fact that the correlation function A( t ,  t‘) depends always on both times, and not 
simply on the difference, t-t‘, is an example of aging (see also the lectures of Bouchaud and 
of Kob, this volume). In particular if one waits a time t ,  (‘waiting time’), the correlation 
function A(t,, t ,  + t )  depends on the ratio t / tw ,  i . e .  on the age of the system when the 
measurement was started. In coarsening phenomena, aging is a natural consequence of 
the fact that the (infinite) system never reaches equilibrium: you can measure the age of 
the system from the size of the domains. 

In the following sections, we explore the forms of the scaling functions in more detail. 
For example, a linear behaviour of f(z) for small scaling variable, f(z) = 1 - az + . -, is 
a generic feature for scalar fields, both conserved and non-conserved. We shall see that it 
is a simple consequence of the existence of ‘sharp’ (in a sense to be clarified), well-defined 
domain walls in the system. A corollary that we shall demonstrate is that the structure 
factor scaling function g(y) exhibits a power-law tail, g(y) N y-(d+’) for y >> 1, a result 
known as ‘Porod’s law’ [17, 181. In Section 5 we shall show that this result, and its 
generalisation to more complex fields, together with the scaling hypothesis, are sufficient 
to determine the growth law for L(t). 

3.3 Domain walls 

It is instructive to first look at the properties of a flat equilibrium domain wall (Figure 1). 
From (2) the wall profile is the solution of the equation 

with boundary conditions 4(+m) = f l ,  where g is a coordinate normal to the wall. 
We can fix the ‘centre’ of the wall (defined by 4 = 0) to be at g = 0 by the extra 
condition 4(0) = 0. Integrating (10) once, and imposing the boundary conditions, gives 
(d4 /dg)2  = 2V(4). This result can be used in (1) to give the energy per unit area of wall, 
i .e.  the surface tension, as 

~ = / ~ d g  -CC ( $ ) ’ = / ‘ d & / W  -1 

Note that, for scalar fields, the two terms in (1) contribute equally to the wall energy. 

4 = f l  gives 
The profile function $(g) has a sigmoid form. For g + +m, linearising (10) around 

1 T 4 N exp(- [~”( f1) ]”~IgI )  , 9 -+ fm , (12) 
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i.e. the order parameter saturates exponentially fast away from the wall. It follows that 
the excess energy is localised in the domain walls, and that the driving force for the 
domain growth is the wall curvature, since the system energy can only decrease through 
a reduction in the total wall area. The growth mechanism is rather different, however, for 
conserved and nonconserved fields. We treat nonconserved fields first. 

3.4 The Allen-Cahn equation 

The existence of a surface tension implies a force per unit area, proportional to the mean 
curvature, acting at each point on the wall. The calculation is similar to that of the excess 
pressure inside a bubble. Consider, for example, a spherical domain of radius R, in three 
dimensions. If the force per unit area is F ,  the work done by the force in decreasing the 
radius by dR is 4.rrFRZdR. Equating this to the decrease in surface energy, g.rraRdR, gives 
F = 2a/R. For model A dynamics, this force will cause the walls to move, with a velocity 
proportional to the local curvature. If the friction constant for domain-wall motion is 7 7 ,  
then this argument gives qdR/dt = -2a/R. For general dimension d ,  the factor '2' on 
the right is replaced by ( d  - 1 ) .  

It is interesting to see how this result arises directly from the equation of motion (2).  
We consider a single spherical domain of (say) + = -1 immersed in a sea of q5 = +l. 
Exploiting the spherical symmetry, (2) reads 

V'(+) . (13) 
a+ - a24 d -  iaq5 - - --$--- 
at dr2 r ar 

Provided the droplet radius R is much larger than the interface width < (which could be 
defined from (12) as < = [V"(l)]-'/*, say), we expect a solution of the form 

+(r, t )  = f (r  - R( t ) )  . (14) 

Inserting this in (13) gives 

d - 1  dR 
0 = f"  + [ y + 4 f' - V'(f) 

The function f (z)  changes from -1 to 1 in a small region of width E near z = 0. Its 
derivative is, therefore, sharply peaked near z = 0 (i .e.  near T = R(t ) ) .  Multiplying (15) 
by f' and integrating through the interface gives 

( d  - 1) dR o = -  + - 1  R dt 
where we have used f '  = 0 far from the interface, and that V(f)  has the same value on 
both sides of the interface (in the absence of a bulk driving force, i.e. a magnetic field). 
Integrating (16) gives R2(t) = R2(0) - 2(d  - l ) t ,  i.e. the collapse time scales with the 
initial radius as t N R'(0). Equation (16) is identical to our previous result obtained by 
considering the surface tension as the driving force, provided the surface tension o and 
friction constant 77 are equal. This we show explicitly below. 

The result for general curved surfaces was derived by Allen and Cahn [19], who noted 
that, close to a domain wall, one can write V+ = (a+/ag) t  2, where is a unit vector nor- 
mal to the wall (in the direction of increasing $), and so V2+ = (a2+/ag2)t+(a$/6'g),  0.2. 
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Noting also the relation (a$/at), = - ( a $ / a g ) t  (ag /&)+,  (2) can be recast as 

Assuming that, for gently curving walls, the wall profile is given by the equilibrium con- 
dition ( lo) ,  the final two terms in (17) cancel. Noting also that (as/%)$ is just the wall 
velocity v (in the direction of increasing $), (17) simplifies to 

(18) = - V .  2 = -K , 

the ‘Allen-Cahn equation’, where K = V g is ( d  - 1) times the mean curvature. For 
brevity, we will call K simply the ‘curvature’. An alternative derivation of (18) follows 
the approach used for the spherical domain, i .e. we multiply Equation 17 by ( & l a g ) ,  
and integrate (with respect to g )  through the interface. This gives the same result. 

Equation 18 is an important result, because it establishes that the motion of the 
domain walls is determined (for non-conserved fields) purely by the local curvature. In 
particular, the detailed shape of the potential is not important: the main role of the 
double-well potential V ( $ )  is to establish (and maintain) well-defined domain walls. (Of 
course, the well depths must be equal, or there would be a volume driving force.) 

For a spherical domain, the curvature K is ( d  - l ) /R,  and (18) reduces to (16). 
Our explicit treatment of the spherical domain verifies the Allen-Cahn result, and, in 
particular, the independence from the potential of the interface dynamics. 

A second feature of (18) is that the surface tension ~7 (which does depend on the 
potential) does not explicitly appear. How can this be, if the driving force on the walls 
contains a factor a? The reason, as we have already noted, is that one also needs to 
consider the f r ic t ion  constant per unit area of wall, 77. The equation of motion for the 
walls in this dissipative system is 7v = -OK. Consistency with (18) requires 7 = 0. 
In fact, 7 can be calculated independently, as follows. Consider a plane wall moving 
uniformly (under the influence of some external driving force) at speed v. The rate of 
energy dissipation per unit area is 

using (2). The wall profile has the form 4 ( g , t )  = f ( g  - v t ) ,  where the profile function f 
will, in general, depend on v. Putting this form into (19) gives 

2 _ -  - -2 / d g  (z)  = --ad , d E  
d t  

where the definition (11) of the surface tension a was used in the final step, and the 
profile function f(z) replaced by its v = 0 form to lowest order in U .  By definition, 
however, the rate of energy dissipation is the product of the frictional force V U  and the 
velocity; therefore d E / d t  = - 7 7 ~ ~ .  Comparison with (20) gives 71 = U .  We conclude that, 
notwithstanding some contrary suggestions in the literature, the Allen-Cahn equation is 
completely consistent with the idea that domain growth is driven by the surface tension 
of the walls. 
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3.5 Conserved fields 

For conserved fields the interfaces cannot move independently. At late times the domi- 
nant growth mechanism is the transport of the order parameter from interfaces of high 
curvature to regions of low curvature by diffusion through the intervening bulk phases. 
To see how this works, we first linearise (3) in one of the bulk phases, with say qi N 1. 
Putting 4 = 1 + 4 in (3), and linearising in $, gives 

Since the characteristic length scales are large at  late times, the V4 term is negligible, and 
(21) reduces to the diffusion equation, with diffusion constant D = V”(1). The interfaces 
provide the boundary conditions, as we shall see. However, we can first make a further 
simplification. Due to the conservation law, the interfaces move little during the time it 
takes the diffusion field 4 to relax. If the characteristic domain size is L, the diffusion 
field relaxes on a time scale t D  N L2.  We shall see below, however, that a typical interface 
velocity is of order l / L z ,  so the interfaces only move a distance of order unity ( i . e .  much 
less than L)  in the time t D .  This means that the diffusion field relaxes quickly compared 
to the rate at which the interfaces move, and is essentially always in equilibrium with 
the interfaces. The upshot is that the diffusion equation can be replaced by Laplace’s 
equation, 0’4 = 0, in the bulk. 

To derive the boundary conditions at the interfaces, it  is convenient to work, not 
with 4 directly, but with the chemical potential p 6F/6qi. In terms of p, (3) can be 
written as a continuity equation, 

j = -Vp 
p = V‘(qi) - V2d. 

In the bulk, p and_$ are proportional to each other, because (24) can be linearised to give 
p = V”(l)$ - V2$, and the V2 term is again negligible. Therefore p also obeys Laplace’s 
equation, 

v2p = 0 , (25) 

in the bulk. 
The boundary conditions are derived by analysing (24) near an interface. As in the 

derivation of the Allen-Cahn equation, we consider surfaces of constant qi near the interface 
and introduce a Cartesian coordinate system at each point, with a coordinate g normal to 
the surface (and increasing with increasing 4) .  Then (24) becomes (compare Equation 17), 

near the interface, where K = V.2 is the curvature. The value of at the interface can be 
obtained (just as in our treatment of the spherical domain in Section 3.4), by multiplying 
through by (aqi/ag)t, which is sharply peaked at  the interface, and integrating over g 
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through the interface. Noting that p and K vary smoothly through the interface, this 
gives the completely general relation 

pAq5 = AV - U K  (27) 

a t  the interface, where Aq5 is the change in 4 across the interface, and AV is the difference 
in the minima of the potential for the two bulk phases. In deriving (27), we have used 

+ 0 far from the interface, and made the identification J’dg(aq5/b’g): = U ,  as 
in (ll), with U the surface tension. Simplifying to  the case where the minima have equal 
depth (we shall see that the general case introduces no new physics), and taking the 
minima to be at q5 = f l  as usual, gives AV = 0 and Aq5 = 2. Then (27) becomes 

p - u K / ~ .  (28 )  

This (or, more generally, Equation 27) is usually known as the Gibbs-Thomson boundary 
condition. Note that we have assumed that the order parameter takes its equilibrium 
value (fl) in both bulk phases. This is appropriate to the late stages of growth in which 
we are primarily interested. 

To summarise, (28) determines p on the interfaces in terms of the curvature. Between 
the interfaces, p satisfies the Laplace equation (25). The final step is to use (23) to 
determine the motion of the interfaces. An interface moves with a velocity given by the 
imbalance between the current flowing into and out of it: 

where U is the speed of the interface in the direction of increasing 4, g is the usual 
coordinate normal to interface, [. -1 indicates the discontinuity across the interface, and 
we have assumed, as usual, that 4 21 f l  in the bulk phases. 

To illustrate how ( 2 5 ) ,  (28 )  and (29) are used, we consider again the case of a single 
spherical domain of negative phase (q5 = -1) in an infinite sea of positive phase (q5 = +l). 
We restrict ourselves to d = 3 for simplicity. The definition of p,  Equation 24, gives 
p = 0 at infinity. Let the domain have radius R(t ) .  The solution of (25 )  that obeys 
the boundary conditions p = 0 a t  infinity and (28 )  a t  r = R, and respects the spherical 
symmetry is (using K = 2 /R  for d = 3) p = -u/r  for r 2 R. Inside the domain, the 1/r 
term must be absent to avoid an unphysical singularity at T = 0. The solution of (25) in 
this region is therefore p = const. The boundary condition (28 )  gives p = -o/R. 

To summarise, 

Using (29), with A$ = 2 ,  then gives 

and hence R3( t )  = R 3 ( 0 )  - 3at/2. We conclude that a domain of initial radius R(0) 
evaporates in a time proportional to R3(0) .  This contrasts with the R 2 ( 0 )  result obtained 
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for a non-conserved order parameter. In the non-conserved case, of course, the domain 
simply shrinks under the curvature forces, whereas for the conserved case it evaporates 
by the diffusion of material to infinity. 

We now briefly discuss the case where the potential minima have unequal depths. Con- 
sider first a planar interface separating the two equilibrium phases, with order parameter 
values $1 and $2.  Since no current flows, j = -Vp = 0 gives p =constant. From the 
definition (24 )  of p, and the fact that V2$ vanishes far from the interface, it follows that 
p = V’($l) = V‘(&). On the other hand, the Gibbs-Thomson boundary condition (27) 
for a flat interface ( K  = 0) gives p = AV/A$. Combining these two results gives 

leading to the common tangent construction that determines $1 and $2 as the points 
where the common tangent touches the potential. If one now repeats the calculation for 
a spherical drop, with a domain with $ = $1 immersed in a sea with $ = $2, one obtains 
the equation of motion for the radius, dR/dt = -2a/(A$)’R’, a simple generalisation 
of (31). Henceforth, we will consider only the case of degenerate minima. 

3.6 Growth laws 

The scaling hypothesis suggests a simple intuitive derivation of the ‘growth laws’ for L( t ) ,  
which are really just generalisations of the calculations for isolated spherical domains. For 
model A, we can estimate both sides of the Allen-Cahn equation (18)  as follows. If there 
is a single characteristic scale L, then the wall velocity w N dL/dt, and the curvature 
K N 1/L. Equating and integrating gives L( t )  N t’12 for non-conserved scalar fields. 

For conserved fields (model B), the argument is slightly more subtle. We shall follow 
the approach of Huse [ Z O ] .  From ( 2 8 ) ,  the chemical potential has a typical value p N a / L  
on interfaces, and varies over a length scale of order L. The current, and therefore the 
interface velocity w, scale as V p  N a/L2,  giving dL/dt N a/L2 and L(t)  N (at)’I3. -4 
more compelling argument for this result will be given in Section 5 .  We note, however, 
that the result is supported by evidence from computer simulations [20, 211 (which usu- 
ally require, however, some extrapolation into the asymptotic scaling regime) as well as 
a Renormalisation Group (RG) treatment [4, 51. In the limit that one phase occupies 
an infinitesimal volume fraction, the original Lifshitz-Slyozov-Wagner theory [22, 231 con- 
vincingly demonstrates a t113 growth. 

It is interesting that these growth laws can also be obtained using naive arguments 
based on the results for single spherical domains [2] .  For nonconserved dynamics, we know 
that a domain of radius R collapses in a time of order R2. Therefore, crudely speaking, 
after time t there will be no domains smaller than t112, so the characteristic domain size is 
L(t)  N t112. Of course, this is an oversimplification, but it captures the essential physics. 
For conserved dynamics, the same line of argument leads to t113 growth. In fact, this 
approach can be used rather generally, for a variety of systems [24], and gives results 
which agree with the exact growth laws that will be derived in Section 5. 
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3.7 Binary liquids 

The phase separation of binary liquids is a phenomenon of considerable experimental in- 
terest. Model B is inappropriate for this system, since it takes no account of the transport 
of the older parameter by hydrodynamic flow. Here we briefly review the modifications 
to model B needed to describe binary liquids. 

The principal new ingredient is ‘advection’ of the order parameter by the fluid. The 
appropriate modification of (3) is 

where v is the (local) fluid velocity, and we have reinstated the transport coefficient A. 
The velocity obeys the Navier-Stokes equation which, with the simplification that the 
fluid is incompressible, reads 

p ($+(V.V)V ) = q V 2 v - V p - $ V p ,  (34) 

where p is the pressure, q the viscosity, and the density p is constant. The final term 
in (34) arises from the free energy change per unit volume $ 8 ~  that accompanies the 
transport of a fluid region with order parameter 4 over a distance for which the change 
in the chemical potential is 8p : chemical potential gradients act as a driving force on the 
fluid. 

In the overdamped limit appropriate to most experimental systems, the left side of (34), 
associated with the inertia of the fluid, can be set to zero. The growth laws can then be 
obtained by dimensional arguments as follows. From the previous subsection we have 
p - a /L ,  and Vp - a/L2.  The pressure difference across a curved surface is of order 
u / L ,  so the term Vp on the right of (34) also scales as a/L2.  Finally, we can estimate 
V2v - v f / L 2 ,  where vj-is the typical fluid velocity. Equating the terms on the right of 
(34) then gives vf - a/q. 

When the fluid velocity, wj - a/q,  is much smaller than the interface velocity, qnt N 

Aa/L2, derived from the evaporation-condensation mechanism, i.e. when L << ( A q ) 1 / 2 ,  
the fluid motion is irrelevant. Using vint - dL/dt - Aa/LZ gives our previous result, 
L - 

In the opposite regime, L >> (AV)’/’, vint and vf are of the same order, giving L( t )  - 
d / q ,  a result first derived by Siggia [25]. This result has been confirmed by experiments 
[26] and by numerical simulations [27, 28, 291. Because the inertial terms are negligible 
compared to the viscous force here, we will call this the ‘viscous hydrodynamic’ (or just 
‘viscous’) regime. 

Under what conditions is it correct to ignore the ‘inertial’ terms on the left-hand side 
of (34)? Using dimensional arguments again, we see that these terms are of order pL/t2. 
Comparing this to the driving term 4Vp - o/L2 on the right, (the viscous term vV2v is 
of the same order in the viscous regime), and using the result derived above, t - qL/a,  for 
this regime, shows that the inertial terms are negligible when L << q2/op. At sufficiently 
late times, when this inequality is violated, the inertial terms will therefore be important. 
In this ‘inertial’ regime, L( t )  is determined by equating the inertial terms, which scale as 
pL/tZ,  to the driving term $Vp, which scales as u / L 2  (and the viscous term is negligible) 

in the ‘diffusive regime’. 
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to give L N ( ~ t ’ / p ) ’ / ~ .  The t2 /3  growth in the inertial regime was first predicted by 
F’urukawa [30]. 

To summarise, there are in principle three growth regimes for phase separation in 
binary liquids, after a deep quench, with the growth laws 

L(t)N (Xat)’/3 L << (hp (‘diffusive’) , (35) 
4 7 7  (AV)’/’ << L << $ /pa  (‘viscous hydrodynamic’), (36) 

+, ( a t 2 / p ) 1 / 3  L 2+ q2/Pa (‘inertial hydrodynamic’). (37) 

These results basically follow from dimensional analysis. The ‘inertial hydrodynamic’ 
regime has not, to my knowledge, been observed experimentally. However, a t2I3 regime 
has been observed a t  late times in simulations of two-dimensional [29, 311 and three- 
dimensional [32] binary liquids. 

Siggia [25] has discussed the physical origin of the linear growth in the ‘viscous hydro- 
dynamic’ regime. He argues that the essential mechanism is the hydrodynamic transport 
of fluid along the interface driven by the surface tension. This mechanism, however, can 
only operate if both phases are continuous. If, by contrast, the minority phase consists of 
independent droplets (which occurs for volume fractions less than about 15%), this mech- 
anism tends to make the droplets spherical but does not lead to any coarsening. In the 
absence of thermal fluctuations, therefore, the Lifshitz-Slyozov evaporation-condensation 
mechanism determines the growth even beyond the nominal crossover length given above. 
Thermal fluctuations, however, facilitate a second coarsening mechanism, namely droplet 
coalescence driven by Brownian motion of the droplets. Again, Siggia has given the es- 
sential argument. The mobility p of a droplet of size L is of order l / q L ,  so the diffusion 
constant is given by the Einstein relation as D = p k B T  N kBT/qL, where k B  is Boltz- 
mannk constant. The time for the droplet to diffuse a distance of order L (and coalesce 
with another droplet) is t N L z / D  N qL3/kBT,  which gives L N ( k ~ T t / q ) l / ~ .  The relative 
contribution of these two mechanisms (evaporation-condensation and droplet coalescence) 
to the coarsening rate is has been discussed by Siggia [25]. 

In recent work, Grant and Elder [33] have considered the possible role of turbulence 
in the late stages of phase separation for binary liquids. Flow becomes turbulent for 
large values of the dimensionless Reynolds number, Re = pl,w,/q, where 1, and U, are 
characteristic length and velocity scales respectively. Here w, is just the fluid velocity, U U ~ ,  

but what is the appropriate length scale 1, for the phase separating system? Suppose we 
tentatively identify 1, with the domain scale L( t ) .  Although L( t )  grows with time in the 
diffusive and viscous regimes, while uf N a/q is constant, turbulence does not occur in 
these regimes since Re becomes of order unity only a t  the crossover between viscous and 
inertial regimes. To see this, we put w, = a/q  and 1, = $ / p a ,  the crossover value from 
(37). This gives Re zz 1 a t  the crossover to the inertial regime. In the inertial regime 
proper, however, using I ,  N L ( t ) ,  and U, N dL/dt gives Re +, ( p ~ ~ t / $ ) ’ / ~ ,  which grows 
without limit. Grant and Elder argue that the inertial regime cannot be an asymptotic 
scaling regime since phase separation would be arrested by turbulent remixing of the fluids. 
Rather, an asymptotic coarsening state would require L ( t )  N t’i2 so that Re saturates 
at late times. These arguments are, however, suggestive rather than rigorous. Possible 
escape mechanisms from the Grant-Elder scenario, which would allow asymptotic t2I3 
coarsening, have been suggested by Kendon et a1 [32, 341, and no indication of departures 
from t2I3 scaling were found in [32] for Reynolds numbers up to  350. 
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4 Topological defects and Porod tails 

4.1 Topological defects 

The domain walls discussed in the previous section are the simplest form of ‘topological 
defect’, and occur in systems described by scalar fields [35]. They are surfaces, on which 
the order parameter vanishes, separating domains of the two equilibrium phases. A do- 
main wall is topologically stable: local changes in the order parameter can move the wall, 
but cannot destroy it. For an isolated flat wall, the wall profile function is given by the 
solution of ( lo) ,  with the appropriate boundary conditions, as discussed in Section 3.3. 
For the curved walls present in the phase ordering process, this will still be an approxi- 
mate solution locally, provided the typical radius of curvature L is large compared to the 
intrinsic width (or ‘core size’), c ,  of the walls. The same condition, L >> [, ensures that 
typical wall separations are large compared to their width. 

Let us now generalise the discussion to vector fields. The ‘O(n)  model’ is described 
by an n-comtonent vector field for which we use the notation $(x, t ) ,  with a free energy 
functional F[4] that is invariant under global rotations of 6. A suitable generalisation of 
( I )  is 

where CO$),” means zt=l(&@)z ( i . e .  a scalar product over both spatial and ‘inteyal’ 
coordinates), and V($) is ‘mexican hat’ (or ‘wine bottle’) potential, such as (1 - 
(Figure 1). It is clear that F[$] is invariant under global rotations of I$ (a continuous 
symmetry), rather than just the inversion symmetry (4 + -4, a discrete symmetry) of 
the scalar theory. We will adopt the convention that V has its minimum for 

For non-conserved fields, the simplest dynamics (model A) is a straightforward gener- 
alisation of (2), namely 

= 1. 

For conserved fields (model B), we simply add another (-V2) in front of the right-hand 
side. 

Stable topological defects for vector fields can be generated, in analogy to the scalar 
case, by seeking stationary solutions of (39) with appropriate boundary conditions. For 
the O(n) theory in d-dimensional space, the requirement that all n components of 8 vanish 
at the defect core defines a surface of dimension d - n (e.g. a domain wall is a surface of 
dimension d - 1: the scalar theory corresponds to n = 1). The existence of such defects 
therefore requires n 5 d. For n = 2 these defects are points (‘vortices’) for d = 2 or lines 
(‘strings’, or ‘vortex lines’) for d = 3. For n = 3, d = 3 they are points (‘hedgehogs’, or 
‘monopoles’); see Figure 2. Note that the forms shown are radially symmetric with respect 
to the defect cor: any configuration obtained by a global rotation is also acceptable. For 
n < d, the field 4 only varies in the n dimensions ‘orthogonal’ to the defect core, and is 
uniform in the remaining d - n dimensions ‘parallel’ to the core. 

For n < d, the defects are spatially extended. Coarsening occurs by a ‘straightening 
out’ (or reduction in typical radius of curvature) as sharp features are removed, and by the 
shrinking and disappearance of small domain bubbles or vortex loops. These processes 

Copyright © 2000 IOP Publishing Ltd.



Coarsening dynamics 221 

Figure 2. Topological defects in the O ( n )  model: (a)  domain wall; (b)  vortex; (e) string; 
( d )  monopole or hedgehog; (e) antivortex. 

reduce the total area of domain walls, or length of vortex line, in the system. For point 
defects (n  = d) ,  coarsening occurs by the mutual annihilation of defect-antidefect pairs. A 
defect and antidefect have different 'topological charges': e.g. for a vort,ex and antivortex 
the field rotates by 27r or -27r respectively on encircling the vortex. 

is a 
unit vector in the radial direction, and j ( r )  is the profile function. Inserting this form 
into (39), with the time derivative set to zero, gives the equation 

For radially symmetric defects, the field 4 has the form $(r) = i: j ( r ) ,  where 

f - V" = 0 3 

with boundary conditions j ( 0 )  = 0, j ( m )  = 1. Of special interest is the approach to 
saturation a t  large r .  Putting f ( r )  = 1 - E(r) in (40), and expanding to first order in E ,  

yields 
(n  - 1) 1 
V"(1) r* ' E(r) N - - r + m .  

This should be contrasted with the exponential approach to saturation (12) for scalar 
fields. A convenient definition of the 'core size' ( is through j N 1 - t 2 / r 2  for large r .  
This gives ( = [(n - l)/V"(l)]1/2 for n > 1. 

4.2 Porod tails 

The presence of topological defects, seeded by the initial conditions, in the system un- 
dergoing phase ordering has an important effect on the 'short-distance' form of the pair 
correlation function C(r, t ) ,  and therefore on the 'large-wavenumber' form of the structure 
factor S(k, t ) .  To see why this is so, we note that, according to the scaling hypothesis, we 
would expect a typical field gradient to be of order lV$l N 1/L. At a distance r from a 
defect core, however, with ( << r << L,  the field gradient is much larger, of order 1/r (for 
a vector field), because 4 = i: implies (04)' = (n  - 1)/r2. Note that we require r >> < for 
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the field to be saturated, and r << L for the defect field to be largely unaffected by other 
defects (which are typically a distance L away). This gives a meaning to ‘short’ distances 
( E  << r << L), and ‘large wavenumbers’ (L-* << k << E - ’ ) .  The large field gradients near 
defects leads to a non-analytic behaviour at z = 0 of the scaling function f(x) for pair 
correlations. 

We start by considering scalar fields. Consider two points x and x+r, with < << r << L. 
The product 4(x) 4(x + r) will be -1 if a wall passes between them, and +1 if there is 
no wall. Since r << L, the probability to find more than one wall can be neglected. The 
calculation amounts to finding the probability that a randomly placed rod of length r 
cuts a domain wall. This probability is of order r/L, so we estimate 

C(r , t )  = (-1) x (TIL) + (+l) x (1 - r/L) 
= 1 - 2 r / L ,  r < L .  (42) 

The factor 2 in this result should not be taken seriously. 
The important result is that (42) is non-analytic in r at r = 0, since it is linear in 

r = Irl. Technically, of course, this form breaks down inside the core region, when T < E .  
We are interested, however, in the scaling limit defined by r >> <, L >> E ,  with z = r/L 
arbitrary. The nonanalyticity is really in the scaling variable z. 

The nonanalytic form (42) implies a power-law tail in the structure factor, which can 
be obtained from (42) by simple power-counting: 

1 S(k, t )  N - Lkd+l ’ k L > > 1 ,  (43) 

a result known universally as ‘Porod’s law’. It was first written down in the general 
context of scattering from two-phase media [17]. Again, one requires k< << 1 for the 
scaling regime. Although the k-dependence of (43) is what is usually referred to as 
Porod’s law, the L-dependence is equally interesting. The factor 1/L is simply (up to 
constants) the total area of domain wall per unit volume, a fact appreciated by Porod, 
who proposed structure factor measurements as a technique to determine the area of 
interface in a two-phase medium [17]. On reflection, the factor 1/L is not so surprising. 
For kL >> 1, the scattering function is probing structure on scales much shorter than 
the typical interwall spacing or radius of curvature. In this regime we would expect the 
structure factor to scale as the total wall area, since each element of wall with linear 
dimension large compared to l / k  contributes essentially independently to the structure 
factor. 

This observation provides the clue to how to generalise (43) to vector (and other) 
fields [36, 371. The idea is that, for kL >> 1, the structure factor should scale as the total 
volume of defect core. Since the dimension of the defects is d - n, the amount of defect 
per unit volume scales as L-”. Extracting this factor from the general scaling form (7) 
yields 

S(k,t)  N ~ k L > > l ,  (44) 
1 

Ln kd+n 
for the O(n) theory, a ‘generalised Porod’s law’. 

Equation 44 was first derived from approximate treatments of the equation of motion 
(39) for nonconserved fields [38, 39, 40, 411. In these derivations, however! the key role 
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of topological defects was far from transparent. The above heuristic derivation suggests 
that the result is in fact very general (e.g. it should hold equally well for conserved fields), 
with extensions beyond simple 0 (n) models. Appropriate techniques, which also enable 
determination of the amplitude of the tail, were developed by Bray and Humayun [37]. 

5 Growth laws revisited 

The Porod tails discussed earlier, together with the scaling hypothesis, provide a ba- 
sis for deriving exact growth laws for all phase-ordering systems with purely dissipative 
dynamics. 

Although the growth laws for both nonconserved and conserved scalar systems, and 
conserved fields in general, have been derived by a number of methods, there has up until 
now been no simple, general technique for obtaining L( t ) .  In particular, the growth laws 
for non-conserved vector fields have, until recently, been somewhat problematical. Here 
we describe a very general approach, recently developed by Bray and Rutenberg (BR) 
[42, 241, to obtain L( t )  consistently by comparing the global rate of energy change to the 
energy dissipation from the local evolution of the order parameter. This method allows 
the explicit derivation of growth laws for O(n)  models, but the results can be also be 
applied to other systems with similar defect structures, such as liquid crystals. 

The BR approach is based on the dissipation of energy that occurs as the system 
relaxes towards its ground state. The energy dissipation is evaluated by considering the 
motion of topological defects, when they exist. The defect contribution either dominates 
the dissipation or gives a contribution that scales with time in the same way as the 
total dissipation. The global rate of energy change, computed from the time derivative 
of the total energy, is equated to the energy dissipation from the local evolution of the 
order parameter. For systems with a single characteristic scale L( t ) ,  this approach self- 
consistently determines the time-dependence of L(t) .  

5.1 A useful identity 

We begin by writing down the equation of motion for the Fourier components &: 
at& = -k’ ( a F / $ - k ) ,  (45) 

The conventional non-conserved (model A) and conserved (model B) cases are p = 0 
and p = 2, respectively. (Elsewhere in this article, the symbol p has been used for the 
chemical potential: the meaning should be clear from the context). 

Integrating the rate of energy dissipation from each Fourier mode, and then using the 
equation of motion (45), we find 

where c = ( F )  /V is the mean energy density, and Jk is the integral J ~ i ~ k l ( 2 7 r ) ~ .  We will 
relate the scaling behaviour of both sides of (46) to that of appropriate integrals over the 
structure factor, S(k, t ) ,  and its two-time generalisation. Either the integrals converge, 
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and the dependence on the scale L ( t )  can be extracted using the scaling form (7) (or its 
two-time generalisation (8)), or the integrals diverge at high k (in the ‘ultraviolet’, UV) 
and have to be cut off a t  k,, N 1/<, corresponding to a dominant contribution from the 
core scale. It is just this small-scale structure that is responsible for the generalised Porod 
law (44) for the structure factor, and the time-dependence of any integrals controlled by 
the core scale can be extracted from a knowledge of the defect structure. 

The energy integral. To see how this works, we first calculate the scaling behaviour 
of the energy density, E ,  which is captured by that of the gradient term in (1): 

E N ((VJ)’) = / k k ’ L d g ( k L ) ,  (47) 

where we have used the scaling form (7) for the structure factor. For n > 2 the integral 
is UV convergent, and a change of variables yields 6 N L-’. For n 5 2 ,  when the integral 
is UV divergent, we use Porod’s law (44) and impose a cutoff a t  k - l/<, to obtain [39] 

n < 2 ,  
n = 2 ,  
n > 2 .  

We see that the energy is dominated by the defect core density, Pdef - L+, for n < 2, by 
the defect field a t  all length scales between and L for n = 2, and by variations of the 
order parameter a t  scale L ( t )  for n > 2. 

The dissipation integral. We now attempt to evaluate the right hand side of (46) 
in a similar way. Using the scaling hypothesis for the two-time function, 

($k(t) ’ $-k(t‘))  = k-dg(kL( t ) ,  kL(t’) ) , (49) 

which is the spatial Fourier transform of (8), we find 

where L 5 dL/dt. 
When the k-space integral on the right of (46) is UV convergent we obtain, using (50), 

d e / d t  N -L2LP-’. If, however, the integral is UV divergent, it will be dominated by 
the behaviour of the integrand near the upper limit, so we need to know the form of the 
scaling function h in (50) for k L  >> 1. It turns out that, in general, the large-kL form 
is quite complicated, with many different cases to consider [24]. However, we only need 
the result for those cases where the dissipation integral requires a UV cut-off, otherwise 
simple power counting is sufficient. For those cases, one additional assumption, which can 
be verified a posteriori, yields a simple and rather general result (Equation 55  below). 

5.2 Evaluating the dissipation integral 

To see what difficulties arise, and how to  circumvent them, it is instructive to consider a 
scalar field. We want to calculate (at& &#L.k) in the limit k L  >> 1. It is clear that at$ is 
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appreciably different from zero only near interfaces. In fact, since d+/dt = 0 in a frame 
comoving with the interface, we have, near an interface, at+ = -v . V4, where v is the 
interface velocity. In real space, therefore (denoting rl ,  r2 by 1, 2) 

The large kL behaviour in Fourier space is obtained from the short-distance ( r  << L )  
behaviour in real space. For r << L ,  the points ‘1’ and ‘2’ must be close to the same 
interface. For a typical interface, with radius of curvature of order 1/L, the speed w is 
slowly varying along the interface. Furthermore, the interface may be regarded as ‘flat’ 
for the calculation of the short-distance correlation, just its in the derivation of Porod’s 
law. It follows that the averages over the interface velocity and position can be carried 
out independently, giving 

Fourier transforming this result gives 

k L B 1 ,  (53) 

where the Porod result (43) was used in the final step. We will see that Equation 53 
requires a careful interpretation. 

The next step is to evaluate (w’). Since the characteristic interface velocity is L, we ex- 
pect (w’) N L2. This assumes, however, that the average is dominated by ‘typical’ values. 
This, as we shall see, is the key question. To make further progress we introduce the ad- 
ditional assumption, which can be checked a posteriori, that the dissipation is dominated 
by the motion of defect structures of ‘characteristic scale’ L ( t ) .  By the ‘characteristic 
scale’ we mean the typical radius of curvature for extended defects (n < d ) ,  or the typical 
defect separation for point defects (n  = d).  That is, we are assuming that the dissipation 
is dominated by the motion of typical defect structures, and not by the disappearance 
of small domain bubbles, small vortex loops, or by the annihilation of defect-antidefect 
pairs. If the latter were true, the dissipation would be dominated by structure a t  the 
core scale, and the arguments given below would fail. Reference [l] contains a careful 
discussion of this point. 

If the dissipation integral (46) is UV convergent, it can be evaluated by power count- 
ing, so the large k L ( t )  form of (50) is not required. For the required cases where the final 
integral is UV divergent, the large-kL(t) limit of (50) can be extracted from the physi- 
cal/geometrical arguments used to obtain the generalised Porod law (44). According to 
our assumption, we can treat the defects as locally flat (or well separated, for point de- 
fects) for kL >> l. From (50), we are interested in the behaviour of the two-time structure 
factor, S(k, t ,  t’) (&(t)  * & k ( t ’ ) ) ,  in the limit that the two times are close together. 
In the limit kL >> 1> this will be proportional to the total density L-” of defect core. 
Introducing L = ( L ( t )  + L(t’))/2 and A = ( L ( t )  - L(t’))/2, we obtain 
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where consistency with Porod's law for t = t' requires a(0) = const. Using this in (50) 
gives 

k L B 1 .  (55) 
L 2  

(&6k ' a d - k )  L~ kd+,,-2 7 

This reduces to (53) for n = 1 (with (I?) N L 2 ) .  It should be stressed that we are 
not claiming that (55) is a general result, only that it is valid when we need it, i.e. 
when the dissipation integral (46) requires a UV cut-off. There are three possibilities: (i) 
The integral is UV convergent, its dependence on L( t )  can be extracted by a change of 
variable, and the large-kL behaviour of (&& . &&k) is not required. (ii) The integral 
is UV divergent, but the dissipation is still dominated by structures of scale L(t). Then 
we can use (55). (iii) The dissipation has significant contributions from structures with 
local curvature (or spacing) of the order of the core scale. Then one cannot treat the 
contributions from different defect core elements as independent, (55) no longer holds, and 
the present approach is not useful. For the moment we will proceed on the assumption that 
(i) or (ii) obtain. We will show that these possibilities cover nearly all cases. Examples of 
when (iii) holds will also be given. These include a physically interesting case, d = n = 2. 

5.3 Results 

Putting (55) into the dissipation integral (46) shows that the integral is UV convergent 
for kL >> 1 when n + p > 2. Otherwise the integral is dominated by k near the upper 
cut-off l/c. This gives 

k-' (at6k * ad-k) L2 L-n , 7Z + < 2 , 
ln(L/I) , n + P = 2 > 

N ,52 L-n 

N L 2 L p - 2  , n + p > 2 .  (56) 

The final step is to equate the dissipation rate (56) to the time derivative of the energy 
density (48), as required by (46), and solve for L(t) .  For systems with purely short-ranged 
interactions, the results, as a function of n and p,  are summarised in Table 1. Note that 
conservation of the order parameter (which applies in a global sense for any p > 0) is 
irrelevant to the growth law for p < 2-72, where n is treated here as a continuous variable. 
At the marginal values, logarithmic factors are introduced. The growth laws obtained are 
independent of the spatial dimension d of the system. 

Table 1. The behaviour of L(t) as a function of n and p. 

For non-conserved fields ( p  = 0), we find L N t'l2 for all systems (with d > n or 
71 > 2). Leading corrections in the n = 2 case are interesting: the 1nL factors in (48) 
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and (56) will in general have different effective cutoffs, of order the core size I. This leads 
to a logarithmic correction to scaling, L N t ' /2(1 + O(1/ Int)), and may account for the 
smaller exponent (- 0.45) seen in simulations of 0 ( 2 )  systems [43, 44, 451. Note that 
for nonconserved scalar fields, the energy (48) and the dissipation (56) have the same 
dependence on the core size E (i.e. both contain a factor I-'), so this dependence cancels 
from L( t ) .  The fact that the correct t'/' growth is obtained from naive power counting on 
the linear terms in the equation of motion should therefore be regarded as fortuitous. For 
example, in systems with long-range interactions, this 'cancellation of errors' no longer 
occurs, and naive power counting gives an incorrect result for nonconserved scalar fields 
[46, 421. 

For conserved fields ( p  > 0) our results agree with an earlier RG analysis [4, 51, with 
additional logarithmic factors for the marginal cases n = 2 and n + p = 2. Note that 
the conservation law is only relevant for n + p 2 2. Therefore for vector fields (n  2 2) ,  
any p > 0 is sufficient to change the growth law, while for scalar fields (n  = 1) the 
conservation law is irrelevant for p < 1, in agreement with the RG analysis [5] and earlier 
work of Onuki [47]. 

Siegert and Rao [48] have performed extensive simulations for n = 2, d = 3 and 
,U = 2. In their original paper they fitted L ( t )  to a simple power, and obtained a growth 
exponent slightly larger than 1/4. Subsequently, however, Siegert has shown that a very 
much better fit is obtained when the predicted logarithmic correction is included [49], and 
this has been confirmed by subsequent work [50]. 

5.4 

In what cases is our key assumption, that dissipation is dominated by the motion of defect 
structures of characteristic scale L ,  correct? Certainly for any n > 2, the energy density 
(48) itself, and hence dissipation, is dominated by variations at  scale L(t). Therefore, we 
limit the discussion to the case n 5 2. 

For n 5 2, the energy density is proportional to the defect core volume (with an extra 
factor In(L/t) for n = 2, see (48)), but we will show that, in general, dissipation is still 
dominated by defect structures with length scales of order L.  To see this, we investigate 
the contribution to the energy dissipation from small-scale structures (e.g. small domains, 
vortex loops, or defect-antidefect pairs): 

Exceptional cases: n = d 5 2 

= 8, Lw dln(1, t )  f ( 1 )  dr 
dt 
- 

where n(l, t )  is the number density of defect features of scale 1, € ( I )  N Id-" is the energy of 
a defect feature (with an extra ln(l/E) factor for n = 2), and j ( l ,  t )  is the number flux of 
defect features. We have used the continuity equation, 8,n + 8lj = 0 to obtain the second 
line of (57), and the t-dependence has been suppressed in the final line. The total number 
of defect features, N ,  scales as N N L-d, and so N does not change significantly over 
times smaller than i / L .  Since defects only vanish at the core scale, we have fi = j (<) .  
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It follows j ( l )  has a finite, non-zero, short-distance limit of order fi N -L/Ld+'. We can 
use this to examine the convergence (at short-distance) of the final integral in (57). 

For d > n, the integral in (57) is well-behaved at  small 1 ,  because € ( I )  N Id-" ( x ln(l/<) 
for n = 2),  and the integral dominates the j (()€(E) term. The integral can be estimated 
by setting j ( l )  N j ( ( )  and introducing a large-distance cut-off at 1 N L. This gives 
dc /d t  N j ( ( )Ld-n  N -L/Ln+' ( x  ln(L/[) for n = 2). This is just what one gets from 
differentiating (48) (for the cases n 5 2 considered here), verifying the consistency of the 
calculation. 

For d = n and n < 2, however, ~ ( 1 )  N constant, since the (point) defects only interact 
weakly through the tails of the defect profile. (The one physical example is the d = 1 
scalar system). The leading contribution to the energy of a defect pair is just the core 
energy of the individual defects, and dissipation is dominated by the j ( ( ) ~ ( e )  term in 
(57), which describes defect pairs annihilating. Since the dissipation occurs at  separations 
1 N E << L, the derivation of (55) no longer holds. In fact since, the energy of a defect 
pair depends only weakly on the separation for 1 >> L,  the system will be disordered, with 
an equilibrium density of defects at any non-zero temperature. At T = 0, we expect slow 
growth that depends on the details of the potential V(+) [51]. These cases, including the 
d = 1 scalar system, are at their lower critical dimension, and are beyond the scope of 
the simplified approach presented here (see [51] for a fuller discussion). 

The 2d planar system (n  = d = 2) is a special case. The logarithm in the energy of a 
vortex pair, E N ln(l/E), leads to a logarithmically divergent integral in (57), i.e. vortex 
pairs with separations between E and L contribute significantly to the energy dissipation. 
In this case Equation 55, which depends on the k L  >> 1 limit being a single defect property, 
is again questionable. As a result the present method cannot address this case. Indeed, 
the contributions to the dissipation from all length scales suggest a possible breakdown 
of scaling. 

5.5 Other systems 

The strength of this approach is that it can be applied to systems with more compli- 
cated order parameters than n-component vectors, provided they have purely dissipative 
dynamics. Then an equation of the form (46) can be written down. The details of the 
energy functional (1) are unimportant. The important ingredients are the existence of an 
'elastic energy', associated with spatial gradients of the order parameter, the conserva- 
tion law (if any), characterised by p (see Eq. 45),  and the defect structure if any. The 
derivation is independent of the initial conditions, and so, e.g. applies equally to critical 
and off-critical quenches as long as the system scales at late tames. We simply choose a 
Porod's law (44) to represent the dominant defect type, which is the one responsible for 
the asymptotic tails of the structure factor scaling function, i .e. the one with the smallest 
'n'. When the energy density is dominated by defects, i.e. when the energy integral (47) 
is UV divergent, the relation (47) between the energy density and the structure factor, 
shows that the 'dominant' defects will also be the ones which dominate the energy density. 
As examples, we consider nematic liquid crystals and Potts models. 

In bulk nematic liquid crystals, the 'dominant' defects (in the above sense) are strings, 
giving a Porod tail of (44) with n = 2, which with no conservation law implies L N t'/2, 
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consistent with experiments [52, 531 and simulations [54]. 
The q-state Potts model has q equivalent equilibrium phases giving rise to q(q - 1)/2 

different types of domain wall. These can be indexed ap, where a, p = 1,. . .q, are the 
phases separated by the wall. Three domain walls of type ap, a y  and By can meet at a 
point (d = 2) or line (d  = 3), which represents a new type of defect. It is clear, however, 
that the Porod tail and energy density are dominated by the walls, so that the Potts 
model behaves as an n = 1 system. As a result, L( t )  N t’/* and t’ /3 for nonconserved and 
conserved order parameter respectively. Recent numerical results [55, 561 support these 
predictions, after initial suggestions that the growth was slower. 

It should be emphasised that the classification of nematic liquid crystals and Potts 
models as ‘n = 2-like’ and ‘ n  = 1-like’ respectively, pertain only to the Porod tails and 
the growth laws. As far as scaling functions (e.g. for pair correlations) are concerned, 
these systems belong to their own universality classes. Similarly, for off-critical quenches 
of conserved systems, the growth law is independent of the volume fractions of the phases, 
but the scaling functions are not. 

6 Spinodal decomposition under shear flow 

The dynamics of phase separation under shear has attracted considerable theoretical [57], 
experimental [58, 59, 601 and simulational [61] attention in recent years. In the absence 
of shear, the dynamics of phase separation is, as we have seen, quite well understood. 
Domains of the two equilibrium phases are formed, and coarsen with time in a manner 
well-described by the dynamical scaling phenomenology with a single growing length scale 
L( t )  which generally grows as a power law in time, L ( t )  N t”. The structure factor is 
spherically symmetric, with a maximum at wavevector I C ,  - L-’. For binary fluids, the 
exponent a takes different values depending on the dynamical regime under study. In 
order of increasing time, there are ‘diffusive’ (a = 1/3), ‘viscous hydrodynamic’ (a = 1) 
and the ‘inertial hydrodynamic’ (a  = 2/3) regimes. The crossover between these regimes is 
determined by the fluid properties (viscosity, density). Here we will focus on the diffusive 
regime, in which hydrodynamic effects can be neglected. In the absence of shear, phase 
separation is described by the Cahn-Hilliard equation for the order-parameter field $(r, t ) ,  
namely Ot4 = -V2(V24 + 4 - 43). 

If a uniform shear flow is imposed in the s-direction, with shear direction y, the 
flow velocity is U, = yy, where y is the shear rate. For an incompressible fluid, the 
Cahn-Hilliard equation acquires an advective term v a Vq5 = yya& on the left-hand side. 
Generalising to an n-component vector order parameter, this gives 

For a system quenched into the two-phase region from the homogeneous phase, an appro- 
priate initial condition is a Gaussian random field with short-range correlations: 

A 
n (qhi(r, O)4j(r‘, 0)) = -&b(r - r’). 

We begin by discussing phase ordering of a vector field in the soluble limit where the 
number of vector components of the field, n, tends to infinity. To introduce the method, 
we first consider models A and B before turning to the system with shear. 
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6.1 The large-n limit: model A 

Although not strictly necessary, it is convenient to choose in (39) the familiar ‘$4’ poten- 
tial, in the form V($)  = (1 - 1$12)2/4. With this potential, (39) becomes 

9 at = v2$+ [l- [ $ I ” $ ,  (59) 

The simplest way to take the limit is to recognise that, for n + 00, I$\’ can be replaced 
by its average, to give 

where $ now stands for (any) one of the components of $. Equation 60 can alternatively 
be derived by standard diagrammatic techniques [15]. Equation 60 can be solved exactly 
for arbitrary time t after the quench. However, we are mainly interested in late times 
(i.e. the scaling regime), when the solution simplifies. After Fourier transformation, the 
formal solution of (60) is 

$k(t) = d’k(0) exp[-k2t + b(t)] , (62) 

(63) 
t 

b(t)  = / dt’a(t ’)  , 
0 

giving 

(64) 
db 
dt a( t )  = - = 1 - ACexp[-2k2t + 2b(t)] , 

where (4) has been used to eliminate the initial condition. Since we shall find a poste- 
riori that a( t )  << 1 at late times, the left side of (64) is negligible for t -+ CO. Using 
&exp(-2k2t) = ( 8 7 ~ t ) - ~ / ~  gives b(t)+(d/4) ln(t/tO), where 

k 

t o  = A2Id/8r . (65) 

Therefore, a(t)  + d/4t for t + 00, and the solution of (62), valid at late times, is 

d k ( t )  = $k(O) (t/tO)d’4 exp(-k2t) . (66) 

Using (4) once more, we obtain the structure factor, and its Fourier transform, the pair 
correlation function as, 

S(k,t) = ( 8 7 ~ t ) ~ / ~  exp(-2k2t) , 
C(r, t )  = exp(-r2/8t) . 

These results exhibit the expected scaling forms (7 ) ,  with length scale L( t )  o( t ’ / 2 .  Note 
that the structure factor has a Gaussian tail, in contrast to the power-law tail (44) found 
in systems with n 5 d. 
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6.2 

For conserved fields, the calculation proceeds as before, but with an extra (-V2) on the 
right-hand side of the equation of motion. Making as before, the replacement 161' + ( 1 ~ 1 ' )  
for n -t 03, then with 4 (any) one component of 6, one obtains 

The large-n limit: model B 

84 
- at = - 0 4 4  - a( t )  v24 , 

with a(t) still given by (61). Transforming to Fourier space, the solution is 

$k(t) = $k(O) exp[-k4t + k26(t)] > (70) 

The function b(t), defined as in (63), satisfies the equation 

a( t )  = db/dt = 1 - A exp[-2k4t + 2k2b(t)] . (71) 
k 

This equation was solved by Coniglio and Zannetti [ll], by first expressing the sum over k 
as a parabolic cylinder function, then taking the large-t limit. Here we will take the large-t 
limit from the outset, and recognise that the sum can then be evaluated using steepest 
descents. Just as for the nonconserved case, we can show a posteriori that db/dt << 1 
at late times, so that this term can be dropped from (71). After the change of variable 
k = [ b ( t ) / t ] 1 / 2 ~ ,  we obtain 

where c d  is an uninteresting constant, and 

p( t )  = b2(t)/t . (73) 

Provided p(t)  -t 03 for t -t 03 (which can be verified a posteriori), the integral on the 
right of (72) can be evaluated by steepest descents. Including the Gaussian fluctuations 
around the maximum of the integrand at  z = 1/,/2 gives 

1 = const A b-1/2 (p / t )d /4  exp(P/2) , (74) 

with asymptotic solution 
p N (d/2) ln t  , t - t m ,  (75) 

justifying the use of the steepest descents method for large t. Putting this result into (70) 
gives the final result for the structure factor [ll] 

(76) S(k ,  t )  N L ( d / 4 ) V ( k L )  

L N (;Ay4 
p(z) = 1 - (1 - Z2)2 

(77) 

(78) 

Here km(t) = l /L ( t )  is the position of the maximum in S(k , t ) .  A slightly more careful 
treatment (retaining the leading subdominant term in (75)), gives an additional logarith- 
mic prefactor such that (asymptotically in time) ,& S ( k ,  t )  = 1. 
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Equation 76 is interesting because, in contrast to the nonconserved result (67), it does 
not have the conventional scaling form. Rather it exhibits 'multiscaling' [ll]. For fixed 
'scaling variable' kL,  the structure factor would vary as Ld,  with a prefactor depending 
on the scaling variable. In the multiscaling form (76), for fixed scaling variable, S(k, t )  N 

Ld"(kL), i.e. the exponent depends continuously on the scaling variable. 
After the discovery of multiscaling in the n + 03 limit, some effort was devoted to 

looking for similar phenomena a t  finite n, notably for scalar systems [62], but also for 
n = 2 [63, 481 and n = 3 [64]. However, no evidence was found for any departure from 
simple scaling for any finite n. At the same time, Bray and Humayun showed, within the 
context of an approximate calculation based on an idea of Mazenko, that simple scaling 
is recovered asymptotically for any finite n [65]. 

6.3 Spinodal decomposition under shear 

We now treat equation (58) in the same way. A fuller version of this calculation can be 
found in [66]. In the limit n -+ 00, one can replace /$Iz in (58) by its mean in the usual 
way, leading to a self-consistent linear equation. After Fourier transformation this reads 

where $ is (any) one component of 8, and a( t )  = 1 - (I$(t)lz). 
The self-consistent determination of a( t )  proceeds on the same lines as for model B, 

but the steepest-descent calculation is technically more difficult thaI: before due to a 
complete breaking of the rotational symmetry by the imposed shear flow. We refer the 
interested reader to [66] for the details. The result for the structure factor is 

S(k, t) = const. (In V,)3/2V,F(q)/Fm! . (80) 

In this expression VS(t)  = L,L,L, N yt7/4/(lnt)3/4 is the 'scale volume' a t  time t ,  and 
q = ( IC&, ,  k,L,, kJ,) is the scaled wavevector. The scale lengths in the three directions 
are given by L, = y(t3/b)l/' N ~ ( t ~ / l n t ) ' / ~ ,  and L, = L, = (t/b)'/* - ( t / l r ~ t ) ' / ~ ,  where 
b ( t )  21 (7t In t/8Fm)l/'. In equation (80) and below, F, = 23/60 is the maximum value of 
the function F ( u ,  U ,  w) [where q = ( U ,  U ,  w) in (SO)], given by 

1 8 4  2 
521 15 3 3 F(U,U,w)  = -- ( ( U  + u ) ~  - ~ ~ ) + - ~ ~ + - - ~ ~ + v ~ - - w ~ ( ~ ' + 3 ~ ~ + 3 v ~ ) + w ~ - w ~ .  (81) 

The structure of the function F ( u ,  U ,  w) is indicated by its turning points, given in 
Table 2. 

For a light scattering experiment (Pine, this volume) with the beam in the z direction, 
the diffracted intensity is given by the k ,  = 0 slice of the structure factor, which is 
determined by F(u,  v, 0). A contour plot of this function is shown in Figure 3, with the 
turning points a ,  b, c,  and d of Table 2 indicated. The absolute maxima are a t  the points 
d, but these are not much higher than the turning points d, so that F ( u ,  U ,  0) exhibits 
two parallel ridges like those observed in experiment [58]. 

We conclude with some conjectures about the physically realistic case (for binary 
fluids in the diffusive regime) of a scalar order parameter. These are informed by our 
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Label 
a 

Position Number F Value Type (3D) 
(0,010) 1 0 0 Min 

b 
c 
d 

Table 2. Stationary points of F ( u ,  v ,  w): Max = maximum, Min = minimum, Sn = 
saddle point of type n (the matrix of second derivatives has n positive eigenvalues), IS = 
‘inflection saddle point’ (one positive, one zero, one negative eigenvalue). 

W/&> 030) 2 16/45 ,35556 IS 
k(fi - l/&, -1/fi, 0) 2 (37 - 12&)/180 .04225 S2 
&(fi + l/&, -1/fi, 0) 2 (37 + 12&)/180 .36885 S1 

-3 -2 -1 0 1 2 3 
U 

Figure 3. 
points a ,  b, c,  d from Table 1. Contour lines for F < -0.1 are not shown. 

Contour plot of F ( u ,  v ,  0 )  showing approximate locations of the stationary 

exact solution for n = 03, and by the way the n = 03 solution is known to be modified for 
scalar fields in the unsheared case [65]. First we expect that, for any finite n, the structure 
factor will exhibit asymptotic scaling of the form S(k , t )  = V,g(q), with V,  = lla,lLi 
( i  = 2,  y ,  z )  and qi = kiLi, instead of the multiscaling form (80). As in the n = 00 case, 
we expect the growth of the characteristic scales for directions normal to the flow to obey 
the same power laws as in the unsheared case, i.e. for scalar fields, L, N L, - t1 /3 .  The 
growth in the 2-direction can then be deduced from the assumed scaling form for the 
structure factor: if we multiply the two terms on the left-hand side of (79) by qLk(t) ,  
and average, the result L, N ytL, follows immediately if we insert the scaling form for 
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S ( k , t )  and assume both terms are of the same order in the scaling limit. This leads to 
the prediction L, - 7t4f3.  

In the viscous hydrodynamic regime, where without shear L( t )  N t ,  the same heuristics 
suggest L, - L, - t ,  L, - 7t2. The predictions for the length scales are consistent with 
data on polymer blends [60], though it has been suggested [57] that a stationary state 
eventually develops for 7t >> 1 due to a competition between stretching and breaking 
of domains. No such stationary state is obtained in the present work, however, and the 
existence of a stationary (a. e. non-coarsening) late-stage limit for more realistic models 
remains an open question. 
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1 Introduction 

Collective phenomena in systems far from thermal equilibrium have been a subject of 
extensive studies in recent years. Usually these systems are driven out of equilibrium by 
external fields, such as electric field in the case of conductors, pressure gradient in the case 
of fluids, temperature gradient in the case of heat conductors, chemical potential gradient 
in the case of growth problems and many others [l-41. These driving fields are very 
common in nature and are found in a large variety of physical systems such as granular 
and traffic flow [5-71, gel electrophoresis [8, 91, super-ionic conductors [ lo ,  111 to give a few 
examples. In many cases these systems reach a steady state, which unlike the equilibrium 
case, is characterised by non-vanishing currents. Here we consider possible collective 
phenomena and phase transitions which may take place in such steady states. The main 
problem in studying nonequilibrium systems is the lack of general theoretical framework 
within which they could be analysed. As a result they are far less understood as compared 
with equilibrium systems where the Gibbs picture provides such a theoretical framework. 

Before discussing nonequilibrium systems it is useful to consider briefly systems in 
thermal equilibrium. Here decades of studies have yielded a fairly detailed understanding 
of their thermodynamic behaviour. Many rules which govern phase transitions occurring 
in these systems have been derived. For example, it has been shown that the critical 
exponents associated with a phase transition may be classified into universality classes. 
These classes do not depend on the detailed interactions in the system but rather on a 
few parameters such as the symmetry of the system and of the order parameter associ- 
ated with the transition, the dimensionality of the system and the range of interactions. 
Therefore, in order to  study theoretically the critical behaviour of a given system it is 
sufficient to analyse the simplest possible model which belongs to the same universality 
class. For reviews see, for example, [12, 131. It has also been shown that phase transitions 
and spontaneous symmetry breaking do not take place a t  low dimension. In particular, 
no phase transition is expected to take place in a one dimensional system a t  finite temper- 
atures as long as the interactions are short range [14]. Moreover, breaking of continuous 

Copyright © 2000 IOP Publishing Ltd.



238 David Mukamel 

symmetry may take place under the same conditions only in dimensions higher than two 
[15]. Other rules derived by Landau relate the nature of the transition, namely whether it 
is first order or continuous, to the symmetry of the systems [14]. If the symmetry allows a 
third order term in the expansion of the free energy in the order parameter, such as in the 
case of the transition from a liquid to a nematic liquid crystal phase [16], the transition 
cannot be continuous and is necessarily first order. On the other hand if the symmetry is 
such that no third order term is allowed, such as in the transition from a paramagnetic to 
a ferromagnetic phase, the transition may either be first order or continuous, depending 
on the details of the interactions. The Gibbs phase rule is another very useful example 
of a rule which governs the phase diagrams of systems in equilibrium [14]. It deals with 
fluids composed of c components. The thermodynamic phase space of such systems is of 
c + 1 dimensions, comprising the temperature, pressure, and c - 1 chemical potentials. 
According to the rule, the manifold in this space on which n different phases coexist is of 
D = 2 + c - n dimensions. Another rule deals with the phase diagram near a triple point, 
where three coexistence lines meet. According to this 180" rule, each of the three angles 
defined by the intersecting coexistence lines must be less than 180". This is a direct result 
of the convexity of the free energy [17]. 

These rules and many others, some of which are related to disordered systems [18, 191, 
provide extremely useful tools for analysing and understanding phase diagrams and critical 
behaviour of models and physical systems in equilibrium. By simply identifying the 
symmetry of the system and the nature of the order parameter involved in the phase 
transition one can usually find the universality class of the transition and even obtain a 
rough idea of the possible phase diagram. 

Our degree of understanding of collective behaviour far from thermal equilibrium is 
at  a much more primitive stage. Since a general theoretical framework for studying 
nonequilibrium phenomena does not exist, one cannot derive similar rules which would 
be as general as those for equilibrium systems. Rather, one has to resort to studying 
specific models and probe the resulting types of phase diagrams and phase transitions, 
with the hope that some general picture might emerge. 

In the present lectures we consider stochastic driven systems in one dimension and 
discuss some interesting collective behaviour which they display. Unlike equilibrium one 
dimensional systems which do not exhibit phase transitions, nonequilibrium systems ex- 
hibit a rich variety of collective phenomena such as first order and continuous phase 
transitions, spontaneous symmetry breaking (SSB), phase separation, slow coarsening 
processes and many others. Mechanisms which lead to these phenomena are discussed. 

The article is organised as follows: in Section 2 the concept of detailed balance is 
discussed, the lack of which is characteristic of nonequilibrium systems. A necessary and 
sufficient condition for the existence of detailed balance is presented. In Section 3 a sim- 
ple driven model, the totally asymmetric exclusion process, is introduced and its phase 
diagram for a system with open boundaries is calculated using a mean field approxima- 
tion. The phase diagram exhibits several phases separated by first order and continuous 
transitions. The matrix method which enables one to obtain exact results for steady state 
properties is outlined in Section 4. A model which displays spontaneous symmetry break- 
ing in one dimension is introduced in Section 5 and a model exhibiting phase separation 
accompanied by slow coarsening processes is described in Section 6. Open problems and 
perspectives are briefly discussed in Section 7. 
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2 Detailed balance and driven systems 

In this section we make some general considerations concerning the evolution of dynamical 
systems. Let C be a microscopic configuration, and let P(C,t)  be the probability that 
the system is in the microscopic configuration C at time t .  The dynamics of the system 
is defined in terms of the transition rates W(C+C') from a configuration C to C'. The 
equation which governs the evolution of the distribution function P(C,  t )  takes the form 

aP(c, t ,  = W(C'+C)P(C',t) - W(C+C')P(C, t ) .  
at C' C' 

The first sum represents the rate of flow, in configuration space, of probability into C 
while the second sum corresponds to the outgoing flow from this configuration. In a 
steady state the two terms are equal, yielding zero net flow from any configuration. 

Systems in thermal equilibrium are characterised by an energy function, or a Hamil- 
tonian, E(C) .  The steady state distribution P(C)  is proportional to e - E ( C ) l k B T ,  where 
T is the temperature and ks is the Boltzmann constant. Given an energy function E ( C )  
one can always find transition rates W(C+C'), such as the Metropolis rates, which obey 
detailed balance. Here the two sums cancel term by term 

W (  C+C')P( C) = W (  C'+C)P(C'), (2) 

for any pair of configurations C and C'. 

On the other hand dynamical systems are not defined by an energy function but rather 
by transition rates. When a system is not in thermal equilibrium, the resulting steady 
state is such that detailed balance ( 2 )  is not satisfied. We will basically use this lack of 
detailed balance as a definition of nonequilibrium. 

Given the dynamics of a system, namely the transition rates, it is of interest to know 
whether or not detailed balance is satisfied. Since, in general, the steady state distribution 
cannot be calculated, a direct check of the detailed balance condition ( 2 )  is not possible. 
Thus a criterion for existence of detailed balance which is based directly on the transition 
rates and does not require the knowledge of the steady state is highly desirable. Such a 
criterion is provided by the following equations. Let C1, cz, . . . , ck be a set of k micro- 
scopic configurations. A necessary and sufficient condition for the existence of detailed 
balance is that for any such set one has 

W(1+2)W(2+3). . . W(k-1) = W(l+k)W(k+k - 1). . . W(2+l), (3) 

where for simplicity we have denoted Ci by i. It is easy to check that (3) is a necessary 
condition. When detailed balance is satisfied one may replace W(i+i+ l ) / W ( i +  1 4 )  by 
P(i  + l ) / P ( i ) ,  where P(i )  is the steady state distribution with respect to which detailed 
balance is satisfied. Using these relations (3) is easily verified. 

To demonstrate that this is a sufficient condition as well, we use (3) to derive the 
steady state distribution. We start with an arbitrary configuration 1 and denote its 
steady state weight by P(1). The weight of states 2 which are directly connected with 1 
(namely, for which W(1-2) > 0), may thus be defined using the detailed balance relation, 
P(2)  = P(l)W(l+2)/W(2+1). This process may then be repeated to define the weights 
of states directly connected with states 2 etc., until all microscopic configurations have 
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been reached. The weight of a microscopic configuration k which may be reached from 1 
via intermediate states 2,3, . . . , k - 1 is thus given by 

W(1-+2). . . W ( k  - 1 4 )  
W ( k 4  - 1). . . W(2+1)’ 

P ( k )  = P(1) (4) 

For this procedure to be self-consistent one has to verify that any path between config- 
urations 1 and k yields the same P ( k ) .  It is a straightforward matter to show that this 
follows directly from (3). 

Thus, to demonstrate that a dynamical system defined by its transition rates is not in 
thermal equilibrium it is sufficient to find a single path in configuration space for which 
(3) is not satisfied. This is usually quite easy to check, making it a very useful criterion. 
When (3) is not satisfied the system exhibits non-vanishing probability currents between 
configurations which is an indication of the system not being in thermal equilibrium. 

A simple prototypical model of driven systems, termed the ‘standard model’, was 
introduced by Katz et a1 [l, 201. This is a driven lattice gas model defined on a hypercubic 
lattice with periodic boundary conditions. Each site i is either occupied by a particle or 
is vacant, with oc = 0 , l  being the occupation number. In the absence of drive, an Ising 
Hamiltonian is assumed 

H = - J ~ C ~ U ~ ,  ( 5 )  
($3) 

where the sum is over nearest neighbour (nn) sites (ij). The evolution of the system is 
defined by Kawasaki dynamics, which allows particles to hop between nearest neighbour 
sites. Let C and C‘ be two configurations obtained from each other by an interchange of 
a single pair of nn occupation numbers a, and a,. The transition rate between C and C’ 
may be taken as the Metropolis rate W(C-6“) = w(/3AH) ,  where A H  = H(C’) - H ( C )  
and w(x) = min(l,e-2). This dynamics leads to the expected Boltzmann equilibrium 
distribution. In d > 1 dimensions the system exhibits the usual Ising transition from a 
homogeneous phase at  high temperatures to a phase separated state at low temperatures. 

Introducing a driving field E along one of the axes, the transition rates are modified 
by adding a term UE to A H  where 

U = -1,  0 ,  $1, (6) 

for a hop along, transverse or opposite to the field direction, respectively. The transition 
rates are thus given by 

W(C+C’) = w ( P ( A H  + uE)). (7) 

Due to the periodic boundary conditions in the direction of the driving field, these rates 
do not obey detailed balance, and the steady state exhibits non-vanishing currents. 

In spite of the simplicity of the model, no exact results for the steady state properties 
are available (even in one dimension). Extensive numerical studies of this model in two 
dimensions demonstrate that the phase separation transition which exists in zero drive, 
persists for non-zero driving fields. At low temperatures the system exhibits stripes of 
high density and low density regions which are oriented along the field direction. These 
stripes coarsen with time leading to a phase separated state. 
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3 Asymmetric exclusion process in one dimension 

In this section we consider the phase diagram of the one dimensional ‘standard model’ 
defined in the previous section for J = 0. Here the only interaction between the particles is 
the hard-core interaction which prevents more than one particle from occupying the same 
site. This process is called asymmetric simple exclusion process (ASEP). Furthermore, we 
consider the limit E+m, called totally asymmetric simple exclusion process (TASEP). 
In this limit particles are restricted to move only to the right, with no backward moves. 
This model turns out to be sufficiently simple to allow for exact calculation of some of its 
steady state properties. In spite of its simplicity, the model with open boundary conditions 
exhibits a rather rich and complicated phase diagram, displaying both continuous and 
discontinuous phase transitions (see below). This is clearly a direct consequence of the 
fact that the dynamics of a nonequilibrium nature. The model and many variants of it 
have been a subject of extensive studies in recent years 121-301. 

The dynamics of the model is defined as follows: at any given time a pair of nn sites 
is chosen at  random. If the occupation numbers of these sites are (+ 0) an exchange is 
carried out 

+ o  + o+,  (8) 
with rate unity. All other configurations, remain unchanged. Here and in the following we 
interchangeably use 1 or + to denote an occupied site. For periodic boundary conditions 
the system reaches a trivial steady state in which all microscopic configurations have the 
same weight. This may be verified by direct inspection of the master equation (1). It is 
easy to see that the number of configurations to which a given configuration C may flow is 
equal to the number of configurations flowing into C. To verify that this is the case note 
that a microscopic configuration C is composed of alternating segments of +’s and 0’s. 
According to the dynamics (8), the system leaves C when the rightmost particle in one of 
the + segments moves one step to the right. Thus the number of configurations that C 
may flow into is equal to I ,  the number of + segments in this configuration. Similarly C 
may be reached when the leftmost particle in one of the + segments hops into its position. 
The number of configurations flowing into C is therefore also 1 .  Since all non-vanishing 
transition rates are 1, the state where all configurations have equal weights is stationary. 
Therefore in the steady state the system exhibits no correlations, apart from the trivial 
correlations arising from the fact that the overall density of particles is fixed. 

The steady state current J is given by 

where the brackets denote a statistical average with respect to the steady state weights of 
the microscopic configuration. Since in the steady state the system exhibits no correlations 
the current may be written, in the large system limit, as 

where pi = (oi) is the density at  site i, and the index i is omitted in (10) since the 
average density is homogeneous, independent of i. Equation ( lo) ,  relating the current 
to the density is known as the fundamental relation (or fundamental diagram). The 
interesting feature in this relation is that the current is not a monotonic function of the 

Copyright © 2000 IOP Publishing Ltd.



242 David MukameJ 

density but rather it exhibits a maximum at p = 0.5. This feature is a result of the hard- 
core interaction between the particles and it affects rather drastically the steady state 
properties of the system when open boundary conditions are considered. 

We now turn to the model with open boundary conditions. Here, particles are in- 
troduced into the system at the left end, they move through the bulk according to the 
conserving dynamics (8), and leave the system at the right end. To be more specific, at 
the left boundary (i = 1) the move 

0 + +, (11) 

is carried out with a rate a. Similarly, at the right boundary (i = N )  one takes 

+ + 0, 

with a rate p. For a schematic representation of the model see Figure 1. The overall 

Figure 1. A schematic representation of the open boundary conditions for the totally 
asymmetric exclusion process. 

dynamics is non-conserving. Particles are conserved in the bulk but are not conserved 
at the boundaries. Unlike the case with periodic boundary conditions, the steady state 
distribution is not trivial, and correlations between the densities at  different sites do not 
vanish. However, far from the boundaries the distribution function is expected to be well 
approximated by the homogeneous one, suggesting that correlations are small. 

We are interested in the steady state of this model for given rates a and p. For large a 
and small p, namely for a large feeding rate and a small exit rate, the overall density is 
expected to be high. On the other hand for small Q and large /3 the density is expected to 
be low. In addition, for a large system, where away from the boundaries the local density 
is expected to vary very slowly, the fundamental relation (10) is expected to hold locally. 
Thus the current in the system cannot exceed a maximal current, as suggested by (10). 
These features yield a rather rich phase diagram, as a and p are varied. 

We start by considering the phase diagram in the mean field approximation [2l, 22,241. 
Since correlations in this system are expected to be vanishingly small away from the 
boundaries, this approximation is expected to yield a rather accurate phase diagram. In 
fact it  turns out that the phase diagram obtained in this way is exact. 

To derive the mean field equations we note that the current J;,i+l between sites i and 
i + 1 is given by (ai(l - o ~ + ~ ) )  for i = 1,. . . , N - 1. In addition the currents at the two 
ends are given by Jo = a(1 - 01) and JN = p ( a ~ ) .  Neglecting correlations one finds 
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that in the steady state, where all currents are equal, the following equations have to be 
satisfied: 

J = a ( l - p i ) = p l ( l - p z ) =  . . . = p ~ - l (  l - p ~ ) = p p ~ .  (13) 
Solving these equations for J , p l , .  . . , p ~  the density profile in the steady state and the 
current are obtained. 

It is instructive to consider these equations in the continuum limit. Replacing pi by 
p ( x )  in (13) with 0 5 x 5 L yields the bulk current 

a P  J ( x )  = p ( l  - p )  - D-, 
dX (14) 

where D is the diffusion constant which, by rescaling x ,  may be taken as 1. In this expres- 
sion the first term represents the drive while the second term is the ordinary diffusion cur- 
rent. The evolution of the system is governed by the continuity equation d p / &  = - d J / d x ,  
together with the boundary conditions J ( 0 )  = a( l  - p ( 0 ) )  and J ( L )  = p p ( L ) .  In the 
steady state the current J in (14 )  is independent of x yielding a density profile which has 
one of the two following forms 

p(s) = 0.5 + 'U tanh[v(x - X O ) ]  

P ( X )  = 0.5 + vcoth('U(z - X O ) ] ,  

where v 2  = 1/4 - J .  The two parameters so and 'U (or alternatively the current J )  are 
determined by the two boundary conditions, and are thus related to a and p. 

By matching the boundary conditions the density profiles and the current are obtained. 
The resulting phase diagram is given in Figure 2. The system is found to exhibit three 
distinct phases in the limit of large length L: 

Low density phase for which the bulk density is smaller than 0.5 with xo = O ( L ) .  
The density profile is basically flat, except for a small region near the right end. In 
this phase p ( 0 )  = a and J = a ( l  - a) .  It  exists for a < p and a < 112. 

High density phase with bulk density larger than 0.5, and zo = -O(L) .  The density 
profile is flat except at  a small region near the left end. Here p ( L )  = 1 - p and 
J = p(1- p).  This phase exist for /3 < a and p < 1/2. The two phases coexist on 
the line a = p < 1/2. 

A maximal current phase in the region a > 1/2 and p > 1/2. Here the bulk density 
is 112 exhibiting structures at both ends of the system. These structures decay 
algebraically as 1 / x  when moving away from the ends. In this phase the current is 
maximal, namely J = 1/4. 

The phase diagram exhibits a first order line on which the high density and the low 
density phases coexist and two second order lines separating these phases from the maxi- 
mal current phase. Typical schematic density profiles in the various phases are also given 
in Figure 2. 

In the mean field approximation fluctuations are neglected, and therefore by itself this 
analysis may not serve as a demonstration that phase transitions do take place in Id  away 
from thermal equilibrium. In fact the mean field approximation yields phase transitions 
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Figure 2. The (a, p )  phase diagram ofthe totally asymmetric exclusion process exhibiting 
low density, high density and maximal current phases. The thick line represents a first 
order transition while thin lines correspond to continuous transitions. Schematic density 
profiles in the various phases are given. 

in equilibrium Id systems, where they are known not to exist. It is therefore important 
to examine the role of fluctuations in this driven system and demonstrate that indeed the 
phase transitions found within the mean field approximation remain when fluctuations 
are taken into account. This has indeed been demonstrated for the TASEP [24, 25, 261. 
A method which goes beyond the mean field approximation and allows exact calculations 
of steady state properties of some driven Id models is described in the next section. 

4 Matrix method 

A matrix method for calculating some steady state properties of the TASEP was intro- 
duced a few years ago [25]. The method has since then been generalised and applied to 
other models of driven systems. In the following we briefly outline the method as applied 
to the TASEP with open boundary conditions described above. 

We are interested in calculating the steady state distribution function P(o1,. . . ,ON). 
In the matrix method one tries to express the distribution function by a matrix element 
of a product of particular matrices. Let D and E be two square matrices and (Wl and 
IV) be two vectors. For any given configuration, (01,. . . ,ON) one considers the matrix 
product in which each occupation number oi is replaced by either a matrix D or a matrix 
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E depending on whether O* is 1 or 0, respectively. The key question is whether one can 
find matrices D and E and vectors (WI and IV) suchhhat P(a1,. . . , O N )  is proportional to 
the (Wl, IV) matrix element of this product. Within this representation the distribution 
function may be written as 

N 

P(o; ,  . . , O N )  O: (Wl I-J[.iD + (1 - o , )E]~V) .  (16) 
i=l 

A priori, it is not at all clear that such representation is available. However, if such 
representation exists, it may yield a straightforward (though sometimes tedious) way for 
calculating the distribution function. For example, the density at, say, site i = 1 may be 
expressed as 

where Xi  = D, E ,  and the normalisation factor Z, is given by 

{Xi) 

with 

Thus, we may rewrite (17) as 
C = D + E  . 

(20) 1 N-1 v 
P l = Z " c  I ) .  

Densities at other sites and density-density correlation functions may similarly be ex- 
pressed by other matrix elements. 

The main question at this point is how to find matrices and vectors such that (16) 
holds. To this end we consider the local currents in the system. Using the matrix r e p  
resentation, the current between sites i and i + 1 (i = 1,. . . , N - 1) may be expressed 
as 

1 
Z N  

J.. ,,t+l - - - - (w(c ' - ;DEc~-~-~Iv) ,  
and the currents at the two ends 

In the steady state all currents are equal. Taking matrices D, E and vectors (Wl, IV) 
which satisfy 

DE = D-t E (= C )  
a(WIE = (Wl 
PD IV) = IV), 

(23) 

guarantees that all currents are equal, with 

ZN-1 J = - .  
Z N  
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The question is whether these relations (23) are sufficient to guarantee that the resulting 
distribution (16) is a steady state. For (16) to be a steady state one has to make sure 
that 

dP 
at 
_ -  - 0, 

for each of the 2N microscopic configurations. The relations (23) only directly guarantee 
that N + 1 of these 2N equations are satisfied. This may suggest that (23) may not be 
sufficient to guarantee that the steady state distribution is given by (16). However it can 
be shown, by direct inspection of Equation (25) that (23) yields the steady state of the 
system. 

The problem is thus reduced to first finding matrices and vectors which satisfy (16), 
and then calculating some matrix elements to obtain, for example, the current J .  It is 
straightforward to show that for a + ,8 # 1 the matrices which satisfy (16) have to be of 
infinite order. Such matrices have been found and the current and density profiles and 
other correlation functions have been calculated [25]. The resulting phase diagram coin- 
cides with that obtained by the mean field approximation, although the density profiles 
are different. For example, in the algebraic, maximal current, phase the local density 
decays to the bulk density like l / f i  at large distances from the boundary, unlike the 
mean field result which yields a 1/x profile. 

The matrix method proved to be very powerful in yielding steady state properties 
of TASEP dynamics. It has been applied and generalised to study partially asymmetric 
exclusion processes (ASEP) [31-331 and models with more than one type of particles 
[34-371. In addition, replacing matrices by tensors proved to be useful in some cases 
[38, 391. However the method is restricted to one dimension. It is not standard in the 
sense that it cannot be applied to an arbitrary dynamical model. Moreover, there is no 
simple way to tell a priori whether or not it may be applicable for a specific model. 

5 Spontaneous symmetry breaking in one dimension 

In this section we consider a simple dynamical model which exhibits spontaneous sqlmmetry 
breaking (SSB) in one dimension. 

The model may be pictorially described in the following way: consider a narrow bridge 
connecting two roads. Cars travelling on the bridge in opposite directions do not block 
each other, although they may slow the traffic flow in both directions. We assume that 
the two roads leading to the bridge from both sides are statistically identical, so that the 
arrival rates of cars at  the two ends of the bridge are the same. This system clearly has a 
right-left symmetry. Thus if this symmetry is not spontaneously broken one would expect 
that the long time average of the current of cars travelling to the right would be the 
same as that of cars travelling to the left. The question is whether the bridge is capable 
of exhibiting breaking of the right-left symmetry, and spontaneously turning itself into 
a ‘one-way’ street, where the current in one direction is larger than the current in the 
other direction. It turns out that this may indeed take place in the limit of a long bridge, 
demonstrating that SSB may take place in Id nonequilibrium systems. 

To model the ‘bridge’ problem we generalise the TASEP discussed in the previous 
section [37, 40, 411. We consider a Id lattice of length N .  Each lattice point may be 
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occupied by either a (+) particle (positive charge) moving to the right, a (-) particle 
(negative charge) moving to the left or by a vacancy (0). In addition positive (negative) 
charges are supplied at the left (right) end and are removed at  the right (left) end of the 
system. 

The dynamics of the model is defined as follows: at each time step a pair of nearest 
neighbour sites is chosen and an exchange process is carried out 

+ o  + 0 + 0 -  4 - 0  + - 4 -+, (26) 

with rates 1, 1 and q, respectively. Furthermore, at the two ends particles may be intro- 
duced or removed. At the left boundary (i = 1) the processes 

o + +  - + 0, (27) 

take place with rates a and p, respectively. Similarly, at the right boundary (i = N ) ,  one 
has the processes 

with rates a and 8, respectively (see Figure 3). In the ‘bridge’ language the boundary 
terms may be viewed as traffic lights which control the feeding and exit rates at the two 
ends. 

o + -  + + 0, (28) 

Figure 3. A schematic representation of the input and output rates of the ‘bridge’ model. 

Since the parameters Q and ,B are the same on both ends of the systems the dynamics 
obviously possesses a right-left symmetry. The question of interest is whether or not this 
symmetry is preserved in the steady state. Clearly, for small a and large /3 the density of 
particles in the system is expected to be low, the two types of particles do not block each 
other, and the steady state is expected to be symmetric. On the other hand for much 
smaller than a, particles are blocked in the system, the density is high and it is possible 
that symmetry breaking takes place. 

We start by considering the mean field approximation. It is straightforward to derive 
the mean field equations for the steady state. They take the form 

J+ = Pi l l  - Pi+l - (1 - q)mi+l] 

J- = mi+l[l- ma - (1 - q ) p J ,  

for i = 1,. . . , N - 1, where pi and mi are the densities of the (+) and (-) particles at 
site i, respectively, and J+ and J- are the currents of the positive and negative particles, 
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respectively. In addition to the bulk equations one has four other equations for the 
currents at the boundaries 

These (2N + 2) equations may be solved numerically for (PI , .  . . , p ~ ;  ml, . . . , m N ;  J+, J - )  
to yield the (.,a) phase diagram of the model. It is found that for large p the steady 
state is symmetric (with J+ = J - )  while for small p the two currents are unequal in the 
steady state. 

The matrix method discussed in the previous section has been generalised and applied 
to this model [37]. However it turned out that a self-consistent matrix representation 
could be found for this model only for ,B = 1 or in the limit a+m. The limit a+m is 
trivially mapped on the single species TASEP model. For ,B = 1 a phase transition is 
found although no spontaneous symmetry breaking takes place. According to mean field 
SSB is expected only at  much lower exit rates B. 

To demonstrate that the non-symmetric state found in the mean field approximation 
for small /3 survives fluctuations, numerical simulations of the dynamics have been carried 
out and the current difference J+ - J- has been measured as a function of time for small p, 
where the mean field approximation predicts a broken symmetry phase (371. A typical 
time evolution of the current difference for a system of size N = 80 is given in Figure 4. 
The figure suggests that the system flips between two macroscopic states: one with a 

O2 2 
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I 
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h 

h 
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Figure 4. The time evolution of the current dafference in the broken s y m m e t y  phase for 
(a = q = l ,p = 0.15, N = 80). Time is measured in units of Monte Carlo sweeps. Flips 
between the two symmetry related states are clearly seen. 

positive net current and the other with negative net current. In the first case the system 
is predominantly loaded with positive charges moving to the right while in the second case 
it is loaded with negative charges moving to the left. This time course is characterised 
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by a time-scale r ( N )  which measures the average time between flips. Clearly, when 
averaged over time, the current difference vanishes, yielding a symmetric state. This 
is to be expected since we are dealing with a finite system, and one certainly does not 
expect SSB to take place in a finite system. The question is how does the system behave 
in the thermodynamic limit N+m, and particularly how does T ( N )  grow for large N .  
Numerical simulations suggest that r grows exponentially with N .  This means that the 
probability of a flip is negligibly small in a large system, and thus SSB takes place. 

In order to gain some insight into the flipping process we consider the limit of very 
small p [40, 421. In this limit, particles leave the system at a very small rate, and the 
system is filled with either positive charges moving to the right or negative charges moving 
to the left. Starting with a positively charged system, one would like to understand the 
mechanism by which a system of finite length flips into a negatively charged one. The 
evolution in the small p limit may be described as follows: with rate j9 a positive charge 
leaves the system at the right end. The vacancy created at  this end may either move 
to the left with velocity 1 or may be filled with a negatively charged particle which in 
turn moves to the left with velocity q. When the negative charge reaches the other end 
of the system it is delayed for a while, but eventually leaves the system in time of order 
1/p. During this time, other negative charges may arrive at the left end forming a small 
blockage of negative charges. A typical configuration is given in Figure 5. It is composed 

--- -ooo_+ + + + + +, - 
X Y 

Figure 5. A typical microscopic configuration of the ‘bridge’ for small j9 in a broken 
symmetry state dominated b y  + charges. Usually x is a small number of O(1) and y is  of 
O ( N )  or vise versa. 

of a segment of x negative charges at the left, another segment of y positive charges at  
the right and in between a segment of N - x - y  vacancies. This configuration is denoted 
by (2 ,  y ) .  In the small p limit other configurations, for example those in which vacancies 
are present inside the charged segments, do not play a role in the global dynamics and 
may be neglected. 

The dynamics restricted to ( x , y )  configurations is rather simple. It may be viewed 
as the dynamics of a single particle diffusing on a square lattice performing the following 
elementary moves: 

where 
CY b=-  1 a=- 

2(1 + C Y )  ’ 2(1+ a)’ 
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are the rates of the various moves. Here the first two moves correspond to a positive 
charge leaving the system at the right end and being replaced by a negative charge (va- 
cancy), respectively. Similarly the last two moves correspond to a negative charge leaving 
the system at the left end and replaced by a positive charge (vacancy), respectively. A 
schematic representation of this process is given in Figure 6. 

Figure 6.  A representation of the dynamics of the ‘bridge’ in the limit of small ,B as 
a biased diffuaion process on a square lattice. The elementary moves and their rates are 
indicated. Starting with a positively charged sglstem, namely at ( N ,  0 ) ,  possible trajectories 
are given. Qpical walks, r ,  end on the x = 0 axis. Walks s ,  which end on the y = 0 axis, 
are mre’ and they correspond to a flip. 

The biased diffusion process takes place as long as the particle stays within the triangle 
(x 2 0 , 2 0 , x + y 5 N ) .  When it reaches the boundary of the triangle, for example 
x = 0 the negative charge blockage at the left end disappears and on a very short time 
scale (as compared with l/P) the system is filled with positive charges from the left end, 
moving to (0, N ) .  The evolution of a positively charged system is thus represented by a 
random walk starting at  (0, N )  with elementary steps defined by (31). Due to the bias of 
these elementary steps, a typical walk for large N ends on the x = 0 axis. Once it reaches 
this axis it moves back to (0, N )  and the process starts again. This process repeats itself 
until the diffusing particle performs a walk which starts at (0, N )  and ends on the y = 0 
axis without touching the x = 0 axis while diffusing. When this happens the blockage 
of positive charges at  the right end is removed, the system is rapidly filled with negative 
charges moving to the other end of the triangle ( N ,  0). This corresponds to a flip. The 
probability of such a walk taking place has been calculated, yielding the following flipping 
time [40]: 

C T ( N )  = -N3I2esN, 
P (33) 
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where C is a constant and 

The exponential flipping time is a direct result of the fact that the random walk corre- 
sponding to the evolution of the model is biased. It takes an exponentially long time to 
reach a distance of order N against a bias. 

A very interesting question is related to the behaviour of nonequilibrium systems with 
spontaneous symmetry breaking when an external symmetry breaking field is introduced. 
In thermal equilibrium a symmetry breaking field makes the phase that is disfavoured by 
the field metastable or even (when the field is large) unstable. For example, a positive 
magnetic field applied to an ordered ferromagnetic Ising system, removes the degeneracy 
between the two magnetic states. Only the state with positive net magnetisation remains 
stable. The two magnetic states coexist only at zero field. This is a direct consequence 
of the Gibbs phase rule. 

It is known that in nonequilibrium systems, this is not necessarily the case [43, 441. 
Namely when a symmetry breaking field is applied, the state disfavoured by the field may 
stay as a stable thermodynamic state. This is in violation of the Gibbs phase rule, which 
does not hold in nonequilibrium. 

The ‘bridge’ model described in this section provides a clear example for this be- 
haviour [40]. To demonstrate this point we introduce a symmetry breaking field by im- 
posing boundary conditions which favour, say, the positively charged state, thus explicitly 
breaking the symmetry. More specifically, we consider an exclusion model where, instead 
of having boundary rates a, ,B for both types of particles, we take a, p+ for the positive 
charges and a,,% for the negative charges. The two exit rates are taken to be of the 
form ,i?* = p(l H ) ,  where 0 < H < 1 is the symmetry breaking field, favouring the 
positively charged state. The analysis presented above in the limit p+O may be repeated 
for non-vanishing field H and the stability of the two phases may be analysed. Here again 
the dynamics is reduced to a diffusion process of the type (31) but with modifies rates 
(see Figure 7). Clearly the positively charged state is stable since it is favoured by the 

b(l+H) 
rr 

\ 

Figure 7. The elementary moves of the biased diffusion process corresponding to the 
small p limit when a symmety breaking field H is present. 

field. The question is whether the negatively charged state is stable when the field H 
is non-vanishing. To examine this problem, we start with a negatively charged system 
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( N ,  0) and consider a random walk defined by the diffusion process. It is easy to see that 
as long as H < a / ( l  - a)  = 1/(1 + 2a) the walk is biased in the negative y direction, 
yielding a flipping time exponential in the system size. Thus the negatively charged state 
is stable even when it is unfavoured by the symmetry breaking field. 

6 Phase separation in one dimension 

A phenomenon closely related to spontaneous symmetry breaking is that of phase separa- 
tion. In Id equilibrium systems with short range interactions, phase separation does not 
take place and therefore no liquid-gas like transition is expected. The density of particles 
in such a system is thus macroscopically homogeneous. 

Recent studies have shown that driven systems may exhibit phase separation in Id 
even when the system is governed by local dynamics [39, 45, 46,471. Several models have 
been introduced to demonstrate this behaviour. In these models more than one type of 
particles is needed for phase separation to take place. In the following we consider in 
some detail one of these models, and analyse the mechanism leading to nonequilibrium 
phase separation [39]. 

The model is defined on a Id lattice of length N with periodic boundary conditions. 
Each site is occupied by either an A, B,  or C particle. The evolution is governed by ran- 
dom sequential dynamics defined as follows: at  each time step two neighbouring sites are 
chosen randomly and the particles of these sites areexchanged according to the following 
rates 

AB + BA, BC & 1 C B ,  C A  + CA. (35) 

The rates are cyclic in A, B and C and conserve the number of particles of each type 
N A ,  NB and Nc, respectively. 

For q = 1 the particles undergo symmetric diffusion and the system is disordered. 
This is expected since this is an equilibrium steady state. However for q # 1 the particle 
exchange rates are biased. We will show that in this case the system evolves into a phase 
separated state in the thermodynamic limit. 

To be specific we take q < 1, although the analysis may trivially be extended for any 
q # 1. In this case the bias drives, say, an A particle to move to the left inside a B 
domain, and to the right inside a C domain. Therefore, starting with an arbitrary initial 
configuration, the system reaches (after a relatively short transient time) a state of the 
type . . . AABBCCAAAB . . . in which A, B and C domains lie to the right of C, A and 
B domains, respectively. Due to the bias q, the domain walls . . . A B . .  .) . . . B C . .  .) and 
. . . C A . .  ., are stable, and configurations of this type are long-lived. In fact, the domains 
in these configurations diffuse into each other and coarsen on a time scale of the order of 
q-', where 1 is a typical domain size in the system. This leads to the growth of the typical 
domain size as (lnt)/l lnql. Eventually the system phase separates into three domains of 
the different species of the form A .  . . A B . .  . BC . . . C. A finite system does not stay in 
such a state indefinitely. For example, the A domain breaks up into smaller domains in 
a time of order q-min{NB*Nc}. In the thermodynamic limit, however, when the density of 
each type of particle is non vanishing, the time scale for the break up of extensive domains 
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diverges and we expect the system to phase separate. Generically the system supports 
particle currents in the steady state. This can be seen by considering, say, the A domain 
in the phase separated state. The rates at which an A particle traverses a B (C) domain 
to the right (left) is of the order of q N w  (qNc).  The net current is then of the order of 
qNw - qNc, vanishing exponentially with N .  This simple argument suggests that for the 
special case NA = NB = Nc the current is zero for any system size. 

The special case of equal densities N A  = NB = NC provides very interesting insight 
into the mechanism leading to phase separation. We thus consider it in some detail. 
Examining the dynamics for these densities, one finds that it obeys detailed balance with 
respect to some distribution function. Thus in this case the model is in fact in thermal 
equilibrium. It turns out however that although the dynamics of the model is local, 
the effective Hamiltonian corresponding to the steady state distribution has long range 
interactions, and may thus lead to phase separation. This particular mechanism is specific 
to equal densities. However the dynamical argument for phase separation given above is 
more general, and is valid for unequal densities as well. 

In order to specify the distribution function for equal densities, we define a local 
occupation variable { X i }  = {A , ,  Bi, Ci}, where A,, B, and C, are equal to one if site i 
is occupied by particle A,  B or C respectively and zero otherwise. The probability of 
finding the system in a configuration { X i }  is given by 

w, ( { X i } )  = Z&p({Xi}) .  (36)  

where 'H is the Hamiltonian (setting q = e-@) 

and the partition sum is given by 2, = q7i({x*}).  The value of the site index (i + k )  
in (37)  is taken modulo N .  In this Hamiltonian the interaction between particles is long 
range, growing linearly with the distance between the particles. 

In order to verify that the dynamics (35)  obeys detailed balance with respect to the 
distribution function (36,37) it is useful to note that the energy of a given configuration 
may be evaluated in an alternate way. Consider the fully phase separated state 

A . . . A B . . . B C . . . C  (38)  

The energy of this configuration is E = 0, and, together with its translationally related 
configurations, they constitute the N-fold degenerate ground state of the system. We 
now note that nearest neighbour (nn) exchanges AB + BA, BC + C B  and C A  + AC 
cost one unit of energy each, while the reverse exchanges result in an energy gain of one 
unit. The energy of an arbitrary configuration may thus be evaluated by starting with 
the ground state and performing nn exchanges until the configuration is reached, keeping 
track of the energy changes at  each step of the way. This procedure for obtaining the 
energy is self consistent only when the densities of the three species are equal. To examine 
self consistency of this procedure consider, for example, the ground state (38), and move 
the leftmost particle A to the right by a series of nn exchanges until it reaches the right 
end of the system. Due to translational invariance, the resulting configuration should have 
the same energy as (38) ,  namely E = 0. On the other hand the energy of the resulting 
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configuration is E = NB - Nc since any exchange with a B particle yields a cost of one 
unit while an exchange with a C particle yields a gain of one unit of energy. Therefore for 
self consistency the two densities NB and NC have to be equal, and similarly, they have 
to be equal to N A .  

The Hamiltonian (37) may be used to calculate steady state averages corresponding to 
the dynamics (35). We start by an outline of the calculation of the free energy. Consider 
a ground state of the system (38). The low lying excitations around this ground state 
are obtained by exchanging nn pairs of particles around each of the three domain walls. 
Let us first examine excitations which are localised around one of the walls, say, AB. 
An excitation can be formed by one or more B particles moving into the A domain 
(equivalently A particles moving into the B domain). A moving B particle may be 
considered as a walker. The energy of the system increases linearly with the distance 
traveled by the walker inside the A domain. An excitation of energy m at the AB 
boundary is formed by j walkers passing a total distance of m. Hence, the total number 
of states of energy m at the AB boundary is equal to the number of ways P(m) of 
partitioning an integer m into a sum of (positive) integers. This and related functions 
have been extensively studied in the mathematical literature over many years. Although 
no explicit general formula for P(m) is available, its asymptotic form for large m is 
known [48] 

1 P(m) 2: - exp (~(2 /3) ' / '  m'/'). 
4mfi  

Also, a well known result attributed to Euler yields the generating function 

1 00 

Y = C qmP(m) = -, 
m=O (400 

(39) 

where 
(& = &h(l - q)(1 - q 2 ) .  . . (1 - qn). (41) 

This result may be extended to obtain the partition sum 2, of the full model. In the 
limit of large N the three domain walls basically do not interact. It has been shown that 
excitations around the different domain boundaries contribute additively to the energy 
spectrum [39]. As a result in the thermodynamic limit the partition sum takes the form 

Z N  = ",I3, (42) 

where the multiplicative factor N results from the N-fold degeneracy of the ground state 
and the cubic power is related to the three independent excitation spectra associated with 
the three domain walls. 

It is of interest to note that the partition sum is linear and not exponential in N, as 
is usually expected, meaning that the free energy is not extensive. This is a result of the 
long-range interaction in the Hamiltonian and the fact that the energy excitations are 
localised near the domain boundaries. 

Whether or not a system has long-range order in the steady state can be found by 
studying the decay of two-point density correlation functions. For example the probability 
of finding an A particle at site i and a B particle at site j is, 
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where the summation is over all configurations {Xk} in which NA = NB = Nc. Due 
to symmetry many of the correlation functions will be the same, for example (AiAj) = 
(B&) = (CiCj). A sufficient condition for the existence of phase separation is 

r-+w lim N+W lim ((AIAr) - (AI)(Ar)) > 0. (44) 

Since (A,) = 1/3 we wish to show that !~~~I~~(A~A,) > 1/9. In fact it can be shown 
[39] that for any given T and for sufficiently large N ,  

1 
(AIA,) = - - O(T/N) .  3 (45) 

This result not only demonstrates that there is phase separation, but also that each of 
the domains is pure. Namely the probability of finding a particle a large distance inside 
a domain of particles of another type is vanishingly small in the thermodynamic limit. 

Numerical simulations of the model for the case of unequal densities, where such 
analysis cannot be carried out, strongly indicate that phase separation takes place as long 
as none of the three densities vanish. They also indicate that the coarsening process which 
accompanies phase separation is rather slow, with the characteristic length diverging like 
In t at long times. 

7 Summary 

In these lecture notes some collective phenomena which occur in one dimensional driven 
systems have been reviewed. These systems have been extensively studied in recent 
years by introducing simple models and analysing their steady state properties. Some 
of these models have been demonstrated to exhibit a rich variety of phenomena which are 
unexpected in equilibrium one dimensional systems. 

Simple asymmetric exclusion processes in open systems were shown to exhibit both 
first order and continuous phase transitions. Other systems which have in the past been 
demonstrated to exhibit phase transitions in Id are directed percolation [49, 501 and 
contact processes [51]. These system, however, possess one or more absorbing states. Once 
the system evolves into one of these states the dynamics is such that the system is unable 
to exit. Under these conditions, the existence of a phase transition between a trapped 
and an untrapped states is rather natural. Usually, once the dynamics in these models is 
generalised to allow for an exit from the absorbing state no phase transition takes place. 
The phase transitions occurring in the asymmetric exclusion processes discussed in this 
paper are rather different, as the dynamics in these models does not possess absorbing 
states. 

Mechanisms which lead to spontaneous symmetry breaking and phase separation in 
one dimensional nonequilibrium systems have been discussed. A common crucial feature of 
these models is that the dynamics conserves, at least to some degree, the order parameter. 
In the ‘bridge’ model, the densities of the two types of particles are conserved in the bulk 
although they are not conserved at the two ends of the system. In the ABC model, on 
the other hand, the three densities are fully conserved. When non-conserving processes 
are introduced into these models spontaneous symmetry breaking and phase separation 
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do not take place. It would be very interesting to consider the possibility of spontaneous 
symmetry breaking in one dimension when the dynamics does not conserve the order 
parameter. A related problem has been considered in the context of error correcting 
computation algorithms. An example of a one dimensional array of coupled probabilistic 
cellular automata has been constructed and shown to yield breaking of ergodicity, as 
would a model with spontaneous symmetry breaking [52]. This approach suggests that 
indeed spontaneous symmetry breaking in Id may exist even when the dynamics is not 
conserving. However the example given is rather complicated and not well understood. 

In spite of the progress made in recent years in the understanding of nonequilibrium 
collective phenomena, many basic questions remain open, even for the restricted and rela- 
tively simple class of systems which evolve into a steady state. For example a classification 
of continuous nonequilibrium transitions into universality classes, like the one which exists 
for equilibrium transitions, is not available. Also the dynamical process of the approach to 
steady state is far from being understood in many cases. The approach outlined in these 
notes, which involves constructing simple dynamical models and analysing the resulting 
collective behaviour may prove to be helpful in developing better understanding of some 
of these complex questions. 
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Supercooled liquids and glasses 

Walter Kob 

Johannes-Gutenberg University, Mainz, Germany 

1 Introduction 

Glasses are materials that are much more common in our daily life than one might naively 
expect. Apart from the obvious (inorganic) glasses, such as wine glasses, bottles and 
windows, we also have the organic (often polymeric) glasses, such as most plastic materials 
(bags, coatings, etc. ) .  In the last few years metallic glasses have also come into daily use 
in many applications, including, appropriately for us here at St. Andrews, the heads of 
golf clubs. In view of the widespread use of these materials it might be a bit surprising 
to learn that glasses are not very well understood from a microscopic point of view and 
that even today very basic questions such as “What is the difference between a liquid and 
a glass?” cannot be answered in a satisfactory way. In the present lecture notes we will 
discuss some of the typical properties of supercooled liquids and glasses, and theoretical 
approaches that have been used to describe them. Since, unfortunately, it is not possible 
to review here all the experiments on glasses and the theoretical models to explain them 
we will discuss only some of the most basic issues and refer the reader who wants to learn 
more about this subject to other review articles and textbooks [l]. 

In the following section we will review some of the basic phenomena that are found in 
supercooled liquids and glasses. Subsequently we will discuss the theoretical approaches 
to describing the dynamics of these systems, notably the so-called mode-coupling theory 
of the glass transition. This will be followed by the presentation of results of computer 
simulations to check to what extent this theory is reliable. These results are concerned 
with the equilibrium dynamics. If the temperature of the supercooled liquid is decreased 
below a certain value, the system is no longer able to equilibrate on the time scale of the 
experiments, i.e. it undergoes a glass transition. Despite the low temperatures the system 
still shows a very interesting dynamics, the nature of which is today still quite unclear. 
Therefore we will present in the final part of these lecture notes a brief discussion of this 
dynamics and its implication for the (potential) connection of structural glasses with spin 
glasses. 

In what follows, we use for simplicity the language of atomic rather than colloidal 
systems (see Frenkel, this volume, for a discussion of the analogies). Note that in the 
context of hard-sphere colloids, which have no temperature dependence, the analogue of 
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supercooling is to raise the colloid volume fraction (or osmotic pressure) to above the one 
at  which crystallisation would occur in equilibrium. With non hard-core (e.g. DLVO) 
interactions present, the colloidal glass transition may be driven by varying temperature 
as well as density. However, such interactions are often explicitly temperature dependent 
(they include entropic as well as enthalpic terms); by sticking to the atomic case, we avoid 
that complication. The other main difference between colloids and atoms is in the nature 
of the dynamics (diffusive rather than ballistic): we address this below. 

2 Supercooled liquids and the glass transition 

In this section we will discuss some of the properties of supercooled liquids and some of 
the phenomena of the glass transition. 

If a liquid is cooled from high temperatures to below its melting point T, one expects 
it to crystallise at T,. However, since the crystallisation process takes some time (critical 
nuclei have to be formed and have to grow) it is possible to supercool most liquids, i.e. 
they remain liquid-like even below Tm. Some liquids can be kept in this metastable state 
for a long time and thus it becomes possible to investigate their properties experimentally. 
For reasons that will become clear below, such liquids are called good glass-formers. It is 
found that with decreasing temperature the viscosity 9 of these systems increases by many 
orders of magnitude. In order to discuss this strong temperature dependence it is useful 
to define the so-called glass transition temperature Tg by requiring that at Tg the viscosity 
is lo’* Pas, which corresponds roughly to a relaxation time of 100 seconds. (Reminder: 
water at room temperature has a viscosity around Pas). In Figure 1 we show the 
temperature dependence of log 9 for a variety of glass-formers as a function of TIT,. From 
that plot we see that the viscosity does indeed increase dramatically when temperature is 
decreased. Furthermore we recognise that this temperature dependence depends on the 
material in that there are substances in which q(T) is very close to an Arrhenius law, 
i.e. are almost straight lines, and other substances in which a pronounced bend in v(T) 
is found. In order to distinguish these different temperature dependencies Angel1 coined 
the terms ‘strong’ and ‘fragile’ glass-formers for the former and latter, respectively [3]. 
(Note: this meaning of the word ‘fragile’ has no obvious connection with one introduced 
more recently in the context of granular media; see Cates, this volume.) 

The strong temperature dependence which is found in q(T) is not a unique feature of 
the viscosity. If other transport quantities, such as the diffusion constant or relaxation 
times are measured, it is found that they show a similar temperature dependence to the 
viscosity. On the other hand if thermodynamic quantities, such as the specific heat, or 
structural quantities, such as density or the structure factor, are measured, they show 
only a relatively mild dependency in the same temperature interval, i.e. they vary by 
between 10% and a factor of 2-3. 

Equipped with these experimental facts one can now ask the main question of glass 
physics: what is the reason for the dramatic slowing down of the dynamics of supercooled 
liquids without an apparent singular behaviour of the static quantities? Although this 
question seems to be a very simple one it has not been possible up to now to find a 
completely satisfactory answer to it. One obvious response is to postulate the existence of 
a second-order phase transition at a temperature below T,. Then the slowing down could 
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Figure 1. Main jigure: viscosity of different glass-formers as a function of Tg/T1 where 
Tg is the glass transition temperature. Left inset: temperature dependence of the specijic 
heat, nomalised to its value for the crystal, for different glass-formers. Fk-om reference [2], 
with permission. 

be explained as the usual critical slowing down observed at  the critical point. Although 
such an explanation is, from a theoretical point of view, very appealing it suffers one 
big drawback, namely that so far it has not been possible to identify an order parameter 
which characterises this phase transition or a characteristic length scale which diverges. 
Thus despite the nice theoretical concept, the phase transition idea is not able to provide 
a satisfactory explanation for the slowing down of the dynamics. 

Things look much better for a different theoretical approach, the so-called mode- 
coupling theory (MCT) of the glass transition, which we will discuss in more detail below. 
This theory is indeed able to make qualitative and quantitative prediction for the time and 
temperature dependence of various quantities and experiments and computer simulations 
have shown that many of these predictions are true [4]. However, before we discuss 
the predictions of MCT we return to the temperature dependence of the viscosity or 
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the relaxation times. From Figure 1 it is clear that for every material there will be a 
temperature at which the relaxation time of the system will exceed by far any experimental 
time scale. This means that it will not be possible to probe the equilibrium behaviour 
of the system below this temperature. If the system is cooled continously with a given 
cooling rate from a high temperature to low temperatures there will exist a temperature 
Tl at which the typical relaxation time of the system is comparable to the inverse of 
the cooling rate. Hence, in the vicinity of this temperature the system will fall out of 
equilibrium and become a glass. (Note that the other glass transition temperature that 
we have introduced above, T,, is basically the value of Tl if one assumes that the relaxation 
time is on the order of 100 s.) This glass transition is accompanied by the freezing of 
those degrees of freedom which lead to a relaxation of the system, such as the motion 
of the particles beyond the nearest neighbour distance. Since below Ti these degrees of 
freedom are no longer able to take up energy, the specific heat shows a drop at Ti, as 
can be seen in the left inset of Figure 1. Note that empirically it is found that the fragile 
glass-formers show a large drop in the specific heat whereas the strong glass-formers show 
only a small one. Note, however, that this correlation is just an empirical one (and it 
does not hold strictly) and apart from hand-waving arguments it is not understood from 
a theoretical point of view. The same is also true for the distinction between strong and 
fragile glass-formers. So far it is not clear what the essential features in a Hamiltonian 
are that make the system strong or fragile, i.e. whether they include the range of the 
interaction, the coordination number, etc. 

At the beginning of this section we mentioned that the dynamics of glass-forming liq- 
uids becomes slow when they are cooled below the melting temperature. However, it is 
not a necessary condition for a slow dynamics that the temperature is below T,. For ex- 
ample, silica has a melting temperature around 2000K and a glass transition temperature 
around 1450K [5]. From Figure 1 it becomes obvious that at T = T, = T,/0.725 the vis- 
cosity is already on the order of lO’Pa s! Thus it is clear that slow dynamics has nothing 
to do with the system being supercooled, or in other words: for the glass transition the 
melting temperature is a completely irrelevant quantity. Despite this fact we will in the 
following continue to talk about ‘supercooled’ liquids, following the normal (imprecise) 
usage of this term. 

We now turn our attention to the MCT, the theory we have briefly mentioned earlier. 
Here we will give only a very sketchy idea of this theory and refer the reader who wants 
to learn more about it to the various review articles on MCT [4, 61. In the MCT the 
quantities of interest are the correlation functions between the density fluctuations of 
the particles. If we denote by r J ( t )  the position of the particle j at time t the density 
fluctuations are given by [7] 

where q is the wave-vector. From this observable one can calculate the so-called interme- 
diate scattering function F ( q ,  t )  which is given by 

(2) 
1 

F ( q ,  t )  = F@P(-q, t)6p(q, 0)) 

Here the angular brackets stand for the thermodynamic average. The relevance of the 
function F ( q ,  t )  is given by the fact that it can be directly measured in neutron and light 
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scattering experiments. (See also Pine, this volume.) From a theoretical point of view this 
correlation function is important since many theoretical descriptions of (non-supercooled) 
liquids are based on it, or its time and space Fourier transforms [7]. 

Using,the Mori-Zwanzig projection operator formalism [7] it  is now possible to derive 
exact equations of motion for the F(q,  t) .  This is done by assuming that F(q ,  t )  are the 
only ‘slow’ quantities of interest. Because of the continuity equation, which relates the 
time derivative of the density of the particles to the currents, the currents also become 
slow variables. Using these assumptions one arrives at the equations: 

P(q, t )  + @(q)F(q ,  t )  + J1 0 dTM(q,  T ) P ( t  - T )  = 0. (3) 

Here R2(q) is given by q2kaT/mS(q), where m is the mass of the particles and S(q) is the 
static structure factor, i.e. S(q) = F(q,O). The function M ( q , T )  is called the memory 
function and formally exact expressions exist for it. However, because of their complexity, 
these formal expressions are basically useless for a real calculation and thus in MCT one 
approximates M(q,  T )  by a quadratic form of the density correlators. In particular it is 
found that M ( q ,  t )  is given by 

where the vertex V 2  is given by 

V2k,  k I9 - kl) = ; * [W) + (9 - k)c(lq - kill)' (5) 

and the so-called direct correlation function c(k) can be expressed via the structure factor 
by (S (k )  - l ) / nS (k ) ,  where n is the particle density. Thus we see that within MCT the 
static structure factor determines the vertex V 2 ,  which in turn determines the memory 
function for the time dependent correlation function. Or in other words: the statics 
determine the dynamics. 

Note that similar equations of motion as the one for F ( q , t )  exist for the incoherent 
intermediate scattering function, F,(q, t ) .  This correlation function is given by 

i . e .  it is just the self (or diagonal) part of F(q , t ) .  Also this time correlation function is 
important since it can be measured in scattering experiments. 

Instead of making at  this point a detailed discussion of the properties of the solutions 
of these MCT equations, we will postpone this discussion to Section 4 where we will make 
a detailed comparison of the prediction of MCT with the results of computer simulations. 
The only thing that we mention at this.point is that it has been shown that at long 
times there are two types of solution of the MCT equations. The first one is the solution 
limt,, F ( q ,  t )  = 0. This solution is the only one at high temperature and it corresponds 
to the physical situation that the system is ergodic, i.e. all time correlation functions 
decay to zero. (Note that temperature enters though the temperature dependence of the 
static structure factor S(q).) The second solution has the property that limt+, F ( q ,  t )  > 0 
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and it occurs only below a critical temperature T,. Since, in this case, the correlation 
functions do not decay to zero even at long times, the system is no longer ergodic, i .e.  it 
is a glass. Thus within the MCT the system undergoes a glass transition at  T,. MCT now 
makes an asymptotic expansion of the dynamics around this critical point, i.e. it treats 
the quantity e = (T, - T)/T, as a small parameter. Hence all the predictions of the theory 
are, strictly speaking, only valid very close to T, and it is difficult to say a priori how far 
away from T, they are still useful. However, our experience of analysing data has shown 
that the theory can be used for values e as large as 0.5 or so 141, thus with respect to this 
the situation seems to be much better than the case of critical phenomena. 

3 On computer simulations 

In the last few decades computer simulations have been shown to be a very powerful 
tool to gain insight into the behaviour of statistical mechanic systems and thus can be 
considered to be a very useful addition to experiments and analytical calculations. Present 
days computer codes for such simulations are usually quite complex and thus we are not 
going to discuss the various tricks used in such simulations but refer the reader to some 
textbooks [8] and the lectures of Kremer (this volume). 

Simulations of supercooled liquids and glasses pose special problems for computer sim- 
ulators since at low temperatures the relaxation times are large, see the previous section, 
and thus the simulations have to be done for many (microscopically small!) time steps. 
Fortunately it is usually not necessary to use very large system sizes, a few hundred to a 
few thousand particles are adequate for most cases, and thus all the computer resources 
are spent to simulate the system over a time span which is as large as possible. Therefore 
present day state of the art calculations extend over 10-100 million time steps which cor- 
responds to between several months and several years of CPU time on a fast processor. 
Note that despite this effort the length of such a run corresponds to only about lo-’ sec- 
onds, since each time step is on the order of seconds. However, it should be noted 
that the time window of these simulations, i.e. 7-8 decades, exceeds the one of most ex- 
perimental techniques, such as neutron or light scattering. A more extensive discussion of 
advantages and disadvantages of computer simulations of supercooled liquids and glasses 
and references to the original literature can be found in [9]. 

We now discuss some of the details of the simulations whose results will be discussed 
in the next few sections. As mentioned in the previous paragraph the main issue of 
computer simulations of supercooled liquids is to investigate the system at a temperature 
which is as close as possible to the glass transition temperature, i.e. in that temperature 
range where the relaxation times of the system are large. Therefore it is advisable to 
use a system that can be simulated as efficiently as possible. Hence many investigations 
have been done for swalled ‘simple liquids’, i .e .  systems in which the interaction between 
the particles is isotropic and short ranged. One possible example of such a system is a 
one-component Lemard-Jones liquid. The main drawback of this system is that it is 
prone to crystallisation, i .e.  something which in this business has to be avoided at all 
costs. Therefore it has become quite popular to study binary liquids, since the additional 
complexity of the system is sufficient to prevent crystallisation, a t  least on the time scale 
accessible to today’s computer simulations. 
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The system we study is hence a binary Lennard-Jones liquid and in the following 
we will call the two species of particles ‘type A’ and ‘type B’ particles. The interaction 
between two particles of type a and p, a, j3 E {A, B}, is thus given by: 

The values of the parameters cap and U,@ are given by EAA = 1.0, UAA = 1.0, CAB = 1.5, 
UAB = 0.8, CBB = 0.5, and UBB = 0.88. This potential is truncated and shifted at  a 
distance o,p. In the following we will use UAA and EAA as the units of length and energy, 
respectively (setting the Boltzmann constant k~ = 1). Time will be measured in units of 
J-, where m is the mass of the particles. 

In the following we will study two types of dynamics for this system: a Newtonian 
dynamics (ND) and a stochastic dynamics (SD). The reason for investigating the ND 
is that it is a realistic dynamics for an atomic liquid. Thus it is possible to study at  
low temperatures the interaction of the phonons with the relaxation dynamics of the 
system. On the other hand the SD is a good model for a colloidal suspension in which the 
particles are constantly hit by the (much smaller) particles of the bath. In such systems 
the phonons are strongly damped and thus such a dynamics is one way to ‘turn off’ 
the phonons. Hence, by comparing the results of the two types of dynamics it becomes 
possible to find out which part of the dynamics is universal, i.e. does not depend on the 
microscopic dynamics, and which part is non-universal. 

In both types of simulations the number of A and B particles were 800 and 200, 
respectively. The volume of the simulation box was kept constant at a value of (9.4)3, 
which corresponds to a particle density of around 1.2. The temperatures used were 5.0, 
4.0, 3.0, 2.0, 1.0, 0.8, 0.6, 0.55, 0.5, 0.475, 0.466, 0.456, and 0.446. At each temperature 
the system was thoroughly equilibrated for a time span which significantly exceeded the 
typical relaxation times of the system at this temperature. At the lowest temperatures 
this took up to 40 million time steps. As we will see, the relaxation times for the SD are, 
at low temperatures, significantly longer than the ones for the ND. Therefore we used in 
all cases the ND to equilibrate the sample and used the SD only for the production runs. 
For the ND we used at  low temperatures a time step of 0.02, whereas for the SD a smaller 
one, 0.008, was needed in order to avoid systematic errors in the equilibrium quantities. 
In order to improve the statistics of the results we averaged over eight independent runs. 

4 The equilibrium relaxation dynamics 

In this section we will discuss the relaxation dynamics of the system in equilibrium. The 
main emphasis will be to find out to what extent this relaxation dynamics depends on the 
microscopic dynamics and which aspects of it can be understood within the framework of 
the mode-coupling theory. 

Before we study the dynamical properties of the system it is useful to have a look at  its 
static properties. In Section 2 we have mentioned that in the supercooled regime thermo- 
dynamic quantities and structural quantities show only a weak temperature dependence. 
That this is the case for the present system as well is demonstrated in Figure 2, where 
we show the static structure factor for the A particles, SAA(q), for different temperatures 
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Figure 2. Wave vector dependence of the stwcture factor for the A-A correlation for dif- 
ferent temperatures. Also included are the relaxation tames for the intermediate scattering 
function f o r  the A-particles. 

T. From this figure we recognise that the T-dependence of SAA(9)  is quite mild, in that 
the main effect of a decreasing temperature is that the various peaks become more pro- 
nounced and narrower. A similar weak T-dependence is also found for the pressure and 
the total energy of the system [lo]. In order to demonstrate that, in the temperature range 
shown, the dynamics of the systems changes strongly we have also included in the figure 
the typical relaxation times, defined more precisely below, at the different temperatures. 
From these numbers we see that in this temperature range the relaxation dynamics slows 
down by about two and a half orders of magnitude, a huge amount compared with the 
weak temperature dependence of the static structural quantities. 

One of the simplest possibilities for studying the dynamics of a liquid is to investigate 
the time dependence of the mean-squared-displacement (MSD) which is defined by 

Note that here the sum over the particles of type a is not really needed since in principle 
all particles of the same kind are statistically equivalent. However, in order to improve 
the statistics for the MSD it is advisable to make the additional average over the particles 
of the same kind. 

In Figure 3 we show the time dependence of the MSD for the A particles at the 
different temperatures. Let us start our discussion for the high temperatures, curves to 
the left. For very short times the particle flies ballistically, since on this time scale it 
does not even realise that it is part of a many body system. Thus its position is given by 
r i ( t )  = ri(0) + vi(O)t, where v i (0)  is its initial velocity. Thus the MSD is proportional to 
t2 ,  which is the time dependence seen at short times (see figure). 
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Figure 3. Time dependence of the mean squared displacement for the A particles for 
different temperatures. 

After the ballistic flight the particle collides with its nearest neighbours and thus its 
motion becomes diffusive, i.e. ( r 2 ( t ) )  = 6Dt, where D is the diffusion constant. This 
diffusive behaviour is readily seen in the curves at long times. The two time regimes just 
discussed are also found in the MSD for low temperatures. In addition to them we see 
from the figure that a third regime is present, in that the ballistic and diffusive regime 
are separated by a time window in which the MSD shows a plateau. This means that in 
this time regime the particle does not significantly increase its distance from the point it 
was at  time zero. The physical picture behind this behaviour is the so-called 'cage effect', 
i.e. the fact that on this time scale the particle is trapped by its surrounding neighbours. 
Only at  long times is the particle is able to escape this cage and to become diffusive 
again. Note that the particles forming the cage are of course also caged since they are 
surrounded by their neighbours. Hence it becomes clear that in order to obtain a correct 
description of the dynamics of the particles inside the cage and the breaking up of this 
cage, it is necessary to make a self-consastent ansatz for the motion of the particle and its 
cage and MCT is one way to do this. 

Since the intermediate scattering function F(q,  t )  and its self part F,(q, t )  are of ex- 
perimental relevance and are also the main focus of MCT, it is of course interesting to 
investigate their time and temperature dependence. In Figure 4 we show the time de- 
pendence of F,(q,t) for different temperatures. The wave-vector q is 7.25, the location 
of the maximum in the static structure factor for the A-A correlation. (For other wave- 
vectors the correlation functions look qualitatively similar [ll].) Also in this figure we 
find the different time regimes that we have discussed in the context of the MSD. At very 
short times the correlator shows a quadratic time dependence, which corresponds to the 
ballistic motion in the MSD. At high temperatures we see that, after this time regime, 
F,(p,t) decays rapidly to zero, and it is found that this decay is described well by an 
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Figure 4. Tame dependence of the incoherent intermediate scattering function of the A 
particles for all temperatures studied. 

exponential. This behaviour is typical for a liquid at high temperatures and is not specific 
to the present system. At low temperatures the quadratic time dependence is also found 
at  short times. However, in contrast to the high temperature case we find at intermediate 
times a plateau, the origin of which is again the cage effect that we have discussed before. 
Only at very long times does the correlation function decay to zero. This ultimate decay 
is not given by an exponential, but by a so-called Kohlrausch-Williams-Watts (KWW) 
law (also called stretched exponential), i.e. by Aexp(-(t/T)@), where the amplitude A, 
the time scale T and the Kohlrausch-exponent D depends on the wave-vector. 

For the following discussion a bit of nomenclature is useful: the time range in which 
the correlation function is close to the aforementioned plateau is called the /3-relaxation 
regime. The time window in which the correlator falls below the plateau is called the a- 
relaxation. Note that the late @-relaxation coincides with the eadg a-relaxation regime. 

MCT predicts that in the vicinity of the critical temperature T, the so-called time- 
temperature superposition principle holds in the a-relaxation regime. This means that a 
time correlation function $(t) can be written as follows: 

$k T )  = W / W )  , (8) 

where @ is a master function which depends on $, and T(T) is the a-relaxation time at 
temperature T ,  which also depends on $. In order to check the validity of this prediction, 
we define the a-relaxation time as that time at which the correlator has fallen to l / e  of 
its initial value. If Equation 8 does indeed hold, a plot of the correlation function versus 
the rescaled time t / r (T)  should give, in the a-relaration regime, a master curve. 

That this is indeed the case is shown in Figure 5, where we show the same data as in 
Figure 4, but this time versus t/7(T). We clearly see that the curves at low temperatures 
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Figure 5. The same correlation function as in Figure 4 versus t / r (T) ,  where r (T )  is the 
a-relaxation time of the system. The dashed curve is a fit with the KWW function to the 
master curve in the a-relaxation regime. 
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Figure 6. The incoherent intermediate scattering function for the stochastic dynamics 
for all temperatures investigated (solid lines). Bold dashed line: F,(q, t )  for the Newtonian 
dynamics at T = 5.0 and T = 0.446. 

Copyright © 2000 IOP Publishing Ltd.



270 Waiter Kob 

fall nicely onto a master curve. In addition MCT predicts that the shape of this master 
curve can be fitted well by the aforementioned KWW law, and a fit with this functional 
form is included in the figure as well, showing that this law does indeed fit our master 
curve very well. 

The results discussed so far are all for the ND, i.e. the dynamics in which the micro- 
scopic motion of the particles is not damped. In order to see how the relaxation dynamics 
changes if we have a strong damping, we show in Figure 6 the self intermediate scattering 
function for the stochastic dynamics (solid lines). The wave-vector is the same as the one 
in Figure 4. We see that the time and temperature dependence of the correlator is quali- 
tatively the same as in the case of the ND. However, a closer inspection shows important 
differences between the two types of dynamics and in order to see them better we have 
also included Figure 6 two curves for the ND (dashed lines). First of all the time scale 
for the a-relaxation is significantly larger for the SD than for the ND. Whereas at high 
temperature the SD relaxes slower by a factor of about seven, this factor increases to a 
value around 30 at the lowest temperature, and then stays constant [12]. Note however, 
that apart from this change of time scale the a-relaxation is the same, in that the shape 
of the curves as well as the height of the plateau in Figure 6 is the same for ND and 
SD. This is exactly what is expected within MCT in that the theory predicts that at 
temperatures around T, the temperature dependence of the dynamics is independent of 
the microscopic dynamics, apart from a system-universal constant factor. By this it is 
meant that the time scale of the a-relaxation will depend on the microscopic dynamics, 
but that this dependence is of a very special form, in that the a-relaxation time of all 
observables scales by the same, temperature-independent factor. 

Although the relaxation of the curves away from the plateau is independent of the 
microscopic dynamics, the approach of the curves to  the plateau depends on it. In par- 
ticular we see from Figure 6 that for the ND this approach is very abrupt whereas it is 
very gentle for the SD. The reason for this difference is that in the SD the phonon-like 
motion of the particles is strongly damped and thus the particles explore their cage in a 
much gentler way than they do in the ND. 

In order to investigate this part of the &relaxation dynamics in more detail we show 
in Figure 7 the SD curves from Figure 6 and the ND curve at low temperature versus 
t/t-(T). From this figure we see that the curves for the two different kinds of dynamics 
do indeed fall on top of each other in the &-relaxation regime but that they show the 
mentioned differences in the early P-relaxation regime. 

MCT predicts that in the 8-relamtion regime the shape of the master curve is not 
arbitrary, but is given by the so-called P-correlator, a function which is the solution of a 
certain integral equation [4, 61. This integral equation, and hence its solution, depend on 
one parameter A, the so-called ‘exponent parameter’. The value of X can be calculated 
from the structure factor and for the present system has the value 0.708 [13]. Using this 
value of X it is possible to solve the aforementioned integral equation, and thus to calculate 
the p-correlator. In Figure 7 we have included (bold dotted line) the best fit with this 
p-correlator and we recognise that this functional form gives a very good description of 
the correlators in the vicinity of the plateau. In particular we see that in the case of 
the SD the fit is also good in the early p-regime, thus showing that the damping of the 
motion leads to a much better agreement with the theory. The reason for this is that if no 
damping is present, the dynamics at  short times, which is governed by phonon-like motion, 
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Figure 7. The incoherent intermediate scattering function for the ND and SD, dashed 
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strongly interferes with the relaxation in the early @-relaxation regime and thus leads to 
the observed discrepancy between the P-correlator and the curve from the ND. However, if 
one takes account of this phonon-like dynamics in the theory, a good agreement between 
the theory and the ND curves is found also [14]. Thus we can conclude that MCT is 
able to give correct description of the @-relaxation dynamics on a quantitative as well as 
qualitative level. 

We now turn our attention to the temperature dependence of the diffusion constant 
and the relaxation times. MCT predicts that in the vicinity of T, these quantities should 
show a power-law dependence, i.e. 

D ( T )  cc r- '(T) a ( T - t , ) - 7  (9) 

where the exponent y can be calculated from the exponent parameter X and is found in 
our system to be 2.34 [13]. 

In Figure 8 we show the temperature dependence of the diffusion constant and the 
a-relaxation time T for the A particles for the ND and SD cases. In order to check for 
the presence of the power law given by Equation 9 we plot these quantities versus T - T,, 
where the critical temperature T, was used as a fit parameter. (We mention in passing 
that in principle it is possible to calculate the value of T, within MCT. However, it has 
been found that the theoretical value, T, = 0.92, is very far from the one determined 
from the correlation functions (T, = 0.435) [13]; this discrepancy is not a particularity of 
the present system but reflects the fact that MCT seems to have difficulty in estimating 
this quantity with high accuracy.) Returning to Figure 8 we see that in the supercooled 
regime the data can be fitted very well by such a power law. In particular we find that 
the exponent y of the power law for the relaxation time is independent of the microscopic 
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dynamics, see the values for y in the figure, and the same is true also for the exponents 
for the diffusion constants. However, in contrast to the prediction of the theory (see 
Equation 8), the exponent for the relaxation time is not the same as the ones for the 
difision constant. It is likely that the reason for this lies in the fact that the system 
is dynamically heterogeneous [15, 161, i.e. it has regions in which the dynamics of the 
particles is significantly faster than in other regions. Since it is not possible to take into 
account such dynamical differences within MCT due to the mean-field like nature of the 
theory, the prediction of MCT for the temperature dependence of the product D ( T ) . r ( T )  
is, for the present system, not correct. 

So far we have only tested the applicability of MCT on a qualitative level. These 
types of checks, and many more, can be done for all systems for which the dynamics has 
been studied in a temperature range in which the time scale of the dynamics changes 
considerably and in Reference [4] many of these tests are discussed. For simple liquids 
also quantitative tests are possible if the static structure factor is known with sufficiently 
high accuracy (e.g. 1% accuracy for wave-vectors between 0.lqO 5 q 5 3q0, where qo is the 
location of the maximum in S(q)). For this one has to solve the wave-vector dependent 
mode-coupling Equations 3-5, using the static structure factor as input. This has been 
done for hard sphere systems and the theoretical results compare nicely with the ones 
from experiments on colloidal particles [4, 171. Similar calculations have also been done 
for soft sphere systems [18] and water [19]. Here we will discuss the results for the present 
Lennard-Jones mixture. One quantity which is relatively simple to calculate is the value 
of the so-called critical non-ergodicity parameter, which is the height of the plateau in 
some time correlation function at T,. Note that for the case that the correlation function 
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is the intermediate scattering function this parameter will depend on the wave-vector as 
well as on the type of particle. 

In Figure 9 we show the q dependence of the non-ergodicity parameter for the case 
of F.(q,t)  for the A particles as well as for F(q , t )  for the A-A correlation (ND, open 
symbols). We see that the coherent part shows an oscillatory behaviour which is in phase 
with the structure factor. The reason for this is that the structure of the liquid is very 
stiff on the length scale of the interparticle distances, thus leading to a high plateau in 
the time correlation function, i.e. a large non-ergodicity parameter. 

In order to check whether the value of the non-ergodicity parameters depend on the 
microscopic dynamics we have also included in Figure 9 the data for the SD. We see that 
the curves for the SD are very close to the ones for the ND and thus conclude that the 
height of the plateau is independent of the microscopic dynamics, in agreement with the 
prediction of MCT. Also included in the figure is the theoretical prediction from MCT for 
the non-ergodicity parameter (solid lines) [13]. We see that these theoretical curves fall 
nicely onto the data points from the simulations thus demonstrating that the theory is 
indeed also able to make correct quantitative predictions. It should be appreciated that 
no free fit parameter of any kind was used to calculate the theoretical curves. We also 
mention that a similar good agreement between simulation and theory is obtained for the 
non-ergodicity parameters of the intermediate scattering function for the A-B and B-B 
correlation as well as for the B particles. 

As a further test of a quantitative prediction of the theory we will discuss finally some 
results of the dynamics in the p-relaxation regime. MCT predicts that as long the time 
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correlation function is close to the plateau it can be written as follows: 

where 1 is just an index labelling the correlator, ff is the non-ergodicity parameter dis- 
cussed above, hl is the so-called critical amplitude, and G(t )  is a system-universal function, 
i .e. it is independent of 1. The physical content of this equation is that in the P-regime 
all time correlation functions have the same time dependence, namely the one given by 
the function G(t) .  Therefore Equation 10 is also sometimes called the 'factorisation prop 
erty'. In order to check the validity of this prediction we have used for the functions qjl(t) 

the distinct parts of the van Hove correlation functions, GiB(r ,  t ) .  (Note that therefore 
the space variable r plays the role of the index 1 in Equation 10.) These space-time 
correlations are defined by 

for CY E { A , B } ,  and 

where n is the particle density of the system. Note that for t = 0 these functions are just 
the usual (partial) radial distribution functions and hence Gi@(r,  t )  can be considered as 
a generalisation of the latter to the time domain. In Reference [lo] we have shown that 
for this set of correlation functions the factorisation property is indeed fulfilled, i.e. that 
in the P-relaxation regime the correlators have the form given by Equation 10. Using this 
equation for the cases t = t' and t = t", and identifying $ l ( t )  = Gi@(r,  t ) ,  where now the 
label 1 runs through r ,  it follows immediately that the following equation holds for all 
values of T :  

(13) 
G i p  ( T ,  t') - Gzp ( T ,  t") 

Gip(r I ,  t') - G i p ( ~ ' ,  t") 
Ha@ ( r )  
H a p ( ~ ' )  ' 

=- 

where Hap(') is the critical amplitude for the function G ~ @ ( T ,  t ) ,  r' is arbitrary, and t' and 
t" are arbitrary times in the P-regime. Since the factorisation property holds it becomes 
possible to determine from the simulation the r dependence of the ratio H"@(r)/H"@(r'). 
In Figure 10 we show an upper and lower bound for this function (for the case of the A-A 
correlation), as it was determined from the simulation and we see that this is a non-trivial 
function of r .  Also included in the figure is the theoretical value for this ratio and we 
see that this curve reproduces well the one from the simulation. (Again in this case, no 
free fit parameter exists.) Thus this is more evidence that MCT is not only able to make 
correct qualitative predictions but also quantitative ones. 

Many more tests have been done in order to find out to what extent MCT is able to 
predict the dynamics of this system at low temperatures. The outcome of these tests is 
that the theory is indeed able to give a good description of this dynamics. Since a similar 
conclusion has been reached for the case of hard spheres, where the theoretical predic- 
tions have been compared with experiments on colloidal systems, we thus can conclude 
that MCT is able to describe the dynamics of simple liquids on a qualitative as well 8s 
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Figure 10. r-dependence of the critical amplitude for G$*(r,t) for the A - A  correlation 
as determined from the simulation and the mode-coupling theory. 

quantitative level. To what extent this is the case also for more complex systems, such 
as molecules with odd shapes or systems with long range interactions, is currently still 
a matter of investigation. The results for water [20], a triangular shaped molecule, and 
silica [21], a system with long range interactions, however, look promising. 

5 Out-of-equilibrium dynamics 

The results discussed in the previous section are concerned with the dynamics of the 
supercooled liquid in equilibrium. We have seen that with decreasing temperature this 
dynamics slows down and hence it is clear that there will exist a finite temperature below 
which the system cannot be equilibrated any more within the time scale of the experiment 
or the computer simulation. Hence the system will fall out of equilibrium, i.e. undergo a 
glass transition. As this is a purely kinetic phenomenon, the temperature at  which this 
happens is not intrinsic to the system such as, e.g. its melting point, and thus can be 
changed by choosing a different experimental time scale. For the sake of convenience we 
will call this temperature the glass temperature T,, despite the fact that we have defined 
this term differently in Section 2. Since below Tg the system is no longer able to relax one 
might expect that the motion of the particles essentially stops, apart from their vibration 
inside the cage, i.e. that relaxation no longer takes place. In order to check whether this 
expectation is borne out, we investigate in this section the dynamics of a system after 
a quench below T,. As we will see, even below Tg relaxation takes place but its nature 
is very different from that in equilibrium (above T,). In particular it is found that the 
properties of the system, such as its structure or relaxation times, change with time. 
Therefore it is customary to say that the system is aging. 
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Experiments on aging materials have been done for many years, mainly on polymeric 
systems, but since they often show very pronounced aging effects such as the material 
becoming more brittle with time [22], their theoretical description has been considered 
only on a phenomenological level. Only in recent times strong efforts have been undertaken 
in order to understand this situation within a well-defined theoretical framework [23, 241 
(see Bouchaud, this volume). However, from a theoretical point of view these aging 
systems are still understood in much less detail than is the case for the (supercooled) 
equilibrium system and very often only predictions of a very general nature can be made. 

In the following we will discuss some results of simulations which have been done in 
order to investigate the dynamics of a simple glass-former which has been quenched below 
Tg, The system of interest is the same binary Lennard-Jones mixture whose equilibrium 
properties we have discussed in the previous section. There we have seen that for this 
system the relaxation times close to the MCT temperature T, start to become comparable 
with the longest runs of present days simulations. Thus from a practical point of view 
the glass transition (on the computer!) takes place around T, (=0.435). To investigate 
the dynamics of the system below T, we equilibrated it a t  a temperature Ti > T, and 
then quenched it at time zero to a final temperature Tj 5 T,. This quench was done by 
coupling the system every 50 time steps to a stochastic heat bath, i.e. all the velocities 
of the particles are substituted with ones drawn from a Maxwell-Boltzmann distribution 
corresponding to a temperature Tf. Note that after such a substitution the kinetic energy 
of the system corresponds to an equilibrium system at temperature Tt but that the 
potentid energy does not. Hence, after the substitution, the dynamics of the system will 
pump potential energy into the kinetic energy and thus the system will (very!) slowly 
relax. However, if Tf is sufficiently small this relaxation will not be observed on the time 
scale of the simulation, i.e. the system will always be observed to age. 

When one investigates the properties of an aging system it is useful to distinguish 
between two types of observables: the so-called ‘one-time quantities’ and the ‘two-time 
quantities’. The former term refers to observables which in equilibrium are constants, 
such as the density (in a constant pressure experiment), the total energy of the system, 
or the structure (as measured, e.g., by the structure factor). In the out-of-equilibrium 
situation the values of such observables depend on the time since the quench, and hence 
they depend on one time. Two-time quantities are time correlation functions which in 
equilibrium depend on a time difference, such as the mean squared displacement or the 
intermediate scattering function. Since in nonequilibrium the time elapsed since the 
quench has also to be taken into account, such quantities will depend on two times in the 
aging system. 

In agreement with theoretical predictions it has been found, see [25, 26, 271, that 
most one ‘onetime quantities’ depend only weakly on time. Examples investigated were 
the total energy of the system, the radial distribution function or the pressure. (In 
passing we mention, however, that certain one-time quantities can show a sufficiently 
strong time dependence that they can be used to characterise the aging system very 
well. Examples of such observables are discussed in Reference [28]). In contrast to this 
the two-time quantities showed a very strong time dependence (see also Reference [29] 
for similar results for a soft sphere system). A typical example of a correlator that has 
such such a strong time dependence is Ck(tur + 7, tu) ,  the generalisation of the incoherent 
intermediate scattering function, see Equation 6, to the out-of-equilibrium situation. Thus 
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where t ,  is the time between the quench and the start of the measurement and hence is 
also called the 'waiting time'. Thus the meaning of this time correlation function is that 
a density fluctuation which is present at a time t ,  after the quench is correlated with a 
density fluctuation at a time r later. 
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Figure 11. Time dependence of the generalisation of the incoherent intermediate scatter- 
ing function to the out-of-equilibrium situation for waiting times t ,  = 0, 10, 100, 1000, 
10000, and 63100. Tf =O.4. The dashed line is the equilibrium correlation function at 
T =0.446. 

In Figure 11 we show the r dependence of ck for different waiting times and the A 
particles. The wave-vector is k = 7.23, i.e. the location of the maximum in the static 
structure factor for the A-A correlation. For small values of tw the curves rapidly decay 
to zero. With increasing t ,  the curves show at  intermediate times a plateau and go to 
zero only at long times. We see that if t, is not too small the approach of the curves 
to the plateau is independent oft,, whereas the time at which they start to fall below 
the plateau depends on the waiting time. In Reference [26] we have shown that the time 
at which the curves leave the master curve is approximately proportional to t z ,  with 
cz = 0.9. Thus we find that Ck does indeed show a strong waiting time dependence, as is 
theoretically expected for a two-time quantity. (Note that the oscillation at t = 1, and 
multiples of it, originate in the coupling of the system to the external heat bath and thus 
are not really an intrinsic feature of the aging system). 

In view of the fact that we are at a very low temperature it might be a bit surprising 
to see that all the curves approach zero at long times. That is, from the relaxation 
behaviour at equilibrium one would expect that within the time span shown the curves 
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should just fall on the plateau and then stay in its vicinity (see Figure 4). However, 
one should recall what is happening during the quench: at time zero the configuration 
of the particles corresponds to one which is typical for the high temperature T,. Due to 
the quench the system now tries to equilibrate and to do this it has to move to a part of 
configuration space which is typical for configurations at Tf .  It is this motion of the system 
in configuration space which leads to the rapid decay of the correlation function. If the 
waiting time since the quench is large, the system is able to find configurations which are 
already closer to the ones typical for Tf and thus the driving force for further exploration 
decreases. Hence the (out of equilibrium) relaxation becomes slower and slower and thus 
it takes the correlation functions more and more time to decay to zero. 

Also included in the figure is the equilibrium curve at T = 0.446 (bold dashed line). 
Although the shape of this curve is qualitatavely similar to the aging curves for long waiting 
times, a closer inspection shows that there are important differences. For example the 
approach of the curves to the plateau is much more rapid in the equilibrium case than in 
the nonequilibrium case. Also at long times significant differences are found. In Figure 5 
we have shown that at long times the equilibrium curve can be fitted well with a KWW 
law. This is not the case for the out of equilibrium case where it is found that the 
correlators show a power-law dependence on time with an exponent which decreases with 
decreasing wave-vector [27], but, which is independent of the waiting time. 

The results discussed so far are for a quench to Tf = 0.4, i .e.  a temperature which is 
quite close to the critical temperature of MCT. If the final temperature is significantly 
lower, the relaxation behaviour can be quite different from the one with higher T f .  This is 
shown in Figure 12 where we show the same correlation function as in Figure 11, but this 
time for T, = 0.1. From this figure we see that, for long waiting times, the correlators at 
short times look qualitatively similar to the ones for Tf = 0.4. The main difference is that 
the plateau is higher, which is reasonable since its height is, even in the out-of-equilibrium 
situation, related to the size of the cage that each particle feels, and it can be expected 
that this size is proportional to 1 - T,. 

For long times 7 the curves for high and low values of Tj are different also on a 
qualitative level, in that the ones for Tf = 0.1 show a second plateau. In the inset of 
Figure 12 we show the curves for t ,  = lo3 for the individual runs. We now recognise 
that most of these curves show at a time between 10’ - lo4 time units one or more sharp 
drops which are then followed by a regime in which the curves are almost constant. It is 
this constant part which gives rise to the second plateau in the average curve shown in 
the main figure whereas the sharp drops average out to a much less sharp decrease in the 
mean curve. 

In order to investigate the microscopic reason for the sharp drops and the subsequent 
plateaus we have compared the configurations just before the drop with the ones just 
after the drop (271. We have found that the fast relaxation is due to the fact that around 
10% of the particles ( i . e .  about 100 of them) undergo a sudden, quite co-operative motion 
in which the particles move by around 0.2-0.5 of their diameter. Despite the smallness 
of this motion, its cooperative nature leads to the observed fast drop in the correlation 
function. The likely reason for the occurrence of this cooperative motion is tliat, due to 
the quench, the system has built up an internal stress and it seems that the most efficient 
way to release this stress is to rearrange the particles in a cooperative way. Thus the 
situation is similar to an earthquake where stress is released in a similar way. 
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z 
Figure 12. Time dependence of Ck(tw + r, tw) for different waiting tines. Tf = 0.1. 

Finally we discuss some very interesting results concerning the connection between the 
time correlation functions and the response of the system to an external perturbation. 
In equilibrium this connection is given by the fluctuation dissipation theorem (FDT) 
which says the following: consider an observable A and the associated normalised time 
auto-correlation function 

If the system is perturbed with a field conjugate to the observable A the response function 
R(t) is given by 

1 dC 
kBT dt R(t)  = ---, 

where T is the temperature of the system. Thus in equilibrium the FDT relates the 
time derivative of the correlation function with the response and the factor is the inverse 
temperature. 

In the derivation of the FDT it is required that the system is time translation invariant, 
an assumption which is clearly not fulfilled in the out of equilibrium situation. Hence the 
FDT does not hold any more and it has been proposed that the FDT should be generalised 
as follows [23]: since the correlator depends on two times, also the response will depend 
on two times. Thus we have, assuming t' 2 t ,  
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where the function X ( t ,  t’) is defined by this equation. In the context of mean-field spin 
glass models it has been shown that in the limit t,, 7 + 00, X ( t ,  + 7, t,) is a function of 
the correlation function C only, i.e. 

X ( t ,  + 7, t w )  = z ( C ( t ,  + 7, tw) ) ,  (16) 

where the function x is now a function of one variable only. (Here tw is again the time 
since quench.) Within mean-field it is expected that the function x ( C )  is equal to -1.0 
if C is larger than the plateau value, i.e. that for these short times the FDT holds. For 
times such that C has fallen below the plateau it is expected that x is larger than -1.0, 
i.e. the FDT is ‘violated’. (The quotes reflect the fact that of course the FDT is not 
violated, since it is not supposed to hold.) The reason for the interest in the function 
X ( t ‘ , t )  is twofold: firstly, we see from Equation 15 that - ~ B T / X  is something like an 
effective temperature. Thus, if the time and temperature dependence of X is known, it 
might become possible to use thermodynamics concepts also for the out-of-equilibrium 
system. Secondly, in the context of spin glasses it has been found that the dependence 
of x ( C )  can be used to classify various types of spin glasses (see, e.g., reference [30] for a 
nice discussion on this). Thus by measuring c(C) for a structural glass, it might become 
possible to connect the properties of a structural glass, such as the present Lennard-Jones 
system, with a spin glass. 

Since the correlation function of interest is the generalisation of the incoherent inter- 
mediate scattering function, i.e. the correlation of a density fluctuation, we need a method 
to measure the response function to such fluctuations. Theoretically one could apply an 
external field with wave-vector q which couples to the position of one particle and see how 
this perturbation affects the density distribution. However, this approach would lead to 
very poor statistics and thus a more efficient method has to be used, the details of which 
are described in [27, 311. That procedure allows one to measure the integrated response 
M(tw + 7, t w )  with reasonable accuraey, where M(tw + 7, t,) is given by: 

M(tw + 7, t w )  = It,+* R(tw + 7, t ) d t  . 
tw  

Using Equations 15 and 16 one can rewrite this aa 

1 1  
kBT c 

M(t,t’)  = M(C)  = - J x(c)dc . 

From this equation it becomes clear that a parametric plot of the integrated response 
versus the correlator will give us the information about the integrant x(c)  and hence the 
factor X ( t ,  + 7, t w ) .  

In Figure 13 we show such a parametric plot for different waiting times and from it we 
can recognise the following things. For short times, i.e. those points at which C ( t ,  $7, t w )  
is large, the data points are compatible with a straight line with slope -1, i.e. z ( c )  is -1 
and the FDT holds. Thus for these short times the system does not really realise that it is 
not in equilibrium, since the fast degrees of freedom, such as the vibrations, are still able 
to follow the dynamics of the system. This is not the case for those processes that relax 
on longer time scales. In the figure we see that for times that correspond to the aging 
regime, i .e.  where the correlator C has fallen below the plateau, the data no longer follow 
the FDT line, but are well below it. We find that, within the accuracy of our data, this 
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Figure 13. Parametric plot of the integrated response Mk(t, +r, r )  vers"11s the correlation 
function Ck(tw + r ,r)  for different waiting tames and Tf = 0.3. The straight lines have 
dopes around -1 and -0.62. 

part of the data is compatible with a straight line with slope -m, with m < 1. Such a 
functional form has been found in mean-field spin glasses (with one-step replica symmetry 
breaking) and thus we have now evidence that our structural glass is compatible with this 
type of spin glass. At the moment such a connection is, of course, only a tenuous one. 
Furthermore one might wonder whether it is really justified to draw from a comparison of 
nonequilibrium properties between systems any conclusion about equilibrium properties. 
Surprisingly, for spin glasses this conclusion has been shown to be correct [32], and thus 
it is not completely crazy to assume that a similar connection can be made for structural 
glasses as well. Therefore, at the moment there are strong efforts to test these links since 
they would allow us to gain a much more unified picture of disordered systems. If such 
connections are shown to be present we would have learned that there is no fundamental 
difference between disordered systems in which the disorder is quenched, such as in spin 
glasses, and systems in which it is self-generated, such as in struttural glasses. 

A different important effort to extend our understanding of aging systems is work 
along the lines of that which has been so successful for the equilibrium dynamics. For 
temperatures above T, we have seen that mode-coupling theory is able to describe the 
dynamics of supercooled liquids not only qualitatively, but also quantitatively. Thus it is 
natural to try to extend this approach also to the out-of-equilibrium case since only then 
can certain non-universal features be discussed on a quantitative basis. Although in such 
calculations one is faced with formidable technical problems, some progress has recently 
been made [33] and thus it can be hoped that in the not too far future we will have also 
a quantitative theory for aging systems. 
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Aging in glassy systems: new 
experiments, simple models, and 
open questions 

J-P Bouchaud 

CEA Saclay, France 

1 Introduction 

A great variety of systems exhibit slow ‘glassy’ dynamics [l]: glasses of all kinds, but 
also spin-glasses and dipolar glasses [2, 31. Another interesting class of systems is that of 
pinned ‘defects’ such as Bloch walls, vortices in superconductors, charge density waves, 
dislocations, etc. interacting with randomly placed impurities [4]. Yet another class of 
system, where surprisingly slow dynamics can occur, is that of soft glassy materials such 
as foams or dense emulsions [5]. Of particular interest is the so called aging phenomenon 
observed in the response function of these glassy systems. This response is either to a 
magnetic field in the case of disordered magnets, to an electric field in the case of dipolar 
glasses, or to an applied stress in the case of, e.g. glassy polymers or dense emulsions. The 
basic phenomenon is that the response is waiting-time dependent, i.e. depends on the time 
t ,  one has waited in the low temperature (glass) phase before applying the perturbation. 
Qualitatively speaking, these systems stiflen with age: the longer one waits, the smaller 
the response to an external drive, as if the system settled in deeper and deeper energy 
valleys as time elapses. 

More precisely, consider a magnetic system which is cooled, in zero field, to below the 
glass temperature T,, understood as the temperature below which the relaxation time 
becomes larger than the experimental time scales: this temperature may or may not 
correspond to a true phase transition (see Kob, this volume). If the system is then left 
at TI (less than Tg) during a time t ,  before applying an external field (or stress), then 
the time dependent magnetisation saturates after a time comparable to t ,  itself. In other 
words, the time dependent magnetisation (or strain) takes the following form: 

(1) 
t 

M ( t w  + t ,  t w )  = MaJt) + &fag (-) , 
t, 

where Mag is the slow, aging part and Mm(t )  is a ‘fast’ part. (Strictly speaking, M,(t) 
should be written M,( t /~o) ,  where TO is a microscopic time scale). Analogously, if a 
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polymer glass is left at  TI during a time tw before applying an external stress, the sub- 
sequent strains develop on a time scale given by t, itself. Note that the decomposition 
of the dynamics into a fast part and a slow part often also holds above (but close to) T,, 
where one speaks of P-relaxation and a-relaxation, respectively. The time scale ~ ( 2 ’ )  for 
the a-relaxation is, however, finite and waiting-time independent above T,. This time 
becomes effectively infinite for T < T,, and is therefore replaced by the age of the system 
t,. In other words, Equation 1 is the continuation in the glass phase of the precursor 
two-step relaxation commonly observed above Tg [SI (see also Kob, this volume). 

Aging in correlation functions 

One can also, at  least numerically, observe aging in the correlation functions. For example, 
the dynamic structure factor of a Lennard-Jones system, defined as: 

where r(t) is the position of a tagged particle at time t ,  exhibits interesting aging p rop  
erties [7]. Note that the corresponding experiments are much harder to realise, since the 
measurement of the structure factor typically takes several minutes or so. In order not 
to mix together different waiting times, one should redo the experiments several times, 
heating back the system above T,, and cooling down again, until the number of runs is 
sufficient to obtain a good averaging for a f i e d  t,. This point will be further discussed 
below-see Equation 6. 

In equilibrium, the correlation and the response function are related through the 
~uct~ation-diasipQtion theorem (see Kob, this volume). Interestingly, this theorem does 
not hold in general for the aging part of the correlation and response. A generalisation 
of this theorem has been provided in [8, 91 in the context of some mean-field spin-glass 
models, where the true temperature of the system is replaced by an effective tempera- 
ture, higher than that of the thermal bath (and possibly time dependent). Quite a lot 
of effort has been devoted to measure this effective temperature in glassy systems, both 
numerically [lo], and experimentally [ll].. 

2 Different types of aging 

2.1 

Aging can also be seen in measurements of the a.c. susceptibility, defined by the response 
to an oscillating field at frequency W .  (Its analogue, for mechanical perturbations, is 
the compliance P ( w )  = l/G*(w) where G*(w)  is the frequency-dependent modulus; see 
McLeish, this volume). These measurements have the advantage that the perturbing field 
can then be extremely small. On the other hand, since one must wait for at least one 
period before taking a measurement, the time sector available in these experiments is 
confined to wt,>l (corresponding, in the language of the time dependent magnetisation 
discussed above, to the short time region t < tw).  The ax .  susceptibility typically takes 
the following form: 

Aging in the ax.  susceptibility 

X”(W1 t w )  = x X w )  + f ( t W ) X a g ( W )  (3) 
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where xw(w) is the stationary contribution, obtained after infinite waiting time. Depend- 
ing on the system, the aging part behaves quite differently. For example, in spin glasses 
(sG), both the functions f and xag behave similarly, as a power-law [3]: 

This behaviour is the counterpart, in frequency space, of the t/tw scaling reported above. 
A spin glass is a system of magnetic spins on a lattice in which an individual spin experi- 
ences both ferromagnetic and antiferromagnetic interactions with its neighbours, leading 
to frustration. A dipolar glass contains instead local electric dipoles at random sites which 
interact with each other and with the polarisable surroundings. Some dipolar glasses (DG), 
close to a ferroelectric transition [12, 131, reveal a very different behaviour, since in this 
case one has: 

f(tW)xag(~)ldg = At:? or - Blogt,, ( 5 )  
i.e. an aging part which is nearly frequency independent. Glycerol, on the other hand, 
shows an intermediate behaviour [14]: the aging part is frequency dependent, but the 
frequency dependence is weaker than the waiting time dependence. 

2.2 Role of the thermal history 

If a system ages, then by definition it is out of equilibrium. Therefore, one might worry 
that the properties that one measures at Tl actually strongly depend on the whole thermal 
history of the system. Here again, different systems behave very differently. A naive 
argument, based on the idea that thermal activation over high energy barriers plays a 
central role in aging, would suggest that the ‘age’ of a system cooled very slowly before 
reaching TI should be much larger than the ‘age’ of the same system, but cooled more 
rapidly. In other words, cooling the system more slowly allows energy barriers to be 
surmounted more efficiently at higher temperatures, and thus brings the system closer to 
equilibrium at  TI. This is precisely what happens for DG systems [12]. One can actually 
use non-uniform cooling protocols, where the cooling rate is either slow or fast only in the 
vicinity of T,, and then fixed to a constant value for the last few Kelvins-see Figure 1. 
In the case of DG, one sees very clearly that the cooling rate when crossing T, is the 
crucial quantity which determines how well the system is able to equilibrate [12]. When 
the system is cold, then the dynamics is essentially frozen on experimental time scales, 
and therefore the precise value of the cooling rate there is of minor importance. 

Surprisingly, the situation is completely reversed for SG. In these systems, the value 
of the cooling rate in the vicinity of T, is completely irrelevant, and the observed ax.  
susceptibility is to a large degree independent of the cooling rate, except for the very last 
few Kelvins [15]. This is illustrated in Figure 1. The nriive picture of a system crossing 
higher and higher barriers to reach an optimal configuration therefore certainly needs to 
be reconsidered for these systems. 

2.3 

An even more striking effect has been observed first in spin-glasses [16, 171, and more 
recently in a variety of other systems. Upon cooling, say from Tl to TZ c TI ,  the system 

Rejuvenation and memory in temperature cycling 
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Figure 1. Effect of the cooling rate (shown in the inset) on XI' (circles and crosses), for a spin 
glass, showing that the value of the cooling rote in the vicinity of Ts is completely irrelevant. 
Only the cooling rote during the very last Kelvins actually affect the contribution of the aging 
part of the susceptibility. 

rejuvenates and returns to a zero-age configuration even after a long stop at the higher 
temperature TI.  This is tantamount to saying that the thermal history is irrelevant, 
as we pointed out above: stopping at a higher temperature is more or less equivalent 
to cooling the system more slowly. The interesting point, however, is that the system 
at the same time remembers perfectly its past history: when heating back to 2'1, the 
value of the a.c. susceptibility is seen to match precisely the one it had reached after 
the first passage at this temperature, as if the stay at TZ had not affected the system at 
all: see Figure 2. The paradox is that the system did significantly evolve at Tz, since a 
significant decrease of f ( w , t w )  is also observed at Tz. The effect would be trivial if no 
evolution was observed at T2: in this case, one would say that the system is completely 
frozen at the lowest temperature, and then all observables should indeed recover their 
previous value when the system is heated back. The puzzle comes from the coexistence 
of perfect memory on the one hand, and rejuvenation on the other. (This rejuvenation 
has often been identified with some kind of 'chaotic' evolution of the spin-glass order with 
temperature. As we shall discuss below, this might be misleading and we prefer calling 
this effect 'rejuvenation' rather than 'chaos'.) 

Similar effects have now been seen in different systems: in different spin glasses [15], 
some dipolar glasses [12], PMMA [19], and very recently disordered ferromagnets [20, 211. 
This last case is interesting because the system is a so-called reentrant spin-glass: the 
system is ferromagnetic at high temperatures, and then becomes a spin-glass at lower 
temperatures. One can thus compare in detail the aging effects in both phases. The 're- 
juvenation and memory' turns out to be very similar in both phases, except that memory 
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Figure 2. Effect of a temperature cycle for TI = 12K to T2 = 10K (< TI) and back to TI. One 
sees that after a long stop a t  TI, aging is restarted when the system is cooled to T2, as i f  it never 
had stopped a t  TI (the central part of the curve would be the same after a direct quench from 
T > Tg to Tz.) At the same time, a perfect memorg of the value of X” reached a t  the end of the 
stay a t  TI i s  kept somewhere in the system. The inset shows that after ‘cutting’ the central part, 
one recovers precisely the usual aging curve at  TI. (&om [16]). 

is only partial in the ferromagnetic phase: only when the system is left at T2 for a rather 
short time does one keep the memory. In spin glasses, as soon as TI - T2 is greater than a 
few degrees, the memory is kept intact, at least over experimentally accessible time scales. 

2.4 Deviations from t / t ,  scaling 

We have mentioned above that in many systems such as spin-glasses or polymer glasses, 
the aging part of the response function scales approximately as t / t w ,  meaning that the 
effective relaxation time of a system below the glass transition is set by its age, t,. This 
scaling is actually only approximate. It appears that a better rescaling of the experimental 
data is achieved by plotting the data as a function of the difference (t+t,)l-fi - t k f i ,  with 
p < 1 [3]. For p = 0, t ,  drops out, and this describes a usual time-translation invariant 
response function, while the limit p -+ 1 corresponds to a t / t ,  scaling. It is easy to see 
that the effective relaxation time grows as tC, i.e. more slowly than the age t ,  itself for 
p < 1 (‘sub-aging’). Note that for dimensional reasons, t t  should in fact read t i r iVp ,  
where 70 is a microscopic time scale. Therefore, deviations from the simple t / tw scaling 
would mean that the microscopic time scale is still relevant to the aging dynamics, even 
for asymptotically long times. Such a behaviour is predicted in some mean-field models 
of spin-glasses, and also in simpler ‘trap’ models, to be discussed below. 

However, one should be very careful in interpreting any empirical value of p less than 
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one, because several artefacts can induce such an effective subaging behaviour. A first 
possible artefact is due to the external field applied to the system to measure its response. 
Experimentally, one finds that the higher field (or the external stress), the smaller the 
value of p: an external field destroys the aging effect [2, 221. The extrapolation of p 
to zero field is somewhat ambiguous, especially because of a second possible artefact, 
which is a bad separation between the ‘fast’ relaxation part in Equation 1 and the slow 
aging part. This comes from the fact that the so-called ‘fast’ part M,(t) is not that 
fast. In spin glasses, it decays as  TO/^)", where a is a very small exponent, of the order 
of 0.05. Hence, this leads to a rather substantial ‘tail’ even in the experimental region 
where t = 1Ol2~o,  which pollutes the aging part and leads to an effective value of p < 1. 
However, even after carefully removing this fast part, the value of p in spin-glasses still 
appears to be stuck slightly below the value 1 [3]. A third reason for this to be so is 
finite size effects. One expects that for a system of finite size, aging will be interrupted 
after a finite time, when the system has fully explored its phase space. Therefore, after a 
possibly very long ‘ergodic’ time, the response of the system has to revert to being time- 
translation invariant, corresponding to p = 0. An idea, advocated in [23] and recently 
reconsidered by Orbach 1241, is that a sample made of small grains of different sizes will 
lead to an effective value of p < 1 because the ergodic times of some of the grains enter 
the experimental time window. 

As a last possible artefact, let us mention the case of dynamic light scattering exper- 
iments where the signal is recorded while the system is aging. In this case, instead of 
measuring Sq(tw + t ,  t,), one actually measures: 

where 7 is the integration time needed to obtain a reliable signal. It is easy to see that 
even if S,(t, + t ,  t,) is a function of t/t,, the averaging over t‘ will lead to an effective 
value of p smaller than one, tending to one only if 7 << t,. It is possible that this 
mechanism can explain the value of p - 0.5 determined in (251 for a colloidal glass, where 

Before ending this section, let us finally add an extra comment concerning the case 
p > 1 (‘super-aging’). In some simple coarsening models of aging, discussed below, it 
can be argued that the relevant scaling variable should be log(t + tw) /  log(&) rather than 
t/t,. This corresponds to an effective value of p greater than one. Other mechanisms 
leading to p > 1 can be found, see [26] and below. 

r t,. 

3 Simple models of aging 

3.1 

A simple case where aging effects do appear is phase ordering in pure systems (see Bray, 
this volume, and [27]). Take for example an Ising ferromagnet suddenly quenched from 
high temperatures to a temperature below the Curie temperature. The system then wants 
to order, and has to choose between the up phase and the down phase. Obviously, this 
takes some time, and the dynamics proceeds via domain growth. After a time t, after the 
quench, the typical distance between domain walls is E(t,), which grows as a power-law 

Domain growth in pure systems 
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of time, i.e. relatively quickly, even for small temperatures. A given spin, far from the 
domain walls, will thus have to wait for a time t such that t(tw + t) N 25(tw) to flip 
between the up and down phases and decorrelate. For a power-law growth, this means 
that the effective relaxation time is of the order of t, itself, corresponding to p = 1. 
This behaviour is confirmed by several exactly soluble models of coarsening, such as the 
Ising model on a chain, or the ‘spherical’ model, where one can compute explicitly the 
correlation function to find [27]: 

t 

t, 
C(t, + t ,  t,) = C&) + c, (-) . (7) 

One can also compute several other quantities, such as the effect of an external magnetic 
field h on the aging properties. One then sees that when t(tW)-’ is smaller than h, the 
driving force due to the curvature of the domain walls is superseded by the driving force 
due to the external field [28]. In this situation, the favoured phase quickly invades the 
whole system and aging is stopped. This leads, for very small fields and moderate time 
scales, to an effective value of the exponent p < 1, as discussed in Section 2.4. The main 
quantity of interest to compare with experiments, however, is the response function. The 
result is that the aging part of the response function vanishes like t ( tw) - l  as t, becomes 
large. In terms of the ax .  susceptibility, one finds that [28, 291: 

Intuitively, this result means that the aging part of the susceptibility only comes from the 
domain walls, while the spins in the bulk of domains contribute to the stationary part 
xk(w).  Since the density of spins belonging to domain walls decreases as td-’/td = t-’, 
the aging contribution decreases with time as the density of walls. 

Domain growth in pure systems is driven by surface tension and does not require 
thermal activation; the aging effects in these systems are therefore hard to detect ex- 
perimentally, since the typical size of the domains soon reaches its maximum value (set 
either by the size of the system or by magneto-static or other considerations). Similarly, 
one does not expect the cooling rate to have a major influence on the coarsening of the 
system. 

3.2 Domain growth in random systems 

More interesting is the situation in disordered ferromagnets (for example in the presence 
of quenched random fields or random bonds). In this case, the impurities act as pinning 
sites for the domain walls. The problem of elastic objects (such as domain walls, but also 
vortices in superconductors, dislocations, etc.) pinned by random impurities has been 
the subject of intense work in the past decade, both from a static point of view (where 
the typical equilibrium conformation of such objects is investigated) and to understand 
their dynamics (relaxation to equilibrium, response to an external driving force, creep and 
depinning transition)-for reviews, see [30, 4, 31, 321. Actually, these systems constitute 
‘baby’ spin glasses: frustration is present because of the competition between pinning, 
which tends to distort the structure, and elasticity which tends to reduce the deforma- 
tions. The main result of the theory is the appearance of a typical pinning energy Ep(l) 
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associated to the linear size 1 of the piece of domain wall that attempts to reconform. 
This energy scale grows as a power of 1: 

where T is a (temperature dependent) energy scale, and 8 an exponent which depends on 
the dimensionality of the structure (ID for dislocations, 2D for domain walls, etc.) and 
on the correlations of the pinning field. Using a very na’ive Arrhenius law for thermal 
activation, this means that the typical time associated with reconformation events that 
occur on a scale C take a time: 

Equivalently, the length scale over which the system can equilibrate after a time tw only 
grows logarithmicallg: 

In particular, the typical size of the growing domains in expected to grow logarithmically 
with time, that is, edmmely slowly. This very slow growth means that the density of 
domain walls only decays slowly with time, and therefore that the aging contribution to 
the susceptibility is still significant even after macroscopic times. (Actually, for domain 
growth, the exponent of the logarithm is probably larger than l/O, but this does not 
matter for the present qualitative discussion. In particular, one expects the aging part of 
the correlation function to be a function of log(t, + t)/logt,.) 

Although very simple, the exponential relation between length scales and time scales 
given by Equation 10 has far-reaching consequences: the dynamics becomes, in a loose 
sense, hierarchical. This is illustrated in Figure 3. The object evolves between metastable 
configurations which differ by flips of regions of size el on a time t(1,) that, because of the 
exponential dependence in Equation 10, is much shorter than the time needed to flip a 
region of size 1 2  > l , .  Therefore, the dynamics of the short wavelengths happens on a time 
scale such that long wavelengths are effectively frozen. As we shall explain below, this 
feature is, in our eyes, a major ingredient in understanding the coexistence of rejuvenation 
and memory. Another important consequence is the fact that domain growth becomes a 
very intermittent process: once an event on the scale of the domain size ( has happened, 
the details of the conformation on scales e <  ( start evolving between nearby metastable 
states, while the overall pattern formed by the domains on scale ( hardly change. 

Equation (10) also allows one to define a very important quantity which we call, by 
analogy with the glass temperature Tg, the ‘glass length’ e,, through T(T)1: = AT, intro- 
duced in this context in [33, 34, 321. The factor A is rather arbitrary; the choice A = 35 
corresponds to a time of 1000 seconds if TO = seconds. In analogy with the glass tem- 
perature T,, one sees that length scales larger than tg cannot be equilibrated on reasonable 
time scales, while length scales smaller than e, are fully equilibrated. Qualitatively speak- 
ing, the equilibrated modes contribute to the stationary part of the correlation and/or 
response function, while the glassy modes e > tg contribute to the aging part. There- 
fore, the strong hierarchy of time scales induced by the exponential activation law allows 
equilibrated modes and aging modes to coexist. 
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Figure 3. Schematic evolution of a pinned object on weIl separated t ime scales. O n  scaIe t(.!,), 
the object reconforms b y  flipping a small portion of size .!I from one favoumble configuration 
to another (a + b).  O n  a much longer time scale t (&) >> t(e,), the conformation on  scale 4 
(dotted lines) has evolved (b --t c). The dynamics of the short wavelengths happens on a t ime 
scale such that long wavelengths are effectively frozen. 

Finally, it is easy to understand that the logarithmic growth law, Equation 11, leads 
to a strong cooling-rate dependence of the typical size of the domains [13]: since the 
growth law is essentially that of pure systems as long as < << e,(T), a longer time spent 
at higher temperatures (where e, is large) obviously allows the domains to grow larger 
before getting pinned at  lower temperatures. 

3.3 Diffusion in a random potential: the Sinai model 

It is useful to consider a toy model for the dynamics of a pinned domain wall by considering 
the motion of a poin t  particle in a random potential. This can be thought of as a reduction 
of the problem to the dynamics of the centre of mass of the pinned object. From the study 
of these pinned objects, it is known that reconformations on scale e typically change the 
position of the centre of maSs X by an amount 0: t?c, where 5 is a certain exponent, 
analogous to the exponent e defined above. Since the energy changes by an amount Ye’, 
the statistics of the random potential V ( X )  acting on the centre of mass X must be such 
that: 

([v(x)  - V ( X ’ ) ] ~ )  a PIX. - x’I”’~ for / X  - X ’ I  <( LS, (12) 

where L is the total transverse size of the object. For larger distances, ( [ V ( X )  - V(X’ ) I2 )  
saturates to a finite value, since the impurities encountered by the pinned object become 
uncorrelated. 
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An interesting example is provided by a line in a plane ( i e .  a domain wall in two 
dimensions) in the presence of impurities. In this case, the exponents C and 8 are exactly 
known: C = 2/3, 0 = 1/3, leading to ( [ V ( X )  - V(X’)I2) o( T21X - X‘I. If one assumes 
that the statistics of V ( X )  is Gaussian, then the potential V ( X )  is a random walk, and 
the model under consideration is precisely the well known Sinai model, for which a large 
number of analytical results are known (for reviews, see [35, 36, 371). 

One can also define in this model a ‘glass scale’ X ,  such that, at temperature TI: 

where we have taken into account a possible temperature dependence of T. For X << X,, 
the diffusion motion is quasi-free, and the dynamics is ‘fast’ (diffusive). For times cor- 
responding to distances larger than X,, the energy barriers strongly impede the motion, 
and lead to a slow logarithmic sub-diffusion: 

More precisely, all the particles initially launched at  X = 0 will, after time t ,  be located 
in the deepest energy well available at  time t ,  which is at an approximate distance 108 t 
from the initial point. The relative distance between these particles, however, does not 
grow with time. The deepest trap available is so much more favourable than the others 
that the relative distance between all particles remains typically of order X,: this is the 
Golosov phenomenon (see [38, 36, 391). Within the deepest well, on the other hand, the 
probability is roughly uniform, since the energy landcape is shallow in comparison with Tl. 
One can actually argue, using the beautiful results of [37], that the (intra-well) response 
of the particle to a small oscillating external field should behave as: 

where t ,  is the time since the quench from very high temperatures. This shows that 
within this simplified model, the response is not exactly a function of wt,, but that there 
are logarithmic corrections. This means that the scaling variable is again, over a limited 
range oft,, effectively of the form wtg with p < 1. In Figure 4, we show the results of 
a numerical simulation performed with Yoshino [40], where x(w,  t,) is computed for the 
Sinai model at various frequencies, as a function oft,. We have shown the slope lit, for 
comparison, and rescaled the different curves using the value p = 0.9 in the inset. 

Now, the very interesting property of the Sinai model is the fact that the potential 
V ( X )  is strictly self-affine. This means that the statistics of the potential at small scales 
is identical, up to a scaling factor, to the statistics of the potential at larger scales (see 
Figure 5 ) .  Therefore, when the temperature is lowered from TI to T2 < 2’1 after a time 
twl, the particle has to restart its search for the most favourable well, much as it had done 
when the temperature first reached Tl from high temperatures. Since the probability 
distribution within the well is uniform at the moment of the second temperature change, 
it indeed corresponds, effectively, to a high temperature quench. The point however is that 
the particles cannot leave the deep well they had reached at 2’1 before a time exceedingly 
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Figure 5. The potential V ( X )  in the Sinai model is self-afine. A zoom of a small portion of 
it, of size X,(Tl) ,  reveals the same statistical features at a smaller scale. Correspondingly, the 
dynamics at a smaller temperature T2 will ezhibit properties after a quench j” TI vergl similar 
to  the initial dynamics after a quench f rom high temperature. O n  the other hand, the dynamics 
at T2 mostly takes place within the valley reached at TI. 
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long compared to t,l. This time tL2 is the time needed to overcome the depth of the well 
reached at twl, and is given by: 

Consider the case where the pinning energy vanishes above a certain temperature T,, as 
Y(T) N (T, - T)W, with a certain exponent w.  (This is the case, for example, for domain 
walls near the Curie temperature). Then taking w = 1, TI = 0.9T, and T2 = 0.8Tc, one 
finds that /3 = 2.25. Therefore, if TO = lo-'* second, and t,l = 1 second, one finds that 
tL, is astronomically long, equal to 1015 seconds! In other words, the particle is completely 
trapped, even when the temperature only changes by 10%. 

Therefore, this model provided a tantalising scenario for the 'rejuvenation and mem- 
ory' effect: as the temperature is cooled down, new details of the potential appear, in a 
self-similat manner, and the aging dynamics over the barriers starts afresh. On the other 
hand, the particle remains effectively forever in the well that it had reached at  2'1. There- 
fore, when the system is heated back to 2'1, perfect memory is recovered. This scenario is 
very similar to the one advocated for spin glasses on the basis of a hierarchical landscape, 
inspired by Parisi's mean field solution [41, 331. We believe that the Sinai model offers 
a precise basis for such a picture. Note that there is no 'chaos' involved in this model: 
rejuvenation occurs because previously equilibrated modes are thrown out of equilibrium, 
but in the very same energy landscape. 

3.4 

The above model assumes that the random potential is Gaussian, with a correlation 
function compatible with direct scaling arguments, which lead to V ( X )  - Xe/c .  A slightly 
different picture emerges from the 'replica variational theory' which predicts a highly non- 
Gaussian effective pinning potential, acting on the centre of mass of the pinned object. 
As detailed in 134, 421, the potential is a succession of local parabolas (corresponding to 
locally favourable configurations, or 'traps') matching at singular points (see also [43]). 
The full 'replica symmetry breaking' scheme needed to reproduce the correct scaling of 
the potential (i.e. V ( X )  w X e / c )  means that the potential is actually a hierarchy of 
parabolas within parabolas, etc. This hierarchy directly corresponds to the existence of 
different length scales e, each one characterised by an energy scale Ee - Ti?. An important 
difference with the above Sinai model is the statistics of the depth of the different valleys 
of the pinning potential: the prediction of the replica approach is that the deepest valleys 
obey the so-called Gumbel extreme value statistics: 

Diffusion in a random potential: the trap model 

Assuming that the time needed to hop out of a trap of depth E is T = ~oexp(E/T) ,  
one finds that the above exponential distribution of trap depths induces a power-law 
distribution of trapping times: 
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The 'trap model', which consists of a random walk between independent traps such that 
their release time is given by Equation 18, has been investigated in detail in [44, 331, and 
more recently, in the context of the rheology of soft glassy materials, in [5]. The interesting 
result is that the dynamics of this simple model is time-translation invariant as long as 
$1 > 1 (high temperature phase, corresponding to small length scales), but becomes aging 
when the average trapping time diverges, i.e. when x( < 1 (large length scales). In this 
case, the dynamics becomes extremely intermittent, since the system spends most of its 
time in the deepest available trap. 

One can compute, within this simple model, the ax. susceptibility (or frequency de- 
pendent elastic compliance) to find [44, 33, 51: 

(Note that the result quoted above for the Sinai model formally corresponds to xe = 0, a 
result that could have been anticipated [35], up to logarithmic corrections.) 

The case where all length scales evolve in parallel therefore leads to a total suscepti- 
bility given by ~ " ( w ,  t,) = x k ( w )  + ~;~(wt , , , )  with: 

where 0 is a 'form factor' counting the number of available modes at scale e. A very 
interesting consequence of Equation 20 is that in the low frequency, long waiting time limit 
(more precisely when wro << 1 and ut, >> l), the sum over P is dominated by the region 
L N e,, for which xe N 1. For a fairly general function 9, one expects both the stationary 
and aging part of x" to behave asymptotically as 1/ logw. This can be translated, using 
the fluctuation dissipation theorem, into a noise spectrum S(w) 0: l/wlogw, i .e. a so- 
called l/f noise, ubiquitous in glassy systems. This mechanism suggests that l/f noise 
should generically exhibit a slowly evolving component. Following the same argument, 
one also expects that the aging contribution to x" decays as a small power oft,, eventually 
reaching a 1/ log(wt,) behaviour for log(wt,) >> 1. As mentioned above (see Equation 4), 
data on spin glasses typically give 1 - xe N 0.1 - 0.3 for ut, in the range 1-10000. 

The strictly hierarchical nature of the landscape also leads, by construction, to the 
'rejuvenation and memory' effect [41,33]: when the temperature is reduced from TI to T2, 
the 'glass length scale' moves down from Lgl to eg2. Modes corresponding to Pg2 < e < P g l ,  

which were equilibrated at  T I ,  become aging at T2 (hence the 'rejuvenation'), while the 
modes such that e > [,I, which were aging at  TI, become effectively frozen at  T2 (hence 
the 'memory'). This is illustrated in Figure 6 .  

Let us finally discuss how values of p # 1 can arise within the trap model. If one 
assumes that the traps visited during the evolution of the system are all different, as 
implicitly done above, then p = 1. This is not true if, for example, the geometry of the 
trap connectivity is of low dimension, for example if the traps are arranged on a one- 
dimensional array. In this case, one can show [45] that p = 1/(1+ x )  for x < 1. One can 
also look at simpler models, when a particle makes directed hops on a line where traps 
have a deterministic lifetime r (n )  which grows with the distance n to the origin. The 
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Figure 6 .  Scenario for rejuvenation and memory for a pinned object: at temperature TIJ the 
length scale el is slowly evolving, while the smaller length scales are ‘fast’, and thus lead to a 
‘blurred shaped’ object if one looks ut it on the time scale t(e1). Upon cooling down to Tz, the 
smaller length scales start ‘condensing’: the object is pinned on smaller length scales. 

position N ( t , )  of the particle at time t ,  is therefore given by: 
N 

since we have assumed that the walk is directed towards n > 0. The subsequent evolution 
of the particle, for a time t << T ( N ) ,  will be a function of t/T(N). Taking ~ ( n )  o( n@ 
immediately leads to p = p / ( p  + 1) < 1. If ~ ( n )  grows faster than exponentially with n, 
then of finds that the effective value of p is larger than one, because of the presence of 
logarithmic corrections which lead to super-aging. 

4 Back to experiments 

4.1 Disordered Ferromagnets 

Equipped with the above theoretical ideas, one can return to the experimental results 
presented in Section 2, and see how far one can go in their interpretation. From the 
discussion above, one expects that aging in disordered ferromagnets can be understood 
in terms of the superposition of slow domain growth, and domain walls reconformations 
in the pinning field created by the disorder. Correspondingly, the aging part of the 
susceptibility is expected to behave as: 

where E(tw) is the (slowly growing) domain size, x;,, the stationary mobility of the 
domain walls at frequency w ,  and the aging contribution coming from the reconfor- 
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mation modes, expected to scale as ut,. This expression accounts well for the observa- 
tions made in random-ferromagnet-like systems, such as the ones studied in [13, 211, in 
particular: 

The aging part of the response is quite sensitive to the cooling rate, and decreases 
when cooling is slower and/or when the waiting time increases. This dependence is 
logarithmic, and directly reflects the behaviour of ((t,). 

For small frequencies, x:,,, dominates and one observes an approximate wt, scaling 
of the aging part of x, up to log-corrections coming from the l/[ factor. On the other 
hand, for larger frequencies, the reconformation contribution becomes negligible and 
the wt, scaling breaks down completely, as observed in [13]. The fact that aging 
in glycerol bears some resemblance with aging in disordered ferromagnets suggests 
that some kind of domain growth might also be present in structural glasses. The 
precise nature of this domain growth is however at  this stage not very clear, but is 
certainly a very interesting subject to explore further. 

One observes rejuvenation and memory, induced by slow reconformation of the walls. 
However, memory is recovered only if the time spent at  the lower temperature T2 is 
short enough, such that the overall position of the domain walls has not changed sig- 
nificantly. In the other limit, i.e. when the walls can move substantially, impurities 
interacting with the walls are completely renewed, and memory is lost [21]. 

4.2 Spin-glasses 

The interpretation of the aging experiments in spin-glasses is not as transparent; this is 
directly related to the fact that the correct theoretical picture for spin-glasses in physical 
dimensions (as opposed to mean-field models, which are effectively infinite-dimensional) 
is still very much controversial. The simplest description is the droplet theory, where one 
essentially assumes that a spin-glass is some kind of ‘disguised ferromagnet’, in the sense 
that there are only two stable phases for the system, that one can (by convention) call 
‘up’ and ‘down’. The dynamics of the system after a quench can then be again thought of 
in terms of domain growth in a disordered system, with the difference that the ‘pattern’ 
that is progressively invading the system is itself random. Correspondingly, the energy 
of a ‘domain’ grows with its size I as le, where 0 is smaller than the value d - 1 which 
holds in a pure ferromagnet. This is the scenario proposed (in a dynamical context) by 
Fisher and Huse [46], and further investigated by Koper and Hilhorst [47]. However, this 
scenario immediately stumbles on a first difficulty, in that it would predict a very strong 
cooling rate dependence of the susceptibility which, as shown in Figure 1, is definitely not 
observed . 

A way out of this contradiction is to argue that even if at any given temperature, there 
are only two stable phases in competition (i.e. one pattern and its spin reversed), the 
favoured pattern changes chaotically with temperature. More precisely, if the temperature 
changes by AT, then the precise relative arrangement of the spins is preserved for lengths 
scales less than a ‘chaos’ length cx AT-U, and completely destroyed at  larger length 
scales [48]. (Here, y is a new exponent related to 0.) If this is the case, then all the aging 
achieved at  higher temperatures is useless in bringing the system closer to equilibrium at 
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T I ,  where domain growth has to restart from scratch. This also explains how the system 
rejuvenates upon a small temperature change. 

There are two problems with this interpretation. Firstly, chaos with temperature has 
neither been convincingly established theoretically, nor numerically. In particular, there 
seems to be no ‘chaos’ with temperature in the mean-field Sherrington-Kirkpatrick model 
[49]. Secondly, if the evolution at T2 consists in growing new domains of the T2 phase 
everywhere in space, it is difficult to imagine how this does not destroy completely the 
correlations built at  temperature TI. A way to do this would be to say that the new 
T2-phase only nucleates around particular nucleation sites and grows very slowly, in such 
a way that a substantial region of space is still filled by the TI phase. However, this would 
mean that it is impossible to describe the dynamics of the system in terms of two phases 
only, as assumed in the droplet model. At any temperature, the configuration would 
necessarily be a mixture of all the phases corresponding to the previous temperatures 
encountered during the thermal history of the system [15]. 

The ‘droplet’ theory is radically different from the picture emerging from the Parisi 
solution of the mean-field Sherrington-Kirkpatrick spin-glass model [50]. There, one can 
show that the number of ‘phases’ in which the system can organise is very large. More 
precisely, there are configurations of nearly equal energy which differ by the flip of a finite 
fraction of the total number of spins. A consistent picture for how this scenario applies 
for finite dimensional spin-glasses is however still missing. A recent interesting suggestion 
made by Houdayer and Martin is that these different phases differ by the reversal of large 
non-compact, sponge like objects [51]. These objects have a linear dimension equal to 
the size of the system, but are not space-filling. Rather, their boundary separates an 
‘interior’ from an ‘exterior’ which form a bicontinuous structure. If this is the case, then 
by definition this boundary is a kind of domain wall with zero surface tension. This is 
crucial in the sense that these ‘domain walls’ can hop from one metastable configuration 
to another (much as in a disordered ferromagnet) but with n o  overall tendency to coarsen. 

In other words, the ordered phase of spin-glasses is, in a sense, full of permanent domain 
wall-like defects (which are probably very similar to the ‘active’ droplets of Fisher and 
Huse). These domain walls can only be precisely defined in reference to the true ground 
state of the system; their physical reality should however be thought of as particularly 
‘mobile’ regions of spins; the precise position of these ‘walls’ define the possible metastable 
states of the sample. 

After quenching the system to low temperatures, the system coarsens to get rid of 
the excess intensive energy, as has been beautifully demonstrated numerically in [52] (see 
also [53, 541). However, the state left behind is still a ‘soup’ of walls with zero surface 
tension. The density of these walls is large and does not decay with time, and therefore 
provide the major contribution to the aging signal. The rejuvenation and memory effect 
can be understood in terms of the progressive quenching of smaller and smaller length 
scales of those walls as the temperature decreases, as we argued above for disordered 
ferromagnets. This interpretation is actually motivated by the fact that the temperature 
cycling experiments in the ferromagnetic phase and in the spin-glass phase of a single 
‘reentrant’ spin-glass sample reveal very similar features [21]. The only difference is that 
memory is perfect in spin-glasses, as if no coarsening was present. 

Let us insist once more on the fact that the above mechanism for rejuvenation is very 
different from the ‘chaos’ hypothesis. Within the trap model, aging is the phenomenon 
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which occurs when the Boltzmann weight, initially uniformly scattered among many mi- 
crostates, has to ‘condense’ into a small fraction of them. It is the dynamic counterpart 
of the entropy crisis transition that takes place in the Random Energy Model [55, 421. 

Obviously, the above discussion is very speculative and a deeper understanding of 
aging in spin-glasses is very much needed. We however believe that the idea that the 
ordered phase of a spin-glass contains a large number of pinned, zero tension walls, which 
reconform in their disordered landscape, is a useful picture. 

5 Conclusion 

In these lectures, we have tried to review the most striking experimental results on aging 
in a variety of disordered systems, which reveal similar features but also important differ- 
ences. We have argued that a generic model that reproduces many of these features is that 
of pinned dejects in a disordered environment. The fact that energy barriers grow with 
the size of the reconforming regions immediately leads to a strong hierarchy of time scales. 
In particular, long wavelength aging modes and short wavelength equilibrated modes co- 
exist in the system and offer a simple mechanism to explain the rejuvenation/memory 
effect. These properties can be discussed within simplified models where the dynamics of 
a whole pinned object is reduced to that of its centre of mass in a disordered potential. 
The main difference between random ferromagnets and spin-glasses seems to lie in the fact 
that while domains slowly grow in the former case (and therefore progressively reduce the 
density of domain walls), the fraction of ‘domain walls’ in spin-glasses appears to remain 
constant in time. 

We have not attempted to discuss here the dynamical mean-field models, which have 
been much studied recently (for a review, see [l]). These models are also able to reproduce 
many of the interesting features of aging, including the rejuvenation/memory effect [56]. 
Furthermore, these models allow one to make precise predictions on the possible violations 
of the fluctuation-dissipation theorem [8, 91, and the relation between this violation and 
the non-trivial overlap distribution function which appears in the static solution of these 
models [57]. Finally, the exact dynamical equations of these models at  high temperature 
are very similar to those of the Mode-Coupling Theory for fragile glasses (Kob, this 
volume). Therefore, one can study, by analogy, the extension of the Mode-Coupling 
equations to the glass phase, and obtain, within this framework, interesting results on 
the aging properties of fragile glasses [58]. However, the relevance of these mean-field 
theories to finite dimensional systems is not obvious, especially at low temperatures. This 
is because these models actually describe the diffusion of a single particle in a very high 
dimensional disordered potential [59,60]. In high dimensions, the particle is never trapped 
in the bottom of a valley: there are always directions to escape. (This is true at least for 
discontinuous spin-glasses. The geometrical interpretation for ‘continuous’ spin-glasses is 
less clear [l]). The aging dynamics is dominated by the fact that the average number of 
unstable directions is decreasing with time, not by the fact that typical energy barriers 
are growing with time [61]. The inclusion of true activated effects in these mean-field (or 
Mode-Coupling) equations is still very much an open problem. 
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1 Introduction: the legacy of Perrin and Onsager 

Colloidal particles have a size in the range of lnm to lOOOnm and are encountered in 
many systems both in nature as well as in technology. Their size is such that the thermal 
motion is sufficiently vigorous to counteract gravitational forces. A good measure to 
characterise this balance is the gravitational length. This gravitational length xg is defined 
as the distance over which a colloidal particle can be displaced in the gravitational field 
at  the expense of a mean thermal energy equal to Boltzmann’s constant k B  times the 
temperature T .  This leads to 

Here m* is the mass of the colloidal particle, corrected for buoyancy effects. In the earth’s 
gravitation field the gravitational length varies from l p m  to lmm for particles in the 
colloidal size range. In space experiments under microgravity conditions the gravitational 
length can reach values af many metres. 

With simple yet brilliant experiments, Perrin (1939) studied the competition between 
thermal motion and gravity in the period 1907-1913. From quantitative measurements 
of the gravitational distribution of well-characterised monodisperse colloidal particles, 
Perrin was able to determine Boltzmann’s constant ks. For this work he received in 1926 
the Nobel prize for Physics. The interpretation .of the experiments of Perrin is based on 
the idea that colloids can be considered as super-atoms which obey the same therm* 
statistics as atoms in atomic systems. The statistical mechanical foundation for this idea 
was provided by Onsager (1933) in the thirties. Onsager showed that in the statistical 
mechanical laws the interaction between atoms must be replaced by the potential of 
mean force between the colloidal particles. The potential of mean force W ( h )  between 
two colloidal particles can be written as (see E’renkel, this volume) 

W ( h )  = n(h )  - n(m) (2) 
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where R(h) is the Grand Potential for the system when the distance of the surfaces of 
the two colloidal particles is h, and R(m) is the Grand Potential at infinite separation. 
This potential of mean force can be manipulated by changing the nature of the colloidal 
particles or the nature of the solvent in an almost continuous way from steeply repulsive 
to deeply attractive. 

This variability of the potential leads to new and fascinating phase behaviour, which 
is frequently enriched (or some may say corrupted) by long-lived metastable and non- 
equilibrium states such as gels and glasses (Kob, this volume). 

In addition to the variability of the potential of mean force, colloidal suspensions offer 
unique advantages for the study of phase behaviour which are related to the fact that these 
systems are intrinsically soft and slow. A typical modulus for a colloidal system consisting 
of colloidal particles of radius a can be written as I c ~ T l a ~  which leads to values of 1-100 
Pa. This should be compared with a typical modulus of 10'O - 10"Pa for atomic systems. 
A typical time scale for a colloidal system is the time a 2 / D  it takes for a particle to diffuse 
over its own radius. This time is of the order of 10-3s-ls which should be compared to 
characteristic times of the order lo-% for atomic systems. In addition to being soft and 
slow, which leads to considerable experimental advantages, colloidal systems also offer the 
attraction of being visible with a variety of optical microscopy techniques. 

The extension of the conceptual framework pioneered by Perrin and Onsager coupled 
with the possibilities to prepare well defined colloidal particles has led to exciting devel- 
opments in the area of phase transitions in colloidal systems in the last 25 years. Some 
of these developments will be briefly discussed here. For further details of some of these, 
and a discussion of related topics, see Fkenkel, this volume. 

2 Hard sphere crystallisation 

One of the most intriguing predictions of statistical mechanics which up till today gives 
rise to fundamental discussions is the fluid-crystal transition in assemblies of hard spheres. 
This possibility was first speculated upon by Kirkwood (1939) and Alder and Wainwright 
(1957) obtained definite indications for this transition in their pioneering computer sim- 
ulations. The volume fractions $j, q!~~ between which fluid and crystal co-exist were sub- 
sequently determined by Hoover and Ree (1968) with computer simulations. They found 

= 0.494 and $c = 0.545. 
As, in real life, hard-sphere atoms do not exist, the experimental verification of the 

hard-sphere freezing transition was to be made in a different kind of physical system. 
Colloidal suspensions are well suited to such experiments as the repulsive interactions can 
be manipulated from gently soft to steeply repulsive. The hard-sphere freezing transition 
does indeed occur in suspensions of sterically stabilised colloids as was first demonstrated 
by De Kruif, b u w ,  Jansen and Vrij (1985) and by Pusey and Van Megen (1986). In addi- 
tion to the fluid-crystal transition these experiments also indicate the existence of a glass 
transition at a volume fraction of about 0.58. Above this glass transition homogeneous 
nucleation of crystals was no longer observed. In recent years experiments under micro- 
gravity conditions have led to new and unexpected results concerning the crystallisation 
kinetics, crystal structures and the glass transition (Zhu et al. 1997). These developments 
are discussed in the lectures of Chaikin (this volume). 
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3 Colloids with attractive interactions 

In principle the inclusion of an attraction additional to a repulsive core interaction leads to 
the possibility of a system undergoing a phase transition between a gas and a liquid phase. 
This is commonly observed in atomic systems. The condensation of a gas was already 
understood by Van der Waals (1873), who was the first to put forward a simple theoretical 
model which allowed for the quantitative prediction of the gas-liquid equilibrium. 

The generic phase diagram of an atomic fluid is sketched in Figure 1. The region in 
the phase diagram in which the liquid exists as a stable phase is bounded by the critical 
temperature T, above and the triple temperature Tt below. (It is conventional to call 
the disordered phase above the critical temperature a fluid, which then below the critical 
temperature splits into a gas region and a liquid region). Whereas in atomic systems 
the gas-liquid transition is universally observed, the equivalent transition in colloidal 
suspensions has only been established in recent years. The reason is that the long-ranged 
attractive interaction between particles required to induce a gas-liquid transition is not 
commonly encountered in colloidal systems. 

Figure 1. Potential W(r) and the generic phase diagram for an atomic system. The 
region in which gas (G) and liquid (L) phases coexist is bounded by the critical temperature 
T, and the triple temperature Tt.  (F and C denote the fluid and crystal phase respectively.) 

In suspensions of charge stabilised particles the superposition of the repulsive electric 
double layer interaction and the attractive London-Van der Waals interaction leads to 
the celebrated DLVO potential (Derjaguin and Landau 1941, Verwey and Overbeek 1948). 
A characteristic of this potential, which is sketched in Figure 2, is a primary minimum 
at very short inter-particle distances, a repulsive barrier at intermediate distances and a 
secondary minimum at larger distances. Upon increasing the salt concentration (typically 
above 10-'M) or lowering the surface potential the repulsive barrier becomes very low or 
disappears altogether. This gives rise to the aggregation of the colloidal particles in the 
primary minimum. As early as 1917 Smoluchowski (1917) gave an admirable theory for 
the kinetics of this type of aggregation. This long-established field received a new and 
strong impetus in the 1980s when it was found that the clusters formed by the irreversible 
aggregation exhibit fractal structures (Weitz and Huang 1984; see also Pine, this volume). 
Also the relation between aggregation and gelation was clarified by these studies. At 
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Figure 2 .  The DLVO intemctaon potential, 
where P as the primary minimum, M the repul- 
sive barrier, and S the seconda y minimum. 

‘ P  

the same time computer simulations by Ziff (1984) indicated that colloidal aggregation 
phenomena lead to fractal structures locally while showing spinodal-like modulation of the 
fractal structures at long wavelength. Later on it was found experimentally that fractal 
aggregation in dense colloidal solutions leads to spinodal type dynamics (Carpineti and 
Giglio 1992). Rouw, Woutersen, Ackerson and De Kruif (1989) surmise that spinodal 
decomposition (see Bray, this volume) is a general process for any aggregating system be 
it reversible or irreversible. 

For large colloidal particles the secondary minimum may become sufficiently deep to 
allow in principle for phase separation while the repulsive barrier which separates the 
primary and secondary minima remains sufficiently high to prevent irreversible aggre- 
gation of the dispersion in the primary minimum. Nevertheless Kotera, Furusawa and 
Kudo (1970) who studied suspensions of large latex particles which fulfil these conditions, 
observe reversible aggregation rather than phase separation. However, recently Hachisu 
(1998) observed a gas-liquid and a liquid-solid transition in a charged stabilised suspen- 
sion of gold colloids with a diameter of 120nm. Apparently the strong London-Van der 
Waals interaction between gold particles is sufficient to induce the long-range attractive 
interaction required for a gas-liquid transition. 

In dispersions of sterically stabilised colloidal particles attractive interactions can be 
induced by changing the quality of the solvent. Silica particles coated with stearyl alcohol 
suspended in benzene provide an example of such a system. Here the interaction between 
the particles can be tuned by means of the temperature. At sufficiently high temperatures 
the particles show hard-sphere-like behaviour. Lowering the temperature gives rise to an 
attraction between the particles which is rather short-ranged due to the small length of 
the stabilising layer compared to the size of the core. Verduin and Dhont (1995) observed 
that the gas-liquid phase separation was pre-empted by gelation. Here again the short- 
range character of the attraction prevents the observation of the colloidal equivalent of a 
gas-liquid transition. 

4 Colloid-polymer mixtures 

An interesting way to induce a tunable attractive interaction between colloidal particles 
is provided by the addition of non-admrbing polymer. This leads to a so-called ‘depletion 
interaction’ (Asakura and Oosawa 1954; Vrij 1976). When two colloidal particles approach 
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each other to a distance smaller than the size of a polymer (roughly twice the radius of 
gyration of the polymer) the polymers are almost totally excluded from the region between 
the colloids. The colloidal particles are then forced together by the unbalance in the 
osmotic pressure exerted by the polymers. The depletion interaction allows one to tune 
both the range and the depth of the attractive interaction. The range of the attractive 
interaction is determined by the size of the polymer and the depth of the potential is 
proportional to the number density of the polymers (which in turn determines the osmotic 
pressure). Modelling the polymers as penetrable hard spheres with diameter a,, and the 
colloids as hard spheres with diameter ac, the depletion potential can be written as 

2 

(3) 

Here ap is the volume fraction of the polymer coils and h is the distance between the 
surfaces of the two colloidal spheres. An attraction of between 2 and 3 ksT will lead to 
phase separation. Equation 3 then implies that for a size ratio ac/ap = 10 the depletion 
interaction will cause phase separation when the volume fraction of the polymer coils is 
about 20%. 

Figure 3. The interaction potential and phase diagram for colloid+polymer mixtures 
in the case of (a)  a long-range attraction (ap/ac > 0.3) and (b )  a short-range attraction 
(oplac 5 0.3 ). (The  letters C, F,  G ,  L indicate phases as in Figure 1.) 

Calculations of the phase diagram of colloid-polymer mixtures taking into account 
the depletion interaction were first performed by Gast, Hall and Russel (1983), and later 
on extended by Lekkerkerker et al. (1992). These calculations show that the range of the 
attraction determines the global features of the phase diagram, as depicted in Figure 3. 
When the range of attraction is less than about 30% of the hard core of the colloidal 
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particles the gas-liquid transition becomes metastable and only a widening of the fluid- 
crystal transition is observed. However, when the range of attraction is larger than 30% 
of the hard core of the colloidal particles the gas-liquid transition becomes stable. These 
theoretical predictions have indeed been confirmed experimentally (Ilett, Orrock, Poon 
and Pusey 1995). 

The kinetics of phase transitions in colloid-polymer mixtures has also been stud- 
ied extensively. In a system of small colloidal particles with a polymer of the same 
size, Verhaegh, van Duijneveldt, Dhont and Lekkerkerker (1996) studied the fluid-fluid 
phase separation kinetics and morphology with small angle light scattering and light mi- 
croscopy. Typical spinodal decomposition patterns were observed. In systems with large 
colloidal particles and a relatively small polymer, where the colloidal gas liquid transi- 
tion is metastable, colloidal crystallisation only occurs in a narrow region just above the 
fluid-crystal binodal (Smits et al. 1990). A deeper quench into the two phase region gives 
rise to transient gelation followed by the formation of an amorphous precipitate (Pusey, 
Pirie and Poon 1993). The role of the metastable colloidal gas-liquid binodal has been 
speculated upon by Poon, Pirie and Pusey (1995). Recently Poon et al. (1999) studied 
the kinetics of phase-separation in a colloid-polymer mixture evolving to gas-liquid-crystal 
coexistence. Several distinct regimes were found which were interpreted by appealing to 
the underlying free energy landscape of the system. 

5 Colloid-colloid mixtures 

The depletion interaction mechanism is not limited to colloid-polymer mixtures. Using 
the same arguments as for colloid-polymer mixtures, mixtures of colloidal particles of 
different size and/or shape are expected to exhibit similar phase behaviour. In the case 
of binary mixtures of large and small colloidal hard spheres the depletion potential is to 
lowest order in the density given by 

(4) 

Here q5s is the volume fraction of the small colloidal spheres, 51 (a,) the diameter of the 
large (small) colloidal spheres and h the distance between the surfaces of the two large 
spheres. Again it is estimated that an attraction between 2 and 3 kBT will lead to phase 
separation which for a size ratio q/os = 10 implies a volume fraction of about 20% of 
the smaller species. Indeed in mixtures of large and small spheres phase transitions have 
been observed experimentally (Van Duijneveldt, Heinen and Lekkerkerker 1993, Kaplan, 
Rouke, Yodh and Pine 1994, Imhof and Dhont 1995, Dinsmore, Yodh and Pine 1995). 
Again interesting non-equilibrium phenomena in the phase separation behaviour have 
been observed. For example Imhof and Dhont (1995) observed two types of glassy phases. 
In one of them only the large particles are immobilised and in the other both types of 
spheres are immobile. 

An even more interesting colloidal mixture from a depletion interaction point of view 
is that of colloidal spheres and colloidal rods. This was already recognised by Asakura 
and Oosawa (1958) who mentioned rod-like macromolecules as highly efficient depletion 
agents. Auvray (1981) derived an expression for the depletion interaction potential due 
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to thin rods in the Derjaguin approximation. More recently Mao, Cates and Lekkerkerker 
(1997) calculated the depletion interaction of rods of length L and diameter D up to third 
order in the density of the rods. In the limit that the length L of the rod-like particles is 
much smaller than the diameter 0 of the colloidal spheres, the depletion potential to the 
lowest order in density is given by 

W ( h )  = 2 1 --kBT$- ;( 1 - - 2)’ (5) 

where 4 is now the volume fraction of the rods and 0 the diameter of the spheres. From 
Equation 5 it follows that for the case L/o  = 0.2 and L / D  = 20 a minimum of the deple- 
tion interaction of - 2 . 5 k ~ T  is obtained when the volume fraction 4 of rods is only about 
0.4%. Clearly, rod-like particles are efficient depletion agents; very low concentrations 
of rods are predicted to lead to phase separation. Recently phase separation in mixed 
suspensions of rods and spheres was observed by Koenderink et al. (1999). Colloidal crys- 
tals of silica spheres were observed upon addition of a small amount of boehmite rods. 
Using fluorescent silica spheres of about 740nm diameter, the crystallisation process was 
followed at particle level in real time and real space by confocal microscopy (Vliegenthart, 
Van Blaaderen and Lekkerkerker 1999). The phenomena observed in this mixed colloidal 
system, suggest a two-stage crystallisation process. Rapid aggregation of the colloidal 
spheres is followed by slow rearrangement into crystals (Figure 4). 

Figure 4. 
2.5%(v/v) fluorescent spheres and O.~%(V/V) rods. The size of the images is 5 0 ~ 5 0 p m .  

Confocal microscopy images of the crystallisation process an a mixture of 
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6 Concluding remarks 

The effect of attractive interactions on the phase behaviour of colloidal suspensions is rich 
and varied. In addition to the traditional pathways of phase separation, nucleation and 
growth and spinodal decomposition, one also frequently observes aggregation and gela- 
tion. As we have seen, the interplay of these phenomena sometimes leads to macroscopic 
phase separation but often non-equilibrium and metastable states arise. These phenom- 
ena are interesting in their own right and at the same time also provide analogies with 
phase separation in systems of biological macromolecules such as protein crystallisation 
(Rosenbaum, Zamora and Zukoski 1996; Muschol and Rosenberger 1997; Ten Wolde and 
Frenkel 1997; Haas and Drenth 1999). 
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Thermodynamics and hydrodynamics 
of hard spheres: the role of gravity 

Paul Chaikin 

Princeton University, USA 

1 Introduction 

Hard spheres are the ‘fruitfly’ of condensed matter physics. Whenever we want to know the 
physical properties of a system, or understand interesting phenomena, the first question we 
tend to ask is: “What would a set of hard spheres do?” They are the next simplest system 
we can imagine after an ideal gas, and already they are extremely interesting. They exhibit 
a number of unusual phenomena including phase transitions, complex motion, structure, 
and correlations (Pusey 1987). The lessons we learn from studying hard spheres are 
often found to generalise to more complicated systems, and they give us a basic intuition 
and scale and often the hard sphere solutions are sufficient in themselves to explain the 
sought-after phenomena. 

The particular problems we want to look at  in this set of lectures involve thermody- 
namics and entropy of packings (including metastable ones) on the one hand, and the role 
of hydrodynamic interactions (particularly in nonequilibrium dynamics, such as motion 
under gravity) on the other. Our basic understanding of viscous drag and diffusion of 
particles in a fluid comes from the exact solutions for hard spheres by Stokes (1851) and 
Einstein (1905). The results: 

tell us the scaling with viscosity 17 and radius a,  and qualitatively hold for very different 
situations; polymers, disks, rods, bubbles, etc., which at first glance are not at all like 
hard spheres. (The reason that hard spheres contain the essence of the problem for 
hydrodynamics of suspensions is that the Laplacian at large distances cares only about the 
largest length scale.) Our basic thermodynamic understanding of the first order transition 
from the liquid to crystalline solid is also based on the remarkable studies which have been 
done on hard spheres (Alder and Wainwright 1957, Hoover and Ree 1968, Pusey and van 
Megen 1986); see also Frenkel and Lekkerkerker, this volume. The simple property that 
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hard spheres do not interpenetrate is sufficient to cause thermodynamic crystallisation as 
particle density is increased. It also gives rise to metastable, glassy packings. 

A good deal of the work reported below is related to our NASA project to study the 
crystallisation of hard sphere samples in microgravity. As part of this study we had to 
investigate alternative ways to counteract the effects of gravity. This led us to perform a 
series of experiments on the particle dynamics and other effects of sedimentation. They 
involve both the roles of hard spheres in hydrodynamic interactions and thermodynamics. 
Thus although there is an enormous amount of work that has been done on hard spheres, 
our selection of topics has been coloured by the problems which led up to, and include, a 
number of experiments performed on space shuttle flights. 

1.1 Hard spheres 

The contribution of condensed matter physics to science lies in the many body problem 
(Chaikin and Lubensky 1995). Given a number of interacting particles, what can they 
do? What states will they form? The typical microscopic two-particle interaction, that 
we have studied since our most elementary education, consists of a long range attractive 
interaction and a short range repulsion. Most of the effort is spent on the various forms 
of the attraction: for neutral atoms and molecules there is the Van der Waals (l/r6) 
interaction; for metals there is an (almost) isotropic metallic bond (similar in many aspects 
to a covalent bond); for oppositely charged ions there is the Coulomb attraction. Less 
instructional time is usually paid to the microscopic repulsive interaction. It is related 
to the energy cost in pushing two electronic wavefunctions together. There is the direct 
Coulomb repulsion between the like charges and there is the kinetic energy that must 
be paid in order to put the electrons in a smaller ‘box’ as we push them together. (The 
uncertainty principle demands a higher momentum, and hence energy, as the size of 
the wavefunction is decreased. The exclusion principle can further decrease the size of 
the wavefunction and increase the energy, as like-spin electronic wavefunctions cannot 
overlap.) The equations for the repulsive terms are not readily obtained, and the tendency 
in most books and in calculations is to parameterise the repulsion by a simple analytic 
form that increases, at short distances, much faster than whatever attractive term is 
being used. Hence the often-used 6 - 12 (Lennard Jones) potential has a 1/rl2 repulsion 
to overcome the l/r6 Van der Waals attraction at short range. 

In atomic and molecular systems the attractive interaction is not very interesting. Its 
main role is to set the density and it can give rise to a transition between a less dense 
and more dense fluid phase, the gas-liquid transition. (However, in colloidal systems the 
attractive interaction can play a more important role in the structure and dynamics. See 
Lekkerkerker, this volume.) The structure and correlations of most fluids (and molecules), 
the structure of solids, and the liquid-to-crystal transition are primarily results of the 
repulsive interaction. The simplest form for the short range repulsion is the hard sphere 
potential : 

V ( r )  = OC r > a ,  

V ( r )  = 0 r < a .  
(3) 

This form has some peculiarities. Since the potential at  less than a diameter is infinite the 
particles don’t interpenetrate; there is ‘excluded volume’. When the particles don’t touch 
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the potential is zero. Since the only energies are zero or infinity there is no characteristic 
energy with which to compare ksT. We cannot raise the temperature T above some 
energy scale and expect a phase transition. The phase diagram is therefore athermal, the 
only control parameter is the particle density n, or the volume fraction q5 = nzto where 
zto = (4/3)m3. Temperature, as the only energy scale, sets all others. The pressure and 
elastic constants (bulk and shear moduli) are measures of the energy density and thus 
scale as nksT times a function of the volume fraction (e.g. P = n k ~ T f ( 4 ) ) .  The internal 
energy is zero, the Helmholtz free energy is F = -TS and the maximisation of the entropy 
S is what determines the state of the system, independent of T.  

Now we want to gain some intuition about the entropy. Entropy is associated with the 
number of ways we can arrange the particles in a system given certain constraints. Part 
of the entropy is simply related to the volume that is available for the particle motion and 
this is related to how well spheres at a certain volume fraction fill space. (See Frenkel, 
this volume, for a related discussion.) 

1.2 Packings 

Here we focus on random packings; these include metastable alternatives to the crystalline 
state of hard spheres at  high density. The packing of spheres has been an important 
problem since the dawn of civilization’ (Bernal 1965, Zallen 1983). In its earliest form it 
concerned how much grain (assumed spherical) would fill a certain container. If grain is 
sold by the bucket and you could figure a way to less densely pack it than your neighbour, 
you would make a lot of money. Modern packing problems are also driven by commerce: 
identifying the best sphere packing in an n-dimensional space leads to more efficient data 
transmission, storage and error correcting codes (Conway and Sloane 1992). Since we 
are mostly concerned here with colloids and physics we restrict our attention to three 
or fewer dimensions. A typical set of hard spheres is shown in Figure 1. The figure is 
from a lecture by Bernal (1964) who performed extensive and clever experiments to find 
the density, configurations and correlations of lattice packings but particularly of random 
packing of hard spheres. He was interested in the structure of glass and liquidlike states 
of elemental and molecular systems. Toward the centre of Figure 1 we see the stacking 
of ball bearings in the familiar, ‘cannon-ball’ or ‘fruit stand’ arrangement that physicists 
since the time of Kepler (and everyone else since the discovery of fruit) has associated with 
the densest packing of spheres. The lattice shown is FCC, face centered cubic, formed by 
stacking two-dimensional hexagonal planes. This packing fills space to a volume fraction of 
7r/3 x fi = 0.7404 ... The mathematical proof that FCC is the densest packing of spheres 
was given in the late 199O’s, about three hundred years after the conjecture of Kepler 
who was in fact interested in how to pack cannon-balls on warships. For the previous 
half century there was merely a limit set by the local packing fraction of four spheres in 
a tetrahedron, 4 = 0.7796, proved to be an upper limit by Roger and generalisable as an 
upper limit to n dimensions (Conway and Sloane 1992). 

‘Bernal quotes a comment on random packing which Saint Luke attributes to Jesus, “Give, and it 
shall be given unto you; good measure, pressed down, and shaken together, running over, shall men give 
into your bosom. For with the same measure that ye mete withal it shall be measured to you again.” 
Note that Nagel (this volume) refers to the need to repeatedly tap granular material in order to have it 
arrive at  its densest packing. 
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Figure 1. Lattice and random packing of ball bearings (from Bernal, 1964). T h e  crys- 
talline structure an the centre of the figure is  FCC with a volume fraction of 4 = 0.7404. 
The  random packing is similar to random close packing RCP with a packing fraction of 
4 = 0.63. 

The disordered ball bearings on the sides of Figure 1 fill space much less densely 
(4 N 0.63) than the ordered FCC packing (4 = 0.74) ( Berryman 1983; Torquato 1999). 
The particle configurations in the disordered packings are much as we would imagine for 
a glass or liquid structure and in fact that the random packing of hard spheres is among 
the best representations of the structure of glasses and liquids (Andersen et al., 1976). 

How densely can the disordered ball bearings be packed? This is the old question of 
filling containers with grain (or with spherical sand, for that matter). The problem itself 
is not well defined, but the answer is. Try some algorithms. Put a random set of points 
in three dimensional space. Let them expand as uniform sized spheres and as they touch 
allow them to move so that the radii can continue to grow. When they can no longer 
grow they fill space to 4 N 0.63. A similar computation takes spheres with no interaction 
when not touching and harmonic forces on interpenetration. As the system is compressed 
from a dilute gas at infinitesimal temperature, the highest 4 at which the pressure is 
zero is 4 N 0.63 (Mason et al. 1997). A different algorithm requires that all particles are 
completely constrained-each sphere has a t  least four touching spheres not all in the same 
hemisphere, so that it cannot move. In terms of some known order parameters, the order 
is seen to rise above 4 N 0.63 (Torquato 1999). Another is to simulate a gas of spheres in 
thermal motion within the metastable amorphous state (most simulations don’t run long 
enough to observe the equilibrium crystal state) and calculate the pressure. As the volume 
fraction is increased the pressure appears to diverge at 4c = 0.63. Experimentally, you 
can take ball bearings as in Figure 1 and shake them up in a large box, or put marbles 
in a sack or pour sand into a cylinder and tap it many times (Nagel 1999). The well 
defined answer to all these problems is q5 = 0.63, which is the density of ‘random close 
packing’, RCP. 
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However, not all algorithms give this result. Dropping spheres onto a disordered 
surface and allowing them to find the lowest position by rolling produces a disordered 
arrangement with a lower volume fraction, 4 N 0.60. Another example-start from a 
single sphere and use the local rule that the next sphere added is always placed so that 
the density is maximised. After four spheres you have a tetrahedron. But after six 
spheres you have a structure that is incompatible with a close packed lattice. Continuing 
to add spheres with the local rule that you place the particle to maximise the density 
leads to a structure with 4 1: 0.60. Note that in two dimensions the local rule leads to 
a hexagonal lattice which is the maximum packing configuration 4 = 7r/d12 = 0.9069. 
In two dimensions the local and global packing maxima are consistent with one another. 
In three dimensions the local close packing rule is frustrated. A similar result would 
obtain if we tried packing pennies on the surface of a spherical balloon. It would not be 
possible to have six pennies touch the centre one and the hexagonal lattice is frustrated 
(see introduction in Steinhardt et al., 1983). The geometry and curvature of space plays 
an important role. The frustration of local dense packing rules, which favour tetrahedral 
and icosahedral configurations, is presumably one of the reasons we have glasses in three 
dimensions and one of the reasons that people look for icosahedral local order in glasses. 

The reason the random close packing problem is ill-defined mathematically has to do 
with defining ‘random’. Periodic ordering is easy to define: a long range density-density 
correlation function and/or delta functions in its Fourier transform would suffice. But 
trying to define ‘random’ to mean ‘not ordered’ doesn’t quite work. If we take chunks 
of FCC crystal, randomly orient them, and fill the remaining spaces with the 4 N 0.63 
configuration we will have a system which is not ordered but which can be made with any 
volume fraction between 0.63 and 0.7404. 

Historically there have been many interesting experiments aimed at  measuring some of 
the properties of the random close packed state. Among the most famous are those of the 
botanist Stephan Hales (Hales 1727). He was mostly interested in the forces that plants 
could produce. In one set of experiments he filled a container with English peas, filled the 
remaining volume with water and then drained the water and measured its volume. This 
gave him the volume taken up by the peas and thus the volume fraction at  random close 
packing. He then did something extremely clever. He again filled the canister with water, 
covered it with a tight lid and cooked the peas. The peas absorbed the water, swelled, 
and became faceted when they encountered the neighbouring peas. He could then remove 
the peas, count the facets and find the local structure and number of near neighbours (see 
Zallen 1983). 

This is such an elegant experiment that it had to be repeated. Unfortunately, when 
we tried (Variano 1999), we failed. Most of the peas would not swell sufficiently to facet. 
As it turns out several other researchers since Hales have tried to repeat his experiment 
without success. We decided to try a different foodstuff. Israeli couscous did the trick. 
After swelling we added some ink which went preferentially to the narrow interstices. 
The separated couscous are shown in Figure 2. It is now easy to count facets, to see the 
pentagonal/icosahedral shapes and to find that the statistics are very similar to those of 
ball bearings in sacks and hard sphere RCP simulations. 

Some properties of the RCP state are: 4 N 0.6366 & .0002 (Berryman 1983). Average 
number of contacts per sphere N 6 (Frost et al. 1993; Lubachevsky et al. 1991). Voronoi 
polyhedra have 2: 14 faces, predominantly pentagonal (Zallen 1983). The relevance of the 
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Figure 2. Israeli couscoz~s taken from an ink-decorated swollen random close packing to 
illwtrate the local structure and configurations of near neighbours in liquid- and glass-like 
structures. Note the occurrence of pentagonal facets which suggest some local icosahedral 
structure in amorphous close packed hard sphere systems. (Variano 1999) 

packing fractions to our study of the crystal-fluid transition comes from both exact and 
approximate treatments of the free volume, entropy and pressure of a system of classical 
particles. For an ideal gas the translational degeneracy per particle is proportional to the 
volume of the system, V. The entropy is the logarithm of the degeneracy, S = ~ B N  In V 
and the pressure is P = TaS/aV = ( N / V ) k B T  = nkBT. Van der Waals suggested that for 
a finite volume per particle, 2rO the effective or ‘free’ volume obeys V - Nu0 = V(1- q5/&) 
where q5c is the volume fraction at  close packing (i.e. where there is no free volume, 
and the particles have no allowed motions). The entropy and pressure then vary as 
S 0: NlnV(1  - 4/q5J, P 0: nT/(q5 - q5J. While it is now known that these results are 
exact only in one dimension, the asymptotic form is correct in any number of dimensions. 
For example, near random close packing P N 3 n k ~ T / ( 1  - $/0.63), near crystal close 
packing P N 3 n k ~ T / ( 1  - q5/0.74). 

We can now intuitively understand why hard spheres have an entropically driven 
liquid-to-crystal transition as volume fraction is increased. Suppose we take a hard sphere 
sample in the RCP state in a filled box. The volume fraction is 4 = dC N 0.63. Even if we 
turned on thermal motion, since all of the spheres are touching, there is no motion and 
no free volume and the entropy is zero. On the other hand if we took the same number 
of particles, and placed them uniformly in the same box in a periodic FCC structure, 
there would be space between the particles and free volume and entropy. This is clear 
from the fact that FCC with touching spheres fills space to q5 = 0.74, but we have only 
added enough particles to fill the box to q5 = 0.63. Thus at 4 = 0.63 the entropy of the 
ordered crystal is clearly higher than the entropy of the disordered state (S = 0) and the 
crystalline state wins. The crossover from entropy favouring periodic over random will 
happen at  some lower value of q5 than 0.63. What we have neglected in this argument is 
the configurational entropy-the different ways of arranging the spheres in the disordered 
structure. This favours the random (liquid) phase at low q5. 
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The thermodynamics of the hard sphere transition is one of the most studied problems 
in statistical mechanics and Monte Carlo and molecular dynamics simulations (Alder and 
Wainwright 1957, Hoover and Ree 1968); see Frenkel, this volume. The phase diagram 
that results from these studies is shown in Figure 3. For concentrations less than 4 = 0.494 
there is liquid, from 0.494 < 4 < 0.545 there is co-existence of liquid and crystals and 
for 0.545 5 4 5 0.7404 there is crystal. However, the simulations tend to slow down 
when 4 2 0.58. Starting with a disordered initial configuration, nucleation often does 
not take place and it has been suggested that there is a glass phase above this volume 
fraction. Experimentally, among the first indications that colloidal systems follow this 
phase diagram is the work by Pusey and van Megen who studied the PMMA system as 
model hard spheres (Pusey and van Megen 1986). 

t 

Figure 3. The equilibrium phase diagram of hard spheres at any finite temperature from 
computer simulations and colloidal experiments. The 'glass phase represents a possible 
metastable state found in early simulations and experiments (Hoover and Ree 1968; Pusey 
ana' van Megen 1986). 

1.3 Sedimentation equilibrium 

The arrangement of the (macroscopic) spheres in Figure 1 has very little to do with 
thermodynamics or controlling the volume fraction and everything to do with gravity. As 
discussed by Frenkel (this volume) we can gauge the relative effects of gravitational and 
thermal energies by the gravitational height 

the distance to which thermal motion can raise a particle from the floor of a container, 
or the exponential length in a simple isothermal atmosphere with density n = noe-z/h. If 
this height is smaller than the length scale of interest, gravity is important. For the ball 
bearings in Figure 1, h N much smaller than the size of the particles N 10-2m. 
Temperature plays no role for the ball bearings. For air molecules h N 103m so for metre- 
scale experiments in the lab everything is thermal and gravity plays no role. For colloids 
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h = ksT/(Ap(47ra3g/3) where Ap is the difference in solvent and colloid density, and a 
is the particle radius. Thus h N 2pm for lpm polystyrene spheres (‘polyballs’) in water, 
and is relevant on the scale of most experiments. The particles sediment, and there is a 
variation in concentration. To do macroscopic, fixed density, fixed q5 experiments we have 
to get rid of gravity. However, we can also use the distribution caused by gravity to test 
our understanding of the liquid-solid transition. 

When the colloidal particles are allowed to settle to their equilibrium distribution in a 
gravitational field, the density has a height profile n ( z )  determined from the interparticle 
interactions, temperature and gravity. Take an imaginary boundary at zl. A simple force 
analysis tells us that a t  each value of z the total weight (per unit area) of the particles 
a t  larger z, W(zl) = J,qOn(z)mgdz must be supported by the pressure of the particles 
below the boundary: P(z1) = W(z1). The local pressure should only be a function of the 
density. If we measure the density as a function of height then we have the density a t  zl, 
and from the integral above zl, the pressure. We can therefore experimentally determine 
P(zl)  = P ( n ( z l ) )  = P ( n ) ,  which is the equation of state. Our experiment was done 
with 6pm polystyrene spheres in water with sufficient electrolyte that the Debye layer 
(see Frenkel, this volume) was 10nm, much less than the particle radius, and the effective 
interaction was therefore essentially hard sphere-like. The density profile was measured 
with X-ray absorption in a more sophisticated apparatus, but similar to what is used for 
dental X-rays. Since we are dealing with a colloid and forces between the particles, the 
pressure is actually an osmotic pressure (see Fkenkel, this volume). 

Figure 4. The equation of state measured by sedimentation equilibrium (Rutgers et 
al. 1996) of polystyrene spheres compared with simulations and approximate formulae 
(Carnahan and Starling 1969, Hall 1972). The break in the curve corresponds to the 
liquid-to-crystal transition. The inset is a picture of the sample with the liquid region 
visible above a sharp boundary with the crystalline region. 

The results are shown in Figure 4 (Rutgers et al. 1996). The points are the experiment 
and the solid lines the Carnahan-Starling and Hall equations, which represent two very 
good approximations to the hard sphere equation of state found in computer simulations. 
The discontinuity a t  0.49-0.54 corresponds to the liquid-solid transition. Above this height 
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Figure 5.  Measured equation of state for PMMA colloids an decalin. Circles are experi- 
mental data from (Phan et al. 1996) and triangles are from simulations for polydispersity 
of 0.05 (Phan et al. 1998). 

(lower density) the sample is cloudy: a liquid. Below this height (higher density) the 
sample is opalescent and exhibits Bragg scattering: it is crystalline. The osmotic pressure 
is a direct measure of the interparticle forces, and this experiment essentially proves that 
particles interacting with a hard-sphere potential have the transition predicted by theory 
and simulations. Our experiments are quite straightforward, the problem is that it takes 
about a year for the sample to reach equilibrium and another year to check that it has 
reached equilibrium. 

We have also studied the sedimentation equilibria of the PMMA samples that were 
used in Pusey and van Megen’s original work on hard sphere colloids (Pusey and van 
Megen 1986, Pusey 1987) and in our experiments in microgravity. The results are shown 
in Figure 5 (Phan et al. 1996). Here we see that this system looks less ideal, especially at 
high volume fractions. Deviations from the ideal hard sphere equation of state can arise 
in many ways: softness in the repulsive interaction tends to lower the pressure relative to 
the ideal, while a small attractive component tends to aggregate the particles into clusters 
that can inhibit the close packed crystal structure and reduce the free volume increasing 
the pressure. 

1.4 Polydispersity 

One question that often arises in the study of hard sphere colloids is the effect of poly- 
dispersity on any or all of the physical properties. In order to investigate the effects of 
polydispersity we decided to perform molecular dynamic simulations which can easily 
yield the equation of state (Phan et al. 1998). The pressure of the hard sphere system 
is simply proportional to the radial distribution function at contact (Russel et al. 1989). 
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Figure 6. Equation of state for different polydispersities from molecular dynamics sim- 
ulations (Phan et al. 1998). The disordered, liquid branch is almost independent of 
polydispersity, while the c ystalline branch apparently diverges at a value which depends 
on polydispersity. 

In Figure 6 we show the equation of state for various degrees of polydispersity obtained 
with a simulation involving 500 particles. In order to quickly obtain the properties of the 
crystal we choose an initial configuration with the particles arranged on the FCC lattice. 
For the monodisperse system the system remains crystalline for q5 > 0.54 but melts to a 
disordered (liquid) state for 4 < 0.54. However for the polydisperse systems, putting the 
particles on lattice sites is not sufficient to arrive at  a crystalline state even at  high volume 
fraction. The configuration evolves to a disordered state. To maintain a crystal the initial 
configuration must be ‘organised’ by arranging the larger spheres to be surrounded by 
the smaller spheres-a spatial correlation with alternating shells of contrasting size. Thus 
the equations of state shown in Figure 6 are in the disordered state for a ‘disorganised’ 
initial arrangement (whether placed randomly or on a lattice) and crystalline only when 
they are both ‘organised’ and initially placed on a lattice. 

What is clear from this figure is the strong dependence of the osmotic pressure on 
polydispersity for the crystalline phase and the near-independence for the disordered 
phase. If we plot the reciprocal of the osmotic pressure against volume fraction we find 
an asymptotic linear behaviour extrapolating to zero at finite q5 (Phan et a1 1998). This 
can be associated with the divergence in ll oc 1/(1 - q5/&)  as one approaches close 
packing. The close packing volume fraction as a function of polydispersity for the 
disordered and crystalline states is shown in Figure 7. Strikingly, the disordered close 
packed (RCP) volume fraction is very robust against polydispersity. On the other hand 
the crystal close packed phase has a maximum packing fraction which decreases rapidly 
with polydispersity. 

We can understand the main effects of small amounts of polydispersity on the maxi- 
mum packing fractions by some simple arguments. Basically, if we require the lattice to 

Copyright © 2000 IOP Publishing Ltd.



Thermodynamics and hydrodynamics of hard spheres: the role of gravity 325 

0.74 

0.72 

0.70 

*0.68 

0.66 

0.64: 

I ' I ' I ' l ' I ' I . I  

0 -id(. ......) - 
disordmd(-). 

- - 

- ' *a .  

x. 

- -P*.$ - "p.. "..I - - 
- 

T 
...$.. 

T . 
I I - 

- 
T T T 

I 

1 . 1 . 1 . I . I . I . I *  

Figure 7. Maximum packing fraction as a function of polydispersity for  organised (c ys- 
talline) and disordered (liquid) arrangements of hard spheres (Phan et al. 1998). 

remain then the sizes of the unit cells should all be the same. But the unit cells surround 
the particles. The biggest particles swell the lattice and the small ones rattle around in 
their expanded cells. On the other hand, for the disordered system the large particles can 
roll until they touch other particles and fill the space left from taking an average sphere 
and decreasing its size to make a small one. 

Let's start with the crystal. Suppose we have a deviation in radius 6, so that r = a f 6  
for a bimodal distribution, and that the unit cells remain undistorted, as we might expect 
for a crystal with long range order. The volumes of the spheres are given by the two values 
v, = (4/3)7r(u f S)3 = v,o(l f 3(6/a)  + 3(6/u)' f ( ~ 5 / a ) ~ ) ,  but the volume of the large 
cells only takes the positive signs, vc = v d ( l +  3(6 /a )  + 3(6/a)' + ( ~ 5 / a ) ~ ) .  If we average 
over sphere volumes, keeping only lowest order terms we have (U,) = v,o( 1 + 3(6/a)') and 
the total volume of spheres in the system is N(v,) .  On the other hand, half of the cells 
increase their volume by (v,) = vd( l+3(6/a)+3(6/a)2)  but the other half have no change. 
The total change in the volume of the crystal to lowest order is bV, = (N/2)vCo36/u and 
the total volume of the crystal is V, = Nvd(1 + (3 /2)6 /a) .  The volume fraction is then 

the volume fraction of the original unit cell. Thus the maximum 4 of the crystal state 
decreases like (3 /2)6 /a  which slightly overestimates the dependence found in Figure 7 
from the simulations. 

In order for this model to be correct the cells with the large spheres must be able to 
'hold' the structure, that is, the cells with the large spheres must percolate (Zallen 1983, 
Ziman 1979). In three dimensions percolation on an FCC lattice occurs at an occupancy 
fraction p ,  N 0.16, so that half of the cells (the ones with large spheres) can easily support 
a structure where the small spheres are not touching their neighbours and are free to move 
in their cells. It might even be possible for the small spheres to freely diffuse throughout 

4c6 N(vs ) /N(vc )  (Uso/Ud)(l+(3/2)(6/U)) 4&(1-(3/2)6/a) ,  where dc0 = (vs)/(Uc), 
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Stokes velocity 

Diffusion Constant 

Reynolds number 

Peclet number 

Gravitational height 

the system since the low threshold p ,  allows simultaneous percolation of both large and 
small cells. (This contrasts with the two-dimensional case where any percolation path 
connects opposite faces of a bulk sample and prevents any other paths from doing the 
same.) 

In the simulations we noticed that the Lindemann criteria for some of the polydisperse 
samples was violated. According to the Lindemann criterion a solid melts when the RMS 
displacement of a particle exceeds N 0.2 of the distance to its nearest neighbour. In fact we 
found an RMS displacement in the solid phase that diverged with time-the particles were 
diffusing. We then calculated separately the displacements for the larger-than-average 
and the smaller-than-average spheres. The small particles were diffusing while the large 
particles obeyed Lindemann and had a maximum displacement of less than 0.2a. 

2 
vgt = @ 
Do = E N 2.2 x 10-9 (6) cm2/sec 

Re = !!!&I - N 1.11 x lo-’ (6) 
Pe = ?;t NY N  NO.^(&)^ 
h = = N 2 x (6) cm 

- 1.11 x 10-5 (A) cm/sec 
-1 

3 

9 

k T  -3 

2 Sedimentation and fluidisation 

Sedimentation problems have a long history, and persist to the present day. The method of 
particle fluidisation is a common technique in chemical reactors, and is used to prevent 
sedimentation by imposing an upward flow of solvent (or, in granular systems, air) to 
maintain artificial buoyancy. In many cases the particles and suspending fluid have a 
large density mismatch and a high Reynolds number. Both of these effects contribute to 
highly chaotic and turbulent flow. For use in our study of colloidal crystalisation we were 
interested in precisely the opposite limit: very slow steady flow at low Reynolds number, 
and with particles similar in density to the surrounding fluid (see Table 1). Originally 
we wanted to counteract gravity with an upward flow, but it soon became evident that 
there was exciting physics in the fluidisation problem on its own. The particles interact 
via the hydrodynamic interaction-a velocity-dependent force. The essence of this study 
became a matter of finding a system where the physics is governed almost entirely by 
the hydrodynamic interaction, and we wanted to study the consequences in the most 
basic way. The particular question we are interested in here is whether this non-potential 
interaction can produce non-trivial interparticle positional correlations which will act back 
on the flow field. Note also that a sedimenting or fluidised bed is a ‘driven system’ (see 
Mukamel, this volume): there is a constant input of energy through gravity or the upward 
pumping of fluid and the steady state is not in Boltzmann equilibrium. 

Table 1. Some possibly relevant numbers for polystyrene particles an water. 
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2.1 Physics of the sedimentation velocity 

Let's try to gain some intuition for the sedimentation problem by working our way up 
from one to two to many particles (Happel and Brenner 1986). A single particle settling 
in a fluid far from any boundary falls at  the Stokes velocity, a balance between gravity and 
Stokes drag, vst = g A m / 6 ~ q a ,  with Am the effective mass. Note that it is not possible 
to stably suspend a single particle. If the upward fluid velocity is slightly greater than 
the Stokes velocity, the particle is driven up and out of the system; if the fluid velocity is 
slightly less, the particle falls to the bottom. A particle of radius a, moving through an 
infinite fluid at  velocity UO, sets up a velocity field which behaves as (Oseen 1927): 

where r is the distance measured from the particle centre. The field is very long range, 
decaying at large distances like l / r .  

The case of two particles is already interesting and nonintuitive, but once we under- 
stand what they do, we can figure out some of the more complex flows at  finite density. 
The Stokes equation, which holds at zero Reynolds number, 

V P  = qv2v, (6) 

is linear. For two particles under gravity, we can simply consider each particle settling in 
the flow field of the other. Two particles therefore fall faster than their Stokes velocity. 
For particles separated vertically by one diameter the sedimentation velocity is 1 . 3 5 7 ~ ~ ~ .  
In general the drag force in the vertical direction is reduced by a factor of (1 - (3/4)a/d) 
(to leading order in a / d )  where d is the horizontal separation of the spheres (Happel and 
Brenner 1986). If the particles are not on top of each other then the flow field from one 
exerts a torque on the other and they rotate. The downward velocity is faster on the side 
facing the opposite particle so the rotation is in the sense shown in Figure 8. 

3 ,  

1 . 1 9 5 ~ 4  
1.357 

0.076~ 

Figure 8. Sedimentation of pairs of spherical particles in different configurations. The  
sedimentation velocity as a multiple of the Stokes velocity is indicated. 

Suppose the line of centres of the two particles makes an angle 0 to the horizontal. 
For the vertical configuration the particles fall at  an enhanced velocity, but for general 
0 they drift sideways (Figure 8). What is unusual from the point of view of Newtonian 
physics is that the line-of-centre forces are in the same direction (rather than opposing) 
so that the particles neither attract nor repel. This is an interesting consequence of the 
reversibility of the Stokes equations: if there is a solution for a particular flow then there is 
a solution when all the velocities and forces are reversed. It is like running a film backwards 
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~~ ~ 

Random, free to move 
Random, fixed positions 

and turning the projector upside down (to reverse gravity) (Herbolzheimer 1999). If the 
particles attracted, the reverse film would have them repel. The only situation which 
doesn’t break this symmetry is if they remain at fixed separation. 

Three particles is already too complicated for complete analysis in all but a few special 
cases (where the three particles oscillate relative to one another as they fall). In the more 
usual case two particles are above a third particle. They fall faster than the lone particle 
and catch up to it, perform a complex dance, and two of the particles (not necessarily the 
original two) take off and leave a third behind. Recent computer calculations by Janosi 
et al. (1997) show that the motion is chaotic, in the sense that the final positions of the 
particles have exponential sensitivity to small displacements of the initial positions. 

The problem we are really after, for understanding sedimentation and fluidisation, 
is to know what happens with a finite density of particles. The naive approach is to 
just calculate what happens when each particle falls in the flow field of all the others. 
This doesn’t work for two reasons. The main one is that the sum or integral diverges, 
J,oO(l/r)dr + 00. The second is that, with a finite density, we have to include the back- 
flow which results from conservation of mass: particles move down, fluid must move up. 
There is a non-trivial but exact result from Batchelor (1972) for the case of a dilute ran- 
dom distribution of settling particles (whose position can change with the flow). The 
problem is especially complicated by the fact that setting the density or volume frac- 
tion is not sufficient to define the outcome: the interparticle correlations and the stress 
conditions are fundamentally important. Table 2 shows the limiting behaviour expected 
for sedimentation of a cubic lattice; that of a random distribution of particles held fixed 
in their relative positions; and Batchelor’s calculation of random particles free to move. 
The easiest case to understand is for the flow through a lattice (Zick and Homsy 1982, 
Sangani and Acrivos 1982). This can be found by solving the flow through a unit cell, 
and the result has been used widely to validate new numerical hydrodynamic computa- 
tional methods. The dependence of the sedimentation velocity on 41/3, where 4 is the 
volume fraction, comes from the fact that there is a well defined separation, the lattice 
spacing, which varies as a4-1/3. The &I2 dependence in the case of random k e d  particles 
is less obvious, but the result arises from the fact that momentum can be redistributed 
by whatever constraint forces hold the particles in their relative positions. This results in 
‘screening’ of the hydrodynamic forces (Saffman 1973). 

~ 

1 - 6.554 

1 - 2 . 1 2 4 ~ ~ 1 ~  

I Periodic FCC lattice I 1 - 1.76d1/3 I 
Table 2. v&(q5)/vUst to  lowest order in (6. 

Batchelor’s calculation involves a choice of reference frame which eliminates the di- 
verging integral by including the backflow, and has three pieces to the linear term. The 
backflow contributes -5.54 to v&/vbt, which allows for the volume of each particle plus 
the average volume of fluid dragged downward by it. The other terms relate to the hy- 
drodynamic interactions and the flow field from each particle: 0.54 from the average V2u 
term in a gradient expansion @e linear term averages to zero), and -1.554 from the 
probability of a near-neighbour encounter as opposed to the average separation. The 
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Figure 9. Reduced sedimentation velocity as a function of volume fraction 4 for  ‘random’ 
particle configurations and for  Sedimentation of particles i n  an  FCC crystal. The FCC 
theory line is from Zick and Homsy (1982); disordered simulation (similar to Batchelor’s 
result at low 4) from (Ladd 1990), disordered experimental data f rom Paulin and Ackerson 
(1990) and Buscal et al. (1982). Dashed arrow from squares to circle is the effect of adding 
electrolyte to destroy the crystal. 

net result v d ( 4 )  = vSt( l  - 6.554) is a much bigger correction for volume fraction than is 
found in either the Einstein viscosity ( ~ ( 4 )  2: ~ ( 1 - 2 . 5 4 ) )  or the self diffusion coefficient, 
(Os(#) M Os(0)(l - 1.654)). In the latter two cases the particle motions are random and 
there is no net backflow, which is actually the dominant effect in sedimentation. 

The normalised sedimentation rate as a function of 4 for the FCC periodic case, and 
for Batchelor’s limiting calculation for the random case, are shown in Figure 9 along with 
experimental data on a number of different colloidal systems. Note that the mean sedi- 
mentation rate decreases as volume fraction increases. This is what allows stable fluidised 
beds to arise, and produces sharp sedimentation fronts. Suppose that we are trying to 
stabilise a sedimenting colloid at 4 = 0.22. We read off the appropriate sedimentation 
velocity from Figure 9 and set up a fluid velocity to exactly match that value. Suppose 
we make a mistake and set the fluidisation flow velocity vfl too slow, say to the value for 
‘U&($ = 0.23). Then there is still a net downward velocity of the particles, and since there 
is a bottom to the container the volume fraction increases as particles settle and occupy a 
smaller volume. In fact the volume fraction will increase precisely to the value of 4 which 
gives the set U&($), because at  that value there is no net flow of particles and no further 
change in concentration. If our initial upward fluidisation velocity was too high, the par- 
ticles flow up, and the density decreases until we again meet the criterion zld(4) = vfl. So 
4 stably adjusts itself to the fluidisation velocity (in the range vSt > vfl > v,,/50, where 
the lower limit is set by the flow which can just lift a close packed, porous sediment). We 
can use this to control the volume fraction continuously in a fluidised bed by just turning 
the velocity knob on the pump that controls YR. 

Suppose now we have a sample sedimenting with no fluidisation. Consider the density 
profile at the top of the sedimenting region. If some particles get left behind they find 
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themselves surrounded by too few particles; the local q5 is lower, the velocity higher and 
they catch up with the rest and produce a very sharp sedimentation front. A similarly 
sharp transition occurs for the fluidised bed, where the same description holds in the 
reference frame of the fluid. Overall, the fluidised bed has a uniform density and a sharp 
transition to a particle-free region. The width of the transition region usually involves 
broadening due to diffusion, counteracted by the difference in sedimentation velocity of 
the concentrated and dilute regions. This gives a length scale 1 = D/V,,d. If D is set 
by thermal motion (rather than hydrodynamic dispersion arising from the chaotic flow of 
the fluid) and Used 21 vSt then 1 = h the gravitational length. Note that, in contrast, the 
bottom of a fluidised bed is completely unstable unless it is supported. If we have a dense 
region and a less dense region below it, the particles in the less dense region settle faster, 
move away from the dense region, and broaden the interface. There is also a mechanical 
instability (the Rayleigh instability) when we have a dense fluid above a less dense fluid. 
That is why we always need a bottom supporting the fluidised bed. 

Now let’s return to Figure 9. One question that arises is whether either of these 
conjigurations, the random arrangement or the crystal arrangement, are stable in their 
own right; the arguments above suggest only that the average density is stable (self- 
correcting) under sedimentation. Will a periodic array of spheres remain periodic as they 
sediment? Will a random arrangement of spheres remain random? The answer to both 
of these questions seems to be no. The instability of the periodic case was studied by 
Crowley (1976) and is illustrative of many aspects of sedimentation. At first he considered 
a horizontal line of particles with separation d ,  2, = nd, and calculated what happens 
if there is a modulation of the spacing 2, = nd + bcosqnd. He found that there is an 
instability with fastest growing wavevector q = 21r/4d and growth rate y = avSed/d2. 
This is illustrated in Figure 10. If two particles move slightly toward each other, they . . . . . .$ 
Figure 10. Crowley’s instability of a periodic line of particles in sedimentation. Each 
line is at a later time. A fiuctuation brings two spheres closer together so they sediment 
faster. Since they have an angle to the horizontal with neighbouring spheres there is a 
horizontal drift which brings them closer together, as in Figure 8. This accelerates their 
sedimentation and leads to clumping. 

fall faster than the average. As they advance each forms a non-horizontal pair with the 
former neighbour in the line. These non-horizontal pairs will drift, and draw the initial 
two particles closer together which reinforces the initial fluctuation, and creates a denser 
region which sediments faster. Thus the periodic horizontal line is unstable, and the 
strongest instability is to the formation of quartets of particles. Crawley also looked at  
the problem of a horizontal plane of particles in a square arrangement. He found that it 
has a similar instability, but that the growth rate is maximum at q = 0 and decreases 
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rather gradually to values of about 191 = n/2d. This means that large-scale (low q )  
density fluctuations will break the horizontal periodic lattice into big clumps. The three- 
dimensional problem, say a cubic lattice, has not been solved but it is expected that this 
is also unstable. That is why the sedimentation velocity that was exactly calculated for an 
FCC lattice (for all volume fractions), has not been experimentally verified until recently 
(Rutgers 1995). One of the results of our experiments, not yet theoretically understood, 
is that the uniformly random arrangement is also not stable. Particle correlations build 
up from the hydrodynamic interactions which screen the flow fields and produce density 
correlations at large length scales. 

In order to create a stable periodic lattice for sedimentation studies we decided to 
use charged colloidal particles which form a colloidal ‘Wigner crystal’ at low volume frac- 
tion. The particles we chose are in the interesting regime where their interaction energy 
is sufficient to overcome thermal motion and crystallise, but not sufficient to overcome 
gravity. In the absence of flow the particles sink to the bottom of the fluidisation cell, but 
with flow we can control the density, suspend the particles and allow crystallisation. In 
fact the system allows many interesting tests and controls for both colloidal crystals and 
fluidised beds. We could use the Bragg scattering from the crystal to accurately measure 
the volume fraction, which we found to be constant from the top to the bottom of the bed. 
We could use a single sample, control the concentration with the velocity and measure the 
dependence of elastic properties on 4. We could also measure the sedimentation rate for 
different volume fractions to compare with the prediction for the FCC periodic structure 
(whose presence was confirmed by the Bragg scattering). The data points are shown in 
Figure 9 and there are significant differences from the curve for the disordered spheres. 
We could not reduce 4 to zero without melting the crystal so we were limited to 4 > 0.2. 
To make sure that we had not made a mistake somehow, we added electrolyte to the fluid 
that was injected into the fluidised bed while keeping the same flow rate. U’e observed 
the bed collapse to  a lower height (a higher density). The result for the melted colloid 
created by adding the electrolyte is also shown in Figure 9 (by the dashed arrow) and 
agrees with the random distribution. More recently Ackerson et al. (1995, 1996) measured 
sedimentation for low 4 for charged spheres that were not in a crystal but still strongly 
correlated. They found that the leading order correction was indeed #‘I3 indicating that 
this is the behaviour whenever there is a characteristic distance in the pair distribution 
function. 

So, the sedimentation velocity depends very much on positional correlations between 
the particles. This leads you to think that if there are fluctuations in the positions of the 
particles during sedimentation, there would likely be fluctuations in the local sedimenta- 
tion velocity. These fluctuations are of considerable interest since they determine effective 
diffusion or hydrodynamic dispersion and mixing in the beds. 

2.2 Velocity statistics 

There have been several studies of the velocity deviation and particle dispersion in sedi- 
mentation (Nicolai and Guazzelli 1995, Nicolai et al. 1995b, Xue et al. 1992, Ham and 
Homsy 1988). They tended to show that the velocity deviation bv = ((bv)’) is compa- 

in the direction of gravity. Our contribution to this data is shown in Figure 11. The 
rable to the sedimentation velocity itself, and that it is anisotropic wit i- a larger variance 
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Figure 11. Sedimentation velocity (triangles), measured b y  the fluidisation speed, for 
15 macron polystyrene spheres as Q function of volume fraction. The RMS deviation 6v 
of velocity as measured by DWS is also shown (circles). The inset shows the nomalased 
bv(dJ)/%ed(dJ). 

measurements were made by DWS (diffusing wave spectroscopy-see Pine, this volume) 
which allows a measurement of the RMS particle motion over wide-ranging time scales. 
Over the range of 4 studied the deviation almost tracks the sedimentation velocity and is 
the same order of magnitude. 

Theoretically, the problem of the velocity deviation has drawn a spectrum of conclu- 
sions. The most fundamental limit is 4 -+ 0 where we might expect to be able to calculate 
the leading term. One argument (an isolated sphere falls with the Stokes velocity) leads 
to 6v/vsd + 0. A second argument says that the characteristic velocity is v& so that 
b v / v ~  + 1. The third argument has bv/v~,d + cc (Caflisch and Luke 1985). This is the 
most interesting argument, as follows. 

Consider a region of length scale r. The number of particles in this region goes as 
volume times mean particle density: N cx 7 1 . ~ ~ .  Assuming the particles are uncorrelated, 
i.e. random, the deviation in the number of particles in this region goes as the square root 
of the number, bN = N’12 a &?. Since for sedimentation or fluidisation the particles 
are not exactly density matched, the region is lighter or heavier than the average and it 
should sediment faster or slower than the average. Its weight deviation is bW = N’I2gAm. 
This weight must be supported by viscous drag (or the region accelerates). The drag force 
is the viscous stress (a a bv / r )  times the area (a T ~ )  giving f d rag  a 7 7 ~ 6 ~ .  (To within a 
factor of 67r this is the same result we would have from considering the region as a sphere 
with Stokes drag.) Setting fdrag = 6W we have 

If this is correct, the fluctuations in the velocity of a region grows with the size of that 
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region. The velocity fluctuation would be dominated by the largest region in the system, 
which would be the size of the container (Hinch 1987). For an infinite system 6v diverges. 

Although this appears as a strange result it is an inevitable consequence of having 
a random particle distribution. For larger regions the mass fluctuations increase (as 
fi 0: r3I2) even as the density fluctuations decrease (as f i / V  oc f i / N  = 1 / f i  = 
r -3 /2 ) .  But the buoyancy forces are determined by the total buoyant mass so there is no 
normalisation by the volume. 

The prediction of this divergence in velocity deviation was first presented (in a different 
form) by Caflisch and Luke (1985). Since the result challenges our intuition, questions 
were raised as to whether the hydrodynamic interaction would be self-screened by the 
particles: perhaps the particles would become correlated in such a way as to prevent the 
divergence. Koch and Shaqfeh (1991) considered three particle interactions and proposed 
such a screening mechanism, suggesting that the screening length would scale inversely 
with the volume fraction and there would not be a divergence. In contrast, Ladd (1996) 
used a lattice Boltzmann model to simulate the sedimentation of 40,000 particles and 
concluded that the hydrodynamics were unscreened and that the velocity fluctuations 
would indeed diverge with system size. 

In order to study this very fundamental problem of whether the hydrodynamic in- 
teraction could induce density-density correlations (positional correlations) between the 
particles, we prepared a series of samples designed to approximate the ideal limits of in- 
finite Peclet number (no contribution from thermal motion), zero Reynolds number (no 
inertial effects), and low volume fractions (no particle correlations from excluded volume). 
The particle dynamics were studied by particle image velocimetry (PIV) first with a home- 
made system and software (Rutgers 1995b) and later with a commercial instrument. In 
PIV, an image, usually a 2D slice of the sample defined by a plane of illumination or the 
depth of field of the camera lens, is digitally taken and stored in memory. Images are 
recorded and stored at fixed time intervals. Each image is then computationally divided 
into squares which contain about 1 particle per box. A cross correlation of the intensity 
(density) in one box with that in the same box but in the subsequent image, gives the 
displacement of the centre of mass of the particles in that box in the time interval. A 
displacement field or velocity field is thus generated on the grid which defines the boxes. 
With the velocity field we can then study (6v (O,O)h( r , t ) ) .  

In Figure 12 we show the velocity fields for two different concentrations and the velocity 
fields with the average sedimentation velocity subtracted (Segre et al.. 1997). In the 4 = 
0.03 sample the velocity fluctuations are evident even without subtraction, the deviation 
is comparable to the sedimentation velocity. From the 4 = 0.001 sample it is clear that 
the fluctuations decrease as the volume fraction is lowered. From the expanded velocity 
figures it is also clear that there is a characteristic length scale for the velocity fluctuations, 
which we call ‘swirls’, and that the length scale increases as the volume fraction is reduced. 

In order to quantitatively analyse the flow fields we calculated a series of velocity- 
velocity correlation functions. As shown in Figure 13 (insets), the velocity correlations 
decay over a finite distance in a non-power-law way and with a length scale that increases 
as the volume fraction decreases. Now the only intrinsic length scale in the system is the 
particle radius, a, and we expect that any other length scale will scale as U times some 
function of the volume fraction 4. For example, the mean free path is ud-l. In fact that 
is the form predicted for the hydrodynamic screening length in the model of Koch and 
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Figure 12. Velocity fields for 15 micron polystyrene spheres in water for volume fractions 
of 0.03 (upper) and 0.0001 (lower). The leftmost curves are direct velocityfields from PIV. 
The centre curves have the average subtracted and are multiplied b y  different factors. The 
rightmost curves are the streamlines. Note the difference in fluctuation length scale and 
fluctuation amplitude for the different concentrations. Larger amplitudes and smaller 
length scales characterise the more concentrated sample. 

Shaqfeh (1991). However, the scaling that seems to give good data collapse of our data is 
a correlation length < N 2 O ~ $ - l / ~ ,  related to the mean interparticle distance, but larger by 
the factor N 20. In Figure 13 we see that both horizontal and vertical correlation functions 
lie on the same curves, with this distance normalisation; <l N 17a1$-’/~, N 2la$-ll3. 
This is not a priori a trivial result. There is a mean interparticle separation for 
a ideal gas as well, but there is no feature in the radial distribution function g(r)  or in 
(its Fourier transform) the structure facture S(q) corresponding to this distance, either 
in the ideal gas or in our dilute suspensions (Chaikin and Lubensky 1995). This would 
be a natural length scale only if the particles were on a lattice or correlated apart by a 
repulsive interaction. Moreover the length scale we have found is twenty times greater. 

The velocity correlation functions reflect what is evident in the flow fields shown in 
Figure 12. The change in sign in (bv,(O)bv,(z)) shows the effect of the ‘swirls’ that we 
see in the velocity fields or in time-lapse photos, and the size of these swirls increases as 
particle density decreases. What is unusual however is that the scaling with $ implies that 
the swirls contain the same number of particles (N  SOOO), independent of concentration. 

Given that there is a length scale in the system we must rethink the earlier argument 
about the divergence in the velocity deviation. In fact the velocity variance as a function of 
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Figure 13. Velocity-velocity correlation functions for  different volume fractions. The 
upper curves are for the vertical velocity correlated in the vertical direction and the lower 
curve for the vertical velocities correlated in the horizontal direction. The insets are un- 
scaled while the main figures are scaled b y  the mean interparticle separation. 

length scale is directly related to the velocity correlation function; the finite characteristic 
length < = a4-'I3 sets a cutoff on the r dependence in Equation 8, so that at  large 
distances the velocity deviation saturates as 

Here we find that the deviation goes to zero with infinite dilution but with a power law 
6v - 41/3. We can directly test this result from the velocity fields we have measured by 
taking the average ((U - v,,)~). This is plotted in Figure 14 and we see that the &'I3 
prediction is obeyed over three orders of magnitude in 4. How general are these results? 
According to our findings the velocity deviation scales with the average sedimentation 
velocity and with 4-1/3, and there is a length scale for the system [. If we take all of our 
data and all of the data previously published by other groups we can plot ( 6 v / ~ ~ ~ d ) / 4 ~ / ~  
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Figure 14. Velocity deviation as a function of volume fraction. 

against W/( where W is the size of the container for the fluidised bed. We have also in- 
cluded the data from the simulation (Ladd 1996). We see that the data fall on a ‘universal 
curve’. The velocity deviation depends on the size of the container only when the size is 
comparable to or less than the correlation length c. At larger sizes there is no scaling with 
container size, the velocity variance saturates and there is no divergence. There is hydro- 
dynamic screening but not of the form envisioned by Koch and Shaqfeh (1991). As the 
concentration goes to zero the variance goes to zero as we might have expected from the 
simplest argument (that an isolated sphere falls with the Stokes velocity), but again not 
in a trivial way. The hydrodynamic interaction is important even in this limit in its con- 
tribution to hydrodynamic dispersion (as distinct from thermal diffusion). At long times 
the particles undergo trajectories which are diffusive with diffusivity D N bv ( x 40avSt; 
note that this is independent of volume fraction and persists as 4 + 0. However, the 
diffusivity is caused by hydrodynamic chaos, not thermal motion. 

The hydrodynamic screening that we observe is theoretically unexpected. So, the first 
thing we should look for is whether some of the basic assumptions for our experiment 
have not been met. We might expect a cutoff length < if we are no longer in the Stokes 
regime, so that inertia becomes important. It is especially suspicious that the product 
of bv 5 is constant. This is part of the expression for the Reynolds number Re = pbv</q 
where rj is the viscosity. As we see in Table 1, the particle Reynolds number is FZ 

for our system, the Reynolds number on the size of the swirls is x lo-’ and the Reynolds 
number on the scale of our container is x lo-’, so at first glance we are always at low Re. 
However, Re N 1 is just a guideline and inertial effects may come in at any finite Reynolds 
number. (Usually turbulence and other high Re effects typically are found at  Re > lo3.) 
So to test whether Re or Pe (Pe = bv</DT; where DT = ksT/67rqL) are important we 
(we being Phil Segre) performed experiments on different sized particles (factor of ten 
variation) and with different viscosity solvents (factor of ten) and found the same scaled 
results. This is not surprising since the results of other groups, shown in Figure 15, range 
from 1 pm spheres in water to ‘ball bearings in molasses’. Thus it appears that our results 
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Figure 15. ‘Universal plot’ of deviation an sedimentation velocity normalised b y  $ I f3  

as a function of the width of the sample cell normalised by the correlation length, for  a 
number of diflerent systems ranging from polystyrene spheres to ball bearings. Inset also 
compares with the simulations of Ladd (1996). (From Segre et al., 1997.) 

are intrinsic, and representative of the behaviour of high Pe, low Re sedimentation at  low 
volume fractions. 

2.3 Origin of hydrodynamic screening 

What has to be explained is that some form of hydrodynamic screening cuts off the random 
density fluctuations at large scales (greater than E ) ,  leading to interparticle correlation 
so that the particle distribution is less than random, and produces swirls which contain 
not a few but many (E 8000) particles per swirl. The problem has not yet been solved, 
but there are some intriguing possibilities. My own attempt is based on the idea that the 
swirls are constantly created and destroyed, and the length scale is given by the steady 
state creation and annihilation rate being set equal. The annihilation process is fairly 
straightforward to estimate. Within a swirl there is a horizontal density imbalance which 
is relieved in the ‘turnover time’ T&,,nihilati,,n = E / &  by collisions with other swirls or a 
rearrangement into a vertical density imbalance. We have some evidence of this time by 
observing the time correlation function (6v(O,O)6w(O, t ) )  which decays with time constant 
</6w (if we translate along with the average sedimentation velocity); or we can simply 
observe a video of the sedimenting particles. But how can we estimate the creation time 
for the swirls? The one simple process we have for envisioning the disruption of a uniform 
density of sedimenting particles is that of Crowley. If we imagine that the system consists 
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Figure 16. Nonequilibrium phase diagram for a sedimenting suspension in the model of 
Levine et al. (1998). The coordinates are noise and diffusion anisotropies. Above the 
solid line there are unscreened spatial particle correlations and the sedimentation velocity 
variance diverges. Below the line the velocity does not diverge with system size and the 
particle distribution is random. 

of a lattice of swirls separated by [ then the rate of growth of the instability away from 
the lattice scales as rmeatia 0; (2v,,d/a. Setting the two rates equal to one another we 
find ( 0: aq5-ll3. So the scaling is correct but we would imagine that the coefficient would 
be of order unity rather than twenty, as observed. 

Probably the most interesting explanation of the hydrodynamic screening is found in 
the phenomenological model of Bruinsma, Levine and Ramaswamy (Levine et al. 1998). 
They suggest that there is a dynamical transition in the system as a function of the 
anisotropies of the (self-generated) noise, 41 and Nl ,  and the diffusion, Dll and D I .  In 
this gravity-driven system there is no requirement for a fluctuation-dissipation theorem 
which relates N and D. They set up and solve the convection-diffusion equations for the 
system and find that there is a phase diagram as illustrated in Figure 16. Above the dashed 
line there is conventional behaviour and no screening. Below the dashed line there is a 
correlation length and screening at  long distances. The basic idea is that advection tends 
to kill the horizontal density fluctuations when the noise anisotropy exceeds a threshold. 
Along with this, the density density correlation function S(q) changes from flat (as for 
a random system) to one which has a maximum at the scale l/( and decays to zero at 
low wavenumbers. 

These results suggest that there is a strong interplay between the hydrodynamic in- 
teraction and the interparticle correlations. The sedimenting system of particles does not 
have a random distribution at  all length scales. There is some form of hydrodynamic 
screening. This brings us back to the ‘exact’ calculation of Batchelor (1972) for the 
sedimentation velocity at  low volume fractions. The first order correction to the Stokes 
velocity is no longer straightforward if the particles have long range correlations even as 
the volume fraction goes to zero. 
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3 Colloidal crystallisation in microgravity 

Having established from sedimentation equilibrium studies that we had a good hard sphere 
system, and from fluidisation studies that we could not directly compensate gravity by 
using a fluidised bed, we and NASA decided to prepare a space shuttle experiment. 
The first thing that happens is that you get an acronym and a badge. Our acronym 
was CDOT (colloidal disorder-order transition). The main idea of the experiment was to 
understand the fluid-crystal transition. Two questions that interested us most at that time 
were the equilibrium crystal structure and the shear modulus. Pusey et al. (1989) had 
reported that the structure of hard sphere crystals on the ground was a random stacking of 
hexagonal closed-packed layers, rather than the FCC structure, and we wondered whether 
the samples were influenced by sedimentation. The shear modulus had not been previously 
measured for the hard sphere system, although it had been calculated by F’renkel and Ladd 
(1987). But the real reason for the experiment was an intuition that there were other 
effects in the formation of the solid that were influenced by gravity and sedimentation. We 
wanted a simple experiment in microgravity to see whether more elaborate experiments 
would be worth doing. Therefore CDOT was conceived and executed as a small ‘glovebox’ 
experiment, a proof of concept and initial trial. 

As we shall see, what we found from CDOT is not what we expected. The random 
stacking structure remained. But we found that the natural growth mechanism, a den- 
dritic growth instability, had been masked by gravity, and the samples which were in the 
glass phase and did not crystallise on earth, quickly formed crystals in microgravity. This 
raised our interest sufficiently that we set up and performed a much more elaborate set 
of experiments, codenamed ‘phAse’, which provided probably the most detailed data yet 
on the nucleation and growth of hard sphere colloidal crystals. 

Fiber 

Figure 17. Schematic of the CDOT glovebox apparatus. 

A schematic of the CDOT apparatus is shown in Figure 17. The sample is contained 

Copyright © 2000 IOP Publishing Ltd.



340 Paul Chaikin 

in a glass cylinder cell which can be translated along its axis and oscillated about its axis. 
Light from a laser diode is fibre-optically brought to the cell and is focussed in a lmm 
beam diametrically through the centre of the cell. Another fibre collects light at 90” and 
brings it to an avalanche photodiode for use in dynamic light scattering studies (see Pine, 
this volume). The cell is surrounded by a plastic cylinder which acts as a cylindrical lens 
and focuses all light emitted from the sample at a given angle to a spot on the translucent 
screen. A video camera is focussed on the screen and stores or transmits the images during 
the experiment. The screen collects scattered light over the range 20-160” and is used for 
Bragg scattering to determine the crystal structure. The samples are hand loaded by the 
astronauts into the apparatus while it is mounted in the glovebox. 

Along with the light scattering and rheology apparatus on the CDOT experiments, 
there was also a set up where the astronauts photographed all of the samples at various 
times after mix/melting in microgravity. I t  was observed that all of the samples in the 
coexistence region show dendrites and that all of the samples in the ‘glass’ regime on 
earth, q5 = 0.58 - 0.63, readily crystallised in space. Both of these observations were new 
and unexpected (Zhu 1997, Cheng 1998). After the first flight we analysed the growth 
equations originally written by Ackerson and Schatzel (1995,1996) for hard sphere colloids, 
and found that in the coexistence region where the growth is diffusion limited, a spherical 
crystal growth mode is unstable against the well-known Mullins-Sekerka instability (Russel 
et al. 1997). 

The original q5 = 0.619 ‘glass’ sample which crystallised in space survived reentry. (All 
coexistence/dendritic samples did not withstand the random M 209 RMS shuttle re-entry.) 
After it had sat in our lab for about six months as a crystal, we decided to remix the ‘glass’ 
region sample to see whether it had somehow changed. But we didn’t want to destroy 
the crystal if it would never grow back on earth. So we used the magnetic mixing bar 
to mix one half of the sample. The crystal mix-melted in this region and then formed a 
glass-like structure as evidenced by the fact that the stir bar did not settle to the bottom 
of the sample cell. Over a period of 1 year we observed the sample. The space-grown 
crystal region slowly grew into the glass region, but there was no nucleation and growth 
of crystals in the glass region. 

The CDOT missions also gave us preliminary Bragg scattering data to determine the 
crystal structure. We were hoping to find crystallisation of the FCC phase in microgravity, 
but the first images we obtained from space destroyed any such hope. A typical image of 
the laser beam scattered from the sample onto a screen is shown in Figure 18. 
The image is dominated by large streaks which indicate ‘Bragg rods’ rather than Bragg 
spots. Rods result from the Fourier transform of a two dimensional lattice, while spots are 
from a three dimensional lattice. The random stacking of hexagonal planes produces an 
incoherent superposition of two dimensional structures and thus Bragg rods. Seemingly 
the crystallisation is sufficiently rapid that the crystal structure is determined by kinetics 
rather than by thermodynamics. After the CDOT experiments several theoretical papers 
showed that the stable phase at all crystalline volume fractions is FCC, but that the 
transformation of a random stacking sequence to FCC is slow (Pronk and Frenkel 1999, 
Mau and Huse 1999). 

The much more elaborate ‘phAse’ (physics of hard sphere experiment) experiment was 
constructed to quantitatively investigate nucleation and growth, structure and rheology 
of the PMMA hard sphere samples. The most effective piece of the flight apparatus was 
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120’ 90’ 

Figure 18. Image from the Bragg screen on CDOT. The predominant scattering into 
Bragg rods or streaks rather than Bmgg spots indicated the presence of two dimensional 
structures-the uncorrelated stacking of two dimensional hexagonal planes in the random 
hexagonal stacking structure. 

the Bragg imaging section. The sample cells were r = lOcm glass hemispheres with a lcm 
radius by lcm high cylindrical cavity, filled with the colloidal suspension, placed axially 
at the sphere centre. An 8mm diameter (Gaussian) laser beam entered axially through 
the flat region of the cylinder. Any light from the scattering volume which leaves at  a 
particular angle is focused to a spot that is at  distance 3r from the sphere centre. A 
fluorescent screen is located at  this position and is imaged by a CCD camera. A typical 
Bragg scattering pattern recorded during flight is shown in Figure 19 (upper panel). When 
averaged azimuthally and plotted as a function of the scattering angle from the central 
beam stop we have the powder average (unnormalised for form factor) scattering function 
which is shown plotted at  several times after initial melting in Figure 19 (lower panel). 
Here we see the liquid-like structure factor S(q) evolving into a crystal form with the 
development of Bragg peaks. 

As the crystals evolve from the metastable liquid, we must determine what fraction 
of the sample is liquid and solid, and the structures in each phase. The analysis follows 
that of van Megen (1998). From previous calculations we know the scattering function for 
different close packed crystal structures and for the concentrated liquid phase (which fits 
a modified Percus-Yevick form quite well). The contribution of the liquid is determined 
mostly from the scattering at qr below the solid ‘shoulder’. The liquid contribution is 
subtracted and the result compared with different solid structures. Adjustments in relative 
liquid/solid fractions are made until acceptable liquid and crystal S(q)’s can be matched. 
Further analysis of the crystalline phase is accomplished by evaluating the main Bragg 
peak, which corresponds to scattering from the stacked hexagonal planes. The position 
of the peak, qm, gives the plane spacing, hence the lattice spacing, density of particles 
and volume fraction of growing crystallites. The peak width, Aq gives the size of the 
crystallites, while the integral under the peak tells the fraction of the sample which is 
crystallised. 

The difference between growth in gravity and microgravity shows up both in the raw 
scattering data (Figure 20) and in the analysed quantities shown in Figure 21. The data 
are from the same sample and the same apparatus on the shuttle and on the ground. 
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Figure 19. Upper: Image from the Bragg screen on the phAse experiment. Lower: The 
azimuthally averaged intensity as a function of scattering angle is plotted for several times 
after mix/melt. Note how the liquid structure evolves to the crystal and the emergence of 
the FCC 200 peak at long times. 
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Figure 20. Scattering functions for  the same sample (4 = 0.552) in the Phase apparatus 
ingravity and microgravity. Note the sharper structure overall and evolution of the FCC 
200 peak in the microgravity data. 
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Figure 21. For samples in the fully crystalline region (this sample has q5 = 0.552) there 
is not much difference between gravity and microgravity save for  the faster growth and 
coarsening of microgravity crystallites. 

Although the fraction of crystal in the sample grows at about the same rate in space 
and on the ground, many of the other characteristic properties are different. In particular 
the microgravity crystals, with diffusion fields undisturbed by sedimentation, show the 
classic diffusion-limited growth behaviour, with the size of the crystallites growing as 
L, 0: t'/'. At later stages the microgravity crystallites show a slow coarsening to a larger 
size, while gravitational stresses seem to suppress the further growth of ground-based 
crystals. 

It was also possible to oscillate the sample cells in the 'phAse' apparatus, while using 
light scattering to measure the local strain field in the centre of the cell. With fixed small 
amplitude drive and different frequencies, we could detect shear resonances in the sample 
which are associated with the cylindrical geometry. From these resonances we measured 
the velocity of shear sound and hence the shear modulus. The results are shown in 
Figure 22 and agree well with the hard sphere simulations of Frenkel and Ladd (1987). 

The shuttle experiments show that the natural growth of the shear-melted hard spheres 
is kinetically dominated and yields the random hexagonal stacking structure. n o m  Fig- 
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ures 19 and 20 we see that structure related to the FCC (200) peak begins to appear after 
a period of about 2 weeks. This is roughly what we would expect from the arguments of 
Frenkel (this volume). However, it would also be nice to have a way to control the growth 
of the crystal rather than to do the effective fast quench from the metastable liquid. To 
do this, we need another control parameter. Temperature is what is used in more con- 
ventional systems, but hard spheres are athermal and temperature is not relevant for the 
phase transition. However, temperature controls the osmotic pressure and a temperature 
gradient might therefore be used to produce a density/volume fraction gradient. We could 
take a sample which is in the liquid phase (4 < 0.49) and the heat one end. This would 
drive the concentration higher at the unheated end and once it reached 4 > 0.545 we 
would have crystals. The experiment should really be done in microgravity to prevent 
sedimentation and thermal convection. We tried on earth with a density matched sample 
and we found that we could grow large controlled crystals with no dendrites (Cheng et al. 
1999), but the control was not ideal due to thermal convection (both colloid and solvent 
expand on heating). 

The most intriguing result from our shuttle experiments is the crystallisation of the 
‘glass’ samples. What does gravity have to do with the glass transition? We don’t yet 
know. But if we follow along some of the themes of this Summer School we might find the 
answers in ‘jamming’. (See Nagel and Cates, this volume.) Aside from the random dense 
packing of hard spheres (RCP), if stresses such as shear, or body forces such as gravity 
are applied, a system can jam up-most particles are held in position by neightbours at  
a volume fraction below the RCP value of 0.63. 
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The idea of random loose packing, RLP, is even less well defined than RCP. However it 
is very important and useful. Letting particles settle or pouring sand into a cylinder one 
finds a typical packing fraction of around 0.58 (see Nagel, this volume). If you start above 
4 = 0.58 and shear the sand it dilates to 4 N 0.58. If you start below 0.58 and shear sand 
it densifies to 4 N 0.58. (Therefore it is better to build your house on soil of 4 > 0.58 if 
you don’t want it to sink in the densifying fluidised soil during an earthquake.) In soil 
mechanics, a porosity of N 0.42 (porosity = 1 - 4) is known as critical porosity for this 
reason. So, one scenario is that in gravity, at volume fractions above 0.58, the particles are 
jammed in an RLP state and cannot move. In the absence of gravity there is no jamming 
and the particles are free to find their equilibrium configuration-to crystallise. This can 
be tested in the future by measuring diffusion in these samples with and without gravity. 
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Granular materials: static properties 
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1 Introduction 

Granular materials are simple systems-so simple, in fact, that it is shameful that we 
don’t understand them well at  all. What could be simpler than a pile of sand at  room 
temperature made up of large, essentially non-deformable and non-cohesive, classical ob- 
jects? If there were no gravity or confining forces compressing the material into a solid 
mass, it  would simply float apart like a gas in which each particle moves according to 
Newton’s laws and interacts with its neighbours via hard-core repulsion. The element 
that makes this gas different from other gases is that, because the particles are so large 
with many internal modes of vibration, when they collide they lose some fraction of their 
kinetic energy. This dissipation of energy can change the nature of the granular gas 
dramatically and produce nearly static, long filamentary structures. 

A granular material, confined by the force of gravity, can flow and resemble an ordinary 
liquid. Yet when looked at  even cursorily it is clear that the motion of this granular fluid 
is bizarre. In some cases, the only moving particles are near a surface where, if ordinary 
hydrodynamics were applicable, the velocity would be zero due to non-slip boundary 
conditions. Unlike other fluids, a compacted granular material must expand before it can 
begin to flow. 

A static pile at rest, confined by the force of gravity, behaves in many ways like an 
ordinary solid and can withstand a considerable amount of stress without yielding. Yet 
a tiny stress in the ‘wrong’ direction can cause large portions of the pile to give way and 
start to flow. The material is exquisitely sensitive and continually shifts and rearranges in 
response to all the minute forces acting upon it. In addition, there is no equation of state 
for a granular material. This is because its density at  a given temperature and pressure is 
not well-defined. Simply by tapping a container filled with grains, the material will settle 
to a new density. Thus the density is a consequence of the previous history and handling 
of the material. 
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What makes these systems so unusual? At first sight, it seemed that the fact that the 
particles were large might lead to simplifications in the description of the pile. However, 
the opposite is the case. Because the particles are large, ordinary temperature plays no 
role in the description of the medium. In order to be important the thermal energy must be 
comparable to some energy in the system. For a granular material, there is only one energy 
with which to compare kBT and that is the energy mgd required to lift a particle of mass 
m in gravity g by its own diameter d. This is the energy typically necessary to make any 
small rearrangement of the positions of the particles in the pile. For a lmm grain of sand, 
ksT < 10-12mgd. A room-temperature experiment on a macroscopic granular system 
actually corresponds to an ultra-low temperature experiment on a molecular system. For 
all practical purposes T = 0 for a medium with grains larger than a few microns. 

Without the existence of a useful temperature scale, a number of simplifications that 
we have grown to rely upon become invalid. A granular system cannot be considered to 
be in equilibrium. No matter how long one waits, the system is always caught in some 
metastable state. Any perturbation simply forces the system to go from one metastable 
state to another. Temperature allows a system to explore phase space but this can happen 
only if the temperature is sufficiently high so that energy barriers can be traversed. We 
do not know how to calculate (or even measure) the average value of any property since 
we do not know over which ensemble we should do the averaging. To what extent does 
the preparation history of the material affect its ‘average’ properties? How much do we 
need to know about its preparation to specify the state of such a system? That is, what 
aspects of the preparation history are relevant for determining the properties? For the 
flowing material we must face a different problem since temperature sets a velocity scale 
for the motion of molecules in an ordinary liquid; the flow velocities may be compared to 
this thermal motion to tell if the flow is rapid or slow. Since the temperature in a granular 
fluid is so low, all flows must be considered as rapid and the only velocity scale is the one 
imposed by the macroscopic flow itself. In another kind of comparison with ordinary fluid 
dynamics one might ask for any given geometry and flow what is the Reynold’s number, 
Re = PULI11 (where U is a typical velocity, L is a typical length scale, p the fluid density 
and 77 its viscosity, which is independent of flow rate). In order for such a categorisation 
of the flow in a granular material to be useful, one must have a quantity corresponding to 
the kinematic viscosity. Although several attempts have been made to measure or define 
such a quantity, these ‘granular viscosities’ have not been shown to be independent of 
velocity, frequency (of vibrations) or length scale over which they are measured. 

As alluded to above, one characteristic of granular material is that there are mecha- 
nisms for the dissipation of energy. In the granular gas mentioned above, some kinetic 
energy is dissipated upon each collision. The energy of the collision goes to heat up the 
individual particles or to create sound waves that leave the vicinity of the experiment. 
There is another form of dissipation which is equally, if not more, important for produc- 
ing some of the non-intuitive properties of these materials: friction between the particles. 
When moving, the rubbing of one particle against another, even without inelastic colli- 
sions, can dissipate energy. The presence of friction produces other problems as well. For 
a completely static pile, the presence of friction produces an indeterminacy of how the 
forces are distributed within the structure. Unlike the conservative forces derived from a 
potential of interaction, a frictional force between two particles can have a range of values 
for the same position of the particles. The degree of the frictional force ‘mobilisation’ 
depends on the history, that is, on how the particles were placed into position. Just as 
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with a block on an inclined plane, a particle in a bead pack can be stable and not move 
even though the forces on it vary. This indeterminacy in the frictional force contributes 
to the difficulty in describing the force propagation within a pile. 

As a last introductory comment, I should note that many industries rely on process- 
ing and transporting granular materials: the pharmaceutical industry handles powders 
and pills, the agricultural industry handles foodstuffs, the construction industry handles 
gravel and sand, and the chemical industry produces many of its products in the form of 
powders. Nevertheless, the technology for dealing with granular material is poorly devel- 
oped. Studies have shown that we waste 40% of the capacity of many industrial plants 
dealing in granular material. This is much worse than is found in plants designed to han- 
dle material in the liquid form. It is evident that a better understanding of the science of 
these materials could have a potential impact on many diverse industrial processes. 

In what follows, I will describe some of the experiments that have been performed to 
elucidate the behaviour of granular materials. In particular, I will discuss some issues that 
relate to the properties of such materials at  rest or subject to only small perturbations. 
I will not discuss here the behaviour of rapidly flowing material. In the next Section, 
I will concentrate on investigations of the force distributions in these materials. This 
includes the visualisation of the so-called force chains. Section 3 will then describe some 
experiments which show the unusual manner in which sound propagation occurs in these 
materials. This behaviour is related to the existence of force chains. I will then briefly 
mention some experiments on how the density of such materials depends on vibration, i.e. 
vibration-induced compaction, and relate the fluctuations of the density to the notion of 
compactivity defined by Edwards. Finally I will conclude by mentioning in Section 5 some 
similarities between jamming in granular material and freezing at  the glass transition. 

2 Force distributions in granular matter 

Much of the material in this Section is taken from Reference [I]. 
Inside a static pile of granular material, each particle is under stress since it helps to 

support the weight of all the particles above it as well as any extra load placed on the 
pile’s surface. The stresses are, of course, transmitted via the inter-particle contacts. It 
is this network of contacts, their overall geometry and strength, that determines many of 
the pile’s most salient bulk properties such as its ability to conduct sound [4-61 or shock 
[7,8] and its ability to bear a load [2,3]. 

Many of us have developed our intuition about packings based on crystalline solids. 
However, such intuition is clearly useless for granular systems. In a crystal, the atoms are 
identical and the load is shared uniformly between them. For granular materials, one finds 
that the slightest amount of disorder, due to even tiny variations in the grain dimensions 
or to packing imperfections, can cause large variation in the force transmission. Since 
the particles interact via essentially hard repulsion even small changes in position will 
produce large variations in the local network of force contacts. In these materials, it 
is found that stresses are transmitted along ‘force chains’ rather than homogeneously. 
These chains make up a ramified network of particle contacts involving only a portion 
of all grains [9-111. It is also important to realise that unlike a regular solid (crystalline 
or glassy) where the atoms have attractive as well as repulsive interactions, the particles 
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in a non-cohesive granular pile only interact via repulsive forces. There is, at  least in 
principle, no attraction between the grains. By working in a humidity-free environment 
and taking care to keep static electricity to a minimum (not necessarily an easy thing to 
do) the attractive forces can be kept small. This implies that the inter-particle potential 
has a discontinuity in one of its derivatives at the distance where they just begin to touch 
each other. The role that this discontinuity can play in the mechanical properties of the 
bulk material has as yet not been made fully clear. 

One common way to visualise force chains in a material is to use stress-induced bire- 
fringence as was done by Dantu [12,1q. In such an experiment a bead pack is placed 
between a pair of crossed polarisers. If the material used to make the beads is isotropic 
then no light will be transmitted through this configuration. (The exception is in a 
three-dimensional packing where multiple reflection from the particle surfaces can cause 
the polarisation of the light to rotate. However, by back-filling the container with an 
index-matching fluid, this reflection-induced transmission of light can be minimised [lo].) 
However, when the material is subject to a large stress, then light can be transmitted; 
the stress induces a birefringence which rotates the polarisation of light propagating in 
a direction perpendicular to the direction of the applied stress. The amount of rotation 
depends on the relative orientation of the stress compared to the axes of the linear po- 
larisers as well as the magnitude of the stress. For this reason it is advisable to use two 
crossed circular polarisers (instead of linear ones) in order to view the entire stress pat- 
tern. (One could, alternatively, take multiple exposures of the system with the crossed 
linear polarisers rotated so that their axes have different orientations from one exposure 
to the next.) Thus by viewing the bead pack under stress between two crossed circular 
polarisers one can see, by the strong light transmission, where the stresses are largest and 
identify the force chains running through the material. A number of experiments on 2D 
and 3D systems have imaged force chains by exploiting this technique [9-181. An example 
of such a picture for a 3-dimensional system made up of spherical glass beads is given in 
Figure 1, taken from [lo]. 

Figure 1. Visualisation of a 3-d force chain in a granular medium in an index-matched 
fluid viewed between crossed polarisers. Photograph taken from [lo]. 
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It is very difficult to analyse the data from these stress-induced birefringence exper- 
iments in order to obtain the magnitude of the forces at  the points of contact. This is 
particularly true in three dimensional geometries where one must remember that some of 
the stress may be oriented along the viewing axis, that is along the direction of the light 
propagation. Those stresses will not contribute to the total light transmission since they 
do not produce any birefringence for light propagating in that direction. 

In order to get more quantitative information about the distribution of forces at  the 
inter-particle contacts another method has been used [1,10]. In this method contact forces 
are measured using the marks left by carbon paper lining the container walls [1,10,16,17]. 
(This method so far has been able to obtain the distributions of forces only at  the confining 
boundaries of the container.) Beads are placed into a container and two pistons, at  the top 
and bottom of the container, apply pressure to the bead pack. The beads are then pressed 
into the carbon paper which leaves a mark, or smudge, on another blank sheet of paper. 
When the container is disassembled, these sheets are examined and the smudges left by 
the carbon are digitised on a flatbed scanner. These marks can then be analysed according 
to their darkness or area. By comparing with a calibration curve for how large or how 
dark a spot should be for a given force, the magnitude of the force creating each smudge 
can be determined. As a cross-check of the experiment, the total force applied externally 
can be compared to the total force obtained by adding up all the forces computed from 
each individual dot on the upper and lower surfaces. If the technique measures the normal 
forces only (and not the tangential, or shear, forces) then the computed force at the top 
and bottom plate should equal each other and both should equal the force applied by 
the pistons. This is found to be the case within a few percent. One can also worry that 
during the loading of the system by putting pressure onto the piston, the beads can move, 
leaving smudges along their path. This would give spurious forces not associated with 
the final packing configuration. Again such effects can be detected by examining the 
individual dots to see if they are circular or elliptical in shape. Under careful loading of 
the apparatus, it is found that the dots are almost perfectly circular indicating that there 
has been little slip in the process of applying the pressure. 

By analysing all the carbon-paper marks left on the container boundaries, a histogram, 
or distribution P ( F ) ,  can be made of the number of contacts that have a given force, F .  It 
is convenient to normalise the forces to the average force, ( F ) ,  f = F / ( F ) .  Remarkably, 
it  has been found that the distribution, P ( f )  is the same on all the surfaces of the 
container and is invariant under a number of different conditions. Figure 2 shows the 
experimental curves for P ( f )  reported in [l]. The different symbols in the graph indicate 
the distributions measured at  the different walls of the container. (Along the side walls, 
the average force varies with distance from the top surface. The average force ( F )  was 
determined at  each depth and this value was used to calculate P ( f )  at each point.) A 
good fit to the data was obtained with the following form: 

~ ( j )  = a [I - bexp ( - j 2 ) ]  exp(-cj) (1) 
with fit parameters a = 3,  b = 0.75, and c = 1.5. It was also possible to calculate 
the lateral force-force pair correlation between forces at  different distances, T ,  along the 
bottom or top surfaces. This correlation function was flat, showing that little, if any, 
correlation between forces existed. 

In order to understand the behaviour of P(f), Coppersmith et al. [10,19] developed the 
‘q-model’ in which the material is modelled as a layered crystal with forces propagating 
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0 1 2 3 4 5 6 7 f 

Figure 2. The distribution of forces, P(f), between particles and the different surfaces 
of a cylindrical container. The open circles are data for the top piston, the diamonds are 
the data for the bottom piston, and the solid circles are the data for the cylinder walls. 
The solid line is a fit using Equation 1. This figure is from [l]. 
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from an upper layer to the one below it. In order to account for the disorder, each 
particle distributes its load randomly to the n particles below it. For example, in the 
case where n = 2 a particle rests on top of only two neighbours, the load is distributed 
with a fraction q transferred to one of the particles and a fraction (1 - q) transferred 
to the other. The quantity q is chosen randomly from a distribution between 0 and 1. 
Consistent with Newton’s third law, the sum of the vertical forces leaving a particle must 
equal the total vertical force that particle feels from the ones resting upon it (as well as 
its own weight which is negligible when that particle is far from the top surface). In some 
limits this model, P ( f )  can be solved exactly. Under quite generic conditions (essentially 
that the distribution from which q is chosen extends all the way to the endpoints of the 
interval between 0 and l), it is found that at large forces, P ( f )  0: exp(-/?f), with p some 
constant. Thus, compared to a Gaussian distribution, this result implies a much higher 
probability of finding force values F much larger than the mean value, (F) .  

This result can be understood by a simple analogy with the scattering of particles 
[10,19]. In the q-model, we can visualise the ‘flow’ of forces as arrows that come into and 
then leave each particle site. For example, with n = 2 as used above, there will be two 
forces coming into each site and two forces leaving it. The sum of the forces in the vertical 
direction coming in equals the sum of those leaving the site (as long as we can neglect 
the extra weight of the particle at  that site). Formally this looks equivalent to a diagram 
we would draw if we were calculating the kinematics of elastic scattering of particles in 
a gas. There the conserved scalar quantity is the energy whereas in the q-model it is the 
vertical force coming into or leaving each site. Just as in a gas in equilibrium, where this 
scattering leads to a Boltzmann distribution of energy, so too the ‘scattering’ of forces at 
each site in the q-model leads to an exponential distribution of forces once there has been 
sufficient scattering (i.e. once one is deep enough in the pile). 

This exponential decay of P ( f )  at large f (that is for F > ( F ) )  has been observed 
in the experiments [1,10] as shown in the data of Figure 2 and described by the fitting 
Equation 1. It has also been seen in the computer simulations of Radjai et al. [20-221, 
Luding [23] and Thornton [24] as well as in experiments on shear cells [25] and 2D arrays of 
rods [ll]. The behaviour of P ( f )  at small values o f f ,  by contrast, is not well understood. 
As can be seen in Figure 2, one sees that P ( f )  flattens out below f x 1 and approaches 
a constant value at low forces. 

It is interesting to note the differences between the P ( f )  distribution in granular 
matter and those found in other kinds of materials. If the material were a crystal without 
disorder, then the P ( f )  distribution would be a sharply peaked function-essentially a 
delta-function broadened by thermal effects. There would not be any weight in P ( f )  at 
forces near zero. In an amorphous material like a glass, one would find a curve for P ( f )  
that might look qualitatively like that in Figure 2 except with one important difference. 
Although, the P ( J )  for the glass would have a significant weight near f = 0, since there 
are attractive forces between atoms in the glass, there would not be a discontinuity in 
P ( f )  at that point; the function P ( f )  would continue smoothly to negative forces. In the 
non-cohesive granular material the discontinuity in P(f) at f = 0 is large and it is real, 
only smoothed out by the degree to which there are cohesive forces. 

What is the effect of this discontinuity on the bulk properties of granular matter? 
It implies that any arbitrarily small perturbation can change the connectivity of the 
particles. Thus a small force on the surface will, somewhere in the pile, move a particle 
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that was once touching another one, albeit with a tiny force, to a position where it no 
longer makes contact. Because the original force is indeed tiny one might expect that such 
rearrangements of the connectivity of the pile would be unimportant. However, there are 
very many particles which have these tiny forces. Indeed we can show quite generally 
[26] that for Hertzian contacts, P ( f )  diverges at low f as fd1i3. (Hertzian contact theory 
describes the interaction between spherical elastic particles under weak deformation, for 
which the force law between particles is f ( r )  cc ( r  - r0)3/2 where ro is the point at which 
the particles just touch.) Such an argument is based on relating P(f) df = G(T)  dr where 
G(r )  is the radial distribution function of the material. As long as G(r )  is non-zero at the 
point ro of first contact, then the quantity dr/df  will lead to a divergence in P(f). Other 
force laws will produce different functional forms at small f . 

It is interesting to note [26] that this type of argument can also be applied to an 
equilibrium liquid where it leads to an essentially exponential decay for P ( f )  at large f for 
the case where the liquid has a steep repulsive inter-particle potential V(r). At very small 
distances, where g(r )  is small, one can make the approximation g ( r )  o( exp(-V(r)/kBT). 
Here g(r ) ,  the pair distribution function, obeys g(r )  = G(r)/47rr2 This type of argument 
thus produces a similar result as does the q-model at  large forces. It has the advantage 
that it is an exact result for equilibrium liquids in the asymptotically small g(r )  regime. 

3 Experiments on sound propagation 

In the last Section, we saw that a granular material is inhomogeneous in that force chains 
extend over many particle diameters. The normal forces between particles are distributed 
over a wide range, with their number falling off exponentially at  large values and possibly 
diverging at  small forces. Sound, the elementary excitation of this unconsolidated ( d .  e. 
loosely packed) granular material, must propagate on this network of forces. It might 
be expected that it is particularly sensitive to the nature of the contact forces between 
particles and to the way that these forces vary within the medium. As I will show in 
this Section, this expectation is in fact the case and there are many unexpected and 
striking features of the sound propagation due to the disordered and nonlinear nature of 
the contacts and the tenuous network that they form. 

Depending on the wavelength of the sound wave, different effects are found. At wave- 
lengths, A, much greater than the length of, or the spacing between, force chains, we 
expect to be able to treat the medium as homogeneous. At much higher frequency, X 
decreases and eventually becomes comparable to the grain diameter, d. In this regime, 
the sound propagation is more sensitive to the geometry of the contacts. Both regimes 
have distinctive behaviour. 

Low frequency sound will not propagate in the horizontal direction in an unconsoli- 
dated granular material [5]. This is basically a very pronounced mirage effect due to the 
fact that sound propagates at different velocities, c, at different depths in the material. 
This, in turn, is due to the very non-linear forces between particles. When two spherical 
particles are held together by the tiniest of external forces, they will touch at just one 
point and the force constant between them will be negligibly small. When the external 
pressure is increased the particles distort so that the area of contact increases (to a plane 
instead of just a point) and the force constant likewise increases. The greater the pressure 
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pushing the particles together, the larger will be the forces and thus also the velocity of 
sound. Using Hertzian contact theory, one finds that the velocity depends on the pressure 
[27,28] as c 0: P1lS. (Experimental data [28] has shown that the exponent is not precisely 
1/6. The argument underlying the mirage effect does not depend on the exact value of 
the exponent of P as long as it is positive.) In the granular material the pressure will 
vary with depth. If one is far from any confining walls, the average pressure will increase 
linearly with depth so that c 0: h1I6. (If one is near a wall the pressure will have a more 
complicated dependence; it will saturate at some value depending on what fraction of 
the weight of the material is held up by frictional interactions with the wall.) A sound 
wave, initially propagating in the horizontal direction, will travel at  different rates along 
its wavefront, faster at the bottom than at  the top: the bottom will get ahead of the top 
and the wavefront will be tilted. The wave (moving perpendicularly to the wavefront) 
has thus gained a component of velocity along the vertical direction. This wave will reach 
the top surface at which point it is moving completely in the vertical direction. Thus at  
low frequencies horizontal sound propagation is not allowed in unconsolidated granular 
material. 

In the other extreme, when the wavelength X is comparable to the grain diameter, 
even more remarkable behaviour is observed. In this regime one can no longer consider 
the medium as being homogeneous; the geometry of the particle packing and the force 
chain network will determine the exact path of the sound. Strong interference effects, 
as seen for example in the universal conductance fluctuations in submicron samples of a 
conductor at  low temperatures, are to be expected. In one study of sound propagation in a 
box filled with glass beads [5 ] ,  it was found that the vibrations caused by the sound itself 
was enough to disturb the placement of the particles. This slight shift in the particle 
placement, in turn changed the transmission amplitude of the sound measured at  the 
detector giving rise to an enormous amount of noise. With a monochromatic source, run 
at constant frequency and amplitude, this noise in the measured transmission had a power 
spectrum: S(f) o( f P 2  which persisted over 5 decades in frequency f .  

One can see the intricate interference effects if one sweeps the frequency of the source. 
As one varies the frequency one finds that the amplitude of the sound measured by the 
detector varies considerably and appears to be very 'noisy'. This is shown in Figure 3. 
However, one can see that these features in the transmission spectrum are not real noise 
since the measured response is completely reproducible if the measurement is repeated 
without disturbing the pile [5,29]. This is shown by the two curves (displaced from each 
other for clarity) in the upper panel. They are nearly identical in all their features. 
However, if the pile is disturbed even slightly, then the spectrum changes as shown in the 
lower panel of Figure 3. Although the overall trend in the data persists, all of the fine 
structure is now changed. 

An even more dramatic effect demonstrating the sensitivity of sound transmission to 
these fragile force contacts and force networks has to do with the extreme sensitivity of the 
sound transmission to minute temperature changes in the system [30]. A tiny temperature 
drift of only 0.03K was observed to cause the measured signal at  the detector to increase 
by a factor of three. To check that this effect was due to a change in temperature 
(and not, for example, to a change in humidity) a small resistor was placed inside the 
material. This resistor was made small and rounded so that it was approximately the 
twice the size of any single bead ( d  = 5") making up the material. The configuration 
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v (kHz) 
Figure 3. The frequency response, q, at the detector. (a) The lower curve, displaced for 
clarity, was measured immediately after the upper one an order to show the reproducabil- 
ity of the structure. (b) The same measurement as in (a) but with a slightly disturbed 
arrangement of the beads. Taken from Ref. [5]. 

for this experiment is shown schematically in the inset to Figure 4. The heater, marked 
H in the diagram, was embedded into the pile between the source and the detector but 
offset to one side. By passing a small current pulse through the resistor lasting only 0.2 
seconds, its temperature could be rapidly raised by less than a degree producing in turn 
a minute thermal expansion of only a few hundred nanometers in the heater. Prior to 
applying the pulse, a constant signal was measured by detector DZ. The perturbation 
produced an enormous effect: as shown in the main part of Figure 4, the transmitted 
sound intensity decreased by approximately 25%. After the rapid response, the signal 
slowly approached its initial value. To show the reproducibility of the effect, a second 
pulse was applied approximately 85 seconds after the first. A similar decrease in the signal 
was observed. The perturbation caused by the heat pulse is both very local and very small: 
the temperature rise affected only a single particle (out of the 105 or so particles in the 
region between the source and the detector) and the thermal expansion was almost 5 
orders of magnitude smaller than either X or d. This effect was interpreted [31] as being 
due to sound propagating predominantly along force chains within the medium. In places 
where there are no force chains, the effect on the signal of a small thermal expansion of 
the heater would be small. However, if the heater was placed on, or near, a force chain, 
its minute thermal expansion could shift the contacts along the chain and produce a large 
effect. 

By embedding within the material an array of heaters, Liu [31] was able to investigate 
the spatial properties of the low-amplitude vibrations. He found that the disturbance of 
a single heater could be characterised by a time scale revealing the elapsed time of the 
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Figure 4. Inset: a schematic view of the top  of the apparatus used to demonstrate the 
eflect of a small temperature change on the transmission of sound. The source, labelled 
S, was vibrated at fixed amplitude at a frequency of 4kHz. The heater, labelled H, was a 
distance of icm from the driving plate. One detector, labelled D1, monitors the amplitude 
and frequency of the source ensuring its stability. The data in the main part of the figure 
shows the response at the detector, 4, to two consecutive current pulses at an interval of 
85 seconds apart. Taken from [30]. 

signal travelling along a path via the heater. To show that the effect was in fact due 
to inhomogeneous forces within the material, he placed two heaters symmetrically with 
respect to the source and detector and showed that they produced very different effects. 
He also showed that the spatial pattern caused by heaters placed at different positions 
within the medium is very irregular, in that two adjacent heaters can give very different 
responses. The most natural interpretation of these experiments, as proposed by Liu, is 
that the sound predominantly travels along the force chains caused by the strong contact 
force inhomogeneities within the medium. 

I now want to address the question of what is the velocity of sound in this medium. (I 
will consider only the high frequency regime since, as I argued above, at low frequencies 
there may be a large depth dependence to the velocity.) There are at  least two different 
ways to determine this quantity: a measurement of the time of flight velocity and a 
measurement of the group velocity [29]. In the time-of-flight method one creates a pulse 
at the source and measures the time it takes for the first effect to be felt at a detector a 
given distance away. An experiment of this type yielded [29] the value ~ , , f  x 280m/sec at 
a depth of 6cm. (Since this value is nearly the velocity of sound in air, the measurement 
was checked by re-measuring the velocity both in an evacuated box and one filled with 
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Helium gas where the sound velocity is 970m/sec. The same value for the sound velocity 
was found in both cases.) The determination of the group velocity, cg, was done by 
measuring the phase, q5 of the detected signal at  the detector as a function of frequency, 
v. From the slope of 4(v) and the distance Ld between the source and detector one 
determines [29] cg = 2rLd du/dq5 G 57m/sec, which is almost five times slower than that 
measured by the time-of-flight experiment. 

The observed discrepancy between q,f and cg indicate complicated behaviour in the 
propagation of the sound; the sound must travel a tortuous path between the source 
and the detector determined by the exact structure of the force chains in the medium. 
This way of thinking about the sound propagation is different from the assumption that 
it propagates by diffusing through a random medium. (Such diffusing waves have been 
studied in a variety of contexts including electron scattering in mesoscopic metals [32] and 
light propagation in a densely scattering medium [33].) Sound in sand is different from 
these other cases because force chains span the distance between the source and detector. 
One might expect that, independent of frequency, all the sound waves must pass through 
the same set of force bearing contacts. That is indeed what the experiments of Liu [31] 
indicate is the case. 

4 Experiments on granular compaction 

One of the characteristic features of a granular material is that it can exist over a wide 
range of densities between close and loose packing. For spheres, this range is between 
approximately 0.64 and 0.55 [34]. Thus the density variation in a granular material can 
be well over ten percent even for spheres; for materials consisting of particles with less 
uniform shapes, the variation can be much larger. As one vibrates such a material the 
density will change. If it is initially loosely packed it will become denser. If it is initially 
tightly packed it becomes less dense. During normal handling, granular materials are 
subjected to a wide range of vibration intensity so that compaction occurs whether or 
not one wants a density change. Moreover, in industries which use sand in which to cast 
metal parts, compaction is used in order to create a dense uniform material in which to 
pour the molten metal. 

In the absence of a useful temperature scale, external vibrations provide the energy 
that can be used to ‘anneal’ the system into a configuration closer to its ground state. 
Compaction occurs at different rates depending on the amplitude of vibrations, the shape 
of the container, the initial density of the material, and the friction with the walls. Studies 
by Knight et al. [35], have shown that the compaction of granular material due to vibra- 
tions occurs logarithmically slowly. In those experiments, a tube filled with monodisperse 
spheres was subjected to vibrations which consisted of individual ‘taps’ of a given inten- 
sity (acceleration and frequency). Even after lo5 taps, densification of the material still 
occurred. Data from this experiment is shown in Figure 5. (In this data the acceleration 
of the individual taps was normalised by the acceleration of gravity g to r = A w 2 / g . )  

A variety of models have been proposed to account for this extremely slow settling 
[36,37]. One model that captures many of the features of the experimental results is 
based on the idea that the rate of increase in the granular volume fraction is exponentially 
reduced by excluded volume [38,39,40]. The model can be thought of as corresponding to 
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Figure 5. The packing fraction p as a function of the logarithm of the tap number, t, for 
r = 0.75(x),  l . O ( Q ) ,  1.25(A),  1.5(0),  1.75(Q), 2 .5 (0 )  and S.O(+). Each curue i s  an 
average of 5 separate experimental runs; the error bars show the r m s  variation between 
runs. The inset shows a subset of the data on a linear scale. Taken from 1351. 

the situation where equal-sized cars (which correspond to the particles) are being parked 
in a parking lot without assigned slots. In the case where there is a high density of cars 
already parked, the insertion of an extra vehicle (or equivalently the insertion of an extra 
particle into the bead pack), requires the existence of an unlikely hole large enough to 
accommodate it. In a completely random situation, the average space depends only on 
the average density, p. The addition of an extra car or particle requires as the density 
increase an increasingly large number of previously parked cars (or resting particles) to 
move. This number increases as pOp/(po - p)  where po is the maximum density (which is 
unity for a one-dimensional system). If all densification occurs by random movements of 
the particles, that is random ‘parking’ and ‘unparking’ events, then the time it takes to  
add each extra particle will be approximately exponential in pop/(po - p) .  As a result, the 
approach to the steady state density is logarithmic over a wide range of time. However, 
a detailed examination of this model [40] shows that a t  long times a final regime takes 
over. 

As can be seen in Figure 5 ,  the density of the granular material increases as the accel- 
eration of the vibrations is increased. However, at very large accelerations the opposite 
trend occurs and the density starts to  decrease as the acceleration is further increased. 
The vibration has two effects: it anneals away defects that are already in the material 
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Figure 6. The density as a function of the vibration history. The beads are prepared in a 
low density initial state. r is then slowly first increased (solid symbols) and then decreased 
(open symbols). The beads first compact irreversibly. Upon subsequently decreasing r 
the density increases still further. The branch with the higher density (open symbols) is 
reversible and upon subsequently raising r again, the density retraces the previous values 
obtained on lowering r. Taken from 1411. 

and it can create new ones. Clearly if the vibrations are very violent, they will disrupt 
any order already in the pack and make it less dense. The vibrations can profitably be 
thought of as equivalent to a temperature in an ordinary solid. If the solid exists at low 
temperature with many defects, then raising the temperature slowly can anneal those 
defects away and any subsequent lowering of the temperature will produce a low temper- 
ature solid with considerably fewer defects than was in the original sample. The same 
type of phenomenon can be observed in the granular material as seen in Figure 6. When 
started in a fluffed-up, low-density state, the application of low-amplitude vibrations will 
slowly increase the density. As the vibration amplitude is increased the density increases 
and reaches a maximum at an acceleration several times that of gravity. Above this value 
the density starts to decrease with increasing intensity. Upon the subsequent slow lower- 
ing of the vibration intensity the density increases steadily all the way down to the very 
lowest acceleration values. Thus the material has been effectively annealed and the slow 
increase of density upon decreasing the acceleration is reminiscent of the behaviour of a 
liquid supercooled into a glass state where also the density is found to increase slowly as 
the temperature is lowered. 

Experiments on granular materials indicate that even after the system has reached its 
steady state density, the density will fluctuate about its steady-state value in a manner 
reminiscent of how a thermal system fluctuates about its thermal equilibrium value [39]. In 
a thermal system, the fluctuation-dissipation theorem demonstrates that a measurement 
of fluctuations gives equivalent information as does a measurement of the response of the 
system to small perturbations. 

This analogy between the density fluctuations in the granular material and those in 
a thermal system has been pursued. After measuring the density fluctuations over an 
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extended interval, the power spectrum (the square of the Fourier transform of the density 
as a function of time) was computed [39]. This function gives the various frequency 
components in the relaxation of the system. At very low frequencies, f, the spectrum 
is flat and at  very high frequencies it falls off as l/f2. In between these two regimes 
there is a more complicated frequency dependence. Similar dependence was found in the 
simulations of the ‘parking model’ mentioned above [39,40]. 

Edwards and coworkers [42] proposed a theory of powders that replaces the ordinary 
thermodynamic temperature with an effective temperature for a static powder that they 
call the ‘compactivity’. This is defined as being proportional to the derivative of the 
logarithm of the number of accessible states with respect to the volume (as distinct from 
the ordinary thermodynamic one in which the derivative is taken with respect to the 
energy). It is difficult to measure such a quantity since it is apparently impossible to 
measure the number of accessible states and even more difficult to determine its derivative 
with respect to volume. However, using the density fluctuations, it is possible to determine 
the compactivity, X by making an analogy with ordinary thermodynamics [39]. Recall 
that the specific heat can be written in two forms: 

where ( ( E -  
k B  is Boltzmann’s constant. The analogous equation for the powder is: 

is the fluctuation of the energy around its equilibrium value Eo(T) and 

where ((V - V O ) ~ )  is the fluctuation of the volume around its steady-state value V,, X 
is compactivity, and the equivalent of Boltzmann’s constant is set to unity. We thus 
have an equation that allows one to measure the compactivity difference between two 
configurations as a function of the density (or volume) fluctuations integrated along a 
Dath between them: 

Of course the usefulness of having a measure like temperature or compactivity is pred- 
icated upon having a notion of ‘equilibrium’ such as is embodied in the zeroth law of 
thermodynamics (which says that two bodies each in equilibrium with a third will be in 
equilibrium with each other). At present, although we have the ability to measure the 
compactivity of a granular material, we have no equivalent experimental demonstration 
that an equivalent of the zeroth law holds. Indeed the data [39] indicate that different 
regions of material which are in good contact with each other may not have the same 
variation of compactivity as the state of the system is varied. 

5 Jamming and the relation to the glass transition 

So far I have concentrated almost entirely on the properties of granular materials. How- 
ever, there are certain features of these systems which are reminiscent of supercooled 
liquids. As one example of such a similarity, recall that the data shown in Figure 6 is 

Copyright © 2000 IOP Publishing Ltd.



364 Sidney Nagel 

similar to the annealing behaviour of a glass (see Bouchaud and Kob, this volume). As 
the temperature is raised close to the glass transition temperature, the glass will anneal 
into a more dense state. Upon subsequent lowering of the temperature the density will 
remain high and even increase slightly. 

There are a number of other similarities between macroscopic, athermal systems and 
supercooled liquids and glasses. The ones that I am interested in discussing here are those 
that deal with how a material loses the ability to flow. In a macroscopic system such as a 
granular material one calls this process ‘jamming’. It occurs because the material develops 
a yield stress; too small a stress will not be sufficient to force the material to flow. The 
jamming transition in this case occurs as the external stress is decreased below the yield 
stress value. An apparently different kind of transition occurs when a liquid is supercooled 
to the point where it becomes frozen in an amorphous state. As in the granular material, 
the liquid too develops a yield stress. At this ’glass transition’ the viscosity has diverged, 
the diffusion has vanished, and the material appears in all ways to be solid. 

At first glance it appears that there should be no relation between these different ways 
in which a material can lose the ability to flow. After all, in the case of jamming, the 
transition to a stuck state is clearly kinetic in origin and has to do with the application 
of external forces driving the system out of equilibrium. In the case of the supercooled 
liquid, on the other hand, the transition to the glass appears to be thermodynamic in 
origin. As the temperature is lowered, the liquid freezes as there is not sufficient thermal 
energy to allow the material to explore all of phase space. Is there a common conceptual 
framework with which to address these phenomena? This was the subject of a four month 
programme at the Institute of Theoretical Physics in Santa Barbara in 1997 which was 
summarised in Europhysics News [43]. 

In all out-of-equilibrium systems one question that naturally appears is whether or 
not there is a useful concept of temperature. In the last section I described one attempt 
by Edwards and coworkers to define a concept related to temperature for a static powder. 
Many others have also been proposed. Most notably are those which use the random 
motion of the grains to define an effective temperature. The problem also appears in a 
discussion of the glassy state. Since the glass has fallen out of equilibrium, the question 
arises to what extent the measured temperature can be used to describe the state of 
the system. It is clear that it is not sufficient and the concept of ‘fictive temperature’ 
has been introduced to describe some of the nonequilibrium thermal characteristics of 
the system [44]. The question has also been addressed of whether there exists for glassy 
systems (including structural glasses and spin glasses) a fluctuation-dissipation theorem 
(see Kob, this volume). Such a theorem relies on there being a temperature [45]. As 
discussed in the last Section, one may ask whether the fluctuations in a driven steady- 
state system that is far from equilibrium can be used to define a temperature, and whether 
there is a zeroth law of thermodynamics. There are many different ways of defining an 
effective ‘temperature’ for a system out of equilibrium. One must then ask whether or 
not they are consistent with each other. 

One other feature that shows a resemblance between glasses and jammed systems is 
the appearance of heterogeneities near the transition between the fluid and the stuck state. 
The entire discussion in the early part of this review was devoted to the description of 
force chains in granular materials. These are the inhomogeneities that occur naturally as 
the system becomes jammed and stops moving. Cates, Wittmer, Bouchaud and Claudin 
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Figure 7. A schematic phase diagram that attempts to unify the diflerent ways in which 
the ability of a system to @ow can be lost. Taken from 1511. 

[46] have contended that jammed systems really belong to a different class of materials 
than do ordinary solids (see Cates, this volume). They call these systems ‘fragile matter’ 
because they are solid only so long as the applied stress is along the same direction as that 
which created the jam in the first place. If the applied stress varies from this direction 
then the jam will disappear and the material will flow. 

Likewise there are many experiments that indicate supercooled liquids are very hetero- 
geneous as they approach the glass transition. Several recent experiments (47,481 indicate 
that the time scales for translational diffusion in liquids decouple from those for rota- 
tional relaxation and viscosity. Simulations also have indicated that there are dynamic 
heterogeneities that occur as the glass transition is approached [49,50]. 

Given these similarities one might ask whether there can be any common underlying 
physics relating jamming and the glass transition? In what I have talked about so far I 
have considered jamming in cases where there are no attractive interactions between par- 
ticles, so that the particles are held together by an externally applied stress. I have also 
implicitly assumed that the particles are so large that the thermal motion is totally irrel- 
evant. Can one generalise the concept of jamming to systems where there are attractive 
forces and where thermal motion is relevant? Liu and Nagel [51] have attempted to do so 
by suggesting a schematic ‘jamming phase diagram’ that would unify jamming and glass 
formation. This diagram is sketched in Figure 7. The vertical axis is the temperature. 
As the temperature is lowered a liquid will become a glass. The axis coming out of the 
plane is the inverse density or inverse pressure axis. As the density or pressure increases, 
a system will become so constricted in its phase space that it can no longer move. The 
horizontal axis is the applied load. (This is the ‘incompatible’ load in the terminology 
of Cates et al. [46].) For a foam, this could be the shear stress. If this stress were too 
large the foam would flow. If it is too small, however, the foam will again become stuck 
or jammed. According to this picture, it is not possible for jamming to occur when the 
density is too low, the temperature too high, or the external load too great. 
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The glass transition is normally conceived of as occurring in the temperature/density 
plane, that is with the load set to zero. Likewise jamming is thought of as occurring in the 
load/density plane. By combining the three axes we see that these different phenomena 
may be related. It is important to realise that this diagram is schematic in the sense that 
the pressure and load axes really just represent two of the different components of the 
stress tensor. It is also probable that the phase diagram will not be as smooth as drawn. 
For example the jamming of a material such as corn-starch, which shear thickens, must 
have re-entrant regions. 

This phase diagram suggests that the same types of constraints that lead to a system 
becoming jammed may also be important for how a liquid becomes frozen into a glass. 
One consequence of this way of looking at  these problems is that it suggests a number of 
different experiments. It suggests that one should look at how thermal motion (due to 
Brownian motion, vibrations or ordinary temperature) will alter the ability of a system 
to become jammed. It also suggests that one might profitably look at  how the application 
of a shear stress changes the glass transition temperature in a supercooled liquid. 

The jamming phase diagram and the connection between jamming and the glass tran- 
sition is tantalising. However, this connection is still not firmly established and much 
more work needs to be done to see if this way of looking at these phenomena is fruitful 
and productive. At present we are performing a number of simulations to test whether 
similar behaviour is observed close to the glass transition as is found near the jamming 
transition in athermal systems [26]. Likewise, experiments are being planned to test in 
colloidal systems whether the concept of the jamming phase diagram is useful 1521. 
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Stress transmission in jammed and 
granular matter 

Michael Cates 

University of Edinburgh, UK 

1 Introduction 

In what follows, I will review some recent work on the mechanical properties of materials 
whose structural integrity arises from a jamming process. The basic suggestion is that, 
because the solidity of such materials arises solely as a result of the applied load, their 
mechanical properties can be very different from those of simple (elastic) solids. Indeed, 
in elastic materials, the applied stress modifies but does not fundamentally alter the 
interparticle forces that are already present. In the jammed case, the network of contacts 
which comprises the load-bearing ‘skeleton’ of the material has formed adaptively under 
whatever stresses caused the system to jam. A linear response to incremental stresses is 
not guaranteed, and we will see that in some simple models, certain types of incremental 
loading cannot be supported without irreversible rearrangement of the contact network. 
I will go on to argue that these distinctive mechanical properties may be shared by dry 
granular materials (which can also be viewed as jammed in a certain sense). However, I 
should warn that this view remains controversial, for reasons which should become clearer 
below. A concise and balanced recent survey of the relevant literature is found in [l]. 

2 The jamming transition 

Jamming is a familiar event. It is what happens when we attempt to force a system of 
interacting particles (or, in some cases, cars or people) to move faster than conditions will 
allow. For example, on a busy highway, jamming can occur when everyone is in a hurry to 
get past everyone else. Drivers cannot adapt to the resulting fluctuations in speed; they 
have to brake sharply, and everything stops. Paradoxically it is the wish of drivers to go 
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faster that makes them slow down [2]. Something similar happens in a simple kitchen 
experiment. Take a packet of corn-starch powder, and add just enough water to make a 
fluid paste. At least, it will appear to be a fluid, but if you try to stir it rapidly with a 
spoon, it will stop moving altogether. 

Why does this happen? It is related to the phenomenon of dilatancy in dry granular 
media: for grains to get past one another they require space, which is why flowing sand 
is less dense than well-settled static sand (Nagel, this volume). But for a colloidal sus- 
pension of corn-starch granules, the volume available is fixed; this is because the granules 
themselves, and the surrounding fluid, are effectively incompressible. Although in slow 
enough flows the particles are able to get past one another, fast flow becomes almost 
impossible. .4ctually, jamming is more than just an inability to flow fast: for while a 
modest shear stress does make the material flow, a large one is not just ineffective, but 
directly counterproductive. Large stresses inhibit, rather than assist, the rearrangement 
of particles, which stop moving almost completely. 

It remains an open question whether the kind of jamming seen in colloids can, under 
some conditions, be viewed as a phase transition, and whether the new state is really 
solid-like or just very sluggish (and perhaps erratic) in its flow; see, e.g. [3]. In fact, 
not much at all is known about the jamming transition. One way forward is to study 
driven one-dimensional models (see Mukamel, this volume). In contrast to equilibrium 
problems, such models can exhibit very rich behaviour, including true phase transitions; so 
possibly the physics of the jamming process is accessible in one dimension. Indeed, various 
jamming transitions are found in 1-D traffic models [2]. However, there is no obvious 
way to introduce shear flow in the one-dimensional context (although traffic models with 
several lanes can approximate it [4]). So, to understand jamming that results from shear 
stresses, one must resort to either large-scale simulation, or phenomenological models. 

Simulations on three-dimensional hard sphere colloids [5]  suggest an appealing physical 
picture of jamming. As the material is sheared, chains of particles in close contact build 
up along the compressional axis. (In a simple shear flow, I I ,  = qy, this is in the (-1,l) 
direction, at 45 degrees to the flow; see Pine, this volume.) These roughly linear clusters 
join up and span the system, creating ‘force chains’ that allow stresses to be transmitted 
from one side of the sample to the other (Figure la).  At this point, the simulation fails for 
numerical reasons, but one hypothesis is that this now represents a jammed state, which 
could in principle support a macroscopic load. Note, however, that the simulation [5]  is 
done without Brownian motion. It is possible that a small amount of Brownian motion 
would give the jammed state a finite lifetime. But equally, it might not do so: the 
jammed state could instead be a kind of anisotropic glass, in which local Brownian motion 
is so constrained that bulk flow is completely suppressed (Nagel, this volume). Such a 
state could, like other glasses, support stresses in static equilibrium; it could also show 
interesting aging behaviour (see Bouchaud, this volume). 

The issue of how glasses form under large shear stresses, remains a completely open 
avenue to both theory and experiment. It certainly seems that colloidal glasses are a good 
experimental candidate for such studies since, due to their small elastic modulus, it is rel- 
atively easy to apply and maintain the required stresses. As suggested by Chaikin during 
this Summer School even the force of gravity could be enough to jam a colloid-which 
might explain why the colloidal glass transition appears be very different in microgravity 
from on earth (Chaikin, this volume). 
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Figure 1. (a) Simulation (courtesy J .  Melrose) of a dense colloidal suspension at volume 
fraction 4 = 0.54, strained to y = 0.22. Shown in the figure are only those spheres which 
have come into close contact (within diameters) with at least one neighbour. The 
contact network is strongly anisotropic and suggests the onset of tforce chains’ running 
top left to bottom right. (b) Idealised rectangular network of force chains. Black: primary 
force chains; grey: secondary force chains. (The latter are optional, and absent in the 
simplest model, Equation 1.) Directors n,m are shown. 

3 A simple model of jamming in colloids 

Consider a concentrated colloidal suspension of hard particles, confined between parallel 
plates at fixed separation, to which a shear stress is applied. To model the jammed 
state, we start from a grossly simplified idealisation of a force chain: a linear string of at  
least three rigid particles in point contact. Crucially, this chain can only support forces 
along its own axis: successive contacts must be co-linear, with the forces along the line of 
contacts, to prevent torques on particles within the chain. Note that neither friction at 
the contacts, nor deviations from a spherical shape, can change this ‘longitudinal force’ 
rule. Finite particle deformability, however, can allow small transverse forces to arise; this 
is discussed in detail elsewhere [SI. (It causes the models outlined below to cross over to 
more conventional, ‘elastoplastic’ behaviour under large enough loads.) From now on, we 
consider rigid particles. 

As a minimal model of the jammed colloid, we take a parallel array of such force 
chains, characterised by a unique ‘director’, which is a unit vector along the chains, n. 
The chains are surrounded by a sea of ‘spectator’ particles, and incompressible solvent. 
This is obviously oversimplified, for we ignore completely any contacts between chains; 
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the deflections caused by weak interactions with the spectator particles; and the fact 
that there must be some spread in the orientation of the chains themselves [5]. However, 
with these assumptions, we obtain a tractable and interesting alternative to conventional 
elasticity theory. For in static equilibrium, and with no body forces acting (no gravity) 
the stress tensor atJ must obey 

-ua3 = P6, +Anan,  (1) 

or equivalently, in the notation of McLeish (this volume) -E = Pl+ Ann. 
Here P is an isotropic fluid pressure, and A (which is positive) is a compressive stress 

carried by the force chains. The form of the ‘deviatoric’ stress, Anan,, reflects the fact 
that the force chains can only exert forces in the n direction. The force density across 
an arbitrary plane of normal U is then A (nau) n, which points along n, as required; the 
mu factor is proportional to the number of force chains per unit area cutting the plane. 
(Note that, for a general U, the deviatoric stress gives rise to a shearing force.) In static 
equilibrium, for hard repulsive potentials, the forces along U can only be compressive, not 
tensile, which is reflected in our requirement of positive A. Were the forces to be tensile 
instead, the form of the deviatoric stress would closely resemble that of a parallel array 
of polymeric ‘springs’ of fixed orientation n (see McLeish, this volume). 

Equation 1 defines a material that is mechanically very unusual. It permits static 
equilibrium only so long as the applied stress is either isotropic, or is a uniaxial compres- 
sion along U. So long as this remains true, incremental loads (an increase or decrease 
in compressive stresses at fixed compression axis) can be accommodated reversibly, by 
what is, at the particle contact scale, essentially an elastic mechanism. But the material 
is certainly not an ordinary elastic body, for if instead one tries to compress the sample 
in some slightly different direction (causing a rotation of the principal stress axes) static 
equilibrium cannot be maintained without changing the director n. Remember that n 
describes the orientation of a set of force chains that pick their ways through a dense sea 
of spectator particles. Accordingly n cannot simply rotate in response to the new stress; 
instead, the existing force chains must be abandoned and new ones created with a slightly 
different orientation. This entails dissipative, plastic, reorganisation, as the particles start 
to move but then re-jam in a configuration that can support the new load. The contact 
network is, in the process, completely rebuilt. 

4 Fragile matter 

4.1 A tentative definition 

Our model of a jammed colloid offers an idealised example of ‘fragile matter’: it can 
statically support applied shear stresses (within some range), but only by virtue of a 
self-organised internal structure, whose mechanical properties have evolved directly in 
response to the load itself. Its incremental response can be elastic only to compatible 
loads; incompatible loads such as those of a different compression axis, even if small, will 
cause finite plastic reorganisation. The inability to elastically support some infinitesimal 
loads has been proposed [S] as a useful definition of the term ‘fragile’, which previously 
had not been given a clear technical meaning in the current context. 
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Certainly, it seems useful to have distinct meanings for the words ‘fragile’ and ‘soft’: 
the latter usually means low shear modulus (McLeish, this volume) whereas a jammed 
system need not be soft in this sense at all. Indeed a jammed colloid might in principle 
support a large load with very little strain, as might a dry granular medium. (If you 
doubt this, push hard on the spoon in the corn-starch solution, or stand on a bucket filled 
with sand.) On the other hand, the word ‘fragile’ already has a somewhat different, and 
well-established, meaning in the context of glasses (see Kob, this volume). So far, there is 
no apparent connection (and hopefully not too much confusion!) between these two uses 
of the word. But if, as suggested by Nagel and Liu [7] jammed materials are themselves 
glasses in some sense, perhaps there is some deeper link between the two concepts of 
fragility that remains to be found. 

4.2 Does jamming cause fragility? 

It has been argued [6] that jamming may lead generical ly  to mechanical fragility, at  
least in systems with overdamped internal dynamics. Any such system is likely to arrest 
as soon as it can support the external load; since the load is only just supported, one 
expects the state to be only marginally stable. Any incompatible perturbations then 
force rearrangement; this will leave the system in a newly jammed but-by the same 
argument-equally fragile state. 

This speculative scenario is related, but not identical, to several others in the litera- 
ture [8-141, including the emergence of rigidity by successive buckling of force chains [9]; 
the concept of self-organised criticality (SOC) [lo] (see also [15]); and also ideas of me- 
chanical percolation which underly ‘hypoplastic’ models of granular matter in the recent 
soil-mechanics literature [ll]. Fragility is also connected with recent ideas concerning ‘iso- 
static’ packings and marginal mechanics in (frictionless) spheres [12, 13, 141; for a further 
discussion of these links, see [6]. 

4.3 Two types of fragility 

Consider again our idealised jammed colloid (Figure lb). So far we allowed for an external 
stress field (imposed at  the plates) but no body forces, such as gravity. What body forces 
can it now support without plastic rotation of the director? 

Various models are possible. One possibility is to assume that Equation 1 continues 
to apply, with P(r) and A(r) now varying in space. If so, there is no static solution of 
Equation 1 for a general  body force: only for one acting along n. This should not be 
too shocking; a general  body force likewise cannot be supported in a simple fluid, where 
the constitutive equation for hydrostatic equilibrium is just the same as Equation 1: but 
with A = 0. Of course, the special case of a uniform force density, which corresponds 
to gravity, can be supported in a fluid, but not a localised force. Equation 1 is the 
constitutive equation of a medium that can support a localised force, but only so long as 
it  points along n. Here and below, the term ‘constitutive equation’ means any recipe for 
finding the stress in a material from its flow history and/or its present structure (McLeish, 
this volume). 

On the other hand, a general body force can be supported, in three dimensions, if there 
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are several different orientations of force chain, possibly forming a connected network 
[16, 11, 17, 181. A minimal model for this type of fragility is: 

-a,j = A, n,nj + A2 m,mj -+ A3 1,lj (2) 

with n,m,1 directors along three nonparallel populations of force chains; the A’s are 
compressive pressures acting along these. Body forces, if present, then cause A1,2,3 to 
vary in space, but with no need for reorganisation. Note that Equation 2 is written down 
as if the three force chain assemblies were in a vacuum, as might be relevant in a dry 
granular assembly (see below). If there is also a pressure field from a suspending fluid, 
we need only two directors to support an arbitrary body force. 

We can thus distinguish two levels of fragility, according to whether incompatible loads 
include localised body forces (bulk fragility, exemplified by Equation l), or are limited 
to forces acting at the boundary (boundary fragility, exemplified by Equation 2). It is 
important to note that the boundary forces always include stresses applied by a rheometer 
to (say) a jamming colloid. For even though we are used to thinking of such ‘bulk stresses’ 
as acting directly on fluid elements, they ultimately originate at the boundary and are 
quite distinct from ‘body forces’, in the sense used here. 

4.4 Micro-fragility 

More generally, we should also distinguish between macro-frugile responses involving 
changes in the mean orientation of force chains, as described by the simple models above, 
and the micro-fragile responses of individual contacts under tiny changes in loading. Dry 
granular matter, for example, certainly seems to be micro-fragile. For example, as shown 
by careful sound transmission measurements [ 191, exceedingly small incremental loads 
can and do cause reconstructions of the contact network, even quite far from the loading 
point: see Nagel, this volume, for a detailed discussion. For an interesting theoretical 
model of micro-fragility, see [15]. 

However, micro-fragility does not guarantee macro-fragility of the type implied by 
Equation 2 for example; one could imagine that small reorganisations constantly occur, 
but that the macroscopic properties of the medium are not much affected by these. (All 
loads would then be macroscopically ‘compatible’, in the sense that the mean properties 
of the contact network would not have to change to support them, though there might 
always be some local reconstruction going on.) Nevertheless, the observation of micro- 
fragility in granular media is strongly suggestive that the ideas of conventional elasticity 
are not applicable to such materials-at least, not without extremely careful experimental 
justification. 

4.5 

Returning to our simple ‘boundary-fragile’ model, Equation 2, the chosen values of the 
three directors (two in 2D) clearly should depend on how the system came to be jammed. 
(We call this the ‘construction history’ of the jammed state.) 

Suppose our colloid, for example, has jammed at time to in response to a stress given 
by g(t) = A(t)g(to) where X ( t 0 )  = 1 and X(-m) = 0, with X ( t )  slowly varying. In other 

Fixed principal axis (FPA) model 
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words, a fixed pattern of applied stress has very gradually been increased in amplitude, up 
to the onset of jamming, and held there. In this case, all tensorial information about the 
construction history resides in the stress tensor itself. Then, if one director points along 
the major compression axis (which seems plausible: this is where the strong force chains 
are likely to point) then by symmetry any others should lie at  right angles to it. Applying 
a similar argument to the intermediate axis leads to the ansatz that all three directors 
lie along principal stress axes. This ansatz of perpendicular directors gives perhaps the 
simplest possible fragile constitutive equation in 3D. Note that in this case the effect of a 
fluid pressure can trivially be absorbed into the A’s; it doesn’t then matter whether there 
are two directors, or three. 

With the ansatz just made, Equation 2 becomes a ‘fixed principle axes’ (FPA) model 
[20, 61: the construction history fixes the orientation of the stress tensor that can be sup- 
ported by the jammed structure. However the compressions A1,2,3 are free to vary; these 
now determine the eigenvalues (principal stresses) of the stress tensor. We shall assume 
that this variation has to lie within a certain range - there is a limit to how anisotropic 
the stress tensor can become. Both in two-dimensional and in uniaxial problems, a max- 
imum anisotropy of the stress tensor translates into the Coulomb condition [all 

where $ is called the internal friction angle. (In fact, within simple models of dry granular 
materials, r$ can be identified with the ‘angle of repose’, that is, the slope of a free-standing, 
poured pile of sand [21].) 

Although grossly oversimplified, the FPA ansatz leads to some nontrivial predictions 
for the jammed state in the colloidal problem, such as a constant ratio of the shear and 
normal stresses when these are varied within the jammed regime. Such constancy is 
indeed reported by Laun [3] in “the regime of strong shear thickening”; see [6] .  

5 Granular matter viewed as a jammed state 

We now return from jammed colloids to granular materials. Although the formation of 
dry granular assemblies under gravity is not traditionally described in terms of jamming, 
it is a closely related process. Indeed, the filling of silos and the motion of a piston 
in a cylinder of grains both exhibit jamming and stick-slip phenomena associated with 
force chains; see [22]. And, just as in a jammed colloid, the mechanical integrity of a 
sandpile disappears as soon as the load (in this case gravity) is removed. It could be 
misleading to think of gravity, in such a pile, as a perturbation applied to a pre-existing 
body having well-defined continuum-mechanical properties; yet this is the basis of most 
existing calculations of how stresses propagate through the material [23]. 

Traditionally the continuum mechanics of granular media is described by an ‘elasto- 
plastic’ constitutive equation. The simplest of these assumes a linear relation (Hooke’s 
law) between stress and strain, except in regions where the inequality in (3) is saturated. 
Even simpler is to assume that Equation 3 is saturated everywhere; this is the ‘rigid- 
plastic’ constitutive equation [21]. Interestingly, the latter represents a fragile model: any 
incremental load that increases the ratio on the left hand side of (3) is incompatible. 
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Figure 2. (a) Simulation (courtesy J. Wittmer) of a granular pile in two dimensions. The 
simulation is done on convex elastic particles (whose ‘hooked’ shape allows macroscopic 
granular f iction, even though they are microscopically smooth). Each particle comprises 
four small discs glued around the edges of one large one; see (241. The scale of brightness 
denotes particle compression (normalised by the mean value at each height). (b) Experi- 
ment (courtesy L. Vanel) [25] on a granular packing of photoelastic discs between crossed 
polars: discs subject to strong compression show up brightly. 

However, it takes no account of the history of the material, nor of the presence of force 
chains. As discussed by Nagel (this volume) it is clear that force chains are a major 
factor in how stresses propagate in granular media, both through experiment and simula- 
tion [16, 18, 171; see also Figure 2. So, something beyond the rigid-plastic model is likely 
to be required. 

5.1 Role of construction history 

In the context of a sandpile, Equation 2 is interpreted to mean that a fragile granular 
skeleton of force chains is laid down at the time when particles are first buried at the 
free surface; so long as subsequent loadings are compatible with this structure, the mean 
properties of the skeleton will remain intact. If, in addition, the skeleton is rectilinear 
(perpendicular directors) this forces the principal axes to maintain forever the orientation 
they had close to the free surface (FPA model). However, we do not insist on this last 
property and other models, based on an oblique family of directors in Equation 2, have 
also been developed [6]. It turns out that the FPA model already accounts quite well for 
the forces measured experimentally beneath conical piles of sand, constructed by pouring 
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cohesionless grains from a point source onto a rough rigid support [20, 261. A notable 
feature is the ‘dip’: the vertical normal stress on the base of such a pile has a local 
minimum, not a maximum, directly beneath the highest point. Within the FPA model 
one finds that the primary force chains, lying along the major principal axis of the stress 
tensor, bisect the free (upper) surface of the pile and the vertical direction. These chains 
transport the gravitational load outward, like an arch [8] so that the maximum downward 
pressure lies on a ring, rather than under the apex. One consequence of this modelling 
approach is that one expects a very strong dependence of the stress propagation on the 
construction history. For example, if one builds a sandpile, not by pouring grains from a 
point source, but by sieving a series of concentric discs one on top of another (to make 
a cone), then the local granular skeleton will be quite different. Within the model of 
Equation 2, there turns out to be only one choice of parameters that can describe this 
situation, in which the material properties of the medium should have local isotropy 
about any vertical axis. (The sieving process imparts no local information about the 
global conical geometry; in contrast, for a pile poured from a point source, every grain 
comes to rest on an inclined surface which betrays the overall shape of the growing pile.) 
This maximally symmetric model does not give a dip, but instead a smooth maximum of 
the stress beneath the apex of the pile. The absence of a dip is because the local isotropy 
requires that the weight of a grain is carried toward and away from the central axis in 
equal measure, rather than preferentially outward as in the FPA case. 

Thus, an unambiguous prediction of our work is that, for a sieved pile, the dip should 
disappear. Recently it was confirmed by experiment that this is indeed what happens [25]. 
This experiment rules out several alternative explanations of the dip, such as attributing 
it to a slight deflection of the supporting surface beneath the pile [23]. 

5.2 Fragile or elastoplastic? 

As mentioned previously, our fragile constitutive model (2) shows very different mechanics 
from conventional forms of elastoplasticity. For example, in 2D, when combined with the 
equation of stress continuity (8,qj = pgj for sand under gravity), it gives differential 
equations for the stress tensor that are everywhere hyperbolic [6]. With a zero-force 
boundary condition at the upper surface of a pile, this gives a well-posed problem: the 
forces acting at the base follow uniquely from the body forces by integration. 

If dzflerent forces are now imposed at  the base, rearrangement is inevitable, as first 
recognised by Evesque (private communication 1996). This is boundary-fragile behaviour. 
The same does not hold within a traditional elastoplastic modelling approach [23] whose 
equations are elliptic in elastic zones. In such models of a sandpile, the forces acting at 
the base cannot be found without specifying a displacement field there [6]. To define this 
displacement, one would normally invoke as a reference state the one,in which the load 
(gravity) is removed. For cohesionless poured sand, this state is undefined, just as it is 
for a jammed colloid which, in the absence of the applied shear stress, is a fluid. For a 
somewhat different viewpoint, however, see 1271. 

One route to an elastic reference state is to consider a hypothetical sandpile where 
each grain becomes firmly ‘glued’ to its neighbours (or to the base), upon first coming to 
rest. The resulting medium is surely elastic, and must therefore be governed by elliptic 
equations. This does not mean that it is a conventional homogeneous elastic continuum 
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(for which the states of zero strain and zero stress coincide). Indeed, a glued pile built 
under gravity will certainly have non-zero stresses if gravity is later removed [6]. More 
importantly, for a typical disordered packing of near-rigid, glued grains, there will arise 
many tensile contacts even under a purely compressive external load. Thus the problem of 
glued and unglued piles might, in practice, be quite dissimilar. This question still requires 
careful investigation by both computational and laboratory experiments. 

On the other hand, the dichotomy between fragile and elastoplastic models may be a 
false one, at least if we relax our assumption of perfectly rigid grains. This is addressed 
in [6] where it is shown that, for some fragile models, there is a smooth crossover to more 
conventional elastoplasticity when grains are deformable, with fragility emerging as the 
limiting behaviour for rigid particles. However, the elastoplastic models that result from 
this involve strong anisotropy. Since any elastoplastic model that involves the construction 
history is also likely to be strongly anisotropic [23], there may be a less sharp distinction 
between the two approaches than previously thought. 

5.3 Outlook 

In summary, the task of constructing a continuum description for stress transmission in 
cohesionless granular media is an unexpectedly tricky one, because (a) grains are typically 
very rigid; (b) there can be no tensile forces between any grains in the entire system (a 
nonlinear constraint); (c) the contact network is history dependent. Thus, for granular 
media (as emphasised also by Nagel, this volume) all states are metastable: there is no 
ansatz of ‘molecular chaos’ (or thermal equilibrium) that allows the static properties to 
be decoupled from the construction history of the material. In other words, for granular 
matter, even the simplest static properties are the direct consequence of nonequilibrium 
dynamics, metastability, and flow. 

For packings of hard cohesionless particles, while it is clear that macro-fragile models 
like Equation 2 are oversimplified, they may lie closer to the truth than any of the alter- 
natives now available. Not only do these fragile models account for the observed role of 
construction history in the presence of a stress dip for a poured pile [20] and correctly 
predict its absence for a sieved one [25]; they also account quantitatively for some recent 
high-quality measurements on small silos [28]. 

Obviously, it may be possible to explain these results within more conventional (elastic 
or elastoplastic) modelling frameworks. However, this presumably requires an explicit 
treatment of (history dependent) anisotropy. Given that our constitutive equation (2) 
corresponds to the strong anisotropy limit of an elastoplastic model [6], it is possible 
that the dichotomy between elastic and fragile approaches will dissolve as both theories 
are refined, in response to improved laboratory data. Meanwhile, our models provide 
an interestingly direct link between continuum constitutive equations and the observed 
microphysics of stress propagation in granular matter. This involves a force chain network 
that arises adaptively in response to the loadings applied. These models also suggest a 
generic link with the mechanics of other jammed materials, such as colloids. 
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