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Directors’ Preface

‘Soft and Fragile Matter’ covers colloids, polymers, surfactant phases, emulsions, and
granular media. Recent advances in all these areas have stemmed from enhanced experi-
mental and simulation capabilities, and fundamental theoretical work on nonequilibrium
systems. The aim of the 53rd Scottish Universities Summer School in Physics was to
address experimental, simulation and theoretical studies of soft and fragile matter, fo-
cussing on unifying conceptual principles rather than specific materials or applications.
In fact, several of these unifying principles are only just being recognised as such within
the soft matter community. For example, ‘jamming’ in colloids under flow (and perhaps
under gravity) is related to fundamental work on driven diffusive systems. Likewise ‘ag-
ing’, found experimentally in soft gels, dense emulsions efc., relates to general concepts
of glassy dynamics. Since these links are not yet fully worked out, several of the articles
in this volume address relevant conceptual principles from a more general perspective.

The diversity of soft materials listed above was matched by that of participants at the
School itself. Lecturers had been chosen, from among the leading international scientists
in the field, with specific regard to their pedagogical skills. A careful attempt was then
made to coordinate the content among the various courses. Most lecturers were asked to
spend at least the first of their three lectures covering some particular area of the subject
at an introductory level. The assignments were as follows: Pine, experimental methods;
Khokhlov, polymers; McLeish, rheology; Frenkel, colloids; Kremer, simulation; Roux,
surfactants; Bray, phase kinetics; Mukamel, driven systems; Kob, structural. glasses;
Bouchaud, slow dynamics; Nagel, granular matter. Collectively, the lecturers managed
to carry their audience from the basic foundations of the subject to a representative
sample of topics at the forefront of current research. Most participants felt that they had
learned a great deal from the School.

SUSSP53 was held in the School of Physics and Astronomy and John Burnet Hall at
the University of St Andrews, close to the ancient town’s pubs, shops, beaches, historical
monuments and golf courses. A busy social programme kept everybody occupied outside
of the formal sessions, and featured a memorable ceilidh as well as a whisky-tasting
evening. We are grateful for the help of many individuals (particularly Nigel Wilding
and Stefan Egelhaaf) and organisations (particularly NATO, the EC, EPSRC and NSF)
in contributing so much to the success of the School. The staff of John Burnet Hall
provided a high quality and very friendly service. Secretarial assistance was ably provided
by Leanne O’Donnell.

Michael Cates and Wilson Poon
Edinburgh, February 2000
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Editors’ Note

To achieve the same ease of communication in this Proceedings volume as occurred
at the School itself is a challenging, if not impossible, goal! Nonetheless, the articles have
been carefully edited with that aim in mind—for example by adding cross-references in
many places where relevant introductory material is to be found in a different article.
The sequence of the articles follows roughly that of the School’s lectures, though of
course the latter were interleaved in a way the articles cannot be. Thus, following an
introductory survey (Poon) the volume can be informally subdivided into three sections:
methodologies and phenomena of soft condensed matter (six chapters, Pine to Roux
inclusive); modern concepts of nonequilibrium statistical physics (four chapters, Bray to
Bouchaud); dynamics and metastability in colloidal and granular systems (four chapters,
Lekkerkerker to Cates). The aim of this volume, like that of the School, is to lead the
reader from basic principles to a selection of the most recent developments in this diverse
and fascinating field. We hope this has been achieved, in many cases within the course
of a single chapter.

Michael Cates and Martin Evans
Edinburgh, February 2000
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A day in the life of a hard-sphere
suspension

Wilson C K Poon

University of Edinburgh, UK

1 Introduction

This summer school has a very fashionable title: the terms ‘soft matter’ and ‘fragile
matter’ are very recent additions to the physics vocabulary. P-G de Gennes was one
of the first to use the term ‘soft matter’ to refer to the study of colloids, polymers and
surfactants in his Nobel lecture [1] in 1991. ‘Fragile matter’, in at least one of the senses
used in this School, is even more recent [2] (see Cates, this volume). The adjectives ‘soft’
and ‘fragile’ used to describe matter share another characteristic: they both refer to how
materials respond to mechanical disturbances.

The school is devoted to understanding three particular aspects of soft and fragile
matter, as detailed in the subtitle: nonequilibrium dynamics, metastability and flow. What
I want to do in this introductory lecture is first to give some reasons why one might expect
systems described as soft or fragile matter to be suitable for the investigation of these
particular aspects of nonequilibrium physics. Then, in the main part of the lecture, I will
illustrate all of these aspects with what is possibly the simplest model system: a colloidal
suspension of hard spheres.

1.1 Nonequilibrium physics and soft matter

The understanding of systems in thermal equilibrium is one of the major achievements
of twentieth-century physics. We have a recipe to do this starting from a knowledge
of the microscopic pair interaction, U(r). First calculate the partition function, given
by Z = [dr,...dryexp[-U(r)/kgT]. Then take its logarithm to give the (Helmholtz)
free energy: F = —kgT'InZ. The equilibrium behaviour of the system is obtained by
minimising ¥. The calculation of Z is, of course, a hard mathematical problem, and
a large amount of physical insight (and computer time!) is needed to make progress.
Nevertheless, the general recipe is available.

Copyright © 2000 IOP Publishing Ltd.



2 Wilson C K Poon

The situation is very different when we come to the behaviour of systems away from
equilibrium. The general question can be stated as follows. What happens when we
apply a perturbation, transient or continuous, (change its temperature, shake it, etc.) to
a system in thermal equilibrium? Here, relative to where we have got to with equilibrium
statistical mechanics, we are still fumbling in the dark. Kubo's judgement [3] in this
regard is an understatement: “The foundation of nonequilibrium statistical mechanics is
perhaps far more difficult to establish than that of equilibrium statistical mechanics.”

Apart from the lack of suitable theoretical foundation and mathematical tools, another
reason for the slow progress in understanding nonequilibrium systems is the lack of exper-
imental models. This is where ‘soft matter’ comes in. Colloids, polymers and surfactants,
sometimes also known as ‘complex fluids’, have one characteristic in common: they in-
volve a mesoscopic length scale between the atomic (~ 1nm) and the bulk (~ 1mm). On
this intermediate length scale one finds structures such as suspended particles/droplets,
macromolecular coils, and self-assembled structures such as micelles and bilayers. The
presence of this intermediate length scale in complex fluids gives rise to three reasons why
they make ideal candidates for the investigation of nonequilibrium physics.

Firstly, the upper end of the mesoscopic length scale, R ~ lum, is comparable to
the wavelength of visible light, so that direct imaging using optical microscopy is fast
becoming a standard tool in complex fluid investigations. Secondly, the relaxation time
of complex fluids, 7g, the time taken for an entity (e.g. a colloidal particle or a polymer
coil) to diffuse over a length scale comparable to its size, scales according to R? ~ Dr.
We can estimate the diffusion coefficient D by using the Stokes-Einstein relation for a
sphere of radius R suspended in a solvent of viscosity : D = kgT/6mnR. This gives

6nnR3
o ey

TR ™~

with values in the region of 1ms to 1s. Corresponding relaxation times in atomic ma-
terials are in the picosecond range. These relaxation times are, of course, modified by
interactions. Typical attractions in complex fluids are of the order 1 to 20kgT, so that
the Boltzmann factor amplifying the elementary relaxation time 7 is never much bigger
than 108. The upshot is that the characteristic times over which nonequilibrium complex
fluids evolve are likely to be in the range of 1ms to 1 year.

Thirdly, complex fluids are ‘soft’, an adjective to be discussed by McLeish, this volume.
Here I note that their mechanical response is mainly governed by entropy, so that a typical
modulus (of a colloid for example) is given by

G ~ kgT/R?, (2)

which is of the order of 1073-1 Pa. We can also estimate the effect of a shear rate of 7 by
appealing to a dimensionless group known in the colloid community as the Peclet number:
Pe o 7g%. If Pe < 1, Brownian relaxation dominates; if Pe > 1, shear dominates. Using
Equation 1, we get

Pe ~ 6nnR*y/kpT . (3)

In this expression, we recognise 77 to be a stress. For a stress equal to the mechanical
modulus we have just estimated from Equation 2, we get Pe ~ 10. Therefore relatively
high shear rates are easily achieved, so that we can study highly nonequilibrium flow

Copyright © 2000 IOP Publishing Ltd.



A day in the life of a hard-sphere suspension 3

behaviour in complex fluids. In particular, we will later see that it is in thinking about
the high-shear response of colloids that one definition of the concept of ‘fragile matter’
was first given.

For these reasons, as well as the stunning ingenuity of synthetic chemists in preparing
well-characterised systems ‘to order’, there is now a growing realisation that complex fluids
are ideal laboratories for nonequilibrium physics. In what follows, I want to introduce the
themes of the Summer School by describing nonequilibrium dynamics, metastability and
flow in perhaps the simplest possible complex fluid—a suspension of hard spheres.

Since my aim is simply to give examples of a range of phenomena, I will not attempt to
provide a complete set of references; in each example, I will give representative references
with a bias towards papers with extensive bibliographies for further reading.

2 Hard-sphere colloids

All of the experiments which I will describe are performed using a model system developed
originally by ICI for paints, and first used for academic research by Ron Ottewill and his
group in Bristol [4]. They are suspensions of polymethylmethacrylate (PMMA) spheres
(R < 1um) with chemically-grafted coatings of poly-12-hydroxystearic acid (PHSA) of
thickness ~10nm. A large body of research over the last two decades has shown that
the interaction between two such particles is almost perfectly hard-sphere like [5]: there
is no interaction until the coated particle surfaces touch, whereupon over a very short
spatial range (~ 10nm) a strong entropic repulsion develops. In particular, they show the
equilibrium phase behaviour expected of hard spheres (to be reviewed in more detail by
Frenkel, this volume). At low volume fractions (the fraction of the total volume V" occupied
N spheres of radius R is ¢ = 4rR3N/3V) the equilibrium state is a colloidal fluid—
particles adopt an amorphous arrangement and can (given time) diffuse throughout the
sample volume. At high volume fractions, the equilibrium state is a colloidal crystal; this
is easily detected because colloidal crystallites appear iridescent in white light due to the
Bragg reflections from crystal planes. Within the interval ¢z = 0.494 < ¢ < ¢p = 0.545,
the fluid at ¢r and crystal at ¢y coexist.

Before moving on to describe nonequilibrium dynamics, metastability and flow in this
model system, I just want to mention briefly two examples of on-going work on the equi-
librium properties of hard spheres, if only to show that despite having a firm theoretical
foundation, equilibrium statistical mechanics is far from a closed subject. First comes
the structure of hard-sphere crystals. These are made of hexagonally-packed layers stack-
ing on top of each other. Given the short-range nature of the interparticle potential, we
expect very small free-energy differences between the infinitely many possible stacking
sequences (the two most well-known ones being face-centred cubic ABCABC and hexag-
onal close packed ABAB; random hexagonal stacking corresponds to a random sequence
of A,B,C). Calculating these free energy differences is a big challenge for equilibrium
simulations, which is only recently beginning to be met [6]. Secondly, real suspensions
never have particles of uniform size, in which case they would be monodisperse. The
effect. of having a distribution of particle sizes, known as polydispersity, is to render the
system an infinite-component one, giving rise to formidable challenges in attempting a
theoretical description that are, again, only recently being attended to [7].

Copyright © 2000 IOP Publishing Ltd.



4 Wilson C K Poon

2.1 Metastability

Given the small mechanical modult of colloidal crystals (~ kpT/R?), they can easily be
shear-melted to a metastable fluid state: the stresses involved in shaking a bottle of col-
loidal crystals are equivalent to putting a few hundred Mount Everests on top of a block of
copper! Out of this metastable colloidal fluid are nucleated ordered domains of colloidal
crystallites. Visually, in a test tube that has been shaken, one sees iridescent crystallites
appearing throughout the bulk over times of minutes to hours. The emergence of crys-
talline order in a hard-sphere system may be the simplest symmetry-breaking transition
open to study in the laboratory. Until recently, the decay of the metastable fluid towards
equilibrium crystals has been studied exclusively by diffraction. This is a matter of neces-
sity in atomic materials, and a matter of tradition in colloids [8]. A particular drawback
of diffraction methods is that by the time Bragg peaks are visible, the initial symmetry-
breaking nucleation step is already long over. What is observed is growth averaged over
many crystal nuclei, with information on nucleation only available by more or less indi-
rect inference and extrapolation. Recently direct microscopic observation has been used
to study the nucleation of crystallites from metastable colloidal fluids: see Figure 1. For
example, in the group in Edinburgh, Mark Elliot [9] has captured the genesis and evolu-
tion of an almost-critical nucleus in a PMMA colloid in real-time and with single-particle
resolution.

Figure 1. Optical micrograph of a colloidal crystallite nucleating out of a surrounding
disordered, metastable colloidal fluid. The particle diameter is ~ lum. This image was
taken 48um from the bottom of a suspension confined to a 100um-thick capillary. Taken

from [9].

Copyright © 2000 IOP Publishing Ltd.



A day in the life of a hard-sphere suspension 5

Such microscopic observations have the potential of testing a number of intriguing
theoretical predictions. For example, it has often been suggested that the structure of
the initial crystal nucleus may well be different from that of the final bulk crystal {10].
Simulations have also cast doubt on the single-particle picture of nucleation implicit be-
hind classical nucleation theory [11]. Neither of these results are particularly amenable to
testing by diffraction experiments: direct observation of individual early-stage nuclei are
necessary.

As formed, hard-sphere colloidal crystals are made of randomly-stacked hexagonal
layers. In some experiments (see e.g. the preliminary report in [5]), these random-stacked
crystallites were observed to ‘ripen’ towards a face-centred cubic structure over days and
months. This is consistent with recent simulations reporting fcc stacking to be that with
the lowest free energy (by ~ 10~3kpT per particle or thereabouts) [6]. If this is so, then
randomly-stacked colloidal crystals are long-lived metastable structures. The kinetics and
mechanism of such ‘ripening’ is not well understood.

2.2 Nonequilibrium dynamics

The phase diagram of hard spheres has already been reviewed: fluid for ¢ < 0.494, crystal
for ¢ > 0.545, and fluid-crystal coexistence between those two volume fractions. Thus,
for all volume fractions above 0.545 all the way to the closest possible packing density
(bmex = T/3v2 ~ 0.74) the equilibrium thermodynamic state is crystalline. Experi-
mentally, however, homogeneous nucleation of colloidal crystallites is not observed above
¢ ~ 0.58 [12]. This has been interpreted as a glass transition. (Note that even above
¢ = 0.58, heterogeneous crystallisation, e.g. at sample tube walls, is still observed.)

This ‘glass transition’ appears to be associated with a seizing up of dynamics at all but
the shortest length scales, as revealed by dynamic light scattering (DLS). DLS measures
the normalised intermediate scattering function

fan =7 (@

where M.
F(q,7) = i’V Z Z(exp iq - [r;(t) —r(t + 7)) . (5)

N i=k=1

(This quantity is discussed in Section 2.2 of the article by Pine, this volume, where the
notation gg(7) is used.) The static structure factor is S{q) = F(q,0). N is the number
of particles in the scattering volume, assumed to be large, and r;(t) is the position of
particle j at time . The normalisation ensures that f(q,7) = 1 at short times. In
a system that is ergodic over the experimental time window, i.e. one that explores all
configurations many times over, f(q,7) — 0 as 7 — oo. Essentially, the rate of this decay
to zero gives information about the diffusive dynamics of density fluctuations at length
scale 2r/q. The DLS signature of the glass transition in a hard sphere suspension is
that f(q,7) fails to decay to zero at all scattering vectors. The most careful DLS studies
of the hard-sphere glass transition to date have been performed by van Megen and co-
workers using the PMMA system [13]. One interesting conclusion to emerge from these
careful measurements is that many of the predictions of mode-coupling theory (MCT),
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6 Wilson C K Poon

a highly mathematical construction involving the structure factor S(q) that implies a
dynamical transition at high densities (see Kob, this volume), are substantially correct
for this system. Of even more interest for this School (see Bouchaud, this volume) van
Megen et al. [13] detected ‘aging’—slower dynamics were observed at a longer ‘waiting
time’, the time elapsed since the system was prepared before the commencement of the
experimental (here DLS) measurements.

2.3 Flow and fragility

Concentrated suspensions, like other complex fluids, are non-Newtonian. In particular,
the suspension viscosity is a function of shear rate. A convenient dimensionless shear rate,
the Peclet number, has been introduced in Equation 3. Consider a hard-sphere suspension
at ¢ ~ 0.5. At Pe — 0, the exists a well-defined low-shear limit viscosity. At Pe ~ 0.1,
shear thinning starts to occur—the viscosity decreases rapidly with shear rate until Pe
~ 1, whereupon it remains more or less constant for many decades of Pe. At very high
shear rate, a sudden and dramatic increase in viscosity (factor of 10 or more) is often
observed [14]. This phenomenon is known as shear thickening.

Figure 2. A schematic representation of a suspension subject to shear o4y. Under strong
shear, stress-bearing ‘force chains’ of particles form (dark and shaded circles), leading to
““amming’ of the suspension. Taken from [2].

In a recent publication [2], Cates and co-workers interpreted shear thickening as due to
the formation of ‘force chains’ in the system, leading to ‘jamming’—see Figure 2. These
stress-bearing force chains render the suspension solid-like with respect to the particular
imposed shear stress, but not with respect to any other stress pattern; if the stress pattern
is changed, the system will immediately flow and jam again, a characteristic which Cates
et al. proposed to call fragile.

24 An example—\DWS echo study of hard-sphere glasses

Recently, a UK-French team have carried out an experiment on hard-sphere suspensions
that involves all three aspects of metastability, nonequilibrium dynamics and flow, as
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A day in the life of a hard-sphere suspension 7

reviewed individually in the last three sections. Haw et al. [15] used the new technique of
diffusing wave spectroscopy (DWS echo) to study the yielding and flow of a hard-sphere
colloidal glass under oscillatory shear. DWS echo will be discussed in much more detail by
its inventor, David Pine, in his lectures on experimental techniques (see Pine, section 2.2.3,
this volume). Briefly, the technique studies the statistics of the speckle pattern formed
when laser radiation (wavelength A) from different multiple-scattering paths through a
turbid medium (here a dense PMMA suspension at ¢ ~0.57-0.6) interfere with each other.
If each of the N scatterers in the medium moves by a distance ~ A/N, the new speckle
pattern will be completely decorrelated with the original pattern—on average, we expect
a bright speckle in the original pattern to become dark (and vice versa). If N is large,
DWS echo then provides a means of detecting very small movements.

Now consider a scattering medium under oscillatory shear. The correlation function
of the speckle pattern will decay from unity to zero once the shear has moved scatterers
by a distance ~ A/N, and remain at zero throughout the shear cycle. If the medium
behaves elastically, so that at the beginning of the next cycle all scatterers are back at
their positions at beginning of the previous cycle, then the correlation function will recover
fully the value unity: the speckle pattern at ¢ = ¢p + T is exactly the same as that at
t =1y (where T is the shear period). A plot of the correlation function against time will
therefore give a series of peaks of unit height (echoes) with time period T'. If, however,
portions of the scattering medium deform plastically, so that scattering centres do not
recover their positions after a shear cycle, the echo-peaks will have less than unit height.

Using this method, Haw et al. found that there is essentially no decrease in the height
of the echoes in a hard-sphere colloidal glass until a volume-fraction-dependent critical
shear amplitude is reached. At ¢ = 0.585, for example, there is little decrease in the
echoes until the peak-to-peak shear amplitude is ~ 0.3. Simultaneous static scattering
experiments showed that at and above this amplitude, rapid crystallisation of the colloidal
glass occurred. This behaviour is quite different from that of dense emulsions (see Pine,
this volume).

3 Conclusion

The purpose of this brief survey of ‘a day in the life of a hard-sphere suspension’ is to
show that even the simplest conceivable complex fluid shows fascinating physics in the
areas of metastability, nonequilibrium dynamics and flow. Many of the ideas encountered
in this survey will recur throughout the School.
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Light scattering and rheology of
complex fluids driven far from
equilibrium

David J Pine

University of California at Santa Barbara, USA

1 Introduction

In these lectures, we explore two examples of systems driven far from equilibrium by
the application of shear. With these two examples, we investigate different experimen-
tal strategies which are designed to probe directly the connection between macroscopic
non-linear rheology and the microscopic structure and dynamics of a broad range of soft
materials. The study of these systems illustrates the importance of performing simul-
taneous measurements of the microscopic structure, flow, and rheological properties of
soft materials when such systems are driven far from equilibrium by shear flows. There
are several reasons for this. First, the flows are frequently inhomogeneous. Such inho-
mogeneities can arise from various mechanisms; the two most frequently observed and
discussed are hydrodynamic instabilities and flow-induced phase transitions. Other dif-
ficulties can also arise for the case of virtually any flow that is not a pure shear flow.
In pure extensional flows, for example, the nonlinear rheological properties of the fluid
under study can modify the flow field in ways that are extremely difficult to predict.
Thus, without a detailed knowledge of the flow field, it is virtually impossible to develop
a meaningful theory. Second, systems do not always tend towards a steady state. Even
when they do, the steady state is not necessarily characterised by any general principle
of detailed balance to constrain the theory which one can construct. Furthermore, the
structures that develop under shear often do not resemble the structures found in the
same system in equilibrium. That is, the nonequilibrium structures frequently cannot
be described as perturbations of the equilibrium structures. Therefore, as important as
microscopic structural measurements are for understanding and developing theories for
systems in equilibrium, they become even more important when systems are driven far
from equilibrium.

The systems we study are solutions of worm-like micelles and oil-in-water emulsions.
These two systems exhibit many of the generic properties that soft materials exhibit
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under shear flow including a shear-induced phase transition, inhomogeneous flows, plastic
deformation, and yielding. We explore these phenomena in these two systems with a
combination of optical and light scattering techniques, and with rheological measurements.

In Section 2, we review some important aspects of basic light scattering theory. We
then discuss some general characteristics of light scattering when the system under study
is subjected to a steady or oscillatory shear flow. We conclude our discussion of light
scattering with an overview of diffusing-wave spectroscopy (DWS), that is, dynamic light
scattering (DLS) in the multiple scattering limit.

Next (Section 3) we discuss the results of some recent experiments on shear thickening
in dilute and semi-dilute solutions of wormlike micellar solutions. We also present a
phenomenological theory for shear thickening in these systems which captures many of
the salient features of our experiments. QOur discussion of the experiments and theory is
preceded by a brief overview of wormlike micellar solutions.

Finally, we present in Section 4 results from some recent experiments which examine
microstructural changes in dense glassy emulsions when they are sheared beyond the limit
of linear response.

2 Light and other scattering techniques

Scattering techniques are among the most powerful and widely used methods for probing
the microscopic structure and dynamics of matter. In soft condensed matter, the most
commonly used scattering techniques are X-ray, neutron, and light scattering. The choice
of which scattering technique to use depends first and foremost on the length scale of the
structures that one wishes to probe. The length scales directly probed by the various
scattering techniques are set by the wavelength of the radiation. The smallest length
scale that can be directly measured by scattering is A/2 where A is the wavelength. As
discussed later, larger length scales are probed by varying the scattering angle. For X-ray
and neutron scattering, where the wavelengths used are typically ~ 1A, the upper limit is
about 10004, which can be achieved by working at very small scattering angles. For light
scattering, where the wavelength is ~ 0.5um, the upper limit us usually several microns
although length scales of up to ~ 200um have been achieved recently.

Another consideration in choosing which scattering technique to use has to do with how
the radiation interacts with matter. X-rays are scattered by fluctuations in the electron
density. Therefore, substances containing heavier elements scatter more strongly than
substances rich in the lighter elements. For example, substances containing a great deal
of hydrogen and relatively low concentrations of heavier elements scatter X-rays weakly.
By contrast, neutrons interact primarily through the nuclear interaction, which varies
more or less randomly from one nuclear species to another. It so happens that neutrons
are scattered by hydrogen much more strongly than are X-rays. In fact, hydrogen and its
heavier isotope, deuterium, scatter in such a way that they partially cancel one another.
Thus, by judiciously adjusting the concentration and location of hydrogen and deuterium
within a molecule, one can adjust the overall scattering strength and even selectively
scatter from hydrogen atoms at specific molecular locations. Such ‘contrast matching’
has proven to be a powerful tool for probing the structure of polymers and other complex
fluids. Neutrons also have magnetic moments and therefore couple to the spin of nuclei.
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Thus, systems with magnetic properties can be probed with neutrons. By contrast, light
is scattered by fluctuations in the dielectric constant of a material. Light is an especially
useful probe of soft materials because they frequently contain structures with length scales
comparable to the wavelength of light. In fact, the ‘softness’ of many and perhaps even
most soft materials is derived from the fact that they are made up of structures whose
fundamental length scales are comparable to optical length scales.

One other characteristic of light scattering is that light is typically scattered much
more strongly than are X-rays or neutrons. A simple quantitative measure of the scatter-
ing strengths of light and X-rays is the mean spatial fluctuation in the dielectric constant
Ae/e. For a typical sample probed by light scattering Ae/e ~ 0.1; for X-ray scatter-
ing Ae/e ~ 1073, Thus, light is scattered much more strongly than X-rays. (Neutron
scattering strengths are roughly comparable to X-rays.) One consequence of this is that
multiple scattering is frequently an important consideration for light scattering exper-
iments whereas it is almost never important for X-ray or neutron scattering. In fact,
multiple scattering is such a common occurrence in light scattering experiments that
techniques have been developed to cope with and in some cases even exploit multiple
light scattering. Further on in these lectures (Section 2.2) we will discuss diffusing-wave
spectroscopy (DWS), a technique which exploits multiple light scattering to probe very
small particle movements. We now turn to a discussion of basic light scattering theory.

2.1 Static light scattering

The basic principles of light scattering can be understood by first considering scattering
from two nearby particles as illustrated in Figure 1. Coherent light from a laser is incident

(k/k)-Ar
=

' ] detector

Figure 1. Schematic for scattering of light from two particles.

from the left onto the two particles. Light scattered through an arbitrary scattering angle
8 is collected by a detector which is sensitive to the intensity of the light that falls on
its surface. Light scattered from the top particle will in general have travelled a different
distance from the laser to the detector than that from the bottom particle. Thus, the
scattered electric fields from the two particles will not be in phase with each other. Since
the wavelength of the scattered light is unchanged (i.e. the scattering is elastic), the
difference in phase is given by the magnitude of the wavevector, ¥ = 27/, times the
difference in path lengths As, where A is the wavelength of light in the sample. From
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Figure 1, the difference in path lengths is As = (ko/ko) - Ar — (k;/k;) - Ar. In writing
down this expression for As, we have made the approximation that the distance between
particles is small compared to the distance between the particles and the detector. Thus,
the paths from each of the two particles to the detector are essentially parallel. This is
usually an excellent approximation. Noting that & = k; = k&, the phase difference A¢ is

A¢p = kAs=(ko—k;) -Ar=q- Ar, (1)

where the scattering vector is defined by q = k¢ — k;. Clearly, if A¢g ~ m, the light
scattered from the different particles interferes destructively. If A¢ ~ 0, the scattered
light interferes constructively. Thus, the relative phase between the light scattered from
different particles is sensitive to particle positions on the length scale of the wavelength of
light. This is the essential physics which underlies the sensitivity of light scattering to the
spatial structure of the scatterers. One additional note: as can be seen from the geometry
of the scattering diagram in Figure 1, the magnitude of q is related to the scattering
angle 8 by
qg=2k sin-g . (2)
To obtain a quantitative expression for the scattered intensity from N particles, we
first add the contributions from all particles within the scattering volume to obtain the
total electric field at the detector:

N N
Eqq) = Y Eev"=E,) €97 3)
i=1 i=1

where the absolute phase for each path ¢; = q-r; is measured relative to an arbitrary fixed
origin (as we will see below, the scattered intensity does not depend on the choice of the
origin of the coordinate system). For simplicity, we have assumed that the amplitudes of
the scattered fields E; are all identical and equal to E, as would be the case for identical
spherical particles much smaller than the wavelength of light. The scattered intensity is
proportional to the square modulus of the electric field:

N N N
L@ o |Edf*= B Y e9n Y e = |B 7Y eveion), (@
i=1 j=1 i

Thus, it is apparent that the scattered intensity is dependent on the relative positions
of the scatters and, as expected, is not sensitive to our choice of coordinate systems for
calculating the phase of the scattered light. Static light scattering experiments measure
the average of the scattered intensity. Therefore, it is useful to extract from the ensemble
average of Equation 4 that part which contains the structural information in which we
are interested. To this end, we define the static structure factor,

N
S(a) = 5 3 (e, )
NG
and note that 7{q) o< S(q). The static structure factor S(q) can be calculated without
recourse to scattering theory as it contains only information about the average relative
positions of particles. Thus, S(q) is the quantity that connects static light scattering
measurements with theory.
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Figure 2. Static liguid structure factor for Odifferent volume fractions: solid line, ¢ = 0.1;
dotted line, ¢ = 0.2, dashed line, ¢ = 0.3 (calculated for hard spheres using the Percus-
Yevick approzimation).

2.1.1 Liquid structure factors

In order to develop some intuition about the results of scattering experiments, it is useful
to consider a few examples. First, we consider scattering from a disordered liquid (1, 2].
In Figure 2, we show S(qg) for a liquid of hard spheres at three different volume fractions.
Because a liquid is isotropic, the structure factor can only depend on the magnitude
of g¢. We can better understand the origin of the oscillations in S(g) by considering its
relationship to the radial distribution function g(r),

S@)=14n /V dr g(r) ", (6)

where n = N/V is the average particle density. Physically, ng(r) can be thought of
as the average density of particles a distance r from the centre of an arbitrary particle.
Thus, if we consider the spatial structure of a liquid as illustrated in Figure 3. we see
that g(r) must be zero near the origin since no other particle can occupy the same space
as our reference particle out to some finite distance, roughly comparable to the particle
diameter. At a radius corresponding to the first coordination shell, there is a higher than
average probability of finding another particle so g(r) must exceed unity. Between the
first and second coordination shells, the density will again fall below the average density
in a dense liquid because of packing constraints. At the second coordination shell, g(r)
will once again rise above unity but not as high as the first peak. This diminishing of
the height of the peaks (and depth of the valleys), as the distance from the centre of the
labelled particle increases, arises because the correlations in the particle positions die off
due to the accumulation of space in which they can fluctuate relative to a central labelled
particle. At large distances, all correlations die off in a liquid and g(r) tends towards
unity.
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Figure 3. Radial distribution function g(r) and real space distribution of particles (inset).
Dashed circles indicate the location of the first peak (long dashes) and first minimum (short
dashes).

The static structure factor S(g) is, according to Equation 6, the Fourier transform of
g(r). Therefore, we can understand the origin of the oscillations in S(g) at finite g as
merely reflecting the short-range correlations between particles due primarily to packing
constraints arising from the repulsive core of the potential. Thus, the first peak in S(q)
occurs in the vicinity of 27/d where d is the interparticle spacing (for the special case
of hard spheres, the peak is near 27/a where o is the particle radius since particles
have no reason to prefer the mean interparticle over any other spacing greater than the
particle diameter). The structure factor is most interesting for diatomic and more complex
molecules, as well as for mixtures of particles, since they show non-trivial correlations for
wavevectors exceeding ~ 27 /a. For spherical particles, such correlations reflect the details
of the interparticle potential and are otherwise not particularly interesting. While it may
not be apparent from Figure 2, the interesting part of S(g) occurs for values of g much less
than 27 /d since these smaller values of g reflect the long range interparticle correlations.

2.1.2 Scattering from fractal clusters

A useful and intuitive way of characterising the structure of many disordered materials is
to specify their fractal dimension. A structure’s fractal dimension is defined according to
how the mass of the object scales with its radius. Trivial examples are given by: (1) a line
for which m ~ 7!, (2) a flat sheet of paper for which m ~ r?, and (3) a dense solid object
for which m ~ r%. In these examples of simple one, two, and three dimensional objects,
m ~ r% where dy is the dimensionality of the object. This concept can be generalised to
include many structures found in nature for which m ~ r%, where d; is not an integer. A
compelling example, studied extensively by light scattering, is clusters of colloidal spheres
formed by irreversible aggregation when they collide while undergoing Brownian motion
in a solvent. Their structure is illustrated schematically in Figure 4. From experiment and
extensive computer simulation it is found that when the potential barrier to the formation
of aggregates is small, such that particles almost always stick irreversibly the first time
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Figure 4. (a) Fractal cluster. The amount of mass m enclosed within increasingly larger
spheres of radius r scales asm ~ % where dy is the fractal dimension. (b) Static structure
factor S(q) for a fractal cluster.

they come in contact, fractal clusters with a fractal dimension of dy ~ 1.7 form [3]. When
the barrier to the formation of aggregates is large, such particles stick irreversibly only
after many close encounters and fractal clusters with a fractal dimension of d; = 2.1 form.

To determine the scaling properties of the radial distribution function of a fractal
object, recall that ng(r) is the average density of particles a distance r from a given
particle. Thus, taking m(r) to be the total mass within a sphere of radius r, we can write

mass in a spherical shell of radius r
volume of a spherical shell of radius r
mrt+dr)-m(r) _ 1 dm 1,

dnr2dr “wrear S

ng(r)

Thus, we see that g(r) scales with radius according to

o) ~ o @

When this result is substituted into Equation 6, we find that
S(g)~q™%. 8

This result applies to a wide variety of structures. For example, it is well known that
a random walk has a fractal dimension of dy = 2. Thus, for an isolated polymer chain
whose conformation is well described by a random walk, it is found experimentally that
S(g) ~ ¢~% over a wide range of ¢ [4, 5]. Such conformations only occur at a specific
temperature Tg, called the theta temperature, where the net effective interactions between
monomers in the chain vanishes (i.e. the second virial coefficient By(Te) is zero; see
Khokhlov, this volume). As the temperature is increased, the polymer coil generally
expands, because of an increased favourable interaction between the monomers and the
solvent. In this range, experiments show that S(g) ~ ¢~%3 indicating a smaller fractal
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Figure 5. Structure factor for a random polymer coil.

dimension consistent with an expanded conformation, i.e. closer to a straight line (4, 5].
A schematic representation of S(g) for an isolated polymer coil is shown in Figure 5.
Note that S(q) exhibits the ¢~ scaling only over a finite range of q. At large ¢, when
g is comparable to an inverse monomer diameter, the scaling behaviour ceases and S(g)
reflects the microscopic correlations between monomers in a chain. At small g, when ¢ is
comparable to the inverse radius of gyration Ry ! of the polymer chain, S(g) flattens out,
reflecting the featureless random correlations of isolated polymer chains. Thus, on length
scales greater than Ry, the isolated chains behave like an ideal gas. Although we have
used the example of an isolated polymer chain, the concepts discussed here are applicable
to many other systems. For example, the structure factor for a fractal aggregate exhibits
similar cutoffs at small and large values of ¢ because of the finite size of the cluster and
the structure of the individual particles, respectively. Such cutoffs are observed in all
physical realisations of fractal structures.

2.1.3 Scattering from density fluctuations

Up until now, we have considered the scattering of light only by particles. More generally,
light is scattering by spatial fluctuations in the dielectric constant. From this point of
view, the scattering of light by particles arises because the particles cause fluctuations
in the dielectric constant. Indeed, if particles are suspended in a solvent with the same
dielectric constant as the particles, there will be no scattering of light by the particles.
In most systems, spatial fluctuations in the dielectric constant are, to within a very good
approximation, equivalent to fluctuations in the particle concentration or fluctuations
in the density. More importantly, useful insights into light scattering can be gained
by viewing the scattering as originating from specific Fourier components of the spatial
fluctuations in the density (of particles, molecules, ete.). In fact, it can be shown that
scattering at a particular value of q corresponds to scattering from sinusoidal density
fluctuations of the form exp(iq-r).

Consider scattering from a particular Fourier component exp(iq-r) as illustrated in
Figure 6. Light is incident from the left and is scattered by sinusoidal fluctuations with
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Figure 6. Scattering of light by sinusoidal density fluctuations. Light scattered at a
scattering wavevector of q = kg — k; is scattered by sinusoidal density fluctuations An ~
exp(iq - r) with wavelength d = 2w /q.

wavelength d = 27/q in the dielectric constant. The orientation of the fluctuations is
determined by the direction of the wavevector q. The planes of constant phase are oriented
at an angle o = 6/2 with respect the direction of the incident light. Thus, one can view
the light as being reflected from the fluctuations in the dielectric constant with the angle
of incidence o equal to the angle of reflection a. The scattering of light can be viewed as
Bragg scattering from these sinusoidal fluctuations. In this case the Bragg condition can
be expressed as

2dsina = mA. (9)

In this equation we take m = 1 since higher order Fourier components are absent in
a sinusoidal fluctuation. Thus substituting @ = 6/2, d = 2r/q, and A = 2x/k gives
the equation ¢ = 2ksin#/2 which is Equation 2. This illustrates how light scattering
from the sinusoidal fluctuations in the dielectric constant is consistent with the idea that
such fluctuations are effectively at the Bragg condition for scattering. Note how this
also illustrates that scattering of light at a particular wavevector q specifies not only
the wavelength of the fluctuation that is probed by light scattering but also its spatial
orientation. We are now in a position to consider how changes in the microstructure of a
complex fluid caused by shear flow can be probed by light scattering.

2.1.4 The effects of shear flow on fluid structure

As a simple example of how shear flow can affect the structure of a complex fluid, we
consider a droplet of oil suspended in water. In the absence of flow, the droplet will
assume a spherical shape in order to minimise the interfacial (or surface tension) energy
between the droplet and the water. Upon the application of a planar shear flow, v; = 4y,
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Figure 7. Effect of shear flow on the shape of a droplet. (a) A spherical droplet (b) is de-
formed by shear flow. (c¢) Planar shear flow can be decomposed into a linear superposition
of pure extensional (dotted lines) and pure rotational flows (solid lines).

the droplet will distort. To understand how the droplet distorts, it is useful to write
the shear flow as a linear superposition of pure extensional flow and pure rotation (see
McLeish, this volume) As illustrated in Figure 7, planar shear flow can be decomposed
into a linear superposition of pure extensional and pure rotational flows such that fluid
elements are transformed according to + = K-r = (§ + @) - r where:

0 4% 0
K=|0 00 (10)
0 00
and
0 4/2 0 0 w 0
§={4/2 0 0],8=|-w 0 0], (11)
0 0 0 0 0 O

where the rotation frequency w is half the strain rate ¥ = v, /0y. The effect of the
extensional flow § is to distort the droplet along a line oriented 45° to the z-axis while
the effect of the rotational flow £2 is merely to rotate the droplet.

To understand the effect of flow on a concentration fluctuation, consider the following
thought experiment. Imagine that a spherical fluctuation instantaneously comes into
existence in a shear flow at time ¢ = 0. The initial effect of the shear flow will be to
stretch the droplet along a line oriented 45° to the z-axis and then to rotate it slightly
towards the z-axis. How far the droplet is ultimately stretched and rotated depends on
the relaxation rate I' or lifetime 7 = 1/T" of the fluctuation compared to the shear rate
4. If T > %, then the fluctuation will be stretched only slightly and hardly rotated at
all away from 45° before it disappears. If I' < 4, then the fluctuation can be stretched
much more and can be rotated until it is essentially aligned with the z-axis. Of course, the
degree to which the droplet is stretched also depends on the surface tension of the droplet,
its radius, and on the relative viscosities of the fluid inside and outside the fluctuation. If
the fluctuation in concentration is not very large, as is typically the case, then the droplet
can be expected to deform affinely (which means that it follows locally the macroscopic
applied shear flow field). In any case, the degree to which the droplet is rotated depends
primarily on the whether its lifetime 7 is short or long compared to the time it takes for
the droplet to be distorted and rotated towards the z-axis. The two limiting cases, in
which ' 3> 4 and " < 4 are illustrated in Figure 8(a) and (b).
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Figure 8. Effect of shear flow on the shape of fluctuations and the resulting scattering
patterns. (a) A fluctuation where T > 4. (b) A fluctuation where I' < 7. (¢) Scattering
pattern corresponding to (a). (d) Scattering pattern corresponding to (b).

It is also useful to consider how light is scattered from such fluctuations and what
the resulting scattering patterns would be. Thus, we imagine that we perform a light
scattering experiment on the fluctuations illustrated in Figure 8. We arrange the exper-
iment so that the scattering wavevector q always lies in the z-y plane. Following our
discussion in Section 2.1.1, we expect that the scattering patterns will be related to the
Fourier transforms of the real-space distribution of matter. In Figure 8(c) and (d), we
illustrate schematically the basic symmetries of the scattering patterns that would result
from scattering from the fluctuations shown in Figure 8(a) and (b). One can view the
scattering as being qualitatively similar to what one would obtain from diffraction from a
slit oriented in the same fashion as the concentration fluctuation. Thus, the narrow parts
of the fluctuations result in scattering over a broad range of angles and the wide parts
of the fluctuations result in scattering over a narrow range of angles (or equivalently, a
broad or narrow range of g vector—recall Equation 2).

2.2 Dynamic light scattering

Dynamic light scattering (DLS), as its name suggests, probes the temporal evolution of
the concentration fluctuations measured in static light scattering. To understand the
basic ideas behind dynamic light scattering we once again consider scattering from two
particles as illustrated in Figure 9. As in the case of static scattering, the relative phase at

] detector

Figure 9. Schematic for dynamic light scattering of two light paths from two particles.
The filled and open circles indicate the positions of the two particles at timest and t + 7,
respectively.
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the detector of the light scattered from the two particles determines the degree to which
there is constructive or destructive interference. As the particles move, the differences in
the path lengths Ar between the pair of particles changes, causing their relative phases at
the detector to change. Thus, as the particles move, the intensity of light at the detector
fluctuates in time. The typical time scale for the duration of a fluctuation is determined
by the time it takes the relative phase difference between the two paths to change by
approximately unity. This means that Ar(t+7) — Ar(t) ~ A/ sin(6/2). If we assume that
each particle moves randomly and independently of every other particle, then to within a
factor of order unity this condition can be expressed more simply in terms of the motion
of a single particle as r(t + 7) — r(f) >~ A/sin(8/2). Thus the lifetime of a fluctuation is
determined by the time it takes particles to move approximately the wavelength of light,
or somewhat farther depending on the scattering angle .

We can generalise this analysis to a collection of N scatterers. In that case the electric
field at the detector becomes

N
Ed(t) — Es Z esq-r.'(t) , (12)

i=1
where for simplicity we take the scattering amplitude to be the same for all scatterers
as would be the case for a collection of identical spherical particles. The intensity of the
scattered light is proportional to the square modulus of the electric field at the detector:

N
I(t) . ‘Ed|2 = |E3|2Zeiq-[ﬁ(t)——ri(t)]_ (13)
i\
We see that for N scatterers the scattered intensity is determined by the differences in
phases between pairs of light paths, just as for the case of a pair of particles discussed
above. Since the scattering volume (i.e. the volume of sample from which scattered
light is collected) is typically much larger than spatial extent of fluctuations, the sum
in Equation 12 represents a sum over many independent fluctuations. Thus, the electric
field E4(t) in Equation 12 is the sum of many independent random variables, and, by the
central limit theorem [6), is a random Gaussian variable. Since I(t) x |Eg}?, this means
that the intensity of scattered light is distributed according to P(J) = exp(—1/{I))/{I).
In Figure 10, we plot the intensity of the scattered light as a function of time obtained
from Equation 13 for 2000 randomly diffusing particles. It is interesting and important to
note that the fluctuations do not diminish as the number of particles increases; in fact, the
amplitude of the intensity fluctuations actually increases. It is this feature of scattered
light that makes dynamic light scattering feasible, since there are on the order of 10'2 or
more scatterers in a typical scattering experiment. As stated previously, the duration of
a typical fluctuation is given by the time it takes for the phase of the light scattered from
a particle to change by order unity, i.e. q-[r(t+7) —r(t)] = q- Ar(r) ~ L.

The temporal evolution of the intensity fluctuations of the scattering light reflects
the stochastic motion of the scatterers. For example, if we heat the sample so that
the scatterers move more rapidly, the intensity of the scattered light will fluctuate more
rapidly. To extract this information, we need some quantitative means for characterising
the statistics of the temporal fluctuations of the scattered light. This is most frequently
done by calculating the temporal autocorrelation function g;(t, 7) of the scattered light:
= @+ 7))

gl(t’ T) = (I(t)>2 : (14)
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Figure 10. Intensity vs. time for light scattering from a suspension of 2000 diffusion
particles. The average intensity of this plot is unity and the characteristic time of the
Sfuctuations in approzimately 15 time units.

where the brackets indicate a temporal average taken over the duration of the experiment.
Alternatively, it is often convenient to introduce the temporal autocorrelation function of
the scattered electric field gg(t, 7) defined as

_ (E(t+7)E®))

For scattered fields with Gaussian statistics, these two correlation functions are related
by the Siegert relation [6]:

gl(ta T) =1+ lgE(t» T)Iz' (16)

To obtain a statistically meaningful sampling of the temporal fluctuations, an experiment
should ideally acquire data over a time scale which is long compared to the time scale
of the longest relaxation time of the system. If the system is stationary, that is, if its
dynamics do not change with the passage of time, then g;(¢,7) will be independent of
t and will depend only on 7. In this case, we can write g;(t,7) = g;(7). For 7 — 0,
gr(t) = (I*(t))/{I(t))? = 2, where the last equality follows for the typical case where the
scattered electric field obeys Gaussian statistics (as discussed above). For 7 much greater
than the duration of the longest lived fluctuation of the system 1), the scattered intensity
at time t + 7 becomes independent of the scattered intensity at time ¢, and (I{t + 7)1(t))
factorises into {I(¢t + 7)){I(¢)) = (I(¢))%. Thus, for 7 = oo, g;(1) = 1.

Therefore, we expect that the correlation function g,(¢,7) will in general decay from a
value of two for 7 = 0 to unity for 7 > 7 or, equivalently, that gg(¢, 7) will decay from
unity for 7 = 0 to zero for 7 3> 7p. The time over which these correlation functions decay
and the functional form of the decay will depend on the dynamics of the system. As an
example, we consider a system whose dynamics are governed by simple diffusion. In this
case, we imagine that fluctuations in the concentration of particles (scatterers) given by
dc(r,t) = ¢(r,t) — (c) is governed by the diffusion equation

%Jc(r, t) = DV%e(r, 1), (17)
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where D is the diffusion coefficient of the concentration fluctuations. Because light is scat-
tered by sinusoidal fluctuations in the concentration of scatterers, it is useful to consider
the spatial Fourier transform of Equation 17:

2 sela, ) = ~DePdela, 1), 19
where ‘
de(q,t) = /Véc(r, t)e' v dr. (19)

Solving Equation 18 for d¢(q, t), we find
be(q,t) = be(r,0) e~ 2ot (20)

Thus, we find that spatial fluctuations in the concentration with a wavelength of 27 /g
relax with a time constant of 1/Dgq?. The temporal autocorrelation functions for scattered
light reflect this dynamics.

Starting from Equations 12 and 15 and writing the phase of the scattered light as
#(t) = q - r;(t), we can calculate gg(7) and, via Equation 16, g;(7):

N
ge(r) = l<ze='q-[=«<*+*>-~<t>l> (21)
N i
1 <§: i s (¢47) -7 (8)]
= = ghimeTT)T > (22)
N i

1 /&,
= N<261A¢"(T)>, (23)

where we define the change in phase for a scattering from a single particle as A¢;(7) =
q-[ri(t+7) — ri(t)]. In passing from Equation 21 to Equation 22, we have assumed that
interactions between particles are not important so we can ignore terms in the sum where
i # j. The sum in Equation 23 is a sum over light paths through the sample where each
path involves exactly one scattering event from a particle and at a wavevector q. Thus,
if all the particles are identical, then all the paths are statistically equivalent and we can
simplify Equation 22 by writing it as the ensemble average over a single path:

ge(r) = () (24)
= 38 (25)

Equation 25 follows from Equation 24 if, as is usually the case, the distribution of phase
differences A¢ is Gaussian. Since A¢(r) =q-r

1
(Ag?(r)) = ng(ATQ(T)% (26)
where the factor of 1/3 comes from performing the 3-d angular average {cos?8)g4 over
the unit sphere. For simple particle diffusion, the mean square displacement is given by

(Ar%(r)) = 6Dt which leads to the result

gE(q,T) = e-%QZ(Arz(T)) — e—qu‘r, (27)
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or equivalently

gr(q,7) = 1+ 72007, (28)
Note the similarity of these results to Equation 20. For interacting particles, similar results
are often obtained with the additional modification that the diffusion coefficient D be-
comes g-dependent. Thus, fluctuations of different wavelengths relax with a g-dependent
relaxation rate of ¢D(q).

2.2.1 Dynamic light scattering in steady shear flow

In these lectures, we are particularly interested in examining the dynamics of systems
driven away from equilibrium by the application of shear flow. Thus, it is natural to
ask what happens to g;(t, 7) for a system subjected to shear. To simplify the discussion,
we first consider the case where the scatterers are randomly distributed throughout the
sample and move only in response to an imposed shear flow (e.g. there is no Brownian
motion). The detailed analysis of dynamic scattering from a system undergoing shear is
complex. But the basic ideas can be understood by noting that dynamic light scattering
is sensitive to differences in particle velocities. This is easily appreciated by studying
Figure 9 from which it is evident that the relative phases of light scattered from different
particles do not change if all the particles move with the same uniform motion. In a
homogeneous shear flow, however, particles move with different velocities depending upon
their relative positions within the scattering volume. The particles the farthest apart along
the velocity gradient and within the scattering volume have the greatest velocity difference
Av. This can be written as Av = 4d, where d is a vector, directed along the velocity,
whose magnitude is the distance across the scattering volume in the velocity gradient
direction. Thus, to within numerical factors of order unity, the characteristic decay time
s of gg(7) for a sheared system is 1/q - Av = (¥q-d)~'. To within the same level of
approximation, the decay of the correlation function is given by gg(7) ~ exp[—(q-d¥7)?]
Note that for homogeneous shear flow, the correlation function decays with a Gaussian
time dependence rather than the simple exponential time dependence found for diffusion.
This result simply reflects the fact that in a shear flow, the separation between pairs of
particles grows linearly in time whereas for diffusion, the separation between particles
grows as the square root of time.

We now consider what happens when there is Brownian motion. For shear rates
much smaller than the slowest relaxation rate 7j;!, that is for 47a < 1, the internal
dynamics of the system relaxes on time scales much faster than the rate at which shear
can alter the structure of the system. In this case, the Brownian motion is unaffected
by the presence of the shear flow. The more interesting situation is the case where the
shear rate is sufficiently high to alter the structure of the system before it can relax
by its usual equilibrium dynamics, that is, when 475 >> 1. In this case, there will be
two contributions to the decay of gg(7): the decay resulting from the shear flow itself
(discussed in the previous paragraph) and the decay resulting from the Brownian motion
(possibly modified by the presence of the shear flow). The ratio of the characteristic decay
times for these processes is given by

™ ™

- =W=’YTMQ'd (29)

Scattering volumes for sheared systems are typically no smaller than 50um. If we take
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d ~ 50pum and ¢ ~ 10%m™!, then q-d ~ 50. Thus, in the physically interesting case
when 47y ~ 1, the time scale for the decay of gg(r) from the shear motion rg can be
expected to be approximately 50 times faster than the time scale 7)s of decay due to the
intrinsic dynamics of the system. Thus, the physically interesting change in the system
dynamics due to shear flow is masked by the effect of the shear flow itself on the decay of
ge(7). In principle, this problem can be circumvented by making q perpendicular to d.
In practice, however, this is very difficult to achieve. Moreover, it limits measurement of
the change in the system dynamics only to those fluctuations which are in the direction
perpendicular to the velocity. Therefore, one must seek other methods for measuring the
change in the system dynamics arising from the application of shear flow. Such methods
have been developed, and are discussed in the next section.

2.2.2 Dynamic light scattering in oscillatory shear flow

To develop a method to measure the dynamics of a system under shear flow, we exploit
the fact that shear flow is deterministic and reversible, while Brownian motion is not.
First, we consider light scattering from a system undergoing oscillatory shear flow where,
as in the previous section, there is no Brownian motion. Suppose our system consists of
randomly distributed non-Brownian spheres suspended in a liquid undergoing sinusoidal
planar shear flow with a period T <« 75. For decay times such that 7s < 7 < T we can
ignore the fact that the shear flow is oscillatory. In this case, gg(7) decays on a time scale
75 ~ (¥q-d)~! in the same way as it would for steady shear flow (here, 4 shouid be taken
to be some characteristic shear such as the RMS shear rate).

Upon the reversal of the flow field, however, the situation becomes qualitatively dif-
ferent from that of steady shear flow; the suspended particles retrace their trajectories so
that they return to their same exact positions every period T. Therefore, the scattered
light will always be perfectly correlated with itself an integral number of periods T ago.
Thus, the temporal autocorrelation function will consist of a series of echoes spaced one
period apart. The height of the echoes will be unity as long as the particles return to
precisely the same position they were at one period ago. The width of the echoes will
be twice the width of the initial decay arising from the shearing motion. A correlation
function corresponding to this situation is illustrated in Figure 11 by the dotted lines.

With the addition of Brownian motion, there is irreversible movement of the scatterers
between echoes and the echoes do not return to their full height. The attenuation of
the echos is a quantitative measure of the irreversible motion and is determined by the
nonequilibrium dynamics of the system, as illustrated in Figure 11. In the simplest case,
when 475 < 47y <€ 1, the envelope which determines the attenuation of the echoes is
exponential and simply given by the equilibrium decay g;(7) = 1 + exp(—2Dg?r). The
physically interesting case occurs when %7y becomes comparable to or exceeds unity.
In this case, one generally expects the dynamics of the system to depart from their
equilibrium behaviour; normally, relaxation rates increase as the shear provides more
efficient paths for fluctuations to relax as compared to the equilibrium case. We will
provide examples of how such measurements can be used to probe glassy emulsions in
Section 4.
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Figure 11. Appearance of echoes in the intensity autocorrelation function for oscilla-
tory shear flow. In the absence of irreversible motion of the scatterers, the echoes are
unattenuated (dotted line). When there is irreversible motion, the echoes are attenuated
(solid line). The envelope of the echo heights (dashed line) is determined by the amount
of irreversible motion.

2.2.3 Diffusing-wave spectroscopy

Many complex fluids and fragile materials consist of structures with characteristic length
scales comparable to or larger than the wavelength of light. Examples of such systems
include colloidal suspensions, emulsions, and foams which are typically made up of micron-
sized solid, liquid, or gas particles, respectively, in a liquid matrix. The presence of such
structures leads to spatial fluctuations in the refractive index (or dielectric constant) on
a length scale comparable to light. As a result, there is multiple scattering of light such
that all but the thinnest samples of such materials are opaque. If such a material does not
absorb light significantly, these materials appear white (this is typically the case). Thus
normal light scattering, which requires that the light be scattered no more than once, is
not feasible.

Presently, there are two methods that have proven useful for extracting quantitative
information from light scattering on systems which multiply scatter light. The first is a
dynamic light scattering technique which uses two lasers with different wavelengths. The
lasers and optics are aligned in very clever way so as to discriminate against multiply
scattered light. In this scheme, only singly scattered light contributes significantly to the
dynamical signal even though there may be significant multiple scattering. The technique
is difficult to set up and costly to instrument. Nevertheless, it is a powerful tool provided
there is sufficient singly scattered light to provide a measurable signal.

The second approach, called diffusing-wave spectroscopy (DWS) [7], is completely dif-
ferent. Instead of discriminating against multiply scattered light, one exploits it. The
primary task is to describe the transport of light sufficiently well that quantitative in-
formation can be extracted from a measurement. Fortunately, and perhaps surprisingly,
such an enterprise is not difficult. In fact, the experiments are exceedingly simple to
instrument—even simpler and less costly than conventional single scattering experiments.

The determination of the electromagnetic fields inside a sample which exhibits a high

Copyright © 2000 IOP Publishing Ltd.



26 David J Pine

sample

light from w:

d é d a Y scattered light
laser aaa aa AA NN

to detector

Figure 12. Schematic for multiple dynamic light scattering of two light paths from many
particles. The filled and open circles indicate the positions of the particles for the two
paths at times t and t + 7, respectively. Particles not involved in the scattering of the two
represented light paths are present but not shown for clarity.

degree of multiple scattering is a complex task. Fortunately, it is not necessary to specify
the electromagnetic field everywhere within the sample in order to extract useful infor-
mation about the sample from the multiply scattered light. Instead, it is sufficient to
consider a single pair of light paths through the sample, in much the same way as we did
for singly scattered light in Figure 9. Consider two light paths consisting of light scat-
tered many times by different particles while passing through a sample as illustrated in
Figure 12. The time of flight for the light through the sample is essentially instantaneous
since it occurs on a time scale of 100ps or less, which is much less than any time scale we
will be interested in for the motion of the particles. Nevertheless, light emerging from the
sample after having scattered many times will have a phase that depends on the precise
optical path length through the sample. The intensity of the scattered light at the de-
tector will depend on the exact relationship between all these phases of the light coming
from different paths through the sample. As the particles within the sample move, the
path lengths for the light through the sample change. This, in turn, changes the phase
relationships between the different pairs of light paths incident on the detector and causes
the light intensity to fluctuate, just as in the case of single scattering DLS.

As for DLS, we seek to characterise the fluctuations in the scattered light arising from
the motion of particles by calculating the correlation function gg(7) (recall that we can
obtain g;(7) using the Siegert relation given by Equation 16 The calculation proceeds
similarly to our calculation in the single scattering case. In fact, we write gg(7) just as
we did before, starting with the sum over scattering paths represented in Equation 23:

Np
ge(r) = _]\lTp <Z eiA¢i('r)> , (30)

where we emphasise that here, as in the single scattering case, the sum is over the number
of light scattering paths N, through the sample. In contrast to the situation for single
scattering, however, here each path consists of many scattering events, as depicted in
Figure 12. Moreover, different scattering events within a path occur at different wavevec-
tors whereas for the case of single scattering, each path involved scattering from a single
particle and at a single wavevector which was the same for all paths.
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Let us denote the number of scattering events in the i-th path as n;. Then, the phase
difference A¢;(r) for a given path in Equation 30 involves a sum over all the n; scattering
events for that path. That is,

Ai(r) =§:qf-rj(t+r)—ii:lqj-rj(t) =§;%-Ar(7) (31)
j= i=

=t

where Ar = r;(t + 7) — r;(t). In the case of multiple scattering, paths may have any
number of scattering events but only those paths with the same number of scattering
events can be regarded as statistically equivalent. Thus, the analysis of multiple light
scattering is somewhat more complicated than for the case of single scattering.

The first step in the analysis of Equation 30 is to consider only paths with a given
number of scattering events n = n; (dropping the now superfluous subscript). Next,
we note that the statistical distribution of phases A¢, for paths of a given length n is
Gaussian. In the case of multiple scattering, this is an even better approximation than for
the case of single scattering because here the phase is the sum of many random variables;
by the central limit theorem, such a sum should obey Gaussian statistics (in the limit of
large n). The contribution to the total correlation function gg(7) for all the paths having
a given number of scattering events n is:

No /ia Mo - 326800
Ghlr) = Do fpaen) = Tho-sasin, (32
E Np< > N,

where N, /Nj is the fraction of paths with exactly n scattering events. The mean square
phase difference for paths with n steps is obtained by squaring and averaging over Equa-

tion 31:
@) = X {jas- AriP) (33)
= ng(@Ar(r)), (34

where we have made the assumption that only the diagonal terms in the squared sum are
non-zero, consistent with our assumption that the position and motion of different par-
ticles are independent. The averages over ¢° and Ar(7)? factorise because the scattering
wavevectors are independent of the particle motion.

To obtain the full correlation function for light paths of all orders, we sum Equation 32
over all path lengths:

o0
gp(r) = zﬁn —4(agd(r) (35)
n 4
= 3 D n@rarcrye (36)
n NP '

Note that in passing from Equation 30 to Equation 36 we have changed the sum from a
sum over all paths to a sum over all path lengths with each path length weighted by the
fraction of paths N, /N, with a given number of scattering events n.

The sum in Equation 36 cannot in general be performed analytically. Therefore, we
approximate the sum over the number of scattering events n in a path by passing to the
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continuum limit and performing an integral over the length of a path s = nl, where [ is
the mean free path between scattering events. The fraction N,/N, of paths consisting of
n scattering events becomes the fraction (or probability) P(s) of paths of length s. The
mean square phase difference undergoes the following transformation:

AR = Zald)ar) ()
= %2k2(1—cos6) (Ar2(r)) (38)
= kA, (39)

where we have used the fact that (g?) = 2k?(1 — cos 8} and that the transport mean free
path is given by I* = /{1 — cos6). Here 0 is the scattering angle and k£ = 27/A. From
the definition of {* it is clear that {* > l. Physically, {* is the length scale over which
the direction of scattered light is randomised, i.e. the characteristic length scale over
which scattered light loses memory of its initial direction of propagation. Since scatterers
comparable to or larger than the wavelength of light tend to scatter preferentially in the
forward direction, several scattering events may be required to randomise the direction
of light propagation. In this case, {* > [. For small particles where the scattering is
essentially isotropic, I* ~ .

Using these results, we can convert the sum in Equation 36 to an integral over path
lengths:

ge(r) = [ Ple) e H e ORI g, (40)
For diffusing particles where {Ar?(r)) = 6D, Equation 40 can be rewritten as
gE(T) = /000 P(S) e—?DkZTS/l* ds. (41)

To evaluate Equation 41, one must determine the distribution of path lengths P(s). For
samples which exhibit a high degree of multiple scattering, the path the light takes in
traversing the sample can be described as a random walk. Typically, the transport occurs
over a length scale much greater than the mean free path I* (typically I* ~ 10%um and
sample dimensions ~ 103um). In this limit, where the characteristic dimension traversed
by random walk is much larger than the basic step length, the random walk can be
described by diffusion. Using these ideas, Equations 40 and 41 can be solved for a variety
of situations.

Consider, for example, a sample confined between two parallel glass plates a distance
L apart with light from a laser incident on one side. If one detects scattered light emerging
from the opposite side of the samples, then one obtains [7]

I
ge(T) = P (42)

2 = 2R r(E) (43)

For the case of particles (scatterers) which diffuse with a diffusion coefficient D,

z= l%\/ 6Dk?r. (44)

where
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In this case, the decay of the correlation function is approximately exponential with char-
acteristic decay time of (I*/L)?/Dk?. For single scattering, the characteristic decay time
is 1/Dg® ~ 1/Dk?. Thus, the decay of the correlation function for multiple scattering is
faster than the decay for single scattering by a factor of approximately (L/!*)2. Physi-
cally, this acceleration of the decay is easy to understand. For both single and multiple
scattering, the correlation function decays in the time that it takes the phase A¢(7) of
the scattered light to change by approximately 1. For the case of single scattering this
means that a particle must move by a distance ~ 1/¢ ~ A or roughly the wavelength of
light. For the case of multiple scattering, each particle in a given path must move only
A/n, where n is the number of scattering events in a typical light path, in order for the
entire path length to change by approximately the wavelength of light. This is reflected
in Equations 26 and 34 for the mean square phase change for single and multiple light
scattering, respectively; Equation 34 has a factor of n which is not present in Equation 26.
Since the end-to-end distance for a random walk scales as the square root of the number
of steps, the decay of gg(r) is a factor of {L/{*)? faster for multiple scattering than for
single scattering.

Thus, perhaps the single most important difference between single and multiple dy-
namic light scattering is the fact that multiple dynamic light scattering, or DWS, is much
more sensitive to very small particle motions. For a typical DWS transmission experiment
where (L/I*) ~ 10, the characteristic distance a typical particle moves in a decay time
decay is A/n ~ A/(L/1*)? ~ A/100 or about 50A. With some effort and care, RMS particle
motions on much smaller scales can be resolved, with the current record being somewhat
less than 1A. We will return to our discussion of DWS in Section 4 where we illustrate
the use and sensitivity of DWS in a study of the response of disordered emulsions to os-
cillatory shearing motion. In the next section, we present the results of some experiments
on shear thickening which demonstrate, among other things, how single light scattering
can be used to study complex fluids and fragile materials.

3 Shear thickening in wormlike micellar solutions

Solutions of wormlike micelles exhibit a fascinating range of rheological behaviour. Above
the overlap concentration, their linear rheological behaviour is deceptively simple. A fairly
complete theoretical description based on a modified reptation picture is available and has
been remarkably successful in describing a wide variety of experiments [8]. In this section,
however, we are concerned with another class of wormlike micellar systems, micellar solu-
tions near and below the overlap concentration which exhibit nonlinear shear thickening.
The shear-thickening behaviour is quite dramatic and continues to puzzle researchers after
more than 15 years of intensive research [9, 10]. Before reviewing the behaviour of these
systems, we briefly review some basic ideas concerning wormlike micellar solutions.

3.1 Basic properties of shear-thickening micellar solutions
Surfactants are molecules with a dual personality: one part of the molecule is hydrophilic

or water-loving and the other part is hydrophobic or water-hating. They are useful in a
variety of contexts, most notably perhaps in promoting the mixing of chemically incom-
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patible liquids by reducing the interfacial tension between the two liquids. Our interests,
however, lie elsewhere. The surfactants we are interested in consist of molecules with
fairly compact hydrophilic ionic polar head groups, and hydrophobic hydrocarbon tails
which typically have about 16 carbon molecules. Below a certain concentration called the
critical micelle concentration or CMC, the surfactants exist as single molecuies in aqueous
solution; the CMC is typically on the order of 1mM but can be significantly lower or higher.
Above the CMC, these molecules form small aggregates, typically spherical just above the
CMC, but often taking on other shapes as the concentration is increased.

Aggregates of surfactants form in order to hide their hydrophobic tails from the sur-
rounding water. They do this by forming a sphere, for example, with all the tails on the
inside of the sphere and all the polar heads at the surface of the sphere where they are in
contact with the water. They can accomplish the same thing by forming other shapes as
well, including cylinders, lamellae, and other more complex structures. Which structure
forms depends on the surfactant concentration, the size of the head group relative to
the tail, and the surfactant and solvent interactions; see Roux, this volume, for a fuller
discussion. A cylindrical micelle is illustrated schematically in Figure 13.

10-1000 nm

Figure 13. Surfactants and micelles at different length scales. (a) Surfactant molecule
with hydrophilic head group and polar tail. (b) Cross section of a cylindrical micelle with
the hydrocarbon tails shielded from the water by the polar head groups at the surface. (c)
Random coil formed by a long cylindrical wormlike micelle.

The question of whether aggregates form or not involves a competition between energy
and entropy. When aggregates form, the overall energy is reduced because the surfactant
tails are shielded from the water. However, the formation of aggregates reduces the
number of possible configurations and decreases the entropy. At low concentrations,
entropy almost always wins and there are no micelles. As the concentration in increased,
however, energetic considerations become increasingly important such that micelles begin
to form above the cMC.

We are interested in cylindrical wormlike micellar solutions. These are systems where
the shape of the surfactant head group, size of the tail, and interactions favour the for-
mation of cylindrical aggregates. These cylinders can grow very long and flexible such
that they resemble a long linear polymer chain. The basic differences between wormlike
micelles and polymers are: (1) micelles typically have a diameter of about 4nm, or about
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ten times greater than a typical polymer; (2) micelles are dynamical entities whose length
is determined by an equilibrium process—by contrast, the length of a polymer is fixed at
the time of synthesis. The dynamical nature of wormlike micelles has several important
ramifications. First, the distribution of the length L of wormlike micelles is thought to be
broad, typically exponential [P(L) ~ exp (—L/(L))]. Moreover, {L) in general increases
with surfactant concentration. Thus, as surfactant concentration increases, the mean size
of micelles increase leading to a situation where different micelles begin to overlap. As
for conventional polymers, at concentrations above the overlap concentration c*, there is
a dramatic increase in viscosity and in the concentration dependence of the viscosity. A
second important consequence of the dynamical nature of micelles is that they sponta-
neously break and reform in equilibrium. The rate at which this process occurs depends
on the scission energy and the temperature; external disturbances such as shear flow can
be expected to alter this process.

The specific systems we are concerned with here are ionic wormlike micelles formed
from CTAB (cetyltrimethylammonium bromide) or closely related surfactants, and NaSal
(sodium salicylate), typically at or near a 1:1 molar ratio. NMR measurements reveal
that when the CTAB forms cylindrical micelles in the presence of NaSal, the NaSal is
incorporated into the micelle at nearly a 1:1 molar ratio. This means that the micelle has
both positively and negatively charged ions, resulting from the dissociation of Br™ from
the CTAB and Na™ from the NaSal. This leaves a highly ionic solution where Coulomb
interactions are likely to be important.

The basic shear-thickening rheology which interests us is illustrated in the two plots
in Figure 14. In Figure 14(a) we show the response of a wormlike micellar solution to
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Figure 14. Basic rheology illustrating shear-thickening in solutions of wormlike micelles.
(a) Slow increase in the viscosity measured after the application of a steady shear rate
of approzimately 80s7'. (b) Long-time steady-state measured viscosity ezhibiting sharp
increase above a critical shear rate of approzimately 37s7.

the sudden application of a steady shear rate [11, 12]. At first, nothing unusual occurs,
but after tens of seconds the measured viscosity begins to rise until, after approximately
200s, the system reaches a steady state plateau with a viscosity which is about 3 times
larger than the viscosity of the original solution. The long-time steady-state viscosity
obtained by repeating this experiment for different shear rates yields the data plotted in
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Figure 14(b). The most striking feature of these data is the existence of a critical shear
rate 4 above which shear thickening is observed and below which nothing extraordinary
happens. This shear-thickening is observed for concentrations well below the overlap
concentration ¢* up to concentrations which are 2-3 times c*.

3.2 Light scattering microscopy and rheology

Shear-thickening systems such as those discussed above have proven notoriously difficult
to understand. One problem that was not well appreciated until recently is that such
systems frequently become spatially inhomogeneous on length scales comparable to the
sample dimensions when they undergo a shear-thickening transition. When this occurs,
the system can develop large-scale zones or ‘bands’ with different rheological properties.
Thus, conventional macroscopic rheological measurements alone are not sufficient to un-
derstand the mechanical behaviour of the system; one must be able to probe the spatial
structure as well. Moreover, since such transitions often exhibit slowly evolving rheolog-
ical changes accompanied by simultaneous structural changes, it becomes paramount to
have a means for making simultaneous rheological and structural measurements.

Because of these concerns, we developed a transparent Couette cell rheometer and
a light scattering technique for following rheological and structural changes in shear-
thickening systems as they occur. Our apparatus is illustrated schematically in Fig-
ure 15 [11, 12]. The sample is contained between two concentric quartz cylinders having

Rheometer
8 _/v\/\r'\’vw (torque transducer)
#
g
time

video monitor

Figure 15, Ezperimental setup for light scattering microscopy.

diameters on the order of 25mm and a gap between them of approximately lmm. A
portion of the sample is illuminated by a sheet of laser light formed by passing the laser
beam through a spherical and then through a cylindrical lens as illustrated in Figure 15.
The laser beam is directed radially inward towards the cell such that the illuminated vol-
ume has a width determined by the gap, is several millimetres high, and is about 50um
thick. Light scattered through approximately 90° from this sheet of light is collected by
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Figure 16. Effective viscosity vs. time after the commencement of shear flow. Data
obtained at constant average shear rate. Images obtained at a succession of times show
the growth of another phase as a region of increased scattering (brighter) which proceeds
from the inner cylinder (left side of images) and grows towards the outer cylinder (right
side of images). White arrows indicate the progression of the interface of the bright phase.

a CCD camera such that an image of the scattering volume is formed on the CCD array.
Regions of the sample which scatter light more strongly than other regions will appear
brighter on the image. The resolution of the image is about 30um. At this resolution, an
equilibrium sample is expected to be spatially homogeneous and therefore should exhibit
uniform brightness across the illuminated volume.

In Figure 16, we show measurements of the transient effective viscosity of a micellar
solution along with a succession of images obtained from our light scattering microscope.
The left sides of the images correspond to the inner cylinder and the right sides to the
outer cylinder of the Couette cell. After about 73s, a bright region appears on the left
side of the image just as the apparent viscosity begins to increase. As time proceeds, the
measured viscosity increases and the bright region moves to the right towards the outer
cylinder such that it fills an ever increasing fraction of the gap. Eventually, the bright
phase appears to fill the entire gap and all the shear is confined to a very thin layer. It
also appears that the bright phase is more viscous than the dark phase.

If one of the two phases which appears in Figure 16 is more viscous than the other,
then the velocity profile will not be constant across the gap. To investigate this possibility,
we measure the velocity profile across the gap of the Couette cell using our light scattering
microscopy apparatus. To effect these measurements, we rotate the plane of the sheet of
laser light incident on the cell by 90° about the axis along the direction of propagation of
the laser beam—see Figure 15. Thus, the sheet of light is oriented horizontally across the
gap rather than vertically as in the previous measurements. We then seed the sample with
a very small concentration of polystyrene microspheres and follow their motion in time as
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Figure 17. Velocity profiles in a Couette cell at { times after the commencement of shear
flow. The inner cylinder is on the left (0.0) and the outer cylinder is on the right (1.0)
in each of the plots. The numbers at the lower left corners indicate the time in seconds
that have passed after the commencement of shear flow.

they traverse the illuminated sheet. By measuring the distance that each particle moves
in successive video frames (30 frames/s), we are able to map out the velocity profile across
the gap of the Couette cell. Figure 17 shows the results of such a measurement for an
experiment in which a steady shear flow is applied to an equilibrium sample. The velocity
profile is shown at 4 different times. Immediately after the commencement of shear flow,
the velocity profile is linear across the gap as can be seen in Figure 17(a); thus, the velocity
gradient is constant. The subsequent velocity profiles shown in Figures 17(b)-(d) reveal
that the velocity gradient in the bright phase is much smaller than in the dark phase near
the outer portion of the cylinder; that is, the bright phase is more viscous than the dark
phase. In fact, to within the experimental precision, the velocity gradient in the bright
phase is zero. Thus, we refer to the bright phase as a ‘gel.” We emphasise, however, that
our referring to it as a gel is simply a matter of convenience as the experiments strictly
reveal only that the velocity gradient within the bright phase is very small. After about
10 minutes, the gel appears to fill the gap and all the flow is confined to a narrow slip
layer next to the outer cylinder as can be seen in Figure 17. Later on, a slip layer appears
at the inner cylinder as well although we do not wish to focus on such features here.

With the picture provided by our measurements of a gel growing from the inner cylin-
der and a few simple assumptions, we can already begin to understand some of the quali-
tative features of the discontinuous jump in the apparent viscosity. First, we see that the
gel only begins to grow when a certain critical shear rate 4. is exceeded. Consider then
what happens when a shear rate 4, > 4. is applied to a sample which has been at equi-
librium. We note, first of all, the stress in a Couette cell is greatest at the inner cylinder
(we shall explain this in greater detail a little further on). Thus, it is not surprising that
the gel begins to form at the inner cylinder. Since there is essentially no flow in the gel,
and the average shear rate across the gap of the Couette cell is held constant, the shear
rate 4; in the remaining liquid must increase such that 4, > ¥ > 4.. Thus, even more
gel is formed. We might expect this process to continue until the surfactant available to
form gel from the fluid phase is exhausted. In this way the gel phase can grow across the
cell and cause the observed increase in the apparent solution viscosity.

Suppose that instead of keeping the shear rate constant that we keep the stress constant
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Figure 18. Effective viscosity vs. time after the commencement of shear flow. Data
obtained at constant shear stress. Images obtained at a succession of times. (a) Stress
= 0.6Pa: White arrows indicate the progression of the interface of the bright phase as it
grows from the inner cylinder. (b) Stress = 1.6Pa: White phase appears homogeneously
throughout the gap without a visible interface.

what happens to the rheology and structure of the sample. The results of one experiment
where we hold the stress fixed at 0.6Pa is shown in Figure 18. Initially after startup, the
rheology and light scattering images look similar to those obtained under constant shear
rate; the apparent viscosity increases as the viscous phase grows from the inner cylinder.
An important difference, however, is that the gel phase stops short of the outer cylinder
and remains in approximately the same position indefinitely. Thus, the gel and liquid
phases can coexist at steady state for a constant applied stress.

If the experiment is repeated at a higher stress but still less than 1.2Pa, the data
are qualitatively similar to those obtained at 0.6Pa and displayed in Figure 18 with the
apparent viscosity increasing in proportion to the growth of the gel phase across the gap.
At a stress of 1.2Pa, the gel phase appears to fill the gap, just as in the case for constant
shear rate. Once again, there is a very thin slip layer near the outer cylinder.

The situation changes somewhat when the experiment is repeated at higher stresses.
Consider the data in Figure 18 obtained for a startup experiment performed at a constant
stress of 1.6Pa. In this case, the bright phase begins to appear after approximately 30s but
without any readily visible interface just as the apparent viscosity begins to rise. Indeed,
by the time 34s have passed, the bright phase is clearly visible throughout the gap but
with only about a 20% rise in the apparent viscosity. As time passes, the apparent
viscosity increases dramatically. Meanwhile the bright phase continues to fill the gap
but its brightness appears to decrease somewhat in intensity. Thus, it appears that in
contrast to data obtained at lower shear rates, at these higher shear rates the bright
viscous phase nucleates homogeneously throughout the gap in small isolated droplets. As
time progresses, these droplets connect and percolate throughout the gap causing the
dramatic observed increase in the apparent viscosity. This interpretation of the data is
also consistent with the observed brightness of the gel phase which is brightest around 34s
before the apparent viscosity has risen significantly. At this stage, the isolated droplets
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Figure 19. Steady state stress vs. average shear rate for data obtained under constant
shear rate (open symbols) and constant stress (closed symbols).

create large fluctuations in the concentration of surfactant. When the droplets of gel
phase begin to interconnect, the fluctuations in concentration are reduced thus reducing
the strength of the light scattering.

Figure 19 summarises the shear thickening behaviour discussed thus far. Note that
there is a range of stresses between the critical stress o, and a higher stress o, where there
exist steady states under controlled stress but not under controlled shear rate. These data
correspond to the situation represented in Figure 18(a) where the gel and fluid phases
coexist and both occupy a finite fraction of the gap. 1t 1s clear from the data in Figures 19
and 18 that the shear thickening seems to be better characterised by a critical shear stress
rather than a critical shear rate. As can been seen in Figure 19, the average shear rate
actually decreases when the system begins to shear thicken. Moreover, inside the gel, the
shear rate is essentially zero. If it were the shear rate that controls the formation of gel,
then the gel would immediately dissolve upon formation because of the low shear rate
inside the gel. Nevertheless, the gel remains. Note, however, that under all circumstances,
the gel phase is only observed when the shear stress is greater than a critical shear stress
o. as shown in Figure 19. Thus, the data strongly suggest that it is the shear stress and
not the shear rate which controls determines the overall steady state of the system. The
reader should be cautioned that this does not mean that the shear rate does not play any
role in the kinetics of the nucleation and growth of the gel. It would seem, however, that
the shear rate cannot act as a state variable for the long time steady behaviour of the
system.

The determinative role of stress is also evident in the cases where homogeneous rather
than heterogeneous nucleation occurs. The main point here is simply that stress decreases
as 772 in a Couette cell. This follows from the fact that the torque must be balanced at
every point in the gap. (The torque I is given by I' = rF', where r is the radial distance
from the axis of the Couette cell of a point in the gap and F is the force at that point.
Since the force is related to the stress by o = F/(2wrh), where A is the height of sample
in the gap, o = I'/(27r?h) or o & r~2.) Thus, when the applied stress is near the critical

Copyright © 2000 IOP Publishing Ltd.



Light scattering and rheology of complex fluids driven far from equilibrium 37

2.0 -
20
g 15
1.5 o
g
% 0.5
]

20 30 40 50
shear rate (s7)

shear stress (Pa)
5
Sl

f=
L
—

0.0 € L
0 500 1000 1500

time (s)

Figure 20. Quench ezperiments showing the response of the stress after a sudden decrease
in shear rate. The system is prepared at a steady state shear rate of 3 = 44s™! as indicated
by the solid circle in the inset; the shear rate is then suddenly reduced to one of four lower
shear rates indicated by the open circles and squares (see test).

in the gap, o = I'/(2772h) or ¢ o r~2.) Thus, when the applied stress is near the critical
stress, gel can only be nucleated where the stress is greatest—near the inner cylinder.
When the stress in increased so that the stress is well above the critical stress throughout
the gap, gel nucleates everywhere. While this is an appealing argument and probably at
least partially correct, it must also be pointed out that the shear rate also decreases with
radius, though with the weaker dependence of ¥ ~ r~!. For this and reasons previously
discussed, one should not ignore the role of the shear rate in nucleation.

Thus far we have examined only the formation of the gel phase upon the commence-
ment of shear flow. We can also ask what happens if, after a steady state has been reached,
the shear rate is suddenly decreased to a value below the critical shear rate. In Figure 20
we show the results of several experiments in which the shear is suddenly decreased after
the system has achieved a steady state at a shear rate well above the critical shear rate. In
each experiment, the stress falls immediately by an amount which is linearly proportional
to the decrease in the applied shear rate. This essentially instantaneous response is fol-
lowed by a slower decrease in stress which can last several minutes or longer. In the first
experiment, labelled (a) in Figure 20, the shear rate is suddenly decreased to a shear rate
just a little greater than the critical shear rate. In this case, the gel remains intact and
reaches a new steady state in about 100s. When the shear rate is decreased to a value just
below the critical stress, as shown in trace (b) in Figure 20, the stress appears to come
to a new steady state at a point along the upper branch of the steady state curve shown
in the inset (open circle). The system remains there for a few minutes before relaxing to
the lowest stress on the steady state curve consistent with the applied shear rate (open
square). In this state, there is no gel. The data shown in trace (c) are similar to trace
(b) though there is no obvious plateau as the stress relaxes to the low-stress state where
the gel has disappeared. Finally, when the shear rate is reduced to a value well below the
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relaxes fairly rapidly (within a few minutes) to its fluid gel-free state.

At the present time, the microscopic origin of shear thickening in these micellar systems
is unknown. Various mechanisms have been suggested, the most developed of which is
based on the idea that alignment of the micelles by the imposed flow causes the length of
the micelles to grow and to thereby increase the viscosity of the solution. Here, the basic
idea has to do with a competition between entropy, which favours many short micelles over
fewer longer micelles, and end cap energy, which seeks to minimise the number of micelles
ends by forming fewer long micelles. The basic problem is that these theories produce
only a mild shear thickening which is much smaller than that observed in experiments.
These theories do not take into account the Coulomb interactions which are thought to be
important in these systems because of the high degree of ionised species which are typically
present in micellar solutions which shear thicken. Other suggestions have been offered as
well, including a very interesting proposal involving the existence of closed micellar loops
which are broken by shear flow. Presently, there is insufficient experimental evidence
which strongly points to any particular theory.

Recently, there has been some progress in developing phenomenological theories which
seem capable of reproducing much of the observed rheological behaviour, including co-
existing phases of a very viscous and less viscous phase under controlled stress. No
microscopic mechanism for shear thickening is proposed in these models. Instead, these
models posit the existence of a shear-induced phase transition along with an equation of
motion for the interface between the two phases. Then, by employing simple constitutive
equations for the rheological behaviour and enforcing conservation of mass, one can re-
produce much of the observed phase and rheological behaviour of these systems, including
re-entrant rheological curves similar to Figure 19 and discontinuities in the steady-state
stress observed under constant shear rate. These models are significant because they can
significantly limit the kinds of phase behaviour possible, and thus can serve as a guide
to the development of more sophisticated microscopic models. In this way, they resem-
ble descriptions of equilibrium systems based on classical thermodynamics rather-than
statistical mechanics.

In concluding this section, we summarise the most significant results of these exper-
iments. First is the observation that shear thickening occurs by the nucleation of a new
viscous phase. At shear rates and stresses just above 4, and o, the nucleation of the
new phase is inhomogeneous and the system divides itself into macroscopically distinet
regions of high and low viscosity. Second, shear stress rather than shear rate seems to
be the more useful variable for describing the steady state of the system. Third, the
shear-thickening transition seems to have the character of a first order phase transition.
One should exercise caution, however, in applying equilibrium concepts such as phase
transitions to systems and processes which are manifestly nonequilibrium. Nevertheless,
for these systems the concept of a nonequilibrium phase transition seems to have some
value. (See also Roux, this volume.)

Finally, it is useful to emphasise the utility of augmenting rheological measurements
with structural measurements in systems which shear thicken. Indeed, simply by learning
that these systems divide themselves into two distinct phases when they shear thicken,
we have made significant progress towards our ultimate understanding of them.
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4 Yielding and rearrangements in glassy emulsions

Fragile materials are characterised by a high degree of sensitivity to external forces and
typically yield under very mild shear stresses. In most cases, the response of the material
is elastic up to some yield stress beyond which the response is more complex, depending
upon the system under consideration. In this section, we consider the response of one
realisation of such a material, namely emulsions, and study the structural rearrangements
which occur when such a system is strained beyond its elastic limit. Before discussing the
specific experiments, we provide a brief review of emulsions and their properties.

4.1 Emulsions

Emulsions are multicomponent systems which in their most basic form consist of three
components: oil, water, and a surfactant. In fact, the two liquid components need not be
oil and water, but can be any two liquids which are mutually insoluble (or which at most
exhibit only very limited mutual solubility). Nevertheless, the vast majority of emulsions
consist of water and some insoluble oil.

Emulsions are usually formed by mechanical mixing which creates a dispersion of oil
droplets in a continuous background of water or a dispersion of water in a background
of oil. The latter system is often called an ‘inverse emulsion’. The smallest droplet size
that can be achieved by mechanical mixing is typically about 0.1um. Such a mixture is
not in equilibrium, however, and will demix unless measures are taken to suppress the
subsequent coalescence of droplets. Suppressing coalescence is the role of the surfactant
which, when mixed with the oil and water, goes to the interface between the droplets and
the surrounding fluid. In some cases, the surfactant is electrically charged which results
in a repulsive interaction between droplets. In other cases, the surfactant provides a steric
or entropic barrier between droplets. In either case, the surfactant provides an effective
repulsive interaction which acts as a barrier to coalescence by keeping the droplets from
coming into contact. Thus, emulsions are kinetically stabilised against coalescence and
do not represent the lowest energy state of the system. Normally, the lower energy state
consists of a system which is completely phase-separated into macroscopic regions of oil
and water with the surfactant dissolved in one of the phases, and perhaps existing as
micellar solution. Alternatively, the system may form a thermodynamically stable mi-
croemulsion, in which case it can be difficult to maintain the systems as a nonequilibrium
emulsion. Thermodynamically stable microemulsions differ from emulsions in that they
consist of much smaller droplets (typically about 10nm), are thermodynamically stable,
and can usually form spontaneously without the addition of mechanical energy. Never-
theless, our interest here is focused on emulsions which are metastable and which, with
proper selection of materials, can remain stable indefinitely.

When prepared by mechanical mixing, emulsions usually have a wide distribution of
droplet sizes. Numerous methods have been developed for producing emulsions with a
high degree of monodispersity. For example, various fractionation schemes have been
developed by which a polydisperse emulsion can be successively divided into fractions
consisting of particles all within a fairly narrow range of diameters. With some effort,
samples with 10% polydispersity can be achieve in this manner. Other schemes, mostly
mechanical, also exist whereby emulsions can be produced with polydispersities in the
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10-30% range. These schemes require more specialised equipment but are capable of
producing much greater quantities of monodisperse material. In the experiments we
discuss in this section, the emulsions have a polydispersity of about 10%. This level of
polydispersity prevents the emulsion droplets from forming an ordered crystal. Thus, the
emulsions discussed here are amorphous at all concentrations.

When the volume fraction ¢ of droplets in an emulsion is not too high, emulsions be-
have very similarly to colloidal dispersions of solid particles. They are subject to the same
thermal forces, for example, and exhibit Brownian motion just as do solid colloidal par-
ticles. The situation changes, however, when the volume fraction of droplets approaches
and exceeds random close packing. For nearly monodisperse spheres, random close pack-
ing occurs at volume fraction ¢, of about 0.63. For ¢ < ¢, emulsion droplets exist
as isolated spheres. But as ¢ approaches ¢, increasingly less space is available to each
particle. For ¢ > ¢, no more room is available and particle motion is arrested. It is still
possible to mechanically deform the system, however, because the droplets themselves are
deformable. We now review the mechanical behaviour of random close packed emulsions.

4.2 Mechanical properties of random close packed emulsions

For sufficiently small strains, one expects a random close packed emulsion to exhibit
linear viscoelastic behaviour. That is, one expects the system to respond elastically, but
not without some viscous dissipation arising from shearing of the liquid in the emulsion.
Such behaviour can be characterised by a complex frequency dependent elastic shear
modulus G(w) (see McLeish, this volume). To understand the physical meaning of G(w)
we consider the following simple experiment. Suppose an emulsion is confined between
two parallel plates which are spaced a distance apart which is much greater than the
droplet diameter (a spacing of ~ lmm is typical). The top plate is moved back and forth
sinusoidally producing a time-dependent shear strain across the sample which is given by
v(w,t) = Re[yo exp(iwt)] where w is the frequency and 7, is the strain amplitude. One
then measures the time-dependent stress o{(w,t) on the bottom plate which for a linear
viscoelastic material can be written as o(w,t) = G(w)7y(w, t). Because the system exhibits
both viscous dissipation and elastic response, the stress is in general not completely in
phase with the applied strain. Thus, G(w) is complex and is written as G(w) = G'(w) +
G"(w), where G'(w) characterises the in-phase elastic response of the system and G"(w)
characterises the out-of-phase dissipative or viscous response of the system.

At small strains, close packed emulsions deform elastically like any elastic solid with
an elastic modulus G'(w) = G} which is independent of frequency. By contrast, the
dissipative response which is characterised by the loss modulus G"(w) becomes smaller
as the frequency is reduced reflecting the fact that viscous dissipation depends on the
velocity gradient rather than the displacement. In the limit low frequencies, G"(w) = nw
where 7 is the zero-frequency (or zero-shear-rate) viscosity of the emulsion.

At low strains, measurements of G'(w) and G”(w) are independent of the strain ampli-
tude -y, as expected for a linear viscoelastic material. As the strain is increased, however,
the response becomes nonlinear and amplitude dependent, signalling the onset of yielding
and plastic flow. Mason et al. [13] have studied the linear and nonlinear rheology of
concentrated disordered emulsions as well as yielding and flow. As expected they find
normal linear viscoelastic behaviour at low strain amplitudes consistent with an elastic

Copyright © 2000 IOP Publishing Ltd.



Light scattering and rheology of complex fluids driven far from equilibrium 41

solid as described above. Above a concentration-dependent strain amplitude, they find
that the emulsions do yield. They also find that there is a dramatic increase in the
dissipation associated with the onset of nonlinear behaviour and yielding. One expects
that this increased dissipation is associated with irreversible rearrangements of droplets.
Unfortunately, the rheological measurements do not provide any direct measurement of
such droplet motions. For this, we turn to light scattering.

4.3 Light scattering in emulsions in an oscillatory shear flow

The basic phenomenon we wish to investigate is the irreversible movement of emulsion
droplets subjected to an oscillatory shear flow; the basic idea is to use dynamic light scat-
tering. As discussed previously in Section 2.2.2, a light scattering measurement performed
on a sample undergoing oscillatory shear flow leads to a series of echoes in the temporal
correlation function of the scattered light. Although the experiments described in Sec-
tion 2.2.2 were discussed in the context of single light scattering, all the concepts apply
equally well to multiple light scattering, that is, to DWS. The only pertinent difference is
that multiple light scattering is much more sensitive to particle motion and can therefore
detect much smaller irreversible particle movements. Therefore, we expect to obtain data
qualitatively similar to that displayed in Figure 11.

light detector

apertures

Figure 21. Schematic of DWS transmission measurement of sheared emulsion. Coherent
light from a laser is ezpanded and directed towards the bottom glass plate on which the
emulsion is placed. The upper glass plate is moved back and forth using a precision piezo-
electric device. Apertures assure that light from on the order of one speckle is collected by
the detector.

In Figure 21, we show a schematic of the experimental setup for a DWS transmission
experiment. Light from a laser is multiply scattered by the emulsion contained between
two glass slides. For the case shown, multiply scattered light which is transmitted through
the sample is detected and sent to an electronic correlator. The glass slides are roughened
to ensure that the emulsion does not slip when the upper slide is oscillated back and forth.
Backscattering DWS experiments are carried out using the same cell but, in that case,
multiply scattered light is collected from the same side of the sample as on which the light
is incident.
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Figure 22. Temporal correlation function obtained using diffusing-wave spectroscopy
on an emulsion undergoing oscillatory flow. (a) Initial decay of the correlation function
arising from the shearing motion. (b) First echo in correlation function centred at a delay
time of one period of the imposed oscillating shear flow.

In Figure 22, we show data obtained from an emulsion subjected to an oscillatory
shear flow with a strain amplitude of vy = 0.010 and frequency of 57.8Hz (¢,; = 0.85).
The figure shows the initial decay of the correlation function and the first echo. Between
these two features, the correlation function is essentially zero. Note that the widths of
the initial decay and the echo are much narrower than the delay time between them.
The width of the peaks is set by the characteristic shear rate yow and the thickness of
the cell [14]. Because of the narrow widths of the peaks, it is essential that the clocks
running the correlator and the shear flow be synchronised. This can be accomplished, for
example, by using the clock for the correlator as the master clock to which the shear flow
is synchronised using a phase-locked loop. Alternatively, two separate clocks may be used
if they are both sufficiently stable over the duration of the experiment.

To extract useful information from the correlation functions we measure, we need an
expression for the correlation function. Recall that in Section 2.2.3 we derived expressions
for gg(r) as an integral over light paths through the sample which had the form:

g5(r) = /0 P(s) e/ g | (45)

where z depended on the type of motion that the scatterers execute. For example, in
Equation 40, z = (k?/3){(Ar%(7)) where {Ar?(r)} is the mean square displacement of the
scatterers. For oscillating shear flow, it can be shown that this reduces to,

2(r70) = 12 (K (7 + 1) = 4| (46)

where ~(rp) is the initial value of the strain [14, 15]. For oscillatory flow, the particle
motion is not stationary but depends on which part of the strain cycle the systems is at.
A typical electronic correlator, such as the one used in these experiments, calculates g;(7)
from the data stream in a manner which essentially assumes the process producing the
data is stationary. Thus, it continually updates the time 7o at which it starts calculating
the correlation function. Therefore, to account for the fact that an oscillating shear flow is
not stationary, we must integrate the theoretical correlation function over all initial values
of the strain. This will allow comparison with data taken from the correlator. Thus, we
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substitute Equation 46 into Equation 45, and integrate the intensity correlation function
over all initial strains (one oscillation period):

gr(t) = 1= 21;—/02”“ lgelz (T, 7'0)]12 dr, (47)

The integral in Equation 47 can be performed numerically to obtain the shapes of the
correlation functions we measure. We determine the transport mean free path [* by mea-
suring the total transmitted intensity [7, 16]. As stated previously, g;(7) is insensitive to
I* in the transmission geometry and the initial decay of the correlation function essentially
depends only on the strain amplitude v, and frequency w. Thus, we can compare our
data to the theoretical expression given in Equation 47 without any adjustable parame-
ters. The result of this comparison is shown in Figure 22(a) where the circles represent
the data from the experiment and the solid line the theoretical result obtained from Equa-
tion 47. The agreement between theory and experiment is remarkable and confirms our
theoretical description of the decay of the correlation function due purely to shear flow.

In writing Equations 46 and 47, we have assumed that there is no motion other than
the affine displacement of scatterers with the applied strain. If this is the case, then the
scatterers should all return to their exact same positions when the shear is reversed thereby
causing an echo in the correlation function at a delay time of the period of oscillation.
Furthermore, the shape of the echo should be governed by the same process that governs
the initial decay discussed above. Thus, the shape of the echo should be described by
Equations 46 and 47. In Figure 22(b) we show a fit of the data to Equations 46 and 47
where the only adjustable parameter is the echo height about which we have no a prior:
knowledge. Once again, the theory fits the data very well.

We now turn to the decay of the echo heights under the application of the oscillating
shear. In Figure 23(a), we show a correlation function for a sinusoidal shear flow with
a strain amplitude of 49 = 0.05. Because of technical limitations in the instruments
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Figure 23. Temporal correlation function obtained using diffusing-wave spectroscopy on
an emulsion undergoing oscillatory flow. (a) Correlation function showing initial decay
and multiple echoes. The strain amplitude is v = 0.05. (b} Initial decay and first echo in
correlation function on an expanded time scale. The strain amplitudes are v, = 0.01 (cir-
cles), 0.02 (triangles), and 0.06 (squares). The use of slightly different strain frequencies
leads to the slightly shifted peak positions of the echoes.
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used to calculate the correlation function from the experimental data train, only the
first, second, fourth, eighth, and sixteenth echoes were determined in these experiments.
The other echoes exist, as confirmed by other experiments, but were not determined in
the measurement displayed. The first echo is less than unity, as expected, because of
irreversible motion of at least some of the droplets. There is one quite unexpected feature
of these data, however, and that is that all the echos have the same height. This is in
stark contrast to the behaviour illustrated in Figure 11 where the echo heights decayed
exponentially consistent with particle diffusion. Indeed, light scattering experiments on
colloidal suspensions under an oscillating shear exhibit the expected exponential decay
[17].

Although all the echoes have the same height for a given strain amplitude +yg, the
height of the echoes decrease with increasing <, as shown in Figure 23(b). For all strain
amplitudes, however, the echo height is constant for as large of delay times as we can
measure. We also note that this same behaviour is observed for backscattering DWS
measurements as well.

The fact that the echoes do not decay after the first echo means that there is a finite
fraction of the emulsion which undergoes reversible periodic motion. If this were not the
case, there would not be any echoes. It also means that there is another fraction of the
emulsion for which undergoes irreversible motion. That is, the trajectories of some fraction
of the emulsion droplets are chaotic. This is why the echo heights are less than unity.
Finally, the fact that the echo heights do not change in time means that these two fractions
of emulsion droplets are disjoint sets. If a droplet undergoes a reversible trajectory after
one shear cycle, then it does so indefinitely. Similarly, if a droplet undergoes an irreversible
trajectory after one shear cycle, then it does so indefinitely. Thus, under oscillatory shear
the system partitions itself into fragile regions which are fluid-like and elastic regions which
are solid-like. Furthermore, these regions maintain their identity and integrity over time.
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Figure 24. (a) Echo height from DWS backscattering ezperiments vs. strain amplitude
for different volume fractions. (b) Comparison of the critical strain amplitude vs. volume
fraction obtained from DWS measurements (solid symbols) to yield sirains obtained from
rheological measurements by Mason et al. [13] (open symbols).

The dependence of the echo heights on strain amplitude is shown in Figure 24. This
plot shows that the echo height decays monotonically as a function of increasing strain

Copyright © 2000 IOP Publishing Ltd.



Light scattering and rheology of complex fluids driven far from equilibrium 45

amplitude. Thus the volume fraction of droplets that rearrange under strain increases as
the amplitude of the strain increases.

Mason et al. [13] found using rheological measurements that the emulsion yields above
some critical value of the strain amplitude. To make contact with their measurements,
we plot the data they obtained for the yield strain vs. volume fraction of droplets in
Figure 24(b). In the same Figure, we also plot the volume fraction at which the echo
heights drop to one half their initial value. While this criterion is somewhat arbitrary, the
good agreement between the two data sets support the idea that yielding is associated
with partiele rearrangements in the emulsion.

To obtain a quantitative measure of the fraction of emulsion that undergoes rearrange-
ments we must analyse the shape of the correlation function and the echo heights in more
detail. Basically, there are three contributions to the shape of the correlation function:
(1) the decay arising from the oscillatory straining motion which we have already dis-
cussed, (2) the spontaneous decay of the correlation function caused by Brownian motion,
and (3) droplet rearrangements caused by the oscillating strain. The spontaneous decay
arising from Brownian motion is observable only at the lower volume fractions, where
there remains some room. for the particles to move. This contribution to z(t) is given
by (k%/3)(Ar?(t)) where (Ar%(t)) is the mean square displacement caused by Brownian
motion and can be determined from the decay of g2(7) in the absence of shear.

The contribution to the decay of the correlation function arising from rearrangements
can be determined in the following way [18]. In the absence of a rearrangement event, we
assume that there is no decay of the height of the echo. That is, the length of a light path
through the sample is exactly the same as it was one oscillation period ago unless the
path intersects a region in the sample that undergoes a rearrangement. In the case that
it does intersect a region that has undergone a rearrangement, the phase of that path is
completely randomised. This assumption is justified by the fact that the droplet sizes are
comparable to the wavelength of light and any rearrangement of even a small group of
droplets is virtually certain to change the path length through the sample by at least one
wavelength. Thus, the height of the echo is simply determined by the fraction of paths
that have not been randomised after a delay time 7, where 7 is an integral number of
oscillating periods. If the number of rearrangements of a given size @ occur randomly at a
rate R per unit volume, then the rate at which rearrangements occur within a light path o
is proportional to the product of R and the volume swept out by the light path sI*2, since
I* is the shortest length scale over which one can describe the transport of light within
the diffusion approximation. In addition, o will scale as a®/I*? since larger rearrangement
events will randomise more paths. Thus, a ~ R(s*?)(a®/I*®) = (a®R)(s/!*). This means
that the contribution to the decay of the correlation function of paths of a given length
s is exp(—ar) = exp[—(a®R)(s/!*)7]. This can be written in simpler form by noting
that at any given delay time, the volume fraction ® of the sample that has undergone an
irreversible rearrangement is ® = aR%r. Thus, in Equation 45, to within factors of order
unity, z(r) =~ ®(7).

Putting together the three contributions to the decay of the correlation, we obtain

2(0) = FARO) + 12 K Iy + ) — ()] + 8(7) (48)

Substituting this into Equation 45, we can use this result to extract from the echo height
the volume fraction which has undergone irreversible rearrangements ®(7). Note that in
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Figure 25. Volume fraction ® of emulsion sample undergoing irreversible rearrangements
v8. strain amplitude. The solid symbols were obtained from backscattering date and the
open symbols from transmission data. The volume fraction of droplets for each sample is
indicated in the legend.

general, this quantity can have a time dependence, and is written explicitly as having
one in Equation 48. The fact that the echo heights do not change in time simply reflects
the fact that the volume fraction which undergoes irreversible rearrangements remains
constant in time.

In Figure 25, we plot the volume fraction of emulsion & that has rearranged as a
function of strain amplitude . Data obtained in both transmission and backscattering
are plotted. At large strain amplitudes, there is some discrepancy between the transmis-
sion and backscattering measurements suggesting that the volume fraction of emulsion
which undergoes irreversible rearrangements increases near the walls of the sample. As
expected, the emulsions which have a lower volume fraction of droplets undergo more re-
arrangements at a given strain amplitude than do emulsions with a higher volume fraction
of droplets. By comparing our measurements of ®(v,) shown in Figure 25 to the mea-
surements of yield strain by Mason et al. [13] we estimate that yielding occurs in these
emulsions when approximately 4% of the emulsion droplets have undergone irreversible
rearrangements.
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Polymer physics: from basic
concepts to modern developments

Alexei Khokhlov

Moscow State University, Russia

1 Basic concepts of polymer physics

1.1 Fundamentals of the physical viewpoint in polymer science

Polymer chains of different chemical structure have, of course, different properties. How-
ever, there are many common properties characteristic of large classes of polymer systems.
For example, all rubbers (cross-linked polymer networks, see below) exhibit the property
of high elasticity, all polymer melts are viscoelastic, all polyelectrolyte gels absorb a large
amount of water, etc. Such properties can be described on a molecular level by taking
into account only the general polymeric nature of constituent molecules, rather than the
details of their chemical structure. It is these properties that are studied using polymer
physics. For a more complete introduction, and many further references, see Grosberg
and Khokhlov 1994; Grosberg and Khokhlov 1997.

What are the main factors governing the general physical behaviour of polymer sys-
tems? Three of them should be mentioned in the first place.

~CH;-CH;-CH;-CH- poly(ethylene)

—CH%H—CH% ~ poly(styrene)

—~CHyCH-CHCH-— poly(viny choride)
cl cl

Figure 1. Common polymer chains.

First of all, polymers are long molecular chains. In Figure 1 three of the most common
polymer chains with carbon backbones are shown. One can see that small atomic groups
(monomer units) are connected in linear chains by covalent chemical bonds. The chain
structure of constituent molecules is the first fundamental feature of polymer systems.
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In particular, this means that monomer units do not have the freedom of independent
translational motion, and therefore polymers do not possess the entropy associated with
this motion (the so-called translational entropy). This is sometimes expressed as follows:
polymer systems are poor in entropy.

Second, the number of monomer units in the chain N, is large: N > 1 (otherwise
we have an ‘oligomer’, not a polymer). For macromolecules synthesised in the chemical
laboratory, normally N = 10?-10*. For biological macromolecules the values of N can
be much larger, for example, the longest polymer chains are those of DNA molecules:
N =~ 10°-10'°, Such large objects can be seen by a normal optical microscope (if DNA
is labelled with fluorescence dyes), since the linear size of DNA coil turn out to be larger
than the wavelength of light.

Figure 2. Polymer chains are generally flexible, they normally take the configuration of
the coil (right), not of the rigid rod (left).

Third, polymer chains are generally flezible (see Figure 2), they normally take the
conformation of a random coil, rather than that of a rigid rod. We will discuss in detail
the notion of polymer chain flexibility in Section 1.2.

In summary, their chain structure, the large number of monomer units in each chain,
and chain flexibility are the three main factors responsible for the special properties of
polymer systems.

1.2 Flexibility mechanisms of a polymer chain
1.2.1 Rotational-isomeric flexibility mechanism

Let us consider the simplest polyethylene chain (Figure 1) and let us ask ourselves for
which conformation do we have the absolute energetic minimum? Such a conformation
corresponds to a straight line and is shown schematically in Figure 3. For this confor-
mation all the monomer units are in the so-called trans position. This would be the
equilibrium conformation at T = 0.

\/ \/
/‘\ PNV N /°\
A VAN

Figure 3. The rectilinear {all trans) conformation of a polyethylene chain.
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At T # 0, due to the thermal motion, deviations from the minimum-energy confor-
mation are possible. According to the Boltzmann law, the probability of realisation of a
conformation with the excess energy U over the minimum-energy conformation is

P(U) ~ exp (—ICBLT) . (1)

What are the possible conformational deviations from the structure shown in Figure 37
For a carbon backbone the valency angle v (see Figure 4) should be normally considered
as fixed (for different chains 50° < v < 80°). However, rotation with fixed v by changing
the angle of internal rotation ¢ (see Figure 4), is possible. Any value ¢ # 0 gives rise to
deviations from the rectilinear conformation, i.e. to chain flexibility, though usually there
are only two or three preferred values of ¢ corresponding to different rotational isomers.
This kind of flexibility is called the rotational-isomeric fleribility mechanism.

Figure 4. The valency angle v and angle of internal rotation ¢ for a carbon backbone.

1.2.2 Persistent flexibility mechanism

Another flexibility mechanism can be realised when rotational isomers are not allowed,
e.g. in o-helical polypeptides or DNA double helix. The conformations of these chains
are stabilised by hydrogen bonds and internal rotation is impossible. In this case small
thermal vibrations around the equilibrium conformation play the most important role.
Via their accumulation over large distances along the chain, these vibrations give rise to
the deviations from the rectilinear conformation, i.e. to the chain flexibility. This is a
persistent flexibility mechanism; it is analogous to the flexibility of a homogeneous elastic
filament.

1.2.3 Freely-jointed flexibility mechanism

Another mechanism of flexibility is realised in the so-called freely-jointed model of a poly-
mer chain. In this model the flexibility is located in freely-rotating junction points: ¢ in
Figure 4 takes any value. This mechanism is not very characteristic of real chains, but it
is frequently used for model theoretical calculations.
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Figure 5. Typical conformation of a polymer coil of freely-jointed segments.

1.3 Portrait of a polymer coil

In Figure 5 a typical conformation of a polymeric coil is presented. It was constructed
on the computer for the freely-jointed model by allowing each subsequent segment to be
oriented in an arbitrary direction with respect to the previous one. From this picture one
can draw the following conclusions:

o The volume fraction occupied by the monomer units inside the coil is very small.
There are many ‘holes’ inside.

o By the manner of our construction of Figure 5 it is easy to realise that chain tra-
jectory is analogous to the trajectory of a Brownian particle.

A single coil conformations of the type shown in Figure 5 can be realised in real experiment
in dilute polymer solutions when polymer coils do not overlap.

1.4 Size of an ideal freely-jointed chain: the random coil

By definition, in the ideal polymer chain we take into account only the interactions of
close neighbours along the chain. The interactions of monomer units which are far from
each other along the chain are neglected. Polymer chains behave as ideal ones in so-called
B-conditions (see below).

Consider an ideal N-segment freely-jointed chain with each segment of length [ (see
Figure 6). The size of such a chain can be characterised by its end-to-end vector R. How-
ever, this vector will change rapidly in the course of the thermal motion. An important
characteristic is the average size R of a polymer coil. This average cannot be defined as
(R) since all the segments orientations are equiprobable, therefore (R) = 0. That is why
the size R of coil is usually characterised by the root-mean-square end-to-end distance:

R~ (/(|R[2). Let us calculate this value for our model. The end-to-end vector is the sum
of the segments vectors (see Figure 6):

R=Zu.-. (2)
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Figure 6. The model of freely-jointed chain.

Thus the square of the end-to-end distance is:

|m%{gm)(éw)=ifﬁpw, (3)

i=1j=1

and the average of this value

N N N N N
(R =33 (wi-wy) =3 () +3 > (wi-uy). (4)
i=1j=1 i=1 i=1 j=1,j#

In the last equality in Equation 4 we have separated the terms with ¢ = j from all the other
terms. Taking into account that {Ju;?) = {® and (u;- u;);z; = 0 (because the orientations
of different chain segments in the freely-jointed chain model are not correlated), the final
result is

R~ \/(R?) = N/, (5)
Note that the mean square end-to-end distance is much less than the contour length L of
the chain: R <« L = NI. Thus, the conformation is far from the rectilinear one. Because
R in Equation 2 is the sum of many random variables, its three components are each
gaussian distributed; an ideal chain forms a random walk or gaussian coil (Figure 2).
Note that Equation 5 can be also rewritten as (R?) = Ll since L = NI.

1.5 Size of an ideal chain with fixed valency angle

The conclusion R ~ N'/2 is actually valid for an ideal chain with any flexibility mechanism
(not only for a freely-jointed chain model). For example, let us consider the model with
fixed valency angle v between the segments of length b and free internal rotation (see
Figure 4). As follows from Section 1.2, this model is close to a real chain with the
rotational-isomeric flexibility mechanism.

It can be shown that for this model

1—-cosvy
~ 2y — N2 2 P T
R~/(R* =N b‘,1+cosy (6)

where b is the bond length. We see that the average size of the chain is still proportional
to N'/2, and in this model the chain is also in the gaussian coil conformation. This is a
general property of ideal polymer chains, independent of the model for chain flexibility.
At v < 90° the value of R is larger than for a freely-jointed chain, while at v > 90° the
reverse is true.

Copyright © 2000 IOP Publishing Ltd.



54 Alexei Khokhlov

1.6 Kuhn segment length of a polymer chain

We have seen above that for any ideal chain (R?) ~ N ~ L (at large values of the contour
length L). Therefore, the ratio {R?)/L should be independent of L and should give a
measure of chain flexibility. By definition, the Kuhn segment length of a polymer chain is
introduced as

(R?)

= A (at large L) (7

so that the equality (R?) = L! is exact by definition.

The physical meaning of [ follows from comparison of this equality with Equation 5,
valid for a freely-jointed chain. The comparison shows that if we try to choose a freely-
jointed eguivalent to a given chain with the same values of (R?) and L, the segment
length for this equivalent chain should be equal to I. Thus [, the length of an equivalent
segment, represents an approximately straight subunit of the chain. It is a quantitative
characteristic of chain flexibility.

1.7 Persistence length of a polymer chain

It can be shown that for the model of Figure 4, as well as for most of other polymer
models, the orientational correlations of the chain as a function of the contour distance
obey

{cos 9) ~ exp(—s/l), (8)

where ¥ is the angle between unit vectors u(0) and u(s) (see Figure 7). We see that these
correlations decay exponentially along the chain; the characteristic length of the decay, [,
is called the persistence length of the chain. The physical meaning of this characteristic

%(0)

i(s)

Figure 7. Illustration for the definition of persistence length of a polymer chain.

follows from Equation 8. At s < I we have {(cos®?) ~ 1, so the chain is approximately
rectilinear, while at s > [ we obtain {cos¥) = 0, so that the memory of chain orientation
is lost.

It is worthwhile to note the advantages and disadvantages of using ! and [ as quan-
titative characteristics of chain flexibility. The advantage of [ is that it can be directly
experimentally measured (the values of (R%) and L can be determined from light scatter-
ing (Grosberg and Khokhlov 1994)). The advantage of [ is that it has a direct microscopic
meaning (see Figure 7). Depending on what is more important in the specific problem, one
may choose { or [. One can show that always [~ I; in most cases, lis approximately {/2.
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1.8 Stiff and flexible chains

Let us choose the Kuhn segment length [ to characterise stiffness. The value of [ is
normally larger than the contour length per monomer unit ly. The ratios [/ly for some
common polymers are shown below.

poly(ethylene oxide) 2.5
poly(propylene) 3
poly(methyl methacrylate) 4
poly(vinyl chloride) 4
poly(styrene) 5
poly(acrylamide) 6.5
cellulose diacetate 26
poly(para-benzamide) 200
DNA (in double helix) 300
poly(benzyl glutamate) (in a-helix) | 500

From a macroscopic viewpoint, a polymer chain can be always represented locally
as some filament which is characterised by two microscopic lengths: the Kuhn segment
length | and the filament’s characteristic diameter d. (This describes the thickness of the
filament.) Depending on the ratio between these two lengths, we can now introduce the
notion of stiff and flexible chains. S#iff chains are those for which [ >> d, while for flexible
chains [ ~ d. Some examples of stiff chains are DNA, helical polypeptides, aromatic
polyamides etc. Examples of flexible chains are polyethylene, polystyrene, etc. —in fact,
most polymers having a single-chain carbon backbone.

2 Swelling and collapse of single chains and of gels

2.1 Basic physical effects

If polymer chains are not ideal, interactions of non-neighbouring monomer units (the
so-called volume interactions) should be taken into account. If these interactions are
repulsive, the coil swells with respect to its ideal dimensions. If monomer units attract
each other, contraction of the macromolecule is observed. In many cases this contraction
leads to the ‘condensation’ of polymer chain upon itself, with the formation of a ‘dense
droplet’ conformation, which is called a polymer globule. The transition to this collapsed
conformation (Figure 8) is called the coil-globule transition.

Figure 8. Coil-globule transition.
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good solvent poor solvent
—->
gel
gel
a b

Figure 9. Polymer gel in a good (a} and poor (b) solvents.

The same type of phenomenon can be observed in polymer gels, which are cross-linked
polymer networks swollen in a solvent. Gels of linear size of 1mm to 1cm are normally used
in experiments, although it is possible to prepare ‘microgels’ of up to 100nm size. The gel
as a whole is actually one giant three-dimensional molecule. Suppose that such a gel is in
contact with a large volume of solvent (Figure 9). If the monomer units of the gel repel
each other (in other words, polymer chains prefer to be in contact with solvent molecules,
rather than with each other), the gel should swell to minimise polymer-polymer contacts
(Figure 9a). This is the so-called situation of a good solvent. If, on the contrary, monomer
units are mutually attracting (poor soivent case), the gel should collapse (Figure 9b). In
this way the number of unfavourable polymer-solvent contacts is minimised.

One can see that the phenomena shown in Figures 8 and 9 are similar in nature.
There is some advantage in studying conformational transitions in the gels. Since all
the gel chains are connected in one integrated spatial framework, one can observe the
corresponding molecular processes just by direct visual recording of the macroscopic di-
mensions of the gel sample. The main disadvantage here is connected with the extremely
slow equilibration in macroscopic gels: for samples with a size of about lcm the equili-
bration time 7 may be several days. This can be diminished by using smaller gels: one
can show that 7 ~ L?, where L is the linear dimension of the gel sample.

2.2 Concept of the ©-temperature

Let us consider the simplest model of polymer chain shown in Figure 10.- In this model,
the chain is represented as a chain of NV beads each of volume v on an immaterial filament.
This model is not very realistic, although it would become so if only a small fraction of
monomers on a real chain were subject to volume interactions, so that each was separated
by several persistence lengths from its neighbours along the chain. This allows one to
assume a short stretch of gaussian chain between successive beads, whose mean-square

Figure 10. Model of beads on o Gaussian filament.
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_e-_—_

Figure 11. Typical interaction potential for the model of beads.

end-to-end distance is denoted a?.

The beads interact with a pair potential U(r). A typical ‘Lennard-Jones type’ potential
is shown in Figure 11. The dependence of U(r) at small values of r corresponds to the
repulsion due to the hard-core volume of the beads (excluded volume) and the tail at large
r describes the Van-der-Waals attraction between the beads. The characteristic energy
scale of this potential can be estimated as its value at the minimum e. It is easy to see
that:

1. At high values of T, ¢/kpT <« 1 and only repulsion matters. The coil should swell
with respect to the ideal dimensions; this phenomenon is called the ezcluded volume
effect. In this case the so-called swelling coefficient of the coil, o, is larger than
unity:

2

2 _ ()
ot = >1. 9
(), 9)
In the history of polymer science the dependence of {R?) (or o?) on the number
of monomer units, for chains with excluded volume, has been studied in detail by
experiment, theory and simulation. Computer experiments (e.g. for lattice models)
give in three dimensions (R?) ~ N®% i.e. o® ~ N'/5, Therefore, the excluded

volume effect is very significant, it even changes the character of the dependence of
{R?) on N from that of ideal chains ({R?) ~ N).

2. At low values of T, such that ¢/kgT > 1, attraction dominates. The coil should
shrink and form a condensed globule (the coil-globule transition).

3. At intermediate values of T', the effect of repulsion and attraction should compensate

each other and the coil should adopt ideal-chain {unperturbed) size. This happens
at the so-called ©-temperature.

Let us consider the concept of ©-temperature in more detail. The free energy of a coil
is the sum of energetic and entropic contributions:

F=E-TS. (10)
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The entropy of an ideal coil can be written in the well-known Flory form (see McLeish,

this volume):

3kpR?

S=———. 11
2a2N (11)

As to the energy E, contrary to the case of ideal coil, for the present case it is not equal

to zero (or to a constant).

To write down the expression for E we should note that the concentration of monomer
units inside the polymer coil n ~ N/R? is very small for long chains (proportional to N~/2
if they are nearly ideal). Therefore, we can write the expression for E as an expansion in
powers of n:

E = NkgT(Bn+Cn®+...). (12)
This is the virial ezpansion, and the coefficients B, C, ... are the virial coefficients. From
the statistical physics of nearly-ideal gases, we know that coefficients B, C, ... describe

binary, ternary, etc. interactions of monomer units, and that they can be expressed in
terms of the interaction potential U(r). For example, the second virial coefficient B(T')
is given by .

B(T) =3 [ 1= exp (<Ux)/kaT)) d*r . (13)

The typical behaviour of B(T') is shown in Figure 12. At high temperatures B ~ v > 0,
where v is the volume of a monomer unit. When the temperature is lowered the value of B
decreases due to the contribution of the second term in the integrand of Equation 13 and

B

Figure 12. The characteristic dependence of second virial coefficient on temperature.

finally at some T = © we have B(©) = 0. (In gases, this is called the Boyle temperature.)
Since B(T) is approximately linear through the ©-temperature, we may approximate in

this region T o
B~ o, 7= (14)

Since for large values of N the concentration n inside the coil is very small, we can
with very good accuracy retain only the first term of the virial expansion (Equation 12):

E = NksTBn. (15)

But at the temperature T = © the value of B is equal to zero, therefore £ = 0, thus
F = -T§, and the chain adopts the conformation of an ideal coil. At T > O the energy
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of interaction, Equation 15, is positive, repulsion dominates and the coil should swell.
According to the terminology introduced above, this is the regime of good solvent. On the
other hand, at T < O the free energy of interactions is negative, which means that the
attraction prevails and therefore a coil shrinks to a globule. Thus, 7 < © is the regime
of poor solvent. In this case it is necessary to go beyond Equation 15 and include higher
terms.

Note that the complete compensation of interactions at the ©-point is a specific poly-
mer property (not valid for gases) connected with low polymer concentration in the coil.
Only for polymer coils (in at least three dimensions) can the third and higher virial
coefficients can be neglected at the ©-point itself.

2.3 The excluded volume problem

Let us consider the polymer coil far above the ©-point in the good solvent region, and let
us calculate the swelling of the coil by excluded volume. The free energy for this system
can be approximated in the form

N 3ksTR?

(47rR3)+ NG + const . (16)
3

F=E-TS8=NkgTBn—-TS =NkgTB

Where for the second term the Flory expression for the entropy of an expanded coil
was used (see Equation 11). The excluded volume repulsion (first term) induces the
coil swelling, while entropic elasticity (second term) opposes it. Minimisation of F' with
respect to R gives the equilibrium coil size. Setting 8F/OR = 0 gives (omitting all
numerical coefficients) ,
kgTBN? kgTR
R4 + Na?2 — 0. (17)

Therefore,
R~ (BtzQ)l/5N3/5 ~ (va2)1/5N3/5. (18)

The last equation may be written in the second form because at high temperatures B ~ v.
It follows that
o~ R/NY? g ~ (v/a®) ANV 3 1, (19)

Equations 18 and 19 are in agreement with the results of computer experiments for the
lattice models mentioned earlier, and also with real experimental data on dilute swollen
chains. (Much more sophisticated theories are possible, but these barely change the
R ~ N3/% dependence: see, e.g., Grosberg and Khokhlov 1994.) Therefore, we conclude
that the polymeric coil swells due to the excluded volume, in spite of the extremely low
polymer concentration in the coil. This illustrates the high susceptibility of long polymer
chains to any perturbation, in particular to the excluded volume interactions.

2.4 Coil-globule transition

Now let us consider the whole range of temperatures below the good solvent region of the
previous section. When the temperature is lowered below the ©-point, the coil-globule
transition (or polymer collapse) should take place as is depicted in Figure 8. The interest
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in the globular form of macromolecules was initially aroused by molecular biophysics,
since most protein-enzymes are polymeric globules. Denaturation of globular proteins
was sometimes considered to be analogous to the transition from globule to coil.

The theory of the coil-globule transition developed by Lifshitz et al. (1978) gives the
following results:

1. The coil-globule transition takes place in the vicinity of the ©-point, in fact at
—7 ~ a®/(vN'/?) « 1. This is only very slightly lower than the ©-temperature. It
is enough to have a very weak attraction to induce the transition into a globule, in
contrast to the case of condensation in gases. The reason is that, due to the chain
connectivity, independent motion of monomer units is impossible: a polymer coil is
poor in entropy compared to a gas (or a solution) of its monomers.

2. For a rigid chain the collapse transition is discrete, while for flexible chains it is
continuous.

3. For a negative second virial coefficient, B < 0, the globular state is stable and

(a) The size of the globule R ~ N'/3 (cf. with R ~ N'/2 for ideal coil and R ~ N3/5
for the coil with excluded volume). So the monomer density within a globule
is independent of .

(b) In the globule far from the ©-point (|7]| ~ 1) the volume fraction of monomer
units is generally not small. This is a dense liquid droplet.

(c) The globule swells as the ©-point (and the coil-globule transition point) is
approached, so that a description in terms of only B and C (the second and
third virial coefficients) becomes valid in the vicinity of the transition point.

4. Experimentally, the coil-globule transition was cbserved for many polymer-solvent
systems. A very convenient system is polystyrene in cyclohexane, since the ©-
temperature for this case corresponds to © = 35°C.

The main difficulty for the experimental observation of the coil-globule transition of
individual chains is the possibility of intermolecular aggregation and formation of a
precipitate. To avoid this, the concentration of polymer in the solution should be
very small (e.g. for polystyrene-cyclohexane system it should be less than 10~*g/I).

3 Statistical physics of polyelectrolyte systems

3.1 Introduction

Polyelectrolytes are polymer molecules having charged units. A monomer link can be
charged following dissociation which results in a charged unit and a low molecular weight
counterion. The number of counterions is then equal to the number of charged units. As
a rule, dissociation occurs when molecules are dissolved in highly polar solvents of which
water is the most important one (dielectric constant ¢ =~ 81).

Polyelectrolytes are classified into strongly and weakly charged ones. In strongly
charged polyelectrolytes, every link (or a considerable fraction of the links) carries a
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charge. Therefore, Coulomb interactions among monomers predominates over the non-
electrostatic (e.g., Van der Waals) interactions. Charged macromolecules with a small
fraction of charged units are called weakly charged polyelectrolytes. For weakly charged
polyelectrolytes a nontrivial competition between Coulomb and non-electrostatic interac-
tions takes place.

It is normally assumed that the potential arising from Coulomb interactions involving
two elementary charges e separated by a distance r is given by the Debye-Hickel potential

2

Ulr) = z_r exp(—r/rp), (20)

where ¢ is the dielectric constant of the solvent and rp = (ckgT/4mne?)"/? is the so-
called Debye-Hiickel radius, or screening length. Here n is the total concentration of low
molecular weight ions in the solution, including not only dissociated counterions, but also
the counterions and coions of any low molecular weight salt that has been added. The
screened Coulomb potential (20) is the main result of the Debye-Hiickel theory (Landau
and Lifshitz 1980). However, this theory is only applicable if the electrostatic effects are
sufficiently weak (see below); specifically, the expression for rp assumes that the Coulomb
potential experienced by the counterions and coions is small compared to kgT'.

3.2 Main complications in the theory of polyelectrolytes

Compared with the theory of neutral polymers, polyelectrolytes pose complications:

1. There are additional parameters (linear charge density of the chain, salt concentra-
tion, pH etc.) which essentially influence the polyelectrolyte behaviour.

2. Coulomb interactions are generally not weak (so that Debye-Hiickel approximation
may be not valid). This is usually a problem for strongly charged polyelectrolytes.
The most important new effect emerging as a result of this fact is the phenomenon
of counterion condensation (see below).

3. In addition to screening of Coulomb interactions due to point-like ions there is also
screening by extended polymer chains themselves. This complicates the character
of electrostatic interactions in polyelectrolyte systems.

4. Interplay of Coulomb and Van-der-Waals interactions for weakly charged polyelec-
trolytes can lead to the formation of regular nanostructures with different morphol-
ogy (spherical micelles, cylinders, lamellae, ete.) controlled by slight modulation of
external parameters (salt concentration, pH, temperature, etc.).

These complications can be addressed using several basic concepts. Among these, the
most important are: counterion condensation, the electrostatic persistence length, and
translational entropy of counterions. These concepts will be considered in the following
sections.
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Figure 13. lllustration of the phenomenon of counterion condensation.

3.3 Counterion condensation: Manning mechanism

The condensation phenomenon can be explained as follows. Let us suppose that we have
a charged line (polymer chain) of charges e separated by a distance a along the chain
(Figure 13). The linear charge density of such a chain is p = e/a. Let us assume that
some counterion experiences the field of this charged line. The question is, whether it is
thermodynamically favourable for such a counterion to approach the charged line (min-
imising its electrostatic energy) or whether the opposite option is preferable (maximising
the entropy of translation).

Let us suppose that in some initial state the counterion is confined to a cylinder of
radius r; around the charged line (see Figure 13), while in a proposed ‘final’ state it is
confined within a cylinder of radius r3 > r;. The gain in the free energy of translational
motion is then

AF, ~ kpTln 2 ~ kgTln "2 | (21)
Wi 1

where V; and V, are the volumes of the initial and final cylinders. On the other hand,
the increase of the radius of the cylinder leads to a decrease of the average energy of
attraction of counterions to the charged line. According to the formulae of electrostatics

this decrease is

2
AR~ —efm 2 S 12, (22)
£ T ga

One can see that both AF} and AF; are proportional to In(ry/r,). Therefore the net
result depends on the coefficients before the logarithm. If

2

cakgT

and this means that the gain in translational entropy is more important; the counterion
goes to infinity. On the other hand, if

u > 1, then AR > AR (24)

<1, then AF, > |AF2| (23)

and the counterion should approach the charged line and condense on it.

Now we take the second, third and further counterions, and repeat for them the above
considerations. As long as the linear charge density p.g of the original charges plus its
condensed counterions satisfies the inequality (pege/cksT) > 1 (compare Equation 24)
the counterions will condense on the charged line, decreasing pes. When the number of
condensed counterions neutralises the charge of the line to such an extent that

_ Peff€
Ueff = EICBT =1 (25)
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Figure 14. The dependence of the effective charge on the line as a function of its initial
charge.

the condensation of counterions stops. All the remaining counterions are floating freely
in the solution. The plot of the effective linear charge of the line as a function of initial
linear charge is shown in Figure 14.

One can see that in the presence of counterions there is a threshold

* ekgT
=— 2
- (26)
such that it is impossible to have a charged line with an effective linear charge density
above this threshold.

The effect of condensation of counterions should be always taken into account in the
consideration of polyelectrolytes in solution. Especially for strongly charged polyelec-
trolytes, some fraction of the counterions is always condensed and neutralises partially
the strong electric field of the charged chain. Only the remaining fraction is free to par-
ticipate in the Debye screening of electrostatic interactions according to the formula (20).

3.4 Electrostatic persistence length

The Coulomb interaction stiffens the chain of a strongly charged polyelectrolyte, that is,
it leads to an increase in the persistence length ! of the chain from /y to a new value lo+/,.
The contribution [, is called the electrostatic persistence length.

That the Coulomb interaction leads to an effective renormalisation of the persis-
tence length can be illustrating using Figure 15, in which a chain is shown for the case
a € tp < l. (This corresponds to a strongly charged polyelectrolyte, with a moderate
concentration of a low-molecular-weight salt in the solution.} In this case two types of
Coulomb interaction are possible:

1. Interaction between the charges separated by a distance < rp along the chain. (This
is a short range repulsion, tending to increase the persistence length.)

2. Interaction between the charges separated by a distance > [ along the chain. (Such
charges approach one another closer than the distance rp as a result of random
bending of the chain; their interaction should naturally be classified with the volume
interaction.)
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Figure 15. Persistence length renormalisation in a polyelectrolyte chain.

This subdivision into short-range and volume interactions is quite unambiguous for
rp < I, because links separated by a distance exceeding rp but less than ! can neither
interact directly (because of the Debye screening) nor draw together as a result of chain
bending. Thus, for ¢ « rp < [, it is the short-range part of the Coulomb interaction
that brings about an increase in the persistence length.

To determine the quantity /., let us first derive the persistence length for an uncharged
persistent chain from the energy of slight bending of a rod-like section of the chain. The
bending energy of a section having length L described by a tangent u(s) (I¥igure 7) can
be written as

ARy =

N o

8

L
[1p@rds, ) =5, (2)
0

where b is an effective bending modulus for a unit length of the chain, and p(s) is the
curvature of the chain fragment as a function of contour length s (with 0 < s < L).
Because the filament can be assumed to bend with an approximately constant radius of
curvature, || & /L (with ¢ the total angular deflection) we can find from Equation 27
that AFy(L, ) & bp?/2L. The elastic persistence length I can be defined according to

AFy(L ~ly,p~1) ~kgT, (28)

i.e. Iy = b/kgT; it is proportional to the bending modulus and grows as the temperature
decreases.

In the charged chain, an additional repulsion of the links (20) occurs so that the

bending energy cost increases:

b 2 v

N l_kgTT_lO_HE (29)
and as a consequence the persistence length is increased, too. The expression for the
electrostatic persistence length /, has the form (Odijk 1977)

AF = AFy + AF, ~

urd/(4a), at u<1 (nocondensation)
o (30)

3 /(4ua), at ©>1 (condensation takes place).
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Taking into account that for typical cases u ~ 1 and rp > a (if the salt concentration is
not very high), we reach the conclusion that l, 3> rp, so that the stiffening of the polymer
chain because of electrostatic interactions occurs on length scales much larger than the
Debye radius rp (despite the fact that this interaction only acts over a radius rp). In
many cases, provided that the corresponding uncharged chains are not too stiff, we obtain
le > lp.s0 that the electrostatic contribution to the persistence length prevails.

Note that in the regime of counterion condensation, the quantity [, is independent of
the linear charge density p = e/a of the polymer chain, as it should be, because the charge
density in excess of e/a is compensated by the counterions condensing onto the chain.

3.5 Ionic gels: role of translational entropy of counterions
A schematic representation of a polyelectrolyte gel is shown in Figure 16. It consists

of polyelectrolyte molecules cross-linked by covalent chemical bonds into an integrated
spatial network swelling in a solvent (usually in water).

Figure 16. Schematic picture of a polyelectrolyte gel.

Figure 16 shows that a polyelectrolyte gel contains counterions together with charged
monomer units that together ensure that a macroscopic gel sample as a whole is electrically
neutral. When a gel swells in a large volume of water, it appears advantageous for the
counterions to abandon the network and go out of the gel into the surrounding solution,
because it would lead to substantial translational entropy gain. However, this is not
the case since the principle of electro-neutrality of macroscopic gel samples would be
violated. So, the counterions have to remain inside the network where they exert an
osmotic pressure. This counterion pressure is responsible for two of the most important
physical effects taking place in polyelectrolyte gels swelling in water.

Firstly, the osmotic pressure results in very considerable gel swelling: one gram of a
dry polymer may consume hundred of grams of water absorbed by the gel. This allows
polyelectrolyte gels to be used as so-called super-absorbents of water. Uses include diapers,
retention of soil moisture, dust immobilisation, etc.
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Figure 17. The dependence of the volume of a polyelectrolyte gel V on the volume fraction
& of poor solvent added to water. V; is the volume corresponding to the gel swollen in-
pure water.

Secondly, the excessive swelling of polyelectrolyte networks in water explains their
sharp contraction upon deterioration of solvent quality and leading to a several-hundred-
fold jumpwise decrease in the gel volume (see Figure 17).

This phenomenon is called gel collapse. It is connected with the coil-globule transition
of the polymer chains in a gel, translated into collapse of a gel as a whole. The stronger
the charge of the gel, the sharper is the collapse. This.is easy to understand since the
collapsed phase is stabilised by attractive forces between uncharged units. Therefore, the
collapsed gel volume displays only weak charge-dependence whereas the volume of swollen
gel grows considerably with increasing charge due to osmotic pressure of counterions. Thus
the amplitude of the jump in volume between these two states should increase with the
increase of the degree of charging of the gel chains.

3.6 Possible states of counterions in a polyelectrolyte network

The properties of weakly charged ion-containing polymer networks differ essentially de-
pending on the state of the counterions.

First, depending on the surrounding medium (e.g. its dielectric constant) counterions
can either be free, or stay bound to the chains forming ion pairs with the correspond-
ing ions on the polymer chain, Figure 18. The first regime is called the polyelectrolyte
regime and was considered in the previous section. In this case the counterions can move
freely (independently of the polymer chains) and the properties of the gel are essentially
determined by the translational entropy of counterions.

The second regime, when counterions stay closely bound to the chain, is called the
ionomer regime. This corresponds to counterion condensation, except that we allow for
the presence of discrete charges on the chain backbone instead of treating it as simply a
charged line. (A counterion binding to an opposite charge on the backbone forms an ion
pair.) This regime is realised by decreasing the dielectric constant ¢ (increasing u), which
can be achieved by increasing of the volume fraction of polymer in the system: usually the
dielectric constant is a decreasing function of polymer concentration in water solutions.
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Figure 18. Possible states of counterions in a polyelectrolyte network.

The formation of ion pairs in polyelectrolyte gels leads to two simultaneous effects:

1. Due to the decrease of the concentration of mobile counterions inside the gel the
corresponding osmotic pressure also decreases; this fact favours the formation of
collapsed phase.

2. Ion pairs attract each other due to the dipole-dipole interactions, and form so-called
multiplets which act as additional physical cross-links.

Ion pairing with subsequent aggregation of ion pairs into multiplet structure leads to
the appearance of a new super-collapsed state of the gel. In contrast to the ordinary
collapsed state of gels in poor solvents, the super-collapsed state corresponds to the state
of a practically dry gel (Khokhlov and Kramarenko 1996).

3.7 Truly free versus trapped counterions in solutions and gels

The inhomogeneous spatial distribution of the immobilised charges on polymer chains
creates potential wells for the counterions. As a result some of the counterions becomes
trapped, and only a subset of them remain ‘truly free’. The simplest example of such
inhomogeneous systems is the dilute polyelectrolyte solution, Figure 19.

Figure 19. Dilute polyelectrolyte solution as an example of an inhomogeneous polyelec-
trolyte system.
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Figure 20. Gel collapse curves for individual polyelectrolyte macromolecules (solid lines)
and for macromolecules in the gel (dotied lines).

The conformational behaviour of each individual molecule in the solution is determined
mainly by the balance between the following physical factors. The presence of some
fraction of counterions within the molecules, as well as non-screened charges on the chain,
exerts osmotic pressure leading to the swelling. On the other hand, the elasticity of
the chain and the osmotic pressure of truly free counterions (those moving in the solution
exterior to the chain) oppose the swelling. The interaction of neutral monomeric links can
change the balance between swelling and collapse of the chain, depending on the solvent
quality. The swelling ratio « as a function of relative temperature deviation from the ©-
point, 7, is presented in Figure 20 (Kramarenko et al. 1997). In the good solvent regime,
T > 0, the fraction 3 of counterions retained within the coil is close to zero; the condition
of electro-neutrality of a single chain is totally violated, and the conformation of the chain
is determined by electrostatic repulsion between charges along the chain. For comparison,
the curves for 3 = 1 (chain swelling in gel) are shown by dotted lines. In this case the
main reason for the increase of « is the osmotic pressure of the counterions. On the other
hand, in a poor solvent, 7 < 0, the collapse of the chain induces localisation of some
of the counterions within the chain to compensate the increasing charge density of the
globule. However, the swelling ratio is determined mainly by non-Coulomb interactions
of uncharged monomer links, and « does not depend strongly on the value of 2 in this
regime.

Another polyelectrolyte system where inhomogeneities play an important role is a
charged gel with the electric charge unevenly distributed in space. This inhomogeneity
is an inherent property of most charged gels, connected with the statistical nature of
distribution of subchain lengths and crosslink points (and therefore of the local polymer
density). Experiments show that osmotic pressure and the swelling ratio of an inhomo-
geneous gel is less than that of a homogeneous gel, and this difference increases with
increasing inhomogeneity (this can be studied, for example, by decreasing monomer con-
centration during gel synthesis).
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Figure 21. Comparison of the swelling ratios of an inhomogeneous gel a and homoge-
neous gel apomo 68 function of the degree of gel inhomogeneity.

The explanation of this effect is the fact, already mentioned, that an inhomogeneous
profile of polymer concentration creates also an inhomogeneous profile of immobilised
charge. In this way, electrostatic potential wells are formed, and some of the counterions
are trapped in these potential wells and do not contribute to the osmotic pressure. Such
counterions can be called osmotically passive, since only the truly free counterions create
the osmotic pressure. The fraction of osmotically passive ions can be rather high, and
consequently the osmotic pressure and the swelling ratio of an inhomogeneous gel can be
significantly smaller than those of a homogeneous gel.

One should note that there are several mechanisms leading to the existence of osmoti-
cally passive ions. The traditional mechanism is the Manning condensation of counterions
on charged network subchains, described in Section 3.3 above, when the condensed ions
are confined to the molecular vicinity of the polymer chains, and obviously are osmotically
passive. Another mechanism is counterion trapping in large-scale inhomogeneities, as just
described. In the first approximation, one can assume that the Manning condensation
simply renormalises the charge of the polymer chains (or the fraction of charged monomer
units), and then the remaining mobile ions can be partitioned between osmotically active
and osmotically passive ones.

A simple theory of collapse of inhomogeneous gels taking into account the existence
of osmotically passive ions has been developed by Zeldovich and Khokhlov (1999) within
the framework of a two-phase model similar to those used for single polyelectrolyte chains
and microgels. Figure 21 compares the swelling ratio of an inhomogeneous gel o to
the swelling ratio of a similar homogeneous gel ahomo 8s a function of the degree of gel
inhomogeneity. The degree of inhomogeneity is defined here as the ratio of a maximal
ng, and minimal ngs local density of gel. We see that the higher is the inhomogeneity,
the less the inhomogeneous gel is swollen with respect to a homogeneous gel. This is a
manifestation of counterion trapping: the higher is the inhomogeneity, the deeper are the
potential wells, the more counterions they trap, and the less the gel swells.
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4 Conformation-dependent sequence design
(engineering) of AB-copolymers

4.1 Introduction

The history of the polymer industry in the twentieth century shows a shift in main em-
phasis from the development of polymers as construction materials, in the beginning
and in the middle of the century (1920-1980), to the development of polymers as func-
tional materials. The best known applications of such an approach are super-absorbents,
systems for controlled drug release, polymer electrolytes for lithium batteries, polymer
membranes with enhanced selectivity, polymer adhesives etc. In the last ten years the
so-called ‘smart’ polymeric materials have gained increasing attention (responsive gels as
soft manipulators, polymer sensor systems, field-responsive polymer materials etc.). For
these functional polymer systems the functions are becoming more complex and diverse;
many involve copolymers in which different monomers are of different chemical species. If
now we ask ourselves which of the known polymers perform the most complex and diverse
functions, the answer is clear: these are biopolymers (e.g. DNA and globular proteins)
which are responsible for extremely complicated functions in living systems. Therefore,
if we want to move in that direction for synthetic polymer systems, we must look at the
ideas implemented already in nature. Here we discuss one of the ideas of this kind.

We will consider several particular examples of a novel approach to the design of
specific primary sequences for copolymer chains where the basic idea came from compar-
ison with real proteins. This approach is based on the concept of ‘colouring’ with two
‘colours’ (A and B) the monomeric units of a homopolymer, taken initially in some well-
defined conformation (globular conformation, conformation of an adsorbed chain, ete.).
The choice of colour depends on the spatial position of the unit in this ‘parent’ conforma-
tion. Our computer simulations show that copolymers with AB-sequences generated in
this way acquire a number of special functional properties, which distinguish them from
the AB-copolymers with random or block primary structures. (‘Primary’ structure refers
to the permanent chemical structure along the chain backbone; a ‘block’ is a stretch of
pure A or pure B.) In a sense, we can say that some functional features of the parent con-
formation are ‘memorised’ (or ‘inherited’) and then manifested in other conditions. This
special conformation-dependent AB-sequence design (engineering of AB-copolymers) can
in principle be achieved not only in computer simulations, but in the chemical laboratory
as well. Further studies in this direction may have an important impact both in the prob-
lem of obtaining of AB-copolymers with special functional properties and in the problem
of understanding of basic principles of biomolecular evolution at its early stages.

4.2 Protein-like AB-copolymers

The general idea just outlined above will be first illustrated taking as an example a
globular conformation of a polymer chain.

The primary structure in real globular proteins is known to be highly specific. Globular
proteins/enzymes functioning in living systems are the products of molecular evolution.
Their primary structures involve 20 possible types of monomeric units (20 amino-acid
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residues), therefore globular proteins are much more complicated objects than typical
AB-copolymers. However, the most essential distinction between different monomeric unit
of proteins is that some of these units are hydrophobic, while others are hydrophilic or
charged (Dickerson et al. 1969, Grosberg 1997). Thus in a very rough approximation it is
possible to represent a globular protein as a kind of AB-copolymer. The spatial (ternary)
structure of such a copolymer in the native state would then normally correspond to
the structure in which hydrophilic units (A-type) cover the globular surface and prevent
different globules from aggregation, while hydrophobic units (B-type) constitute the dense
globular core.

Because the hydrophobic links should be in the core and hydrophilic ones should lie
on the surface, there should be some long-range correlations within the primary struc-
ture, since these correlations are related to the spatial conformation of the globule. It
is therefore interesting to ask whether it is possible to have a synthetic AB-copolymer
with long-range correlations in primary structure analogous to the correlations in evolved
proteins.

So, we are looking for preparation of such an AB-sequence that in the most dense
globular conformation, all the B-units form a dense core while all the A-units are on the
surface, i.e. such a sequence mimics one of the properties of a real protein what allows us
to call the desired copolymer chain a protein-like AB-copolymer. Such copolymers should
have interesting physical properties, for example, they should not precipitate when the
dense globular conformation is formed. This is not the case for ordinary macromolecules
(Lifshitz 1978, Grosberg et al. 1994; see also Section 2.4).

4.2,1 Preparation scheme for protein-like AB-copolymers

It is very easy to prepare such protein-like sequences in computer simulation (Khokhlov
et al. 1998a,1998b,1998¢,1999); the main steps of the real laboratory experiments should
probably be the same. A computer realisation of the procedure is illustrated in Figure 22.

LT RRESY

Figure 22. Colouring procedure for preparation of protein-like copolymer.

We take some particular conformation of a usual homopolymer coil with excluded
volume, and switch on a strong attraction of monomeric links to let the chain collapse
into the conformation of a homopolymer globule (Figure 22, left part). Next we take
an ‘instant snapshot’ of the globule and assign the colour index A to those units that
are on the surface of the globule and call these units hydrophilic, and assign the index
B to the units in the core of the globule and call these units hydrophobic. Then we fix
this primary structure (Figure 22, middle part; the structure shown in this figure will be
further referred to as the parent globule). Finally, the last step is to remove the uniform
strong attraction of monomeric units, and to add different interaction potentials for A-
and B-units (Figure 22, right part).
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4.2.2 Coil-globule transition for AB-copolymers with different structures

Let us consider the coil-globule transition for the protein-like copolymer thus formed,
which occurs when one introduces attraction between hydrophobic B-units (hydrophilic
A-units remaining repulsive to each other and to hydrophobic units). The Monte Carlo
computer simulation was performed using the bond fluctuation algorithm (Carmesin 1988;
see also Kremer, this volume). The coil-globule transition was realised upon the increase in
attraction interaction between B-links (which is equivalent to a decrease of temperature).
We studied primary sequences with an A/B composition ratio of 50/50.

We compared the coil-globule transition for three types of sequence: (i) our protein-
like sequences; (ii) random AB-copolymers of the same A/B ratio but an entirely random
sequence; (iii) random-block AB-copolymers, with the same A/B ratio and also the same
degree of blockiness, i.e. with the same mean length of the blocks of A- and B-links as for
protein-like copolymers. This comparison was done to distinguish the effects connected
with the block lengths (visible in Figure 22) from the effects coming from the presence of
long-range correlations between blocks, within the primary sequence. (Such correlations
are, by construction, absent in case (iii).)

The data for temperature dependences of the mean energy per monomeric unit and of
the specific heat are presented in Figure 23. We have found the transition for protein-like
copolymers to occur at higher temperatures and to be more abrupt than that for either
random or random-block copolymers (the peak of specific heat is narrower and higher for
the protein-like copolymer). The kinetics of the coil-globule transition is also faster for
protein-like copolymers (i.e. protein-like copolymers form the dense globule faster than
random and random-block ones, under similar conditions).
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Figure 23. The temperature dependences of the mean energy per monomeric unit (a) and
of the specific heat (b) for copolymers with chain length N = 512 and primary sequences
as indicated.
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Figure 24. Typical snapshots of the globular structures for (a) protein-like, (b) random,
and (c) random-block copolymers.

What is the reason for such effects? To answer this question let us look at the mor-
phology of different globules. In Figure 24, typical snapshots are shown for globular
conformations obtained for the three types of copolymers at equilibrium at low tempera-
ture. (The hydrophilic A-links are shown in a darker colour than the hydrophobic ones.)
It can be seen that for protein-like AB-copolymers, practically all B-units are concentrated
in the dense core of the globule which is stabilised by long dangling loops of hydrophilic
A-links. On the other hand, the core of the globules formed by random and random-block
AB-copolymers is much looser, and approximately 30% larger in average size than that
for our designed AB-copolymers. A fraction of the hydrophilic A-links are now inside the
core, and those of them which belong to the surface form very short dangling loops which
apparently are not sufficient to prevent the aggregation of such globules in the solution.

It is reasonable to assume that the formation of the dense core shown in Figure 24 for
protein-like copolymer globules is facilitated by the fact that the dense globule pre-existed
in the parent conditions shown in Figure 22 (middle part). Since all the B-links in this
parent core are fitting next to each other, there is no connectivity obstacle to reassembly
of most of this core when the effective attraction between the B-units is switched on. In
other words, we can say that the protein-like copolymer inherited some important features
of the parent globule which were then reproduced in the other conditions.

4.3 Membrane-protein-like copolymers

As a second criterion for colouring monomeric units inside a dense homopolymer globule,
we have introduced a model for AB-copolymers which mimic some properties of membrane
proteins. It is well known that real membrane proteins are located inside the cell mem-
brane in such a way that some fraction of the amino-acid units (mainly the hydrophobic
and uncharged ones) are located inside the bilipid layer of the membrane, while the other
amino-acid units are located in water environments inside and outside the cell.

In our simple model, we assigned colour index B to monomeric units which lie within
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Figure 25. The parent conformation of the membrane-protein-like copolymer (left part)
and the conformation obtained after equilibration in computer simulation (right part).

the intersection of a parent globule and a narrow flat slab. So, the B-part of the parent
conformation takes the form of a narrow disk. We have taken 30% of all links to be of B-
type. In the left part of Figure 25 we present a snapshot of an original parent conformation
of our AB-copolymer globule. We marked both hemispheres of outer A-links (70% of the
whole amount) of the original globule into two different colours (black and grey) to see
whether the parent micro-segregated structure can be reestablished after the equilibration
procedure.

In our Monte Carlo computer simulation (performed for chains of length of N = 256
monomeric units) we have indeed found that such a chain shows the effect of stability
of the parent micro-segregated structure. A typical conformation obtained (after the
procedure of decollapse, and recollapse under the influence of selective interactions) of
the same chain is shown in the right part of Figure 25. A spherical B-core is formed
instead of original disk-like B-core which is, of course, natural due to isotropy of the
selective interaction potential. But one can see definitely, that the grey units have many
more contacts with each other than with the black units and vice versa, i.e. the grey and
black units are segregated from each other, even though both are of species A. In other
words, we can again say that the copolymer chain with a specially designed primary
sequence has inherited or memorised some important structural features of the parent
globule, which were then reproduced under other conditions.

4.4 ABC-copolymers: proteins with an active enzymatic centre

As the third criterion for preparation of the primary structure of a copolymer chain,
we have studied ABC-copolymers prepared by a ‘triple colouring’ of some particular
homopolymer globule in the following way: we assigned colour index A to the surface
monomeric units, index B to the inner monomeric units (as was previously described for
protein-like copolymers), and index C to those inner monomeric units which lie inside
a small sphere whose centre does not coincide, however, with the centre of mass of the
parent homopolymer globule (see Figure 26).

Our idea was to prove whether such a parent conformation can be reassembled in the
course of an equilibration procedure, for suitable sets of interaction parameters, so as to
restore the originally given distance between the centres of the B-core and C-core. This
would show whether the position of the C-links within the primary sequence, along with
a specially chosen interaction potential, can lead to a stable reconstruction of the spatial
conformation of the whole chain.
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Figure 26. The colouring procedure for ABC-copolymer modelling proteins with active
enzymatic centre.

We performed computer simulations for a chain of N=256 monomeric units using
attractive interaction potentials for B and C-links (the attraction for C-link was taken
stronger that that for B-links). We have found in our computer experiment that such
ABC- copolymers normally restore their original structure with B- and C-cores both
present, although we have not succeeded up to now in finding an interaction potential
which would allow us to get the centre of C-core at the same distance from the centre of
B-core as in the original conformation. Nevertheless, we have definitely found effective
restoration of the ‘active centre’ (C-core) after the following procedure: we switch off the
attraction between C-links and let them dissolve inside the dense B-core. If the attraction
between C-links is restored we observe the reassembly of the C-core once again.

4.5 Adsorption-tuned AB-copolymers

Let us now generalise the above idea. The primary structure of protein-like copolymer
was generated by a colouring procedure for a homopolymer chain in the globular state.
However, special primary sequences can be obtained not only from globulars conformation;
any specific polymer chain conformation can play the role of a parent.

The simplest example of this kind is connected with the conformation of a homopoly-
mer chain adsorbed onto a plane surface. Let us colour the links in direct contact with
the surface in some typical instant snapshot conformation (see Figure 27). This corre-
sponds to the assumption that the surface catalyses some chemical transformation of the
adsorbed links. Then we will end up with AB-copolymer for which the sequence design
was performed in the parent adsorbed state. After desorption such AB-copolymer will
have special functional properties: it will be tuned to adsorption.

Indeed, we have performed Monte-Carlo computer experiments along the lines of
the sequence design scheme outlined above (Zheligovskaya et al. 1999) for chains of 32
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Figure 27. Preparation of adsorption-tuned primary sequence.
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Figure 28. The average number of adsorbed type-B segments vs. the attraction energy to
the surface, €p for the adsorption-tuned (ATC), random-block (RBC), and random (RC)
copolymer chains of length N = 32 with the number of type-B segments Np = 8.

monomer units. In the conformations of the adsorbed homopolymer chain 8 units which
are closest to the surface were identified and denoted as B-units, the others were desig-
nated as A-units. Then we studied the adsorption behaviour of the AB-copolymer chain
obtained in this way on a plane surface with a specific attraction for B-units, and com-
pared it with the behaviour of the corresponding random and random-block copolymers
(for details, see Zheligovskaya et al. 1999).

In Figure 28 we plot the average number of adsorbed B-units versus the energy of their
attraction to the surface, £5. It can be seen that the number of adsorbed segments (at
a given value of £5) is always highest for the designed AB-copolymers. In other words,
due to the memorising of some functional features of the parent conformation, we have
indeed obtained an AB-copolymer ‘tuned to adsorption’ on a plane surface.

4.6 Some generalisations and conclusions

One can imagine the analogous colouring procedure for a chain adsorbed on a small
spherical colloidal particle. In this case a copolymer chain with the primary sequence
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tuned to the absorption of a small droplet of organic solvent, or a colloidal particle of
given size, could be obtained. Such a copolymer could be called molecular dispenser.
Indeed, when in equilibrium contact with an organic fluid, such a copolymer will absorb a
small droplet of this fluid, with a volume approximately equal to the volume of the parent
colloidal particle, because for such size of the droplet the maximal number of hydrophobic
links will be in contact with the fluid, leading to maximal gain in interaction energy per
monomer. If exposed instead to contact with a solution of colioidal particles of different
sizes such a molecular dispenser will select the particles of size equal to the parent particle.

In conclusion, we have presented several evidences for the fact that an AB-copolymer
chain, with a primary sequence prepared on the basis of a particular conformation of a
homopolymer chain by some colouring procedure, preserves a memory of its parent spatial
conformation. These memorised features are then manifested under other conditions.
Such an interrelation can be regarded as one of the possible mechanisms of molecular
evolution: a biopolymer acquires some special primary sequence in the parent conditions
and then (in other conditions) uses the fact that primary structure is tuned to perform
certain functions.
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Rheology of linear and branched
polymers

Tom McLeish

University of Leeds, UK

1 Introduction to rheology

From our earliest days we explore the physical properties of the world around us, by
exciting mechanical deformations in it and observing the response. Dropping ceramic
basins on a hard floor, pouring water from one bottle into another, pouring shampoo
from a soon-to-be-empty bottle onto anything, turning free-running sand into a sludge by
adding water—all these are experiments in the 3-year old’s rheology laboratory. When
we get older we add some numbers, a few equations, some sophisticated experimental
methods and some impressive terminology like ‘spectroscopy’. If you still enjoy playing
around in sandpits then you might also enjoy those aspects of molecular theory which
form the main topic of these lectures.

In the most general terms, rheology is the measurement and study of the relationship
between the deformation of a material (measured by its strain) and its mechanical re-
sponse (measured by stress). The relation between the strain (or strain history) of the
material and its present state of stress is called the constitutive equation. A central goal of
molecular rheology is to derive such equations from models of the underlying mesoscopic
or microscopic physics, and perhaps also predict the results of direct structural measure-
ments on systems under flow. An alternative, pragmatic approach, sometimes suitable
for engineering applications, is to look for phenomenological constitutive equations that
approximate to the behaviour of a given material. For a more thorough introduction to
both approaches, see [1].

1.1 Why is rheology a good probe of soft matter?
Condensed matter falls broadly into two classes: hard matter and soft matter. Hard mat-

ter comprises most metals, ceramics, minerals, and materials below their glass transition
temperature. It has the following attributes:
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o All bulk deformations, including volume-preserving ones, couple directly to the
strain of covalent (or metallic) bonds.

« There is no observable ‘viscoelastic’ regime of time scales with behaviour interme-
diate between solid and liquid.

» The material breaks catastrophically at strains that are still very small: typically
less than one percent.

On the other hand, soft matter (polymers, gels, colloids, liquid crystals, foams, crystals
with defects) reacts to strain in a qualitatively different way:

« Bulk deformations that are volume-preserving, such as simple shear, do not nec-
essarily deform covalent bonds. (Such deformations are locally ‘non-affine’: bonds
can rotate, rather than stretch or bend.) They are offered far less resistance by the
material than volume-changing strains.

« Soft materials can maintain large bulk strains (tens or hundreds of percent) without
failure, so exhibiting interesting nonlinear response.

o After a deformation, structural equilibrium is recovered by a series of processes
spanning a wide range of time scales {e.g. entangled polymers).

« Flow itself may induce structural transitions that are non-catastrophic, but contin-
uously or discontinuously change the material properties (e.g. flow-aligning block
copolymer phases, shear-thinning in polymers, flow-induced nematic transitions in
liquid crystals).

In summary, a continuous response or evolution of the structure in soft matter exists over
far wider ranges of time scales and strains than in hard matter. This remark applies in
particular to volume-preserving strains, which we now examine in more detail.

1.2 Volume preserving and non-preserving strains

In Figure 1 we consider examples of two types of strain that give rise to qualitatively
different stress response in soft matter. Weak response arises in volume-preserving defor-
mations (that do not couple to stretch of covalent or metallic bonds), and strong response
in volume-changing ones (that do). For our purposes, the weak responses are the inter-
esting ones. In terms of the displaced lengths | and the original side lengths L of the
cube of material, both shear strain (left) and bulk compressive strain (right) are given by
the dimensionless ratio {/L. The shear stress (force in strain direction per unit area of
displaced side) is o in the shear case, and the bulk stress (normal force per unit area on
the strained side) is Ap in the compression case. These are given in terms of the shear
modulus {G) and bulk modulus (B) by respectively:
Gl Bl
o=7> Ap= T 1
In ‘hard’ condensed matter, both these moduli arise from distortion of covalent or
metallic bonds; estimating the density and stiffness of these we find G ~ B =~ 10'!Pa.
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L
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Figure 1. Shear and compressional strains.

On the other hand, in ‘soft’ condensed matter this is only true of the bulk modulus, so
that G < B ~ 101 Pa. Often the shear response is dominated by structures with a char-
acteristic length scale much larger than a covalent bond, whose free energy is dominated
by entropy (or else by an even balance of entropy and enthalpy). A good first estimate
of G in such cases is G ~ kgT/V;, where V, is the ‘structural volume’ (or inverse number
density) of structures whose principal degree of freedom couples to the shear strain and
controls the free energy cost of deformation.

Example: A weak polymer gel has approximately one cross-link per (10nm)?3, implying
that G = kpT/10~%*m3 = 500Pa.

1.3 Strain and strain rate

We now refine and quantify our description of deformation in soft materials. Both strain
and stress are 2nd-rank tensor quantities as each relates two vectors. In the case of strain,
these two vectors can be chosen to be an embedded spatial vector and its displacement
by the deformation. In the deformation of a continuous body, any embedded vector X(r)
is transformed to a new vector X'(r) (Figure 2).

Figure 2. Illustrating the deformation of a continuvus body.
We define the strain tensor E by this transformation, as follows:
X'=E-X. (2)

For small enough deformations we may write E = | 4+ e so that the field of embedded
displacement vectors u obeys u= X' — X = e - X. For a uniform deformation we may
write this as @ = Vu or e;; = Vyu;. Volume-preserving deformations have det(E) = 1,
which becomes, for small displacements, the condition that Tr(g) = 0.
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If the strain is time dependent, there is a velocity field v(r) that generates the local
deformation rate through its spatial gradient K = Vv. Embedded vectors now change
with time, X' = X'(t), so that v(X') = ¢ X' and

X'(t+6t) = (1+€6t)- X'(t) = (1 +¢édt) - E(t) - X. (3)

But we also have X'(t + 6t) = E(t + 6t) - X by definition of E. Comparing this with
Equation 3 and defining the time derivative of E(t) by the usual limit, gives
8E

_E:Q.

at " (4)

Note that the tensor € is by definition Vu/0t = Vv where v(r) is the velocity field,
defined above. Therefore we can identify ¢ with K.

fim

The differential Equation 4 is just a tensorial version of the familiar first-order linear
equation 8f /0t = K f, and, in the case where K is constant (steady flow), has the solution

E(t) = exp(K?), (5)

where we use the initial condition that E(0) = I, and where the exponential of a tensor is
defined by its series expansion

| —
| =

M3+

!=

M2+

exp(M)=1+M+

[\
(Y]

1.3.1 Examples

There are two very important examples of volume-preserving deformations in soft matter,
shear and extension. Shear occurs in sliding, or lubricating flows; extension in stretching
flows such as the forming of fibres and films.

Shear

A shear flow with velocity along z and gradient along y, of shear rate ¥ = dv, /0y, has a
deformation rate tensor (in Cartesians)

04 0 14t 0
K=]1000 =  Eft)=exp(Kt)=| 0 1 0
000 001

The shear flow does not generate exponential separation of embedded points (as Equa-
tion 5 might suggest) because the displacements of embedded vectors are always orthog-
onal to the vectors themselves.

Uniaxial extension

In contrast, a uniaxial extensional deformation (as occurs when pulling out a thread,
during fibre-spinning for example), with extension along the r-axis and extension rate
é = Ov,/0z, gives exponential separation of points and has the representation

E 0 0 et 0 0
K=|0 —¢2 o = E®=]| 0 ef/2 o
0 0 —£/2 0 0 eft/2
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Planar extension

There is a second important extensional flow, termed planar extension (as occurs in some
film-forming processes). This has a neutral direction in which there is no deformation
(in common with shear flow), yet exponential separation of embedded points (in common
with extensional flow):

g 0 0 et 0 0
K=]|0 -0 =  Ef)=| 0 e 0
0 0 0 0 1

In such a deformation (with ¢ positive) fluid is pulled inward along +y and stretched
outward along +z, with z neutral.

1.4 Stress

In deformed matter, forces are transmitted across any surface embedded in the material.
The stress, like strain, is tensorial because both the locally transmitted force per unit area,
and the local surface element (characterised by its normal) are vectors. We therefore define
the stress tensor & so that the force dF acting across a small area element dA of unit
normal n is given by (Figure 3)

dF =g-ndA. (6)

Alternatively, o;; gives the i-th cartesian component of the force per unit area across the
j-th face of a small cube embedded locally in the material.

Like many physical rank-2 tensors, ¢ is symmetric. Indeed, the torque (in the z-
direction) on a small cube of side [ is {*(04y — 0y;). These two stress components must
cancel, because the moment of inertia of such a cube scales as M2 ~ I3, which would

otherwise lead to a divergent angular acceleration as [ — 0.

Figure 3. Illustrating the definition of the stress tensor.

1.4.1 Examples

Hydrostatic pressure

For a fluid at static equilibrium, one has ¢ = —pl, so that p = —(1/3) Tr(g). The
pressure field is not normally interesting in soft matter, as it acts as a Lagrange multiplier
for the conservation of volume.
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Newtonian fluid

The simplest constitutive equation for a fluid is that suggested by the tensorial symmetry
of the strain rate and stress tensors, and the requirement of symmetry in g. These,
combined with an assumption of linear response, and of incompressible flow, give in
general ¢ = 7 (é +§T). This characterises the fluid by a single number only, 7, the
viscosity. So in the case of simple shear

-p ny 0
o={m -p 0
0 0 —p

Note that the pressure term just adds to the stress arising from the shear. Often we speak
of the ‘deviatoric stress’ &' = g — (1/3) Tr(g)l, which captures the stress arising from the

material structure as it responds to a volume preserving deformation. We will often drop
the prime in what follows.

Rubbery solid

A similar argument can be applied to an isotropic solid, allowing for the fact that the
stress is now linearly proportional to the strain itself, rather than the strain rate. At
small strains, this gives & = G(e+ ”) for the deviatoric stress; G is the elastic modulus.
An extension of this model to large strains, useful for rubbery solids, is to write g =
G(E-E7). Expanding for small e = E — | recovers the previous result to linear order, plus
a contribution to the isotropic pressure.

A Maxwell model

The ‘rubbery solid’ constitutive equation just found may be generalised to a continuously-
deformed material with a single viscoelastic relaxation time 7, by writing the following:

L
dt=

1=
IIQ
il | =

+e-K'-—-(g-aD. (7)

Thus, if K vanishes (for example after a step-strain measurement: see below), the devia-
toric stress decays to zero like exp[—t/7]. In steady shear (with ¥ = dv,/8y) the stress
tensor becomes:
G(1+2(r%)?) Gry 0
Gy G 0
0 0 G

(8]
I

Exercise: Check this last result, and think about the physics of the proposed consti-
tutive equation and the consequences of the predicted ‘first normal stress difference”

zz — Oyy :Iéo

1.5 Rheometry

Rheometers are designed to impose on a material either shear flow {easy) or extensional
flow (more difficult). A rotational device that generates a spatially uniform shear flow is
the ‘cone-and-plate’ rheometer, Figure 4.
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Figure 4. Schematic of a cone-and-plate shear rheometer. The sample (black) lies
between cone (white) and plate (grey).

The cone is rotated at instantaneous angular velocity w. The material in the gap
at distance r from the axis has a velocity in the tangential direction that is zero at the
bottom plate and wr at the top plate. (We assume non-slip boundary conditions.) The
local separation of the plates obeys h(r) = ar where « is the angle between plate and
cone, which must be small. If so, the local shear rate is ¥ = dvg/0z = wr/ar = w/a:
a uniform shear field. Maintaining such uniformity is especially important in non-linear
deformation, where the material response may differ for different strains and strain rates.
The shear force is measured from the torque on the rotor, and normal stress differences
can also, in principle, be monitored (e.g. from the upthrust on the cone).

/—>

Figure 5. Schematic of a moving-belt extensional rheometer (sample in black).

Extensional rheometers (Figure 5) have been much harder to develop to the point
where reproducible data is obtainable. This is due to the necessity of free surfaces over
most of the sample in an extensional flow. However, extensional rheometry gives an
important measure of the non-linear flow of many materials, that is independent of the
shear response. For example, branched entangled polymers (see Section 3 below) may
be strain-hardening in extension (the effective ‘viscosity’, which is the ratio of stress to
strain rate, increases with strain), but strain-softening in simple shear. An illustration is
in Figure 6. Here the extensional stress difference o,, — 0y, divided by the extensional
strain rate €, is plotted against time, for two experiments at constant strain rate (started
suddenly at time zero). On the same graph are the corresponding transient shear ex-
periments, showing ogy/%. This way of representing data ensures that the curves within
each set superimpose at early times, when the deformations are purely linear. The upper
curves show strong extensional ‘hardening’ at the higher of two extension rates, but no
hardening at the lower rate. The lower curves (for shear) all show softening. In this
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Figure 6. Time dependent shear (lower curves) and extensional (upper curves) stresses
normalised by deformation rates over a range of rates. Lines are from a non-linear gen-
eralisation of a model of branched polymers discussed in Section 3.

case the polymer melt is composed of monodisperse molecules of identical (‘H-shaped’)
branched structure.

1.6 Time dependence

The stress-growth curves of Figure 6 indicate that viscoelastic materials do not achieve
a steady state of stress in a steady flow (or vice versa) until a certain relaxation time
has elapsed. This relaxation arises from dynamic processes intrinsic to the materials
themselves and can be a very sensitive (if indirect) probe of structural dynamics in soft
matter. The most common experiments measure the time dependence of materials in
linear deformation.

1.6.1 Step-strain response and relaxation modulus

In a step strain measurement, at time ¢ = 0 a small strain v (usually shear) is suddenly
imposed and sustained. The resulting (shear) stress component o(t) decays with time, and
is measured. If the material is in a true linear response regime, one has o(¢) = G(¢)y. The
function G(¢) is the time dependent relazation modulus, and is monotonically decreasing
with time.

We will normally restrict ourself to isotropic materials, in which G(¢) is a scalar func-
tion of time. Lamellar, nematic and other ordered phases of surfactants and block co-
polymers will have special directions in which measurements of G(t) may give very differ-
ent results. However, polycrystalline samples of these materials recover isotropic rheology.
Very few materials exhibit a single-exponential relaxation modulus G(t) x exp[—t/7],
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which is the linear response result of the Maxwell model (Equation 7). Many more can
be described in terms of a sum of relaxation modes:

N
t) = Zgie‘t/ﬂ' : (8)

The relaxation modulus G(t) may be measured directly, but this suffers from two major
drawbacks: (i) the initial step-strain is never quite instantaneous, degrading measurements
of short relaxation times; (ii) the signal to noise ratio at long times is very weak, degrading
measurements of long relaxation times.

The same information may instead be extracted from other flow histories, so long as
the material properties are time-independent. That is, to each incremental strain d~(#)
applied prior to time ¢ there is a corresponding incremental stress do(t) = G(t —¢')d~(t').
We say that the material then has Time Translation Invariance (TTI—see the lectures of
Bouchaud, this volume). Exceptions to this class are materials that are not in equilibrium
(even in the absence of a flow), but which ‘age’ towards it on time scales longer than the
length of the experiment. Using TTI we may write (suppressing tensor indices)

_ _ _ dy .,
o(t) = Jim ) G(t = )5y (¢ / Gt —t) Tt (9)

which is the linearised constitutive equation between shear strain v(t) and stress ().

1.6.2 Frequency-dependent modulus

The most common strain history used to extract the equivalent of G(t) is the harmonic
oscillation (¢} = Re (yoe**). Then using Equation 9 we write

Ogy(t) = (/ G(t — t')ygiwe™* dt') Re (%G*(w)e™) , (10)
with the ‘complex modulus’ G*(w) defined by
= iw/ G(t)e ™'dt. (11)
0

The form of Equation 10 means that the stress will be simple harmonic at frequency w,
but not in phase with the strain. If we write G*(w) = G'(w)+iG"(w), then we can identify
the real part G’ as the in-phase (elastic) part of the modulus and the imaginary part G" as
the out-of-phase (dissipative) part. In general both will be frequency-dependent, crossing
over from viscous (dissipative) behaviour at low frequencies to elastic behaviour at high
frequencies. Before giving examples, let us summarise these two ideal limits:

Ideal newtonian fluid (viscosity 7)
9y , it G'w)=0

oy = = = NiwYoe =

y =105, = MY { G'(w) = wn
Ideal elastic solid (modulus Gy)

; G'w) =Gy
— — iwt
2y = Gov = Gome = { G'(w) =0
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1.6.3 Examples

The Maxwell model

Now we can interpret what the frequency-dependent experiment will give us for the
simplest model of a viscoelastic fluid, with a single relaxation time G(t) = Goe~". The
integral over ¢ is readily done to yield

wir? " wr
01+ wr? ; G'w) = Gol +wir?’ (12)

G'(w) =

Note that the correct elastic and viscous behaviour are recovered at high and low frequency
respectively. The characteristic time emerges as the inverse of the frequency at which the
curves for G, G” cross (or where G” is maximum, in this case). The result for the steady
state viscosity is n = G7. More generally, Equation 9 gives the exact integral for the ratio
of stress to strain rate in steady state as n = f0°° G(t)dt, so it is always true that n ~ Gr
where G is an effective modulus and 7 a characteristic relaxation time.

Polymeric matter

We finish this survey with a few examples of the elastic and loss modulus for polymeric
materials. It is possible in many such cases to extract effective information on relaxations
covering many decades of frequency, because of time-temperature superposition. For most
polymers above both their melting point and glass temperature 7}, the time scales of ail
viscoelastic relaxations shift with temperature by the same factor ar = exp[4/(T — Tp)),
with material-dependent values of A and Tp. (This is the Volgel-Fulcher, or WLF form;
see e.g. the lectures by Kob, this volume). Up to 12 decades in frequency are then
accessible for polymers with very low T}, by superposing data of different 7.
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Figure 7. Linear viscoelastic moduli G' and G" as functions of oscillation frequency w,
of monodisperse melts of polystyrene, polyisoprene and polybutadiene of similar degree of
entanglement (M/M,).

In Figure 7 we show results for three chemistries of near-monodisperse linear polymer

melts. Note that the data are, as usual for such experiments, plotted on log-log axes
in which the Maxwell model would have G" with slopes of 1 and —1 each side of the
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Figure 8. Near-Mazwell behaviour of a wormlike surfactant solution.

maximum (see Equation 12). The slope in the data is much shallower on the right,
indicating the presence of some shorter relaxation times (Equation 8) but there is still
clearly a dominant time at the crossover from viscous to elastic behaviour.

There is one family of polymer-like systems with a near-Maxwell behaviour: the self-
assembled wormlike surfactant micelles. These entangled polymers support an additional
dynamics of breaking and reforming, that narrows the viscoelastic spectrum towards a
single exponential (Figure 8); see [1].

Finally we examine the effect of a change of molecular topology on the linear rheology.
Figure 9 compares G*(w) for a linear and three-arm star architecture of polyisoprene melt.
As before, the linear polymer has a strong dominant relaxation time, but the branched
variety is quite different: the maximum in G"(w) is no longer anywhere near the crossover
point, indicating a much broader superposition of relaxation modes. The terminal time
is also much longer in the case of the star polymer. We will examine the reasons for this
critical effect of branching in Section 3.

2 Rheology of linear polymer chains

For a fuller account of the material in this section see [7].

2.1 Entropic elasticity

First we recap briefly the statistical physics of a polymer chain (as covered in the lectures
by Khokhlov, this volume). Each chain is a random walk in space modelled by some local
rule for spatial links; an example is the freely jointed chain. The step length of the chain
corresponds to the Kuhn length of the polymer which we denote b. (This is the shortest
independently orientable segment length, usually 4 or 5 monomers long.) Suppose the
whole walk has NV links and end-to-end vector R(N). From the theory of random walks,
(R(N)%) = Nb? where R = |R|. Also P(R) must have a Gaussian form (since R is a sum
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Figure 9. Comparison of G' and G" for a linear (top) and star polymer melt of similar
molecular weight polyisoprene [8]. Note -the much broader range of relazation times for

the star polymer.

of many independent random vectors). So

_ 2

3 3 372 R 3

Now define a macrostate by the end-to-end vector R. The microstates are the different
random walks of given R. In a freely flexible chain, each has the same energy, so the
number of microstates obeys Q(R) = Qiya P(R). Since the entropy of the walk is given
by S = kplnQ we have S(R) = S(0) — 3kpR?/2Nb?. The free energy of the chain is
then F(R) = U — TS where U, the internal energy, is a constant: therefore we have
F(R) = const. + 3kgTR?/2Nb?. Finally the entropic force (‘Brownian tension’) on the
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chain is
OF(R)  3kgT
OR ~  Nb?
Thus a random walk polymer, or ‘Gaussian coil’ is like a Hookean spring with stiffness
k proportional to T/N. In dilute solutions, polymer chains are not gaussian (Khokhlov,
this volume), except at the Theta temperature. However, it transpires [7] that in con-
centrated solutions and polymer melts, the excluded volume interaction responsible for
chain swelling is screened. (Although such chains remain selfavoiding at short distances,
the driving force for chain swelling, is to decrease the probability of contacts within the
chain. This is removed at high density: most collisions are with other chains, and swelling
does not reduce the probability of these.) Chains in concentrated solutions and melts are
gaussian at large enough distances, and Equation 14 applies to them.

f=-— R=—xR. (14)

2.1.1 Stress tensor

Equation 14 will enable us to calculate the stress tensor in any polymeric fluid provided
the following conditions are met: (i) we know the instantaneous configuration of the
chains at scales above some characteristic number N of links; (ii) the configurations have
achieved a local equilibrium for chain segments at smaller scales than this; (iii) we may
average over many subchains (of N links) within a local volume large enough to define a
macroscopic stress, but small enough to define uniform physical conditions for the polymer
chains within it.

Recall that component o;; of the stress tensor & is the i-th component of total force
per unit area transmitted across a plane whose normal lies in the j-th direction. Now
consider a small cubic volume in a polymeric fluid of side L (Figure 10). It contains C/N

Figure 10. Coniribution of a single subchain to the stess tensor.

subchains of length N, where C is the monomer concentration (we drop the tilde on N).
The probability that one subchain of end-to-end vector R cuts a given j-plane across
the volume is just R;/L (the fraction of the sample length L in the j direction spanned
by its end-to-end vector). The i-th component of force transmitted by this chain across
the j-plane is, from Equation 14, xR;. So its contribution to the mean local stress oy;
is kR;R;/L3. The sum over all subchains may be replaced by the average (...) over the
ensemble multiplied by the number of subchains, CL3 /N:

3ksTC
O = # (ERJ) : (15)
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We will find it convenient to work with a continuous representation of the chains R(n)
that maps the arclength position of the n-th monomer onto its spatial position R. Then
we may identify R/N for a (small) subchain with 8R/8n. The formula for the stress
tensor becomes pleasingly simple:

BT (22,

%= T on On

(16)

The second moment average (...) that governs the stress now needs to be calculated
under various different assumptions for the dynamics. For example, it is sometimes pos-
sible to identify subchains containing N monomers that have end-to-end distributions
P(R) fixed by external constraints (as in a network, when N is the number of monomers
between cross links) or by dynamics at a particular time scale (as in an entangled melt,
when N is the number of monomers between entanglements), but which are equilibrated
at all smaller length scales. In this case the natural unit of arc length is the coarse-grained
step length of the segments v/ Nb. Writing nb = s'v/N the stress may be calculated from
any known distribution of (coarse-grained) chain tangent vectors as:

=3k, S (ORiOF;
0y = 3ksT < 57 Ba > : (17)

Each sub-chain thus contributes kg7 of stress, distributed tensorially via the second
moment of its orientation distribution.

2.2 Dynamics

In polymer solutions and melts, the stress formula (Equation 16 or 17 above) is always
appropriate given the validity of the three criteria listed at the start of Section 2.1.1, and
the applicability of the Gaussian chain approximation. But there are important physical
regimes in which the dynamics themselves differ qualitatively.

(i) Unentangled Chains. In the first regime, topological interactions between chains are
not important because the chains are not sufficiently overlapped. Note that entanglement
is only achieved at remarkable degrees of (spatial) overlap: even in the melt, chains must
be several hundred monomers long, in order to see entanglement. The unentangled regime
divides into two classes depending on whether long-range hydrodynamic interactions are
important for the drag on the chains. If not, there is just local dissipation due to frictional
forces as the chains slide past one another. Rouse [8] proposed this simplest case as a
model for dilute solution, but it actually finds its realisation in low molecular weight melts
and concentrated solutions. In dilute solution the more complex issue of hydrodynamic
interaction dominates. We will not deal with this subject here, but the relevant model
was devised by Zimm [9].

(ii) Entangled Chains. In this case the dissipation is local on the scale of the entangle-
ment spacing (whether in melt or concentrated solution) but the chains’ motion is severely
restricted by the topological constraints of their surroundings—two chains may not cross
each other. Rouse’s formulation of the local drag needs to be supplemented by a model
of these topological restrictions. The most powerful approach has proved to be the tube
model of Doi, Edwards and de Gennes (see below and [7]). This entangled regime also
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divides into two classes, but now depending on the topological structure of the chains
themselves, that is, whether they are linear or branched. The branched case offers a nice
example of hierarchical dynamics in soft condensed matter (see Section 3/ and [2]).

Starting below for unentangled chains, we will outline the calculation of two aspects
of the polymer dynamics, one microscopic and one macroscopic. The first is the mean-
square monomer displacement as a function of time ¢(¢) = (|R(n,t) — R(n, 0)|2) averaged
over all chains and monomer positions. This may be measured directly via NMR in some
circumstances, and by scattering experiments indirectly (7). The second aspect is the
linear rheological response G(t) and its frequency-dependent representations, G’'(w) and
G"(w). In each case, we first use a formal approach in which the Brownian motion of chains
is handled using a random thermal force on the monomers (a ‘Langevin’ equation). Then
we discuss the result using simple physical arguments.

2.3 The Rouse model

In this simplest fundamental model of polymer dynamics we assume:

o Gaussian chains, in which the force on a monomer or subchain n is the net en-
tropic force from its neighbours. In the continuum language, this is equivalent to a
thermodynamic force at each point on the chain (6/8n)x0R/0n = k3R /8n>.

« Local drag: the drag force on a Kuhn segment comes from frictional drag against
the background; this force is (6R /¢, with ¢ a drag coefficient.

« Brownian motion: a random force f acts on each monomer or subchain, with corre-
lation time much faster than any polymer dynamics.

2.3.1 A toy calculation: the Rouse-dumbell model
Suppose for a moment that the drag acts only on two points, at the extremities of a
(sub)chain of N segments, R; and R,. This simplified model will help us solve the full

Rouse model below. The force balance for the two drag centres is:

R,

—87 = K(RQ—R1)+f1, (18)
9;% = kR —Ry)+5. (19)

The random forces have correlations in time that are just delta-functions on the polymer
time scale: (f;(t)fi(t')) = m1d(t — ¢') with n; a constant (likewise for f;). This coupled
system of equations is easily diagonalised with the following co-ordinates:

1
Reum §(R1 +R;), (20)

r = (Ri-Ry). (21)
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These represent the centre-of-mass motion of the molecule and the spatial separation of
the drag points, respectively. In these variables the equations read:

CCM% = fom(t), (22)
g%(t) = —or(®) + (1), (23)

with new random forces defined appropriately, and (cp = 2¢.

The first (centre-of-mass) co-ordinate is subjected to a history of random forces that
generate random displacements. The final value of Rop(t) after such a history is clearly a
sum of a large number of random variables; it will therefore have a Gaussian distribution.
We recognise the physics of simple diffusion. The mean square displacement can be
calculated by direct integration of the dynamical Equation 22:

t t
(RL (1)) = é/o dt'/0 dt” (foar - (¢ )fom (t')) (24)
t
CM

where the diffusion constant is given in terms of the noise by Dey = noa/2¢%)s. By the
Einstein relation D = kgT'/(, this sets the variance of the noise as noy = 2kpT' (e

The second co-ordinate is the relative separation of the chain ends, and describes an
overdamped Hookean spring with a Brownian force. This time the solution is via the
Green function for the 1st order ODE, Equation 23:

t t
r(t) = r(0)e " + / G(t, t)E-(t) dt’=r(0)e“‘/7+% / eI ()dt,  (26)
0 0

with 7 = {/2k a relaxation time. The second moment of r is found via a double integral
{compare Equation 24):

t t
07y = reer g [ [ aaescorge)gey e
t
— 7,2(0)6—2t/-r_*_é/‘ e—2(t_t')/rnr Tr(!)dt’ (28)
0
- r2(0)e—2t/f+%(1-e—2t/f) (29)

(where r = |r|). Equation 29 says that the initial separation is ‘forgotten’ in a character-
istic time given by 7 = (Nb?/6kpT. As t — 0o, we must recover the equilibrium value of
the chain end separation, as given by the equipartition theorem:

K 9, k3n _ 3kgT
() =57 =5

So we find that the noise variance must be n, = 4kgT¢.

Exercise: Calculate the (tensorial) correlation function {(r(t)r(t')) for the ‘dumbell’
molecule. [Answer: (kpT/k)le ItV ]
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2.3.2 The Rouse model and its normal modes

Now we have the tools we need to attack the Rouse model proper, in which frictional
drag is uniformly distributed along the chain. The balance of entropic, drag and random
forces on a chain of N segments is the Rouse equation:

R PR
C()?a? = .‘i-gn—z + f(n, t) . (30)

As before, the noise force on each monomer is related to its frictional drag by a (gener-
alised) Einstein relation:

(£(n, t)f(m, 1)) = 20okpT16(n — m)é(t — t'). (31)

The Rouse dynamical Equation 30 is diagonalised by the transformation:

t)+2EX cos( )7

X,(t) = N/ Rntcos(N)dn

The X,(t) are the time-dependent amplitudes of the ‘Rouse modes’ of the polymer chain.
These are just the (vector-amplitude) Fourier components of the chain path R(n,t) with
respect to the arclength co-ordinate. We may re-write the dynamics by substituting
Equation 32 for the Rouse modes into the Rouse Equation 30. The essential point is that
the operator 82/8n? becomes just (pr/N)? in the new modes. Then we operate from
the left with the integral operator (2/N) fON dm cos (prm/N) and use the orthogonality
result for Fourier modes, (2/N) fON cos (prm/N) cos (P'am/N) dm = 8pp (1 + 60).

Each mode amplitude is then found to obey a decoupled Langevin equation, which
reads (for p > 1) :

R(n,1)

il

(32)

_ 6kpTp?n?
Ggt = ~haXy + 6(1) with k= % and ¢, = 2N¢, (33)
whereas the decoupled centre-of-mass mode (p = 0) satisfies
X
Cow—o=ht) i low =N, (34)

and undergoes simple diffusion. Each of the internal modes behaves exactly like the one
internal mode of the dumbell molecule, with a noise term which can be calculated ei-
ther by Fourier-transforming the spatial noise terms, f(n,t), or by observing that their
strength must be sufficient to maintain an energy equipartition of kgT/2 (for each Carte-
sian component) per mode. Either calculation gives

(£,£,) = 2GkBT 1850 (t — ') (35)

A key result is the time correlation function of the mode amplitudes (see the exercise
on the Rouse dumbell above), which is:

(0 X,(0)) =1 () 1. (36)
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Each mode has its own relaxation time 7, = (/k, that decrease rapidly (as 1/p?) with
p. The longest of these relaxation times, 7, = (N26%/3n%kgT, has special significance. It
is known as the Rouse time, and often denoted 7. It is the time for relaxation of the
overall shape of the molecule, and is also the time for a Rouse chain to diffuse a distance
of order its own size.

2.3.3 Monomer motion in the Rouse model

What does the local motion of this model chain look like? We expect for short intervals
that the chain contour may have adjusted locally, but retain a very similar global config-
uration (see Figure 11 for an illustration from video microscopy of giant DNA molecules).

Figure 11. Two fluorescence-labelled DNA chains in solution undergoing Rouse motion.
The time lapse between frames is about 1 second.

We need to calculate the correlation function ¢(¢) = (|R(n,t) — R(n,0)[%), so write it
in terms of the Rouse modes whose dynamics we already know:
2
> (37)

< Xo(?) +2§:Xp(t) cos (p%n) - - 2ZX cos( )
s b+ %0500 5 (=)

(1Xo(t) )
where the first term in the second expression is centre-of-mass diffusion.

(1)

From the last section, we know all the correlations (and only those with p = ¢ are
non-zero), so direct substitution gives

#(2) = 6Domt + 4kkBT Z = cos? (p—]@f) (1 - e-P”‘/fﬂ) . (38)
p=1

The first term is just the centre-of-mass diffusion of the entire chain, the second the
contribution from the internal modes. Now, for times ¢ < 7, the amplitudes of the
modes in the sum decay slowly with p, so permitting us to replace the sum with an
integral. Also we may average the cos? function over monomers (n) to get a factor of 1/2.
We then find:

N 2kpT ™1 —p%t/rR
#(t) = 6Dowt+ = /0 7 (1 e )dp (39)
NB? [ ¢\ V2
= 6D (L :
C'Mt + 37!’2 (TR) (67 (40)
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Here a = [ 27/?(1 — e™*)dz is a coefficient of order unity. The result is remarkable: each
monomer executes an ‘anomalous’ or sub-Fickian diffusion, such that its mean square
displacement goes as /2 rather than ¢ (as for ordinary diffusion). This behaviour persists
until times of order the Rouse time, after which each monomer is carried by the (faster)
centre of mass motion of the whole molecule.

2.3.4 So what is going on?

In some ways, the structure of the Rouse modes is misleading: they seem to imply longer
range correlations along the chain than in fact exist. The sub-Fickian diffusion arises
physically from the absence of such correlations. To diffuse a distance AR,, the n-
th monomer requires its motion to be correlated with the (AR;)?/b? other monomers
in the region spanned by AR,. This arises as a straightforward consequence of their
connectivity. All other monomers have motions uncorrelated with it, so cannot contribute
to the effective drag for that motion, which is (g = (o(AR,)?/b%. Thus, from the law of
normal diffusion and the Einstein relation Deg = kgT/(e, we obtain

o) = (ARaF) = T ot = 000 =y (¥20). (@)

The ‘extra-drag’ effect runs out of new monomers when the chain has diffused its own
radius of gyration, which is at the Rouse time. After this the drag saturates at a level
set by the entire chain, and all monomer motions become correlated as ordinary (centre-
of-mass) diffusion takes over. So a log-log plot of the monomeric displacement looks like
Figure 12.

A Fickian
diffusi.mx,
In(r)
sub-Fickian 172
\diffusion
(N %45
1/4

()  Ing)

Figure 12, Monomer diffusion with time in the Rouse model.

2.3.5 Stress relaxation in the Rouse model

The (deviatoric) stress formula we derived above (Equation 16) has a very simple repre-
sentation in terms of the Rouse modes:

05 = = 3 ky (X)X ) (42)
P
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where, on X, the first suffix is the mode index and the second a Cartesian one. To find
G(t), we consider a step strain in shear of size 7. As the step is applied, all the vector
mode amplitudes X,(¢) deform affinely: in a fast enough strain, the chain co-ordinates
follow the applied shear. (For a proof, see {7].) Hence X, (07) = Xp2(07) 4+ v.Xpy (07),
giving

0y (0%) = 7% Dk (Xpy(07) Xy (07)) = 7% > ksT. (43)
4 p

Each mode then decays back to equilibrium with its own time constant 7, = 71/p?, giving
for the time dependent modulus:

G(t) = Uz?y(t) — Cl;sT Ze—szl/Tl . (44)

p

Again, for times ¢t < 7g, the modes are effectively continuous and the sum is approxi-
mated well by the integral [ dpexp (—2p?t/m) = (t/71)"/2. So we find that, until a final
crossover to exponential decay beyond the Rouse time, the Rouse model has a relaxation
modulus which is a power-law (G(t) ~ t~1/?). From Equation 11, we then have also
G'(w) ~ G"(w) ~ w'/2. This form can be seen, for example in the high-frequency parts
of the polyisoprene linear and star rheology data we saw in Figures 7 and 9

In conjunction with the physics we used to understand the scaling of monomer diffu-
sion, this behaviour follows from our argument (Section 1.2) for the modulus in soft mat-
ter. We estimated this as kT per effective degree of freedom (one that couples to strain on
the relevant time scale). In this case, after a time ¢, we allot kg7 of modulus to each unre-
laxed subchain. Such a chain contains n(t) monomers where n{t) ~ (AR,(t))2/b* ~ t/2.
The number of such subchains thus decays as t~'/2, giving G ~ t/2, until the sub-
Fickian regime ceases. The expected behaviour on a log-log plot is therefore as shown
in Figure 13. Note that the longest relaxation time scales with molecular weight as N2,
but the viscosity scales as CkgTN. This is because at the longest relaxation time, the
remaining stress is carried only by the lowest Rouse mode: the density of these modes is
one per chain, or C/N.

ln(G(t)A
-12

—

Infz, =It0N2) nH)

Figure 13. Stress relazation in the Rouse model.
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2.4 Entangled chains: reptation dynamics

Now we consider the motion of a chain in a forest of topological constraints arising from
its neighbours. The chain behaves as if it were confined to a tubelike region along its
contour. The tube diameter ¢ will depend on the concentration of polymer (in a way
that is still not clarified theoretically, but experimentally goes like a ~ C~'/2). Only the
chain ends are free to explore the melt without the constriction of the tube, as shown in
Figure 14.

Figure 14. Reptation of a linear polymer chain in a tube arising from topological con-
straints with its neighbours.

At small times and small distances, the presence of the tube will not be felt, so G(t)
and monomer displacements at early times will be unchanged. This is true only until the
Rouse time 7, of pieces of chain that just span the tube—these are called ‘entanglement
segments’ and have N, monomers with a? ~ N.b*. (This N, is directly proportional
to the ‘entanglement molecular weight' M, encountered in Figure 7.) After that, each
section of tube will constrain the enclosed piece of chain to the orientation of the piece
originally present there, until the tube section is traversed by a free end. So a good way
to understand G(t) is to view the stress as carried by tube segments.

There is a typical waiting time for the arrival of a free end, because Brownian motion
for ¢ > 7. causes 1-dimensional curvilinear diffusion of the chain along the tube contour,
termed reptation. To evacuate all the tube occupied at t = 0 (when a step-strain might be
applied), the waiting time is 7y ~ L?/D, where L = Nb%/a (the length of the random walk
coarse-grained on the scale of a), and where D, = kgT/N{y, is the curvilinear diffusion
constant. (This coincides with the centre-of-mass diffusion constant for the whole Rouse
chain in free space [7].) So we expect 74 =~ N3b*(y/kpTa®. For time scales between 7, and
74 (a range that grows as (N/N,)%), we expect a near-plateau in G(t), with an amplitude
of Gy ~ CkgT/N..

To calculate G(t) more precisely within the tube model, we calculate the survival
probabilities for segments of original tube during stress relaxation. (Although the chain
is constrained by new tube as it moves out of the old one, the new tube segments are
isotropically oriented and do not contribute to the deviatoric stress.) In the frame of the
chain, a given tube segment behaves as a particle diffusing on the curvilinear coordinate
z with diffusion constant D, that is absorbed by boundaries at 0 and L. So if ¥(z,«',t)
is the probability that a tube segment initially at position =’ on the chain has diffused
to r at time t without encountering a chain end, it will obey the diffusion equation,
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Figure 15. Stress relazation in the tube model.

D 0%V /0x? = 0¥ /ot, with ¥(z,2',0) = 6(z — z') as initial condition and ¥(0,7',¢) =
U(L,z',t) = 0 as boundary conditions.

This is equivalent to the Fourier problem of heat diffusion through a slab with cooled
faces. To solve it, we expand in the normalised eigenfunctions that obey the boundary
conditions, ¢,(z) = \/2/Lsin(prz/L) (for integer p):

oo

U(z, o', t) = Y uplt,a')dp(z) . (45)

p=1

Substituting into the diffusion equation gives the time dependence of the coefficients
up(t) = u,(0) exp (—p*t/74). This gives a precise meaning to the disengagement (repta-
tion) time 74:
L? N3b(,
== 46
Td m2D, w2kpgTa? (46)

The final ingredient is to find the initial amplitudes u,(0):

L /
up(0) = / Pp(8)¥(s,2',0)ds = \/—z—sin (pﬂ) . (47)
0 L L
So, using Equation 45 the final solution for the survival probability is
2.2 prx! X —p’t
! —_ & it : 7o -
\Il(:c,x,t)—;Lsm( 7 )sm( i3 )exp( - ) (48)

To find the stress remaining we must calculate the mean survival probability of all
tube segments (regardless of their initial and final values z,z'):

L L
8 2
Git) =G / d:cf dr' ¥(z,z',t) = G — 7P 49
=00 [ e [ avnsn =6 T s)

As expected, the result is nearly single-exponential, and certainly in qualitative accord
with the data in Figure 7. However, the prediction for the density of higher modes
(decaying rapidly, as p~2) is less than that experimentally seen. Approximating the sum
in Equation 49 with an integral, we find G"(w) ~ w™!/? at frequencies higher than 1/7,,
whereas Figure 7 shows a flatter decay.
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2.5 Some comments on Rouse and reptation dynamics

The existence of modes with shorter relaxation times than the reptation time 74, arises
from the greater rapidity with which tube segments originally near a chain end are evac-
uated, compared with those near the middle of the chain. The calculation above ignores
all fluctuations of the total path length of the molecule along the tube (the chain is as-
sumed to translate with its centre-of-mass) so would not be expected to estimate this
contribution accurately. It turns out that the approximation of fixed path length is di-
rectly related to the difference between the cubic dependence of 74 on IV predicted above
(Equation 46) and the experimentally observed result, 7, ~ M3* [2, 7]. Moreover, an
accurate calculation of these fluctuations becomes necessary to make any progress at all
with entangled branched polymers (Section 3 below).

The two types of polymer dynamics presented above have established themselves as
rather fundamental. For example, at long enough length scales, the dynamics of an
unconstrained random walk with any local rule for its motion becomes equivalent to
the Rouse description (see also Kremer, this volume). Similarly, reptation arises quite
generally in the constrained case (another example is in polyethylene crystals!). Moreover
the two dynamics are ‘orthogonal’ in their natural mathematical representations: Rouse
modes do not diagonalise reptation dyanamics nor vice versa (despite our use of Fourier
modes, which superficially resemble the Rouse modes, en route to Equation 49). However,
in real polymer melts and entangled solutions both dynamics co-exist. This is because
the tubes themselves are not permanent objects, but are subject to local rearrangement
as constraints from neighbouring chains are released. Without this additional relaxation
mechanism, the tube model overpredicts the alignment of chains in a strong shear flow,
and severely underestimates the shear stress. Various authors have developed a formalism
in which the chains reptate within tubes that behave as Rouse objects. While it is clear
how to do this for weak flows (e.g. [11]), the nonlinear case remains the subject of current
work, which it is hoped will provide a powerful formalism for melts at high shear rates.

3 Branched entangled polymers

In this section, we bring together several themes of this volume that converge in the study
of entangled branched polymers. (For a fuller overview, see the recent review article [2].)
They will furnish us with an attractive example of ‘slow dynamics’ with the following
characteristics:

« Configurations relax by activated diffusion from entropic traps.

o Dynamics are exponentially slow in a tunable parameter (in this case the molecular
weight of dangling arms).

o The relaxation is highly co-operative.
o The barrier distributions can be tailored accurately by chemistry in real experiments.

« The activated dynamics has hierarchical features dependent on polymer branching.
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o The resulting theory is quantitative for linear response, with just two parameters
required from experiment. These depend on local chemistry; results for polymers of
all architectures then follow.

o There are natural extensions to non-linear rheology (not described here).

3.1 A preliminary exercise: diffusive barrier crossing

In many physical problems featured in this volume (see e.g. the lectures of Bouchaud
and of Frenkel) we need to know the mean waiting time for escape of a single degree
of freedom, such as a diffusing particle, over a barrier. This is usually written 7 ~
Toexp[U/kpT], where U is the barrier height and 7, some intra-trap diffusion time. This
is often good enough, but there are instances where an accurate expression for 7y is needed,
and branched polymers are one such case.

Consider a potential well U(z) with a single minimum at z = 0. We want to calculate
the average first passage time of a particle through a position s > 0, given that it is
introduced at z = 0 at ¢t = 0. This is equivalent to the mean lifetime of the particle if an
absorbing wall is placed at = = s, or, equivalently, if the potential U(z) is replaced by one
which drops abruptly to —oo at ¢ = s (so a particle crossing this point never returns). In
this language, s marks the top of the barrier over which particles escape (Figure 16).

U(x)?

n(x)

Figure 16. Potential and steady-state distribution function for particles diffusing over
the barrier at x = s.

To solve this problem we imagine introducing a steady current jé(z) of diffusers at the
origin, and wait until a steady-state number density n(z) of diffusers has been established.
Then the total number of particles in the distribution is just the ‘supply’ current multiplied
by the mean survival time 7. So

T(s8) = l/s n(z)dz . (50)

We assume that the diffusion constant is D and work in units of kg7 for the energy. Then
in the diffusive limit, n(¢, z) satisfies

on e} on ou .
E_ —a (—%—na) +]5(5L‘) ——O, (51)
at steady state. In £ > 0 we may integrate this once directly to give
on ou j
% + n% = —5 , (52)
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and once more by using an integrating factor eV to give (setting U/(0) = 0)

8
n(z) = %e_u(z)/ eV@)dz’ for >0. (53)
z

For negative z, there is no net current in steady state: the mean current solely transports
material from the origin to the absorber at z = s > 0. Hence the density for z < 0
obeys the equilibrium (Boltzmann) distribution, with the prefactor chosen to match the
solution in z > 0. So

: 8

n(z) = —]—e_U<I)/ eV@dz' for z <0. (54)
D 0

Now integrating n(z) over all z {where it helps to reverse z, z’ in the order of integration),

and using Equation 50, we find

1/ n [
r(s) = E/o dz'eU(I)/ dre V@, (55)

This exact solution for the mean lifetime can be further approximated when the barrier
is high (U(s) > 1). For now the inner (z) integral in Equation 55 is completely dominated
by the contribution near the origin where U is at its minimum, and a good approximation
is the Gaussian integral found by expanding U to second order in z. The outer (z') integral
is likewise dominated by the contribution near the upper limit. This may be expanded in
terms of U7(s) (or U"(s) if the first derivative is zero at s) to give an exponential integral.
The final result is

k‘BT kBTﬂ'

7(8) ~ DU\ 207(0) exp[U(s)/ksT). (56)

Here factors of kgT have been restored. This shows the prefactor 74(s) of the dominant
exponential activation factor is not necessarily close to a naive estimate of the diffusion
time (7 = s?/ D), especially when the potential barrier is large. We will find below that
in the case of branched polymers escaping from topological traps, the full dependence
of the pre-exponential factor on U(z) is essential to producing quantitative results from
theoretical models that can be compared to experimental data.

3.2 Experimental rheology of star polymers

We have already seen the large effect of introducing a branch point into the molecules of a
polymer melt, in the relaxation modulus shown in Figure 9, where star polymers and linear
chains are compared. There are equally remarkable differences in the way the viscosity
7 varies with molecular weight. Instead of the N** dependence of linear polymers, the
viscosity increase for stars is dominated by an exponential growth. Comparison between
different chemistries indicates that it is always the number of entanglements along the
star polymer arms that matters (7 ~ exp[vN,/N], with N, the size of an arm and v a
constant). More remarkably, the number of arms (providing that this at least 3 and not
more than 30 or so) affects neither the viscosity ([rigure 17) nor the relaxation spectrum.

The relaxation spectrum is vastly broader for star polymer melts than linear chains
(I'igure 18). As the molecular weight of the arms is increased, so the near-plateau in

Copyright © 2000 IOP Publishing Ltd.



104 Tom McLeish

ol ® 4-Arm Stars
10 ¢ 5-ArmStars

108
107
108
105
104
103
102

104 105
Span My

Figure 17. Log-log plot of the viscosities of star polyisoprenes with molecular weight of
the arms. The line represents accumulated data from linear polymers[3]. Stars of different
numbers of arms fall onto the same plot.

loa o (sec1)

Figure 18. Data on series of PI star polymers from [8] and corresponding theoretical
predictions using the theory of H4].

G"(w) grows towards lower frequencies with the same exponential dependence as the
viscosity. Other qualitative effects emerge in the rheology of more general branched
polymers. The important industrial material ‘low density polyethylene’, which has a tree-
branched structure, exhibits severe extensional hardening (compare Figure 6) in constrast
to melts of linear chains, and often sets up quite different patterns of flow in complex
geometries [2].
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3.3 A iube model for star polymers

The qualitative prediction of the tube model for star polymers is clear to see, and was
identified long ago by de Gennes [5]. The branch point suppresses reptation because
double-occupation of a single tube by two arms is entropically unfavourable (one of the
arms sacrifices its configurational entropy at length scales larger than a). However, the
basic mechanism for configurational (and stress) relaxation is unchanged—tube segments
must be visited by chain ends. In entangled star polymers this can only happen by ‘path
length fluctuations’ in which a free end retraces its way back down the tube contour
before re-emerging again into new tube. To make way for the retracting end, the arm
must effectively shorten, which it does by creating unentangled loops within, or emerging
from, the tube. In so doing all previously occupied tube from the original point occupied

Figure 19. Dominant relazation processes in (top) linear and (bottom) star entangled
polymers showing arm retraction and tube reconfiguration.

by the free end, to its point of deepest retraction, is reconfigured (and corresponding
stresses relaxed). Clearly, shallow retractions will happen much more frequently than
deep retractions—this is the origin of the huge spread in relaxation times observed in star
polymers (Figure 18). The deepest retractions themselves will become exponentially rare
as the molecular weight of the arm increases—this is the origin of the molecular weight
dependence of the retraction times in Figure 17. In other words, there is an effective
potential well against which the free end moves along the tube. Moreover, we can see
that the stress relaxation occurs without diffusion of the branch point itself, and occurs
independently in each arm. The picture therefore gives also a qualitative understanding
of the observed independence of the number of arms.

To make all this quantitative we need to calculate the effective potential in which the
entangled path length of the arm executes its random motion. One way to construct the
potential proceeds by noting that the entropy loss (=~ kg per tube segment) of constraining
an entangled polymer to its tube is quantitatively equivalent to applying a (constant)
tension of 3kgT /a along its length [7]. The free energy change associated with withdrawing
an end is the work done against this tension. The entropic chain tension arises in a physical
way: at time scales short enough for the tube constraints to be effectively permanent,
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each chain end is subject to random Brownian motion (at the scale of an entanglement
strand) such that it may make a random choice of exploration of possible paths into
the surrounding melt. Only one of these choices corresponds to retracing the chain back
along its tube, shortening the so-called ‘primitive path’ {or curvilinear tube contour). Far
more choices correspond to extending the primitive path. The net effect is as though to
pull on the chain end with the stated tension, which is sustained by the free ends. The
equilibrium length of the primitive path is the one that balances this tension against the
entropic spring force.

We can, then, write a potential U(z) for the length of the primitive path 2 by including
both the (quadratic) curvilinear entropic-elastic term and the (linear) end-tension term

as follows:

_ 3ksT , 3kgT _ 3kgT
TaNe® T e °T aNE
where L = Nb?/a is the equilibrium primitive path length of the chain and s = L~z is the
co-ordinate that measures the retraction of the free end from its equilibrium position. This
quadratic potential will determine the fluctuation dynamics of an arm of an entangled star
polymer: it gives the free energy paid for a retraction of the free end a distance s along
the tube. Whenever this happens, the tube orientation is relaxed for all tube segments
whose primitive path distance from the branch point is between L — s and L.

U(z) s? + const. (57)

The observations above can be turned into a semi-quantitative theory for star-polymer
stress-relaxation [5] which is amenable to more quantitative refinement [6]. The key
observation is that the diffusion equation for stress release, which arises in linear polymers
via the passage of free ends out of oriented tube segments, is modified in star polymers
by the potential U(s). Each position along the arm, s, will possess its own characteristic
stress relaxation time 7(s) given by the average first passage time of the diffusing free end
to s.

But this is just the problem we addressed in the ‘preliminary exercise’ above! In
Figure 16, the curve for U(s) is now the quadratic potential (Equation 57) given by the
tube model, and simple substitution of the arc-length potential into the general result
(Equation 56), using a® = (4/5)N.b? [7], gives for the longest relaxation time of a star

with arm size N,: .
N\° 7l 15N,
T(L) = Te (E) —4*exp (_8—1_\/:;) (58)

where 7, is the Rouse time of an entanglement segment. (Note: the prefactor in Equa-
tion 58 is not insignificant!)

The relaxation modulus in this case can be written

Go [*
6)= 5 [ pls.tds. (59)
L Jo
where p(s,t) is the survival probablity of the tube segment at s (the probability that it
has not been visited by the free end before time t}. To a good approximation this is
just exp[—t/7(s)], and for highly entangled arms we can approximate it further by a step
function in s. For consider the state of relaxation at any time ¢ intermediate between
7(a) (the relaxation time of the first tube segments near the end of the arm) and (L)
(that of the core-segments of the star). At ¢, some internal tube segment will typically
be just in the process of reconfiguration via its first ‘visit’ by the free end. This segment
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will have an arclength co-ordinate s given roughly by 7(s) = ¢. All segments exterior to
the segment s(t) (given by the inverse of the function 7(s)) are almost certain to have
relaxed, because their relaxation time scales are ezponentially shorter than the current
time #, while segments nearer to the core are conversely almost certainly unrelaxed.

Unfortunately, although qualitatively promising, this version of the theory fails dis-
astrously at the quantitative level. A glance at the polyisoprene (M, = 5000) star data
(Figure 18) will suffice: the sample with the longest arm molecular weight (105,000) is
predictied to carry an exponential factor in 7(L) (Equation 58) of approximately 10,
Yet this factor must describe roughly the width of the ‘relaxation shoulder’ in G"(w) in
Figure 18, which is only 6 decades broad. The problem lies with the need to account for
‘constraint release’—a small correction in the case of linear polymers (Section 2.5), but
which in the case of star polymers becomes quite dominant. Fortunately it is also much
simpler to treat in the case of star polymers, as we see next.

3.4 Hierarchical constraint release in star polymer melts

The great significance of constraint release to the dynamics of entangled star polymers
arises from the very broad distribution of relaxation time scales we have discussed above.
Fortunately, the same breadth of time scales provides a simple way of calculating the
effect [4, 10]. As a consequence of the exponential separation of relaxation time scales
along a star arm, by the time the population of tube segments of some s is relaxing, all
segments at s' < s (nearer a chain end) have renewed their configurations, typically many
times. So chain segments at s (and those of s’ > s) effectively do not entangle with these
fast segments at the time scale 7(s) and beyond. Alternatively we can say that the tube is
widened due to this effective dilution of the entanglement network: fast-relaxing segments
act as solvent for the slower ones [2].

The new information necessary to make this approach quantitative is the dependence
of the entanglement parameter N, on the concentration ¢ of unrelaxed segments. This is
known from experiments on dilution of polymer melts (by theta-solvents: see the lectures
by Khokhlov, this volume) to be approximately N.(®) = No/®, which corresponds to
the approximately quadratic concentration dependence of Gy ~ ®2. (See [4] for a more
general treatment.) At any stage in the relaxation dynamics of a melt of identical star
polymers, therefore, when a segment s is currently relaxing for the first time, the effective
N, is N.(s) = N/(1 — s/L). To recompute the relaxation times 7(s) with the dynamic
dilution assumption, we consider the activated diffusion in a hierarchical way: to retract
from s to s+ds, the attempt frequency is 7(s) ! (the rate of relaxation events at level s),
and the barrier height for progressing from s to s +ds is [U(s + ds; N.(s)) — U(s; Ne(s))]
where the notation for U indicates the dependence (through the tube diameter) on the
‘running value’ of N,. Taking the limit of ds small gives the differential equation

= M), (60)

where N, is held constant for the partial derivative on the right hand side. (The latter
is found by differentiating Equation 57 with respect to s = L — z and substituting for a
in terms of N,.) Integration of the result for dU/ds gives a renormalised potential Uf(s)
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which is now (in units of k5T’ a cubic in s :

15N

= o= L (61)

Usgt(z) 3
where we write z = s/L for the fractional arm length retracted. The terminal time and
viscosity are dominated, as we saw above, by the potential at complete retraction Ues(1).
In units of kpT this was previously (15/8){N,/N.) (see Equation 58) but is now given by
(15/24)(N,/N,), in far closer agreement with experiments: the 18 decade shoulder for G"
in Figure 18 becomes 6 decades, as observed.

Equation 59 for G(t) also needs modifying since each element of chain ds contributing
to the stress relaxation now does so in an environment diluted by (1 — s/L), so Equa-
tion 59 picks up this factor within the integrand as a coefficient of p(s,¢). The shape
of the relaxation spectrum predicted by this procedure does indeed fit rheological data
on pure star melts better than the previous theory [4], especially when corrected at high
frequencies by a crossover to nonactivated tube loss very near the free end. The curves
through the experimental points in the data for G"(w) on the PI stars in Figure 18 were
calculated via this scheme, using literature values of the two fitting parameters required,
7. (a horizontal shift on the figure) and G, (a vertical shift). They fit the data with-
out further adjustment. Indeed, a great strength of this remarkably powerful theoretical
framework is that in principle, only these two parameters are required for all molecular
weights and architectures of a given chemistry. For example, there are straightforward
generalisations of the above to bimodal blends of two star polymer fractions of different
arm molecular weight. Without any change of parameters these account well for data on
carefully-synthesised samples [12].

3.5 General chain architectures

The picture of hierarchical retraction dynamics with dynamic dilution can be generalised
in a straightforward way to arbitrarily branched polymer ‘trees’. For structures with many
branch points a simplification is to treat the relaxation in discrete stages, calculating the
time scales at which arm retraction has penetrated to each layer of the tree. At each stage
the effective geometry of the molecule simplifies, as faster relaxing (outer) segments cease
to be part entangled network, but instead dilute the current value of N,.

For example, the Cayley tree of n layers and functionality f [13], contains f" segments
in its outermost layer and (f**! — f)/(f — 1) segments altogether. (In such a tree, each
stem branches into f stems, with no dead ends until the nth layer is reached, at which
point all stems terminate.) The effective concentration of unrelaxed segments after m
levels have relaxed is C(m) = (f* ™' — f)/(f**! — f) =~ f~™ when n is large. Solving
the retraction problem from level m to level m + 1 (with the approximation that the
effective concentration at level m is valid throughout that stage of the hierarchy) gives
the recurrence relation

Tmt1 = Tm eXplo(Ng/Ne) ™, (62)
with solution

o = o eXp (U(Nx/Ne) (11‘—_f}1>) . (63)
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Here v = 15/8 and N, the number of monomers between branch points on the tree. At
this level of approximation we may also take G(t) ~ Go[C(m(t))]?>. This leads to the
logarithmic form of stress relaxation

G(t) = Goln (f";i‘)e , (64)

where 7.y is a (finite) limiting relaxation time (7, as m — o0), and 6 is a branching-
dependent exponent with a value of 2 in this case. It turns out that other, less regular,
tree-like structures also have this form of G(t) but with different values for 8. For example,
the ensemble of randomly-branched trees predicted to occur at the classical mean-field
gelation point has 8 = 4 [14].

Experimental verification for more general architectures with well-controlled materials
has so far only proceeded to two-level branching. A number of groups have studied
polymers shaped like the letter H in the melt; extra arms can be added at the same two
junctions to make a ‘pom-pom’ polymer [15][16]. In the H-polymer case the frequency-
dependent rheology directly reflects the chain structure (once the polymers are well-
entangled) with features in G” (w) arising from both outer arms and the central ‘cross-bar’
(at lower frequencies). These are shown in Figure 20. The theory (solid curves) does

5.75

-3 -2 -1 ]
Logw
Figure 20. Linear viscoelastic data for an H-polyisoprene melt with molecular weights

for arms of M, = 20000 and the cross-bar of M, = 111000 (synthesised by J. Allgaier
[15]). Solid and dashed lines are the theory with and without polydispersity respectively.

indeed grasp the quantitative form of the rheology, once it is realised that the cross-bar
motion is actually reptation, in spite of the branched nature of the polymer! For at long
time scales when the outer arms have completely relaxed, only the cross-bar sections of
the molecules remain topologically ‘active’ and so behave as linear polymers in tubes with
a diameter set by their mutual entanglements only (see Figure 21).

The sharpness of the peak in G"(w) at low frequencies in the H-polymer data arises
precisely from the narrowness of the mode distribution in reptation of a linear chain (Equa-
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Figure 21. Successive stages in the configurational relazation of an entangled H-polymer.
In the final stage it reptates as a linear chain.

tion 49). One additional important insight arose from studies on these highly monodis-
perse model materials—the role of residual polydispersity. Even the small (10% level)
variation in molecular weights of the arms in the specially polymerised polyisoprene H-
molecules had a significant quantitative effect on the linear relaxation spectrum. This
is because the diffusion constants of the branch points depend exponentially on the arm
molecular weight. This greatly amplifies the contribution of the few arms that are sig-
nificantly longer than the average, incresing relaxation times overall. The calculation is
straightforward for small polydispersity, and produces the full curves in Figure 20 (dashed
curves are for the purely monodisperse case).

3.6 Conclusions

Although at first sight very complex, the system of entangled flexible branched polymers
seems to give rise to a rather simple picture of hierarchical dynamics for configurational
relaxation, needing only two parameters for each chemistry of polymer. The remarkable
slowness of trapped dynamics results in molecular relaxation times on a time scales of
seconds and even hours, for moderate molecular weights. Hierarchical dynamics can
produce features very well separated in time scale even though they arise from relatively
close molecular ‘neighbours’ along the chain backbone. An exciting challenge for the next
few years lies in the application of this branch of soft condensed matter physics to the full
complexity of industrial materials.
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Introduction to colloidal systems

Daan Frenkel

FOM Institute for Atomic and Molecular Physics, The Netherlands

1 Introduction

Karl Marx has said that, in history, things always happen twice: the first time as a
tragedy, the second time as a farce. This comment of Marx applied to Napoleon I and III.
However, if we strip the subjective interpretation (tragedy or farce) from this sentence,
it could apply to many phenomena in physics. In physics, there often appears to be
a similarity between phenomena on very different length and time-scales but, on closer
inspection, there are important, even qualitative differences. Examples abound: in some
respects, light waves resemble ripples on a pond but, in most respects, they are totally
different. The Bohr model of the atom resembled a planetary system but, of course, the
differences are so important that, in the end, they led to the demise of the Bohr model.
These two examples illustrate an important point: in physics, analogies are very useful
in formulating an approximate description of a phenomenon—but even more interesting
than the analogy itself, is its breakdown.

In many ways, colloids behave like giant atoms, and quite a bit of the colloid physics
can be understood in this way. However, much of the interesting behaviour of colloids is
related to the fact that they are, in many respects, not like atoms. In these lectures, I
shall start from the picture of colloids as oversized atoms or molecules, and then I shall
selectively discuss some features of colloids that are different. My presentation of the
subject might seem a bit strange, because I am a computer simulator, rather than a
colloid scientist. Colloids are the computer simulator’s dream, because many of them can
be represented quite well by models—such as the hard-sphere and Yukawa models—that
are far too simple to represent molecular systems. On the other hand, colloids are also
the simulator’s nightmare, or at least challenge, because if we look more closely, simple
models do not work: this is sometimes true for the static properties of colloids (e.g. in
the case of charged colloids) and even more often, in the case of colloid dynamics.

What are colloids? Usually, we refer to a substance as a colloidal suspension if it is a
dispersion of more-or-less compact particles with sizes within a certain range (typically,
Inm-1um). However, it would be more logical to classify colloids according to some phys-
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ical criterion. To this end, we should compare colloidal particles with their ‘neighbours’:
small molecules on one end of the scale, and bricks on the other. What distinguishes
colloids from small molecules? I would propose that the important difference is that for
the description of colloids, a detailed knowledge of the ‘internal’ degrees of freedom is not
needed—in particular, the discrete, atomic nature of matter should be irrelevant. That is
not to say that the chemical nature of the constituent atoms or molecules is irrelevant—
simply that, in order to describe a colloid, we do not need to know the detailed microscopic
arrangement of these constituents. This definition has the advantage that it allows for
the fact that particles may behave like colloids in some respects, and like ‘molecules’ in
others. For instance, we cannot hope to understand the biological function of proteins if
we do not know their atomic structure. However, we can understand a lot about the phase
behaviour of proteins without such knowledge. This ambiguous nature of macromolecules
may persist even at length scales that are usually considered colloidal. For instance, for
the biological function of the Tobacco Mosaic Virus, the precise sequence of its genetic
material is important. But its tendency to form colloidal liquid crystals depends only on
coarse-grained properties, such as shape, flexibility and charge.

Let us next consider the other side of the scale. What is the difference between a col-
loidal particle and a brick? The behaviour of colloids is governed by the laws of statistical
mechanics. In equilibrium, colloidal suspensions occur in the phase with the lowest free
energy, and the dynamics of colloids in equilibrium is due to thermal (Brownian) motion.
In principle, this should also be true for bricks. But in practice, it is not. In order for
bricks to behave like colloids, they should be able to evolve due to Brownian motion.
There are two reasons why bricks do not. First of all, on earth, all particles are subject
to gravity. The probability of finding a particle of mass m at a height A above the surface
of the earth is given by the barometric height distribution:

P(h) = exp(-mgh/kgT) , (1

where m is the effective mass of the colloidal particle (i.e. the mass, minus the mass of
the displaced solvent), T is the temperature and kg is Boltzmann’s constant. The average
height of the colloid above the surface is equal to (h) = kgT/(mg). For a lkg brick at
room temperature, (k) = O(107?°) cm. This tells us something that we all know: bricks
don’t float around due to thermal motion. One way to delimit the colloidal regime is to
require that (h) is larger than the particle diameter. Suppose we have a spherical particle
with diameter ¢ and (excess) mass density p, then our criterion implies

rgpot

e =ksT . (2)

For a particle with an excess density of 1g/cm?, the above equality is satisfied for a
value of ¢ = 1pm, i.e. on earth. In the microgravity environment that prevails in space,
much larger particles would behave like colloids (not bricks though, because it is virtually
impossible to reduce all accelerations to less than 1072°g). Another way to make large
particles behave like colloids on earth, is to match the density of the solvent to that of
the particle. Yet, even if we could succeed in doing all this for a brick, it would still not
behave like a colloid. Colloidal particles should be able to move due to diffusion (i.e.
thermal motion). How long does it take for a particle to move a distance equal to its
own diameter? In a time ¢, a particle typically diffuses a distance v2Dt. For a spherical
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particle, the diffusion constant is given by the Stokes-Einstein relation D = kgT/(3mn0),
where 7 is the viscosity of the solution. Hence, a particle diffuses a distance comparable
to its own diameter in a time

7 =0(no®/ksT) . (3)

For a 1um-colloid in water, this time is of the order of one second. For a brick, it is of
the order of ten million years. Hence, even though bricks in zero-gravity may behave like
colloids, they will not do so on a human time-scale. Clearly, what we define as a colloid,
also depends on the observation time. Again, 1 micron comes out as a natural upper limit
to the colloidal domain.

In summary, a colloid is defined by its behaviour. For practical purposes, the colloidal
regime is between 1 nanometre and 1 micrometre. But these boundaries are not sharp.
And the lower boundary is ambiguous: a particle may behave like a colloid in some
respects, but not in others.

2 Forces between colloids

Most colloidal suspensions are solutions of relatively large particles in a simple molecular
solvent. Yet, the description of the static properties of such a solution resembles that of
a system of atoms in vacuum—somehow, the solvent does not appear explicitly. At first
sight, this seems like a gross omission. However, as pointed out by Onsager [1], we can
eliminate the degrees of freedom of the solvent in a colloidal dispersion. What results
is the description that only involves the colloidal particles, interacting through some
effective potential (the ‘potential of mean force’) that accounts for all solvent effects.
Below, I briefly sketch how this works. Consider a system of /V; colloids in a volume V" at
temperature 7. The solvent is held at constant chemical potential g, but the number of
solvent molecules N; is fluctuating. The ‘semi-grand’ partition function of such a system
is (with 8 = 1/kT)

E(Ne e, V,T) = ) exp(BusN)Q(Ne, No, V, T) - (4)
Ne=0

The canonical partition function Q(N,, Ny, V,T) is given by the classical expression for a
mixture

. Ne g, N,
Q(N,, N,,V,T) = qld,c(T])V '(]1\1;,‘5(T) / dr®edr™ exp[-BU(rM,r™)] . (5)
c* 8-
where ¢;4 o is the kinetic and intra-molecular part of the partition function of a particle
of species @, and 7™ (r"+) denotes a 3N, (3N,) dimensional vector specifying a complete
set of colloid (solvent) coordinates. The g, terms are assumed to depend only on
temperature, and not on the inter-molecular interactions (sometimes this is not true, e.g.
in the case of polymers—I shall come back to that point later). In what follows, I shall
usually drop the factors giq» (more precisely, I shall account for them in the definition of
the chemical potential: i.e. pig — fta + k57T Ingig). The interaction potential U(r/e, r™¥e)
can always be written as U, + Uy, + Uy, where U, is the direct colloid-colloid interaction
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(i.e. U(rNe,r™s) for N, = 0), U,, is the solvent-solvent interaction (i.e. U (rNc rVe) for
N, =0), and U, is the solvent-colloid interaction U(r¥, rVe) — Uy (r™) — U, (r™). With
these definitions, we can write

Q(Nca N.n Vv T) = —]\—J]? /dTNC eXP[—,BUw] {"J{:;l:j / drN’ exD[—ﬁ(Uaa + UaC)]} (6)
and hence

- 1
SNy iV, T) = 37 [ dr™ expl-U]

{55 ) [ s+ oy

Ng,=0

We can rewrite this in a slightly more suggestive form. If we define the usual canonical
and grand-canonical partition functions for solvent alone as

QN VT) = % [ drtessi-pu.d, ®
EpnViT) = ,5:,“” (BusNo)Qs (N, V, T), )
then i
SNy 1, V,T) = % / dr exp|—BU.]
x {Nf exp(BpNp)@ (N0, V,T) <exp[—ﬂUn1>Nc,N,m}
=M [ dr expl -] (exp(-BU-d)r (10)
where
(ol B0l g = s PN )Qéa“//?)) EPBVvmr

Note that this quantity still depends on all the colloid coordinates, 7™¢: it is the average
over solvent coordinates of the Boltzmann factor for the solvent-collmd interaction. We
now define the effective colloid-colloid interaction as

U (rNe) = Uee(r™) — ksT In (exp[=BUse(r™*)]},, v - (12)

We refer to U (r™<) as the potential of mean force. Note that the potential of mean force
depends explicitly on the temperature and on the chemical potential of the solvent. In
the case where we study colloidal suspensions in mized solvents, the potential of mean
force depends on the chemical potential of all components in the solvent (an important
example is a colloidal dispersed in a polymer solution).

At first sight, it looks as if the potential of mean force is a totally intractable object.
For instance, even when the colloid-solvent and solvent-solvent interactions are pairwise
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additive, the potential of mean force is not. (Note that we have, thus far, not even assumed
pairwise additivity). However, we should bear in mind that even the ‘normal’ potential
energy function that we all think we know and love, is also not pairwise additive—that is
why we can hardly ever use the pair potentials that describe the intermolecular interac-
tions in the gas phase to model simple liquids. In fact, in many cases, we can make very
reasonable estimates of the potential of mean force. It also turns out that the dependence
of the potential of mean force on the chemical potential of the solvent molecules is a great
advantage: it will allow us to fune the effective forces between colloids simply by changing
the composition of the solvent. (You all know this: simply add some vinegar to milk, and
the colloidal fat globules in the milk start to aggregate.) In contrast, in order to change
the forces between atoms in the gas phase, we would have to change Planck’s constant or
the mass or charge of an electron. Hence, colloids are not simply giant atoms, they are
tunable giant atoms.

We shall now briefly review the nature of inter-colloidal interactions. It will turn out
that, almost all colloid-colloid interactions depend on the nature of the solvent and are,
therefore, potentials of mean force.

2.1 Hard-core repulsion

Colloidal particles tend to have a well-defined size and shape. They behave like solid
bodies—in fact, many colloidal particles are fairly solid (e.g. the colloids that Perrin used
to determine Avogadro’s number were small rubber balls, silica colloids are small glass
spheres and PMMA colloids are made out of plastic). Solid bodies cannot interpenetrate.
This property can be related to the fact that, at short range, the interaction between
{(non-reactive) atoms is harshly repulsive. This is due to the Pauli exclusion principle.
This hard-core repulsion is about the only colloid-colloid interaction that is essentially
independent of the solvent. In fact, colloidal crystals can be dried and studied in the
electron microscope because the Pauli exclusion principle works just as well in vacuum as
in solution. However, there are also other mechanisms that lead to ‘hard-core’ repulsion
in colloids: for instance, short-ranged Coulomb-repulsion between like-charged colloids,
or entropic repulsion between colloids that have a polymer ‘fur’, or even solvent-induced
repulsion effects. All these repulsion mechanisms are sensitive to the nature of the solvent.
We shall come back to them later.

2.2 Coulomb interaction

The Coulomb interaction would seem to be the prototype of a simple, pairwise additive
interaction. In fact, it is. However, for every charge carried by the colloidal particles, there
is a compensating charge in the solvent. These counter charges ‘screen’ the direct Coulomb
repulsion between the colloids. I put the word ‘screen’ in quotes because it is too passive a
word to describe what the counterions do: even in the presence of counterions and added
salt ions the direct, long-ranged Coulomb repulsion between the colloids exists—but it is
almost completely compensated by a net attractive interaction due to the counterions.
The net result is an effective interaction between the colloids that is short-ranged i.e. it
decays asymptotically as exp(—«r)/r, with « the inverse screening length (k = 1/rp) that
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appears in the Debye-Hiickel theory of electrolytes:

” €kBT Zpuqz s

where ¢ is the dielectric constant of the solvent and p; is the number density of ionic
species ¢ with charge g;. (Here, and below, we used rationalised units for electrostatics,
rather than SI units).

The first expression for the effective electrostatic interaction between two charged
colloids was proposed Derjaguin, Landau, Verweij and Overbeek (DLVO) [2]:

Qexp(kR) z exp(—+r)
1+ &R > er (13)

Veoulomb = (

where r is the distance between the two charged colloids, @ is the (bare) charge of the
colloid and R is its ‘hard-core’ radius. Ever since, there have been attempts to improve
on the DLVO theory. However, the theory of the effective electrostatic interaction be-
tween colloids is subtle and full of pitfalls. Usually, the electrostatic interaction between
like-charged colloids is repulsive. However, under certain conditions it can be attractive.
Sogami and Ise [3] have reported many experiments that provide evidence for such at-
traction. These authors suggested that this attraction should even be present at the level
of the effective pair interaction. Recently, however, detailed experimental information
has become available [4] that suggests that the Coulomb attraction between like-charged
colloids is not present in the interaction between an isolated pair of colloids in the bulk
solvent. At present, experiment and theory both suggest that all attractive interactions
are either mediated by the presence of confining walls [5-7], (but see, however, [8]) or, in
the bulk, they are due to many-body effects [9]. In addition, fluctuations in the charge dis-
tribution on the colloids may lead to dispersion-like attractive interactions (see e.g. [10])
that are also non-pairwise additive. Having said all this, the old DLVO theory usually
yields an excellent first approximation for the electrostatic interaction between charged
colloids.

2.3 Dispersion forces

Dispersion forces are due to the correlated zero-point fluctuations of the dipole moments
on atoms or molecules. As colloids consist of many atoms, dispersion forces act between
colloids. However, it would wrong to conclude that the solvent has no effect on the dis-
persion forces acting between colloids. After all, there are also dispersion forces acting
between the colloids and the solvent, and between the solvent molecules themselves. In
fact, for a pair of polarisable molecules, the dispersion interaction depends on the polar-
isabilities {o; and ) of the individual particles

3ala2h\/1/11/2 _ Cuisp(12)
4778 TS

Udisp('r) ~ = s (14)

where hy; is a characteristic energy associated with the optical transition responsible for

the dipole fluctuations in molecule ¢ (in what follows, we shall assume the frequency v;
to be the same for all molecules). The net dispersion force between colloidal particles
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in suspension depends on the difference in polarisability per unit volume of the solvent
and the colloid. The reason is easy to understand: if we insert two colloidal particles
in a polarisable solvent, we replace solvent with polarisability density p,e, by colloid
with polarisability density p.a.. If the two colloidal particles are far apart, each colloid
contributes a constant amount proportional to —pso,(pc0t.—ps ) to the dispersion energy.
However, if at short inter-colloidal distances there is an additional effective colloid-colloid
interaction that is proportional to —(p.a. — psa,)2/rS,, then this leads to an attractive
interaction irrespective of whether the polarisability density of the colloids is higher or
lower than that of the solvent. On the other hand, in a colloid mixture, the dispersion
force need not be attractive: if the polarisability density of one colloid (denoted by cl1) is
higher than that of the solvent, and the polarisability density of the other (denoted by
¢2) is lower, then the positive-definite square (p.a. ~ ps0,)? is replaced by the negative
product (pe1ce — ps0s)(Peates — ps0rs) and hence the effective dispersion forces between
these two colloids are repulsive.

The polarisability density of bulk phases is directly related to the refractive index. For
instance, the Clausius-Mosotti expression for the refractive index is

n’—1 dwpa

n2+2 3
Hence, if the refractive index of the solvent is equal to that of the colloidal particles,
then the effective dispersion forces vanish! This procedure to switch off the effective
dispersion forces is called refractive indez matching. In light-scattering experiments on
dense colloidal suspensions, it is common to match the refractive indices of solvent and
colloid in order to reduce multiple scattering. Thus, precisely the conditions that minimise
the dispersion forces are optimal for light-scattering experiments.

(15)

Colloids are not point particles, therefore Equation 14 has to be integrated over the
volumes of the interacting colloids, to yield the total dispersion interaction
A { 2R? 2R? r? — 4R2}

Vdisp(r) = —-= +—+1In

6 |2 —4R2 ' 12 2 (16)

where A is the so-called Hamaker constant. In the simple picture sketched above, A would
be proportional to (p.c.— psa;)?. However, in a more sophisticated theoretical description
of the dispersion forces between macroscopic bodies (see e.g. the book by Israelachvili {11]),
the Hamaker constant can be related explicitly to the (frequency-dependent) dielectric
constants of the colloidal particles and the solvent. This analysis affects the value of the
constant A but, to a first approximation, not the functional form of Equation 16.

2.4 DLVO potential

Combining Equations 13 and 16, we obtain the DLVO potential that describes the inter-
action between charged colloids
2 _ 2 2 2 _ A2
Qexp(kR)\  exp(—xrr) A 2R + 2R? i’ 4R '
1+ &R r2

Vbrvol(r) = ( = (1mn

er "6 \r2—4R2 r2

This potential is shown in Figure 1. Note that, at short distances, the dispersion forces
always win. This suggests that the dispersion interaction will always lead to colloidal
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V(R)

Figure 1. The DLVO potential has a deep minimum at short distances. At larger
distances, the Coulomb repulsion dominates. This leads to the local mazimum in the curve.
At still larger distances, the dispersion interaction may lead to a secondary minimum.

aggregation. However, the electrostatic repulsion usually prevents colloids from getting
close enough to fall into the primary minimum of the DLVO potential. The height of
this stabilising barrier depends (through «) on the salt concentration. Adding more salt
will lower the barrier and, eventually, the colloids will be able to cross the barrier and
aggregate.

Density matching—an intermezzo

In addition to refractive index matching, it is useful to try to match the density of the
solvent to that of the colloid. This has an utterly negligible effect on the interaction
between colloids. But, as far as gravity is concerned, density-matched colloidal particles
are neutrally buoyant—that is they behave as if they have a very small (ideally zero)
positive or negative excess mass. This is the mass that enters into the barometric height
distribution (Equation 1). Hence, by density-matching, we can study bulk suspensions of
colloids that would otherwise quickly settle on the bottom of the container.

2.5 Depletion interaction

One of the most surprising effects of the solvent on the interaction between colloids, is
the so-called depletion interaction. Unlike the forces that we have discussed up to this
point, the depletion force is not a solvent-induced modification of some pre-existing force
between the colloids. It is a pure solvent effect. It is a consequence of the fact that the
colloidal particles exclude space from the solvent molecules. To understand it, return to
Equation 12:

U (rNe) = Upe(r™) — kpT'In (exp[=BUs(r™)]),, vr
Let us consider a system of hard particles with no additional attractive or repulsive

interaction. In that case, all the contributions to the second term of the effective potential
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in Equation 12 are depletion interactions. These interactions can be attractive, even
though all direct interactions in the system are repulsive.

To illustrate this, consider a trivial model system, namely a 2-dimensional square
lattice with at most one particle allowed per square [12].

“Solvent”

*Colioid”

Figure 2. Two-dimensional lattice model of a hard-core mizture of large colloidal particles
{grey squares) and small solvent particles (black squares). Averaging over the solvent
degrees of freedom results in a net attractive interaction (depletion interaction) between
the ‘colloids’.

Apart from the fact that no two particles can occupy the same square cell, there is no
interaction between the particles. For a lattice of N sites, the grand-canonical partition

function is:
E=) exp[Buc »_ni. (18)
{n:} i

The sum is over all allowed sets of occupation numbers {n;} and g, is the chemical
potential of the ‘colloidal’ particles. Next, we include small ‘solvent’ particles that are
allowed to sit on the links of the lattice (see Figure 2). These small particles are excluded
from the edges of a cell that is occupied by a large particle. For a given configuration
{n;} of the large particles, one can then calculate exactly the grand canonical partition
function of the small particles. Let M = M({n;}) be the number of free spaces accessible
to the small particles. Then clearly:
MM
-1

Zman({n:}) = Z i (1 + 2,)MEwD), (19)
£ Il !

where z, = exp(Bu,) is the fugacity of the small particles. M can be written as

M({ni}) =Nd—2d2ni+2nmj , (20)

(i3}
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where we have given the result for general space dimension d; Nd is the number of links
on the lattice and the second sum is over nearest-neighbour pairs and comes from the fact
that when two large particles touch, the number of sites excluded for the small particles is
4d—1, not 4d. Whenever two large particles touch, we have to correct for this overcounting
of excluded sites. The total grand-partition function for the mixture is:

Emixture = Z exp | (Bue — 2dlog(l + 2,)) Z ni + {log(1 + 2,)) Z ning | (21)
{n:} i {15}

where we have omitted a constant factor (1 + z,)¥%. Now we can bring this equation into
a more familiar form by using a standard procedure to translate a lattice-gas model into
a spin model. We define spins s; such that 2n; — 1 = s; or n; = (s; + 1)/2. Then we can
write Equation 21 as

- —dlog(l + z log(1+ 2

Emixture = Z exp Bue 2g( o) Z 8+ g(Ts) Z s;s; +const.| . (22)
{ni} ¢ ()

This is simply the expression for the partition function of an Ising model in a magnetic

field with strength H = (. —dlog(1+2,)/8) and an effective nearest neighbour attraction

with an interaction strength J = log(1 + 2,}/(48).

There is hardly a model in physics that has been studied more than the Ising model.
In two dimensions, the partition function can be computed analytically in the zero field
case [13]. In the language of our mixture model, no external magnetic field means:

(1+2,)% = 2, (23)

where z, = exp B, the large particle fugacity.

Several points should be noted. First of all, in this simple lattice model, summing over
all solvent degrees of freedom resulted in effective attractive nearest neighbour interaction
between the hard-core colloids. Secondly, below its critical temperature, the Ising model
(for d > 1) exhibits spontaneous magnetisation. In the mixture model, this means that,
above a critical value of the fugacity of the solvent, there will be phase transition in which
a phase with low (n.) (a dilute colloidal suspension) coexists with a phase with high (n,)
(concentrated suspension). Hence, this model system with purely repulsive hard-core
interaction can undergo a demixing transition. This demixing is purely entropic.

2.6 Depletion flocculation

Let us next consider a slightly more realistic example of an entropy-driven phase separa-
tion in a binary mixture, namely polymer-induced flocculation of colloids. Experimentally,
it is well known that the addition of a small amount of free, non-adsorbing polymer to
a colloidal suspension induces an effective attraction between the colloidal particles and
may even lead to coagulation. This effect has been studied extensively and is theoretically
well understood [14-17]. As in the example discussed above, the polymer-induced attrac-
tion between colloids is an entropic effect: when the colloidal particles are close together,
the total number of accessible polymer conformations is larger than when the colloidal
particles are far apart.
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To understand the depletion interaction due to polymers, let us again consider a system
of hard-core colloids. To this system, we add a number of ideal polymers. Ideal, in this
case means that, in the absence of the colloids, the polymers behave like an ideal gas.
The configurational integral of a single polymer contains a translational part (V) and
an intramolecular part, Z;,;, which, for an ideal (non-interacting) polymer, is simply the
sum over all distinct polymer configurations. In the presence of hard colloidal particles,
only part of the volume of the system is accessible to the polymer. How much, depends
on the conformational state of the polymer. This fact complicates the description of the
polymer-colloid mixture, although numerically, the problem is tractable {18] .

To simplify matters, Asakura and Oosawa [14] introduced the assumption that, as far
as the polymer-colloid interaction is concerned, the polymer behaves like a hard sphere
with radius Rg. (Here Rg is the radius of gyration, which is comparable to other char-
acteristic measures of polymer size, such as the RMS end-to-end distance; see Khokhlov,
this volume.) What this means is that, as the polymer-colloid distance becomes less than
Rg, most polymer conformations will result in an overlap with the colloid, but when
the polymer-colloid distance is larger, most polymer conformations are permitted (this
assumption has been tested numerically [18], and turns out to be quite good). As the
polymers are assumed to be ideal, it is straightforward to write down the expression for the

configurational integral of N, polymers, in the presence of N, colloids at fixed positions
N,
rie

Np
/ dr’> exp[—B(Uss + Use)] = {/ dry exp[—ﬁUsc(rNc;rp)]} = Vez]i;rp(TNc) )

where Vg is the effective volume that is available to the polymers. Equation 10 then

becomes
1 o Vi (r)
E(Ney s, V. T) = ﬁ/drm exp[—BU(r")] Y exp(BuplNp) —= 57—
c: Np=0 P
1
- N /drNc exp["f@UCC(TNC)] eXp(szeﬂ(TNC)) ) (24)

where z, = exp(fu,). Clearly, the effective colloid-colloid potential is now
Uer (1) = Upe(r™e) — B2, Veg (7). (25)

This equation shows that the correction to the colloid-colloid interaction is due to the fact
that the volume available to the polymers depends on the configuration of the colloids.
The reason why this should be so is easy to understand. Consider two colloids of radius
R at distance r; > 2(R + Rg). In that case, every colloid excluded a spherical volume
with radius R + Rg to the polymers (see Figure 3).

Equation 25 shows that the depletion attraction increases with the polymer fugacity
or, what amounts to the same thing, with the osmotic pressure of the polymers in solution.
The more polymer we add to the suspension, the stronger the attraction. The range of
the attraction depends on the size Rg of the polymers. The larger R, the longer the
range of the attraction. If we model polymers as mutually interpenetrable spheres with
radius Rg, then the explicit expression for the depletion interaction between a pair of
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Figure 3. Hard-core colloids exclude a shell with thickness R¢ to the ideal polymers
in the solution. When the colloids are far apart, the excluded volumes simply add up.
At shorter distances, the ezcluded volumes overlap and the total volume available to the
polymers increases.

colloids is, for 2R < r < 2(R + Rg¢),

Vaep(r) = An(E Aol stel {1 B 4(—3T__— * 15 ( T ) } - (26)

3 R+Rg) 16 \ R + Rg

where we have subtracted a constant term from the potential (namely the contribution of
two colloids at a distance 7 3> 2(R + Rg)). Equation 26 shows clearly that, by changing
the size of the added polymers and their concentration, we can change both the range and
the strength of the attractive interaction between the colloids. In Section 3, I shall discuss
the effect of this tunable attraction on the phase behaviour of polymer-colloid mixtures.

One final comment is in place: the true depletion interaction is not pairwise additive.
This is clear if we consider three colloidal spheres: if the three exclusion zones overlap,
the total excluded volume is larger than would be estimated on basis of the pair-terms
alone. Hence, three-body forces yield a repulsive correction to the depletion interaction.
Note that three-body forces are only important if Rg/R is large enough to get the three
exclusion zones to overlap. This holds a fortiori for the 4-body forces (that are, again,
attractive), etc. This feature of the depletion interaction does not depend on the details
of the Asakura-Oosawa model. In fact, direct simulations of hard colloids and (lattice)
polymers [18] show exactly the same effect.

2.7 Why colloidal materials are soft

Let me return to the picture of colloids as giant atoms. We now know that this is an
oversimplification—the origins of the effective interaction between colloids often have no
counterpart in atomic physics. Yet, if we ignore all these subtleties, there are similar-
ities. Both atoms and colloids have an effective hard-core diameter: o, for atoms, o,
for colloids. Typically, o./0, = O(10%). The characteristic interaction energies between
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colloids ¢, are of the order of the thermal energy kpT. For atomic solids, the interaction
energy €, depends on the nature of the interatomic interaction: it may vary from a value
comparable to kT for van der Waals crystals, to a value of the order of electron-volts
for covalently bonded materials (e.g. diamond). Knowing the characteristic sizes and the
characteristic interaction energies of the particles, is enough to give an order-of-magnitude
estimate of various physical properties (basically, this is simply an over-extension of van
der Waals’ Law of Corresponding States). For instance, the elastic constants of a solid
have the dimensions [energy/volume]. That means that the elastic constants of a dense
colloidal suspension are of the order k5T /2. For an atomic van der Waals solid, the
elastic constants are of the order kBT/ag. In other words: the force needed to deform a
colloidal crystal is a factor 02/o2 ~ 10° smaller than for an atomic crystal held together
by dispersion forces (and these are the softest atomic crystals). Clearly, colloidal matter
is very easily deformable; it is indeed ‘soft matter’.

2.8 Polydispersity

All atoms of a given type are identical. They have the same size, weight and interaction
strength. This is usually not true for colloids. In fact, all synthetic colloids are to
some degree polydisperse, i.e. they do not all have the same size (or mass, or shape, or
refractive index). This polydispersity is usually a complicating factor: it makes it more
difficult to interpret experimental data (e.g. X-ray or neutron scattering, or dynamic
light-scattering). In addition, it may broaden phase coexistence regions and, in some
cases even completely wipe out certain phases. However, polydispersity is not all bad: it
also leads to interesting new physics. For instance, sometimes polydispersity may induce
a new phase that is not stable in the monodisperse limit {19]. In general, the effect of
polydispersity on the stability of phases is most pronounced in the high-density limit. In
that limit, polydispersity may lead to a frustration of the local packing.

3 Colloidal phase behaviour

In Section 2, I explained that the interactions between colloids can often be tuned. It is
possible to make (uncharged, refractive-index matched, sterically stabilised) colloids that
have a steep repulsive interaction and no attraction. These colloids behave like the hard-
core models that have been studied extensively in computer simulation of simple fluids.
But it is also possible to make {charged) colloids with smooth, long-ranged repulsion.
And, using for instance, added polymer to induce a depletion interaction, colloids can
be made with variable ranged attractions. Finally, colloids need not be spherical. It is
possible to make colloidal rods and disks. Below, I briefly discuss some of the interesting
consequences that this freedom to design the colloid-colloid interaction has for the phase
behaviour.

3.1 Entropic phase transitions
The second law of thermodynamics tells us that any spontaneous change in a closed system

results in an increase of the entropy, S. In this sense, all spontaneous transformations of
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one phase into another are entropy driven. However, this is not what the term ‘entropic
phase transitions’ is meant to describe. It is more common to consider the behaviour of
a system that is not isolated, but can exchange energy with its surroundings. In that
case, the second law of thermodynamics implies that the system will tend to minimise its
Helmholtz free energy F = E — T'S, where E is the internal energy of the system and T
the temperature. Clearly, a system at constant temperature can lower its free energy in
two ways: either by increasing the entropy S, or by decreasing the internal energy E.

In order to gain a better understanding of the factors that influence phase transitions,
we must look at the statistical mechanical expressions for entropy. The simplest starting
point is to use Boltzmann’s expression for the entropy of an isolated system of NV particles
in volume V at an energy E,

S=kglnQ, (27)

where kg, the Boltzmann constant, is simply a constant of proportionality. { is the total
number of (quantum) states that is accessible to the system. In the remainder of these
lecture notes, I shall often choose my units such that kg=1. The usual interpretation
of Equation 27 is that €2, the number of accessible states of a system, is a measure
for the disorder in that system. The larger the disorder, the larger the entropy. This
interpretation of entropy suggests that a phase transition from a disordered to a more
ordered phase can only take place if the loss in entropy is compensated by the decrease in
internal energy. This statement is completely correct, provided that we use Equation 27
to define the amount of disorder in a system. However, we also have an intuitive idea of
order and disorder: we consider crystalline solids ordered, and isotropic liquids disordered.
This intuitive picture suggests that a spontaneous phase transition from the fluid to the
crystalline state can only take place if the freezing lowers the internal energy of the system
sufficiently to outweigh the loss in entropy: i.e. the ordering transition is ‘energy driven’.
In many cases, this is precisely what happens. It would, however, be a mistake to assume
that our intuitive definition of order always coincides with the one based on Equation 27.
In fact, the aim of this section is to show that many ‘ordering’ transitions that are usually
considered to be energy-driven may, in fact, be entropy driven. I stress that the idea of
entropy-driven phase transitions is an old one. However, it has only become clear during
the past few years that such phase transformations may not be interesting exceptions,
but the rule!

In order to observe ‘pure’ entropic phase transitions, we should consider systems for
which the internal energy is a function of the temperature, but not of the density. Using
elementary statistical mechanics, it is easy to show that this condition is satisfied for
classical hard-core systems. Whenever these systems order at a fixed density and temper-
ature, they can only do so by increasing their entropy (because, at constant temperature,
their internal energy is fixed). Such systems are conveniently studied in computer simula-
tions. But, increasingly, experimentalists—in particular, colloid scientists, have succeeded
in making real systems that behave very nearly as ideal hard-core systems [24]. Hence,
the phase transitions discussed below can, and in many cases, do occur in nature. Below
I list examples of entropic ordering in hard-core systems. But I stress that the list is far
from complete.
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3.2 Computer simulation of (liquid) crystals

The earliest example of an entropy-driven ordering transition is described in a classic
paper of Onsager [1], on the isotropic-nematic transition in a (three-dimensional) system
of thin hard rods. Onsager showed that, on compression, a fluid of thin hard rods of
length L and diameter D must undergo a transition from the isotropic fluid phase, where
the molecules are translationally and orientationally disordered, to the nematic phase. In
the latter phase, the molecules are translationally disordered, but their orientations are,
on average, aligned. This transitions takes place at a density such that (N/V)L%D is of
order unity. Onsager considered the limit L/D — oo. In this case, the phase transition
of the hard-rod model can be found exactly [33]. At first sight it may seem strange that
the hard rod system can increase its entropy by going from a disordered fluid phase to
an orientationally ordered phase. Indeed, due to the orientational ordering of the system,
the orientational entropy of the system decreases. However, this loss in entropy is more
than offset by the increase in translational entropy of the system: the available space for
the centre of any one rod increases as the rods become more aligned. In fact, we shall
see this mechanism returning time and again in ordering transitions of hard-core systems:
the entropy decreases because the density is no longer uniform in orientation or position,
but the entropy increases because the free-volume per particle is larger in the ordered
than in the disordered phase.

The most famous, and for a long time controversial, example of an entropy-driven or-
dering transition is the freezing transition in a system of hard spheres. This transition had
been predicted by Kirkwood in the early fifties [20] on the basis of an approximate theoret-
ical description of the hard-sphere model. As this prediction was quite counter-intuitive
and not based on any rigorous theoretical results, it met with wide-spread skepticism
until Alder and Wainwright [21] and Wood and Jacobson [22] performed numerical simu-
lations of the hard-sphere system that showed direct evidence for this freezing transition.
Even then, the acceptance of the idea that freezing could be an entropy driven transition,
came only slowly [23]. However, by now, the idea that hard spheres undergo a first-order
freezing transition is generally accepted.

Since the work of Hoover and Ree [25], we have known the location of the thermody-
namic freezing transition. We now also know that the face-centered cubic phase is more
stable than the hexagonal close-packed phase [26], but by only 10~3ksT per particle. To
understand how little this is, consider the following: if we used calorimetric techniques
to determine the relative stability of the fec and hcp phases, we would find that the free-
energy difference amounts to some 107! cal/cm3! Moreover, computer simulations allow
us to estimate the equilibrium concentration of point defects (in particular, vacancies) in
hard-sphere crystals [27]. At melting, this concentration is small, but not very small (of
the order of one vacancy per four-thousand particles).

The next surprise in the history of ordering due to entropy came in the mid-eighties
when computer simulations [28] showed that hard-core interactions alone could also ex-
plain the formation of more complex liquid crystals. In particular, it was found that a
system of hard sphero-cylinders (i.e. cylinders with hemi-spherical caps, see Figure 4)
can form a smectic liquid crystal, in addition to the isotropic liquid, the nematic phase
and the crystalline solid [29]. In the smectic (A) phase, the molecules are orientationally
ordered but, in addition, the translational symmetry is broken: the system exhibits a
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Figure 4. Snapshot of a hard-core smectic liquid crystal.

one-dimensional density-modulation. {See also Roux, this volume.) Subsequently, it was
found that some hard-core models could also exhibit columnar ordering [30]. In the latter
case, the molecules assemble in liquid-like stacks, but these stacks order to form a two-
dimensional crystal. In summary, hard-core interaction can induce orientational ordering
and one-, two- and three-dimensional positional ordering.

3.3 To boil-—or not to boil...

Why do liquids exist? We are so used to the occurrence of phenomena such as boiling
and freezing that we rarely pause to ask ourselves if things could have been different. Yet
the fact that liquids must exist is not obvious e pricri. This point is eloquently made in
an essay by Weisskopf [31]:

The ezistence and general properties of solids and gases are relatively easy
to understand once it is realised that atoms or molecules have certain typical
properties and interactions that follow from quantum mechanics. Liquids are
harder to understand. Assume that a group of intelligent theoretical physicists
had lived in closed buildings from birth such that they never had occasion to
see any natural structures. Let us forget that it may be impossible to prevent
them to see their own bodies and their inputs and outputs. What would they
be able to predict from a fundamental knowledge of quantum mechanics? They
probably would predict the existence of atoms, of molecules, of solid crystals,
both metals and insulators, of gases, but most likely not the existence of liquids.

Weisskopf’s statement may seem a bit bold. Surely, the liquid-vapour transition could
have been predicted a priori. This is a hypothetical question that can never be answered.
But, as I shall discuss below, in colloidal systems there may exist an analogous phase
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transition that has not yet been observed experimentally and that was found in simulation
before it had been predicted. To set the stage, let us first consider the question of the
liquid-vapour transition. In his 1873 thesis, van der Waals gave the correct explanation for
a well known, yet puzzling feature of liquids and gases, namely that there is no essential
distinction between the.two: above a critical temperature 7, a vapour can be compressed
continuously all the way to the freezing point. Yet below T, a first-order phase transition
separates the dilute fluid (vapour) from the dense fluid (liquid) [32]. It is due to a
the competition between short-ranged repulsion and longer-ranged attraction. From the
work of Longuet-Higgins and Widom [35], we now know that the van der Waals model
(in which molecules are described as hard spheres with an infinitely weak, infinitely long-
ranged attraction [34]) is even richer than originally expected: it exhibits not only the
liquid-vapour transition but also crystallisation (Figure 5).

0.2

e oi b 1

N

0.0 0.5 1.0 1.5

P

0.0

Figure 5. Phase diagram of a system of hard spheres with a weak, long-range attraction
(the ‘“true’ van der Waals model). The density is ezpressed in units =3, where o is the
hard-core diameter. The ‘temperature’ T is expressed in terms of the van der Waals a-
term: T = kgTvg/a, where vy is the volume of the hard spheres. (Hence the van der
Waals mean-field equation of state reads (p+ aN/V)(V — Nvy) = NkgT ). Plotted is the
coezistence line: below this, vapour-liquid or fluid-crystal coexistence occurs.

The liquid-vapour transition is possible between the critical point and the triple point,
and in the van der Waals model, the temperature of the critical point is about a factor
two large than that of the triple point. There is, however, no fundamental reason why
this transition should occur in every atomic or molecular substance, nor is there any
rule that forbids the existence of more than one fluid-fluid transition. Whether a given
compound will have a liquid phase, depends sensitively on the range of the intermolecular
potential: as this range is decreased, the critical temperature approaches the triple-point
temperature, and when 7, drops below the latter, only a single stable fluid phase remains.
In mixtures of spherical colloidal particles and non-adsorbing polymer, the range of the
attractive part of the effective colloid-colloid interaction can be varied by changing the
size of the polymers (see Section 2.6). Experiment, theory and simulation all suggest
that when the width of the attractive well becomes less than approximately one third of
the diameter of the colloidal spheres, the colloidal ‘liquid’ phase disappears.
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Fluid

T

Figure 6. Sequence of phase diagram for o system of spherical particles as the inter-
action range is varied. The range of the interaction decreases from left to right in the
sequence. Diagram A is normal for a simple molecular substance (the liquid-vapour line
ends in a critical point while the liquid-solid line continues indefinitely). In diagram B, the
liguid-vapour line is metastable only, but can have dynamical consequences (see Section
5) (dotted). In diagram C, there is an isostructural solid-solid coezistence line.

Figure 6 shows schematically the evolution of the phase-diagram of a system of spher-
ical particles with a variable ranged attraction. As the range of attraction decreases, the
liquid-vapour curve moves into the metastable regime. For very short-ranged attraction
(less than 5% of the hard-core diameter), a first-order iso-structural solid-solid transition
appears in the solid phase [36]. It should be stressed that phase diagrams of type B
in figure 6 are common for colloidal systems, but rare for simple molecular systems. A
possible exception is Ceg [37). Phase diagrams of type C have, thus far, not been observed
in colloidal systems. Nor had they been predicted before the simulations appeared (this
suggests that Weisskopf was right).

4 Colloid dynamics

For the computer simulator, the study of colloid dynamics is a challenge. The reason is
that colloid dynamics spans a wide range of time-scales. No single simulation can cover
all time-scales simultaneously. Below, I shall discuss two aspects of colloid dynamics that
clearly illustrate the time-scale problem. The first is colloidal hydrodynamics. The second
is homogeneous nucleation of a new phase from a metastable phase.

4.1 Hydrodynamic effects in colloidal suspensions

Colloid dynamics is a research field in its own right (see e.g. [38]). Clearly, I cannot cover
this field in a few pages. I therefore wish to focus on a few simple concepts that are useful
when thinking about the dynamics of colloidal particles. The analogy between colloids
and atoms that is useful when discussing the static properties of colloidal matter, breaks
down completely when discussing the dynamics. The reason is that atoms in a dilute
gas phase move ballistically, colloids in a dilute suspension move diffusively. In order to
understand the motion of colloids, we have to consider the hydrodynamic properties of
the surrounding solvent. Just imagine what would happen if kinetic gas theory applied
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to the motion of colloids: then the frictional force acting on a spherical colloid would be
caused by independent collisions with the solvent molecules, and we would find that the
frictional force is proportional to the velocity of the colloid, v (which is correct) and the
effective area of the colloid (ra?) (which is wrong). In fact, the true frictional force on a
colloid moving at a constant velocity v is given by the Stokes expression

Fiic = —6mnav , (28)

where 7 is the viscosity of the solvent and a the radius of the colloid.

The Stokes relation can be derived from hydrodynamics, however this derivation does
not make it intuitively obvious why the friction is proportional to a rather than to a2
Below, I shall give a hand-waving derivation that is more intuitively appealing (although
the answer is not quite right). We start with the assumption that the time evolution of
any flow field u(r, ¢) in the solvent obeys the Navier-Stokes equation for an incompressible
fluid

d, (@%rt—’t—) + u(r,t) - Vu(r, t)) =nV2u(r,t) — Vp(r,t),
where u(r, t) is the flow velocity at point r and time ¢, d, is the mass density of the solvent
and p(r,t) is the hydrostatic pressure. I shall consider the case that u(r,¢) is ‘small’ (low
Reynolds-number regime, see [38]). Then we can neglect the u - Vu term. Let us now
consider the situation where the solvent is in contact with a flat surface (see Figure 7).
Initially, both fluid and wall are at rest. At time ¢ = 0, the wall is given a tangential

* Viwall)

V(z)

Figure 7. When a wall is suddenly given a tangential velocity vyan, the transverse velocity
field penetrates diffusively into the bulk fluid.

velocity V... We assume that this velocity is parallel to the y-direction. The normal to
the surface defines the z-direction. In this geometry, the equation of motion for the flow
field reduces to

Ouy(z,t)
ot
But this is effectively a diffusion equation for the transverse velocity. The ‘diffusion coef-
ficient’ is equal to (/d,) = v. This diffusion coefficient for transverse momentum is called

ds = szuy(zv t) .
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the kinematic viscosity. The larger v is, the faster transverse momentum diffuses away
from its source. Diffusion equations typically show up when we consider the transport of
a quantity that is conserved, such as mass, energy or (in this case) momentum.

Let us now use this concept of diffusing momentum to estimate the frictional drag on
a sphere. To simplify matters, I shall pretend that the transverse momentum is a scalar
rather than a vector. Clearly, this is wrong, but it will not affect the qualitative answer.
A moving sphere acts as a source of transverse momentum. The transverse momentum
flux jp is related to the gradient in the transverse velocity field (vr) by

Jr = -nVur.

In steady state, V2up(r) = 0. If the transverse velocity were a scalar, the solution to this
equation would be

a
vp(r) = Uo; ) (29)
where 2y is the velocity of the colloidal sphere. The transverse momentum current density

is then

a
Jr =NV — -
r2

The frictional force on the sphere is equal to minus the total rate at which momentum
flows into the fluid

Frriee = —4ar%jp = —4mnav, (30)

which is almost Stokes’ law (the factor 4= instead of 6r is due to our cavalier treatment
of the vectorial character of the velocity).

This trivial example shows that the conservation of momentum is absolutely crucial for
the understanding of colloid dynamics. A second result that follows almost immediately
from Equation 29 is that the flow velocity at a distance r from a moving colloid, decays
as 1/r. Through this velocity field, one colloid can exert a drag force on another colloid.
This is the so-called hydrodynamic interaction, and is very long ranged. Again, for a
correct derivation, I refer the reader to {38].

Having established a simple language for the discussion of colloid dynamics, we can
make estimates of the relevant time-scales that govern the time evolution of a colloidal
system. The shortest time-scale 75, is usually not even considered. It is the time-scale
on which the solvent behaves as a compressible fluid. If we set a colloid in motion, this
will set up a density disturbance. This density modulation will be propagated away as a
sound wave (carrying with it one third of the momentum of the colloid [38]). This sound
wave will have moved away after a time 7, = a/c; (where ¢, is the velocity of sound).
Typically, 7, = O(1071%). The next time-scale is the one associated with the propagation
of hydrodynamic interactions: 7g. It is of the order of the time it takes transverse
momentum to diffuse a typical interparticle distance: 7y = O(p~%3/v), where p is the
number density of the colloids. In dense suspensions, the typical inter-particle distance is
comparable to the diameter of the colloids, and then 74 = O(a?/v). Usually, this time-
scale is of the order of 10~%s. Next, we get the time-scale for the decay of the initial velocity
of a colloid. If we assume (somewhat inconsistently, as it will turn out) that this decay
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is determined by Stokes’ law, we find that the decay of the velocity of a colloid occurs on
a time-scale 7, = O(M./na), where M, is the mass of a colloid. Since M, = (4ma3d./3),
where d, is the mass density of the colloid, then we can write 7, = O(d.a?/7). In a dense
suspension, 7, = (d./d;)7y. This means that, for a neutrally buoyant colloid, there is no
separation in time-scales between 7, and 7y.

The final time-scale in colloid dynamics is the one associated with appreciable dis-
placements of the colloids. As the colloids move diffusively, and as the diffusion constant
is related to the Stokes friction constant by D = kgT'/(67na), the time it takes a colloid
to diffuse over a distance comparable to its own radius is 7p = O(a®/D) ~ O(na?). This
7 is of the order of milliseconds to seconds. Clearly, there is a wide time-scale separation
between 7 and the other times. For times that are much longer than 7, and 75, we can
pretend that the colloids perform uncorrelated Brownian motion. However, this is not
quite correct: even though the hydrodynamic interactions have long decayed, they render
the effective diffusion constant of every colloid dependent on the instantaneous configu-
ration of its neighbours. This is one of the reasons why the theory of colloid dynamics is
not simple [38].

Let me, however, conclude this section on colloid dynamics with something that can
easily be understood on the basis of diffusion of transverse momentum. The Stokes-
Einstein relation provides an expression for the frictional force acting on a colloidal particle
that moves at velocity v, through the solvent: Fii= —6mnav.. At first sight, it appears
that this equation allows us to compute the rate at which the initial velocity of a particle

decays
O
Mcaﬁ = —6mnav, , (31)
and the solution to this equation is
67na
ve(t) = v.(0) exp { — i t). (32)

This answers looks reasonable. It even yields the correct expression for the diffusion
constant. Indeed, using the Green-Kubo relation between the self-diffusion constant and
the velocity-autocorrelation function {v,(0)v,(t)):

- [ " (s (0w (1)) (33)

we find D = kgT/(67na), as it should. Still, Equation 32 is wrong. Velocity fluctuations
of colloidal particles (or, for that matter, even atoms [39]) do not decay exponentially,
but with a power law.

In terms of the diffusive transport of transverse momentum, this is easy to understand.
Consider a colloidal particle of mass M, having an initial velocity v,. Part of the initial
momentum of the particle is carried away by sound waves (in fact, one third of the initial
momentum). The remainder is converted to transverse momentum and is transported
away diffusively. After a time ¢, the transverse momentum has diffused over a typical
distance v/2vt. That means that (two-thirds of) the initial momentum of the particle,
M_v, is now contained in a spherical volume with radius v2vt. This volume has a total
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mass proportional to d,(vt)*2. The average flow velocity of the fluid in this volume is
equal to its momentum divided by its mass:
o e Mele
oy &= ds(Vt)a/z .

The velocity of the colloidal particle is equal to this average flow velocity. Hence, for long
times, the velocity-autocorrelation function of the colloidal particles decays as

(0:0)0:(0) = 757 (35)

(34)

where we have used (v2(0)) = kgT/M,. As is clear from Equation 35, the velocity cor-
relation function of a colloidal particle decays as ¢~%2, Several points should be noted:
first of all, the decay described by Equation 35 can be, and has been, observed exper-
imentally (see e.g. [40]). The power-law decay of the velocity auto-correlation function
only describes the asymptotic behaviour. A similar analysis can be applied to the decay
of the angular momentum of a rotating colloidal particle (in that case, the decay goes as
¢=5/2 [41]). The presence of a wall perturbs the diffusion of transverse momentum. Using
arguments very similar to the one above, one may then derive new power-law exponents
for the decay of rotational and translational velocity correlation functions [42].

5 Metastability and nonequilibrium dynamics

It is well known that liquids can be supercooled before they freeze and vapours can
be supersaturated before they condense: the resulting phases are metastable. Similar
phenomena arise in colloids too. In what follows, we discuss the escape from such a
metastable phase.

5.1 Homogeneous nucleation in colloidal suspensions

A homogeneous phase can be supercooled because the only route to the more stable state
is via the formation of small nuclei. The free energy of such nuclei is determined not
only by the difference in chemical potential between vapour and liquid, which drives the
nucleation process, but also by their surface free energy. In classical nucleation theory
(CNT) [43][44] it is assumed that the nuclei are compact, spherical objects, that behave
like small droplets of bulk phase. The surface free energy term is always positive, because
of the work that must be done to create an interface. Moreover, for small droplets this
term dominates and hence the free energy of a nucleus increases with size. Only when
the droplet has reached a certain critical size, does the volume term takes over, and the
free energy decrease. It is only from here on that the nucleus grows spontaneously into a
bulk liquid. The free energy of a spherical liquid droplet of radius R in a vapour is then
given by

AG = 47 Ry + %wR:ipA/J, (36)
where -y is the surface free energy, p is the particle number density in the bulk liquid, and

Ay is the difference in chemical potential between bulk liquid and bulk vapour. Clearly,

Copyright © 2000 IOP Publishing Ltd.



Introduction to colloidal systems 135

the first term on the right hand side of Equation 36 is the surface term, which is positive,
and the second term is the volume term, which is negative; the difference in chemical
potential is the driving force for the nucleation process. The height of the nucleation
barrier can easily be obtained from the above expression, yielding

«  lémy?
AGT = SR
This equation shows that the barrier height depends not only on the surface free energy
v (and the density p), but also on the difference in chemical potential Au. The difference
in chemical potential is related to the supersaturation. Hence, the height of the free-
energy barrier that separates the stable from the metastable phase depends on the degree
of supersaturation. At coexistence, the difference in chemical potential is zero, and the
height of the barrier is infinite. Although equally likely to be in the liquid or vapour
phase, once the system is one state or the other, it will remain in this state; the system
simply cannot transform into the other state.

(37)

Macroscopic thermodynamics dictates that the phase that is formed in a supersat-
urated system is the one that has the lowest free energy. However, nucleation is an
essentially dynamic process, and therefore one cannot expect a priori that on supersat-
urating the system the thermodynamically most stable phase will be formed. In 1897,
Ostwald [45] formulated his step rule, stating that the crystal phase that is nucleated
from the melt need not be the one that is thermodynamically most stable, but the one
that is closest in free energy to the fluid phase. Stranski and Totomanow [46] re-examined
this rule and argued that the nucleated phase is the phase that has the lowest free-energy
barrier of formation, under the conditions prevailing. The simulation results discussed
below suggest that, even on a microscopic scale, something similar to Ostwald’s step rule
seems to hold.

5.2 Coil-globule transition in condensation of dipolar colloids?

The formation of a droplet of water from the vapour is probably the best known exam-
ple of homogeneous nucleation of a polar fluid. However, the nucleation behaviour of
polar fluids (including polar colloids) is still poorly understood. In fact, while classical
nucleation theory gives a reasonable prediction of the nucleation rate of nonpolar sub-
stances, it seriously overestimates the rate of nucleation of highly polar compounds, such
as acetonitrile, benzonitrile and nitrobenzene [47, 48]. In order to explain the discrep-
ancy between theory and experiment, several nucleation theories have been proposed. It
has been suggested that in the critical nuclei the dipoles are arranged in an anti-parallel
head-to-tail configuration [47, 48], giving the clusters a non-spherical, prolate shape, which
increases the surface-to-volume ratio and thereby the height of the nucleation barrier. In
the oriented dipole model introduced by Abraham [49], it is assumed that the dipoles
are perpendicular to the interface, yielding a size dependent surface tension due to the
effect of curvature of the surface on the dipole-dipole interaction. However, in a density-
functional study of a weakly polar Stockmayer fluid, it was found that on the liquid (core)
side of the interface of critical nuclei, the dipoles are not oriented perpendicular to the
surface, but parallel [50].

We have studied the structure and free energy of critical nuclei, as well as pre- and
posteritical nuclei, of a highly polar Stockmayer fluid [51]. In the Stockmayer system,
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the particles interact via a Lennard-Jones pair potential plus a dipole-dipole interaction

potential
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Here € is the Lennard-Jones well depth, ¢ is the Lennard-Jones diameter, u; denotes the
dipole moment of particle ¢ and r;; is the vector joining particle ¢ and j. We have studied
the nucleation behaviour for reduced dipole moment u* = |p|/Veo® = 4, which is close
to the value for water. We have computed [51] the excess free energy AQ of a cluster of
size n in a volume V, at chemical potential 4 and at temperature T, from the probability
distribution function P(n)

BAQ(n, s, V,T) = — In[P(n)] = — In[N,/N]. (39)

Here $ is the reciprocal temperature; N, is the average number of clusters of size n and
N is the average total number of particles. As the density of clusters in the vapour is
low, the interactions between them can be neglected. As a consequence, we can obtain
the free-energy barrier at any desired chemical potential ¢/ from the nucleation barrier
measured at a given chemical potential y via

6Aﬂ(nv /-t', V, T) = ﬁAQ(na Hy V! T) - B(/J'/ - M)n +In [P(#I)/P(N)] ) (40)

where p = N/V is the total number density in the system.
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Figure 8. Comparison of the barrier height between the simulation results (open circles)
and classical nucleation theory (straight solid line) for a Stockmayer fluid with reduced
dipole moment p* = |p|/\/e0° = 4 and reduced temperature kgT/e = 3.5. The chemical
potential difference between the liquid and the vapour is Ap.

Figure 8 shows the comparison between the simulation results and CNT for the height

of the barrier. Clearly, the theory underestimates the barrier height. As the nucleation
rate is dominated by the height of the barrier, our results are in qualitative agreement
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with the experiments on strongly polar fluids [47, 48], in which it was found that CNT
overestimates the nucleation rate. But, unlike the experiments, the simulations allow us
to investigate the microscopic origins of the breakdown of classical nucleation theory.

In classical nucleation theory it is assumed that already the smallest clusters are com-
pact, more or less spherical objects. In a previous simulation study on a typical nonpolar
fluid, the Lennard-Jones fluid, we found that this is a reasonable assumption [52], even for
nuclei as small as ten particles. However, the interaction potential of the Lennard-Jones
system is isotropic, whereas the dipolar interaction potential is anisotropic. (On the other
hand, the bulk liquid of this polar fluid is isotropic.) We find that the smallest clusters,
that initiate the nucleation process, are not compact spherical objects, but chains, in which
the dipoles align head-to-tail (Figure 9). In fact, we find a whole variety of differently

Figure 9. Left: sub-critical nucleus in a supercooled vapour of dipolar spheres. The
dipolar particles align head-to-tail. Right: critical nucleus. The chain has collapsed to
form a more-or-less compact, globular cluster.

shaped sub-critical clusters in dynamical equilibrium: linear chains, branched-chains, and
‘ring-polymers’. Initially, as the cluster size is increased, the chains become longer. But,
beyond a certain size, the clusters collapse to form a compact globule. The Stockmayer
fluid is a simple model system for polar fluids and the mechanism that we describe here
might not be applicable for all fluids that have a strong dipole moment. However, it is
probably not a bad model for colloids with an embedded electrical or magnetic dipole.
The simulations show that the presence of a sufficiently strong permanent dipole may
drastically change the pathway for condensation.

5.3 Crystallisation near a metastable critical point

Proteins are notoriously difficult to crystallise. The experiments indicate that most pro-
teins only crystallise under very specific conditions [54-56], otherwise remaining indef-
initely as metastable, fluid suspensions. Moreover, the conditions are often not known
beforehand. As a result, growing good protein crystals is a time-consuming business.
Interestingly, there seems to exist a similarity between the phase diagram of globular
proteins and of colloids with short-range attractive interactions [57]. In fact, a series of
studies [58-61] show that the phase diagram of a wide variety of proteins is of the kind
shown in Figure 6B. Rosenbaum and Zukoski [57, 62] observed that the conditions un-
der which a large number of globular proteins can be made to crystallise, map onto a
narrow temperature range of the computed fluid-solid coexistence curve of colloids with
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short-ranged attraction [63]. If the temperature is too high, crystallisation is hardly ob-
served at all, whereas if the temperature is too low, amorphous precipitation rather than
crystallisation occurs. Only in a narrow window around the metastable liquid-vapour
critical point, can high-quality crystals be formed. In order to grow high-quality protein
crystals, the quench should be relatively shallow, and the system should not be close to a
glass transition. Under these conditions, the rate-limiting step in crystal nucleation is the
crossing of the free-energy barrier. Using simulation, it is possible to study the nucleation
barrier, and the structure of the critical nucleus in the vicinity of this metastable critical
point [64].

We performed simulations on a model system for particles with a short-ranged attrac-
tion, for a number of state points near the metastable critical point. These state-points
were chosen such that on the basis of classical nucleation theory the same height of the
barrier could be expected. In order to find the free-energy barrier, we have computed the
free energy of a nucleus as a function of its size. However, we first have to define what we
mean by a ‘nucleus’. As we are interested in crystallisation, it might seem natural to use
a crystallinity criterion. However, we expect that crystallisation near the critical point
is influenced by critical density fluctuations within the metastable fluid. We therefore
used not only a crystallinity criterion, but also a density criterion. We define the size of
a high-density cluster (be it solid- or liquidlike) as the number of particles, N,, within a
connected region of significantly higher local density than the particles in the remainder
of the system. The number of these particles that is also in a crystalline environment is
denoted by Nys. In our simulations, we have computed the free-energy ‘landscape’ of a
nucleus as a function of the two coordinates NV, and Negys.

Figure 10 shows the free-energy landscape for T = 0.897, and T = T,. We find that
away from T, (both above and below), the path of lowest free energy is one where the
increase in N, is proportional to the increase in N, ( Figure 10A). Such behaviour is
expected if the incipient nucleus is simply a small crystallite. However, around 7}, critical
density fluctuations lead to a striking change in the free-energy landscape ( Figure 10B).
First, the route to the critical nucleus leads through a region where N, increases while
Nerys is still essentially zero. In other words: the first step towards the critical nucleus
is the formation of a liquidlike droplet. Then, beyond a certain critical size, the increase
in N, is proportional to N, that is, a crystalline nucleus forms inside the liquidlike
droplet.

Clearly, the presence of large density fluctuations close to a fluid-fluid critical point
has a pronounced effect on the route to crystal nucleation. But, more importantly, the
nucleation barrier close to T, is much lower than at either higher or lower temperatures
(Figure 11). The observed reduction in AG* near T, by some 30kgT corresponds to an
increase in nucleation rate by a factor 10'3. Finally, let us consider the implications of
this reduction of the crystal nucleation barrier near 7,. An alternative way to lower the
crystal nucleation barrier would be to quench the solution deeper into the metastable
region below the solid-liquid coexistence curve. However, such deep quenches often result
in the formation of amorphous aggregates [57, 61, 62,65-68]. Moreover, in a deep quench,
the thermodynamic driving force for crystallisation (piq — fieryss) is also enhanced. As a
consequence, the crystallites that nucleate will grow rapidly and far from perfectly [55].
Thus the nice feature of crystal nucleation in the vicinity of the metastable critical point
is, that crystals can be formed at a relatively small degree of undercooling. It should be
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A B

Figure 10. Contour plots of the free-energy landscape along the path from the metastable
fluid to the critical crystal nucleus, for our system of spherical particles with short-ranged
attraction. The curves of constant free energy are drawn as a function of N, and Ny,
(see text) and are separated by 5kpT. If a liquidlike droplet forms in the system, we
expect N, to become large, while Ne, s remains essentially zero. In contrast, for a normal
crystallite, we expect that N, is proportional to Nyy,. Panel A shows the free energy
landscape well below the critical temperature (T/T, = 0.89). The lowest free-energy path
to the critical nucleus is indicated by a dashed curve. Note that this curve corresponds
to the formation and growth of a highly crystalline cluster. Panel B: The same, but now
for T = T,. In this case, the free-energy valley (dashed curve) first runs parallel to the
N, azis (formation of a liquid-like droplet), and moves towards a structure with a higher
crystallinity (crystallite embedded in a liquid-like dropliet). The free energy barrier for this
route is much lower than the one shown in A.

stressed that nucleation will also be enhanced in the vicinity of the fluid-fluid spinodal.
Hence, there is more freedom in choosing the optimal crystallisation conditions. Finally,
I note that in colloidal (as opposed to protein) systems, the system tends to form a
gel before the metastable fluid-fluid branch is reached. A possible explanation for the
difference in behaviour of proteins and colloids is discussed in [69].
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Figure 11. Variation of the free-energy barrier for homogeneous crystal nucleation, as
a function of T/T,, in the vicinity of the critical temperature. The solid curve is a guide
to the eye. The simulations show that the nucleation barrier goes through a minimum
around the metastable critical point (see text).

5.3.1 Microscopic step rule

Ostwald formulated his step rule more than a century ago [45] on the basis of macroscopic
studies of phase transitions. The simulations suggest that also on a microscopic level, a
‘step rule’” may apply and that metastable phases may play an important role in nucle-
ation. We find that the structure of the pre-critical nuclei is that of a metastable phase
(chains/liquid). As the nuclei grow, the structure in the core transforms into that of the
stable phase (liquid/fcc-crystal). Interestingly, in the interface of the larger nuclei traces
of the structure of the smaller nuclei are retained.

5.4 Concluding remarks on nucleation dynamics

The reader may have noticed that I have discussed the subject of homogeneous nucleation
without ever discussing the actual dynamics of the barrier-crossing process. The reason is
that usually (well away from the gelation point) the barrier height completely dominates
the variation of the nucleation rate. However, in a full description of nucleation in colloids,
the actual dynamics of the barrier crossing process should be taken into account. (See
McLeish, this volume, for similar remarks in a different, polymeric context.) Computa-
tionally, this is feasible, but non-trivial—after all, the dynamics of colloids in suspension
is itself quite complex. But the techniques to study this problem exist.

6 Conclusion

Finally: I realise that my introduction to colloid physics has been biased and superficial.
Biased because, as a simulator, I tend to focus on idealised models. Superficial because,
wherever 1 could, I gave quick-and-dirty explanations instead of decent derivations. As
much as possible, I have tried to refer the reader to the ‘correct’ literature. But, as these
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lectures are not meant to be an exhaustive review, I have surely omitted many more
relevant references than I have quoted. I hope that both the reader and the offended
authors will forgive me.
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science

Kurt Kremer
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1 Introduction

This school covers a huge area of modern chemical physics. For all the questions con-
sidered, computer simulation methods are becoming, or are already, important scientific
tools. To give an introduction one can choose a number of different approaches ranging
from a somewhat complete, but certainly superficial overview to the deep discussion of
a few examples. For the present contribution I try to combine both approaches, accept-
ing the necessary shortcomings. After a general introduction on simulation strategy and
characteristic length scales, the basics of Monte Carlo and molecular dynamics will be
introduced. Later on, as examples, I will discuss the simulation of polymer melts and
networks as well as first attempts towards a multiscale modelling of polymeric materials.
A number of nice reviews and books, some extensive, exist [1-11]. Thus, the present
article can also be viewed as a guide to the literature.

There are two basic concepts that are used in computer simulations of materials. A
conceptually direct approach is the molecular dynamics method. One numerically solves
Newton’s equations of motion for a collection of particles, which interact via a suitable
interaction potential. Through the equations of motion, a natural time scale is built in.
The simulation samples phase space deterministically. Though this sounds very simple,
there are many technical and conceptual complications, which I will come back to later.
The second approach, the Monte Carlo method, samples phase space stochastically. Monte
Carlo is intrinsically stable but has no inbuilt time scale. There are ways to rectify this
(discussed below).

These two very different basic approaches are both used to explore the statistical prop-
erties of systems and materials. Nowadays many applications employ hybrid methods,
where combinations of both are used. Before going into details we first ask when each kind
of model is appropriate. To do this we must discuss the different time and length scales
relevant for the question under consideration. Figure 1 illustrates this for the example of
polymers.
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Macroscopic Semi macroscopic Mesoscopic
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Figure 1. The different time and length scales in polymer problems.

Starting from the top of Figure 1 one first observes domain structures. On this level a
continuum description is appropriate and one should not use ‘particle based’ simulation
techniques. Looking more closely one could observe a marked chain in a melt or dense
solution of otherwise identical chains as a very pale shadow. The typical extension of the
shadow is given by the diameter of the overall coil, as indicated. Looking more closely
more of the chain structure is revealed. This is the universal entropy-dominated coil
regime. Typical experimental time scales are indicated. Only if one again looks much
more closely can the chemical details of the polymers be identified. There the behaviour is
governed by the local chemical details and is energy-dominated. The lower time boundary
is given by the highest frequency, which usually is from the C-C bond oscillations. To
study reactions, or excited states, details of the electronic structure have to be considered.
Here we deal with the three ‘middle levels’ of the above scheme. Typical coarse-grained
simulations are situated somewhere in between the coil and the microscopic regime.

At a first sight it is tempting to simulate a melt of polymers with all details of the
chemical structure of the monomers included. For instance, the chain diffusion constant
D could be measured by monitoring the mean square displacement of the monomers or of
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the centre-of-mass of the chains. This, however, is tempting only at the very first glance.
Even with the largest computers, one would need an exceedingly large amount of computer
time. As is true for many disordered, complex materials, polymers can be characterised
by a hierarchy of different length and time scales, spanning an extremely wide range [12].
Figure 1 illustrates that the typical range easily can exceed ten decades in time. On the
microscopic level the properties are dominated by the local oscillations of bond angles and
lengths. (To study chemical reactions or excited states, one requires quantum chemistry
methods that are beyond the scope of the present paper.}) Their typical time constant of
about 10~*? sec requires a simulation time step of 107%s. On the semi-macroscopic level
the behaviour is dominated by the overall relaxations of conformation of the chains or even
larger units (domains etc.). These times, depending on chain length and temperature,
can easily reach seconds and, if one approaches the glass transition, even longer. To
cover such a range within a conventional computer simulation is certainly impossible.
On the other hand, it is important to relate the chemical structure of a system to its
macroscopic properties. Thus, a long standing challenge within the modelling of complex
materials is to apply ‘multi-scale’ methods to cover the range from microscopic to the
semi-macroscopic regime (8, 11, 12].

2 Basics of computer simulations

2.1 Molecular dynamics (MD)

MD simulations date back to the early fifties. (For a rather complete overview see [1].)
Consider a cubic box of volume V = L? containing N identical particles of mass m. In
order to avoid surface effects and (as much as possible) finite size effects, one typically uses
periodic boundary conditions; the particle number density is p = N/L3. The first simu-
lations employed hard spheres of radius Ry, which have volume fraction py = (4/3)7 R3p.
The ‘excluded volume’ interaction potential U(r;;), with r;; the distance vector between
two particles ¢ and j, is given by

U ket ={ D0 T2 A
o, | Iy I < 2R0 .

Since the interactions are athermal (U/kgT is independent of T) the only relevant
variable is the volume fraction py. The particles are assigned random initial velocities
with the condition that their total momentum is zero. Then one performs on the computer
a (conceptually) simple collision dynamics. The temperature defines the time scale via
the equipartition theorem: m{|r|?)/2 = 3kgT /2. The simulation progresses the system to
the point where two particles meet. At each such collision the necessary momentum and
energy exchange is performed, and the run continues. (Since the hard sphere potential
is the most anharmonic one possible, the system equilibrates very fast.) It is clear that
for large systems this dynamics requires very small time steps, as very many collisions
occur. Since all the sequential collisions have to be taken care of, such a programme
cannot easily be parallelised, an important feature for modern large-scale applications.
For some time, the hard sphere problem was mainly of historical interest. However, with
the development of modern colloid science (see e.g. Frenkel, Lekkerkerker, and Chaikin,
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this volume) hard sphere simulations became very important again. On the computer,
‘microgravity experiments’ are a little easier than in space; however, our systems are still
somewhat smaller!

Many of the technical problems discussed above can be avoided if one replaces the
hard sphere potential by a soft sphere potential, such as the Lennard Jones potential
U (r;;), dervied originally for interactions of noble gases. In its simplest form, for two

identical particles
12 6
U (r) %Kw) Q)] ()

Usually, a cutoff 7. is introduced for the range of the interaction. This typically varies
between 2.5 o (a classical LJ interaction with an attractive well) and 21/%¢ where only
the repulsive part of the potential remains. The unit of energy can be chosen as ¢, the
unit of length o and of mass m. This defines the ‘LJ-units’ of temperature [T} = ¢/kg,
time [t] = \/o?m/e and number density [p] = 0~%. In many practical programs o, m, €
are set to one.

The straightforward MD approach is now to integrate Newton’s equations of motion:
pp

mits = =V Y Ulry) . (2)

JF
Since energy in such a simulation is conserved, we generate the microcanonical ensemble.
Again the average kinetic energy defines the temperature T via Z,m;|t;]?/2 = 3NkpT /2.

A simple but very efficient and stable integration scheme for Equation 2 is the Verlet
algorithm. With a simulation time step 6t € 27 /wmq, Where wy,q; is the highest char-
acteristic frequency of the system (e.g. the Einstein frequency of an LJ crystal) we have
{(with m = 1 in one dimension)

. 8t? ot .
T,‘(t + 6t) = T,'(t) + (5t7‘,‘(t) + 7T¢(t) “+ '6—T¢(t) (3)
2 3
Ti(t bl (5t) = Tz(t) - (Stﬂ(t) + %T’,(t) b éé—?",(t) . (4)
Addition and subtraction of these two equations yields
it + 0t) = 2r;(t) — ri(t — 8t) + 627, () + 0(6¢%) (5)
wlt) = fi(t) = 2—22[7‘,-(75 +68) — ralt - 68)] + 0(58%) (6)

Thus, the position and velocity calculations have an algorithmic error of 0(§t*), 0(8t%)
respectively. There are many variants of this basic method used throughout the literature:
one can follow the realistic time evolution of a system, as long as the forces/potentials
are realistic and as long as classical mechanics is sufficent. If the system is ergodic,
which is not trivial and requires ‘mixing of modes’ (there is the famous Fermi-Pasta-Ulam
problem, where one asks how anharmonic a potential has to be in order to equilibrate
a one dimensional chain of particles [24]) one can equate ensemble averages to averages
over time steps:

() = 3 LA m
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for any physical quantity A of interest. This is the basis for simulating a microcanonical
ensemble [7], also called the NVE ensemble, where all extensive thermodynamics variables
of the system, namely N,V, E are kept constant. Nowadays, most applications employ
other ensembles such as the canonical (NVT), the isobaric-isothermal (NPT) or even
the grand canonical (uPT) ensemble. As a general rule, in order to avoid two-phase
coexistence and equilibration problems one should choose an ensemble which has as many
intensive variables kept constant as possible.

So far only equilibrium MD simulations have been mentioned. In addition there is
a huge literature on different nonequilibrium simulations to study the shear viscosity of
liquids {13, 14] or other transport properties like heat conductivity {15].

2.2 Monte Carlo simulations

The classical version of MD simulation, just outlined, is a fully deterministic simulation
technique. While there are many variants of the classical MD which add stochastic terms
(see below) the other extreme, namely purely stochastic sampling, corresponds to the
classical Monte Carlo (MC) approach.

Let’s come back to the basic problem of hard spheres. We have seen that the only
relevant parameter is the volume fraction in this athermal case (if one is only concerned
with structural information). Then one can replace the ballistic motion of spheres by a
stochastic one. Starting from a particular configuration, randomly a sphere is selected and
displaced by a random jump. If this new configuration does not comply with excluded
volume constraints the move is rejected, if it does, it is accepted. Then one starts the
whole procedure again. Once every particle had a chance to move once (on average), our
Monte Carlo step is complete. This is the most basic Monte Carlo simulation (see e.g.
[1, 16, 17, 18]). Since for hard spheres there is no energy involved, all states have the
very same probability Peq. Also if the system is in state z, the probability W(z — y) of
it jumping into y is the same as that from y to z. So the dynamics trivially fulfils the
detailed balance condition

W(z = y)Peg(z) = W(y = 7) Peg(y). (8)

To discuss a few more basic aspects of MC simulation let’s go back to the ‘fruit fly of
MC simulations’, the 2-d Ising model [1, 17, 18]. Consider a two dimensional square lattice,
with spins on each lattice site. Each spin can assume two states S; = %1, corresponding
to the ‘spin up’ and the ‘spin down’ state. The energy function (Hamiltonian) is

H({Sl}) =-J Z S,'Sj + hZS,
(4.4} i
where (7, 7} denotes all nearest neighbour pairs, J is the coupling constant, and & is an
applied external field. Any observable A, e.g. the magnetisation, is given on average by

(4) = {;}A({Si})Peq({Si}), (9)
Po({Si}) = exp(-H/ksT)/Z, (10)
Z = Y exp(—H/kgT).
15}
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A direct method of calculation would be to sample all possible states. There are
however 2L states, L being the lattice linear dimension, making this impossible for large
systems. (For small systems such enumeration can lead to very good results!) Instead we
sample phase space stochastically. Taking a spin at random, we flip the spin and calculate
the energy change. With P(z) the Boltzmann probability of the orginal state and P(y)
that of the new state, detailed balance is obeyed if

Wiz —y)

Wiy — 1) =exp{— (H(z) — H(y)) /ksT} . (1)

This is normally a sufficient condition for a MC simulation to relax into thermal equilib-
rium, though this may take a very long time. (However, we will see later that in some
cases improper choice of ‘maoves’ can lead to a non-ergodic behaviour with equilibrium
only attained on a subspace!) Algorithms without detailed balance will not be discussed
here (but see Mukamel, this volume).

The Metropolis criterion is the one most frequently used to accept or reject a move:

exp{— (H(z) - H(y)) /ksT} , AH>0

W(z—>y)=[‘{1 AH <0, (12)

Since only the ratio of the rates W is relevant, I' is an arbitrary constant between zero
and one. A random number r, equally distributed between 0 and 1, is used to decide upon
the acceptance of a move. If »r < W(z — y) the move is accepted, otherwise rejected.
(Usually I = 1 is chosen so that any move that lowers the energy is accepted.) This is the
basic MC procedure, which allows the sampling of phase space, and equilibrium averages
to be found from Equation 7.

In many cases, however, one also would like to gain information on the dynamics of
a (model) system. How can one use MC simulations, without an intrinsic time scale, to
obtain information on the dynamics? The method described before evolves a system from
one state to another by a local spin flip. By this local stochastic flips the magnetisation
changes with ‘time’. This can also be seen as a dynamic MC method based on a stochastic
Markov process, where subsequent configurations z — z' — z” — ... are generated with
transition probabilities W{z — z’), W(z' — z”)... To a large extent the choice of the move
is arbitrary, as long as one can interpret it as a local basic unit of motion. As seen before,
the actual choice of W is somewhat arbitrary as well: the prefactor I' in Equation 12 can
vary. T actually can be interpreted as fixing an attempt rate, I' = 75!, for the moves and
so introduces a time scale. Thus we reinterpret the transition probability W(z — y) as a
transition probability per unit time [3, 19]. To compare the simulated dynamics with an
experiment, the basic task is to properly determine 7y (e.g. from the diffusion of chains
in a polymer melt). It is obvious, however, that this (overdamped) simulation does not
include any hydrodynamic effects (see Frenkel, this volume) since there is no momentum
involved. (There are very interesting more advanced methods like ‘dissipative particle
dynamics’ and ‘lattice Boltzmann MC’ which are currently being developed to repair this
[20, 21, 22].)

Using this interpretation, ensemble averages can again be written as time averages:

W= S A=
M= Mo 55 Tt

/t: dt' A (z(¢) (13)
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where we can interpret one attempted move per particle as one time step. Typically, the
first configurations in a simulation are not characteristic equilibrium configurations. One
first has to ‘relax’ the system into equilibrium, meaning the data for the first M, steps
are omitted. In this interpretation the dynamic Monte Carlo procedure is nothing but a
numerical realisation of a Markov process described by a master equation

P(:E t) ZW z = y)P(z,t)+ > W(y = z)P(y,t)

with P(z,t) the probability of being in microstate z at time ¢. The condition of detailed
balance is sufficient to ensure that Pe(z) = exp[—H(z)/kgT]/Z is the unique steady-
state solution of the master equation (so long as all states are mutually accessible). Thus
P(z,t) must relax towards Pe(z) as t — oo irrespective of the starting state. Note
however that the choice of a ‘good’ starting state can save enormous amounts of CPU
time (reducing My).

So far, the two extreme cases for classical, particle-based computer simulations were
discussed: microcanonical MD and MC. There are many approaches in between. Here I
just want to mention them. The techniques range from

o pure MD where Newton’s equations of motion are solved: m# = —VU, via

« MD coupled to a heat bath and a friction (‘Langevin MD’, ‘Noisy MD’), where
one solves mi = —VU — (& + f(¢) with ¢ a friction and f a random force, via

+ Brownian Dynamics (BD) where one solves (¢ = —VU + f, via

« Force biased MC, where attempted moves are selected from the beginning ac-
cording to local forces, to

o plain MC as described above.

3 Polymer simulations

3.1 General considerations

Now let us turn to some specific questions related to polymers. Compared to simulations
of small molecules, polymers (like many other forms of soft matter) require special at-
tention due to the huge number of intra-molecular degrees of freedom. This causes both
computational advantages and disadvantages. Polymers are, of course, chain molecules
built of repeat units called monomers or (by physicists) ‘beads’. Examples range from the
simple, widely used, PE to the technically very important but more complicated BPA-PC,
which is used, among other things, for compact discs:

PE (CHp) » polyethylene

PS (CH2(CH(CsHs)) polystyrene

PEO ({(CH)20) 5 polyethylene oxide
BPA-PC (CgH4C(CH3),C¢H4CO3), bisphenyl A polycarbonate
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While three out of the above examples are only soluble in organic solvents, PEO is also
water soluble. Chemistry and biology of course provide many more complex examples.

The molecular weight of a single polymer molecule can easily reach ~ 10° Daltons
(several thousands of monomers). Full scale MD simulations are not suitable (Figure 1),
but in any case, would be restricted to the study of a very few specific systems. Even then
it is very difficult to determine proper intra- and inter-molecular interaction potentials,
and one would also need an effective and computationally convenient parametrisation for
them. In particular the complicated inter-chain or polymer-solvent interactions are only
poorly understood at present.

Despite these seemingly tremendous complications, the situation is not that bad. To
what extent do we really need the chemical details? Figure 1 gives a caricature of the
various relevant scaling regimes. It also illustrates universality. Properties, which are
governed by length scales larger than a few Kuhn lengths are independent of the chemistry.
For example in the limit of long chains of N monomers the mean squared end-to-end
distance (R?(N)) = AN?. The exponent v is universal, and takes values 0.588 ~ 6/5 in
a good solvent (for d = 3) and 0.5 in the melt or in a Theta solvent (see Khokhlov, this
volume). The chemical details are hidden in the prefactor A. This suggests a relatively
satisfactory situation, namely for most physics questions one can confine the simulation
to the simplest and, for computational purposes, fastest models. In many cases we just
need the monomer-monomer excluded volume and the chain connectivity. These models
are often called coarse-grained models. Later on, we will face the problem of ‘mapping
properties back to a given chemical system’ in order to determine amplitudes (like A) as
well.

(@) (b) (©

Figure 2. Typical models for polymers used in simulations; (a) SAW on lattice, (b) pearl
necklace, (¢) bead-spring model.

We now apply the previously described techniques to coarse-grained polymer mod-
els. Typically, three classes of models are used for computer simulations of polymers, see
Figure 2. The first and historically most widely used model of a single chain is the self-
avoiding walk (SAW) on a lattice [3]. In such a walk, each lattice point can be occupied
only once; it is trivial to introduce nearest-neighbour energies and other generalisations.
The second model is the direct generalisation of this for continuous space, the pear! neck-
lace model. The chain consists of hard spheres of diameter oy and a fixed bond length 4.
The third variant is a bead-spring model, mainly used in MD simulations: the monomers
are particles which interact with, in most cases, a purely repulsive Lennard Jones inter-
action (Equation 1). For the bonded nearest-neighbours along the chain, an additional
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spring potential is added which, together with the repulsion, determines the bond length
L.

The purpose of a simulation is to generate statistically independent conformations
(equilibrium) or to follow the time evolution of a given global conformation {(dynamics).
Again, the most natural ansatz would be to simply perform a MD simulation, where
Newton’s equations of motion (Equation 2) for a bead spring model are solved numerically.
However, this direct approach cannot be used for an isolated chain. The reason lies in
its structural properties: a linear-chain polymer without excluded volume interactions
has the structure of a random walk (harmonic chain). Its structure and dynamics can be
described by eigenmodes, the Rouse modes, which decouple {23]. Thus solving Equation 2
exactly, without excluded volume or external noise, would never equilibrate the chain.

For a chain with excluded volume, the Rouse modes are no longer eigenmodes. How-
ever, the deviations, which affect the large length scales, come mainly from ‘long range’
contacts between monomers which are far apart along the chain but close by in space. For
long chains the internal monomer density decays with a power law N1=%. (The chains are
fractal objects with a fractal dimension d;y = 1/v; see Pine, this volume). Consequently,
these ‘long range’ collisions, which cause the swelling of the chains, are very infrequent:
equilibration is not guaranteed. The single SAW is an example of the direct relevance of
the aforementioned Fermi-Pasta-Ulam problem, which to date is not yet solved [24].

Thus the natural MD approach can only be used for a chain interacting directly with
solvent or other chains, or for chains with long range interaction potentials. To avoid this
problem one has to couple the motion of chain beads to a stochastic process, for example
a heat bath comprising a friction and a random force. In the overdamped limit this results
in Brownian dynamics. The other approach is the dynamic Monte Carlo method, where
again the conformation changes come from local stochastic jumps. Both approaches follow
realistically the (Langevin) dynamics of a chain. Though this leads to information about
chain dynamics as well as statics, this should be avoided if the dynamic information is not
needed. To illustrate this, we compare in Table 1 a simple liquid (or a lattice gas) and a
polymer melt of the same density and total number of particles. The comparison in the

Liquid Polymer melt
particles Niot Niot
density Po Po
CPU time per timestep | & Niot x Niot
equilibration distance x pg /% o N2, | o (RE(N))/? o N'1/2
physical relaxation time | 7 oc N2, Twx N?, 2<2<34

(varies with chain length)

CPU time for relaxation | & Ny x Niot - N*

Table 1. An illustration of the time scales in polymer simulations

Table assumes that we are not close to a critical point of the liquid, where critical slowing
down occurs. But in fact, the exponent z = 2...3.4 in the relaxation time 7 ~ N?
of polymers is analagous to that for critical slowing down [23, 25]. (In the language
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of critical phenomena the inverse chain length corresponds to (T — T¢)/7¢.) This N-
dependent slowing causes significant problems since N values of interest start at around
50 to 100. As a result there is one important rule for polymer simulation: if possible,
avoid algorithms with realistically slow physical dynamics. (However, if one wants to
study chain dynamics itself, there is no alternative: see Section 4 )

3.2 How to generate conformations

Having demonstrated that the methods which follow the realistic dynamics are not very
useful for single isolated chains, we now try to generate the conformations by a purely
stochastic process.

3.2.1 Simple sampling techniques

First let us consider SAWs on a lattice. To fulfil the excluded volume requirement each
lattice site can only be occupied once; but otherwise each conformation of an N-step
walk has the same probability. If we fix the first step, then each new step is taken with
probability 1/{g — 1), where ¢ is the coordination number of the lattice, and we account
for the fact that backward steps are ruled out.

This most naive way of generating conformations with equal probability is called simple
sampling. Each time an attempted new bond hits a site which is already occupied,
one has to start again at the beginning. Otherwise, different SAW conformations will
receive different probabilities, generating an (attractive) effective interaction among the
monomers. Each sampled conformation is therefore taken randomly out of the g(g— 1)V !
possible random walk paths, which do not include direct back-folding, whereas the total
number of SAWs on a lattice is given by [3]

Z(N)=coqly N1 N>1 (14)

with gef < ¢ — 1 and ¢y a number of order unity. The critical exponent ~ is dimension-
but not lattice-dependent (7y = 7/6 for d = 3, and 4/3 for d = 2). Typical numbers for geg
are 2.6385 (square, ¢ = 4), 2.879 (diamond, ¢ = 4) and 4.6835 (simple cubic, ¢ = 6) [3].
Thus the success rate of the sampling process, 4(N) = Ay(ges/ (g — 1))V N7}, decays
exponentially with N. A typical value for 4 is e.g. A(100) = 0.03 on the diamond lattice.
This illustrates that simple sampling is only useful to get a rough estimate for chain
properties like geg and +.

The first improvement was suggested as early as 1955 by Rosenbluth and Rosen-
bluth [26]. Their idea of biased sampling is to look ahead for at least one step in order to
overcome the attrition. More modern approaches look several steps ahead or implement
this idea within in a dynamical scheme [8, 10]. Here I explain two alternatives, which can
mainly be used for isolated chains.

3.2.2 Dimerisation

The dimerisation approach (Figure 3) [27, 28] allows a simultanous determination of
both the exponents v and v. The idea is to begin by generating many short SAWs of

Copyright © 2000 IOP Publishing Ltd.



Computer simulations in soft matter science 155

e ,__l
— —e b
H [}
v v v
~ 4
~ rd
~ 7 |
4 ~
d N
7 ~
L —
. L
. .
. .
Y I 4

Figure 3. Ilustration of the dimerisation method.

length Nj. These walks can then be combined randomly. For every step the success rate
P,in for a binary assembly of walks of length Nj, and Ny = N — N; is Py (N, Ny) =
Z(N)/(Z(N1)Z(N,)). Using Z o ¢"N""! we get Poin(Ny, No) = N1/ (N} N,)7~L; ob-
viously Py, is optimal for Ny = Ny = N/2. The original procedure, where short walks
were generated and then stored, is computationally not very efficient. It is more direct
to generate each sub-walk by simple sampling, as follows (3, 29]. After a SAW of N,
monomers is generated we continue. If the next N; steps violate the excluded volume
condition within the second piece, we start at N; again. Only an overlap with the first V,
monomers makes it necessary to start at the very beginning. This defines a very efficient
hierarchical procedure.

Batoulis and Kremer generalised this approach to study good-solvent properties of
star polymers [29]. In particular, the dependence of v on the number f of arms of the star
is interesting and very difficult to estimate analytically. Using this method we were able
to give precise results for ¥(f) and also size statistics such as the mean radius of gyration,
and the mean hydrodynamic radius (Rg) = N72%,¥,.;(1/ri;). For Ry, very strong
corrections to scaling are observed, which explain deviations of experiments such as light
scattering from the asymptotic power law behaviour. Figure 4 shows the extrapolation of
the hydrodynamic radii as a function of N~1/2, which was thought to be the correction
to the scaling for this quantity. The correct value is 1 — » [30].

3.2.3 Pivot algorithm
For this algorithm [31, 32], as illustrated in Figure 5, a point on the chain is chosen

randomly and one part of the chain is rotated at random. As with dimerisation, this can
easily be done for both lattice and off-lattice systems. Given a chain of length N and a
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Figure 5. [lllustration of the pivot algorithm.

pivot point at position Ny, then the acceptance rate p is given by the probability that the
new conformation has no overlaps. On a lattice this needs a simple O(N) check, while in
continuous space this is more difficult. On lattices, especially for d = 2, one has to take
care that the choice of moves does not contain hidden conservation rules. The approach
is then ergodic as shown by Madras and Sokal [31] who claim an N%2 power law for the
‘relaxation time’ of the mean-square end-to-end distance. This method was used to obtain
very precise estimates of the exponent v, v = 0.7496 £ 0.0007 (d = 2: exact value 3/4)
and v = 0.592 + 0.003 (d = 3), which is about as accurate as the results coming from
dimerisation. For the single isolated SAW there is probably no better way to generate
very quickly many conformations that are globally different.

However there is no ‘free lunch’. As soon as the concentration is increased, either due
to other chains or monomer-monomer attraction along the same chain, the acceptance rate
is dramatically reduced. A more subtle aspect is that this method relaxes large length
scales very fast, while short ones need a longer time. For example, nearest-neighbour
bond correlations need up to O(N?) moves to relax completely. For many problems it is
essential to cover the equilibration of the short as well as the long distances. This can
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be overcome in two ways (depending on the model). One is a hybrid method of pivot
moves and molecular dynamics simulations (for bead spring models) {33]. For fixed bond
lengths it is sufficient instead to generalise the pivot approach so that not only tails of
the chain, but also internal pieces of arbitrary length, are rotated. The choice of lengths
is then adjusted to the density, so that the acceptance rate stays above 10%. This version
can be applied to ring polymers as well.

3.2.4 Many-chain methods: generalised reptation algorithms

In semidilute solutions or melts the generalised pivot algorithm will only produce accept-
able success rates for moves involving a small number of monomers. Eventually it joins
the class of dynamic algorithms, which follow realistically the very slow physical dynamics
of the system. This is certainly not what we are looking for in the present context.

The generalised reptation algorithm is an effective way to simulate dense solutions,
and also for single chains, in the collapsed regime for T < ©, the Theta temperature (see
Khokhlov, this volume). The method is explained here for a single lattice chain. The
original idea of the ‘slithering snake’ goes back to Kron in 1965 and Wall and Mandel
1975 [34]. One randomly takes an end monomer and tries to add it at the other chain-
end with a random orientation. If the new chain fulfils the SAW condition, the move is
accepted, otherwise rejected. In this way the chain moves (forward and backward) like a
snake along its own contour. (The algorithm resembles, but should not be confused with,
the physically realistic reptation dynamics of polymer melts: see McLeish, this volume,
and below.) For this method detailed balance is fulfilled trivially, but on a lattice, only
a subspace of all conformations is reached. (This subspace excludes conformations where
both chain ends are completely surrounded by other monomers.) In continuous space
this problem is absent. The extension to many chains as well as interacting chains is
trivial. One can also introduce a grand canonical version by allowing the chain length to
fluctuate. The use of pointers allows for very fast and efficient codes.

How fast is the relaxation of a chain conformation in CPU time? To estimate this, let
us look at the position of the middle monomer of the chain. At first this does not move. A
measure of the relaxation time 77U is the time until this space point is not on the chain
for the first time. For random walks this first passage time follows the same power law
as a one-dimensional diffusion along the chains. Since each move only requires a constant
N-independent number of operations we get T$"Y o N? for ideal chains. (To simulate
this is a good check on the program.) This method is O(N) faster than algorithms with
‘realistic dynamics’ such as the Rouse model (see below), whose real relaxation time is
Tn ~ N? giving N3 in CPU time.

Somewhat more complicated is the situation for SAWs. In physical time one ex-
pects for the diffusion constant D o« N~!. With R? o« N? and DTy ~ R? we expect
TGFU ~ Ty ~ N2 for this algorithm. This is, however, not correct. Numerically one
finds for the autocorrelation function of (R?) a relaxation time of Ty ox N?!® (d = 2)
and N29 (d = 3) instead of N*5 and N21® respectively. This result, although of advan-
tage for simulations, is not completely understood. The explanation is probably in the
difference between diffusion times and first passage times [35). In addition, it should be
kept in mind that because of the SAW condition, SAWSs are correlated objects!
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3.3 More complex single polymer problems: two examples

The above methods are the basis for many applications to more complicated chemical
designs or molecular architectures. Branched polymers were already mentioned. There
is however a whole zoo of other systems available: H-shaped objects, comb polymers,
double stranded polymers etc.. Two other interesting classes are copolymers, especially
random copolymers, often dicussed in the context of protein folding, and charged poly-
mers (see Khokhlov, this volume). For both, simulation studies are becoming more and
more important. Here I want to discuss two applications on the level of single chains:
polyampholytes, and the collapse transition of PEO in water under pressure. In both cases
a somewhat specialised model of a single chain is needed, but the simulation methods are
essentially the ones described above.

Many biopolymers are on average neutral, however they contain, from a physicist’s
view, randomly distributed charges, of either sign, along the backbone. The simplest
model of such a polyampholyte chain [36] treats electrostatics and excluded volume only.
A chain with an extensive number of excess charges of one sign, is certainly stretched,
while one might expect the opposite from an overall-neutral chain. Analytical theories
give contradictory results and are only approximate.

To approach the problem Kantor and coworkers [36] looked at a random copolymer,
where the comonomers are either positively or negatively charged. With N monomers,
on the average there is an excess charge of v/N. The authors used a simple cubic lattice
simulation to study chain conformations as a function of temperature (with fixed dielectric
constant of the background ‘solvent’). They found that in the limit of very long chains
(and/or low temperatures) those chains with less than O(v/N) excess charges will collapse,
while the others will be expanded (Figure 6).

For standard, uncharged polymers, chain conformation changes continously as a func-
tion of temperature and/or solvent quality. But there are contrasting examples as well.
PEO is soluble in water under normal atmospheric pressure but separates out under high
pressure. There is a Flory type theory, which relates this phase separation/collapse tran-
sition to the destruction of the hydration shell around the oxygen under pressure [39]. If
this hydration shell is destroyed, one is left with the strong hydrophobic interaction of
hydrocarbon backbone and the water. Within a simulation this can be taken account of
by a simple model [40], where the monomers have an internal degree of freedom. The
situation with a hydration shell corresponds to the good solvent case and a fairly large
excluded volume. If the hydration shell is destroyed, the excluded volume is smaller and
the monomers attract each other, since water is a very poor solvent for the hydrocarbon
part of PEO. We now can study the conformations as a function of temperature for a
given (pressure-dependent) activation barrier for the hydration shell. It turns out that
already on the single chain level the collapse transition becomes discontinuous.

Figure 7 illustrates this for the chain form factor S(g). Right at the phase transition
point one gets an energy distribution function with two maxima. Dividing the configura-
tion space at the minimum yields two coexisting sets of conformations. The figure shows
5(q) averaged separately for the two subsets and clearly displays a collapsed and an ex-
panded structure. Most of these runs were performed with the slithering snake algorithm
combined with a Metropolis update of the hydration shell.
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(a)T=20 B)T=25

()T =0.005 ©T=03 @T=0005
Figure 6. Left, (a-d): Typical conformations of a polyampholyte chain with an asymmet-
ric charge distribution as a function of interaction strength (temperature), from [36]. Note
that this picture holds for isolated, finite length chains only. At finite concentration, due
to the overall neutrality of the whole system, oppositely charged chains and agglomerates
will cluster step by step [37, 38]. Right: (a,d) conformations of a chain that is neutral
overall.

4 Polymer dynamics

To obtain information about dynamics, we have to follow the slow, physically realistic,
simulation path. There are many tricks to vectorise or simplify the algorithms, but these
only influence the prefactors of the power laws shown in Table 1. Faced with a naturally
very slow process, we are forced to employ extremely simple models.

To test the applicability of any chosen method we need a basic model for dynamics,
the Rouse model [23]. This is still the only model on a ‘molecular level’, which can be
solved analytically. The Rouse model treats the dynamics of a Gaussian random walk
in the overdamped (Brownian) limit. All the complicated inter-chain and intra-chain
interactions are summarised in the viscous and random forces from the heat bath. Thus,
we totally disregard excluded volume and topological constraints beyond the plain chain
connectivity. This model, which represents the dynamics of molten but unentangled
(short) chains can readily be solved analytically (see McLeish, this volume).

Here we recap the essentials. With r; the position of the i-th monomer, the Rouse
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10

Figure 7. Static structure function for N = 100 at the collapse transition point for the
simple PEO model. The bigger spheres denote the hydrated monomers. For the expanded
configurations these are equally distributed all over the chain, while for the collapsed ones
only a few surface sites remain available to build up a solvation shell. The asymptotic
slopes for the two cases of g~+/%%%8 (swollen coil) and ¢~* (collapsed globule) are indicated
by straight lines; from [{0].

equation of motion is
d].',‘
CE = —K(?l‘i — T4l — 1',‘-1) + f,(t) . (15)

Here ¢ is the monomeric friction constant, x the bond spring constant and f;(t) the
random (heat bath) force with {f;) = 0, and (via the fluctuation dissipation theorem)
(£:(t)£;(0)) = 2¢T4(¢)14;;. In the discrete version, the Rouse amplitudes X, are given by

X,(0) = g { 32 n( cos (ZU2 1) (16)

i=1

with relaxation times (for large N)
(N(R?)
3m2kgT
Eigenmodes decay exponentially, (X, (t)X,(0))/{|X|2)} = exp(—t/7;), resulting in an over-
all chain diffusion constant D = kT /(N and a single chain dynamic structure function
S(g,t) scaling as In(S(g,t)/S(g, 0)) x —¢*v/1/6.

The most natural quantity to measure from a simulation is the mean square displace-
ment of the individual monomers, ¢(t) = (|r;() — r;(0)[2). One finds (see Figure 8)

1?2 t<n
f{t) ~
@ {tl t>mn,

(17)

—_ 2 . = —_
Tp=T / P i Ti1 = TRouse =
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Figure 8. A sketch of the monomer mean square displacements for the standard Rouse
model and for the reptation model. The time and length scales are indicated for the
reptation case.

while the centre of gravity of the chain always follows 72, (¢) o t.

This model is a basis for the dynamic interpretation of stochastic algorithms. Besides
the standard requirements for MC procedures (detailed balance efc.) we need the following
property (for an extensive discussion of details see [3]): to simulate polymer dynamics,
any algorithm with stochastic (or other artificial) dynamics must involve only local moves,
and must yield Rouse dynamics for Gaussian random walks. Below we concentrate on
lattice models; however, the generalisation to continuous space is obvious.

Figure 9. Typical kink jump moves for a dynamic Monte Carlo simulation.

The standard procedure is the kink jump method, Figure 9, as follows: (i) select
monomer at random; (ii} select trial local move at random; (iii) check the move is topo-

logically permitted; (iv) implement a Metropolis check; (v) decide on acceptance; (vi)
start over again.

In a simulation we are mainly interested in SAWs, but to check the validity of a
method for dynamics we need to recover Rouse bebaviour for ideal, Gaussian chains. To
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check a given set of local move rules for the SAW, the test for Rouse behaviour is actually
performed on non-reversing random walks (NRRWs). NRRWs are walks which do not
allow direct back-folding but do not have any long range excluded volume interaction.
(Such walks are ideal Gaussian coils on large length scales, but have the same local
conformations as SAWs and consequently the same set of local moves.)

To achieve Rouse dynamics, the set of local moves must contain moves which create
new bond vectors {b;} inside the chain. In Figure 9, there are 2-bond moves and 3-bond
moves. The 2-bond moves only exchange positions of bonds along the chain but do not
change the set of bond vectors. For rings, an algorithm only containing such moves would
never equilibrate, while for open chains new bond vectors could only diffuse in from the
freely rotating chain ends. This would increase the relaxation time at least by a factor of
N. Local rotations, such as the 3-bond move, are needed, so that {b;} is not conserved
and Rouse behaviour recovered. The minimal number of bonds involved in d = 3 varies
from 2 in continuum or on the fcc lattice to 4 on the diamond lattice. But in d = 2,
for the 180° rotation of the 3-bond move we again only exchange bonds. To circumvent
this difficulty, one can use off-lattice models, where both the bond lengths and angles
vary. For such a model, the excluded volume constraints are usually time consuming to
evaluate. Distances have to be calculated at every time step between several monomers.
This results in the loss of the main advantage of the MC methods compared with the MD.

A now frequently used alternative approach is the bond fluctuation (BF) method of
Carmesin and Kremer [41], which combines advantages of lattice simulations and contin-
uous space. Figure 10 illustrates the method for d = 2 and d = 3. Each monomer consists
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Figure 10. An illustration of the bond fluctuation model for a 2-d branched polymer
and for a 3-d linear polymer. Typical elementary moves are indicated. Each monomer is
represented by a square (cube) of four (eight) occupied sites on a 2-d (3-d) unit lattice.

of 2¢ lattice sites. In addition to the excluded volume interaction, the bond length ! is
restricted to a maximum extension to avoid bond crossing. On the square lattice, one
has the constraint that 1 < ! < v/16. For d = 3, the situation is slightly more com-
plicated. In this case a set of 108 different bonds are allowed [42, 43, 44]. Since each
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monomer occupies 2¢ sites, but every jump only requires 24! empty sites, the method
works effectively at high densities. (It also suffers less from non-ergodicity problems than
the standard methods do.) For the 3-d study of the dynamics of polymer melts, densities
as large as 0.5 were used, although higher densities are no problem. This corresponds to
a very high physical chain density. Skolnick ez al. [45] find for SAWs on a simple cubic
lattice at ¢ = 0.5 a static screening length for the excluded volume interaction of about
12 monomers, indicating that they are in a semi-dilute regime, whereas Paul et al. [46]
find for BFM, and ¢ = 0.5 (d = 3) a value of about 2. On a scale larger than a trimer the
excluded volume interaction is already screened as it is in a polymer melt (see McLeish,
this volume).

A first serious application was the study of a 2-d melt of chains [47]. There one would
expect the chains to segregate for entropic reasons [25]. In a Monte Carlo study using
the bond fluctuation model chains of up to N = 100 monomers at a density of up to
80% occupied lattice sites were investigated. Figure 11 shows the segregation procedure
clearly.

[-1]

60

40

20

Figure 11. A 2-d polymer melt with N = 100 and ® = 0.8 for an almost completely
equilibrated sample [{7].

More interesting, however, is the dynamics of the d = 2 melt. The chains cannot cut
through each other; on the other hand, they are compact objects with (R?(N)) ox N o R?.
One finds a typical 2-d soft sphere liquid with an average of 6 chains surrounding a given
chain. The Rouse model does not take into account any constraints on motion besides
the connectivity. A first test is to measure the Rouse mode relaxation spectrum. The
autocorrelation function for each mode shows an almost perfect single exponential decay.
On the other hand we can also measure the diffusion constant Dy of the chains directly
from the mean square displacements. Each test yields an independent estimate of the
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monomeric friction constant ¢, which should be consistent, if the Rouse model describes
the motion. For d = 2, however, one finds that (noge > (p, and that {yoqe is governed by
the conformational relaxation of the chain, while Dy is controlled by motion of the chain
without really reorganising its internal conformational structure. Recently this picture
was impressively supported by experiments on 2-d confined DNA molecules [48]. An
extension, which puts these results into a much wider perspective, is 2-d polymer glasses
[49]. It could be shown, for this case, that time temperature superposition (see McLeish,
this volume) directly followed from the Rouse dynamics.

More relevant to most actual experiments, of course, is the study of 3-d melts, where
one wants to test the concept of chain reptation. Besides standard kink-jump and BF MC,
another alternative is to perform a MD simulation. Simulations using the MD method
usually employ the bead-spring model [50, 9], with, in addition, each monomer weakly
coupled to a heat bath. (Technically, this is a hybrid method or ‘noisy MD’.) Each
polymer chain consists of N monomers of mass m connected by an anharmonic spring.
The monomers interact through a repulsive Lennard-Jones potential given by Equation 1
with r. = 2!/65. For connected monomers we add an attractive interaction

2
pbond () = —0.55R31n [1 - (7%) ] r < Ry ' 18)
00 r> Ry

For melts the parameters s = 30e/0? and Ry = 1.50 usually are chosen, while in solution
softer potentials are mostly used [9].

In this algorithm, the equation of motion for monomer 7 is

d.l‘,'

myr; = —Vi Z U(l‘ij) bl FE

J#i

+ Wi(t) . (19)

Here ' is the bead friction which acts to couple the monomers to the heat bath, and W;(t)
describes the random force acting on each bead, with (W;(¢t)W;(t)) = §;;0(t—t')12kgT T
Strict MD runs for polymers typically exceed the stability limits of a microcanonical
simulation; these small damping and noise terms extend stability and define a canonical
ensemble. We have used I' = 0.577! and 7" = 1.0¢ in most cases and m = 1. This value of
I" is large enough to stabilise the run but small enough not to produce in itself Rouse-like
behaviour on length and time scales of the order of a few bond lengths. Thus I and W
are not be confused with ¢ and f in the Rouse Equation 15 for a single chain; in this
simulation, the Rouse friction is dominated instead by collisions with other chains. The
program can be vectorised [51, 52] or parallelised [53]. Most older runs used a predictor-
corrector scheme and Gaussian random numbers. One can however use equally distributed
random numbers, so long as these have the correct mean value and second moment. The
use of a Verlet algorithm then allows for time steps as large as 0.012r yielding up to about
300000 particle timesteps per second for a typical vector processor or more than 100000
particle steps per processor or on a Cray T3E. With this method a huge variety of systems
have been studied. Most recently a melt of chains of length N = 10000 was simulated
(54, 55].
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4.1 MC versus MD for melts

Which method is best to use for studying the dynamics of dense polymeric systems? I
think that the choice should be between the BF Monte Carlo method and MD, or variants
of these two approaches. For the athermal case (hard core repulsion only) we can compare
the CPU time to reach the crossover time for entanglements 7, (see Section 4.2 below)
as a measure of the relative speed of the algorithms. By doing this we estimate that BF
Monte Carlo is somewhat faster than MD on vector computers. However the inclusion
of soft interactions has a much stronger effect on slowing down BF than it does for MD.
(The main speed advantage of the MC comes from the simple acceptance test for the
moves compared to the more complicated force calculations of MD.) Which method to
use therefore depends on the particular question under consideration, whether it is better
to work in the continuum (for example, to study shear flow), and whether it is acceptable
to have stochastic dynamics on all time scales: using MD, the Rouse behaviour for short
chains (or early times) is a consequence of the interactions, while it is built in explicitly
in MC. If one is interested in the behaviour of gels or polymer networks under swelling or
elongation, or the forces between polymer brushes {56, 57], then a continuum simulation
using MD is probably more appropriate; generally speaking, the MD method is more
flexible. Note also that with increasing computer power, workstations are becoming more
and more important. They typically do not take advantage of especially fast integer
arithmetic, reducing even further the advantage of the BF MC approach compared to
continuum methods.

4.2 Dynamics and flow of melts: reptation

The dynamics of polymer melts is observed experimentally to change from an apparent
Rouse-like behaviour to a dramatically slower dynamics for chains exceeding the charac-
teristic length N,. (For longer chains, one observes a much slower diffusion, D N2,
and an increased viscosity, n oc N®*.} There are several theoretical models which try to
explain this behaviour. However, only the reptation concept of Edwards and de Gennes
[23] and variants of this approach take the non-crossing of the chains explicitly .into ac-
count. This approach is the only one which, at least qualitatively, can account for a wide
variety of different experimental results, such as neutron spin echo scattering, diffusion
and viscosity. While it cannot explain all experimental data it does remarkably well,
particularly considering its conceptual simplicity.

The idea of reptation is that the topological constraints imposed by the surrounding on
each chain cause a motion along the polymers own coarse-grained contour. The diameter
of the tube, to which the chain is constrained, is the diameter of a subchain of length N,
namely dr & N2/2. The chains follow the Rouse relaxation up to the time 7, ox N2. For
longer times the constraints become dominant and the chain moves along its own contour.
To leave the tube, the chain has to diffuse along the tube a distance of the order of its
own contour length, drN/N,. In order to leave this original tube the chain needs a time
T4 o N?(N/N,), giving D o« N7% and 7 o« N3. The difference between the predicted
and the measured exponent for # is still not completely understood. For the mean square
displacements of the monomers, g(¢), the model (Figure 8) predicts (a) the standard
Rouse behaviour g;(t) oc #/2 for t < 7, o« N2; (b) the Rouse relaxation along the tube
with g;(¢) o< t/4 for ¢ < 7v o« N?; (c) the diffusion along the tube with g;(t) « t'/? for
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t < 74 x N% and (d) the free diffusion of the chains. These four distinct regimes are a
direct consequence of the reptation model. (For a more general discussion of this and the
competing but less successful concepts, and a rather complete list of references see [9].)
Below we review a few results, which have been obtained recently by both MD and MC
simulations.

The transition from Rouse to reptation can be identified from the centre-of-mass dif-
fusion constant,

kgT
D(N) N N <N, (20)
D(N) x N2, N>N,. (21)

Here ¢ is the monomeric friction coefficient. Several forms exist in the literature for the
prefactor of the second expression and the crossover. To compare results from different
simulations and also experiment, a plot of D(N)/Dgeuse(N) versus N/N, or M/M, re-
spectively should give one universal curve since N, is thought to be the only characteristic
scale at the crossover. Here Droyse = kg7 /(N and M, is the experimental entanglement
molecular weight. This mapping is important for our understanding, since experiment
and simulation use different methods to estimate M, or N,. In simulations N, is deter-
mined by the crossover towards the '/ regime in g,(t), while normally, experimentally,
the plateau modulus from the stress relaxation function is used (McLeish, this volume).
The scaling of the different data onto one curve shows that N, resulting from the plateau
modulus is typically about a factor of 2.3 larger than that from the mean square displace-
ments. Figure 12 shows the results for simulation and experiment [9, 54, 55]. The MD
simulations were performed at a density of p = 0.850~3 and the MC simulations [46] at
two different volume fractions ¢ = 0.4,0.5. The experimental data are NMR measure-
ments of Pearson et al. [58]. Both simulations and the experiment show a clear crossover
from the Rouse D(N) o N~! behaviour towards the D(N) oc N~2 regime. From these
numbers it is clear that the simulations are in a position to analyse the crossover towards
the reptation regime in some detail and, increasingly, to reach the fully entangled regime.

As mentioned earlier, a signature of reptation is the mean square displacement of
the monomers, not just that of the chain centre of mass. (Experimentally the monomeric
motion can either be observed by various NMR techniques [59, 60] or by neutron scattering
[61, 62].) Figure 13 shows data on both quantities from the bead-spring MD simulations
of Piitz et al. [55] for a variety of chain lengths. For short times, all the data collapse onto
one single curve, indicating that initially the monomers do not feel the constraints acting
on the full chain to which they belong. Only for larger times does one find the crossover
to a slower motion. It is important to notice that this crossover occurs, within the error
bars, at the same times and monomer displacements, independent of chain length, at least
for the longer chains, which shows that N, and 7, are independent of N as expected. For
longer times the slope in Figure 13 is around 0.26 for the longest chain, a little larger than
the t'/* expected from the reptation model. Using for the crossover g;(7e) = 2(R2(Ne))
the data of Figure 13 give N, = 35 and 7, = 18007 from the MD data. Within the
reptation model one would expect the t'/4 regime to hold up to the Rouse time of the
chain. (For a detailed discussion see {9, 23).) For the earlier MD results [63, 64] on chains
of N < 150 the chains were too short to observe a clean indication of a crossover from
Rouse to reptation, since N/N, = 4.3.
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Figure 12. Scaled diffusion constant D(N)/Dg(N) versus scaled chain length N/Ne,
for polystyrene (o) (M., = 14600, T = 485 K ), polyethylene m) (Mep = 870, T = 448
K), PEB2 (filled A), (M., = 992, T = 448K, our bead spring model (A) (N, = 72),
the bond-fluctuation model for ® = 0.5 (0) and tangent hard spheres at ® = 0.45 (o). All
data are scaled with N, , from the plateau modulus or with 2.2 N, from g,(t), from [55].

100 } 1
slope 0.26
% 10} ﬁ%;ig -
é:; slope 112 . slopel 1/2
g 1} . T
2
X .
01} ° 1
102 108 10* 10° 10°

t[7]

Figure 13. Open symbols: mean square monomeric displacements go(t). (This is defined
as for gi(t) but is measured in centre of mass frame of each chain and averaged over
the five middle monomers of the chain). Closed symbols: mean square centre of mass
displacement g3(t). Chain lengths are N = 350 (m), N = 700 (o) and N = 10000 (A ).
The straight lines show some power laws to guide the eye. The local reptation power laws
ga(t) o t¥/% and gs(t) o t'/2 are verified with remarkable clarity. From Ref. [55].
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Above we have discussed a variety of different equilibrium simulations, which try to
follow the motion of individual chains. Kroger and co-workers [65] used the MD simulation
model to perform NEMD (nonequilibrium MD) simulations, where the sample is subject
to a steady shear or stress. They were able to cover chains of up to N = 100 monomers
or equivalently about 3N,. While this is too short to study e.g. the viscosity or the shear-
alignment of highly entangled chains, changes from Rouse to the entangled regime were
observed. Such methods will probably become much more important with the coming
generation of faster computers, allowing realistic simulation of melt flow behaviour.

Despite considerable effort it is still not known what an entanglement means physically,
and how it can be derived from first principles. However, the reptation model does appear
to work quite well.

5 Network structures

There has been extensive research on polymer networks for many years. A major problem
is that it is experimentally not feasible to collect the necessary structural information
in order to allow an unambiguous test of theoretical predictions. By simulation it is
possible to analyse in detail the structural properties. This allows for a more thorough
investigation of the effects of the non-crossing of the chains. One expects the consequences
of conserved topology to be even stronger in crosslinked systems than in uncrosslinked
ones. (This should hold for dilute polymer gels as well as for dense networks; however due
to the importance of hydrodynamic effects, gels are even more complicated to simulate.)
There have been various simulations on the properties of dense polymer networks. These
simulations range from rather rigid model systems, where the crosslinks cannot move,
to highly complicated, fully mobile randomly crosslinked polymer melts [56, 66]. The
simulation techniques used are both MD and (lattice) MC. More recently also the swelling
behaviour of networks has been investigated [54].

Duering et al [67] and Everaers and Kremer [68, 69, 70] and Piitz [54, 71, 72] performed
MD simulations on a variety of different model networks with two different interaction
potentials. These different simulations were used to study the influence of the possibility
of chains crossing each other, the influence of different kinds of disorder (strand length,
connectivity, topology) as well as the elasticity and relaxation as a function of the strand
length.

Figure 14 illustrates the three different classes of networks. The first system, an equi-
librated polymer melt with randomly placed crosslinks, certainly resembles most closely
many experimental systems such as those produced by radiation crosslinking or vulcan-
isation. These systems have several kinds of disorder. The strands between subsequent
crosslinks are extremely polydisperse, with an exponential distribution of strand lengths.
Only a few crosslinks per chain are needed to give a gel-fraction which is nearly 100%,
though the elastically active part of the network is significantly smaller. In this case
there are many dangling chain ends or even some dangling clusters, like little trees which
are connected to the network by only one strand. These dangling pieces are expected
to be responsible for the extremely slow decay (in the time-dependent modulus G(t), for
example) seen in most experiments. In addition, trapped loops and knots may play an
important role in both linear and nonlinear elasticity, while the length of the shortest
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Figure 14. Sketches of the typical network topologies considered in simulations. Left:
interpenetrating networks; centre: end-linked chains; right: random cross-links.

chemical pathway through the network cluster is expected to be of special relevance in
nonlinear elasticity (since extension of a sample beyond this length forces breakage of
covalent bonds). Although it is possible to identify the elastically active part of the clus-
ter unambiguously [67], such disordered systems are extremely difficult to analyse in a
systematic manner.

A somewhat more idealised case is an end-crosslinked polymer melt [67, 71]. Such sys-
tems have been considered experimentally as well [73]. There one starts with a monodis-
perse melt. After equilibrating, the chains are kinetically crosslinked at the ends. By
this route, all strands in the network have the same length. (In a different type of end-
linking, each free end binds instead to a randomly selected neighbour bead.) Now there
are only two sources of quenched disorder in the system. One involves permanent topo-
logical links, the second, the distribution of chemical pathways through the system, which
again is highly polydisperse, either at the level of individual network strands, or that of
a percolating chemical pathways across the system.

Finally one can consider highly idealised networks, which certainly are somewhat re-
mote from experiments, where the only source of disorder is the occurrence of knotted
loops. These are the interpenetrating lattice networks, in which each subnet is an or-
dered diamond lattice that interpenetrates other, similar nets [68, 69, 70]. They can be
analysed and investigated in a variety of ways in order to shed some light on the role of
entanglements and conserved topology. The effects of disorder in networks are especially
important under strong elongational stress. There they dominate the nonlinear regime,
as Figure 15 illustrates.

6 Further reading

There are many other interesting polymer simulation problems, which were not discussed
above. An extensive overview can be found in a recent book edited by K. Binder [74]. For
a more microscopic approach the recent book edited by Monnerie and Suter [11] provides
an interesting set of papers. Here we summarise these fields briefly.

Polyelectrolytes. The simplest charged polymers are not polyampholytes (see Sec-
tion 3.3) but weakly charged polyelectrolytes. The whole field of macromolecules with long
range interactions is still not well developed in spite of many years of research {75, 76, 77
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Figure 15. Visualisation of the stress distribution in a highly extended polymer net-
work [70] from a simulation of randomly interpenetrating polymer networks with diamond
topology. The only source of disorder in this particular system are random knots. The
‘shortest topological paths’ (thick lines) carry most of the stress.

(see also Khokhlov, this volume). Simulations start to give some clear answers, which
await a better theoretical understanding. Until now we have been able to handle up to
about 1000 chain monomers and 1000 counterions [78, 79)].

Tethered chains. There is a huge literature on polymers that stick with either one
or both ends to another object. The most common classes, polymer networks and star
polymers, were discussed above. For details of simulations on the other classes of tethered
chains see [80]. If the polymers are not connected to a centre molecule, but stuck to a
surface/interface, one speaks of a polymer brush. Such brushes range from amphiphilic
monolayers, where the chains are very much stretched (e.g. layers of a membrane) to
rather soft systems. In addition a huge body of recent work considers tethered surfaces
or membranes (two dimensional polymer sheets). A discussion of these topics would,
however, require a review of its own.

Phase separation. Polymers in melts and dense solutions interpenetrate each other
strongly. However, they are ‘poor in translational entropy’ (Khokhlov, this volume), so
that even a very small repulsion between unlike polymers leads to phase separation. Even
deuteration is sufficient to derive phase separation from similar protonated chains. Phase
separation has attracted much simulation activity over the years; for a review see [74].

Block co-polymers. A block co-polymer consists of two or more stretches of different
polymer linked together in a single chain. As a function of composition they can show
lamellar phases, crystalline ordered phases of spheres, bicontinous phases and so on. (See
Roux, this volume, for the surfactant analogues.) Most simulations so far were done
using a quasi grand canonical approach, derived from blend simulations. Recently, also
the dynamics was studied by MD simulation [81].
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7 Linking the scales

A simulation eventually should provide complete information about the properties of the
system under investigation. This goes beyond the generic problems discussed so far. Thus
we have to link different scales: we want to relate the chemical structure of a system to
the overall behaviour of the material [12]. One of the long-standing challenges within the
modelling of complex materials is to apply methods which allow coverage of the range
from the microscopic to the semi-macroscopic regime. Recently, methods were developed
which map polymers to a mesoscopic level and then reintroduce the atomistic structure
[82, 83, 84].

Below I first describe a mapping procedure to go from a microscopic description of
a polymer chain to the mesoscopic description, which allows fairly effective simulation
on a coarse grained level. The study of three modifications of one polymer structure,
namely polycarbonates, approaching the glass transition from above, allows a test of the
sensitivity. To check the quality of this approach, the chemical details of the chains
will then be reintroduced into the coarse-grained conformations and results compared to
neutron scattering results.

Thereafter, first steps toward the next level of description are discussed. Starting from
the conformations of polymer chains on the coarse-grained level, each chain is mapped
onto an extended soft particle with only three internal degrees of freedom. The aim is
to provide a general approach to simulating specific polymers without losing the essential
parts. Unlike other approaches all methods will be within continuous space and not
confined to a lattice structure.

7.1 Coarse graining

We describe a systematic approach to renormalise the intra-chain interactions towards a
coarser level for three different polycarbonates [82]. The three modifications of the basic
polycarbonate structure are BPA-PC, BPZ-PC, and TMC-PC (Figure 16). Although the
backbone sequence is the same these have remarkably different physical properties. For
the first two (BPA and BPZ) the glass transition temperature Ty is roughly the same
(T = 420K), while the third one has a glass transition temperature which is about 80
to 100 K higher, around 500 K. On the other hand, BPA-PC is ductile while BPZ-PC
is brittle; TMC-PC is less ductile than BPA but much less brittle than BPZ. This is
also reflected in the difference of the generalised activation energy within a Vogel-Fulcher
fit (see Kob, this volume, and Equation 24 below): BPA and TMC have roughly the
same activation energy while BPZ has a significantly higher one. Not only are the glass
transition properties different, but also the entanglement chain lengths N, in the melt are
significantly different. For BPA-PC an extremely short entanglement length of N, = 7
monomers is reported. This length increases through N, = 9 monomers (BPZ) to N, = 14
monomers for TMC-PC. In particular, the extremely short entanglement length for BPA-
PC is not understood. Considering other well-studied polymers like polyethylene or PDMS
(polydimethylsiloxane), one would expect it to be larger by a factor of at least 5 to 10.
Whether this is the result of a special local chain structure (banana shaped repeat units
joined by almost pivot-like junctions) is beyond the scope of the present discussion, but
is a matter of current studies.
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Figure 16. Three modifications of BPA repeat units tested for the coarse graining proce-
dures. From top to bottom: BPA-PC, BPZ-PC, TMC-PC.

The coarse graining procedure is explained in detail here for BPA-PC. Ideally, the
method is parameter free and as simple as possible. In addition we would like to stay
as close as possible to the chemical structure in order to be able to reintroduce the
chemical details later without too many problems. The coarse-grained monomers have
to be designed to be easily be identified with specific chemical groups of the polymer
itself. Considering the chemical structure of the three different polycarbonates a 2:1
mapping onto spherical beads seems to be a first reasonable choice, as illustrated in
Figure 17. The resulting coarse-grained structure then only has four relevant internal
degrees of freedom: the bond length ¢ between carbonate and isopropylidene group,
o, the carbonate-isopropylidene-carbonate bond angle, 3, the isopropylidene-carbonate-
isopropylidene bond angle and 9, the torsion angle.

To arrive at the coarse-grained interactions from the microscopic model one can imag-
ine a number of empirical fitting procedures. Here, we follow a different route. The coarse-
grained potentials not only have to include energetic aspects of the microscopic model but
also entropic terms from the different possibilities of local conformations. We first use
intra-chain distribution functions to construct the bonded potentials in the coarse-grained
model. Knowing the potential functions of the detailed chemical system, it is rather
straightforward to perform an MC simulation to a very high accuracy at a given temper-
ature of the conformations of individual free random walks. The probability distribution
functions of conformations of such a model system are only dependent on temperature and
originate from the bonded interactions along the backbone of a chain. The potentials for
the microscopic models are derived from ab initio quantum chemistry calculations. Using
the microscopic model to generate configurations, we sample the probability distribution
function P(¢, «, 8,9) for the coarse-grained model in the limit of single isolated random
walks.

The coarse-grained distribution function is temperature dependent via the Boltzmann
weights of the different states of the microscopic model. The most crucial assumption
now is, that the distribution function of the set of variables factorises into independent
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Figure 17. Illustration of the mapping procedure for a 2:1 mapping where the repeat unit
of a BPA-PC chain is replaced by two monomers of a generalised bead spring chain. The
geometrical centres of the carbonate group and the geometrical centre of the isopropylidene
group respectively are mapped onto the centres of the new spherical bead [82].

distribution functions of the individual variables:
P(t,a,8,9) = P()P(a)P(8)P(9).

The distribution function P is determined at each temperature separately, and may be
written

P(€) oc exp(-U(f))
Pla) x exp(-Ula))... (22)
U is a generalised potential function at that temperature, already expressed in units of

kpT. (In effect, this allows one to keep the simulation temperature at kgT = 1, which
is of technical advantage for molecular dynamics simulations.) From Equation 22 we get

the forces
F, = ——4—1 P(¢)
£= Tt
d
F, = —ElnP(a)... (23)

as they originate from the conformations of the coarse-grained model. This approach
avoids the fitting of a functional form of the coarse-grained potential functions to the
microscopic parameters. The only fitting procedure is a smoothing for potentials in order
to get rid of the scatter in the sampling and to stabilise the resulting force. There is no
need to determine the partition function explicitly, since it only shows up as a constant
in the potential and thus does not alter the resulting forces.

Using this model we can now simulate dense polymer systems. The volume of the
effective hard-sphere beads of the coarse-grained model is adjusted to give the same Van-
der-Waals volumes as in the experimental case (normalised to the simulation density). In
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the case of BPA-PC the carbonate group and the isopropylidene group are represented
by spheres with a radius of 3.02A and 3.11A respectively. No further specific excluded
volume interactions, nor any directional interaction is taken into account. The simulation
density is adjusted to the experimental mass density in every case, and then the volume
held constant; after this, there is no freedom left to adjust parameters.

If this procedure is to reproduce the essential aspects of the different chemical species,
then not only should the static structure which comes out of this simulation compare well
to the experimental systems, but also the dynamics. A detailed discussion of the dynamic
properties is given elsewhere, but note that for the range of temperatures which we are
investigating here, it seems reasonable to assume that the simulation time scales linearly
with the physical time. (Possible deviations originating from the different shape of the
potentials instead of taking different temperatures are neglected at this stage.)

MD melt simulations were performed as described before (Equation 19). The excluded
volume interactions of the monomers are taken into account through a repulsive Lennard-
Jones interaction. For the present system the background friction I' is about 100 times
weaker than the monomer-monomer friction. For static properties, the mapping between
simulation and physical units requires a length, fixed by equating the the mass density in
simulation and experiment. Starting from a mass density of p,. = 1.05g/cm® (BPA-PC
at 500 K) and the simulation number density of ppp = 0.85073, we arrive at a length
scaling of o = 5.56A for the present case.

To compare the dynamic properties, a time scale is also required. This is found by
using the Rouse model to calculate the melt viscosity in terms of the centre-of-mass
diffusion constant of the chains, and equating this to the observed viscosity at some
reference temperature. This is possible as we have one case where the highest experimental
temperature and the lowest simulation temperature coincide. For the present example one
gets 7 = 2.21 x 10710 seconds, where 7 is the simulation (Lennard-Jones) time unit. The
simulation time step is typically ¢ = 0.017. However, the absolute comparison of dynamic
quantities should only be taken as indicative since the experimental systems and the
simulations systems comprise different chain lengths, and also the effect of polydispersity
might alter this absolute scale by some prefactor.

Compared to other molecular dynamics simulations of microscopic models, the sim-
ulation time step is roughly three orders of magnitude larger than usual. Taking the
simplicity of the potentials and the short range nature of the interactions into account
the resulting speed-up is of order 10*. The simulated systems typically comprised be-
tween 1000 and 10000 model monomers on chains of 20 or 60 model monomers. For our
cubic simulation box this means that one can easily simulate systems of up to 125A%. As
it turns out, the inter-chain interactions strongly modify the angular distribution func-
tions compared to the isolated chain. These and other static properties are discussed in
Section 7.2 below, where chemical detail is reintroduced.

For the coarse-grained model we first check the dynamical properties as a function of
temperature, especially approaching the glass transition temperature. The properties of
many materials when approaching the glass transition temperature are well described by
the so-called Vogel-Fulcher behaviour

D= Dyexp (~725—) (24
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given here for the tracer diffusion constant D of the chains: Ay is a generalised activation
energy and Ty, the so called Vogel-Fulcher temperature, typically is about 80 degrees
below the calorimetric glass transition temperature. The prefactor Dy is a hypothetical
high temperature diffusion constant. For the present situation Dy is easy to determine,
because it simply corresponds to the freely jointed polymer melt with athermal excluded
volume, and all the chemistry dependent intra-molecular interactions set to zero. (Exten-
sive computer simulations are available for that case.)

Figure 18 gives a Vogel-Fulcher plot of the three polycarbonate modifications. The
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Figure 18. Vogel-Fulcher plot of the chain diffusion constants D for the three different
polycarbonate modifications, as indicated in the figure, for N = 20 model monomers [82].

results qualitatively match the experimental situation, namely that the Vogel-Fulcher
temperature for TMC-PC is about 80-100 degrees above the Vogel-Fulcher temperature
of BPZ-PC and BPA-PC while the generalised activation energy, which in Figure 18 is
the slope of the lines, is roughly the same for BPA and TMC but is different for BPZ-PC.
Even quantitatively the results are not that different from the typical experimental value
as Table 2 shows.

Tvr BPA-PC | TMC-PC | BPZ-PC
Simulation (N=20) 322 407 292
Experiment 387 477 392
Ap BPA-PC | TMC-PC | BPZ-PC
Simulation (N=20) 1305 1363 1443
Experiment 1012 1073 1534

Table 2. Activation energies Ao (below) and Vogel-Fulcher temperatures Tyr (above)
for exzperiment and simulation. While the shift for Tyr (simulated) is consistent with
ezpectations, the deviations (about 50%) for the experimental determination of Ay are
probably due to the large polydispersity of the typical commercial samples.
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Figure 19. Coherent structure function S(q) in absolute units in comparison to amor-
phous cell simulation and neutron scattering data [82, 84].

7.2 Restoring chemical detail

There are various ways to check the quality of the resulting structures with respect to
experiment. A typical test would be to compare the mean square end-to-end distance
(R?) to results from scattering experiments. However, since the experimental samples
are highly polydisperse, the resulting answers from scattering experiments are somewhat
questionable [85]. Furthermore, a crucial check is the direct comparison of conformations
of systems. To compare the conformations resulting from the simulations unambiguously
to experiment, we reintroduce the chemical details into the coarse-grained chain [83, 84].
This is one of the reasons why it was important to devise a mapping procedure which
stays near to the chemical structure of the objects. We have a one-to-one correspondence
of the model monomers to the different parts of the chemical repeat unit of the chains.

To reintroduce the details we use a commercial package since the details of the force
fields are no longer essential. We start out with a chemically detailed chain with the
correct bond angles and bond lengths, but free torsion angles. Then the chain is placed in
the system and rotated via the torsional degree of freedom along the path of the coarse-
grained chain. The structure is then optimised by a steepest descent method in energy
space. By this approach, all coarse-grained chains are mapped onto their chemically
detailed counterparts individually. The deviations of the minimised structure from the
starting structure are extremely small: {(Ar2) = 0.01A%2. In a second step, all chains
are combined and, to allow for the introduced Van-der-Waals interaction, are locally
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Figure 20. Comparison of experiment and simulation for the same case as above (see
Figure 19), but now for a system with deuterated methyl groups [82, 84].

equilibrated within a short MD run. This local equilibration of course only includes
motion on a very small distance.

Since for the resulting local packing structures the.polydispersity effects of the exper-
imental melts should not be that important, we now can calculate the structure function
of the whole system and compare it directly to neutron scattering. The neutron scattering
structure function S{q) is given by (Pine, this volume)

2
) (25

For this comparison all atoms of the systems are explicitly included with their correspond-
ing scattering length b.

S(q) = <‘Z, b; exp(iq - 1)

Figures 19 and 20 give two typical examples for BPA-PC. In Figure 19 we show the
results for a fully protonated system and compare the data to both neutron scattering
and a previous (amorphous cell) simulation. Figure 20 gives the example where the
methyl groups are deuterated. Other structure functions show the same agreement with
experiments. For TMC-PC the density fluctuations are greater than for BPA-PC which
leads to smeared out peaks for the structure factor. The partially deuterated examples
show that the simulations are able to reproduce details of the scattering curves down to
the smallest values of g allowed by the box size.
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8 An even coarser view on polymers

So far, all models considered allow the correspondence of a bead of a polymer to one or to
a few repeat units of a given chemical species. This still means that the number of degrees
of freedom that have to be considered is proportional to the number of monomers of a
given chain, causing enormous problems if one wants to try to simulate big systems {(many
chains instead of many monomers). To arrive at a situation where we can simulate many
chains we go back to Figure 1. There, three levels of description were illustrated. I have
discussed the microscopic and the mesoscopic regime and, in one case, the link between
the two. Now we want to consider another step, namely to try to map the chains from
the mesoscopic system up to the semi-macroscopic regime where we replace the chains by
soft ellipsoidal particles which can strongly overlap in the melt {86, 12]. For such a model
each chain is represented by a soft ellipsoid which varies its size and shape.

We separate the free energy of a system into an intra-chain part and an inter-chain
part. For the total free energy F' we make the ansatz:

F= Z mtra nter (26)

The first sum runs over all M chains of the system. First let us consider the intra-
chain part of the free energy. In a melt, the allowed conformations of a polymer chain
are the same as a self-avoiding walk in ‘vacuum’. (The change from self-avoiding to
ideal random walk statistics in a melt is a result of the inter-chain interactions causing
reweighting of configurations, but not of the intra-chain conformational distribution.)
Thus, we characterise the intra-chain contribution to the free energy by the number of
states which correspond to a specified moment of inertia tensor of the chain. Denoting
this R and its eigenvalues Ry, Ry, R3 (with Ry > Ry > Rj), we generate microscopically,
in a similar manner to that described in the previous sections, a probability distribution
P(R). To each R belongs an average intra-chain monomer density distribution p(r, R)
which is sampled as well. Here r is the position vector from the centre-of-mass in the
principal frame. The averaging for p is carried out over all conformations with a given R.
Taking into account that the set of allowed conformations of individual chains in the melt
and for the isolated chain are identical, the intra-chain contribution to the free energy
from chain ¢ is simply given by

Frura = —kpTIn P(R) . (27)

Now we assume that the inter-chain interaction is given by the pairwise overlap of
the ellipsoids of the different chains. Since each inertia tensor corresponds to a density
distribution, we can write for the inter-chain free energy contribution of the pair j

F = (V) [ pi(e = 5™, RO)py(x — xm, RV )dr (28)
Here each of the two density distributions is centered on the centre-of-mass of the corre-
sponding chain, and €(N) is an adjustable parameter accounting for the binary excluded

volume as well as the overlapping contribution of the probability distributions. For tech-
nical details refer to [86].
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Figure 21. Ewvolution of the sample averaged (R%) as a function of Monte Carlo time
(4000 particles of N=50). The initial value of e(N) = C = 1.0 was changed to vaelues
indicated after 600 MC steps. The indicated melt value corresponds to a comparable system
with explicit chains with repulsive Lennard Jones interactions and a number density of
0.85 072 [86].

Here we test this idea for simple coarse-grained polymer models. An extension to a
more refined coarse-grained model for e.g. polycarbonate should be straightforward and is
an objective of future work. Typical systems consist of 10000 chains of N = 100 monomers.
The simulation procedure is a standard Metropolis Monte Carlo procedure as described
in Section 3. The ellipsoidal particles are first randomly distributed in the system, with a
distribution of shapes corresponding to isolated SAWs. Then MC simulation is performed
such that the ellipsoids can move in space (translation) and can change both the length
and the orientation of their principal axes (shape deformation). Figure 21 gives a typical
evolution plot of the ensemble averaged-squared radius of gyration of our ellipsoids, as a
function of Monte Carlo time steps, for different parameters (V).

The adjustment of € allows a precise mapping of the ellipsoidal model onto the explicit
chain models at a given density. To show not only that the end-to-end distance of the
ellipsoidal system in the melt agrees with the explicit chain simulation, but also that
the chain statistics correspond to Gaussian statistics, we scale the resulting probability
distribution function of the radius of gyration for different chain lengths within the random
walk scaling scheme. Figure 22 shows this for chain lengths between 25 and 100. Various
other control investigations such as the scaling of the correlation hole (the locally reduced
density of other chains produced by the self-density of the chain under consideration)
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Figure 22. Scaled distribution functions of R%(N) versus the Gaussian normalised value
of Rg for chain lengths as indicated [86].

support the conclusion that our chains are now Gaussian. In a very similar way as in
earlier studies on phase separations of polymers, one can introduce an ¢(N) which is able
to distinguish between two different species. By doing this one is able to investigate
phase separation kinetics and morphology development of huge polymer samples. The
next step will be the reintroduction of the explicit chains in order to complete the scheme
as indicated in Figure 1.
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1 Introduction

In what follows we give an overview of the basic properties of surfactants in solution and
present some recent developments concerning the effect of flow on the lyotropic lamellar
phase. In Section 2, we will briefly show how some simple ideas can lead to a qualitative
understanding of the phase behaviour of surfactant solutions. Section 3 describes the
effect of flow on two types of lamellar phase and details the shear-induced structures that
result (the so-called ‘onion’ textures). We present in Section 4 the viscoelastic properties
of these structures and conclude with some theoretical models describing the dynamics of
a lamellar phase under flow (Section 5).

2 Phase diagrams and membrane elasticity

A classical binary phase diagram (surfactant + water) exhibits a succession of isotropic,
liquid crystalline, and crystalline phases as a function of temperature and composition {1].
Figure 1 shows such a phase diagram for the binary mixture of sodium laurate and wa-
ter. Besides complicated phases at very low water concentration (which correspond to
hydrated solids), the phase diagram contains three main phases: the lamellar phase which
is a periodic stack of fluid membranes made of the surfactant molecules (lyotropic liquid
crystal), the hexagonal phase made of infinite tubes placed on a two-dimensional tri-
angular lattice (lyotropic liquid crystal) and the isotropic liquid phase made of spherical
micelles. (Note that liquid crystal phases are called ‘lyotropic’ when controlled by con-
centration as well as temperature.) Although these are the most common phases found
in surfactant solutions, many other structures have also been described, certain of them
very recently [2-5]. most interesting ones, we should note the cubic phases [2] correspond-
ing either to a crystal of spherical micelles or to more complex structures (e.g. bilayers
wrapped on a triply periodic ‘minimal surface’). The most intriguing structures, and the
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Figure 1. A typical phase diagram where, as a function of the surfactant concentration,
one has successively the isotropic micellar phase (I), the hezagonal phase (H) and the
lamellar phase (L). Other regions are biphasic domains.

ones which were the most difficult to characterise, are complex isotropic liquid phases such
as the microemulsion phases [3}; the sponge phase [4] and the phase of giant micelles {5].

The complexity of the structure and phase behaviour of these systems has been an
experimental and a theoretical challenge. In the last 30 years, a tremendous amount of
work has been done leading to a rather unified picture of the way these systems behave.
From a theoretical point of view, the direct relation between the microscopic properties
of the surfactant and the phase diagram is not accessible. However, it has been very
useful to introduce, as proposed by Canham [6] and Helfrich [7], an intermediate step
in the statistical physics description of the properties of surfactants in solution. This
intermediate description corresponds to the idea that the physics is dominated by the
interfacial properties of the hydrophobic/hydrophilic domains. The microscopic structure
of the various phases was then attributed to a competition between the curvature energy
of the microscopic interface and the entropy (thermal fluctuations). The importance of
the curvature energy arises because, for self-assembled structures which are at thermal
equilibrium, there is no surface tension at the hydrophobic/hydrophilic interface. (Surface
tension is instead the signature of bulk phase separation.) Despite this, the interfacial
area is almost fixed: the forces opposing stretching and compression would rapidly become
large if the area was changed. Consequently, the first term that matters in the small
deformation of the interface is the curvature energy, whose energy scale is most often
close to kgT. Therefore this term in practice controls most of the deformations of the
interface.

The concept of curvature energy applied to surfactants in solution turns out to be
remarkably efficient. While better adapted to describe dilute phases (mainly because, in
that case, the interface becomes very thin compared to the characteristic length of the
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structure), this concept remains qualitatively valid for more concentrated phases. In all
cases, it is a good guideline in trying to understand the phase behaviour and general
properties of surfactants in solution.

The main problem with this model is that it relates the stability and the structure of
the different phases to three phenomenological parameters which do not have an obvious
relationship with the surfactant molecules. These parameters are the spontaneous radius
of curvature cg, the mean curvature rigidity « and the Gaussian curvature rigidity . The
energy cost of deforming a surface S, describing the surfactant film, therefore reads:

1
F= /s [En(cl +ep—co) + R0102] ds, (1)

where ¢; and ¢, are the two principal radii of curvature of the deformation. Some effort has
been devoted to working out microscopic models that link the phenomenological elastic
constants to the geometry of the surfactant molecules and these attempts are qualitatively
successful. Mechanical models [8], models based on the microscopic description of the
molecules {9], and simulations [10] have all been quite useful in understanding the role of
the surfactant geometry. Since the most common interfacial shapes are spheres (micelles),
cylinders (hexagonal phase) and planes (lamellar phase), it is useful to calculate the elastic
energy for these simple cases. One can also quite easily calculate the curvature energy for
the unit cell of a cubic minimal surface, which we call a ‘cubic element’ below.

General properties emerge from such calculations. In particular, we can notice that
if the spontaneous radius of curvature is zero (for surfactant bilayers, this is the case by
symmetry), the elastic energy of a sphere is not a function of its size: Fypn = 47(26 + &).
This property can easily be generalised (for example to the cubic element) and in general,
the bending energy of a finite object is invariant under a change of scale, whenever ¢y = 0.
Moreover, it has been known since the XIX century that the Gaussian curvature term,
Js c1c2dS, is a function of the global topology of the surface and not directly dependent
on the local curvatures (this is the Gauss-Bonnet theorem). Since for ¢y = 0 the curvature
energy, Equation 1, is based on a quadratic expansion around a flat surface, one expects
the energy of a sphere and of a cubic element both to be positive. This fixes a range of
stability for the values of k and &, namely 2k > —& > 0. If & becomes less than —2«, an
instability towards very small spheres will develop. Otherwise, if & becomes larger than
zero, there is instead an instability towards small cubic elements: a periodic surface of
very small lattice constant will arise.

The effects of thermal fluctuations on the surfactant aggregates are different depending
upon the shape of those aggregates. For spherical objects (micelles), the fluctuations will
mainly stabilise the isotropic liquid phase of micelles against the ‘crystal’ of micelles or
other more organised phases (liquid crystals). For cylindrical objects, depending upon
the value of the elastic constant of these ‘rod-like’ micelles, one can have either flexible
or rigid systems. If the persistence length (Khokhlov, this volume) of the rods is very
large, one will only find cylindrical aggregates in a liquid crystalline arrangement such
as the hexagonal phase. However, if the persistence length is small enough (typically
smaller than 1000 A), one can find a phase where the cylindrical micelles are disordered
and polymer-like. Just as for regular polymers, this isotropic liquid phase can be found
either in dilute or semi-dilute regimes. In such cases, the flexible cylindrical micelles can
make a random walk in space and most of their static and dynamic properties can be
understood within a model of so-called ‘living’ (i.e. self-assembled) polymers [5].
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Similar ideas apply when surfactants instead form membranes (either monolayers or
bilayers). Because x and & have the units of energy, it is possible to compare directly
their value to kg7. Indeed, as shown first by de Gennes [11], one can thereby define
a persistence length for fluctuating membranes. This persistence length £ varies expo-
nentially with the ratio x/kgT and consequently, only values of x not much larger than
kgT lead to a microscopic persistence length (102 < £ < 104A). Relatively small changes
in  differentiate between what we term ‘rigid’ systems, where the persistence length is
quite large (> 10um), and ‘flexible’ systems, where the persistence length is typically less
than lum.

The easiest way to understand qualitatively the phase diagram of a rigid system is
to realise that many of the properties come from a competition between the spontaneous
radius of curvature and the geometrical length resulting from the choice of the concentra-~
tion of the species. Indeed, for a general system made of water, oil and surfactant, and
making the reasonable assumption that all.the surfactant lies at the water/oil interface,
it is quite easy to show that in each case (spheres, cylinders and planes) the characteristic
length of the structure (radius of the sphere, radius of the cylinder, or thickness of the oil
and water layers) is completely determined by the respective concentrations.

The simplest model is then to take into consideration just the bending energy. It is
possible to calculate the most stable structure depending upon the concentration (for a
given spontaneous radius of curvature ¢p). The result is, naturally, found to be the struc-
ture whose curvature best matches the spontaneous radius of curvature. Consequently,
for this very simple model of ternary mixtures with no other term apart from the bending
energy, one can already finds phase transitions from spherical micelles, to a hexagonal
phase, and from there to a lamellar phase by changing the respective surfactant/oil con-
centrations. Taking into account entropy of mixing and interactions can change the phase
diagrams, but this simplest behaviour already gives some reasonable results [12].

Figure 2. Schematic drawing of a lyotropic lamellar phase. It consists of a periodic
stacking of membranes (repeat distance d), each of a thickness &, separated by a solvent.

One of the key questions concerning the lamellar phase is to determine the capacity of
this phase to be swollen, i.e. the capacity to change the repeat distance d of the lamellar
phase (Figure 2) by adding more solvent. Experimentally, depending on the system, the
maximum repeat distance can vary from 50 Angstroms to several thousand Angstroms.
In order to understand what happens to a lamellar phase when it is swollen with a solvent
(either water or an organic solvent), we need a reasonable description of the interactions
between the membranes. There are several reviews on membrane-membrane interactions
which list all the attractive and repulsive interactions that have been calculated. Most of
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them have also been measured (electrostatic, Van der Waals, steric...) [13].

One of the most interesting and quite recently discovered long range repulsive in-
teractions comes from the thermal undulations of the membranes. Indeed, Helfrich in
1984 predicted that two membranes subjected to thermal fluctuations should develop a
repulsive interaction coming from the multiple collisions they will develop one against the
other [16]. This interaction, entropic in origin, has been quantitatively measured by sev-
eral techniques in sufficiently flexible lamellar phases [13]. Competition between attractive
and repulsive interactions can lead to phase transitions, explaining why a lamellar phase
cannot be swollen indefinitely. Whereas the competition between electrostatic and Van der
Waals interactions can be calculated following the DLVO theory (Frenkel, this volume),
the competition between attractive Van der Waals interactions and repulsive undulation
forces is much more complex to model, but leads to very interesting behaviours [14, 15].

The phase separation with excess solvent is not the only kind of phase transition that
a lamellar phase can experience upon dilution. When a lamellar phase, made of flexible
membranes, is swollen with a single solvent, the characteristic repeat distance increases
because of the undulation forces acting as a repulsive interaction on the membranes.
However, when the d-spacing of the lamellar ordering reaches a length which is comparable
to the membrane persistence length &, the lamellar phase melts into a sponge phase. (The
sponge phase contains a web of bilayer which divides space into two solvent domains. For
swelling with equal amounts of oil and water, the analogous phase is the microemulsion.)
This phase transition, which corresponds to a change in topology, is also influenced by the
Gaussian curvature rigidity (k) which controls the energy cost of handle formation [4, 17).
Upon adding more solvent the sponge phase itself swells and it eventually undergoes
another phase transition to a vesicle phase [4].

The effect of fluctuations on flexible membranes, once analysed in detail, leads to
a universal phase diagram where the lamellar, sponge, vesicle phases and their phase
transitions can be understood in terms of a competition between curvature energy and
entropy {18]. While a lot has been done and understood, some open questions remain and
new systems have been studied showing interesting behaviours. We will just cite, as an
example, the fact that an extremely dilute microemulsion phase, with a characteristic size
of several thousands of Angstroms, has recently been found. This phase crystallises upon
further swelling into a three dimensional ordered phase {19], unlike most ordered phases
which melt upon swelling.

3 Effect of shear on lyotropic lamellar phases

Some years ago, in studying the effect of shear on lyotropic lamellar phases, a new hydro-
dynamic instability was described [20-24].This instability leads to a phase of multilamellar
vesicles compactly packed in space (the so-called onion tezture). Evidence for the struc-
ture of this metastable phase and some dynamics properties such as the viscoelasticity
are described in what follows. In the current section, we will briefly describe the basic
experimental facts leading to the formation of the onion texture. Then, we will give some
details of its viscoelastic behaviour (Section 4) and develop the theoretical description of
the lamellar-to-onion transition (Section 5).

As discussed above, a lyotropic lamellar phase is made of surfactant and water (Fig-
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ure 2), and sometimes contains an additional hydrophobic component (oil). It is a very
common phase, most often found for relatively high concentration of the surfactant [1],
while in certain special cases, very dilute lamellar phases can be prepared due to long
range repulsive interactions between membranes [25]. The symmetry of the phase is that
of a ‘smectic A’ in the nomenclature of the liquid crystalline phases. When present, the
hydrophobic compound swells the bilayers. In all the cases, the lamellar phase behaves
macroscopically as a viscous liquid whose viscosity varies tremendously depending upon
the formulation, and also (because of uncontrolled defects in the packing) on the sam-
ple preparation [23, 26]. Upon dilution with extra water, two main behaviours can be
described [25]. The dilution of the lamellar phase is limited either by a phase transition
to an isotropic liquid phase (micellar phase or sponge phase) or by a phase transition
to another liquid crystalline phase. In a limited number of interesting cases the lamellar
phase reaches a maximum uptake of water and subsequently phase coexists with excess
(virtually pure) water. This arises whenever phospholipids are used as the surfactant.

3.1 Shear diagrams

To understand the effect of flow on such phases, we have studied using rheophysics meth-
ods the structure of lyotropic smectic A phases submitted to a simple shear (Figure 3).
Using a number of structural probes under shear, such as scattering techniques (light
scattering [21], neutron [22], X-ray [27]; see Pine, this volume) or dielectric measure-
ments [28], it was possible to show that the effect of shear can be described using a shear
diagram. This diagram, which can be considered as a generalisation of the phase diagram
for out-of-equilibrium systems, describes the effect of shear as a succession of station-
ary states of orientation separated by dynamic transitions. Indeed, while always staying
thermodynamically within the stable lamellar phase, the sample experiences a series of
transitions modifying the orientation of the lamellae with respect of the direction of the
shear. These different orientations correspond to differing spatial organisations and den-
sities of the topological defects that are anyway present in most smectic samples. Each
transition thus brings a modification of what is named the terture of the phase. Conse-
quently, it is not a traditional phase transition but has to be viewed as an instability. It
is different, however, from the classical hydrodynamic instabilities observed when a fluid
is submitted to shear (convection rolls, etc.) because the resulting texture involves no
length scale directly related to the size of the shear apparatus. Instead, structure forms
on some microscopic (micron) length scale related to the intrinsic properties of the fluid.

Shear gradient

Velocity
Vorticity

Figure 3. Characterisation of the geometry of a simple shear flow. The orientations that
the membranes of a lamellar phase adopt under shear are described using this geometry.
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Log(shear)
]

Log(concentration)

Figure 4. Representation of the shear diagram of a typical lamellar phase (made of
water, dodecane, pentanol, sodium dodecyl sulphate). The horizontal azis represents the
concentration of dodecane (the bilayers are swollen upon addition of dodecane), which
fizes the characteristic distance d between the lamellae, and the vertical axis represents
the shear rate.

Figure 4 is a schematic representation of the shear diagram obtained in the case of a
lamellar phase made of water, dodecane, pentanol and sodium dodecy! sulfate (SDS) [21].
At very low shear rate, the phase is more-or-less oriented with the membranes parallel to
the velocity direction. Defects however remain in the velocity direction as well as in the
vorticity direction. At high shear rate, the orientation is basically very similar but the
defects in the velocity direction have disappeared. In the intermediate regime, a new and
interesting orientation appears. The membranes are broken into pieces by the flow and
the phase organises itself into a phase of multilamellar vesicles all of the same size. We
called these vesicles onions because of their multilamellar structure. Figure 5 presents
freeze fracture picture of the phase after shearing it [24]. This picture reveals that onions
are truly discrete entities and also shows that they adopt a polyhedral shape. While not
‘universal’, such a phenomenology is quite general and has been encountered in many
systems [29, 30].

Figure 5. Electron-microscopic picture of freeze fracture sample obtained after shearing
a lamellar phase. The size of the onions is typically 1um [24].
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3.2 Techniques used to study structures under flow

Several techniques can be used to demonstrate the existence of the onion texture besides
the sophisticated electronic microscopy technique. Direct observation of the texture using
a regular optical microscope equipped with crossed polarisers is certainly the easiest one.
Figure 6 shows a typical texture of a sheared lamellar phase in the onion state [21].
One easily observes a regular modulation of white and black, with a characteristic length
corresponding to the size of the onions. This characteristic length varies with the shear
rate until it reaches very small scales below the optical resolution (typically 1pm). A
uniform grey colour is then observed.

Figure 6. Typical texture of the onion phase observed using an optical microscope between
crossed polarisers.

The characteristic size is easily detectable using a laser beam and a screen placed at a
few centimetres from the sample {21]. Figure 7 presents the small angle patterns obtained
when sending a laser beam through the onion texture onto an observation screen [20, 21].
This technique allows the measurement of sizes from 1um to more than 50um {20, 21,
30]. Below the micron size scale, a more specialised set-up must be used allowing the
experimentalist to access to larger scattering angles.

Figure 7. Small-angle light scattering patterns observed in the onion texture by increasing
the shear rate (from left to right). The ring of scattering is directly related to the onion
size which obeys D ~ 4~Y/2, (see Reference 21 and Figure 8.)
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The narrow ring of scattering observed on the screen shows the presence of a single
characteristic length scale. Since the sample is birefringent, it is most probably a modu-
lation of the orientation of the layers which is responsible for the contrast, with the index
of refraction varying from its ordinary value to its extraordinary one as one traverses the
characteristic length. The ring is obtained only if circularly polarised light is sent through
the sample. Otherwise, using a linearly polarised beam and crossed analyser, a pattern
of four blobs is observed because of the coupling between the polarisation of the incident
light and the birefringence of the phase.

The position of the ring in reciprocal space is related to the characteristic size of the
modulation. It corresponds directly to the onions diameter D through the classical Debye
relation:

Aol
= nsn(9/2) @

where n is the index of refraction of the phase (the average one), A is the light wavelength
and @ the scattering angle. The width of the peak is an indication of the uniformity of
the size: the narrower it is, the narrower is the size distribution. For the main cases
which have been studied, the size within a given sample does not vary more than 20% in
radius [21]. The fact that the ring intensity is uniform in all directions is an indication
that the onions are disordered. Indeed, they adopt a kind of amorphous arrangement
(liquid-like). Because the position of the ring varies with the shear rate, it is possible to
measure how the onion size evolves with the shear. Figure 8 represents such an evolution
for a liquid-like structure. The size is inversely proportional to the square root of the
shear rate : D ~ 471/2, This is an easy way to control experimentally the onion size.
Depending upon the formulation (the surfactant choice) and the shear rate, sizes ranging
from 0.2um to more than 50um have been found.
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Figure 8. FEuvolution of the size of the onions for the SDS-dodecane-water-pentanol
system, as a function of the inverse of the square root of the shear rate [21].
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¢)

Figure 9. Euvolution of the small angle light scattering patterns as a function of the shear
rate. (a) = 105}, the ring is isotropic and corresponds to an ensemble of monodisperse
multilayered vesicles with no long-range order. (b) 4 = 80s7!, the ring of scattering is
replaced by siz dots. The organisation now exhibits a long range order. (c) % = 200571,
small angle pattern after the transition of size. The characteristic size of the vesicles is
now much bigger and several orders of scattering can be easily seen. (d) ¥ = 0s™!, same
as (c) but after a rapid arrest of the shear. The long range order is kept and even more
pronounced. (e) 4 = 0s7!, same as (d) but after a few oscillations of small amplitude
(made by hand). The long range order is even better, more than 5 orders of diffraction
can be seen.

3.3 Ordered structure of the onion phase under shear

An interesting system made of SDS, octanol and brine exhibits a more complex be-
haviour [30]. In addition to the steady states previously described, this system exhibits
several new transitions. First, a transition between the disordered state described above
and an ordered state can be observed. Second, a transition between two states of ordered
multilayered vesicles, differentiated by the size of the vesicles, has been found. The tran-
sition between these two states is observed as a jump from small to big vesicles when
either the shear rate or the temperature is increased. This transition, which is in general
discontinuous (the size jumps abruptly), becomes continuous (smooth size evolution) at
a critical temperature.

The system studied is a quaternary lyotropic lamellar phase whose phase diagram has
been published [31]. A single sample is studied under shear (85.6% of brine at 20g/1 of
NaCl, 6.5% of SDS, 7.9% of octanol, in weight). This system is studied both as a function
of temperature and shear rate. Let us first described what is observed in reciprocal
space using small angle light scattering. Above ¥ &~ 1s~!, an isotropic ring of scattering
(Figure 9a) appears characteristic of the multilayered vesicle state. This ring corresponds
to the characteristic size of the close packed vesicles. Its radius increases with increasing
¥, indicating that the vesicle size decreases with the shear rate. The isotropy of the
ring is the signature of no long-range order in the positions of the vesicles. Above a
well-defined shear rate of 10s™!, a modulation in the radial intensity of the ring appears,
leading to a well-defined pattern of six spots above 50s! (Figure 9b). This is the so-called
layering transition which corresponds to the ordering of the multilayered vesicles in planes
exhibiting an hexagona