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Who hath measured the waters in the hollow of
his hand, and weighed the mountains in scales?
ISAIAH 40, 12



Preface

The physics of long flexible chains was pioneered by several great
scientists: Debye, Kuhn, Kramers, Flory, and so forth. They constructed the
basic ideas; those concerning static properties are summarized in Flory’s
book,! and those concerning dynamics in various reviews.>3* More
recently, a second stage in the physics of polymers has evolved, because of
the availability of new experimental and theoretical tools. As usual, these
new techniques brought about some important changes in our viewpoints.

(i) Neutron diffraction allowed for measurements of polymer conforma-
tions at large scales which were not feasible with X-rays. The essential
point is that different isotopes give different scattering amplitudes for
neutrons.® Thus, it became possible to label one chain (replacing, for
instance, its protons by deuterons) and to observe it individually in a sea of
chemically identical but unlabeled chains. The same operation is not
feasible with X-rays, for which the labeling is based on the attachment of
heavy atoms to the chain; these atoms make the labeled and unlabeled
species very different, and spurious segregation effects always occur. The
advent of neutron scattering experiments on labeled species opened up a
vast new field; precise data on long-range conformations and correlations
became available rapidly.

(ii) Light scattering has traditionally been used for measurements of
molecular weights and sizes in dilute solution. This technique, however,
was limited and delicate, mainly because of the many spurious sources of
scattering (e.g., dust) which were always present. The situation suddenly
improved when the inelastic scattering of laser light became accessible.

13



14 PREFACE

This ‘‘photon beat’’ method® allows one to study the dynamics of the
scattering centers in a frequency range (1 to 10° cycles) which is suitable
for the overall motions of polymer chains. Furthermore, all the spurious
signals caused by dust particles are easier to eliminate, since large
particles are essentially immobile and contribute only to the elastic
spectrum.

(iii) A certain refinement also occurred in theoretical methods. Func-
tional .integrals, Feynman diagrams, and all the techniques of many-body
theory were first applied to polymers in the pioneering work of S. F.
Edwards.” In a different direction, certain numerical methods, allowing the
study of polymer statistics on simple lattice models, became extremely
powerful. The British school used exact summation on short chains, sup-
plemented by clever extrapolation techniques to reproduce the behavior of
long chains.® Another approach (with a slightly different spectrum of
application) was the Monte Carlo method, in which a small (but represen-
tative) fraction of all possible conformations in a given problem is gen-
erated and sampled.® Both techniques have been extremely helpful in
elucidating certain geometric laws and in displaying the existence of
“‘characteristic exponents,’’ to which we constantly refer in this book.

In a third stage, a relationship between polymer statistics and phase
transition problems was discovered.!®!! This discovery allowed polymer
science to benefit from the vast knowledge which had been accumulated on
critical phenomena; a number of remarkably simple scaling properties
emerged. At this third stage, however, our community is divided; a new
theoretical language (heavily loaded with field theoretical concepts) has
appeared but has remained essentially unintelligible to most polymer
scientists.

The aim of this book is to eliminate this barrier, or at least to reduce it as
much as possible. In a series of lectures given between 1975 and 1978, in
Paris, Strasbourg, Grenoble, and Leiden, I found that most of the essential
concepts of polymer physics can be explained in simple terms and do not
require any advanced theoretical education. Thus, I hope to give to my
reader a reasonable understanding of certain ‘‘universal’’ properties:
scaling laws and characteristic exponents in polymer solutions and melts.
All details are systematically omitted.

(H1 ignore numerical coefficients in most formulas, where they would
obscure the main line of thought.

(ii) On the experimental side, the discussions are very brief. I do not try
to recapitulate all the data on a given problem but simply to select studies
in which scaling features are apparent.

(iii) On the other hand, this book is not intended as an introduction for
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a young polymer theorist. Theoretical methods are relegated to the last
three chapters; and even there my aim is not to provide the reader with
the ability to make advanced calculations; more modestly, I would like him
(or her) to reach a certain qualitative understanding of the methods—how
they work and where they fail. (A much more complete description of
polymer theory will be available in a forthcoming book by J. des Cloiseaux
and G. Jannink.)

(iv) Certain important areas of polymer physics are not mentioned at all;
crystallization kinetics and glass transitions are two glaring examples.
Polyelectrolytes are mentioned only briefly. In these areas we do not know
whether or not scaling concepts will be really useful.

On the whole, this book is meant for experimentalists in polymer science
who wish to incorporate the recent advances into their modes of thinking.
Obviously certain difficulties remain even for these readers. In particular
there is a general question of language and notation.

(i) I have tried to follow the basic notation of Flory,! but I have had to
introduce some modifications which correspond to recent trends—for
instance, to use a polymerization index (V) rather than a molecular weight
(M) as the fundamental object; to elintinate all mention of Avogadro’s
number; to write thermal energies as T rather than k5T (i.e., to use energy
units for the temperature T, as is done now in most theoretical literature);
and so forth. Such modifications, although trivial, will disturb the reader
at the beginning, but they represent (I think) a necessary simplification.

(ii) At a more fundamental level, my inclination is always to seek com-
parisons to other branches of science: conceptually, a single chain in
an external field is closely related to a quantum particle, as first found by
Edwards, there is a profound analogy between polymer statistics and phase
transitions; the gelation problem is related to the general concept of per-
colation; and so forth. I have tried to explain some of these analogies,
without assuming prior knowledge of quantum mechanics or critical
phenomena (a summary of critical phenomena is included in Chapter X).
One pleasant discovery, when I was teaching polymer statistics, was to find
that renormalization groups can be explained in very simple words to
polymer chemists; the last chapter describes this approach.

I have also tried to help my readers by carefully selecting references.
As explained, I never give a complete historical list on any topic; I quote
mainly a few basic reviews which are both clear and accessible. (Most of
the polymer literature written before 1965 and relevant to the present
text is analyzed in the books mentioned at the beginning of this pref-
ace.) For the more recent advances on scaling laws, the majority of my
references are French. This is not an expression of nationalistic pride; it
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just happened that our experimentalists, under the impetus of H. Benoit
in Strasbourg and G. Jannink in Saclay, were able to set up at the right
time an efficient, cooperative effort for elucidating scaling laws. The pres-
ent text reflects to a large extent the discussions of this program during
the past five or six years.

The laboratories at Strasbourg, Saclay, and Collége de France that
joined in this venture have been associated for some time under the
acronym STRASACOL, the story of which is summarized in a short
note.'? However, the cooperation has rapidly extended beyond these
limits, involving people at Brest, Grenoble, and Chambery, and I hope it
expands even further. To all these units I am profoundly grateful, for their
eagerness in discussing present research and for their open mind toward
new directions. Last but not least, I wish to mention my debt to many
friends on the theoretical side: to C. Sadron; to J. des Cloiseaux, G. Sarma,
and M. Daoud in Saclay; to F. Brochard and P. Pfeuty in Orsay; to
S. F. Edwards in England; and especially to our foreign visitors: S. Alex-
ander, J. Ferry, F. C. Frank, P. Martin, P. Pincus, and W. Stockmayer,
who instructed us and corrected many of my mistakes.

Some mistakes certainly remain, and at various points I present very
conjectural views. Nevertheless, let us hope that the book will still give a
reasonable image of what is universal and what is system dependent in
these fascinating systems of mobile entangled chains.

P. G. DE GENNES

Paris
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Introduction:
Long Flexible Chains

Linear Polymers

This book discusses the statistical properties of long, flexible
objects, polymer chains being the fundamental example. The following is a
short list of chains which are currently used in physical studies:

.. .“CHz“CHg“CHz— .. or I_CH2_|N polyethylene
~-|—CH,—CH—-- polystyrene
CIH;,
—— —CH2—(|:— - poly(methyl methacrylate)
C
d oly
/
CH,
- l_C Hz_CHz—O—I—N—— poly(oxyethylene)
CH,
|
- —0—~S|i— ——— poly(dimethyl siloxane)
CH, |,

19



20 INTRODUCTION

The number of repeat units, N, in one chain is often called the *‘degree
of polymerization’’ (DP) and can be amazingly large. (For example, it is
possible to reach N > 10° with polystyrene.) The fabrication of such long
chains without error in a sequence of 10° operations is a remarkable
chemical achievement. However, there are many difficulties. Two are
particularly important for physical studies: polydispersity and branching.

Polydispersity

Most preparation schemes give chains with a very broad distribution of
N values.! It is possible, however, to obtain relatively narrow distributions
either by physical selection (via precipitations, gel permeation, chromatog-
raphy, etc.?) or through special methods of synthesis, such as anionic
polymerization.?

Branching

Many parasitic reactions occurring during the synthesis can lead to a
chain which is not perfectly linear but which contains branch points. For
example, industrial polyethylene has many three-functional branch points
of the type

A4
%

where the zigzag lines represent different chain portions.

- When the fraction of branch points in the structure is not too small,
these points can be detected by various physical methods, such as infrared
spectroscopy. On the other hand, if a long chain has accidentally acquired
one or two branch points, it is extremely hard to demonstrate their exis-
tence or absence (they show up mainly in certain mechanical studies on
concentrated systems, discussed in Chapter VIII).

In some cases we encourage branching. For example, model molecules
can be synthesized with the geometry of ‘‘stars’’ or ‘‘combs’’ (Fig. 0.1).
More often, branching takes place statistically. It may lead either to
tree-like molecules, or, at a higher level, to network structures (discussed
in Chapter V). In summary, we can obtain chains that are strictly linear
(when N is not too large); we can also insert on a chain a controlled number
of branch points.
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yo TTTT

STAR CcOomMB

Figure 0.1.

Flexibility

Flexibility can be understood either in a static or in a dynamic
sense.

Static flexibility

As a simple example, consider a carbon-carbon chain such as poly-
ethylene. The angle 6 between successive C—C bonds is essentially fixed,
but when we build up successive units with the carbon atoms (n — 3,
n — 2, n — 1) fixed, and add carbon (n), we have one angle ¢, (Fig. 0.2).
The energy between successive groups depends on the angle ¢, as shown
on Fig. 0.3. There are three minima, corresponding to three principal
conformations (called trans and gauche). In this figure we see two essen-
tial energy parameters: 1) the energy difference between minima Ae,* and
2) the energy barrier separating the minima AE.

For the moment, we focus on Ae. When Ae is smaller than the thermal
energy T,1 we say that the chain is statically flexible. This has striking
consequences if we look not at one monomer but at the whole chain.
Because the relative weight of gauche/trans conformations is of order
unity, the chain is not fully stretched. It appears rather as a random coil
(Fig. 0.4).

Note the difference in magnification between Fig. 0.2 and Fig. 0.4.
Fig. 0.2 deals with distances of order 1 A. Fig. 0.4 deals with hundreds of
Angstroms.

The case of Ae < T defines a limit of extreme flexibility. If we go to

*In polyethylene Ae (as defined in the figure) is positive: the trans state is lower in energy

than the gauche states.
tRecall that we use units where the Boltzmann constant is unity.



Cn-2

Cn-3 P= 0 trans
P= 120° gauche (g+)
Pa-120° gauche (g-)

Figure 0.2.

trans

Energy E
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Figure 0.4.

slightly higher values of Ae/7, there will be a definite preference for the
trans state; locally the chain will be rigid. However, if we look at it on a
scale which is large enough, it will again appear as a flexible coil. This is
illustrated in Fig. 0.5.

More generally, when we ignore details smaller than a certain charac-
teristic length [,, we see a continuous, flexible chain. The parameter /, is
called the persistence length of the chain* and can be calculated from the
microscopic energies. For the polyethylene chain of Figs. 0.1 and 0.2 [, is a
rapidly increasing function of the energy difference Ae

L =1, exp(i;) (Ae > 0)

where [, is of order a few Angstréms.

Whenever [, is much smaller than the total length L of the chain, we
can choose a magnification which is weak, so that the rigid portions
(of size ~ I,) are too small to be seen, but which is still strong enough to
ensure that the whole chain is not reduced to a point. Then we may say that
the molecule is still flexible at large scales. On the other hand, if I, is
larger than the overall chain length, the picture is a rigid rod at all scales.

We see that the essential parameter controlling global flexibility is the
ratio

A
X = -i"- =N exp(—Te)

Flexible behavior can be observed only at small x.
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100 A

(a) low magnification

ot

°

(]
__\/__ gauche

A\

“trans” sequences
(b) high magnification

Figure 0.5.
Dynamic flexibility

Successive carbon-carbon links can be in one of two states: trans and
gauche. One important question is related to the time 7, required for a
transition between these two states. This depends mainly on the height AE
of the barrier separating them in the energy diagram of Fig. 0.3. If AE is
not much larger than the thermal energy 7, the barrier is not important,
and the trans-gauche isomerization can take place in times 7 ~ 107! sec.
We say then that the chain is dynamically flexible. On the other hand, if
the barrier AE is high, 7, becomes exponentially long

(%)
Tp = To €XP —T-

It is sometimes useful to call 7, a persistence time.
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Our discussion on spatial scales and static flexibility can be extended to
temporal scales and dynamic flexibility. If we are interested in large scale
motions of the molecule, involving frequencies w smaller than 1/7,, we can
still say that the chain is dynamically flexible.

One can find molecules which are flexible from a static point of view but
which have high barriers AE (with certain flexible backbones carrying
bulky side groups). This situation corresponds to a random coil which is
essentially frozen in one conformation, like a piece of twisted wire. A
molecule of this type in dilute solution could be called a ‘‘single chain
glass,’’ and should have some remarkable mechanical properties.

This book does not discuss any of these rigid molecules. It assumes both
static and dynamic flexibility in the strongest form. Then /,, for example,
reduces to a monomer size [currently designated by (a)] and no other char-
acteristic length is involved; this simplification will be helpful.

Global versus Local Properties

Fig. 0.5 illustrates a fundamental distinction between two aspects
of polymer science:

(i) Strong magnification or local properties: conformations and motions
of one monomer inside the chain, and their dependence on chemical
substitutions in the side groups.

(ii) Weak magnification: global properties: dependence of physical
properties observables on chain length, on concentration, and on a few
basic interaction parameters.

The local features are essential whenever we want to choose an optimal
polymer for a given practical application. If we want to improve the
fabrication of rubbers, we need a good understanding of the local motions
of a rubber chain—i.e., how they depend on temperature, the influence of
steric constraints between neighboring monomers, and so forth. The ex-
perimental methods for local probing of a polymer chain are not very
different from those used for small molecules (such as infrared and Raman
measurements). Similarly, the theoretical methods are (or will become)
related to those which are used for conventional liquids: molecular dy-
namics, Monte Carlo methods, etc.

The global point of view is completely different. Here we try to omit
the details of the chain structure as much as possible and to extract
simple, universal, features which will remain true for a large class of
polymer chains. An example will make this statement more precise: Con-
sider a dilute solution of separate coils in a good solvent. The radius of
gyration of one coil R; depends on the degree of polymerization, N, and
we know from Flory that
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R; = (constant) aN? ©.1n

where v is close to 3/5. What is universal in this law is the exponent v; it
is the same for all coils (in three-dimensional solutions) provided that the
solvent is good. What is nonuniversal here is the prefactor. It depends on
the detailed monomer structure and on the solvent chosen. If we want to
understand the properties of polymer coils in good solvents, the first step is
to explain the existence and the value of the exponent v. The second step
is to account for the constant that multiplies a, and this involves delicate
studies on local properties. In the present book we are concerned with the
first step.

Eq. (0.1) is a good example of a scaling law. It tells us that if we double
the chain length, the size is increased by a factor 2. The theorist using
such a scaling law can be compared with the chemist seeking comparisons
in homologous series: finding the exact value of R; for a given chain
and solvent is extremely difficult. In a first stage, what we can and must do
is to measure R for different values of N and compare them. This is the
spirit of the present text.

A law such as R(N) above holds only for large N, with flexible chains,
and for good solvents. Later we make these statements more precise, but
we see already that a scaling law is always defined only in a certain lzmzt
which must be specified in each case.

Notation

. If we compute a quantity exactly (within a certain model), includ-
ing all numerical coefficients, we can use an equals sign—i.e., write
A = B. If we state only a scaling law, ignoring all numerical coefficients
but keeping all dimensional factors, we use the symbol, = (e.g., R =
aN3%). If we go to a further reduction and want to stress only the power
law involved in R(N), we use the symbol ~ (e.g., R ~ N°3),
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A Single Chain

1.
The Notion of an Ideal Chain

1.1.1. Simple random walks

One of the simplest idealizations of a flexible polymer chain con-
sists in replacing it by a random walk on a periodic lattice, as shown in Fig.
I.1. The walk is a sucession of N steps, starting from one end () and
reaching an arbitrary end point (w). At each step, the next jump may
proceed toward any of the nearest-neighbor sites, and the statistical weight
for all these possibilities is the same. The length of one step will be
called a.

This description was apparently initiated by Orr in 1947.' It is con-
venient from a pedagogical point of view: all chain properties are easy to
visualize. For instance, the entropy S(r) associated with all chain con-
formations starting from an origin (r = 0) and ending at a lattice point r, is
simply related to the number of distinct walks Jty(r) going from (0) to (r)
in N steps*

S(r) = In[Np(r)] (1)

The main features of the number ¥iy(r) are discussed now. First, the
total number of walks is simple to compute; if each lattice site has z
neighbors, the number of distinct possibilities at each step is z, and the total
number is

*We always use units where Boltzmann’s constant kg is unity.

29



30 STATIC CONFORMATIONS

Figure 1.1.
% RNp(r) = 2¥ a2
r

(where 2 denotes a sum over lattice points)
r

The end-to-end vector r is the sum of N “‘jump vectors”’

r=a1+a2+...+aN=2a,. a.3)
n

where each of the a terms is a vector of length @ with z possible orienta-
tions. Different a vectors have completely independent orientations, and
this has many consequences:

(i) the average square end-to-end distance is linear in N

(™) = S (ayan = 3 (ad) = Na* (= R) 14)

since all cross-products vanish. Qualitatively, we shall say that a random
walk has a size R, ~ N2 q.
(ii) the distribution function for r, defined by

P =Ry /(S Ry (1) i E)

has a gaussian shape as soon as the number of independent jump vectors
a, is large (N > 1). For example, if we are in three dimensions
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p (x,y,z) = constant N2 exp(z—(fz)> N2 CXP(E_—(%)

~1/2 =22 \ = n-32 —3r
N~V2 exp 35 = N3 exp I Na 1.6)

The factors N~V2 arise from normalization conditions. We purposely do
not write the complete numerical value of the constant in front of eq. (1.6);
these constants would obscure our arguments. They can be found in
standard textbooks on statistics.?

Eq. (1.6) gives a formula for the entropy of the chain at fixed elongation

S(r) = S(0) — (three dimensions) an

ZR%

The entropy decreases when the elongation increases. It is often convenient
to rewrite eq. (1.7) in terms of free energy

Fr)=E - TS

In the Orr model the energy E is a constant (independent of the chain
conformation), and we have simply

3 Tr2
2R

F(r) =

a.8)

This is a fundamental formula, giving the ‘‘spring constant’’ of an ideal
chain. We return to it in eq. (I.11) and use it frequently.

1.1.2. More general models for ideal chains

The model in Fig. 1.1 is crude but convenient. More accurately, it is
possible to build up the chain by successive steps, taking into account all
valence angles, the correct weights for trans/gauche conformations (or
their generalization) and even statistical deviations from the ideal trans or
gauche states. This type of calculation is described fully in the second book
by P. Flory.?

The crucial approximation involved in this “progressnve buildup’’
amounts to taking into account only the interactions between each unit (n)
and its neighbor (n+1) [or possibly between (n) and (n+1, n+2, n+p)
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with p fixed and finite]. Let us accept this for the moment. We can
define the ‘‘backbone’’ of the chain by a sequence of vectors b, + b, + . ..
+ by = r, each of the vectors b, linking two consecutive monomers. In the
Orr model these vectors are now correlated. For example, the average

(b, - by = Ynm 1.9

is nonzero even for m # n. It is, however, a decreasing function of the
chemical interval [m — n|, and it decays exponentially at large [n — m|.
Thus the correlations are of finite range. We now show that, in this case,
the global properties are not affected seriously.

Let us put g consecutive vectors b into one subunit. In Fig. 1.2 we show
the case for g = 3. If g is much larger than the range of the correlations
Cnm» the new vectors ¢ will be uncorrelated, and we face the problem of
N/g independent variables ¢,, ¢, . .. , leading again to gaussian statistics
provided that N/g is large; this is what we call ideal chain behavior. The
mean square end-to-end distance is linear in N

" =i;’-(cx) = Na? ‘ (.10)

where a = ((c?/g)'? is now an effective length per monomer. Thus, what-
ever the microscopic structure of the chain, if we take into account only the
interactions between neighboring units on the chemical sequence, we
always get an ideal chain if N is large enough.

The single (but important) weak point in this approach is the neglect of
interactions between monomers n and m with [n — m| very large. Fig. 1.3
shows an interaction which is omitted. When these ‘‘large loop inter-
actions’’ are included, the chain is not gaussian. We discuss this exten-
sively later in this chapter.

Figure 1.2.
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Figure 1.3.

1.1.3. ldeal chains under external actions

It is of interest to study the response of a chain to external perturbations.
With an ideal chain, this response is particularly easy to derive. We are
concerned here with two main situations: pulling and squeezing.

PULLING A CHAIN AT BOTH ENDS (Fig. |.4)

We apply forces f and —f at both ends and dsk for the average elonga-
tion (r), of the chain. For an f that is not too large the answer is derived
from the “‘spring constant equation’’ (I.8). The force f is 3F/dr taken at
r = (r);, and thus

(r); = f—3R—‘2’T (L.11)

I
Eq. (1.9) holds whenever (r) is much smaller than Na (chain not fully
stretched). This corresponds to f < T/a. 2

N0 ,

Figure1.4. ~ f
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We rederive eq. (I.11) here through a scaling argument, which is good
training for later problems. This derivation is based on the following
points: ‘

(i) Since the tension f is the same all along the chain, the elongation
{r) must be a linear function of N.

(ii) We expect (r) to depend only on f, on temperature, and on the
unperturbed size R, = N'? a. This leads to

ol = &, (L)

where x is fixed by requirement (i)—namely, R,'*® ~ N. Thus x = 1,
and the elongation is a linear function of the force.
Eq. (I.11) is the basis of rubber elasticity, and we shall use it often.

Exercise: consider an ideal chain carrying charges *e at both ends
(e is one electron charge). What will be its relative elongation in a field
E = 30,000V/cm?

Answer: we have r/lR, = R,eE/3 T. Take N = 10* anda = 2 A (giving
R, =200 A). The voltage dropon alength R, is 3.10* X 2.10°4=0.06 V.

At room temperature T = 1/40 eV and thus r/R, ~ 0.8. g4

AN IDEAL CHAIN TRAPPED IN A TUBE

The chain is captured in a cylindrical tube of diameter D < R, (Fig. 1.5).
On the other hand, we want-D > a, so that the chain still retains some

(LLLIL L0

/f7///77///////////.l//
| R,

Figure L.5.
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lateral wiggling. We assume that the tube walls repel the chain strongly (no
trend towards adsorption).

We ask first, what is the length of tube (R,) occupied by the chain? The
answer is Ry = R,; that is, confinement does not affect the components
of the random walk parallel to the tube axis.

Second, we discuss the energy required to squeeze the chain, starting
from a dilute solution in the same solvent and assuming that chain entropy
is the only significant factor (no long-range van der Waals force in the
tube). We try to estimate the reduction in entropy AS due to confinement:

(i) The leading term in AS will be a linear function of N.

(ii) AS is dimensionless and depends only on the length ratio R,/D.

This leads to AS = — (R,/D)¥ ~ N¥2, and from (i) we must have
y = 2. The corresponding free energy is

F= T% 1.12)

The argument holds equally for a confinement in a slit or in a hollow
sphere; only the coefficients differ. They have been computed first by
Cassasa and co-workers*® (see Chapter IX for more details).

WEAK ADSORPTION OF AN IDEAL CHAIN

The situation is represented in Fig. 1.6. The chain sticks slightly to the
wall and has large loops extending up to an average distance D. Exact
calculations on this system have been performed in the past.®”8 Here we
present a simple scaling argument that relates D to the strength of the
adsorption.® The starting point is a free energy per chain of the form

7777777 77777777777

Figure L.6.
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=7 R _
F=T—r3 - TofpN (1.13)

The first term is the confinement energy (eq. 1.12), and the second term
describes the contact interactions with the surface; T8 is the effective
attraction seen by a monomer adsorbed at the surface (a balance between
an attractive energy and a loss of entropy), and f; is the fraction of bound
monomers. Since the monomer density is spread over a thickness D, we
expect

f,=a/D . (1.14)

Inserting this in eq. (I.13) and minimizing the sum with respect to D, we
reach a thickness

D = q67! é<1,D<R) 1.15)

and a free energy of binding
F=—-TN® (d1.16)

The conditions required for the adsorption of separate chains are never
realized in practice, but they provide a useful framework for future dis-
cussions of many chain adsorption.

I.1.4. Pair correlations inside an ideal chain

A pair correlation function g(r) may be defined as follows. We pick one
monomer at random in the chain, and we place it at the origin. Then we
ask, what is the number density of other monomers at a distance r from
the first, and we average the result over all choices of the first monomer.

The Fourier transform of g(r)

glq) = f g(r)drear

is directly measured in many scattering experiments (light, X-rays, neu-
trons), q being the scattering wave vector. (In terms of wavelength A and
scattering angle @ we have ¢ = 4 7 A1 sin 6/2.)

The function g(r) has an integral which is just the total number of mono-
mers per chain N :

fg(r)dr =N=g(qg=0
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The functions g(r) and g(q) obey simple scaling rules:
g(r) = Ng(r/R,)

where £ is an universal function. ,

The structure of g(q) for ideal chains was discussed first by Debye,!? and
thus we call g(q) the Debye function gp(q).

Focusing on the limit r < R,, we can reach the form of g(r) by a
simple argument. In a sphere of radius » we have a certain number of
monomers 7, related to r by the random walk scaling law: na*? ~ r2. The
function g(r) scales like the density of monomers in the sphere:

gp(r) =n/r’ = alzr (r<R,) (L.17)

The exact coefficient is displayed in Fig. 1.7; for its complete derivation
see Chapter IX. The Fourier transform of 1/r is 47r/g?, and the scattering
function is

gnlq) = (gR, > 1) (1.18)

q2a2
It is not easy to measure this gp(g) on dilute chains directly; in light
scattering g is too small, and in X-rays or neutron experiments the signals
from dilute systems are weak. However, the result [eq. (I.18)] will be
useful for more complicated systems.

gl

Figure L.7.

Pair correlation between all monomers in an ideal chain. The
correlations decrease like 1/r at distances r, smaller than the
chain size R,. They fall off sharply for r > R,,.
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I.1.5. Summary

Ideal chains are characterized by: 1) gaussian statistics; 2) size propor-
tional to N'2; 3) large domain of linear relation between force and
elongation; and 4) scattering law of the g~2 type. We now see how these
properties are altered when we switch from ideal to real chains.

1.2.
A “Real” Chaln In a Good Solvent

1.2.1. The main experiments

The size of real chains in dilute solutions can be determined by
various standard experimental methods:
(i) Measurements on scattered light intensity versus angle give us the
radius of gyration Rg.?
(ii) More simply, a study of the viscosity 7 of dilute solutions measures
a certain hydrodynamic radius R,'"!

n=ns[1+25£4—"1€%] (c—>0) a1.19)

Here 75 is the solvent viscosity, and ¢ is the concentration; we do not
define it by weight but rather as a number of monomers per unit volume.
Similarly ¢/N is the number of chains per cm®. The numerical factors in
eq. (I.15) correspond to a rigid sphere of radius R,. On the experimental
side this provides an excellent determination of R,. However the interpre-
tation of R, is delicate. We return to this question in Chapter VI.

(iii) Photon beat measurements give us the diffusion coefficient D, for a
single coil. This coefficient may be related to another effective radius Rp,
defined through the Stokes relation for a sphere

T
p—y 1.20)
Summarizing a vast literature, we may say that the light scattering experi-
ments (i) give a radius R; ~ N while the hydrodynamic studies (ii) and
(iii) give a slightly weaker power R ~ N or N°57, This discrepancy
reflects some subtle corrections involved in dynamical experiments and is
discussed in Chapter VI.
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1.2.2. Numerical data on self-avoiding walks

We see that the direct data on coils are not quite conclusive. It is then
helpful to return to theoretical calculations. There do exist rather accurate
numerical studies on real chains on a lattice. The chain is still represented
by a random walk as in Fig. (I.1), but the main difference is that now this
walk can never intersect itself. We call it a self-avoiding walk (SAW).

The mathematical properties of simple random walks are trivial, but the
mathematical properties of SAWs are complex. Two numerical methods
have been used to study the SAWs:

(i) Exact counting of walks for finite N (typically up to N ~ 10) plus
extrapolation methods allowing us to extend the results toward N — .12

(ii) Monte Carlo methods, where the computer generates a certain
(manageable) fraction of all SAWs of N steps and performs averages on
these.!3

All these studies have been performed on three-dimensional lattices and
in other dimensionalities, d. The case for d = 1 corresponds to chains
along a line and is simple. The case ford = 2 may physically correspond
to chains adsorbed at an interface. Higher dimensionalities (d = 4, 5...)
are also of interest for the theorist, although they do not correspond to
realizable systems. One important advance (during the past 10 years) has
been to recognize the interest of discussing any statistical problem in
arbitrary dimensions and to classify systems according to their behavior as
a function of d. Thus, we shall often keep d as a parameter in our dis-
cussion of polymer chains.

The results of numerical studies on SAWs are usefully summarized in a
recent review by McKenzie.!? Qur presentation, however, is slightly
different since the physical meaning of the essential exponents has be-
come more apparent in the recent years.

The total number of SAWs of N steps has the asymptotic form (at large N)

Ny (tot) = constant ¥ N*~} ] a1.2n

The first factor Z¥ is reminiscent of the z¥ which we had for ideal chains,
but Z is somewhat smaller than z. For the three-dimensional simple cubic
lattice, z = 6 and Z = 4.68. The second factor, N”~!, is more unexpected
and will be called the enhancement factor. The exponent y depends only
on the dimensionality, d:

for all three-dimensional lattices y = y3 = 7/6 (1.22a)
for all two-dimensional lattices y = 7y, = 4/3 (1.22b)
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We say that +y is a universal exponent; this is in contrast to Z, which does
depend not only on d but also on the particular lattice chosen (e.g., face-
centered cubic/simple cubic). Note that ford = 1, Ny (or) = 2, indepen-
dently of N. Thus 2, = 1 and y, = 1.

The end-to-end distance r has a mean square average which we shall call

RZ, and which scales as

Rr=aN’ (1.23)

Here v is another universal exponent (v = 3/5, v, = 3/4, v, = 1)
The distribution law for r depends on r only through the ratio r/Ry

pu(r) = R_lpd Lo (R—rp) (a < r < Na) 1.24)

1. . —
The prefactor R s required to ensure the normalization
F

[putor = 1

The general structure of the reduced distribution f,(x) is shown in Fig.
1.8 for d = 3. There is a very strong drop at large x

lim, -, » fo{x) = exp(— %) fi(x) 1.25)
9 0}
exp (- xs)
\ o
Ko) x
Figure 1.8.

Distribution of the end-to-end distance r in a self-avoiding
walk of N steps; x is equal to r/Ry, where Ry is the root mean
square value.
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where f, varies as a power of x. The exponent & controls most of the
chain properties for strong stretching and is given by:!4-15-16

5=( - (1.26)

We present a simplified derivation of eq. (I.26) later in this chapter (see
eq. (1.47) and the discussion following it).

At small x, f, decreases sharply; it is exceptional for a self-avoiding
walk to return close to its starting point

lim,, _, o fo(x) = constant x* 1.27)

In three dimensions g = g3 = 1/3. We relate g to other exponents below.

Let us consider the SAWs that return to a terminal site adjacent to the
origin (Fig. 1.9). In closing the « ~ w link we may say that each of these
SAWs is associated with a closed polygon of N + 1 edges (and self-
avoiding). The number of such polygons is of the f?nn

Ry = @) =2 () o am

F

The factor R? is natural since the terminal points  of all SAWs of N
steps are spread over a d-dimensional volume R:®. What is remarkable in
eq. (1.28) is the absence of the enhancement factor (N”~*) which was
present in Ny (tot) {eq. (1.21)]. This absence also reflects the difficulty for
a SAW to return near its starting point.

Figure 1.9.
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Eq. (1.28) is proved later by two independent methods (Chapters X and
XI). If we accept it for the moment, we can predict simply what is the

exponent g in eq. (1.27). The distribution function py (r) taken for a
terminal point adjacent to the origin (» = a) is from eqs. (I.24 and 1.27)

p (@) = -1 (L)" =L Nw 1.29)
v R \R) ~ R '
On the other hand, it is (by definition) related to Ny (a) [eq. (1.28)]

o ma Jnla) _ 1
v (@) =a g ion ~ R N

Comparing this with eq. (I.29), we obtain:

g=21"1 (1.30)
a result first derived by des Cloiseaux.!’

A REMARK ON HIGHER DIMENSIONALITIES

We have presented numerical data concerning d = 3, 2, and 1 (the latter
being trivial). What would happen for larger d? The answer is simple:
for d > 4, all exponents return to the ideal chain value (v = 1/2, ¥ = 1).
This did not show up very clearly in the early numerical work but is a general
theorem and is explained in Section 1.3.2.

1.2.3. Correlations inside a swollen coil

Let us discuss briefly the changes in the pair correlation function g(r)
that occur when we incorporate the effects of excluded volume. First,
2(r) and its Fourier transform g(q) follow simple scaling laws. For instance

8(@) = N2(gRy)

where (x) is a dimensionless function and 2(0) = 0.

Second, we may still follow the approach of Chapter I and write g(r) =
n/r? (in three dimensions). However, now the number n of units inside the
radius r is related to r by the excluded volume exponent r*> a-< n. This

gives o ] R 53
@)
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glr) = 4/31 573 (r< RF) (d=3) (I.31a)

i.e., a more rapid decrease than for ideal coils. The Fourier transform is

glg) = )5,3 (gRr>1) (d = 3) (1.31b)

(qa

These power laws were derived first by S. F. Edwards.!® They have been
verified directly on dilute chains with X-rays.!®* They have also been
checked by neutron scattering experiments on semi-dilute systems (see
Section I11.2.5).

1.2.4. Summary

Real chains in good solvents have the same universal features as self-
avoiding walks on a lattice. These features are described by two *‘critical
exponents,’’ y and v. All other exponents of interest can be expressed in
terms of these two. The exponent vy is related to chain entropy, and the
exponent v is related to chain size. A real chain has a size R ~ N"),
which is much larger than an ideal chain (R, ~ N"2). For three dimen-
sions the exponent v is very close to 3/5.

1.3. .
The Flory Calculation of the Exponent v

1.3.1. Principles

Long ago, Flory devised a simple and brilliant scheme for com-
puting the exponent v, which gives excellent values for all dimension-
alities.2? We briefly describe his method and the approximations involved.
The starting point is a chain, with a certain unknown radius R and an
internal monomer concentration

Cont = % 1.32)
(Note that we present the argument for an arbitrary dimensionality d).

There is a certain repulsive energy in the chain due to monomer mono-
mer interactions. If ¢ is the local concentration of monomers, the repulsive
energy per cm?® is proportional to the number of pairs present—i.e., to ¢2.
We write it (per unit volume) as:
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1
Frep = 71‘0 (T)c? (1.33)

where v has the dimension of a (d dimensional) volume and is positive.
We call v the excluded volume parameter. [In the Flory notation v =
(1-2x) a® where a? is the monomer volume and y is an interaction pa-
rameter. For good solvents y < 1/2 and v > 0.]

One essential approximation is to replace the average of ¢ (inside the
coil) by the square of the average

() = () ~ ciud® 1.34)

Eq. (I.34) is typical of a mean field approach: all correlations between
monomers are ignored. The overall repulsive energy after integration over
a volume R, scales as:

Frepltot = To(T)cind R* = TU% (1.35)

This tends to favor large values of R (i.e., to swell the chain). However
if the distortion is too large, the chain entropy becomes too small, and this
is unfavorable. Flory includes this through an elastic energy term derived
from the ideal chain result [eq. (I.8)]

R2

Fa=TNg

(1.36)

Eq. (I.36) is also a very strong approximation; as shown later, the spring
constant of a real chain is much smaller than that suggested by eq. (I.36).
However, let us accept eqs. (I.35) and (I.36) and add them:

F_ N R
T =vpa t (1.37)

Eq. (I1.37) has a minimum for a well defined radius R = Rjy. Omitting
all numerical coefficients, we find

Ry#2 = pa2N? (1.38)

or Ry ~ N¥ with*

*Eq. (I.39) was written by Flory ford = 3. For general d, it was first quoted by M. Fisher,
J. Phys. Soc. Japan 26 (Suppl.) 44 (1969).
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=7+2 (1.39)

Eq. (1.39) is amazingly good; it gives the correct value ford = 1 (v, = 1).
The values for d = 2 and d = 3 are within a percent of the most accurate
numerical results.!>2! For most practical applications the Flory formula
can be considered exact.

I.3.2. Chains are ideal above four dimensions

Eq. (1.39) tells us that v = 1/2 for d = 4. This is precisely the ideal
chain exponent. We can understand this better if we return to the repulsive
energy [eq. (I.35)]. We expect R > R,, and thus the repulsive energy is at
most of order

N2 v .
Frep. maz = 0T pg= T—g N*= (1.40)

while the elastic energy [eq. (I.30)] is at least of order T. We see then that
the ratio

Frp _ po-
Srep < N2-di2 141
i (1.41)

For dimensionalities of d > 4 we conclude that repulsions between mono-
mers represent only a weak perturbation; the local concentration in an ideal
chain is so low that excluded volume effects become negligible.

The idea of calculating the effects of repulsions by perturbation methods
(treating the excluded volume v as infinitesimally small) is relatively old.?
When this is done, to first order in v, one finds*

R_Ro.._,,Frep.ma.r

R = A = (constant) { + 0 ({?)

L= —vTi N2-di2 ' 1.42)

S)

Thus the real, dimensionless, expansion parameter is {. When { is small,
the chain is ideal. When { is large, the chain shows strong excluded
volume effects. (For intermediate { values a precise interpolation formula

*For the most simplified models R/R, is a function of { only. This point will be discussed
more in Chapter XI.
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has been worked out by Domb and Barrett.23) Note that for the usual case
d = 3, the parameter

[ = ZU?NW (1.42")

is always large for large N; eq. (I.42) has a very limited range of validity.
The self-consistent method of Flory is clearly much more powerful, but the
characteristic parameter { will be of frequent use in this book.

1.3.3. Why is the Flory method successful?

It is important to realize that the self-consistent calculation of egs. (I.35,
1.36) benefits from a remarkable cancellation of two errors:

(i) The repulsive energy is enormously overestimated when correlations
are omitted.

(ii) The elastic energy is also largely overestimated; if we think for
example of the end-to-end elongation of the chain, since the distribution
function py(r) [eq. (I.19)] is a function of (r/RF) only, this implies that the
entropy at fixed r is also a function of /Ry only. Finally the elastic energy
should be written Tr2/R;? rather than Tr2/RZ. Again this brings in a large
reduction.

As often happens in self-consistent field calculations (e.g., in the Har-
tree theory of atoms) the two errors (i) and (/i) cancel each other to a large
extent. Many post-Flory attempts, which tried to improve on one term, (i)
or (ii), leaving the other unaltered, led to results that were poorer than
eq. (1.39).

In fact, another problem exists in chain statistics, where the self-con-
sistent method does not benefit from the same cancellations. This is the
case of a charged chain (polyelectrolyte) for which a self-consistent ap-
proach was attempted very early.?*2> Here the neglect of correlations is
not too serious because most of the repulsion comes from very distant
monomers. Thus point (i) is improved, but point (ii) remains weak; the net
result is a formula for v in charged systems which gives incorrect values
for 3 < d < 6.2 We return to this problem in Chapter XI.

1.4.
Constrained Chains

We now turn to a discussion of real chains in good solvents, when
external constraints are applied. The basic situations are listed in Section
I.1. in connection with ideal chains. We shall see that all exponents are
modified strongly by excluded volume effects, and that most of them can
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be related directly to the exponent ». To simplify the notation, we set
v = 3/5 (the Flory value) for three-dimensional systems.

1.4.1. A chain under traction (Fig. |.4)

The external energy due to the force f, when the end-to-end distance is
r, issimply —f-r. Thus, we may write a partition function for the chain in the
form

Z = j dr py (r) exp(f-r/T) (1.43)

and using the results from Section (I.2) on p,(r), we can compute all aver-
ages involving r.'? Here, however, we use a simpler approach due to Pin-
cus.?” The only characteristic lengths entering into eq. (I.43) are: 1) the
Flory radius, Ry = aN®?, and 2) the length ¢, = T/f.

Let us now consider the elongation r(f). We may write

)| = Re o, (%) = Rrer (%) (L.44)

where ¢, is a dimensionless function. For small f we expect |(r)] to be linear
inx, and thus ¢, (x > 0) = x

\ O F‘
~ R?
nl==f (Re<T) (1.45)

Note that (r) is not linear in N at small f. This means that the tension f is
transmitted not only through the backbone (as in the ideal case) but also
through contacts between certain pairs of monomers (n, m) (with [n—m|
large).

Consider now the limit of large tensions (x > 1). What happens here
can be idealized as shown in Fig. 1.10. The chain breaks up into a series

<—;p->

BLOB
Figure 1.10.
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of ‘‘blobs’’ each of size ¢,. Inside a blob (i.e., for spatial scales r < £,) the
force f (measured by the dimensionless number fr/T) is a weak perturba-
tion. Thus, each blob retains the local correlations of a Flory chain, but at
larger scales r > £, we have a string of independent blobs.

The number of monomers per blob, g,, is related to §,, by the Flory
law of real chains [eq. (I.39)], giving

& =a g
or
T 513 .
& = () (L46)

and the total number of blobs is N/g,. The chain elongation is then

Ke)| g_gl%g,, = Na(—fTﬁ)Z'a (i;- < 1) 1.47)

Eq. (1.47) deserves some discussion. We see that a real chain has an
elastic response which is significantly more nonlinear than an ideal chain.
This appears on the plot of ¢(x) shown qualitatively in Fig. I.11.

The high f limit could have been obtained directly on the scaling form
[eq. (1.44)] by imposing the restriction that [r)| becomes linear in N at high
f.«The reason for this linearity is that at high f, separate blobs do not
interact; thus, we return to an ideal string of blobs.

Eq. (I1.47) allows us to derive the exponent & defined in connéc;ion with
the strongly stretched limit [eq. (I.25)]. At large r the probability distribu-

}

<

Re

x 2/3

Figure 1.11.
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tion is essentially proportional to exp — (r/Ry)®, and the entropy for fixed
elongation S(r) has the form

S(r) = constant + In py (r)

constant (—) (_kr__)a (1.48)
F

The corresponding elastic free energy is — 7.5, and the overall energy is

. P8
Fy = T(?;‘) - fr

The physically realized elongation corresponds to the minimum of F:*

)

Comparing eq. (1.49) with (1.47) we see that 8 = 5/2 (when » = 3/5).
Keeping a more general value of » would lead to eq. (1.26).

Apart from the longitudinal elongation (r) (parallel to f) it is of interest to
ascertain the lateral spread of the chain r, in strong elongation. The pro-
jection of the string of blobs on a plane normal to f is an ideal string, and
thus

n

13
(ri® =— fp = Naq? (fi) ' (fRp > T) (1.50)

Thus the chain not only elongates but also shrinks in its lateral dimensions.

No experimental verifications of the laws [eqs. (1.47, 1.50)] seem to be
available at present. For the future, studies on strong distortions in flows of
dilute solutions, and also in gels, may become relevant.

1.4.2. Squeezing a real chain in a tube

In one dimension, excluded volume effects are very strong. Thus it is of
interest to consider a chain trapped in a thin tube of diameter D < Ry
(but D still larger than a). Situations of this sort may become available in
the future. What is the length of tube R, occupied by the chain? What is the
energy required to squeeze the chain in?

Let us start with the length R;; it must have the scaling form

*The mathematically inclined reader will recognize that this describes a saddle point inte-
gration in Eq. (1.43).
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R, = Rr ®, (R¢/D) (L51)

where @, (x) — 1 for x — 0 (thick tube) and @, (x) — x™ when x — o (thin
tube). To determine the exponent m, we notice that for a thin tube we have
a one-dimensional problem, and R, must therefore be a linear function of
N. Since Rp ~ N"3 this requirement means that

Nll3(+m) gN
1.52)
m=v;' = 1=2/3
Thus the formula for the length of the chain is®®
213
R, = Na ( D) (@ <D < Ry) (1.53)

Note that R, is larger than Rr. The chain is extended by squeezing, and
this behavior is very different from an ideal chain. Further, the concentra-
tion inside the chain is interesting. It scales according to:

- N 1 a\43
Cing = D—TR,, = (-D-) (1.54)

and is independent of N.

Another derivation of eq. (I.53) is based on a ‘‘blob’’ picture. The chain
behaves as a sequence of blobs of diameter D. Inside each blob the effects
of the boundaries are weak. The number g, of monomers per blob is
still given by the three-dimensional law: g,3* = D/a. Successive blobs
act as hard spheres and pack into a regular one-dimensional array. Thus
R, = N/gp D in agreement with eq. (I.53).

ll MONOMERS

EXS )6

BLOBS
Figure 1.12.
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Let us now turn to the confinement energy. In the strong confinement
limit (D < Rp) we see from Fig. 1.12 that the energy must be linear in
N; doubling N simply doubles the number of blobs. On the other hand, the
energy must be of the form

R
Fons =T or () = Tr ()
lim s Feons = Ta™ (1.55)
Thus R? must be linear in N, and n = 5/3.

a 5/3
Fopy = IN (—D-) (1.56)

Note first the difference in behavior from the ideal chain [eq. (1.12)].
The confinement energy (at given D and N) is larger for the real chain.
Note also the analogy between eq. (I.56) and the energy for strong elonga-
tion of a chain in free space [eq. (1.48)] 1/T (Feny) = (R,/Rp)*?. Thus R,
plays the role of the total elongation (r) in the Pincus problem.

GENERALIZATIONS

This analysis can be extended to chains that are squeezed in slits and to
other geometries provided that the confining object is characterized by a
single length D. One such case has been recently studied by numerical
methods.?®3° This corresponds to a two-dimensional lattice, where we
allow the chains to explore only a finite strip of width D. Then a similar
argument suggests R, ~ Na (a/D)'3; this dependence on N and
especially on D seems well confirmed by the data.

1.4.3. Weak adsorption of a single chain

This situation is again described by Fig. 1.6. To determine the thickness
of the adsorption layer D, we write, instead of eq. (I.13), an energy per
chain of the form

F=1N (—g—) " Tsf,N (157)

where the first term is the confinement energy in a slit of thickness D and
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has the scaling structure of eq. (1.56), while the second term is unaltered
(fy ~ a/D). After minimization we find

D ~ a§732 (1.58)
Faqs ~ NT8%? (1.59)

These equations should apply for 1 > & > N2/ (the latter inequality
corresponding to D < Rp).

Monte Carlo studies on chains near an adsorbing surface have been
carried out,3!32 but the small 8 limit is not very well known.

On the physical side, there are many complications. As mentioned,
single-chain adsorption is never observed. One always reaches a situation
where many chains compete for the same portion of surface. Furthermore
the single-chain problem may be modified by the existence of long range
van der Waals forces between the surface and each monomer. The cor-
responding potential decreases relatively slowly (as D~3) and the attraction
energy may not be cast into the form used in eq. (I.57).
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Polymer Melts

1.

Molten Chains are Ideal

Dilute polymer chains in a good solvent are swollen; the size Ry
increases as N3/ rather than N'2. When we squeeze the chains together
and reach a concentrated solution or a melt, we might expect the situation
to become even more complicated because the interactions between mono-
mers are much stronger. Actually the correct conclusion is different. In a
dense system of chains each chain is gaussian and ideal. This was first
understood by Flory,! but the notion is so unexpected that it took a long
time to reach the community of polymer scientists. Here we give two pre-
sentations of this ‘‘Flory theorem’’ and discuss fine correlation effects
between chains in the melt.

I.11.1. A self-consistent field argument

Consider a dense system of identical chains (Fig. I1.1). Let us focus on
one chain, which we shall call the ‘‘white chain’’ (the other chains are
‘‘black’’), and study the repulsive potential U experienced by one white
monomer. This U is essentially proportional to the local concentration ¢
of monomers, which is shown in Fig. II.1b. The concentration ¢ has
two components.

The concentration of white monomers (and the corresponding potential
U, is peaked around the center of gravity of the white molecule. On the
slopes of this peak there is a force — dU,,/dx pointing outward. In the

54



Polymer Melts 55
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Figure 11.1. (b)

single-chain problem, it is this force which is responsible for swelling
and nonideal behavior. However, the concentration profile for the black
chains has a trough in the same region. This is necessary since in a molten
polymer, the fluctuations of the fotal concentration (or density) are very
weak.

Therefore, the black potential creates an inward force. This force ex-
actly equals the force caused by the white monomers since U,y (like c¢o) is
constant in space: dU,,/dx = 0. The chain experiences no force and
remains ideal.

The above argument is useful and valid in three dimensions. However, it
applies only if the whole idea of a self-consistent field makes sense.
Clearly, there are cases where it fails; for example, in one dimension, the
chains must be completely stretched (at all concentrations). What happens
then in two dimensions? The answer can be derived from the detailed
(local) discussion below.
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I1.1.2. Screening in dense polymer systems

Let us start with a molten system of chains (degree of polymerization
N) to which we add a very weak concentration of solvent molecules. We
assume that the system is athermal—i.e., the solvent-monomer interaction
is exactly equal to the monomer-monomer interaction. Of course, if the
solvent molecules are extremely dilute, they behave as a gas of indepen-
dent particles. However, here we go one step further to consider the inter-
actions between two solvent molecules.

i) [}
Figure 11.2.

The situation is shown on a lattice model in Fig. I1.2. The two solvent
units block sites (/) and (j) of the lattice, and the chains fill all other
sites. There is a certain (huge) number of ways of filling the allowed sites
with chains, and the logarithm of this number defines the total entropy S;;.
For large separations R;; the entropy S;; goes to a well-defined limit S.
When R;; becomes smaller and comparable with the single chain radius
R, = N2 g, the entropy §;;changes* as shown qualitatively in Fig. I1.3. No
rigorous calculation of §; is available at present, but an approximate form
can be derived from methods to be described in Chapter IX. The results are
as follows.

When averaged over all sites j different from i, the shift AS; is positive.
Our reader may acquire a qualitative feeling for this sign by inspection of a
(comparatively) simple case—namely, dimers (N = 2) on a square lattice.
If we look at two distant units (i) and (j) (Fig. I1.4a), we see that each has
four neighbors where a dimer molecule is restricted in orientation; starting
on any of these neighbors the dimer can point only in three directions (a 8
). On the other hand, if (/) and (j) are adjacent, there are only six sites

*Note that Fig. 11.3 applies only for dimensionalities d = 2, 3, ... but not ford ~ 1 (S is
meaningless for d = 1).
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AS"?

N\ .

° \/ N

Figure 11.3.

(rather than eight) which have this reduction in allowed orientations. Thus,
the entropy should be larger in Fig. I1.4b. The above argument does not
give a precise calculation of the entropy, but it is a good clue to its sign.

Returning to the general form of S;;, we may also translate it into an
effective interaction Uj; between sites (i) and (j) putting

exp (— QT.&) = AS,  (#)) aL1)
[ ¥
; J
T = ] ]
i i
(@
i i
®)

Figure I1.4.
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hard core

attractive well

H = .
V4 "

Figure ILS.

For i = j we must take Uy as repulsive and infinitely large because we do
not allow two solvent molecules on the same site. The resulting aspect of
Uy is shown in Fig. I1.5. At finite Ry, the interaction oscillates in sign,
but it is predominantly attractive. At R;; > R, the interaction drops to zero.

The repulsive core is what we might call the bare interaction; it would be
present even in the absence of polymer chains on surrounding sites. The
attractive part is due to the chains and tends to reduce or ‘‘screen out”’
the bare interaction. This notion of screening was first introduced—in a
somewhat different context—for semi-dilute solutions by S. F. Edwards.?

To measure the importance of the screening effect, the main parameter
of interest is the second virial coefficient A,g of the solvent-solvent inter-
action. If we define a solvent fraction ®g (the average number of solvent
units per site) and a solvent osmotic pressure Ilg, the latter has an expres-
sion of the form

—T‘Hs = Bg + Ays PF + O (DY (IL.2)

and this defines A,s. On a microscopic level, A,g is related to the pair
correlation function g;; between two solvent units

.= {e“" G+
8= 1o i=j (L.3)

and we have
2455 = 2 (8y —
i

=1+ 3 [exp (ASy) — 1] (I1.4)

J#i
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Having defined A;s in detail, we can now state a fundamental screening
theorem (in three dimensions)

limN—mu Azs =0 (II.S)

Physically this means that for long chains (large N) there is complete can-
cellation between the attractive and repulsive parts of the interaction U;—
i.e., a dilute solution of monomers in the melt is ideal.

We give some justification for eq. (II.5) in Chapter IV, where polymer-
solvent systems are discussed in more detail. In particular, with the
simplest model, due to Flory and Huggins, one finds for all N [see Chapter
I, eq. (IL.16)]:

24y =% (IL6)

Thus, for large N, the direct repulsion between solvent molecules is very
efficiently screened out. We accept for the moment the result [eq. (I1.6)]
and use it to discuss chain conformations.

1.1.3. One long chain among shorter chains

Having stated the screening theorem, we can now return to a deeper
discussion of the conformation of one particular chain in the melt. It is
interesting to generalize the problem slightly and to assign a degree of
polymerization N, to this particular chain, all others having the degree of
polymerization N. This generalization is interesting because we already
have a feeling for two limiting behaviors:

(i) If N, = N, we expect the chain to be ideal (in three dimensions).

(ii) If N, is large but N is unity, we return to the problem of a single
chain in a good solvent: the chain is swollen. The question is then: when do
we cross from regime (i) to regime (ii)?

The Flory approach to this problem! is simply to consider that all mono-
mers of the long chain interact between themselves through the screened
interaction; for the excluded volume parameter v of Chapter I we must
substitute the virial coefficient A,5. More precisely we have

v =24,5a% = a"l—b- 1.7

where a? is the volume of the unit cell in the lattice (d is always the
dimensionality).
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We can now write the dimensionless parameter { [introduced in eq.
(1.42)] which tells us whether the chain (N,) is ideal or not.

v

C = ~ le—dlz = le—dIZ/N (II.8)

S

Consider first the usual three-dimensional case, d = 3. Then we have
{ = N,'?/N a1.9)

and we see the following limits:

(i) If N, is comparable with N, { is of order N!% and is small—i.e.,
the chain is ideal.

(ii) If N decreases and becomes a somewhat smaller than N,, the chain
stays ideal up N = N,'2. Then it begins to swell.*

For two dimensions

{ = N,/N - (I.10)

is large whenever N, > N and is of order unity when N; ~ N. We conclude
that for d = 2 the chains in a ‘‘melt’’ are not quite ideal. This point does
not seem to have been noticed in the literature.

At first one might be inclined to use eq. (II.10) also for one short chain
among larger chains (N, < N). However, in this limit, the simple recipe
[eq. (I1.7)] breaks down. Because the screening radius (R, = N'2 a) is
now larger than the size of the chain of interest (~ N,'% g), it is not
possible to replace Uy of eq. (IL.1) by a point interaction with one
coefficient A,5. (A more detailed study suggests that { stays of order unity
at all N, < N).

I1.1.4. Mixed chains versus segregated chains

~ Some years ago there existed among polymer scientists some dispute
between two opposite views on polymer melts as represented in Fig.
I1.6 a, b). In the standard model (a) the chains interpenetrate very strongly.

*Neutron experiments qualitatively confirm these features; see R. Kirste, B. Lehnen,
Makromol. Chem. 177, 1137 (1976). Quantitatively there remain some unexplained dis-
crepancies.
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-

Figure IL.6.

In the segregated model (b) different chains overlap only slightly. What is
the correct picture? The answer depends on dimensionality.

For three dimensional situations, neutron experiments probing a few
labeled (deuterated) chains in melt of identical (hydrogenated) chains, have
shown quite convincingly that the chains are ideal and gaussian as expected
from the Flory theorem.?#% The radius is R, = N2 g, and the local
concentration due to one labeled chain is of order N/R2 ~ N7Y% g73,
This local concentration is small; this implies that there are many chains
overlapping to build up the total concentration (a~3) in the melt, and that
Fig. II.6a applies.

Very few data are available at the moment on *‘two-dimensional melts”’
or analog systems on computers. However, we expect that here model (b) is
closer to the real situation. Since the perturbation parameter { is of order
unity, the chains still have a radius comparable with R,. Thus the two-
dimensional concentration associated with one chain is c = N/R2 ~ a2
A single chain is enough to build up a ¢ value comparable with the total
concentration, and the chains must be somewhat segregated. It is to be hoped
that future experiments using chains on adsorbed layers (or chains trapped
in lamellar systems such as lipid + water), will be able to probe these
questions.

1.5 Summary

In three-dimensional polymer melts, the chains are essentially ideal and
move freely. In two dimensions they should be slightly swollen and strongly
segregated. i
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ii.2.
Microscopic Studies of Correiations in Meits

I1.2.1. Necessity of labeled species

If we perform a scattering experiment (using X-rays or neutrons) on
a dense chain system that is made of identical monomers, we obtain some
information on the local fluctuations of density, or concentration. If we
look for universal properties, we must probe the fluctuations at wavelengths
much larger than the monomer size. (More precisely, if ¢ is the scattering
wave vector,* we want ga < 1.) However, at this scale, the density in
a melt is essentially fixed—i.e., there is no scattering intensity.

Thus, to obtain interesting data at small g, we must label the chains.
When working with X-rays, it is tempting to insert heavy atoms at definite
positions along the chain (e.g., at both ends). However, this does not work
very well because of the strong chemical perturbation introduced by these
atoms; very often they tend to segregate, building up micellar (or more
complex) structures which have little to do with the original, unperturbed
melt.

A cleaner situation has been achieved with deuterium labeling in neutron
scattering. Fortunately, deuterium and hydrogen have very different co-
herent scattering amplitudes for thermal neutrons. Thus, it is possible to
achieve an isotopic labeling which is efficient for neutrons but leaves the
system nearly unperturbed.t

Experiments of this type have been carried out on partially deuterated
polystyrenes (using quenched phases from the melt) by J. P. Cotton and
co-workers.® These experiments give us precise information on the local
correlations between chains in a polymer melt. Also, because of the sim-
plicity introduced by the Flory theorem, this is one of the few cases where
the scattering diagrams can be computed accurately.” The method is de-
scribed in Chapter X. Here we present the results only, in qualitative terms.

11.2.2. The correlation hole

Consider, for example, the case where each chain is labeled at one end
only: the first monomer of each chain is deuterated. We take one such

*In terms of the beam wavelength A and scattering angle & we have ¢ = 4sA~! sin 6/2.

1There is, however, an ultra-weak difference in interactions between normal and deuterated
monomers, which has been considered recently by Buckingham. This may lead to some
segregation effects in chains of very high molecular weight. We return to this point in
Chapter IV.
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chain in the melt and put its labeled unit at the origin. Now we ask for the
distribution S, (r) of labeled ends at distance r from the origin. There is,
of course, a delta function at the origin (self-correlation), but the most
interesting part, for r # 0, is shown in Fig. IL.7.

(i) At large distances S,,(r) is equal to the average density of labels in
the melt. If we define density as a number per site on the lattice, the label
density is just 1/N (since there are N lattice sites occupied by one chain, of
which one only carries a label).

(ii) At smaller distances (@ < R,) $,,(r) is reduced. When we have
fixed one label at the origin 0, we know that one chain is inside a sphere of
radius ~ R, near 0. Thus, the density allowed for other chains is reduced,
and the density of other labels also drops.

(iii) At the origin §,,(r) has a delta function peak corresponding to the
fixed labeled unit.

Qualitatively, we may say that S,,(r) shows a correlation hole of width
R, and of average depth ~ 1/N a/R, ~ N~¥%. From an experimental
point of view, what is directly measured is the Fourier transform of Sy, (r)

Su(q) = % f dr exp (iq-r) S;,(r) (I1.11-12)

(where the unit cell volume @® has been introduced to make $,,(q) dimen-
sionless).

The structure of S,,(q) for a chain labeled at one end is shown in Fig.
I1.8 (from Ref. 7). Note that for g — O the scattering intensity vanishes.
For long wavelength fluctuations, the label density p, is simply p/N, and
the total density p does not fluctuate in our model; there is no scattering.

S"(r) r

N_L————————-———'

o) R, '

Figure I1.7.
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This corresponds to the following sum rule in direct space:
fSu(r)dr =0 (I1.13)

In more general terms, this sum rule tells us that the depletion in the
correlation hole corresponds exactly to one monomer unit

5 f . (= sum + g)dr =1 (I.14)

At large ¢, all interference effects between different labels drop out; the
intensity S;,(q) reduces to the value for a single unit, and if the unit is
point-like, the intensity is constant S,,(q) — 1.

11.2.3. More general sequences

We now consider the more usual case where the chains are labeled not at
one point but over a finite fraction of their length. A typical sequence is
represented in Fig. I1.9 (the deuterated portions are marked D). To under-
stand what happens, it is convenient to think first of a short D portion
(Np < N). Then, at most g values, the D portion can be treated as a
point, and the scattered intensity /(g) is very similar to Fig. II.8 except for

Figure I1.9.
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the normalization. If we measure I(g) per labeled monomer, we have in
this region:

Ilg) = Np Su(@) (@Rp < 1) (r.15)

However, eq. (II.15) will break down when gRp becomes larger than 1
(Rp being the natural size of the labeled portion: R, = Np'2 a).

In this relatively high ¢ region, interference between different D coils
becomes negligible, and /(q) behaves essentially like the intensity due to a
single coil of N, units. This is discussed in Chapter I [eq. (I.18)] and gives

I(q) = gp(q) = q—ltz;z (gRp > 1)

The net result is shown in Fig. I1.10. The intensity now has a broad
maximum at some intermediate wave vector g,,. When peaks of this type
were first observed on partly labeled chains, there was a natural temptation
to ascribe them to some sort of local segregation of the deuterated species.
In fact, as shown in Fig. IX.4 there is very good agreement between the
data and precise calculations on the correlation hole (described in Chapter
IX). No special segregation effect needs to be involved (at least for the
molecular weights ~ 10° which have been used in practice).

If we increase the length of the D portion, 1/R), decreases and the peak
first moves slightly to the left. The overall intensity also decreases since
when Np = N, we are left with no intensity at all. When Ny = N — N,

)

Npt—— — —
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oz?"" i
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Figure I1.10.

Qualitative plot of scattering intensity versus scattering wave
vector in a neutron experiment using a melt of polymer chains,
each chain being deuterated in one portion of its length as
shown in Fig. I1.9.



66 STATIC CONFORMATIONS

becomes small, it is convenient to reverse our view and to think of the
scattering as being due to H portions in a sea of deuterated material. Then
Fig. 11.10 still holds provided that we replace N, (and Rp) by Ny (and Ry
= NHIIZ a)

I.2.4. The correlation hole in two dimensions

Let us return to the correlation function §,; between the ‘‘heads’’ of all
chains in a molten system. In the three-dimensional world this has the
general appearance shown in Fig. II.7. What would happen if we could
measure it in two dimensions (e.g., with chains adsorbed on a flat surface)?

Our prediction is that the correlation hole is much deeper. The sum rule
[e.g. (I1.14)] still holds, but the domain of integration is now an area of
order R,2 ~ Na®. Thus we must have

;12‘ (_b'_ Su) Na® ~ 1
1 s,, ~ Sonstant
N " N

Thus the depletion is a finite fraction of the maximum concentration. This
is another version of the discussion in Section II.1.4, showing that segrega-
tion is important for two-dimensional systems.

I1.2.5. Mixtures of labeled and unlabeled chains

In the above discussion, we assumed that all chains were partly labeled,
each with the same sequence of labels. Now we turn to a different experi-
ment, where a fraction f of the chains is completely deuterated and the
remaining fraction, 1 — f, is entirely hydrogenated (we always assume that
the deuterated and normal species are entirely identical in their inter-
actions).

When f is small, we measure the scattering due to individual chains.
This is the limit used by various workers to prove that chains in a melt are
gaussian.?* The scattering intensity per site (in the lattice model) is

Iq) =feolg (f—0) (I1.16)

where g;(q) is the Debye function defined in Chapter I.
Whenf is larger, we know I(g) by a simple argument. Since the intensity
involves only pair correlations, it must-be a polynomial in f of order 2



Polymer Melts 67

1) = feolq) + f*h(q) (I1.17)

where A(q) is yet unknown. However, we must impose the condition that
for f = 1 we get no scattering (no fluctuations in concentration). This
means that i(g) = — gp(g) and thus

I(q) = f(1 — fgolq) (11.18)

Eq. (IL.18) is useful for the experimentalist because it allows him to
study single-chain properties by using f values of order 1/2—i.e., with
signals that are much higher than in the f — 0 limit.

Eq. (II.18) has another interesting feature. We know that the intensity at
q = 0 is related simply to the osmotic compressibility (df/dIl,) of the gas
of labeled chains

—ov = 7r 9
Ilqg =0) = deﬂ:. (I1.19)
At g = 0 the Debye function g5(0) is equal to N. Inserting this value into
eq. (I1.18) and integrating, we find a small f expression

L _f.L£ 4 . (11.20)

T N 2N

This is exactly what we would expect from the monomer-monomer
second virial A,s of eq. (I1.6). The total of pair-wise interactions between
two chains is N? A,g, and we may write, in terms of the chain density f/N

2
Lo_L, (%) Agg N? + ... (r.21)

Since 24, = N7, egs. (I1.20) and (I1.21) coincide.

I.2.6. Summary

In a melt, each monomer is surrounded by a correlation hole, inside of
which the concentration of monomers from other chains is slightly reduced.
This correlation hole has a size comparable with the overall size of one
chain. It gives rise to remarkable patterns in neutron scattering by partly
deuterated chains. (The detailed scattering laws are given in Chapter XI.)
Experiments on partly labeled chains give us a precise check on the entire
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picture and prove that three-dimensional chains are strongly intertwined in
a melt. The two-dimensional situation would be quite different and should
be studied in the future.
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Polymer Solutions
in Good Solvents

From Chapter I we know the properties of dilute (nonoverlapping)
coils in a good solvent: they are swollen, with a size R = N33a. At the
other end, we know from Chapter II the limit of very concentrated solu-
tions or melts: the chains are essentially ideal, with a size R, = N'%q, and
they interpenetrate each other very strongly.

What happens in between? For a long time, the only interpolation
method available was a mean field theory due to Flory! and Huggins.?
However (as realized early by these authors) the mean field idea is not
adequate at low and intermediate concentrations. The question remained
obscure for a long time. It has now been clarified experimentally (mainly
through neutron scattering experiments; see Fig. III.1) and theoretically
(by certain manipulations as described in Chapter X). Fortunately, the final
picture is simple and can be explained without referring to abstract theory.

fii.1.
The Mean Fieid Picture (Fiory-Huggins)

lll.1.1. Entropy and energy in a lattice model

Again it is convenient to represent the polymer chains as random
walks on a lattice, each lattice site being either occupied by one (and only
one) chain monomer or by a ‘‘solvent molecule,”’ as shown in Fig. II1.2.
We denote the fraction of sites occupied by monomers as ®. This term is
related to the concentration ¢ (number of monomers per cm3) by ® = ca3,

69
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Figure IIL.1.

Square of gyration radius R for one labeled polystyrene chain
in a polystyrene solution of concentration c. Above ¢ = c*,
R%(c¢) decreases with a well-defined exponent. At high ¢, R¢
returns to the ideal chain value. After Daoud et al., Macro-
molecules 8, 804 (1975).

where @ is the volume of the unit cell in the cubic lattice. Clearly the
lattice model is somewhat artificial, but it does not lose any essential fea-
ture of the problem, and it provides a convenient framework to describe
solutions at all concentrations.

The free energy F for this model has two components: an entropy term
describing how many arrangements of chains can exist on the lattice for a
given ®, and an energy term describing the interactions between adjacent
molecules.

In the mean field approximation the entropy S has a simple structure:

| | | | | Figure IIL.2.
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~ Sl =%’ m% +(1—®)In (1 - D) (IIL 1)

The first term is related to the translational entropy of the chain (®/N is
the chain concentration in dimensionless units). The second term may be
similarly conceived as the translational entropy of the solvent molecules
(of volume fraction 1 — ®). An interesting check on eq. (III.1) is obtained
for N = 1. Then eq. (III.1) becomes the standard entropy for a collection
of independent systems, each with two states ‘‘full’’ (probability @) or
“empty’’ (probability 1 — ).

Note that eq. (IIL.1) is an approximation; in the real problem, neighbor-
ing sites are not independent. (We return to this later.) '

A technical modification. Instead of considering the full entropy S(®), it
is often convenient to focus our attention on a slightly different object, the
entropy of mixing S ;.. This is defined by the difference between S(®P) and
the weighted average of the entropies of pure polymer [S(1)] and pure
solvent [S(0)]

S™z(P) = S(P) — ®S(1) — (1-D) S(0)
The subtraction described above is interesting, because it eliminates certain
trivial terms. All contributions to S(®) which are independent of ®, or linear
in @, drop out from §,;,. In what follows we shall perform a similar
transformation for all thermodynamic functions of the mixture.

For the particular form in eq. (III. 1) the only change obtained by going
from S to S, is to eliminate a term ®/N In 1/N which is linear in ®

_ gmiz = %m ® + (1-®)In(1—D) (IIL. 1a)
The energy term E contains, in general, three terms that describe

o . T
monomer-monomer interactions: > Xum g

monomer-solvent interactions: Txus® (1 — D)
. . T ,
solvent-solvent interactions: 3 Xss 1-d) (I1.2)

However, we do not need three constants because all terms in the free
energy per site which are independent of @, or linear in @, drop out when
we consider E,;;.
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The truly interesting feature is the curvature of the plot E(®): only one
parameter is relevant. In fact we can write:

—IT—E,,,iI,me = x® (1 — ) + constant + terms linear in & = (II1.3)

with
1
X = Xms — 7(me + Xss) (I11.4)

We call x the Flory interaction parameter. It is dimensionless, and it
depends on temperature, pressure, etc. Good solvents have a low x, while
poor solvents have a high x (we see later that the borderline corresponds
to x = 1/2). The case x = O corresponds to a solvent which is very
similar to the monomer. In our lattice model this is the case where the free
energy comes entirely from the entropy associated with various chain
patterns on the lattice. In such a case temperature has no effect on struc-
ture, and we say that the solvent is ‘‘athermal.’’ Athermal solvents are a
particularly simple example of good solvents. Most of the scaling laws of the
present chapter will be written only for athermal solvents.

In most cases the parameter x is positive. This is because the inter-
actions (MM, MS, SS) are mainly van der Waals attractions, which are
essentially proportional to the product of the electronic polarizabilities (a)
for both molecules.? Thus we have

Xum = — ko
Xss = — kog
Xms = — kasay (I11.5)

where & is positive (the van der Waals interactions being attractive). The
net result is

X = +§(as —ay)? >0 (I11.6)

Of course the simple estimate of eq. (II.5) can be corrected by special
bonding effects, steric corrections, and so forth, but the trend toward
positive x is quite general. The temperature dependence of y is a delicate
matter. If the monomer-monomer local correlations were independent of



Polymer Solutions in Good Solvents 73

7, we would expect the interactions to be independent of 7, and x to
vary like 1/7. However, reality is much more complex: x is an increasing
function of T in a number of cases.

Having introduced the interaction parameter x, we can now discuss the
overall free energy. It is obtained by adding eqs. (III.1) and (IIL.3)

_l_Fmi.r (D

=—=In®d+ ({1 —-DP)In(l — P) +xP(1 — ®) (mean field)
T e N (L7

In the following paragraphs we discuss the main consequences of this basic
formula. In this chapter we restrict our attention to good solvents (small ).
The situation for poor solvents is investigated in Chapter IV.

l.1.2. Low concentrations

Expanding the regular terms in the free energy [eq. (IIL.5)] at small
we find

Fmi.r _(D 1 _
T ﬁte—w-ln(b +?¢2 (1 2X)
1
+6<I>3

+ ... (I11.8)

We may interpret the ®?/2 term as defining an effective pair interaction
between dilute monomers. Note that the coefficient | — 2y contains two
contributions: one part (— 2x) which is related to interactions between
adjacent sites, and another part (1) which expresses the existence of steric
repulsions between monomers at short distances (in the lattice model, two
monomers are not allowed on the same site).

Eq. (II1.8) is one example of the low concentration expressions which
can be proposed for the free energy. A slightly more general version,
which is also of use, can be written independently of any lattice model:

F =L 121 23
T cmz-—Nlnc+2vc +6wc +... {11.9)

where ¢ is the number of monomers per cm®. Here v is the excluded
volume parameter, following Edwards.* Using ® = ca®, we find the
following correspondence
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v=a*(1 —2x d11.10)

The value of v is positive for good solvents and negative for poor solvents.
For an athermal solvent v = a®.

Note that in the Flory-Huggins approach [eq. (II1.8)] the coefficient w is
fixed (w = a®) while it remains as a free parameter in eq. (II1.9). The
second formulation is slightly more general, but it is restricted to small ®
values. The lattice model has the advantage of providing a description at all
@ values.
l1.1.3. Osmotic pressures

Let us consider first the osmotic pressure II of the macromolecules in
the solution. This is defined by an operation where we change the solution
volume (by adding more solvent: V,,, — V,,, + AV) while keeping fixed the
number of monomers present (v,,)

AFy,

“H=Zv

(III.11)

The term v,, is related to V,,, by v,, = ®V,,,/a®, and the total free energy
is Fyot = Faye Vige/a®. Inserting this into eq. (I11.9), we get

_ a(Ftite/(b) —

_ d
IT = o(1/®) P2 T (Fiite/ P) (I11.12)

and using the Flory-Huggins form [eq. (IIL.5)], we arrive at

a3%=%+ln(

1
1-&

) R (II1.13)

The discussion of eq. (III.11) breaks up into three parts:

(i) For ® — 0 we have a perfect gas law I1/T = ¢/N where c/N is the
number of chains per cm3.

(ii) For 1/N < ® < ] we may still expand II in powers of ®, and
the dominant term is the quadratic part

@I _ @ 1 1
T =Nt -20 WL

(iii) For dense systems (P —> 1) the pressure tends to diverge log-
arithmically.
Thus, provided that the solvent is good (1 — 2x > 0), mean field theory
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predicts a crossover from ideal gas behavior to a strongly interacting be-
havior at @ ~ 1/N. Beyond this point the osmotic pressure should become
proportional to @2 We shall see that, in fact, all these predictions are
qualitatively wrong. '

Let us now discuss the dense limit. This is of some interest in connection
with our discussion of screening in molten polymers. Here we consider the
osmotic pressure of the solvent molecules ITg. At first sight Ilg is an absurd
concept; to measure it directly we would need an osmometer which is
transparent for the chains but impermeable for the solvent. However Il is
a useful theoretical intermediate for studying solvent-solvent interactions.

The starting formula for Ilg is quite similar to eq. (III.12). Introducing
the solvent fraction &g = 1 — ® we have

d
IIs = &g —acbs (Fyite/ Ps)
giving

a®llg
T

= &g ——1:, [®s + In (1 — Pg)] — xPs? (I11.15)

At low ®g we may expand and get

@Il . (_1 _
T = o + g N ) +... d11.16)

Of particular interest is the athermal case* which was chosen in our
discussion of screening in Section II.1.2. Setting x = 0 we arrive at a
second virial coefficient A,g between solvent monomers which is very
small: A,g = 1/2N.

Eq. (II1.16), for dense systems, has a sounder basis than eq. (II1.14), for
dilute systems. The reason is that for dense systems the chains are nearly
ideal, and the mean field description is then nearly exact.

We could extend the above discussion to many other thermodynamic
properties, such as the heats of mixing, etc. However, as regards concepts,
the osmotic pressures IT and IIg are the basic tools.

Another thermodynamic law is worth mentioning. The chemical potential
s of the solvent is proportional to the osmotic pressure of the solute
IL.! This is shown in eq. (III.11) since the change in volume AV involved

*'The discussion of Section IL 1.2. is directed toward a system of chains filling the lattice,
Wwhich s intrinsically athermal. :
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in the definition of IT is simply a change in the number of solvent molecules
Avg = AV/a?. Thus

_ A (Ftat) — _ 3
Mg = “Avs Ila 11.17)

lil.1.4. Critique of mean field theory

As mentioned the mean field calculation neglects certain correlations
between adjacent (and even more distant) monomers. For example, when
we write a 2 term for the monomer-monomer interactions, we really
mean a certain average (®% which may be quite different from (D)2, In a
good solvent the monomers tend to avoid each other.

The mean field calculation replaces the monomer-monomer interactions
by a certain self-consistent potential which is uniform in space;* such a
potential cannot induce any swelling of the chains (as explained in Section
I1.1). Thus, the mean field for polymer solutions is intrinsically associated
with ideal chains. This is clearly not acceptable at low concentrations.

These statements are classical and give no real clue on how to improve
the situation. It turns out, however, that scaling arguments will work.

in.2.
Scaling Laws for Athermal Solvents

From now on in this chapter, we assume that the solvent is very
good (athermal): numerically, the Flory parameter x is much smaller than
0.5. This removes one parameter from the discussion, and simplifies all
scaling laws.

ll.2.1. The overlap threshold ¢c*

A fundamental distinction exists between dilute polymer solutions
where the coils are separate (Fig. III.3a) and more concentrated solutions
where the coils overlap (Fig. III.3c). At the overlap threshold (¢ = c*) the
coils begin to be densely packed. Clearly this threshold is not sharp; it is
more properly defined as a region of crossover between regimes (a) and
(c), but the scaling properties of c* are essential. We expect ¢* to be com-
parable with the local concentration inside a single coil. In a very good
(athermal) solvent this implies:

*This is very different from the Flory calculation for a single chain where the self-

consistent potential is localized in a small region of space and creates finite forces on the
chain.
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Figure IIL.3.

Crossover between dilute and semi-dilute solutions: (a) dilute,
(b) onset of overlap, and (c) semi-dilute.

c* = N/R® = a3 N\-% = q=3 N4 (I11.18)

In terms of the polymer fraction ® we may define the corresponding
threshold ®* ~ N~4/5, Note that for large N, ®* is very small; for example,
with N = 10* (corresponding to molecular weights of order 10° for current
polymers) we expect &* ~ 1073,

ll.2.2. The dilute regime

When ¢ < c*, we have a dilute system of coils. In the zeroth approxima-
tion, we can treat these as a perfect gas, with a number of coils per cm?
equal to ¢/N and an osmotic pressure of

nm=-=T7 (c—0) (I11.19)

£
N
In an improved approximation, we have to take into account the interac-
tions between coils; in a good solvent two coils tend to repel each other.

Flory has shown that in this regime the coils behave essentially like hard
spheres of radius ~ Ry.! This implies an equation of state of the form

+ constant (—9)2 R + o(i)3 111.20
N F N ( . )

<
N
Here R;? appears as the second virial coefficient between coils.

Why do the coils behave as hard spheres? If we force two coils to over-
lap strongly, many contacts must occur between them. Each contact brings
an energy of order 7, and the overall overlap energy is many times 7T; the
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corresponding Boltzmann exponential is very small, and the coils refuse to
interpenetrate .*

Eq. (II1.20) has been amply verified by direct measurements of I and
by light scattering studies (which measure the osmotic compressibility
dc/dIl). The usual notation is

11 .

Tt At (.21)

z|~

and the N dependence of A, has the form
A; = R N2 ~ N1 (11.22)

We now have some sophisticated field theoretic calculations of the co-
efficient in eq. (II1.22) for three-dimensional systems.?

1.2.3. Semi-dilute solutions

We now consider solutions where the coils do overlap but where the
polymer fraction & is still low

Pr <P < | (I11.23)

The two inequalities are compatible at high N because ®* is then very
small. This semi-dilute regime is of great interest for two reasons:

(i) It corresponds to a large fraction of the ® interval in high polymer
solutions.

(ii) Since ® is small, the monomer-monomer interactions can be de-
scribed very simply (much like the interactions in an imperfect, dilute,
gas); we need only one interaction constant, such as the excluded volume
parameter v of eqs. (II1.9, II1.10). This is in contrast to the situation ® ~
1, where, in principle, we need all of the theory of liquids to obtain
“‘exact’’ results, using realistic interaction potentials and highly complex
numerical calculations. In the current jargon, we may say that semi-dilute
solutions have a high degree of universality.

How do we predict the thermodynamic properties of semi-dilute solu-
tions? The basic notion is a scaling law for the osmotic pressure, proved
by des Cloiseaux for one specific example.® This scaling law is a natural
generalization of eq. (II1.20) and reads

*Note that this statement holds in one, two, and three dimensions but not atd =4,5, etc.
Two overlapping ideal chains in d dimensions have a number of contacts ~ N? (a/R,)*
= N?912 and this is small for d > 4.
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Bopa()-a(s) o

where the function fi(x) is dimensionless and has the following limiting
properties:

(i) At small x (dilute solutions) fy is expressed as f; = 1 + constant
x+...

(ii) At large x (semi-dilute solutions) all thermodynamic properties must
reach a limit which depends on ¢ but which becomes independent of the
degree of polymerization N. Physically this means that local energies,
entropies, etc. are controlled entirely by the concentration ¢; the local
properties are not different for a solution of chains of N monomers each or
a single chain that fills the whole vessel (N — ). -

This requirement is very strong; because eq. (III.24) has th4 _prefactor

“¢/N, }to eliminate all dependence on N, the function fi;(x) must behave Tike
a simple power of x

lim, .., fu(x) = constant x™ = constant (;;%)m = constant ™ Nim/5
(11.25)

(where we have used eq. (I11.18) for ®*). In terms of ® and N, this gives

a Il

T

= constant $™*! Nim5—1 (D > P*) (I11.26)

and since we want IT independent of N, we must have m = 5/4.
Then the osmotic pressure follows what we call the des Cloiseaux law:

I a®
T

= constant ®** (semi-dilute) (I11.27)

Eq. (II1.27) has been confirmed to some extent by osmometric and light
scattering data.” It is important to note the difference from the mean field
prediction (eq. III.14) which is IT ~ ®2. This difference represents a
Correlation effect. In the semi-dilute regime IT measures the number of
contacts between monomers. If we neglect correlations, this number per
site is ~ &2, but correlations reduce it by an extra factor, ®'4. Since ®
can be as low as 1072 (while still belonging to the semi-dilute regime),
the correlation factor may be of order 1/10, and is thus important.
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A similar factor should occur in all properties which measure local
correlations in semi-dilute solutions with good solvents: heats of mixing,
hypochromicity in optical spectra,* etc. Further experiments along these
lines are desirable.}

ll.2.4. The correlation length

The above presentation of scaling for thermodynamic properties is direct
but not illuminating. A much better picture of what happens in semi-dilute
solutions can be obtained if we investigate spatial properties. Consider the
solution shown in Fig. III.4. When photographed at a certain time, this
looks very much like a network with a certain average mesh size ¢.

We can use neutron scattering,” to measure £ but we can also use a simple
idea first suggested by H. Benoit.{ This amounts to adding a small number
of inert spheres with diameter D ~ 50-100 A. When D < £, we expect
the spheres to move easily, with a friction coefficient which is essentially
related to the viscosity of the pure solvent. When D > ¢, the spheres are
trapped—the effective viscosity controlling their friction is closer to the
viscosity of the entangled solution.®

Let us now construct the scaling form of ¢ in the semi-dilute regime for a
good (athermal) solvent. This is based on two requirements:

(i) For ® > ®* the network structure on the scale ¢ will depend only
on concentration and not on the degree of polymerization N (the chains
being much longer than the mesh size).

(i) For ® ~ ®* where we have coils in contact (but not yet inter-
penetrating) the mesh size must be comparable with the size of one coil Rp.

These two requirements lead to the form

&®) = Ry (%*-)mf (D > D*) (111.28)

where the exponent m, must be such that the powers of N from Rp(~ N35)
and from ®* (~ N~*5) cancel. This means that m; = 3/4

D) = ad— P*r<d<] (d11.29)
Thus, the mesh size decreases rapidly with concentration. Note an inter-

*See C. Destor, D. Langevin, F. Rondelez, J. Polym. Sci. (Polym. Lett.) 16, 229 (1978).

tAn interesting experiment with some chains carrying a fluorescent group and others carry-
ing a quencher was done by Y. Kirsh et al., Europ. Polymer J. 11, 495 (1975).

$Private communication, 1975.
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Figure 111.4.

esting scaling relationship between the osmotic pressure (eq. II1.27) and
the correlation length [eq. (I11.29)]

M=7T/8 (dr<®<1) (I11.30)

ll.2.56. The notion of blobs

We now focus on one particular chain in the semi-dilute solution; this
could be, for example, one chain labeled by deuteration with all the other
chains being normal. We may visualize it as a succession of units or
“‘blobs’” of size ¢ (Fig. IIL.5). Inside one blob, (from the definition of
the mesh size) the chain does not interact with other chains. Thus, inside
one blob we must still have correlations of the excluded volume type. This
implies that the number of monomers per blob ( 8) is related to £ by the law
of swollen coils ~

>

— g —
blob (g monomers )

Figure IIL.5.
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£ = ag'
§ 5/3
g8 = (71') = P51 (11.31)
Note that
g=cé (11.32)

as can be seen immediately from eq. (II1.29). Eq. (III.32) says that the
solution is essentially a closely packed system of blobs. If we take the blobs
as the basic units, we are led back to the molten chain problem of Chapter
II. We know that the Flory theorem holds: the chains are ideal on a large
scale. Their mean square end-to-end size can be estimated from the ideal
chain formula for N/g blobs of size ¢

2 =_1_\_]2
RA(®) g§

= Na? d"* (P*< d <) (I11.33)

an equation derived first by Daoud”? and verified with reasonable accu-
racy by neutron experiments on polystyrene solutions (see Fig. II1.1). Eq.
(II1.33) could have been obtained directly by a scaling argument, writing
R = Ry (®*/®P)™s and imposing the condition R ~ N2, but the deriva-
tion based on blobs is more illuminating.

1l.2.6. Correlation functions

Our statements on blobs can be made more precise in terms of correla-

9 golf (T

W ——

Figure IIL.6.
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tion functions. Consider first the correlation function g,e(r) inside one
labeled chain, which has been studied in great detail on polystyrene solu-
tions by Farnoux!® (Fig. III.6). At a short distance (r < &) geer(r) is
identical to the correlation function of a single swollen chain and follows
the Edwards law (eq. 1.31). However, when g(r) becomes smaller than the
ambiant concentration c, the effects of surrounding chains begin to be felt,
and the chain becomes ideal. Thus g,.;/(r) decreases as 1/r at r > ¢, More
precisely

o) = ¢ E/r = E§7 (II1.34)

The reader may check that the two laws cross over smoothly at r = £.
Ultimately when r becomes larger than the overall size R, the correlation
Zserr(r) drops sharply to zero.

Imagine a chain which is labeled at one end by a fluorescent molecule and
at the other end by an optical trap. The trap is an efficient quencher of
fluorescence only if both partners are in close contact. We put one such
chain into the solution; all the other chains are normal. This situation
should then allow us to measure the probability E of contact between the
two ends as a function of ®. Experiments of this type have been proposed
recently.!! The scaling law for E must have the form

E = py(a) (%)m” (I11.35)

where py (@) ~ N'777% is the probability of contact between ends for a
single chain (egs. 1.29, 1.30). In three dimensions py (a) ~ N2 to a good
approximation. The exponent m,, must be such that E ~ N~%2 (as it should
be for a chain which is ideal at large scales). Taking ®* = N~45, this gives

my, = 5/8 (I11.36)

More generally, the end-to-end distance r for one chain in the solution
has the probability distribution py(r) shown in Fig. III.7.

At small distances (r < £) we have a power law increase, based on the
same exponent g which appeared for a single chain [eq. (1.27)]

r

Py (1) = (?) e (© (r<8 (I1L.37)

At larger distances we have a gaussian behavior
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Figure I11.7.

Distribution of the end-to-end distance for one chain in a semi-
dilute solution. Note the reduced values in the short range
region (r<§).

pn (r) = py (§) exp(—=3r?/2R?*)  (r < §) (I11.38)

and the normalization condition (fpy dr = 1) then imposes the restriction

py (§) = i1_3 (I11.39)

It is easy to check that when we set r = a in eq. (II1.37) we recover egs.
(I11.35, II1.36) for the probability of contact.

Until now we have discussed the correlations inside one labeled chain. It
is also of interest to analyze the correlations between all pairs of monomers
which are measured by X-ray (or neutron) scattering without any labeling.
This gives a pair correlation

#0) == KelO)e(r) - ¢*] (11L.40)

through its Fourier transform g(q). At short distances r < &, g(r) is still
dominated by correlations inside the same chain

g(r) = geudr) (r<é (I11.41)

However, at larger distances g(r) becomes much smaller than g,.,. The
reason is that at large distances we can describe the system as a molten
system of blobs, with very little fluctuations in density and thus very little
scattering. Although no complete proof has been written, there are reasons
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to believe that in this region g(r) follows a simple Ornstein-Zernike form

3

gr) = ¢ exp (— r/é) (111.42)

In terms of Fourier transforms this gives

= _ ¢
89) = e (I11.43)

a law which is followed well by the Farnoux data.”!° Note that for ¢ = 0,
g(g) = ¢ £ = g, the number of monomers in one blob.
Eq. (II1.43) satisfies the compressibility sum rule

glg=10)= T;,QI% (111.44)

as can be checked from eq. (III.27) for the osmotic pressure II.

.2.7. Screening in semi-dilute solutions

There is an analogy between eq. (II1.42) for the correlations and the
Debye-Hiickel law for screened coulomb interactions in an electrolyte. The
notion of screening was first introduced by Edwards for polymer solu-
tions.!? His argument may be presented as follows. We assume that one
monomer is fixed at point O in the solution, and we ask for the excess
concentration g(r) which will result from this condition, at a distance r
from O. .

(i) If our chains were ideal and independent, the only contributions to
£(r) would come from monomers belonging to the same chain: they would
then be given by the Debye function gp(r) introduced in Chapter I. At dis-
tances larger than a but smaller than the chain size R, gp(r) decreases like
1/r.

3
gp(r) = e

Note that g, satisfies the analog of a Laplace equation

12
Vigo = — 7 8(0)
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(ii) But in fact our chains repel each other, and g(r) will differ from
2p(r). The difference will be described here in terms of a potential U(r)
acting on all monomers. Because the monomer density is increased near the
origin, U(r) will be high in this region. At longer distances it will decay
down to a constant value U ,,, describing the bulk solution. (We shall omit
U » in the following discussion, since it is a constant potential, giving no
interesting spatial effects.)

If we know U(r), how do we calculate the resulting concentration profile
2(r)? An approximate answer is written below:

gr) — gp(r)= — fgo(r— )cU(r)d,

It may be explained as follows: locally at point r', the potential U(r’) shifts
the monomer concentration from c to:

cexp(-U/D)=c - cUX)/T

This local concentration shift then implies shifts in neighboring regions
since the monomers are not independent, but are linked in the form of
chains. At this stage Edwards assumes that the chains are ideal: then the
concentration shift around point r’ is still given by a Debye function
2p(r — r'). The total function g(r) is a sum of such contributions from all
points r'.

The equation for g may in fact be written more compactly if we apply the
Laplacian operator on both sides—the result being:

_CU()

g(r) (r# 0

(iii) There remains for us to write a condition of self-consistency for the
repulsion potential U. It is natural to assume that U(r) is proportional to the
local chain concentration g(r)

Ulr) = Tv g(r)

where v is a coefficient, with the dimensions of a volume, which we call
the excluded volume parameter. (It will be discussed more fully in Chapter
IV.) For the athermal solvents of interest here, it is enough to say that
v~ ad



Polymer Solutions in Good Solvents 87

Inserting this condition into the former equation for g(r) we arrive at an
equation of the Debye-Hiickel form:

Vig=¢g (r+0)
where & is defined by
_ 12cv
§E2 = a2

We shall call £; the Edwards correlation length.

The solution of the equation for g must be chosen such that, at short
distances, g returns to its unperturbed value g,. (At small r the correlations
are always dominated by effects involving a single chain, and, in the
Edwards approximation, each chain in ideal). Then the solution is of the
form shown in Fig. II1.8

glr) = exp (—r/ég)

wa’lr
For v = a® we may then write
g0) = c £ exp (—r/g5)

in full agreement with eq. (Iill.42). We note that the correlations die out
in alength £;. The same property holds for the potential U(r): we say that

g(n?t

solution

single chain

=~y

Figure II1.8.
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Figure I11.9.

Calculation of the effective interaction between two monomers
in a semi-dilute solution, following the Edwards approximation.
Chains are represented by continuous lines, the interactions by
dotted lines. The length of the dotted lines is short, but the effec-
tive interaction can be mediated by intermediate chains. In the
present approximation, only linear sequences of interactions are
retained.

U(r) is screened—the interaction between two objects in solution is reduced
by the presence of other chains in between (see Fig. II1.9). This notion of
screening has already appeared in our discussion on melts in Chapter II, and
is fundamental.

Technically, the original Edwards calculation is not quite perfect. It was
based on ideal chains and ignored correlations—i.e., it does not give the
correct power for £. However, if the calculation is rewritten with blobs as
the basic units, then the chains can be treated as nearly ideal, and the correct
powers result. This revised calculation shows that the screening length
scales like the mesh size £. More generally, all characteristic lengths which
are independent of N in the semi-dilute solution must have the same
scaling property, and thus can differ from the mesh size only by a numeri-
cal factor.

mnas.
Confined Polymer Solutions

l1.3.1. A semi-dilute solution in contact with a
repulsive wall :

The physical situation is represented in Fig. II1.10 (a,b). We
assume that the wall is repulsive; the simplest (athermal) model corre-
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Figure I1I.10.

sponding to this condition is a cubic lattice occupying the half-space
z > = 0 (Fig. Il1.10c), and it will have layers at z = 0, z = a, etc., but
negative z values are forbidden.

The wall depletes the concentration ®(z) at finite distance z—up to one
screening length £. At distance z > £ all perturbations are screened out,
and ®(z) recovers the bulk values (®) as shown in Fig. II1.10b.

(i) Interfacial energy of the wall/solution system. The osmotic pres-
sure in the bulk is IT = T¢73 [eq. (I11.30)], and the concentration is reduced

on a thickness £. This imposes a contribution to the interfacial free energy of
the form:

A—A,=TEBE=TE? (111.45)
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where A, is the interfacial free energy between wall and pure solvent. Eq.
(I11.45) is due to Joanny and Leibler.!3 Inserting eq. (II1.29) for £ we see that
A — A, scales like @372,

(ii) Concentration in the first layer ®,. Clearly, from Fig. II1.10b, ®,
is much smaller than the bulk concentration ®. We do not have yet a com-
plete theory of the relation between @, and @, although some related
problems in the theory of magnetism have been discussed in the literature. 3
Here we present a simple conjecture on ®,. We assume that the osmotic
pressure II of the solution is proportional to the number of direct contacts
between monomers and surface, i.e. to @,

M=Ta?d,

Equating this to the bulk form [eq. (III.30)] we obtain ®; = &4, The
argument can be generalized to arbitrary dimensionalities d; for d = 4, it
lends to &, = ®2; we shall see in Chapter IX that this agrees with a mean
field type of calculation, which indeed becomes correct at d = 4.

(iii) Concentration profile. At adistance z from the wall, we expect to
find a concentration ®(z) with the scaling form

®(z) = P folz/€)
f¢(x)5{l (=1

xm x=1

Writing that ®(z) = ®, for the first layer (z = a), we are then led to the
following value for the exponent m:

m=vy'!=15/3 (I11.46)

Our main conclusion is that experiments measuring the direct contacts
between chains and a repulsive wall would be most interesting: for instance
if the wall surface contains fluorescent groups, while the chains act as optical
traps.

A practical difficulty may be related to the existence of long range
van der Waals forces. When a monomer immersed in a solvent is at a dis-
tance z from the wall, it experiences an attractive potential? that decreases as
z-3. Then, even if the monomers in the first layer experience repulsion,
the region of thickness £ near the wall might have its concentration in-
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creased rather than decreased, and the situation would be seriously modi-
fied. To avoid this, it is best to use a solvent whose polarizability is as
identical to the monomer’s as possible; in many cases, the solvent can be
the monomer itself.

111.3.2. A semi-dilute solution in a cylindrical pore!4

This situation is shown in Fig. III.11. The pore has a diameter D smaller
than the natural size Ry of the chains. [The precise shape of the cross-
section (circular, square, etc.) is not important for our scaling arguments. ]
Physically, this might be achieved in ternary solutions: lipid + water
+ polymer, where the lipid tends to make a hexagonal phase with long,
parallel tubes. ,

We take the wall to be repulsive as in the preceding section. From
Chapter I we know the behavior of a single chain in this situation: it
occupies a region of length R, ~ aN (a/D)*? [eq. (1.53). What happens
if we increase the concentration of chains?

We expect to find a dilute regime, with coils that behave very much like
a one-dimensional gas of hard rods, each of length R,. If the average con-
centration is ¢, the number of chains per unit length is (7/4) (c/N) D2
The fraction of the tube which has a chain in it is

b= 7 D R= 5 (I11.47)

cr*

LI i i il

IR

i

Figure 1I1.11.

A semi-dilute solution trapped in a cylindrical pore with repul-
sive walls (no adsorption). Note the depletion layer near the
wall.
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where the overlap threshold is defined by
N | 43
ox = PR, =3 (%) (Rp> D> a) a) (111.48)

The osmotic pressure in this dilute regime would be

~

cT 1
N =3 v ¥ <l (111.49)

=

where the factor (1 — )~ accounts for steric hindrance between different
“rods.”” When iy — 1, however, the rods will begin to interpenetrate, since
they are not completely ‘‘hard,”’ and a different viewpoint is required.

The transition from ¢ < ¢,* to ¢ > ¢,* is very different from what
happens in three dimensions. The point is that ¢;* is independent of N.
Thus, if we tried to define a correlation length ¢, by a formula similar to
eq. (II1.28), writing

& =R (_c:)”‘g

c

with an unknown exponent n1,, we would find that no value of m, can lead
us to a ¢, which is independent of N.

The physical answer is different. As soon as ¢ > c*, the three-
dimensional correlation length £ becomes smaller than the tube diameter.
To see this, start with eq. (I11.28):

§ = a(q))—3l4 =a (%:)3/4 (q)l*)—:m

and insert the value of ®,* = ¢,* @® from eq. (II1.48). The result is

p (&)™ 1
&= (?) (II1.50)
Thus, for ® > ®* we have blobs which are smaller than D,I and all local
correlation properties return to their three-dimensional value. The osmotic
pressure is still given by eq. (II1.27)
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Il = Ta™3 P22 (1> D> P> (I1.51)

and there is no simple crossover between eq. (I11.49) and eq. (II1.51). The
osmotic pressure is qualitatively shown in Fig. III.12.

We shall now discuss briefly the conformation of one chain in the over-
lapping regime (® > ®,). To simplify the discussion we shall in fact
restrict our attention to large concentrations ® = 1, corresponding to
& = a. The reason for this choice is that the most interesting effects
occur at scales = D, while £ < D in the overlapping regime. Even with
this simplification, the discussion is rather delicate, and the conclusions
reached by the present author in Ref. 14 were incorrect. An improved
version has been developed recently,!s and will be summarized here.

We start from a melt of chains and confine it in a tube of diameter
D. When D is large, we are dealing with a three-dimensional system,
and we know from Chapter II that the chains are ideal, with a size
Ro = N'2g. Let us now decrease D at fixed N, and reach the situation
where D < Ro. Each chain is then confined to a linear dimension D
for directions normal to the tube axis. Along the tube axis, the chain
spans a certain length R,. We shall now define two essential parameters
controlling the chain conformation.

(i) The internal filling fraction corresponding to N monomers spread in
a volume ~ D?R, is

®,,, = Na¥/(DR,) (I11.52)

In particular, when the chain is still equivalent to an ideal random walk
in the direction of the tube axis, this filling fraction is

InTl

slope 2.25

Figure I11.12. slope 1 ind
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Dy > e = Na*/(D?Ro) = N'V%a/D)? (I11.53)

(ii) The perturbation parameter {, introduced in eq. (1.42), tells us
when the interactions inside one chain become important ({ > 1). How-
ever, { must incorporate two effects which were absent in Chapter I.
First, we must recall that the interactions are screened out in a melt
{eq. AL.7)]

vo>D=uN"! (I11.54)

Second, we now have an internal filling fraction ®;,, which is increased
by the confinement; it is given by eq. (II1.52). In a perturbation calcula-
tion, the repulsion potential on one monomer is proportional to 79 ® i, 73,
and the repulsive energy for the chain is T{ = NT? ®,,,a®. We see then
that

{ =Dy (I11.55)

Having defined the essential parameters, we can now return to egs. (I11.52,
53) and reach the following conclusions.

(i) When D > N g, it is consistent to assume that the chain size R,
is equal to the ideal value of R when we do this, we find that @, and ¢
are small as required.

(ii) When D < N4 a, the chain cannot remain ideal, since this would
lead to values ®;,, > 1 which are not acceptable. We expect @, to in-
crease monotonically when D is decreased (at constant N). Thus in regime
(ii) ®,;, must reach its maximum allowed value ®,, — 1. Using eq.
(II1.52) this leads to

R, = Na®D "2 (I11.56)

In regime (ii) there is not much overlap between consecutive chains:
they lie in sequence very much like jammed automobiles in a one-lane
tunnel. (Two adjacent chains overlap only in a small ‘‘terminal region”’
of linear dimensions = D.) Ultimately when D decreases down to a,
the chain becomes fully stretched (R, — Na).

We find here a very striking difference between the confined single
chain (in a good solvent) described by eqs. (I.51-56), and the confined
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melt. For the single chain, the longitudinal dimension R, is increased
by confinement, as soon as D < Ry. For the melt, the length R is not
modified when D becomes smaller than R, but only when D reaches the
much smaller value (Rqa)!2.

“Letus now return to the semi-dilute case and discuss briefly the follow-
ing problem: we have a pore of diameter D in equilibrium with a bulk
solution. The average concentration in the bulk is fixed at a certain
value @ 5. what is the average concentration in the pore ®? Clearly, when
@ is very small, ® depends critically on the pore diameter

O = Dyexp (— Feons/T) (111.57)

where F.,; is the confinement energy for a single coil, given by eq.
(1.56) for D < Rp.

On the other hand, when ®; = 1 we also expect ® = 1: a melt
penetrates all pores of size D = a. The matching curve between these
two limits is qualitatively shown in Fig. III.13.

When do we cross over from the weak penetration regime of eq. (II1.57)
to the strong penetration regime for concentrated systems? A detailed
answer to this question could be obtained from a study of the chain
chemical potential, but the essential features may be reached more simply.
Let us start from a tube with a diameter D somewhat larger than the
correlation length £ g in the bulk. Then we expect to have a depletion layer
of thickness &; near the tube walls, as described in Section II1.3.1. The
perturbing effects of the wall do not extend further than &;.

Since we assumed D = 2¢ 5, this means that the central portion of the
tube is unaffected, and reaches a concentration ® equal to the bulk value.
On the other hand, if D = 2§, the depletion layers occupy all the tube
volume, and @ < ®pz. Thus we are led to the following rule: upon
increasing the bulk concentration ® 5, penetration in the pore occurs when
the bulk correlation length £ 5 = a @534 becomes comparable to the pore
diameter. If we call @, the threshold for penetration, we predict @, 734 =
Dia or:

b, = (aD)*¥ =P %k (I11.58)

Experiments using well-calibrated tubes to confirm (or infirm) the law
[eq. (II1.58)] are currently underway.*

*D. Cannell, private communication, 1979.
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le—dilute semi-dilute

Q; QB Figure I11.13.

SUMMARY

Near a repulsive wall a polymer solution shows a depletion layer of
thickness £. In a thin tube of diameter D, the solution can exist in two very
distinct regimes: dilute and semi-dilute. In the latter case all local proper-
ties are similar to those of a bulk solution, but the chain can still be stretched
along the tube axis.

Remark. The problem of chains confined in a slit (two-dimensional
confinement) is also of interest; it may be achieved in solutions of poly-
mers + lipid + water (lamellar phases). The predicted behavior of the
chains is very different from what we found in a tube.
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IV

Incompatibility
and Segregation

v.1.
General Principles and Questions

IV.1.1. The trend toward segregation

In discussing the interaction between a polymer and a solvent in
Section III.1 we were led to define the interactions in terms of a Flory
parameter x; the energy of interaction per site was of the form

Fiy =T x O, O

where @, and @y are the volume fractions of the two portions (®, + g =
1). A positive x implies that species A and B tend to lower the energy when
they separate into two phases: one (A-rich) has a small ®g; the other phase
(B-rich) has a small ®,. Thus, for both phases the product ®, ®g is small
and the energy is low.

As pointed out in Section III.1, a positive x is the most frequent case, at
least whenever van der Waals interactions are dominant. This also occurs
more often when the A and B are small molecules rather than when A (or
B, or both) are polymers. However, the consequences are more drastic in
the latter case: large molecules have extremely strong segregation effects.

Consider two immiscible solvents (1) and (2) that are in contact and add
one large polymer chain of N units. If we bring the chain from solvent 1 to
solvent 2, each monomer experiences a change in free energy AF,,
(containing both an energy and an entropy contribution). Positive AF;,

98
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values mean that the chains prefer solvent 1, and vice-versa. For dilute
chains, the ratio of chain concentrations in the two solvents is

Co — CXP(-NAFH/T) (IV 1)
Cl + Cz l + CXP(-NAFlz/T) )

P

The essential feature is the presence of the factor N in the exponent; if we
plot p as a function of AF,,/T, we have an extremely sharp step.

Py
1

_/

Figure IV.1.

1 -AF, /T
~ /

Even when the two solvents are very similar (AF,, small compared with
7), the chains will usually show a strong preference toward one of the
solvents. These are classical considerations in liquid-liquid extraction. A
recent example of interest is the case of one solvent which can exist in two
different liquid states: the isotropic and the nematic state. In the nematic
state the solvent molecules tend to be parallel.! It is of some interest to
dissolve macromolecular chains in the nematic state. However, for the few
cases studied,>? there is a small AF,, favoring solution in the isotropic
state. Typically AF,,/T ~ 1/40, and this implies that chains of more than
ca. 40 units cannot be dissolved in the nematic phase.

Returning to our phase separation problem, if our system separates into
two phases, we may consider them as the solvents of eq. (IV.1), and we
see that a given type of chain will tend to go entirely into one of the two
phases. Segregation effects will be very strong—too strong. First we must
list cases where some compatibility can be maintained and where demixing
transitions an be observed.

IV.1.2. Cases of partial compatibility

(a) The simplest case is obtained if we try to mix two types of polymers
A + B, with chain lengths N, and Ng. In most cases if x is positive and
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the interaction per chain is very large, there is no miscibility between A
and B at any reasonable temperature.

However, there are a few cases where compatibility is apparently ob-
served. A detailed list and discussion have been given by Krause.* Here we
quote four systems in which miscibility can occur:

(i) Mixtures of polystyrene (PS) and poly(vinyl methyl ether) (PVME)
have a Flory interaction parameter x which has been measured separately
(through vapor pressure measurements on ternary mixtures with benzene).®
The resulting x depends strongly on concentration—an anomalous fea-
ture—but it appears to be negative at 30,C for all mixtures below 70% PS.

(ii) If a polymer species A is ‘‘doped’” with a small fraction of positively
charged side groups, while B is doped with negative groups, compatibility
may occur,*

(iit) A case of interest could be obtained by mixing a pure polymeric
species U

(A)=UUUU
with a statistical U V copolymer

B)=U_,V,)=UUVUUVUUUUUV...

We are interested mainly in making the difference between (A) and (B)
small—i.e., in small x values. Then some compatibility can be maintained.
It is important that the chemical sequence of B be statistical; in particular,
the number of V units (xNg) must be much larger than 1 (although x is
small). Then it is possible to show (using the methods of Chapter X) that
the V units will not tend to segregate locally by building up micelles or
other organized structures. Micelles seem to be compatible only with well-
defined periodicities in the chemical sequence of the (B) chains.

(iv) Another interesting case may occur with mixtures of hydrogenated
and deuterated species. In the preceding chapters we considered such
isotopic mixtures as ideal, and this is indeed an excellent approxima-
tion for an N that is not too large. However, there is a small interaction
parameter x between (H) and (D) monomers which has been estimated
recently by Buckingham.® It appears that x may be positive, and of order
107* to 1073, depending on the chemical species under study. This would
then mean that demixing could occur if the molecular weight were very
high (N ~ 10%). If this is confirmed, it may lead to an interesting set of
neutron experiments.

*S. Djadour, R. N. Goldberg, H. Morawetz, Macromolecules 10, 1015 (1977).
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(b) Another important case is obtained with simple polymer solutions in
poor solvents—i.e., when the corresponding Flory parameter x becomes
larger than 0.5, or when the excluded volume v(7) = a® (1 — 2 x) becomes
negative. This situation has been studied extensively during the past 30
years; it occurs in many simple systems, the classical example being poly-
styrene dissolved in cyclohexane. For this system, the temperature O at
which v(T) vanishes is ~ 37°C and is thus in a convenient range.

(c) A third group of interesting segregation effects is obtained with
ternary mixtures: polymer A + polymer B + solvent S. It is particularly con-
venient to have S be a good solvent for both A and B, but to have also a very
strong repulsion between A and B. In Flory-Huggins language we have three
volume fractions ®,, ®g, ®s, and the interaction energy is a quadratic
function of these fractions.

1 1
T int/site — 7% dlr D, d) av.2)

where the symbol x?¥" stands for direct interaction, and 2 is over the three
components. However, the ® terms are related by the condition

2 d, =1 (Iv.3)
i

and this allows us to reduce F;, to a quadratic function of two variables
(plus linear and constant terms which we drop as explained in Section
III.1). A quadratic function of two variables has three independent co-
efficients—i.e., we need three parameters to characterize the interactions.
In practice, we prefer to do this in a symmetrical way; we transform the
diagonal term in eq. (IV.2) as follows

= XA B4 =2 xiE Da (1 = By — ) et

Then we drop the linear terms and arrive at an interaction

1
7Fint/site = XaB Pa Pp + Xas Pa s + xps P Ps (Iv.4)
where the three x parameters are defined in terms of the direct coefficient
X4 by equations similar to eq. (I1I1.4)
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.
Xas = XAB — 5 (X"%a + x“f8) etc. av.s)

If the direct interactions are dominated by van der Waals forces and are
factorizable as in Chapter III (x%; = — constant o; a;), then Xap, Xas, XBs
are positive.

We are interested primarily in the case where xas < 1/2, xgs < 1/2
(good solvent), and xag > O (trend toward segregation). There do not scem
to exist many data on such a case, but there is an excellent study on
ternary mixtures where the solvent is somewhat less good—i.e., where Xas
and xgs are close to 0.5. The system’ is as follows:

A = polystyrene B = polyisobutylene S = toluene
where xas = 0.45, and xps = 0.48 at room temperature.

IV.1.3. Specific features of polymer segregation

Precipitation of a polymer from a solvent of decreasing quality is a
classical process.® Segregation effects in mixtures of two polymers are
sometimes welcome—e.g., for the preparation of composite materials with
special resistance to fracture—but they are often unwelcome because the
resulting structures scatter light and result in a loss of transparency. The
situation with two polymers in a good solvent is also of some practical
importance. For example, high impact polystyrene is prepared from a solu-
tion of polybutadiene in styrene. When the polymerization of styrene is
initiated, as soon as the polystyrene fraction reaches a (rather low) threshold,
phase separation occurs. Again the result is a composite material, of com-
plex texture, and interesting mechanical properties.

Segregation effects are also important for fundamental studies. For each
demixing process there is a critical point, near which certain fluctuations
of concentration in the mixture become anomalously large. Essentially all
the work on the theory of these effects in polymer systems has been based
on mean field ideas. However in many cases critical phenomena are now
known to be qualitatively different from mean field predictions. One of our
tasks in this chapter is to classify the critical points; some will be of the
mean field type, others will be different.

From an experimental standpoint, polymer solutions and melts show
segregation effects which are often very different from what we see in
binary mixtures of small molecules:

(i) The spatial scales are enlarged because the building blocks are coils
of size 100-500 A.

(ii) All characteristic times are also enlarged. This enhancement is
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particularly evident for polymer-polymer systems, where the chains are
strongly entangled. On the one hand, this often prevents the use of
certain powerful observation techniques (such as the photon beat method),
but, on the other hand, it allows for relatively easy studies on quenching
processes, where a homogeneous mixture is suddenly cooled to a tempera-
ture where it will segregate. There is a remarkable analogy here between
studies on polymer melts and studies on metallic alloys; both types of
systems have very slow diffusion processes.

(iii) A constant complication displayed by polymer systems is the exis-
tence of polydispersity in all practical samples—i.e., of a distribution of
molecular weights (or of the polymerization index N). For our discussion
of scaling laws in Chapters I, II, and III, polydispersity was not a serious
complication. If the shape of the distribution is the same for all samples,
a law such as Rr ~ N remains valid for the average Ry as a function of
the average N. However, when phase separations are involved, the effects
of polydispersity can become much more dangerous. Our discussion in
Section II. 1.1 suggests that the longer chains have a stronger trend toward
segregation; two phases in equilibrium do not have the same weight distribu-
tion for their chains. These effects have been discussed in the Flory-Huggins
framework.®

Iv.2,
Polymer-Polymer Systems

We start with segregation problems involving two polymers (rather
than with the one solvent-one polymer problem) because polymer-polymer
systems can be rather correctly described in terms of Flory-Huggins theory;
no similar simplification exists for polymer-solvent systems.

In this section, we first reconstruct some classic results on thermo-
dynamic properties'® and then discuss spatial correlations, which are less
well known,

IV.2.1. Thermodynamic principles

Our starting point is the Flory-Huggins free energy for a mixture of two
polymer species (with degrees of polymerization N, Ng). This is a natural
generalization of eq. (II1.1)

L . 7

In ®y + 28 In by + xb, By av.6)
T site NA

Ng

where @, @y are the volume fractions, related by ®, + &5 = 1. We shall
often write &, = ® and ®g = 1 — ®. The first two terms in eq. (IV.6)
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represent an estimate of the entropy for arranging the A and B chains on
the lattice. Surprisingly, they are not different from what one would have
with two perfect gases of concentrations* ®,/N, and ®g/Npg. The third
term in eq. (IV.6) is the interaction term and is positive.

How do we discuss phase separation on the free energy F(®)? The
essential property is the curvature of F(®), as explained in Fig. IV.2.

F rr

5.
‘F_
Fy

— )

o § & ¢ 1+ o §1§§§, 1

(@) ®)
Figure IV.2.

Assume first that the sample is homogeneous (single phase), with a
certain concentration ® (point J). Try then to decompose it into two phases,
of concentrations ®; and ®,. The relative weights of the two phases in
the mixtures are f; and f;. We then have

D=f, D, + D, (f, fz positive) av.mn
and we reach a free energy

F=fF,+f,F, (IV.8)

This corresponds to point J in Fig. IV.2. The energy change is positive
in case (a) and negative in case (b). Thus, case (b) imposes phase separa-
tion.

In case (a) near a concentration @ we have local stability, but we may
still have an instability with respect to another branch of the phase dia-
gram. This will become apparent in the plots of the Flory-Huggins free
energy [eq. AIV.6)] (Fig. IV.3).

*In a perfect gas F ~ Tc In c; here if we set ¢ = ®/N, we get T®/N (In $ — In N), and
the second term (linear in ®) can be dropped, as already explained.
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F/T

crit

Figure I1V.3. x=0

For x = 0 (or x finite but very small), the plot F(®) is convex every-
where; entropy effects are dominant, and they favor mixing. However,
when x becomes larger than a critical value X, (to be computed below), a
region of negative curvature exists. Repeating the argument of Fig. IV.2
we see that a single phase exists only outside a certain interval (@' ®"),
while inside the interval the system breaks up into two phases, of concen-
trations &’ and @".

It is convenient to discuss these properties in terms of the quantity
dF/0® = u where u is what we call the exchange chemical potential (or
more briefly the exchange potential); a change ® — ® + d® represents
an increase in the number of A monomers (equal to d® per site) but an
equivalent decrease of B (— d® per site). The two coexisting phases at
@' and ®” have equal p values.

IV.2.2. The coexistence curve in the symmetrical case

We can now compute the coexistence curve—i.e., the plots of ®'(x) and
@"(x). We do this for only one specific example—the symmetrical case
of Ny = Ng = N. Then the entire free energy diagram is symmetrical
around ¢ = /2, and the equations are simplified. The exchange potential
then vanishes at ® = &’ or ® = ®" as shown in Fig. IV.4. Returning to
€q. (IV.6) and writing u = 0 gives the coexistence curve:

%ln [®/(1 — ®)] + x (1 —2®) =0 av.9)

This can be written as:
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F /‘I’ spinodal limits l
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unstable Figure IV 4.
= 1 @0 - @) (Iv.10)

The resulting coexistence curve is shown in Fig. IV.5. Phase separation
occurs only when x is larger than a threshold value:

Xe = -IZV aIv.11)
This very small value of x,. is the essential reason for the strong incom-

patibility usually found between polymers. We need very special tricks
(explained in Section IV.1) to realize values of x below this threshold.

{ spinodal
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z \‘ \ll

\‘ coexistence curve "/
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Figure IV.5.
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IV.2.3. Metastable states and the spinodal curve

Equilibrium is reached only slowly in polymer melts of high molecular
weight. This will facilitate certain quenching experiments, where the
system is brought suddenly from the one-phase region to the two-phase
region (e.g., by a change in temperature imposing a change in x).

If we enter the two-phase region only slightly, demixing can take place
only by nucleation of a droplet of one phase inside the other. This is a
thermally activated process, implying the interfacial energy at the droplet
surface, and is slow. However, if we go more deeply into the two-phase
region, we reach a state where the interfacial energy vanishes (and changes
sign). It is then favorable for the system to break up spontaneously into
many small domains. This threshold defines what we call the spinodal
curve in the x, ® plane.* .

From the point of view of Fig. IV.2 the instability occurs whenever the
F(®) plot is concave. The spinodal thus corresponds to the inflection
points in Fig. IV.4, and is ruled by the equation

_ & (F\_ 1 1
0= (7) = me tmTm VD

In eq. (IV.12) we have not set N, = Nj since the general formula remains
quite simple. The plot of eq. (IV.12) for the symmetrical case is given in
Fig. IV.5,

IV.2.4. The critical point

The critical point always corresponds to the minimum value of x on the
spinodal curve. From eq. (IV.12) this is obtained when & = ®,, where &,
satisfies

1 L
N @2t Ve - V13
P _ (.&)”2
T= @, = \Na
1/2
@, = N8 aV.14)

NAIIZ + NBlI2

*It is not quite certain that the spinodal has a precise experimental meaning. As pointed
out recently by K. Binder (unpublished), the nucleation processes have a low barrier when we
get close to the nominal spinodal line, and the onset of observable instabilities is probably:
(i) not sharp; (i) dependent on the length of the observations. But for many practical purposes,
the spinodal concept is helpful—particularly so at the mean field level which we discuss here.
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In the symmetrical case ®, = 1/2. On the other hand, when Ny becomes
much smaller than N ,, the critical point shifts toward low concentrations of
A. (Ultimately, when Ng = 1, we are led back to a polymer + solvent
problem (discussed in the next section). From eq. (IV.12) the critical value
of x is:

Xe = (Ng'? + N,'22/2 N, Ng (Iv.15)

When Ng = N,, X, is very small and compatibility is exceptional. How-
ever, when the situation is unsymmetrical (Ng < N,), then x, (== 1/2 Ng)
becomes somewhat larger, and compatibility is more frequent. We do not
discuss the full coexistence curves near the critical point for the dissymetric
case, but their qualitative aspect is shown in Fig. IV.6.

AV
@
z /
0( NAs NB
Zz
o
-] A Figure IV.6.

IV.2.5. Critical fluctuations

Returning to a phase diagram such as that shown in Fig. IV.5 we now
focus on the area of the one-phase region that is near the critical point. In
this domain, the local concentration ® has large fluctuations which can be
detected by light scattering experiments. At present this kind of data is not
very abundant for polymer-polymer systems (because of the long times
required to reach equilibrium) but we hope that the situation will improve.

In a scattering experiment (using light, X-rays, or neutrons) the essential
parameter is the scattering wave vector q (equal to 4\™" sin 6/2 where A
is the wavelength and @ is the scattering angle). What is measured is a
correlation function between the concentration at two points

Sy (ry — ry) = (B (r) ©;(ry)) — (P;) (P;) (IV.16)

where subscripts i and j represent the various species present (here i, j =
A, B), and the brackets{ ) denote a thermal average. In our particular lattice
model, because ®, + &y = 1, there is only one independent correlation
function
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SAA = SBB = - SAB =S (IV17)

What is measured is the Fourier transform
S(q) = a® f dr exp(iq'r) S(r) (Iv.18)

where the factor a3 is introduced to make S(q) dimensionless. We may
say that S(q) is the scattering power (at a given q) per site of the lattice.
At first sight the calculation of the correlation S(r) in a dense mixture of
strongly interacting chains appears formidable. However, it is simple be-
cause on the scale of one coil the chains remain nearly ideal (very much
like the one-component melts of Chapter II).

The complete calculation of correlations can then be performed by a
“random phase’’ method described in Chapter X. Here we quote the re-
sults. They can be expressed simply in terms of the Debye function
go(N, q) for the scattering by an ideal chain of N monomers (defined in
Section I.1). Explicitly, one finds the simple formula

1 1

579 = gortva T T aoNa X

(Iv.19)

We now discuss its consequence in detail
For g = 0 the Debye function gp (N, ¢ = 0) is equal to N. Eq.
(IV.19) is then identical to eq. (IV.12), and we have

2
S-1(0) = (%Fz— (V. 20)

in agreement with a general thermodynamic theorem. Physically the low ¢
limit corresponds to small-angle scattering. Eq. (IV.19) then tells us that
the intensity diverges not only at the critical point but also at each point
of the spinodal curve; light scattering is a good indicator of the vicinity of
the spinodal.

For g — 0 the inverse intensity may be written in a simple form. This
is obtained by expansion of the Debye function at small g

g (N.q>0) = N(L -3¢ R @R:<1) AV

where R;? = Nda?/6 is the gyration radius of the coil. Eq. (IV.21)
corresponds to a general theorem due to A. Guinier.!! Inserting this into
€q. (IV.19) we get:
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1N _ ¢ a 1
S7H@) = 206(®) — %) + {3 0 =0 Iv.22)

where ¥, is the value of x on the spinodal as defined in eq. (IV.12).
It is convenient to rewrite this equation in the standard form

S(g) = I—{t“—q(%—z— : (IV.23)

where &, is a certain correlation length* defined explicitly by
£ =00 — @) (@) — I av.24)

Note that £, diverges near the spinodal with a square-root singularity.
For gR, > 1 the gp functions are strongly reduced, the factors 1/gp
increase, and the last term (— 2)) becomes negligible. In this limit we have

2r(N,q) — quzaz— (independent of N)

and the scattering intensity differs from this only by a normalization factor

D (1 —P) 12

S(Q) - qzaz

(gR, > 1)

It is also of interest to rewrite these results in terms of the spatial
correlation function S(r), shown in Fig. IV.7. At relatively small distances

3 a
Sr) = - o1 - d>)r— (r<R)
while at large distances we expect an ‘‘Omnstein-Zernike form’’:!%
aS(g=0)

S(r) = dmrgr - ©XP (—r/&)

= % (1 - q))—‘:—exp (=r/&)

*Subscript s stands for segregation and is used to distinguish this length from the ‘‘size of
the transient network’’ discussed in Chapter III.
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Let us end this section by a remark on the complications induced by
polydispersity. Fortunately, for the properties discussed above, in the one-

S(n

o R & "
Figure 1V.7.
Concentration-concentration correlation function for a mixture
of two polymers near the consolute point. £ is the correlation
length for this critical point and is much larger than the size R

of one chain. For all r < &g the correlation decays essentially
like 1/r. For r > £ it drops exponentially.

phase region, polydispersity does not alter the picture too seriously. In the
spinodal equation [eq. (IV.12)] the polymerization numbers N, and Ng
are replaced by their weight averages:'3

Ny = 2 N3/ 2 N;

all chains all chains

of type i of type i

Also S~!(g) remains a linear function of the interaction parameter x as in
eq. (IV.19)
- 1 1 Fa* [ N2 Ng?
SYq) = + -2x + A+ B :
@ = N®* Na=® X ¥ 73 [M 0 ' Ve, (1—@)]
Iv.25)

where N,,, is a weight average

Npw = 2 N,/ 2 Na

A chains A chains

and N is a higher average

Ni= 3> N&/ Y N, (1V.26)

A chains A chains
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The essential conclusion is that polydispersity effects renormalize cer-
tain coefficients but do not seriously affect the behavior in the region where
a single phase is present. This is encouraging for future experiments.

IV.2.6. Absence of anomalous exponents

Most critical phenomena do not follow simple mean field laws. For
example, with small molecules (N, = Ny = 1) our eq. (IV.24) for the
correlation length £, is wrong. In this case the correct £, diverges as

£~ (X~ X)) (Na=Ng=1)

and the exponent v, is of order 2/3 (in three dimensions) instead of being
equal to 1/2.12

Fortunately these complications do not exist when both N, and Ny are
large; the mean field (Flory-Huggins) theory is qualitatively correct for
polymer mixtures without solvent. This can be shown from a detailed study
of fluctuation effects.!> We can summarize the results by the following
statement, which is used often in this chapter. If we focus our attention on
the species (A) with the longest chains (N, > Npg), each chain has a size
R,a = aN ' and spans a volume R, ,3 ~ a® N2 We now define a para-
meter P equal to the average number of other chains of the same type (A)
occupying this volume. Then there are two cases: 1) if P is of order unity,
fluctuations effects are dangerously large and the mean field picture breaks
down, and 2) if P > 1 all fluctuations effects are greatly reduced—i.e.,
each chain essentially experiences an average field due to all others, and
the Flory-Huggins theory applies.

The scaling form of P is simple. The number of A chains per unit
volume is 1/N, a®, and thus we have

P~

Nipas Roa® = ON, 12 av.27)

Since we are concerned primarily with the area around the critical point,
we substitute the value of eq. (IV.14) for ® and find

(N Na)'2

i A

(1v.28)
Therefore,

(i) In the symmetrical case (N, = Np = N) we see that P ~ N/2 is
very large and that the mean field approach is correct, as stated.

(ii) When Ng becomes much smaller than N,, we have
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P — Ng'2 av.29)

and the mean field remains correct whenever Ny is still much larger than
unity.

(iii) When Ng = 1 (polymer plus solvent), P is automatically of order
unity, and the mean field description of the critical point is unacceptable.

Iv.3.
Polymer Plus Poor Solvent

IV.3.1. Regions in the phase diagram

We now consider a set of chains A (degree of polymerization N ,)
in a solvent of small molecules B (Ng = 1). The chain-solvent interactions
are always characterized by a Flory parameter x [eq. (IV.6)] which depends
on temperature T. In most (but not all) systems x(7) is a decreasing func-
tion of temperature.* Experimental phase diagrams are always given in
terms of a concentration ¢ and a temperature T. For our general discussion
it is more convenient to use more the fundamental quantities ® = cqa?
(volume fraction) and x(7). The phase diagram then has an universal struc-
ture, shown in Fig. IV.8.

The following points are essential in connection with this phase dia-
gram.

(i) The particular temperature T = O at which x = 1/2 corresponds to
an exact cancellation between steric repulsion and van der Waals attraction
between monomers. (The excluded volume parameter v of eq. (III.10)
vanishes at 7 = ©.) Thus at 7 = O, dilute chains are nearly ideal.

(ii) At lower x values, steric repulsion dominates: the chains tend to
swell. We enter the good solvent regime when we cross a certain line L.
Beyond L the excluded volume parameter v = (1 — 2x)a® dominates the
interactions. Returning to the free energy expression, eq. (II1.8)

F| _ & 1, 1
T, “NRO (-2 P g+ AV.30)

we see that the binary interaction term( ®2) dominates the three-body term
(®3) as soon as

®>3(1 -2 @av.31)

*Whenever the interactions AA, AB, and BB are not very sensitive to T, the parameter
X ~ (interaction)/T varies roughly as 1/T.
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Figure IV.8.

Phase diagram for a polymer-solvent system. x is the Flory
interaction parameter, and ® is the volume fraction occupied
by the polymer. The condition x = 1/2 defines the Flory ©
temperature. In usual cases such as polystyrene-cyclohexane,
X is a decreasing function of the temperature T; high tempera-
tures correspond to the lower part of the diagram.

crossover line L

semi dilute solutions in
good soivent

This defines approximately the position of line L. Of course, L is not a
sharp boundary; it defines a region of crossover between ideal and swollen

chains.

(iii) When x > 1/2, we are dealing with a poor solvent, and we notice
the appearance of a two-phase region. There is a critical point C. The
Flory-Huggins predictions for C are (from eqs. (IV.14, IV.15), setting
Ng = 1)

D, = N,~12 av.32)

Xe == Nai? (V.33)
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Thus, the critical point occurs at very low concentrations. The laws
[egs. (IV.32, 1V.33)] are rather well confirmed both by experiment (and by
more refined theoretical analysis of the fluctuations), apart from correc-
tions in the coefficients. Thus the Flory-Huggins theory locates C cor-
rectly.* However, the Flory-Huggins theory cannot predict the structure of
the coexistence curve near C (as explained in the preceding paragraph).

Note that at point C, the different coils are essentially closely packed;
since x is very near 1/2, the coils are nearly ideal, with size R, = N ,'?a;
the close packing density is

N/R? = N-12¢g~3 av.3g
and is thus comparable with a=3®,.

At the low limit ® in the figure, for x > 1/2, we find separate coils
which tend to become more compact than ideal chains because of the trend
toward segregation. This collapsed structure occurs only in very dilute
systems and is difficult to obtain experimentally, but neutron data have
been collected recently on one example.!®

IV.3.2. A single coilnearT=©

We now focus on the line x = 1/2 (O line). The most striking feature
is that in the free energy expansion of eq. (I11.9) or eq. (IV.30) the ®* term
disappears. There remain, however, higher order terms and mainly (for not
too large a ®) the &3 term. This situation is depicted in Fig.IV.9, where the
solid lines represent polymer chains; the dotted line represents a pair inter-
action (between two monomers which are very close) and is associated with
the @? term. The dot with three arms represents a three-body interaction

(i.e. the @3 term).
)-——( =0 /)/T'\k #$o0

At T = O the two-body term vanishes by cancellation between repul-
sions and attractions. Clearly this tends to make polymer solutions more
ideal; however, the three-body term is still important in some effects. We
delineate these effects and discuss first the single coil problem.

Figure IV.9,

SHIFT OF THE THETA POINT

Looking at eq. (II.9) we can say that the three-body interactions w?

*There are, however, some weak (logarithmic) corrections to eqs. (IV.32, IV.33). The
origin of these corrections is explained in Chapter XI.
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represent a concentration-dependent correction to the two-body terms. For
example, in the chemical potential 3F/dc = w, we may write

¢t % v+ c=19p (IV.35)

introducing an effective two-body coupling constant . However, it would
be a mistake to assume that the concentration, ¢, to be used in the w?c
correction, is the average concentration inside one coil

¢ = N/R2 ~ NVt (ideal coil) (Iv.36)

It is in fact much larger than ¢, for the following reason.

In the region where we measure D, we know that at least one monomer is
already present. Thus, the local concentration, ¢, to be used in ¥, is a pair
correlation function g (rr’) taken for distances r — r’ comparable with the
range of the three-body interactions ([r — r’| ~ a).

Thus the shift of the two-body coefficient is
D —v=wga) =a av.3n

The real Flory point © is defined by the vanishing of # and is thus shifted
significantly.

This renormalization of O is conceptually important but does not lead to
very interesting experimental properties. All practical measurements deter-
mine D and not v. Thus, in the following paragraph we omit the distinction
between © and ©.

DEVIATIONS FROM IDEALITY AT THE
COMPENSATION POINT

When our coil is exactly at the Flory point, we say that it has a quasi-
ideal behavior. The prefix quasi is used to recall that some interactions are
still present because the three-body term has some residual effects (apart
from the renormalization ‘of v). Thus, some subtle correlations remain at
T = O. Since they are probably too small to be observed, we shall not insist
very much on their properties. Mathematically, however, they are asso-
ciated with unusual logarithmic factors. The origin of such factors can be
understood from the following crude argument.

Assume that one monomer is located at the origin O. Then since the
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chain is nearly ideal, the density of surrounding monomers is [as shown in
(eq. 1.17)] in three dimensions

or) ~ ;% (IV.38)

Let us compute the energy F; caused by the ¢? interaction near the origin,
using ¢ = g(r) as the local concentration. We have

F; = Tw? f &(nNdr (IV.39)
= Tw?a~s f 4w dr= ot (22)  (v.40
r Tmin
= Tw2q—® In Tmex (IV.41)
min

where r,,;, and r,, are two physical cutoffs. If we are just at the Flory point,
the upper limit will be the coil size

Fmar = R, = N'2 g (IV.42)

while the lower limit is the monomer size ry;, = a. This gives

In [mez = l In N + constant (IVv.43)

I'min

Thus, the interaction energy, computed with ideal chain correlations,
shows certain logarithmic anomalies. The above discussion is oversimpli-
fied, but it gives us a qualitative feeling for the intricacies at the compensa-
tion point. We discuss some deeper aspects of these logarithmic singulari-
ties in Chapter XI.

IV.3.3. Semi-dilute solutions atT = 6

Let us start with single coils at the O point, with a radius R, = N,"%a,
and an internal concentration @, [eq. (IV.14)]; let us then increase the con-
centration . When ® becomes higher than &, (but still smaller than 1),
the coils overlap, and we reach a well-defined semi-dilute regime, which
differs strongly from the semi-dilute regime in good solvents discussed in
Chapter III. Neutron data on the system polystyrene—cyclohexane near T =
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O have been taken by the Saclay group,'? and the related scaling laws
have been constructed theoretically by Jannink and Daoud.!® We sum-
marize the results briefly.

(i) The correlation function for ® decays according to a simple Om-
stein-Zernike law

FLPOBM) ~ & = Lexp (—r/8) IV 44)

At short distances this coincides with the pair correlation for a single, ideal

chain. At larger distances r > £ it is reduced. The correlation length £

depends on concentration but is independent of the polymerization index.
Scaling suggests

D\ m,

E=Ry, (—q, ) (IV.45)

where m,; must be equal to unity so that the powers of N, cancel. The
resulting law is simply:

¢ = ad™ (IV .46)

(ii) It is important to realize that in this case £ does not give us the mesh
size of the transient network. There are many contacts and entanglements
which are important to define the network but which do not show up in the
correlations because the pair interaction vanishes.

(iii) The osmotic pressure Il is not very different from the Flory-
Huggins prediction. From the free energy [eq. (IV.6)] (with Ny = | and
x = 1/2) one derives

— -3 _3_(Fme)=_7_[9. 1 ]zi
M=a¥{o)~FIN1I¥+ |=55P
(IV.47)
Note that the relation
I Eg—Ts (Iv.48)

is maintained, £ being given by eq. (IV.46).
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(iv) On the theoretical side, all the above formulas are based on mean
field ideas, which are rather good at the © point, but they ignore logarith-
mic corrections similar to eq. (IV.41). Corrections of this sort are probably
present in the osmotic pressure, and so forth, but they are difficult to
detect experimentally.

IV.3.4. Semi-dilute solutions: crossover between good
and poor solvent

This has also been studied experimentally and theoretically by the
Saclay group.'? Let us start from the good solvent side, at a fixed concen-
tration ¢ = ®a~3, and progressively reduce the excluded volume parameter
v = a® (1 — 2x). When v ~ a2 (athermal solvent), the scaling formulas of
Chapter III hold. When v becomes much smaller than g3, the single chain
radius R decreases and the overlap concentration c* = N/R? increases.* To
make this more precise, we use the Flory formula for R as a function of v

[eq. (1.38)]
R = p'/s g2/5 N33 (1v.49)
obtaining
ck = N-45 y=3/5 g—6/5 Iv.50)

Let us now repeat the arguments of Chapter III to find the correlation
length £ in the semi-dilute regime. We again write

§E=R (CT*) ™ av.s1)

the exponent being chosen to eliminate N as usual. Inserting eqs. (IV.49,
IV.50) we get

a3 1/4
E=a (T) ®~3¥¢  (good solvent) av.52)

Eq. (IV.52) agrees rather well with the neutron data when the temperature
T (controlling v(T)) is varied at constant ®.!” Let us now see when the

*In this section we drop the subscript A on the polymerization index (N, — N) to make
comparisons with Chapter 111 easier.
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formula [eq. (IV.52)] for good solvents merges with the formula [eq.
(IV.46)] corresponding to theta solvents. Comparing the two, we find that
crossover takes place when

v
¢5?=1—2X

a condition which agrees qualitatively with our earlier definition of the
crossover line L [eq. (IV.31)].

The *“‘nearly good solvent’’ regimes described by eq. (IV.52) can be
described more physically in terms of spatial correlations. The basic idea is
that for small v, a short portion of a chain, with a number p of monomers
must be nearly ideal. We see this from the perturbation expansion [eq.
(1.42)] where we find no effect of v if v/a® (p'?) < 1. There is a certain
value of p[(p = gs ~ (a®/v)?], beyond which excluded volume effects
become important. A single chain will appear ideal at scales r < rg where

a® a a
= 1/2 ~ —_ =~ o e
rs = a(gs) ~av—1 2x 9|

(Iv.53)

while at scales r > ry it will show excluded volume effects.*

How does this extend to a semi-dilute solution? The answer is that, on the
good solvent side of line L in the phase diagram, the length rg is smaller than
the correlation length £. Thus we distinguish three types of spatial scales:

a <r<rg ideal (plus logarithmic corrections)

rg <r<¢ excluded volume type

§ <r<R, ideal
The existence of a low r ideal region, and of a crossover at rg, has been
seen in one neutron experiment.'?

It is of interest to see if £ is larger than ry as predicted. Using egs.
(IV.52, IV.53) we see that

[N

75; ( l ;27‘) " (AV.54)

*Eq. (IV.53) ignores all the remaining interaction effects in the quasi-ideal state (the log-
arithmic corrections). For the present quality of experiments this is probably quite sufficient.
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and the right side is indeed larger than 1 when we are on the good solvent
side of the crossover line (L) in the phase diagram (Fig. IV.8).

IV.3.5. Vicinity of the coexistence curve

Retuming to the phase diagram (Fig. IV.8) we can distinguish three
parts in the coexistence curve as discussed below. Near the critical point
the coexistence curve is not described correctly by mean field theory. For
example, the difference between the coexisting concentrations ®’ and ®”
at a given temperature (or x) near critical point is predicted in mean field
theory to behave as:

P - P =(x — x)PNM (Iv.55)

but the correct exponent is expected to be different and to coincide with
what has been found in liquid-gas critical points:

P - "~ (x — x)*AN) (IV.56)

where the exponent 8 is close to 1/3.1%* Experiments measuring various
nonmean field exponents near the critical point have been reported. '® The
main practical difficulty arises from polydispersity effects, for which there
exists no theory outside of mean field theory.

The semi-dilute side is much simpler. In this region each coil is inter-
acting with a large number (P) of other coils (P ~ ®/®*). The discussion
in Section IV.2.5 then shows that the mean field description becomes
adequate. The coexistence curve can then be derived from the Flory-
Huggins free energy [eq. (IV.6)). The values of ®’, ®” for a given x can
be obtained by imposing two conditions:

(i) Equality of the osmotic pressures, II(®') = II(P").

(ii) Equality of the exchange chemical potential u(P’) = u(P").

For the discussion of the semi-dilute branch (i.e., of the root ®” which is
much larger than ®,) the first condition is enough. This is because the
osmotic pressure of the dilute phase Il = T/N®' is entirely negligible, and
thus the condition defining ®” is simply II(®”) = 0 or explicitly

T [% + @ (1 - 20 +—;(¢")3] =0

*The structure of the N-dependent factor f(N) can be predicted from scaling requirements:
AAN) ~ N-12+82,
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Again, neglecting a perfect-gas term ®”/N (which is small compared with
the others when ®” > ®,) we get:

P =%(2X _ l) (X - Xe >4 N‘”z) (IV57)

Similarly, the spinodal in the semi-dilute limit can be obtained directly
from the mean field formula [eq. IV.12)] with N = 1. Always dropping
terms of order ®/N, we arrive at

DPppinodat = 1 — 2—lx (x — xXc > N3 (Iv.58)

Light scattering studies on this branch have been carried out by a british
group,?® and they seem to confirm the validity of the mean field description
for ® > ®.. (The region ¢ = P, is still under dispute).

On the dilute side, in a poor solvent, we have a few coils which tend to
be more compact than ideal coils. This collapsed structure has been studied
by many theorists, mainly by self-consistent field methods.?! To a first
approximation we may simply say that (at a given x) the coils build up an
internal concentration ®;, which is controlled by the interactions and is
independent of chain length. This means that:

D, =9"=3(x —1/2) (Iv.59)

The radius of the coil R is then such that
_ 47
addP,—R*=N (IV.60)

Thus in this collapsed regime
R ~ aNV3 (x — 1/2)~13 (Iv.61)

In a recent neutron experiment by Nierlich, Cotton, and Farnoux'® this
regime was studied on short (M = 29,000) polystyrene chains in cyclo-
hexane. Short chains were chosen because of the structure of the partition
law for a polymer between two phases [eq. (IV.1)]. If the polymer is long,
there are essentially no chains in the dilute phase (' — 0), and the experi-
ment becomes impossible. However, with these short chains (N ~ 300)
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the Saclay group could follow R as a function of temperature (i.e., of x).
They find for R (x — 1/2) an experimental exponent of —0.32 (*0.05)
in very good agreement with the collapse law [eq. (IV.61)].

An interesting feature related to the coexistence curve is the structure of
the interface between the dilute (®’) and the semi-dilute (®”) phase. No
details are known about this structure, but scaling gives us two predictions:

(i) The thickness of the interface scales like the correlation length & of
eq. (IV.46)

E~ad"t~a(x - 1/2) @" > D) (IV.62)

(ii) The interfacial energy scales like

- Tioyp-T1 (%;_')2 av.63)

In eq. (IV.63) the weakness of this surface tension is striking; 7/a® is a
natural unit of surface energy and is of order ~ 100 ergs/cm®. However,
the 1/N factor reduces it enormously. We conclude that polymer-solvent
systems in the semi-dilute regime have diffuse interfaces and low inter-
facial energies; the latter feature is well known experimentally.

SUMMARY

Flexible polymers in poor solvent show a quasi-ideal behavior at a
certain compensation point ©. At a slightly lower solvent quality, phase
separation occurs, and there is an equilibrium between a nearly pure
solvent phase (containing a few chains, each being severely contracted)
and a polymer-rich phase. The latter can be described by the Flory-
Huggins theory. At the onset of phase separation (at the critical point)
each polymer coil behaves like one individual argon atom at the liquid-gas
transition of argon, and the Flory-Huggins approximation is not valid.

Iv.4.
Polymer Plus Polymer Plus Solvent

The case of two incompatible polymers (A, B) dissolved in a
common solvent (S) is interesting but is less well known. We discuss it
only briefly.
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IV.4.1. Good solvent and strong segregation factor

The Flory-Huggins interactions for this problem are given in eq. (IV.4).
We assume that x,5 < 1/2 and xss < 1/2 so that the solvent S is good for
both A and B. The third parameter x, g5 will be called the segregation
factor. We assume that it is positive and not too small (but it need not be as
large as 0.5). Then the AB pair tends to segregate strongly.

To present things in simple terms it is convenient to select a ‘‘symmetri-
cal’’ case where Ny, = Ny and where the interaction parameters x,s and
Xgs are also equal. We assume these conditions in what follows. Then the
phase diagram (represented at one given temperature as a function of the
two independent concentrations @, and ®g) is symmetric around the first
bisector, and is as shown in Fig. IV.10.

There is a critical point C with a certain total concentration ®.. The
mean field prediction for the critical point, based on a free energy

L _ %

_fF site N

In q)A
o, '
+ WIH‘DB"' Ps In Pg + xas (Pa + Pp) Ps + xa8 Pa Ps

(IV.64)
is of the form”
D, = N' xa37' = N7'  (mean field) (IV.65)

However, eq. (IV.65) is wrong, as shown by the following argument. Let
us start from the origin in Fig. (IV.10) and progressively increase the

%

critical point
coexistence curve

spinodal

®  Figure IV.10.
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solute concentrations (keeping ®, = ¥ = P/2). At the beginning we
have separate, swollen coils of size Rr = aN*3. These coils behave like
hard spheres; they cannot interpenetrate, and thus the differences between
A and B are not seen. This state persists to the overlap concentration
O* ~ a3 N/R2 ~ N~¥5 Then, when ® exceeds ®*, the coils do inter-
penetrate, and if x,p is strong, demixing will soon take place. Thus the
correct estimate for @, is

P, = P* = N~%5 (strong segregation) (IV.66)

The next question is related to the critical behavior near ® = ®..
Since the coils are just beginning to overlap in the critical region, we see
that the parameter P of Section IV.2.5. (giving the number of coils inter-
acting with one of them) is of order unity. Then we expect critical
exponents which are not of the mean field type but rather are related to
those of the liquid-gas transition.'?

IV.4.2. Good solvent and weak segregation factor

We now discuss the case where x5 is positive but small and start again
from the dilute end. When we reach the overlap concentration P*, the
factor x,p is not strong enough to induce segregation. We may still in-
crease the concentration, keeping a single phase, which is a semi-dilute
mixture of A and B chains. The interaction x,3 is then a weak perturba-
tion superimposed on a familiar problem-—the problem of Chapter III. As
seen in this chapter, the probability of contact between two monomers is
much smaller than predicted by mean field theory; the reduction amounts
to a factor of ®!/4, where ® is the total concentration of monomers (P =
®, + ®p). This applies in particular to the AB contacts. Their number is
reduced by ®'4. Thus we are led to use the mean field theory with a
renormalized segregation factor®*

XaB = Xap P av.e7)

We can now obtain the critical point from eq. (IV.65) by replacing x5 by
Xas. The result is

P, = N1 P11y, 57!
D, = (N xap)™** (xag< 1) (IV.68)

We do not yet know of any real example corresponding to this case, but
it should be looked for. The critical point described by eq. (IV.68) is un-
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usual. It is easy to see that in this case mean field exponents must hold;
the parameter P is now much larger than unity.

IV.4.3. Theta solvents??

Consider the case xas = xgs = 1/2 where the dilute A and B chains are
nearly ideal. Here the critical overlap concentration ®* becomes Na® R, 3
~ N~12_ Below ®* the chains still repel each other strongly (because of
the three-body interaction of Fig. IV.9), and segregation cannot take place.
However, as soon as & > ®*, we have full overlap and phase separation
occurs. Thus,

®, ~ N2 (O solvent, strong X as) (IV.69)

The case studied by the Utrecht group” and mentioned in Section I.1,
seems to correspond closely to this situation (see the numerical values after
€q. (IV.5)). The phase diagram measured for various molecular weights
(but keeping N,/Njy constant) do seem to give a variation of ®, with N
which is close to the inverse square-root law of eq. (IV.69).
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Vv

Polymer Gels

V1.
Preparation of Gels

A polymer gel is a network of flexible chains, with the general
structure shown in Fig. V.1. Structures of this type can be obtained by
chemical or physical processes. Since the final gel properties are sensitive

reticulation point

dangling
end

Figure V.1.

128
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to the preparation methods, we give a brief list of them. For more details
see Refs. 1, 2, and 3.

V.1.1. Chemical pathways

A first and conceptually simple method of gel preparation is based on
condensation of polyfunctional units. A typical example would be:*

A+M

trialcohol diisocyanate

The alcohol functions (0) and the isocyanate functions (o) condense ac-
cording to the reaction:

ROH + ONCR' — R—0—CO—NH—R’

alcohol isocyanate amide bond

The reaction, when proceeding for long enough times, will lead to
branched objects, each trialcohol becoming a branch point when its three
functions are reacted.

A second approach uses additive polymerization. For example, if we
start with a vinylic monomer

R—CH=CH—R'

and open the double bond by a free radical reaction, we generate (mainly)

linear chains:
IIH I}T
R R’
N

However, if we add a fraction of the divinyl derivative, to the mixture
CH,=~CH—R,—CH=CH,

the two double bonds will participate in the construction of two distinct
chains, and —R;— will become a crosslinking bridge in the structure.’
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A third approach amounts to start from preexisting chains carrying suit-
able chemical functions, and to attach different chains as shown in Fig.
V.2

For some research purposes it is interesting to prepare gels where the
length of the chains between crosslink is controlled and is the same for
most chains in the gel. This type of program has been pursued actively at
Strasbourg.® A typical case has the following two stages:

(i) By anionic polymerization, prepare polystyrene chains of well-
defined molecular weight and with reactive ends.

(ii) React the ends with a polyfunctional unit (such as divinylbenzene)
to create the crosslinks.

This gives rise to gels with a rather well-defined mesh size; however,
there are some complications related either to the polyfunctional units
(which can polymerize in ‘‘nodules” larger than a single unit) or to
accidental ‘‘mistakes’’ such as closed loops. Such a loop is shown in
Fig. V.1.

The above list is not exhaustive. For example, an important class of
gels is made by polycondensation of silicates? or aluminates; the physics
of these gels is complex and is not discussed here.

V.1.2. Unorthodox gelation processes

Here we present some special reactions which lead (or should lead) to
unusual gel structures. Most of what is described is conjecture but may
stimulate future research.

Q)

/:a Ve

Polyisoprene + sulfur ® = rubber

Figure V.2.
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CROSSLINKING IN SPECIAL MATRIX SYSTEMS

It should be possible to incorporate polymer chains in various liquid
crystalline systems which impose certain conformations on them. For
example, if we have a lamellar phase of lipid + water, it may be possible
to incorporate a hydrophilic polymer into the water layer, obtaining the
structures in Fig. V.3. Assuming that the ternary system can be observed
in certain phase diagrams, one might then crosslink the chains and wash
out the lipid with suitable solvents. An unusual (and anisotropic) gel
should result.®

Another example (which up to now seems very difficult to achieve) is
based on chains dissolved in a cholesteric phase. This is a liquid where
the molecules locally have one direction of alignment but where this direc-
tion has a helical twist in space.? If we start with chains which are not
optically active, crosslink them by an optically inactive agent, and then
wash out the cholesteric solvent (replacing it by an achiral solvent), we
should obtain a gel which has an optical rotatory power (a memory of its
preparative state) although all its components do not distinguish right from
left.8

Many other proposals of this kind could be made. Generally, the notion
of preparing gels inside a pre-existing, organized, structure may become
important in the future.

WSS U
MARARRRAN

/hydrophilic
water /y\k\/ po'y'me'
(\ﬁ chains

b
?},PA?A?&?B?A

Ve«

Figure V.3.

lipid
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KNOTTED STRUCTURES

If we start with a swollen gel A that contains certain free chains B, we
can, in a later stage, crosslink the B chains among themselves, with no
attachment between A and B. This leads to a system of two mutually
interpenetrating gels'® that are strongly knotted.

It is also possible to imagine a gel which would be made without any
chemical bonding between the constituent chains, all the attachment being
realized by suitable knots. We call this an ‘*olympic gel’’ in analogy with
the Olympic rings. The geometry would be of the type shown in Fig. V.4. It
is not possible to prepare such a gel directly, because cyclization competes
with linear addition of chains.

< D

)
0

A possible method is based on two steps:

(i) With a low concentration (¢ ~ c*) of chains which are reactive at
both ends, perform a cyclization (Fig. V.5). It is difficult to show that the
reaction has occurred (the change in chain size from cyclization could be
monitored by light scattering), but it is not essential to demonstrate cycliza-
tion at this stage.

O O — Q Figure V.5.

(ii) The product is then concentrated, leading to ¢, > c* (semi-dilute
solution of rings). To this solution, one adds a small fraction (8¢ ~ c¢*) of
the original linear chains and starts a new cyclization. On the average, each
new ring will be knotted with a number P ~ c,/N (R®) of pre-existing
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chaint chain 2

chain 1 e chain 2

Figure V.6.

rings (each of size R). The number P is large if c, > c*.* At this point,
the whole population of rings should reach the olympic state. ¥

V.1.3. Physical gelation

In the network structure of Fig. V.1 the crosslinks need not be produced
by chemical reaction. Any physical process which favors association be-
tween certain (but not all) points on different chains may also lead to gels.
Many examples of this are found with biological molecules, such as
gelatin!! or certain polysaccharides.!? In many of these systems the associa-
tion process is still disputed. There are three main possibilities: v

(i) Formation of helical structures with two (or more) strands (Fig.
V.6).18

(ii) Formation of a microcrystal, for which a highly idealized picture is
shown in Fig. V.7. Independently of the details of the association, we must
remember one essential point: the structures (Figs. V.4, V.5) must not be
able to enlarge very much. If they could, they would progressively invade
the whole system of chains and we would be left with an array of micro-
crystallites. One important factor blocking the growth of the association
regions is tacticity.! If the chains are not stereoregular, they cannot crys-
tallize (or build up helixes) over long lengths; then gel formation is natural.
Many cases of type (i) or (ii) show some irreversibility. For example,
a 1.5% solution of gelatin in water is, at high temperatures, a simple

*More precisely, if we are in a good solvent, the formulas of Chapter III tell us that P ~
(co/cHp8,

tHowever, the numerical coefficient in P is unknown and may be small: the experiment
may require very large ratios c/c*.
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chain 1 ~

N—-

chain 1 ~°

-

= chain 2

Figure V.7.

solution of chains, or a sol. If we cool it, we get a gel. If we raise the
temperature again, we recover the sol. However, the transition temper-
ature measured at increasing temperatures is often somewhat different
(higher) than the transition point measured on cooling. The existence of
these hysteresis effects is not surprising when we think of the complexity
of the attachment procedures shown in Fig. V.6 and V.7.

(iif) Formation of nodules with block copolymers. If we have chains
made of three blocks BAB in a solvent which is good for A and poor for B,
the B portions will tend to coalesce into nodules (or alternatively in
sheets or in rods). Depending on the temperature and other similar vari-
ables, the B monomers inside the nodules may be either in a solid state
(crystalline or glass) or in a fluid state (micelles). i

The first case (solid nodules) is not very different conceptually from (i)
and (ii) above. The second case (fluid nodules) is more interesting because
it may lead to a much more reversible sol-gel transition.

V.1.4. Strong gelation versus weak gelation

When we start with a sol, we have molecules (chains or smaller partners)
which are independent, and the system is a conventional liquid. When we
go to the gel phase, a finite fraction of the chains belong to an infinite
network, and the system can resist stresses. It deforms elastically like an
isotropic solid and can be characterized by two elastic moduli (or Lamé
coefficients). How do we commute from one form to the other?

Let us return first to a case of chemical crosslinking. If we increase the
fraction p of crosslinks in the sol phase, we begin to build up branched
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molecules which become longer and larger. At a certain critical value of
p (P = Do), a huge molecule appears, which is present in all parts of the
reaction vessel. Beyond p., this molecule becomes more and more cross-
linked and branched. (There are still some other finite molecules, but their
number decreases rapidly when p increases). In this case there is a well-
defined gelation threshold, p = p..

However, this is not true for some other gelation processes. Consider a
gel of chains which associate by a physical process and where the cross-
links are not strong. Under any weak (but finite) stress, the crosslinks will
eventually split, and the long-time behavior of the material will always be
liquid-like. There is no strict gel point in such a system. There is, of
course, a certain crossover region near a temperature, 7,, where the system
switches from viscous behavior to elastic behavior at the frequency, o,
used for the experiment, but the value of T, depends on w. Thus, in this
case, gelation is conceptually similar to a glass transition. It is not an
equilibrium process, but it corresponds to the progressive freezing of a
certain number of degrees of freedom.*

We distinguish between these two types of behavior as follows:

(i) When the crosslinks, once made, are completely stable (for the
stresses and the time scales involved in the experiments), we say that we
have a strong gelation process, and we expect a sharp threshold.

(ii) When the crosslinks are not completely stable but are associated
with a reaction (bonding <> nonbonding) that can proceed in both direc-
tions, we speak of a weak gelation process, and we expect to find some of
the intricacies of glass transitions.

In most cases chemical crosslinking leads to strong gelation, while
physical crosslinking may lead to either strong or weak gelation, depend-
ing on the case at hand. '

The criterion for strong gelation may be formulated as follows. We start
from the sol side and increase p, finding larger and longer molecules (or
“‘clusters’” as they are often called in the theoretical literature). If it is
possible to stop the reaction at a given p and to subject the clusters to
various treatments (dilution, change of solvents, shear flows, and so forth)
without cutting them into pieces, we say that we are in the strong gelation
regime. This regime is interesting because it is universal. The. scaling laws
involved are discussed in the next section.

V.1.5. Relationship between preparation and
Properties of gels

A gel is a frozen system. To understand it, we need two Kinds of
statistical information.
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(i) What was the situation at the moment of preparation? Were the
chains dilute or semi-dilute? Was the solvent good or poor? What is the
level at which the chemical reaction was stopped?

(ii) What is the situation at the moment of study (solvent, temperature,
etc.). Thus, gels (very much like glasses) must be described in terms of
two ensembles, the ‘‘preparative ensemble’’ and the ‘‘final ensemble.’’
This is much more complex than the usual equilibrium systems, where a
single ensemble (ruled by Boltzmann exponentials) is required. Prepara-
tion fixes a number of constraints which are not easy to specify. The
first general discussion on these two situations came from Edwards.!’
From a practical point of view, the sensitivity of gel properties to prepara-
tion is an interesting feature but is far from being under control. Let us take
some simple examples.

Gels can be ‘‘dry’’ (without solvent) or ‘‘swollen’’ (with a good sol-
vent). A dry gel which was prepared in the same state is often called
normal. A dry gel which was prepared in a swollen state is often called
supercoiled and is very different.

In many cases the implantation of crosslinks in a system of chains tends
to induce a segregation between chains and solvent. Each crosslink forces
two chains to come in close contact and thus promotes an effective
attraction between chains. If the original interchain repulsion was not high
enough (i.e., if we had a poor solvent), some segregation may occur. How-
ever, because solvent expulsion is slow in the gel phase, it will often
happen that phase separation does not take place in a macroscopic sense.
What we have rather is the formation of very small ‘‘pockets’’ which have
high chain concentrations and others which are rich in solvent. Many
observations (by light scattering, electron microscopy,* and so forth) show
strange heterogeneties in gels. Sometimes we see ribbons, fibrils, nodules,
and so forth, with sizes in the range 200 to 1,000 A. These effects
(decorated with the majestic name °‘‘microsyneresis’’) have often dis-
couraged the experimentalists because the corresponding gels are irregular.
However, the situation is not that bad. Gels prepared in good solvents
under suitable conditions can be quite homogeneous and reproducible,
even if they are not made with calibrated chains as in Section V.2.

In this chapter, the emphasis is on swollen gels in good solvents (assum-
ing that they have been prepared under similar conditions). However, we
also describe briefly the effects of a decrease in the quality of the solvent
and the resulting microsyneresis.

*Of course, in electron microscopy, the sample treatments alter the gel significantly and
often favor segregation.
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v.2.
The Sol-Gel Transition

V.2.1. The classical picture

We now restrict our attention to strong gelation processes and dis-
cuss the area of the threshold. The classical picture for this transition'®-!7 is
based on a ‘‘tree approximation,’’> where the growing clusters are repre-
sented in Fig. V.8. The essential simplification underlying this approach is

Figure V .8.

that one assumes no closed cycles and no steric hinderances. The chain
is assumed to branch off freely, the branches never being limited in their
growth by the existence of other branches in the same cluster: the trees are
taken to be ideal. Detailed calculations along these lines are summarized
in Section V.2.4, but we do not want to insist on them because the tree
approximation is clearly a gross oversimplification. Excluded volume
effects in a branched molecule are expected to be even stronger than in
linear chains.

However, the tree approximation has been accepted by polymer scien-
tists because it gives good values for the threshold (i.e., for the fraction of
reacted bonds p. which is reached when the sol-gel transition takes place).
It has been pointed out only recently (by D. Stauffer'® and by the present
author'?) that despite this agreement on p,, the behavior near the threshold
(p — p.) must differ widely from the predictions of classical theory. In
what follows, we insist on these aspects, which are not appreciated enough.

V.2.2. Gelation without solvent: the percolation model

A simple model for gelation without solvent is again a lattice model,
where each lattice site (with z neighbors) represents one polyfunctional
unit with z reacting arms. Two neighboring units can react, and we
represent such a reacted bond by a heavy line, as in Fig. V.9. This
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Figure V.9.

gives certain ‘‘molecules.’’ We assume that these bonds appear at random.
At one moment the fraction of reacted bonds is called p. Clearly at small p
we have only small molecules (or clusters), but when p exceeds a well-
defined value (p,.), we get an infinite cluster.

This type of problem was first introduced by Hammersley, and he
coined the word percolation to describe it. Since there are many reviews
of percolation theory,2%%! here we give only selected results concerning the
behavior near the threshold.

v.2.3. Large clusters below the gelation threshold

We consider the regime where p is slightly smaller than p, (p % p. =
Ap). We then have clusters with a broad distribution of sizes and shapes;
for the percolation model, the properties of these clusters in the reaction
bath are well known. 22! .

The weight average polymerization index N,, diverges (for Ap — 0)
according to the law

N,.=Ap™” V.1)

where vy is of order 1.8 in three dimensions. Note that eq. (V.1) is uni-
versal; it holds independently of the lattice chosen, of the detailed shape of
the monomers, etc., provided only that: 1) we are close enough to the
threshold, so that the clusters are indeed large, and 2) the building units
(the monomers) are small (the counter example of vulcanization is dis-
cussed separately).

All the equations discussed in this section have the same level of uni-
versality.

Eq. (V.1) could be compared with some light scattering data.?? Usually
the latter have been interpreted in terms of the tree approximation value,23:24
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which is much lower (y = 1). This should not disturb us: in the field of
magnetic phase transitions, where critical exponents are also rather differ-

ent from the mean field values, it took more than 30 years to convince the
experimentalists that mean field theory was wrong.

Another property of great interest is the distribution of molecular weights
of the clusters, which has been constructed by Stauffer.!® Let us call ¢, the
concentration of monomers belonging the clusters of n units (note that our
notation differs from that of Ref. 18). This is normalized by:

@
ZC,, = c(= a™? total concentration ‘s \‘A}M‘* V.2)
n=1

ch,, = ¢Ny V.3)
n=1

(i) If we are just at the critical point (p = p,), ¢, decreases like a power
law

Cp = a3 n-[(7+2B)/(7+B)] (V.4)

where 8 is another characteristic exponent (8 = 0.39). Thus, the weight
distribution decreases as n~!' at the threshold.

(ii) If we are slightly below the threshold, the distribution is modified,
mainly by the introduction of a cutoff at a polymerization index!é

N, = Ap™-8 = Ap~21 (V.5)

where Ap = |[p—p|- In many physical measurements, it is this cutoff value
(rather than N,;) which is essential. For example, if we look at an average
size of clusters, we have to define it with great care. The root-mean square
size for clusters of n@%tﬁ"@increases with n like a power law

R(n) = gn+# (V.6)
where v is still another exponent (v = 0.8).
The size at the cutoff (n = N)) is called the correlation length £(Ap),
and scales like -
&Ap) = R(N) = aAp™ V.7

However, it is not £ which is measured in most studies on the clusters
size:
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(i) For certain purposes, we need the weight average of the radius of
gyration squared for all clusters

R, == ¢, Ri(n) v.8)

Inserting eq. (V.4) plus a cutoff at N,, the result is

sz = a2N12V~BI‘H-B = aZAp2v+B

= £2Ap® (vV.9)

(ii) Light scattering experiments can be performed on the clusters.
However, these experiments should not be done directly on the reacting
mixture, where signals are dominated by interference between different
clusters and are weak. What must be done is to quench the reaction at a
certain level (a certain p) and then to dilute the system. One can then
determine an average molecular weight and an average size for the diluted
clusters. The scaling law for the molecular weight is given in eq. (V.1). On
the other hand, the gyration radius R(n) is much more difficult to interpret.
It is not certain that R(n) scales like the cluster radius in the reaction bath
R(n) because the excluded volume effects in the reaction bath (where each
cluster is near many others) are very different from those in a dilute regime:

R(n) > R(n) (V.10

V.2.4. Gel properties just above threshold

We now take p = p. + Ap with Ap positive and small. Here we have an
infinite cluster plus some finite clusters. The essential properties are:

(i) The gel fraction S, (the fraction of monomers belonging to the
infinite cluster) increases rapidly with Ap = p — p,

S. = (Ap)*® (V.11)

where 8 has been given above.
(ii) The Lamé coefficients of the gel (the elastic moduli E) increase
much more slowly

E = Ap* (V.12)

In particular, ford = 3, t ~ 1.7 to 1.9.* Elastic measurements by M.

*For theoretical discussions of the exponent 7, see Ref. 19.
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Elastic modules E of an aqueous solution of gelatin (weight
concentration 5.7%, molecular weight 105,000) above the
sol-gel transition. This particular experiment suggests £ ~
(p—p)*-%°. Courtesy of M. Adam. After Peniche-Covacs etal.,
Polymer Networks, Chompff and Newman, Eds., Plenum Press,
New York, 1971.

Gordon and co-workers?>?® on gelatin just above the threshold give an
exponent ¢ = 1.7 which is not too far from this prediction (Fig. V.10).*

Why is ¢ much larger than B8? At first we might have thought that the
elastic modulus E is proportional to the gel fraction S., (giving¢ = ). The
difference stems from dangling chains in the infinite cluster; examples of
dangling ends are given in Fig. V.1. The dangling chains contribute to the
gel fraction but do not contribute to the elastic modulus. This explains why
E < S, or why t > B. This point was originally noticed by polymer
physicists (Flory, James and Guth, etc.) in connection with rubber elasticity.
Later the same remark was made by Thouless?’ on a different but related
problem—namely, the electrical conductance of a random conducting
network. Returning to the percolation lattice of Fig. V.7, let us replace
the “‘reacted bonds’’ by electric conductors, all nonreacted bonds being
nonconducting. Then we obtain an electric network which has a certain
macroscopic conductance (Z) when we are above the threshold. It turns out
that X is the exact analog of the elastic modulus. The argument for this
is simple:!®

*I am indebted to M. Adam for this observation and for the plot of Fig. V.10,
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(i) For an elastic deformation with displacements x, on the ith mono-
mer, a natural form of the elastic energy is

1
a =52 Ky (xi — x)° (V.13)
i

where the spring constant Kj; exists only for first-neighbor sites which are
connected. Then K;; = K. Writing that E,; is a minimum, leads to the
balance of forces at each monomer

2 Ki(x;—x)=0 for all i (V.14)

(ii) In the electric network problem Kj; is the local conductance and x;
is the voltage on node (i). Eq. (V.14) is then the Kirchoff equation,
expressing that the sum of all currents flowing towards side i vanishes. The
quantity 2F, then represents the Joule dissipation in the network; minimi-
zation of eq. (V.13) corresponds to the principle of minimum entropy. On
a macroscopic scale, we have a linear relationship between current density
J and electric field (— Vx)

J=-2ZVWx

In the gel problem, the analog of — J is the mechanical stress, and Vx is
the strain, — J = E Vx where E is an elastic modulus. Hence E and = scale
in the same way. This remark is of practical use because a vast literature
has been collected on random electric networks.27:28

V.2.5. A quick glance at the classical theory

All the scaling laws derived from the percolation model and quoted
above are very different from the predictions of classical theory (the tree

approximation):!6:17
<

Velassicat = 1/2 Vi=3 = 0.85
ﬁclassical =1 ﬁd=3 = 0.39

erassical = 3* ty=g = 1.8

Thus, we might be tempted to skip a description of the classical theory.
However, we cannot avoid a brief sketch of the calculations, which are

*The calculation of ¢ in the classical theory is nontrivial and is due to M. Gordon, Proc.
Int. Rubber Conf., Moscow, 1969,
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simple and have some instructive features.* We consider one case, where
each monomer can link to z others. Starting from a given monomer,
which we call the root, we look for the probability w,(p) = c¢,/c that it
belongs to a cluster of n monomers. It is convenient to obtain the w values
though a generating function F,(6) such that

Fy(0) = 2 wa(p) (V.15

n

The variable 8 is introduced solely for mathematical purposes; whenever
we add one monomer to a molecule, we must insert an extra power of 6.

The construction of F, proceeds in two steps. First we look at all
possible linkages of our first monomer; they are shown in Fig. V.11 (for
z = 3). For each lateral tree there is another generating function F;(8). In
terms of F, we may translate Fig. V.11 into the equation:

Fy8) =1 + zp6F, (1 — pF™* + z (251) (pOF,)* (1 — p)*
+ ...+ (pOF,)?
= (1 = p + poF,y (V.16)
branch
dnd‘ond

4 analogs

b
oo

Figure V.11.

F, = )\ +
+
+

*Qur presentation follows the line of Dobson and Gordon, J. Chem. Phvs. 41, 2389
(1964).
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For example, the second term in the counting corresponds to one single
reacted bond, starting from the root. The bond (factor p) brings one new
monomer (factor ) and possibly one lateral tree (factor F)); the other
(z — 1) available functions from the root are not reacted (factor (1 — py*~!).
Finally there are z choices for this single reacted bond (factor z). Eq.
(V.16) totals all possibilities with 0, 1, 2, . . . , z reacted bonds on the root,
all different possibilities being exclusive and independent. We now write a
similar equation for F;. The difference is that when we deal with a second
monomer, one chemical function on the monomer is known to have
reacted. Thus Fig. V.11 is replaced by Fig. V.12. A nice feature here is
that the new ‘‘branches’’ involve the same function F,. Fig. V.12 gives us
a closed equation for F,

Fl = (l_p + opFl)z‘.l ) (V.17)

From this law we can derive F(6), and thus F,(6), giving all statistical
properties. For instance consider

Fy(0 = 1)=2Wn(p)

When we are below the threshold, we expect to have only finite clusters.
The sum of the probabilities w,, for all cluster sizes must total 1, but when
P > D, we have another probability—namely, the starting monomer can
belong to the infinite cluster, and this event has a probability S.(p) (the gel
fraction). Thén

F0=1)=1- Su«p) (V:18)

P-y - Y

«Fyd
+

Figure V.12,
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Fixing = 1 we can solve for F, in eq. (V.17) or more conveniently solve
for p as a function of F,. There are two roots

_1-FE
P=T1_F,
p = indeterminate if F, = 1

The complete plot of F,(6 = 1) as functions of p is shown in Fig. V.13.
The two branches intersect at the critical value of p:p, = 1/(z — 1). The plot
of F, as a function of p is also very similar to Fig. V.12. From it one
obtains the gel fraction S, = 1 — F,. This starts linearly at the threshold,
i.e., the exponent Bofeq. (V.8) is 1 in this theory. By similar arguments we
find that y = 1 and v = 1/2.

The tree approximation discussed here has the significance and limita-
tions of a mean field theory. Basically we have let the chains grow, ignor-
ing any possible distortions in their shape and in their probability of
occurrence which result from excluded volume effects and cyclization ef-
fects. This is the source of the difference between the real exponents and
their mean field value.

V.2.6. The classical theory works in six dimensions

In Chapter I, we saw that linear chains become ideal at dimensionalities
(d) equal to or larger than 4. For the branched chains of interest here, we
can expect a similar property. However, branched chains are more com-
pact than linear chains, and it will require a higher dimensionality to reach
structures which are ‘‘open’’ enough to be ideal. We discuss this here
through a qualitative method, based on an idea of Ginsburg for phase
transitions, and recently transposed to the sol-gel transition.32

F1(9=1‘p)

Figure V.13.
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The deviations from the mean field (classical) exponents are due to the
fluctuations in the gel fraction inside one correlation volume ) = £9. We
shall estimate these fluctuations, assuming that the classical exponents hold,
and see if they are large or small when compared to the average gel fraction.
We shall see that they are indeed small whenever the dimensionality d is
larger than 6: in this case it was thus correct to assume classical behavior.

In a volume () the average number of sites belonging to the infinite cluster
is

Voet = Sa(P) (—2—)d ~ ApPvd (V.19)

We now look at the fluctuations of v, (which we call dv,,) or at the
fluctuations (8v,) of the number of sites v, which belong to finite clusters.
The two are linked, since the sum v, + v,. is the total number of sites in the
volume {2 and is constant. Thus v, = —&v,. The average square &2 is
easy to compute: since each site is (on the average) connected with N, other
sites, we have

vk =y, N, (V.20)

Near threshold the gel fraction is small and v, is essentially equal to the total
number of sites (2/a)?. Thus

o = (8v)* = (%)d N, = (Q—)d Ap™ (V.21)

a

We can now compare the fluctuations to the average, and see whether they
are really dangerous. We define:

x = 8,2 [ (v,)? = Ap~7~2hwd (V.22)

Now we insert in this formula the classical exponents (y = 1, 8 = 1
v = 1/2) and find:

x = Ap~3+aiz (V.23)

We conclude that, when d > 6, x is small near the critical point, the fluc-
tuations are not dangerous, and the mean field approach makes sense.29-3
But there is a critical dimensionality d; = 6 below which the mean field
idea is not self-consistent. The fact that our world has a value of d(d = 3)
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which is much smaller than d,, explains why the tree approximation is so
poor in practice.

V.2.7. The special case of vulcanization

There is one sol-gel transition for which the tree approximation is
expected to give the correct critical behavior near the threshold. This is the
case where we start from a dense system of linear chains (degree of
polymerization N < 1) and where we crosslink them. A typical practical
example is the vulcanization of rubbers.!

The cascade theory of Section V.2.5. can be applied directly to this
situation. The only special feature is that the functionality z becomes very
large; if each monomer can be & partner in a crosslink, we have z = N.
Then the threshold is low p, = 1/(z—1) = N~'. Near threshold we expect
classical exponents. A detailed argument for this is given in Ref. 32, To
understand it on simple physical grounds, it is again convenient to discuss
the number (P) of chains which are likely to crosslink directly with one given
chain (in the melt). The region of space spanned by one particular chain C is
of volume R} = N2 g3, and the number of chains per unit volume is 1/ Na?®.
Any chain C’' which has a good overlap with the volume R} is certainly in
direct contact at some points with C, the number of CC’ contacts being of
order N%a®/R3 ~ N2,

Thus the total number of chains C’ likely to be attached to P is of the
order

P

[

N R = N (V.24)

We see that P is much larger than unity. This ensures that all deviations
from a mean field picture are weak. The sol-gel transition is thus correctly
described by the tree approximation.

Remark. This cross-over from percolation exponents to mean field ex-
ponents may occur in situations other than vulcanization. Consider for
instance a condensation reaction between a difunctional unit AA and a tri-
functional unit BB'B, in a case where one of the groups (B’) is much less
reactive than the two others (BB).* Then the early polymerization products
are linear chains:

... AA—BB'B—AA ...

*I am indebted to R. Audebert and M. Adam for pointing out this possibility.
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and it is only at a late stage that branching takes place through the functions
B’, leading to structures such as:

... AA—BB'B—AA...
|
A
A

On the whole, near the sol — gel transition, we are dealing with a cross-
linking of preexisting long chains: if these chains are rather concentrated, the
above discussion may apply, and we expect a trend towards mean field
behavior. Thus many practical cases may be intermediate between percola-
tion and mean field: this may explain (at least partly) the large discrepancies
between critical exponents measured in different systems.

V.2.8. Dilution effects: competition between gelation and precipitation

It is clear that the percolation model is a very crude representation of any
gelation processes. We shall now discuss two possible criticisms: (i) the
monomers are not on a lattice, but are disordered; (ii) in many practical
cases, the monomers are mixed with a solvent, and this feature is absent in
the percolation model.

The first effect is probably not essential from our point of view: when we
drop the lattice picture, and replace it by a random, dense set of z functional
monomers, there may be some corrections to the threshold value p,; but we
do not expect changes in the critical exponents.* .

The second effect (dilution) is much more important. As we shall see,
when the monomers become attached together by chemical links, they tend
to set up clusters in the solvent, that is, to precipitate. Thus there is a
competition between gelation and precipitation, which is essential for many
practical applications.

In the percolation model, the monomers are closely packed. The model
describes polyfunctional polymerization in a melt. What happens if we
dilute the reactants? When we fix a reaction level p, we impose certain
conditions on the monomers. They cannot be spread at random on the
lattice because this would not give the correct p value. Thus, dilution leads

*There are some solid-state phase transitions where the introduction of disorder in the crystal
lattice changes the exponents, but it may be shown that percolation does not belong to this
class.3?
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to a problem of percolation between correlated objects. Numerical data on
this situation have recently been collected.3! We shall present the problem
here in the case of a very good (athermal) solvent, using again a lattice
model. Each lattice site (i) must be occupied either by one monomer (occu-
pation number n; = 1) or by one solvent molecule (n; = 0).

We assume that whenever two adjacent sites (i,j) are occupied by two
monomers (n;n; = 1) a chemijcal bond is instantly established between the
two monomers. With this model, we want to investigate the situation in the
reaction bath for a given concentration ¢ = (n, and for a given number of
reacted bonds:

R = Zj’ {(n; ny

where the sum X' is restricted to nearest neighbor pairs. The relation be-
tween R and the fraction of reacted bonds p is:

p = R/Rma.z'

where the maximum value R, is equal to Nyz/2 (N, being the number of
sites on the lattice). To understand this, note that the number of monomers is
Ny, and that maximum linkage is reached where all monomers coalesce in
one fraction of the total volume: then each monomer is linked to z others,
and the number of pairs is Napz/2 (omitting surface corrections).

Our model for gelation in a good solvent can be described in terms of a
sum of states, or partition function

Z=28<2nj—Nstp)8<§ ninj—R)

()

As usual, it is convenient to remove the constraints described by ¢ and R,
and to calculate not Z, but a related grand partition function =

E=2€xp[a2ﬂi+ﬁ%'"i"j]

(ny,)

where ¢ is a fugacity for monomers, and e” a fugacity for bonds. Their
relations to ¢ and R have the standard form

_ 9dlog =
N da
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In practice R is an increasing function of 8. For 8 = 0 (no correlations
between monomers) we have

(niny) = (ny) (ny) = ¢
Rs-0 = Ro = N;z¢*/2

This corresponds to the situation immediately after starting the reaction. At
later times, R increases beyond Ry, and 8 is positive.

At this point it is useful to observe that = has exactly the form of a
partition function for the so called ‘‘lattice gas model.’’ In this model each
n; describes the occupancy of a lattice site by an atom, and neighboring
atoms have an attractive interaction energy —J. The temperature of the
lattice gas is J/B. Became of the attraction J the model gives isotherms with
a liquid/vapor transition.

Similar features hold for our gelation problem: in the reaction bath, even
if the solvent is very good, the branched polymers which are generated will
tend to segregate if the reaction is near completion. Chemical bonding is
equivalent to an attractive interaction!

This point is essential, and explains many of the difficulties encountered
in the preparation of gels. To make it more precise, consider Fig. V.14,
which gives the phase diagram of our system in terms of the variables ¢
(concentration) and 8! (temperature of the corresponding lattice gas). The
diagram shows a one-phase region (corresponding to spatially homogeneous
systems) limited by a coexistence curve I'. The one-phase region itself is
divided into two parts by a sol-gel transition line A with the following
features:

(i) Forhighequivalent temperatures 3~1, the A line reaches an asymptote
¢ = ¢,,. This regime (with randomly distributed monomers) corresponds to
what is called ‘‘site percolation.”” Numerical values of ¢, for various
lattices are known. The critical exponents 3, y, v, . . . for site percolation
are identical to the corresponding exponents for bond percolation.

(i) At lower 87, for a fixed ¢, the correlations increase, and the gel
phase becomes more prevalent. Mean field calculations of this effect have
been performed; see R. Kikuchi, J. Chem. Phys. 53, 2713 (1970), and
A. Coniglio, Phys. Rev. Lett. 13, 2194 (1976).

Thus the A line is displaced towards the low ¢ side of Fig. V.14,

(iii) Finally, the A line hits the coexistence line at a certain point P;.
Note that in general Pj is quite different from the critical point C of the
coexistence curve (P; occurs at much lower concentrations).

Having established the qualitative structure of our phase diagram, we can
now consider some typical reaction paths. In all cases we start with some
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Equivalent phase diagram for a gelating system in semi-dilute
solutions with a good solvent. is the monomer concentration
(and each monomer is polyfunctional). 7,, is an equivalent
temperature, which decreases from infinity to low values when
the chemical reaction progresses. The particular model used in
the text assumes instant reaction between monomers which are
in contact. But the qualitative features of the diagram are more
general.

fixed value of ¢, and let the reaction proceed, R increasing from R towards
R,,.... This corresponds to a progressive decrease in the equivalent tempera-
ture B! (from + o to zero). From Fig. V.14 we find three situations—
depending on the concentration.

(i) If ¢ < ¢p; we remain in a sol up to point A, at which some gel
begins to precipitate in the sol (the gel concentration being described by A”).

(ii) At intermediate concentrations (¢ < ¢ < ¢b.,) we start again with a
sol, and reach a homogeneous gel at point Q. The critical exponents for
this sol-gel transition are still of the percolation type, for the following
reason: at point Q the range £ of the correlations imposed on the monomers
by chemical bonding is finite (because Q does not coincide with the critial
point C). Then, by suitable redefinition of the polyfunctional units (making
them larger than £,) we can always return to a simple percolation problem.
What happens if we go beyond the sol-gel threshold? At high enough
reaction levels we reach point B, and naively we might think that some
segregation occurs at this moment. This is not true, however, because we
are dealing with a gel: crosslinking prevents a macroscopic segregation. On
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a local scale (sizes comparable to the distance between crosslinks) segrega-
tion may take place, but this is expected to require higher reaction rates,
and should occur at a point B’ below B. These ‘‘microphase separations’’
are very important in practical fabrications of gels, but are still poorly
understood.

(iii) At high concentrations ¢ > ¢ our model gives instant gelation:
clearly in this regime, a more detailed model allowing for contact without
reaction is required.

To summarize: a gelation process in the presence of solvent always brings
in a trend towards segregation of the gelating species. However, by a suit-
able choice of the concentration in the reaction bath, one can still observe
a well-defined sol-gel transition. The critical exponents observed in this
case should still be of the percolation type. The latter statement has been
proven more formally in recent work by Lubensky and Isaacson which
applies for more general mixtures of linear chains and crosslinking agents in
a athermal solvent.*

vV.3.
Gels in Good Solvents

We now focus on gels which are well beyond the gelation thresh-
old. We assume that they have been prepared in good solvents, and that,
at the moment of study, they are also in good solvents. This is the best
situation if we wish to avoid segregation effects and the resulting hetero-
geneities. Also, for simplicity, we focus our attention on calibrated gels,
where the number N of monomers between adjacent crosslinks is well
defined. The classic picture for these gels is from Flory! and is very
successful. We present it here in different language.

V.3.1. The c* theorem

Let us start with a solution of chains (polymerization index N) in a good
solvent (excluded volume parameter v = a® (1 — 2x) > 0). The chains
repel each other, and this is reflected in the existence of a positive osmotic
pressure I1.

We now begin to attach the chains together, for example by reaction of
the chain ends with certain z-functional molecules (z being equal to 3, 4,
etc.), and we let them choose their density. They would like to separate
from each other as much as possible; however, each coil must remain in
contact with its neighbors because of the crosslinks. The net result is
shown in Fig. V.15.

*T. C. Lubensky and J. Isaacson, Phys. Rev. Lett. 41, 829 (1978).
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Figure V.15,

What we have is a set of closely packed coils sealed together by the
crosslinks. The situation is reminiscent of the overlap threshold in semi-
dilute solutions (Chapter III). Thus, the gel automatically maintains a con-
centration ¢ proportional to c*.

A detailed formula for ¢* at arbitrary x < 1/2 was worked out in
Chapter IV [eq. (IV.50)]. This gives

¢ = k(z) c*x = k(z) N~%5 p=3l5 g~6i5 (V.25)

where k(z) is a constant number, of order unity, depending on the func-
tionality z of the crosslinks and on the preparation conditions.

Eq. (V.25) summarizes the Flory theory of gels.! Changing the chemical
nature of the solvent amounts to changing the excluded volume parameter
v; if v increases (better solvent), ¢* decreases (swelling). Eq. (V.25) has
been confirmed by macroscopic measurements on many gel systems.
Experimentally, it is important to wait long enough to choose a correct
equilibration of the solvent. Since we cannot stir the system, concentra-
tions are equalized only slowly by diffusion processes. Equilibration times
are of order L*/D where L is a sample size and D is a diffusion co-
efficient. Typical values of D are in the range 107 to 107 cm?/sec, and the
resulting times are around one day.

V.3.2. Pair correlations in the gel

In his original derivation of equations similar to eq. (V.25) Flory
assumed gaussian statistics for the chains plus a mean field estimate for the
repulsive energies.! His theory is successful; the scientific community has
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naturally concluded that the chains in a swollen gel are gaussian to a very
good approximation. This is entirely wrong for the following reason.

Flory’s calculation is quite similar to his discussion of a single chain in
a good solvent, which we analyzed in Section 1.3. In this case we saw that
an excellent result came from a cancellation between two serious approxi-
mations—one related to the use of gaussian statistics, and one due to the
neglect of correlations between chains. The same cancellation occurs for
swollen gels, and the success of the theory does not tell us that the chains
are gaussian.

The correct structure of pair correlations in the gel can be read from
Fig. V.16. At short distances, the correlation function

£®) = TKe(o) ctr)) — ¢?]

is dominated entirely by correlations inside one chain and follows the
Edwards law [eq. (I.31)]. It is only when g(r) goes down to values of the
order ¢ = kc* that the existence of a gel phase affects the correlation.
This crossover point corresponds to r values comparable with the single
coil size Rr (given by eq. (IV.49)). At larger distances density fluctuations
are limited by the macroscopic rigidity of the gel, and g(r) decays rapidly
in space.

The latter statement can be made more precise from a generalized form
of elastic theory at long wavelengths, corresponding to the free energy
(per cm?)

1 ]
2 .-3(_:_)4/ 3
o
| .
rR' exp (-r/R;)
c*
RF i, el o

Figure V.16.
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F = _;.. E (_8_‘;) + = LV (SC) + higher gradient terms  (V.26)

where 8¢ is the local charge in concentration, E is the bulk rigidity, and L
represents a higher order correction (usually ignored in continuous elas-
ticity). Since the only characteristic length available is R, scaling means
that

L =E R vV.27)

Going to Fourier transforms, eq. (V.26) gives a sum of terms for differ-
ent wave vectors g

1
-3 (% &+ 1)
q
Applying the equipartition theorem to each mode g, we get

1 _ 7
= (B = ET Ly (gRr < 1) (V.28)
Note that eq. (V.28) applies only for gRr < 1 because eq. (V.26) assumes
slow spatial variations. Returning to real space, we can transform eq. (V.28)
into

T 1 E\2
g(r) = 46»‘—771‘:—; exp _[" (T) ] (" > Rp) (V.29)
= 1 - (constant L) (V.30)
o sz r eXp RF ’

The scaling form of the coefficient in eq. (V.30) has been obtained
separately from the requirement that at r = Rp, the correlation function
g(r) must be comparable with the average concentration ¢ (~ c*). Thus a
byproduct of our discussion is to give (by comparison between eqs. V.30
and V.29) the scaling form of the elastic moduli:

(V.31

The whole picture subtended by Fig. V.15 may be simply stated in
terms of suitable ‘‘blobs.’’ To each chain (N monomers) we associate a
blob of size Rp. The blobs are essentially closely packed (the exact
packing depending on the functionality of the gel and on the conditions of
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preparation). Inside one blob, the correlations are of the excluded volume
type—i.e., the blobs are not gaussian. Neighboring blobs are coupled by
elastic forces; using eq. (1.45) to predict the spring constant of one blob,
we may easily rederive eq. (V.31).

This picture can be tested in principle by various scattering measure-
ments. Neutron data on gels have been taken by the Strasbourg group.3
However, the main emphasis has been on a different type of measurement
where a certain part of the gel structure is labeled; in particular it is
comparatively easy to deuterate the crosslinks and to measure the correla-
tion between them. The resulting diffraction pattern is very similar to
diffraction by an amorphous solid; the crosslinks maintain a certain aver-
age distance (or order Rg), and this gives rise to a diffuse peak (at g ~
1/Rp) in the scattering pattern. Two crosslinks cannot come very close
together; this would imply a large overlap between two neighboring blobs
and an energy which would then become quite large.

Under the stimulation of H. Benoit, similar experiments with labeled
centers were also made with solutions of star-shaped polymers which have
the same geometry and the same concentration3® (Fig. V.17). The scatter-
ing patterns for both situations are of the same type. This is not surprising
since both systems are at ¢ = ¢* and are very similar to a dense fluid of
hard spheres.

V.3.3. Elasticity of swollen gels

We have seen in eq. (V.31) that the bulk modulus E of the gel should
scale like (¢/N)T. A similar scaling law should also hold for the shear
modulus, which is more easily accessible to experiment. (In what follows,
since we are interested only in scaling properties, we use the same symbol
E for both.) It is possible to test eq. (V.31) by varying either the quality of
the solvent (i.e., v) or the length of the chain (i.e., N). Recall that ¢, v, and
N are always linked by the c* theorem [eq. (V.25)]. :

For a given solvent (fixed v) it is often convenient to eliminate N be-

tween egs. (V.31) and (V.25), obtaining
‘ +

gel stars
Figure V.17.




Polymer Gels 157
E = Tc2% (14 g32) (V.32)

Thus, the elastic modulus should scale like the power 2.25 of concentra-
tion. Recent elastic data on Belkebir-Mrani* have been reanalyzed along
these lines.?® They do show exponents which are close to 2.25 if the com-
parison is made at fixed functionality z (the numerical coefficient in eq.
V.32 depends on z).

For a fixed N and a solvent of variable quality, the elastic modulus
should scalé Tinearly with concentration (E = ¢T/N). This is also well
confirmed.

The above discussion was restricted to linear elasticity—i.e., to the
regime where the relationship between stress (o) and deformation (\) is of
the form

oc=EA—-1 (V.33)

(We define A\ for longitudinal deformations as the ratio of the extended
length of the sample to the length at rest.) This is obtained when o < E.
The opposite limit o > E would be of great interest. Unfortunately, gels
usually break at low o values, and these strong deformations are difficult
to study. However, they are important because the stress is then sensitive
to the nongaussian character of the individual chains. Section 1.4 showed
that swollen chains have a nonlinear relationship between force and
elongation; this should show up in o(A). The prediction is®”

.o =E N2 (real gel; o > E) (V.39)

for longitudinal extension at constant ¢.* Compare this with the law for
gaussian chains

o = EN?* (gaussian; o > E) (V.35)

Some readers may be surprised by the occurence of a quadratic law
[eq. (V.35)] for gaussian chains which have a linear spring behavior. The
reason is simple. When we extend our sample very much, its lateral
dimensions decrease, and o (which is a force per unit area of cross-
section) increases by one extra power of A. The really interesting feature
is the difference between eq. (V.34) and eq. (V.35), which reflects the
Fisher-Pincus scaling law for swollen chains in strong extension [eq.

*Since the experiment must be done relatively fast, the gel cannot change its solvent
content during elongation.
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(1.47)). We hope that rapid elongation studies (before fracture) on swollen
gels will become feasible soon.

V.3.4. Spinodal decomposition

We now extend our discussion to a slightly more complex situation.
Starting with a swollen gel in a good solvent, we decrease the quality of the
solvent slightly. This can often be done simply by lowering the tempera-
ture. What happens then? The answer depends on the speed of the cooling
process.

(i) If cooling is very slow, we have a smooth contraction of the gel and
when the solvent becomes really poor, we may reach a ‘‘collapse transi-
tion,’” where the gel expels most of the solvent.

(ii) If the cooling is somewhat faster (minutes rather than a day) the
elimination of solvent cannot be performed, and we work effectively at
fixed concentration. However, even in this swollen gel, an instability may
occur:3® we find small regions which are alternately dense and dilute.

These effects can be well described within the Flory theory for gels.
Always using a lattice model for the chains, this corresponds to a free
energy of the form

1| : _ 3R ¢
7F| = (1= @) In(1 - @) + x®(1 - @) + Q375 5 (V.36)

Notice the difference with solutions [eq. (III.7)]: 1) the translational
entropy of the chains (®/N In ®) is not present since the chains are
attached, and 2) there is an elastic energy term, which is taken to be of the
ideal chain form. R is the size of one chain and is related to ® = ca®
through

~CNR3 =1 (V.37)

'Finally @ is a numerical coefficient that depends on functionality and on
the conditions of preparation and which is poorly known. (The original
Flory theory contained further terms, aiming at a more precise description
of the elastic behavior at small R, but these terms are not well justified, and
they do not play much role in case (ii); we ignore them systematically.)

The equilibrium condition corresponds to a minimum of energy per
monomer, Fy,,/®. The minimum is to be taken with respect to ®, but we
must remember that @ and R are linked through eq. (V.37). Minimization
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gives a relationship between size R and temperature (the latter coming in
though x or v = a® (1 — 2x)) which is qualitatively shown in Fig. V.18.
For v > 0 the curve is smooth—the gel contracts progressively. Ultimately
at v < 0, the solvent is completely expelled.

Let us now turn to the more interesting process where v is decreased but
the concentration ® does not have enough time to relax. There is then a
trend toward segregation—fluctuations in concentration are enhanced.
This is equivalent to saying that Young’s modulus E becomes weaker and
finally vanishes at a certain temperature, T,(®). Ignoring all complications
due to the tensorial nature of the stresses, we can write E in terms of a
derivative of the osmotic pressure II

= @3l
E=%34 (V.38)

where II is defined as usual by eq. (I11.12)

= cpz% (_Fge) (V.39)

When eqgs. (V.38, V.39) are used with the form of the free energy in eq.
(V.36), one finds that E reaches O on a certain spinodal curve. If we start
at certain P values (or certain R) corresponding to point A in Fig. V.15, we

181_2x equilibrium
a

]
A ll’\ spinodal
/

/, 1
N1/2 R/a

Figure V.18.
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can decrease v to point B (v = v,), keeping the gel stable. If we go beyond
point B, microsyneresis occurs.

Near point B the fluctuations are large and the intensity of light scatter-
ing at small angles ! tends to diverge. In a mean field theory of the Flory
type the divergence is of the form I ~ (v — v,)~!. This is compatible with
Tanaka’s data.> However, in this problem, since each blob is interacting
only with a restricted number of other blobs (P ~ 1), there is no reason to
believe that the exponents are of a mean field type.

In connection with this spinodal decomposition, if we start with a good
solvent, the original radius R is very swollen. Then the final value v, of
the excluded volume parameter is still largely positive; X, is significantly
smaller than 1/2. Thus we do not need a poor solvent to have syneresis; all
that is required is a slight lowering of solvent quality. This is another
reason for the frequent heterogeneities in gels.

Very little is known about the region below the spinodal. Depending on
the detailed conditions, we expect domains which can be either lamellar,
rod-like, or spherical. If we wait long enough, some domains can coalesce,
following the trend toward a general expulsion of solvents. The problem
here is reminiscent of certain situations in metallurgy, but physical tech-
niques available for an in situ study of the domains are not numerous. In
Chapter VII we return to certain dynamic features of the spinodal transi-
tion, which have been probed by the M.I.T. group.

V.3.5. Summary

~ Swollen gels obey simple scaling laws, which are independent of prepa-
ration conditions. The gel can be visualized as a collection of adjacent
blobs, each blob being associated with one chain and having properties
very similar to those of a single chain. The blobs are not gaussian. How-
ever, a Flory model based on gaussian statistics gives a good description of
the gel properties—thanks to a remarkable compensation of errors. A rela-
tively slight lowering of solvent quality is enough to induce spinodal
decomposition in a gel.
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Vi

Dynamics of
a Single Chain

VL1
Historical Background

The random motions of a flexible chain floating in a solvent are
fascinatingly complex. Some years ago, thanks to a series of careful
mechanical experiments! together with some elegant theoretical work?34
these motions appeared to be well understood. However, there are some
serious flaws in the classical picture.® Thus, we do not review it in detail (it
is lucidly described in Ref. 6) but present only basic ideas, show their
limitations, and proceed directly to more general scaling concepts.

VI.1.1. The Rouse model

The classical picture is based on the notion of relaxation modes for one
chain. It first appeared in a 1953 paper by P. E. Rouse® and was based on
the following model:

(i) Ideal chain. Rouse described the chain as a succession of ‘‘beads’’
ry...r,... Iy, separated by “‘springs’’ along the vectors a, . . . ay (Fig.
VI.1). Physically, a spring can be thought of as a sequence of monomers
(or subchain) which is long enough to obey gaussian statistics. The elastic
energy for the subchain is then given by the analog of eq. (1.8)

Fo. = 3T (= Tw)?
ot 2 {(rps1 — ra)?)

3Ta2
=-‘2—a—2 (VL.1)
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'n

Figure VI.1.

where a? is the mean size of one subchain. The total elastic energy is the
sum

N-1
F, = 2 Fpnt (VL.2)

(ii) Phantom chain. A physical chain cannot cross itself. Processes
such as that shown in Fig. V1.2 (where CD goes from ‘‘above’’ AB to
“‘below’” AB), are forbidden. Rouse ignored this complication. Following
tradition, we say that the Rouse model corresponds to ‘‘phantom chains.’’

(iii) Locality of response. Each bead experiences a force ¢, from its
two neighbors

ar =z [(rnﬂ —rp) + (Fay — rn)] (VL.3)

We then assume that the velocity of bead n is a linear function of the
forces applied to n (and its neighbors)

ar
ZE = tam O (VL4)
m

where u,,, has the dimension of a mobility and is nonzero only for n close
to m (locality assumption). Then by a suitable redefinition of the sub-

A D A D

X - X

Figure VI.2, C B c B
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chains, it is always possible to arrange that u,,, = 0 forn # m, and to keep
only one mobility constant u,, = u. Thus eq. (V1.4) reduces to:

ar 37,
Tt" = Uy = az“ (Cpgr — 21, + Fpey)
3T u 8°r
="F (VL5)

where we have gone to the continuous limit r, ., — r, — dr/dn. In this last
form eq. (V1.5) must be supplemented by boundary conditions at both ends
of the chain. They are*

ary
dan

_ on,

= =0 VL
0= n (VL.6)

N

On the whole, the three assumptions lead us to a very simple ‘‘Rouse
equation’’ (VL.5) describing the relaxation of an elongated state of the
chain. Because it is a linear equation, the solutions can be analyzed in
terms of eigenmodes

Inp () = cos w}[\){n exp (—t/mp)a, (VL.7)

where p = 1, 2,... is an integer, and the cosine is chosen to match the
boundary conditions. a,, is the mode amplitude. The time 7,, is the relaxation
time of mode p, and is given by

7‘;_31,37(_1_\7 Wie (VL8)

This is a quadratic dispersion relationship (1/7, ~ p?). Note that the
longest relaxation time (p = 1) scales like N? in the Rouse model.

VI.1.2. Weakness of internal friction effects

What is the microscopic origin of the ‘‘bead mobility’’ u? In a liquid (as
considered originally by Rouse), u would naturally be associated with the

*To understand eq. (VI.6), notice that the last bead (ry,,) sees only one spring and thus
ory,,/dt = 3Tp/a® (ry — ry4,). This may be lumped into eq. (VL.5) if we add one extra
spring (N+1, N+2) and impose (ry4+; — rys;) = 0. This condition becomes equivalent to eq.
(VI1.6) in the continuous limit.
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hydrodynamic friction of one bead on the solvent. If the bead behaves as a
sphere of hydrodynamic radius ay, it will have a friction coefficient

put = 6mn, ay (V1.9)

It is also conceivable (at least theoretically) that one chain is inserted
into a solid-state matrix and moves (through vacancy diffusion in the solid)
by random processes such as that shown in Fig. VI.3. Two types of barriers
oppose this process. One is associated with the vacancies; the other is
associated with the changes in chain conformation in going from the first
state to the second: ‘‘internal barriers.’’ Detailed calculations? and Monte
Carlo analogs® for this ‘solid-state process’” have been given. For large N
and finite p, they always end up with an equation of the Rouse form;® the
resulting . depends strongly on conformational barriers.

Returning to the chain in a solvent, we may ask whether or not u can
contain any effect of internal barriers also for this case? The answer is no.
If we are dealing with long chains (N — ), internal barriers are not seen
in the first modes. This is a delicate point, proved first (in a different
language) by Kuhn.!® We approach it by the following two methods.

THE LIMIT OF UNIFORM TRANSLATION

Let us consider a Rouse chain to which we apply certain external forces
(f., on bead n). This would correspond physically to sedimentation or to
electrophoresis. Eq. (VI1.5) is modified:

2
ar, 3T &°r ] (VL10)

G 5

Consider the case of equal forces on all beads, f., = f, = f,,, N~* (where
fior = 2 f., is the total force). Then eq. (VI.10) has a solution with uni-

n
form velocity and vanishing internal forces (3%r/dn® = 0).

i

- —

F
] i
vacancy Figure VL.3.
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% =V = uN- 1, (VL11)
Thus, in the Rouse model, wN™! is the overall mobility of the chain. Con-
sider now a chain (floating in a solvent) with very high conformational
barriers. Even if it behaves as a completely frozen shape (a twisted piece of
rigid wire), it will show a mobility in the solvent, and this mobility will
depend only on the solvent viscosity, not on internal barriers. Thus, in a
liquid matrix, internal barriers are completely irrelevant for the uniform
translation properties. This remains true for the first Rouse modes if N is
large enough. The point is that in the first mode (r, ~ cos (wn/N) any
fraction of the chain (from n to m, with |[n — m| < N) moves essentially
as if it were in uniform translation.

UNIFORM DEFORMATION

We now present a different (and more quantitative) argument for the
Kuhn theorem. Starting with an ideal chain, we attach one end at the origin
and pull the other end, imposing a certain velocity V, (subscript e is
extremity) (Fig. VI.4):

Iyt

o~ Ve

What are the friction forces involved (in a Rouse model)? The solvent
forces are simple. The velocity for the n-th monomer is

ar, _ _n ~n
B N+ VTN Ve

N beads

Figure VI.4.
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and the total solvent friction force is (in terms of {, = 1/u: friction
coefficient per bead)

= or, _
fs - ; Cs ﬁ - Cs ve (VI~12)

Let us estimate the other friction force f; arising from internal barriers
(omitting the solvent). It is convenient to think in terms of a given f; and to
look at what would be the resultant V. If one chain contained only two
monomers, which can be in two conformations (Fig. VI.5), we would
expect

V,={ ', (N small) (VI.13)

where {; contains an activation energy associated with the barriers between
conformations (i) and (ii). Let us now turn to a chain with many units (V
large) and impose a given f; at the end. This tension is transmitted all along
the chain. All monomers in a favorable (kink) position have a chance to
stretch; thus, the overall stretching V, is the sum of N contributions
[eq. (VI.13)]

V.= NU{'fi (N large) (VI.14)
Solving for the force, we have
f;= N4V, (VL.15)

We can now compare the two types of friction [egs. (VI.12, VI.15)]. The
ratio is

kink straight Figure VL.5.
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bl (VI.16)

T LN

This is the precise form of the Kuhn theorem. Whenever N is larger than
(&/9)"2, internal friction is negligible. [The detailed form of eq. (VI.16) is
specific for the Rouse model, but similar results (with slightly different
power laws) occur in more realistic situations. ]

VI.1.3. Critique of the mode concept

The three assumptions (listed in Section VI.1.1) that define the Rouse
model are often unacceptable. The assumption of localized responses is not
correct because of ‘‘backflow’’ effects. Whenever we apply a force f, to
one monomer in a fluid, the result is a distorted velocity field.in the whole
fluid. This *‘backflow’’ decreases only slowly with distance (like |r — a7l
It drives other monomers into motion. The net result is that the mobility
matrix p,m, introduced in eq. (V1.4), now becomes a very slowly decreas-
ing function of the chemical interval |n — m|; this effect profoundly
modifies the mode structure.*

The assumption of ideal chain elasticity is incorrect in a good solvent.
As discussed in eq. (I.45), the spring constant of a swollen chain is much
smaller than the spring constant of an ideal chain. The resulting corrections
have been incorporated only recently into the theory.®!!

The assumption of phantom chain behavior amounts to neglect of any
effect of knots along the chain. This may be shown to be correct in good
solvents, but it may become more dangerous in a O solvent. In the latter
case the coils are much more compact, and they tend to be more knotted.

For a long time it was considered that for © solvents the theory was in
good shape (after incorporation of the backflow corrections). However,
when we think of knots, this is less obvious. Single chain dynamics in a
O solvent may be very complex'? and are not discussed here.

On the whole, we are not even sure that the very concept of modes re-
tains a fundamental validity when the three corrections are included.
On the original Rouse equation [eq. (VI.5)], modes emerged naturally
because the equation was linear. However, if we incorporate the backflow
corrections properly, the mobility matrix u,,, becomes a function of the
distance |r, — r,|; the equation is then nonlinear, and all modes get mixed.
The result is seen more easily on what experts in mechanics call a spectrum
of relaxation times (or rates).'® This is shown in Fig. VIL.6.

The sharp peaks correspond to a mode picture. The actual spectrum for
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Figure VL6.

dilute chains is not well known experimentally (because of the weak
signals involved) but is probably much more like the smooth curve. It is
not even certain that any bumps remain on the curve. Many nonlinearities
can be responsible for the broadening—they may come not only from the
backflow terms but also from the excluded volume interactions and possibly
from knot formation.

This discussion may seem to be negative and discouraging. However,
the situation is not completely desperate; scaling laws come to our help.
One important aspect of scaling laws is that they ignore many unimportant
details, such as the precise shape of the relaxation spectrum in Fig. VI.6,
and they give predictions which hold independently of a specific model. In
the following sections we present an overview of the ‘dynamical scaling
laws”’ at the present level of understanding. We emphasize, of course, the
limitations. In all branches of statistical physics, dynamical scaling is more
complex and less universal than static scaling.!* Macromolecules are no
exception. However, the experimental situation has progressed significantly
in the past few years, thanks to the ‘‘photon beat method’’ which probes
chain motions in a convenient frequency range (1-10%¢ cycles). Here we
insist more on these data than on conventional measurements, which have
been fully reviewed by Ferry.!?
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vi.2.
Dynamic Scaling In Good Solvents

Vi.2.1. The Kirkwood approximation for chain
mobility

The mobility picpqin of One chain is measured in experiments (such
as sedimentation, electrophoresis, etc.) where a given external force f,, is
applied to the chain, and the resulting drift velocity V is measured. At low
forces (such that the chain shapes are unperturbed)

V = pcnain fror (VL17)

Another, related, parameter, is the diffusion constant D of the chain; it
is measured by direct monitoring of concentration profiles or more con-
veniently by inelastic scattering of laser light. Diffusion is related to
mobility through the Einstein formula

D = pcpain T (VL.18)

A good, rigorous, starting point for the theoretical discussion of D is the
formula relating D to the spontaneous fluctuations of the velocity V' (due to
Brownian motion). In three dimensions

-3 f (V) Vi) d, (VL19)

where ( ) represents a thermal average, V(#) is the velocity of the center of
gravity of the chain and can be rewritten as an average over all monomers

V) =13 v

= L[ cw.ovenar (VL.20)

where c is the local monomer concentration and v is the local velocity (v is
the monomer velocity, but we can also interpret it as the solvent velocity
at the same point*). Inserting eq. (VI.20) into eq. (V1.9), we arrive at

*If we think of the monomer as a small sphere floating in a continuous liquid, the velocity
of the sphere is exactly equal to that of the liquid on its surface.
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D

_31_N_2 J: (c(r 1) c(raty) v(r, 1)) v(raty)) dr, dry dt,  (V1.21)

At this point we introduce the first approximation. We split the correla-
tion function(cc vv) into a concentration part and a velocity part. In modern
jargon this corresponds to a ‘‘mode-mode coupling theory,”” which has
been applied with great success to binary mixtures near their critical point
by Kawasaki'* and Ferrell.’* However, for the present problem, the idea
(in a different language) goes back to Kirkwood and Risemann.!®

We make a further (minor) simplification. We assume that the essential
time dependence is contained in the (vv) part of the correlation, while the
{cc) part may be taken at equal times. This may be justified by a detailed
study of the (cc) dynamics, along the lines of Section VI.2.2.

(c (rity) ¢ (raty)) = (c (ry1) ¢ (1)) = %g(rl - r) (V1.22)

Here g(r) is the static pair correlation discussed in Chapter I and nor-
malized always by fg(r)dr = N. Q is the total volume allowed for the
chain, and the factor N/} ensures that if we integrate eq. (V1.22) over r,
and r,, we get N? as desired.

The velocity correlation is now calculated for a pure solvent—i.e., we
omit any effect of the polymer on {vv). This is the central approximation.
For an incompressible, viscous fluid of viscosity 7,, a Fourier component
v, of the velocity is-ruled by the equations

)
E(pvq) + M q%ve=0 (VL.23)

qv, =0 (V1.24)

where p is the density. Eq. (VI.23) is the Navier-Stokes equation.* Eq.
(V1.24) says that the velocity is transverse (div v = 0). From eq. (V1.23)
we get for each transverse component

(U._q(O) vq(’» = (U._q(O) vq(O» exp —(n, ¢* I/P) (VL.25)

and the equal times average (v_,v, is derived from the equipartition
theorem for kinetic energy

*There is no pressure term p in eq. (VI.23) because we are interested only in transverse
velocities (qv, = 0) while Vp is longitudinal.
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1 1
5P (v_qvp = 5T (VL.26)

Finally, integrating eq. (VI.25) over time, using eq. (V1.26) and trans-
forming to real space, one arrives at

1 1 o
7] " (0u(00) vatee) di = g [8(,‘, + F’B] =T (V2]

Here o and B are component indices: «, 8 = x,y,z.

The right side of eq. (V1.27) is often called the Oseen tensor ¥ 5. The
Oseen tensor gives the velocity response of a fluid at point » when a weak
force is applied at the origin. As usual this response function can be
expressed in terms of correlation functions; hence the equality, eq. (VI.27).

Having discussed the (vv) correlation, we can now return to the basic
formula for D, integrate over r, (obtaining one factor {2), and we arrive at

D = ?lﬁjdrg(r)Tgim(r)

T
61N,

N1 I dr g (r) (V1.28)

Eq. (VI.28) expresses a dynamic quantity in terms of static correlations.
This is the great achievement of these mode-mode coupling methods. We
can apply eq. (V1.28) for good or for poor solvents, using the correspond-
ing discussion for g(r) in Chapter 1. The essential points are:

(i) The function, g, diverges only mildly at the origin. For example, in a
good solvent g ~ r~43. Thus the integrand has the form

J'4‘trr2 dr ’4—1,317

and there is no dangerous singularity near r = 0. At large r the function g
drops rapidly, and the convergence is also good.
(ii) The pair correlation g obeys a scaling law of the form

glr) = % g (%) (V1.29)
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which is equivalent to the forms quoted in Chapter I. Here R = R, in a2 ©
solvent, and R = Ry in a good solvent.
Then, changing variables from r to x = r/R in eq. (V1.28) we arrive at

T .
D = WI dxg(x) x (V1.30)
= constant 6_1r£—,R (VL.31)

This may be expressed in terms of a chain friction coefficient (the inverse
of the mobility), which is:

T
bt = Meat' = o = 6mm.R (VL.32)

very much like for a solid sphere of radius R. We conclude that in the
Kirkwood approximation the chain has a hydrodynamic radius which is
proportional to its radius of gyration.

Experimentally, one finds that the hydrodynamic radius does scale like
N'2 in O solvents, but in good solvents the situation is less clear. Diffu-
sion or sedimentation experiments on polystyrene in toluene'? give D ~
N~a» where the apparent exponent v,,, is of order 0.53-0.54. More recent
photon beat experiments!® give v, = 0.55 * 0.02 for polystyrene in
benzene.

Two types of explanations have been proposed to explain the difference
between v,p, and v:

(i) A fundamental flaw in the Kirkwood approximation. For the analog
problems in phase transitions, the Kawasaki-Ferrell exponents are only
approximate because the viscosity of the fluid itself is renormalized. To
include this possibility, some authors have written'®

Mot ~ NEDY

where z is a ‘‘dynamic scaling exponent’’;!4 the reason for this notation
will become apparent later [eq. (VI.49)]. The data which we quoted on
polystyrene would suggest z ~ 2.9 (i.e., z < 3). However, this is sur-
prising; one would always expect the effective viscosity to be increased by
the presence of polymer and thus the mobility to be below the Kirkwood
result. This corresponds to z > 3. A theoretical inequality obtained under
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rather general assumptions by des Cloiseaux?? also gives z > 3. Thus, this
first explanation is doubtful.

(ii) Technical complications. Many ‘‘good solvents’’ of polystyrene are
in fact moderately good, with values of the Flory parameter ¥ not much
lower than 1/2, or equivalently with u = v/a® = 1 — 2x much smaller
than unity. We know from Chapter III that in such a case, the chain is still
ideal at short distances (r < gu™!) and is swollen only at large scales
(r > au™). des Cloiseaux and Weil?! have suggested that, in such a case,
the average of 1/r coming into eq. (VI.28) may require very large values
of N to reach its asymptotic form (proportional to 1/Rr ~ N™). On the
other hand the radius of gyration (which is measured in static experiments)
is based on an average of r*, which is much more sensitive to the behavior
at large scales where the scaling laws for swollen chains hold. This may
well explain the discrepancy between static and dynamic measurements of
the coil size R(N). However, to prove the point in detail will require
careful experiments at variable x and high N. In the following discussion
we remain with the simple Kirkwood approximation.

VI.2.2. Inelastic scattering of light

The principle of these experiments is simple. A strictly monochromatic
light beam (wavelength A, frequency w,) is scattered by the polymer solu-
tion. The scattering angle is 6, and the scattering wave vector is 47/ (sin
6/2) = q. Because of the motions in the scattering system, the outgoing
beam contains all frequencies. We measure the intensity at one outgoing
frequency w, + w and call it S(q, w). In the photon beat method the
frequency shift @ may range from 1 to 10° cycles—a very convenient
domain. What is measured is a time-dependent correlation function {cc)
first introduced by Van Hove:2?

S(qw) = -zl_n_— f :o dt exp (iwt) f dr exp (ig'r) (¢ (00) ¢ (r,f)) (VI.33)

When we fix q, we define the spatial scales in which we are interested.
They are of order g~'. Then, at fixed q, the plot of S(qw) versus w gives
us the power spectrum of one Fourier component ¢, = [ ¢ exp (ig-r) dr.
Physically we may say that we probe the characteristic frequencies for
fluctuations of size ¢~*.

Turning now to the dilute chain problem in a good solvent, we dis-
tinguish between two regimes. The usual situation corresponds to gRy < 1.
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In this case the coils behave like point scatterers, and what we see is
their overall Brownian motion, controlled by the diffusion coefficient D.
A Fourier component ¢, decays in time as exp(—Dg?f), and this gives a
Lorentzian form for S as a function of w

- Iy
S(qw) = constant 7o (V1.34)
where the half-width at half maximum is
I', = Dg? (R < 1) (VL.35)
Using eq. (VI.31) we see that
o = q (V1.36)

6mn, Ry

Let us now go to larger g values (gRr > 1). This situation is difficult
to achieve. It requires very long chains (for which Ry is larger than 1,000
A). Such long chains—with typical molecular weights in the range of
10’—are difficult to prepare and difficult to maintain without breaking.
However, experiments have been carried out (on, polystyrene in various
solvents) with values qRr of order 10 or more. What happens in that
limit? The frequency plot (the plot of S(qw) versus w at fixed q) shows a
broader peak, which is no longer Lorentzian and which has a certain half-
width T',.

The dynamic scaling assumption for I', amounts to:

- T
o= G R, & v (4Re) (VL37)

where ¢r (x) is a dimensionless function of x = gRr. At low x we must
have ¢ (x = 0) = 1 to comply with eq. (VI.36).

At large x, we probe portions of the chain (with a size ¢g~!) which are
much smaller than the overall coil size. Then we expect to measure a
characteristic frequency I', which becomes independent of N (i.e., in-
dependent of end effects on the chain). This requires that

¢r(x —> o) =x (VL.38)

Thus at high ¢ we expect a width
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3
I', = constant T;’_q (Kirkwood approximation) (V1.39)

A result of this form was first found theoretically on a specific model (ideal
chains plus backflow),?? but its range of validity is much larger than was
suspected at the time. Experimentally, for polystyrene in good solvents,
the plots of I', versus ¢ indicate® (Fig. VI.7)

Fq ~ q2.85 *+ 0.05 (VI.40)

1/7, D, K2

b
b
3
3
b
b

0 1 S ' 0 15 KR

Figure VL7,

Characteristic width of the photon beat spectrum 1/7x of poly-
styrene solutions as a function of the wave vector K. The width
is normalized by the diffusion width D, K2, and the wave vector
is expressed through KR when R is the coil radius. The squares '
and the triangles correspond to two very different molecular
weights, suggesting that there is indeed a universal scaling
form. From M. Delsanti, Ph.D. Thesis, Orsay, 1978.

V1.2.3. The fundamental relaxation time

In the Kirkwood approximation a single chain has a hydrodynamic
radius R which scales like its geometric radius:
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R ~ N2 (O solvent, v = 0)

R ~ N*3 (good solvent, —UT ~1) } (V1.41)
a

To this radius is associated a diffusion coefficient D = T/67, R. From D
and R we can construct a characteristic time

(Kirkwood approximation) (V1.42)

The scaling law for the inelastic scattering of light at a fixed wave vector
q [eq. (V1.37)] is (within the Kirkwood approximation)

I, = (gRY ¢r (qR) (VL.43)

where ¢r(x) — 1 for x — 0 and ¢(x) — constant x at large x.

Now we want to obtain a more physical feeling for this fundamental time
7, which is the analog of the first relaxation time in the mode picture. A
very useful qualitative model for understanding the meaning of 7 is the
dumbbell model introduced by Kuhn.!%2¢ Here one does not look at all the
variables r, . . . rp4, giving the position of all beads on the chain, but one
concentrates on a single variable—the total elongationr = r,,; — r,.

One then pictures the whole chain as a spring, with a certain elastic
energy

Kr? (V1.44)

and with a certain friction constant {,,; from a scaling point of view, {,,
and the inverse translational mobility ;' have the same properties; they
both deal with friction for long wavelength deformations of the chain. The
friction force on the spring is {,,; r/dt, and this balances the elastic force

ar
Ltot T Kr (VL.45)

This leads to a characteristic relaxation time for chain deformation

T=Cu/K (V1.46)
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The various models of chain dynamics correspond to different assumptions
of the spring constant and the friction constant.

If we choose K = T/R,? (corresponding to an ideal, phantom, chain;
see €q. (1.8)) and {,; ~ N (additivity of individual frictions), we get the
Rouse model and 7 ~ NZ.

If we incorporate backflow effects at the Kirkwood level, the friction is
modified {, ~ 6 7m, R. If the chain is still an ideal phantom chain
(R = R,), we get:

3
r= "—"T‘i- (VL4T)

which we might call the Zimm formula since Zimm first computed the
detailed structure of modes for this case.*

If we consider a real chain in good solvent, we must use {,,; = 67n,Rr
within the Kirkwood approximation, but the spring constant is also
changed.!! Eq. (V1.44) tells us that K ~ T/Ry?. Then we get

3
T ”‘I;F (V1.48)

[

Note that eqs. (V1.47, VI.48) agree with the general scaling formula,
eq. (V1.42).

If we want to go beyond the Kirkwood approximation and incorporate
a new dynamical exponent z (introduced on p. 170), we must alter the
friction term and use eq. (VI.33): {;r ~ Rz*"2. This gives

T ~ R (V1.49)

But, as pointed out before, there is no convincing argument for a z value
different from 3.

We end this discussion of the fundamental relaxation time 7 by remarks
on the structure of eq. (V1.42):

(i) Apart from coefficients, T coincides with the relaxation time asso-
ciated with rotations of a solid Brownian sphere of radius R.2* Thus rota-
tion and deformation have the same characteristic time in solution. This
simplification is the basis of the simple scaling laws that we found.

(ii) The orders of magnitude of 7 are interesting. Typically for R ~ 500
A and 1, ~ 1 poise, the time is around 103 sec and is suitable for me-
chanical studies.
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(iii) The N dependence of 7 (in a good solvent, within the Kirkwood
approximation) is 7 ~ N¥®. This is not very far from the Rouse predic-
tion (7 ~ N?). Thus the corrections due to the backflow and to the excluded
volume effects cancel to a large extent. This may explain some unexpected
successes of the Rouse model in interpreting certain properties of dilute
solutions.

(iv) An interesting determination of 7 uses dielectric properties in one
special case—namely, when the chain carries longitudinal dipoles along
the backbone, as shown in Fig. VI.8. Usually each unit will also have a

Figure VLS.

dipole component transverse to the backbone, but these components rotate
very freely and relax in a microscopic time, ~ 1071° sec. Thus, they are
not seen in dielectric absorption measurements at radiofrequencies. There
is an overall dipole P = e*r, where r is the end-to-end elongation, and e*
has the dimension of a charge. The relaxation of the dipole P is controlled
mainly by the fundamental relaxation time 7. Measurements of + using this
method have been performed on caprolactone polyester®®

|_CH2_C Hz_CHz_CHz_C Hz_ﬁ_o—“l N

They do show a good relationship between 7 and R;°—the latter being
inferred from viscosity measurements also in dilute solutions (discussed in
the next paragraph).

VI.2.4. Static viscosity of dilute solutions

THE HARD SPHERE PICTURE

From the Kirkwood approximation we know that a dilute solution of
polymers (with monomer concentration ¢ or chain concentration ¢/N) be-
haves hydrodynamically like a collection of solid spheres of radius R. A
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calculation by Einstein®” suggests that the viscosity m of the solution has
the form

n=mn,[1+25y] (VL.50)

where
U~ < R® (VL51)
N .

is the volume fraction occupied by the spheres. This result is interesting be-
cause it implies that

(i) The viscosity 7 may be increased significantly even at low concen-
trations (Y = 1 for ¢ ~ c*).

(ii) The relative change (n — m,)/7;, at a given ¢ and N, measures R?
and thus gives an accurate value of the hydrodynamic radius. These
viscosity measurements are cheap, require only small amounts of material,
and measure a microscopic size directly!

Results are usually given in terms of

_n—mn R
[n] = e =N (VL.52)

Thus the prediction is [n] ~ N'2 in © solvents and [n] ~ N*5 in good
solvents. The experimental data agree rather well with the prediction in ©
solvents. In good solvents the situation is not as clear,?® and the apparent
exponent is often slightly smaller than 4/5. It is again tempting to interpret
the deviations in terms of the des Cloiseaux-Weill effect.?!

THE DUMBBELL PICTURE

Another qualitative approach to the viscosity is based on a direct calcula-
tion of stresses in a dilute system of springs. Counting the forces on the two
sides of a given surface in the fluid (Fig. VI.9) one finds that the contribu-
tion in stress due to the springs is*

80us = 57 (Far) = Foure + Fory (VL53)

1 ¢
2 N¢

*See for instance R. Bird, R. Ammstrong, O. Hassager, Dynamics of Polymeric Liquids,
Wiley, New York, 1976.
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Figure VL.9.

A fictitious dividing plane (dotted

W line) separates the solution into two
' halves. The solute ‘‘springs,”’ which

| contribute to the stress on this plane,

| are those which intersect the plane,
as shown on the figure.

where o is the force (along direction «) per unit area (normal to direction
B), and F, = Kr, is the elastic force per spring (c¢/N being the number of
springs per cm®). Let us apply this basic equation to the case of a flow of
the solvent with velocities

Vg = 2 Say Ty + v (0) (VI.54)

Y

[v (0) being the velocity at the origin of the dumbbell]. In eq. (V1.54) 54
is the shear rate tensor. As noticed first by Kramers, it is convenient to
consider flows that have no rotational component (s,s = §g,). For such
flows the molecules reach a constant elongation. In the flow field the equa-
tion of motion [eq. (VI.45)] for the dumbbell is altered to

dr,
Ctot (W - vu) = - Kru = - Fu (VISS)
We now multiply eq. (VI.55) by rs, symmetrize, and average. The term
d d _d
(ru“Tt rg t rg ‘d—t"'n) = a—,("dh}

vanishes since (r, rg is independent of time (Kramers remark). Then we
are led to

80as = 77 Lot S (ot (VL56)

At this stage, for small s, we may take the average (r r) as equal to its value
in the absence of flow (r,rg = 1/3 8,sR;?, and we reach 80,5 = 8154,
with an increment in viscosity

81 = & Lt Re? | (VL57)
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We may also replace Ry by T/K and express our result in terms of the
relaxation time 7

o = (VL58)

The two forms [eqs. (VI.57, VI.58)] are interesting.

Eq. (VI.58) expresses the viscosity increment as the product of an
elastic modulus (¢T/N) by a relaxation time 7. This type of relationship
will often be convenient for more complex situations. In the Kirkwood
approximation eq. (V1.57) does coincide with eqs. (VI.50, VL.51). If we
try to go beyond the Kirkwood approximation and insert a dynamical
exponent z we see from eqs. (VI.33, VI.57) that

on ~ 'JCV R (VL59)

Values of z derived by various methods (for polystyrene in relatively good
solvents) are listed below (after Delsanti®).

Diffusion D via light scattering!” z=2091
Mobility (via sedimentation coefficients)!” z = 2.88
Aw, at large g ® z=2.85
Viscosity dn 28 z2=2.82

Other mechanical data (on 7) % z=2.78

VI.2.5. Frequency dependence of viscosities

At finite frequencies w the viscosity increase due to solute coils én =
n — 7, becomes dependent on w and complex. Mechanical data on this
function are difficult to obtain in the dilute regime, but some results have
been achieved.! Their classical analysis was in terms of Zimm modes,*
allowing for backflow effects but ignoring any excluded volume effects.
We present here a more general scaling picture.

At low frequencies w < 1/7, dn(w) is only weakly different from the
static value discussed earlier [eq. (V1.59)]

on ~ %RFZ ~ ¢Nve-1 (V1.60)

At higher frequencies the complex 87 will have the structure

dn(w) = dn(0)pq(wr) (VL61)



186 DYNAMICS

where ¢ = ¢' + ip" is a complex function of x = vt with the following
limiting properties

@ {(x—0) =1+ (constant) ix + ... (VI.62)
¢ (x > ) = constant (ix)™™» (VL.63)

[The fact that ix (rather than x) enters into eqs. (VI.62, VI.63) means that
all dynamical equations involve 3/0¢ = iw]. The power law structure of
eq. (VI.63) is restricted by the following requirement. When w > 1/7,
the only portions of the chains which can respond to the mechanical per-
turbation are subunits much smaller than the whole chain (the number of
beads per subunit g is such that the time 7, for one subunit is of order w™).
Then 81(w) becomes independent of the total chain length (of N). Thus
there must exist a simple law: 8n = 81(0) (iwr)™ , where the exponent m,,
ensures that the powers of N entering in 87(0) and 7™ cancel. This means
that vz — 1 —my vz =0
m,=1- L (V1.64)
vz
For simplicity, let us now restrict ourselves to the Kirkwood approxima-
tion (z = 3) and start with a © solvent (v = 1/2). Then we expect m, =
1/3, in rather good agreement with some data on polystyrene in © sol-
vents.»!3 If we now turn to a good solvent (v = 3/5), the prediction is
my = 4/9—i.e., a slightly larger exponent. The data are not quite con-
clusive.1:13

VL3,
Special Flow Problems

VI.3.1. Deformation in strong extensional
flows

Dilute solutions of polymer coils have special rheological proper-
ties: they tend to ‘‘thread.’’ Microscopically, the chains become highly
elongated in certain shear flows. The most spectacular effects occur in
‘‘extensional’’ flow fields such as

Uy = SX
v,=—5/2y (VL.65)

v, = —s8/2z
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(a) (b)

Figure VI.10.

Example of (mainly) longitudinal shear flows: (a) convergent
duct, (b) the “‘tubeless siphon.’> With dilute (10~%) polymer
solutions one can often arrive at a column ~ 10 cm high.

This pattern corresponds to what is often called longitudinal shear. Note
that div v = 0, the flow occurs at constant density. Longitudinal shear
flows occur in the axial region of a convergent duct (Fig. VI.10a) or at the
entry of a capillary.

A pearly ideal situation of this type is found with the *‘tubeless siphon”’
of Fig. VI.10b. (This ascending column is easily obtained with polymer
solutions because of their ability to thread.) The interest of this geometry,
from the present point of view, is to provide us with a simple convergent
flow (not perturbed by walls) in the bulk of the fluid below the siphon.
(Chain behavior inside the siphon has been studied in experiments at
Naples,3' but the analysis ignored possible elongations before entry.)

In most practical realizations of longitudinal shear flows, such as (a) and
(b) in Fig. VI.10, the coils have a finite transit time #; they do not remain
permanently under shear. However, there are some exceptional cases
where they remain trapped for a long time—e.g., near the center and in the
midplane of the ‘‘four-roller experiment’’ shown in Fig. VI.11. This
geometry has been studied at Bristol. Elongation of the molecules is
important near the axis of exit yOy', and is detected* by optical birefrin-
gence measurements.34

We begin by discussing coils located near the center (O) of Fig. VI.11
where the gradient (s) experienced by one chain may be considered as time
independent. This is exceptional but is simply a starting point. Later we

*Unfortunately, the present experiments had to be performed at concentrations ¢ ~ c*,
where the picture in terms of separate coils begins to break down.
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y
Figure VL.11.

shall proceed to cases where the transit times are comparatively short and
where transient responses are essential.

Our discussion of strong flows is restricted to longitudinal gradients for
the following reason. In the more familiar ‘‘transverse’’ situation:

v, =0v,=0 (VI.66)

each fluid element rotates (at an average speed s/2); the coils also rotate
and are extended only for a portion of each rotation cycle.?> Thus exten-
sional effects are less spectacular.

EFFECT OF PERMANENT GRADIENTS:
COIL STRETCH TRANSITION

Let us consider one chain (with its center of gravity at the origint) in the
flow field [eq. (VI.65)] and assume that

(i) The chain remains in the same shearing flow (s = constant) for a
long time ¢ (+ > 7) where 7 is the relaxation time [eq. (V1.48)] for the
chain at rest.

tThis eliminates an uninteresting overall translation of the chain.
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(ii) The shear is strong; the dimensionless parameter s7 is much larger
than unity.

We expect the chain to achieve a large end-to-end elongation r and to
take the shape of a long cylinder. We discuss qualitatively the balance of
forces in this elongated coil using the results of Chapter I for the elastic
forces in the strong deformation regime, plus a simple hydrodynamic
model for the friction on the cylinder.3?

The elastic energy for a chain in a good solvent is, from eq. (1.48),

r 5/2
F, = (E) —T™E (A>1) (VL67)

where we have introduced a reduced deformation A. Eq. (VI.67) holds if
the chain is not fully extended—i.e., r <€ Na or A < N5,

For the rotational flow discussed here, the friction forces can be derived
from a potential, as noted first by Kramers.35 An element of length dx of
the cylinder is subjected to a force

dx [kn, v(x)] = dx [km; sx] (VI.68)

where k is a logarithmic factor, given in terms of the length r and diameter
£ of the cylinder, by the formula:??

27
k= ——% VI.69
In (r/2) V169
We are concerned only with scaling properties and treat k as a constant
of order unity. The Kramers potential energy associated with the friction
[eq. (VI.68)] is

_ r/2d lk x2—_£ 3
o XM T o e ST

= —Tst A3 (VL.70)

Note the minus sign in eq. (V1.70). Large elongations lower the Kramers
potential. Adding eqs. (VI.70, VI.67), we get the following scaling form
for the energy

% =N2— s A (1 <A< N (VL.71)
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The resulting plot is shown in Fig. VI.12. At the high A limit (AR, ~
Na, corresponding to full elongation) the energy rises sharply above the
value in eq. (VI.71). We have incorporated this extra feature in the figure.
At the other end (A < 1) the elastic energy is of order A%, while the
Kramers term is — s7 A; we have also included these features.

Consider first the regime of large s. At strong st and intermediate
elongations (A > 1), the friction term dominates. There is no equilibrium
elongation in this range, and the physical situation corresponds to nearly
complete stretching (r = Na). Only in this region do the elastic forces
become suddenly strong, and equilibrium can be reached.

Fig. VI.12 also shows the behavior expected at smaller s, which results
from more extended calculations.®® The plot is reminiscent of a phase
transition; at values of s slightly larger than a critical value s, there are two
energy minima: one at small A (coil) and one at large A (stretch). These
minima are separated by a huge potential barrier, and the chain usually
sticks to one and the same minimum. At large s (s > s5.) the ‘‘coil”’
minimum ceases to exist, and the chain must go to the stretched state (if the
gradient s is applied over a long enough time). Related mechanical models

Fuot T s<s, s=S, $>§,

ASf2

2l A

-s7 A3

—_———————— e Z

Figure VI.12.

Free energy versus relative elongation (A = r/R) for a single
polymer coil in a longitudinal shear flow.



Dynamics of a Single Chain 191

have been analyzed by Hinch;* a discussion of the minima and of the
barrier (for the more restrictive case of ideal chains) can be found in Ref.
35. Generalizations to other types of shear have been constructed mainly
by the Bristol group.3

PHYSICAL BEHAVIOR UNDER TRANSIENT
CONDITIONS

As noted, the permanent state discussed above is exceptional. Consider,
for example, the convergent flow shown in Fig. VI.9b and more specifi-
cally a molecule approaching the tube along the axis. At a distance p from
the center O (p much larger than the tube diameter D) the flow field is
essentially radial,* with a velocity

Js
47p®

v = (VL.72)

where J, is the total solvent flux entering the capillary. Eq. (VI.72) ensures
the conservation of flux, 4wp?v = J,. The longitudinal gradient corre-
sponding to eq. (VI.72) is

_ |4y _ I,
sl =|25] = 277 (VL.73)

There is a certain critical radius p* at which st = 1
(p*P=J7 (VL.74)

The molecule arrives first in the region p > p* (far to the left in Fig.
VI.9b). It is seriously distorted only when it enters the sphere of radius p*.
It then experiences strong deformations during its transit time ¢# from p =
p*xtop=D

*dp _ p*
(~ [T de P2 V.75
fm o T T (V1.73)

Thus, transit times are comparable with molecular relaxation times. In
most cases the assumption of a stationary state discussed earlier in this
section is not adequate.

*This is the main simplification introduced by the tubeless siphon as opposed to the entry of
a capillary. However, our discussion remains qualitatively valid for the latter case (provided
that the solution is dilute).
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A very different picture has been extracted from simple calculations on
transients.3”%® As soon as the molecule enters the sphere of radius p*, it
stretches exactly like the surrounding fluid. This implies a stretching law
(for the long axis of the chain) of the form

Hp) = Re (ﬁp-) (VL76)

(since a fluid element has its transverse dimensions scaling like p and has a
constant volume, its longitudinal dimension must scale like p~2).

Eq. (VI.76) will be valid from p = p* to p ~ D if the final length
Fo=p is still smaller than the fully stretched value (Na). We assume this in
the following, and we then write

*\2
Tfinatl = 1 |p50 = Ry (‘%“)
= Ry (so 1)2’3 (VL.77)

where s, ~ J,/D? is the shear rate at entry.

The exponent 2/3 in eq. (VI.77) does not reflect excluded volume effects
but expresses simply a geometric property of three-dimensional convergent
flows. Birefringence measurements on such convergent flows do not give
profound insight into the chain behavior; they measure principally p* or 7.

Mechanical measurements may be more interesting. In particular, the
radial tensions o4 near the entry (p ~ D) are expected to be larger. From a
general formula [eq. (VI.53)]

00 = 5 fron (VL.78)

where ¢/N is the number of chains per cm?, andf is the elastic force inside
one chain, derived from the Fisher-Pincus analysis [eq. (I.49)]. This gives

g4 = % (8, 7)°13 (VL.79)

Thus o, increases rather rapidly with s,. This is the origin of the *‘thread-
ing”’ observed in rheological studies. Note that the exponent in eq. (VI.79)
does depend on excluded volume effects.

Transport experiments would be of interest when D is extremely small
(D < Ry). (Capillaries with such minute sizes can be prepared using
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particle track etching.) It should then be possible to see if the coils are
sucked in the tube, or if they are too large. Daoudi and Brochard have
proposed a simple answer to this problem.? They assume that the coils
enter if and only if their transverse dimension (| ) after affine deformation
(p ~ D) becomes smaller than the tube diameter D. The affine law for
r, (corresponding to eq. (VI.76)) is:

D

r, (D) = Ry o (VI1.80)

Following this idea, we expect transport when Rp < p*. Returning to eq.
(VL.74) for p* and eq. (V1.48) for 7 we find a critical current for the
passage of coils

I

7
Jo=— VI.81
<= ( )

This critical current is independent of N (at large N). Heavy molecules are
stretched over longer distances p*, and this compensates for their size.
Note also that J,. is predicted to be independent of the pore diameter D.
What about the assumption of dilute chains in the above discussion,
especially in regimes where J < J,? Since the chains are stuck, we might
expect an increase in chain concentration near the entry of the duct; this
could alter the laws of entry. In fact, a calculation of the steady-state
profile suggests that the increase in ¢ is confined to a very small region (of
radius comparable with the chain size) near the entry and is not essential.

VI.3.2. Dynamics of a chain inside a cylindrical pore

Consider the motions of a chain which is squeezed inside a very thin
capillary of diameter D (as in Fig. I.5). We assume that the capillary has a
constant (or very slowly varying) diameter D. Thus, the effects of longi-
tudinal gradients discussed before are negligible. The static conformation
properties of the confined chain were discussed in Section I.3b. Here, we
want to discuss the mobility of the chain and its coupling to solvent flow.
In the language of irreversible processes*® there are two ‘‘fluxes’” of
interest: the solvent flux J, and the polymer flux J,. The conjugate
‘‘forces’’ are chemical potential gradients

== =~ and - —=—puy
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(where x is measured along the tube axis). For weak forces we expect
linear relationships between fluxes and forces
Jy = Ly (—pg) + Lgp (—pip)

Jy = Ly (—ms) + Lpp (_l‘q’))
introducing three parameters L,,, Ly, and L,, ~ L., to describe all friction
processes.? In the dilute limit, which we discuss here, the first coefficient
L,, is trivial; it describes Poiseuille flow of the solvent in a tube and is
given by?’

(VI.82)

D!

L. = NsWs

(VIL.83)

where w; is the molecular volume of the solvent.

To calculate the two other Onsager coefficients, Ly, and L,,, we con-
sider situations where a force (— u'p) is applied to each monomer while no
force is applied on the solvent (i, = constant). The basic tool is the Oseen
tensor 4 (I, I,), giving the solvent velocity at point r, due to a localized
force f applied at point r,

va(rl) = 2 zch (rl rz) fB (V184)
B

where a,8 = x, y, z represent components. In a bulk solution we saw that
Z(r, r,) decreases like 1/r;; 7,. In the present tube problem (with a solvent
flow velocity v which must vanish at the tube walls) 3(r, r,) decreases
again like 1/r,, at small distances (r,, <€ D). At larger distances (ry, >
D) Z(r, r,) decreases much faster (ca. exponentially). The reason for this
cutoff is qualitatively explained in Fig. VI.13, where we discuss a related,
but simpler, problem: the potential (at point M) due to a localized charge
(at a point O) between two conducting plates.

This electrostatic problem is (roughly) similar to a hydrodynamic
problem (the calculation of ¥ (O, M)) because in the absence of walls the
response function decays like r~! in both cases.

With the walls, the potential at M is a superposition of the direct term
from O and of image terms, from the points A,A’, B,B’, etc. These image
sources ensure that the correct boundary conditions (no tangential com-
ponent of electric field) are obeyed on the two conducting walls.

Clearly, if the  distance (x) between the observation point (M) and the
line of images is much larger than the interimage distance (D), the effects
of different charges cancel and there is essentially no field left. The Oseen
tensor requires a more complicated discussion (because it describes a
vector response to a vector perturbation), but the physics is the same;
there is a cutoff at x ~ D, and this is all that we need for the scaling
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discussion. For a component such as ., (r; r,) (which is the one of
interest) we can write
_l_ (re < D)
551- (rI’ r2) = l 7)8 r12 (r12 > D) (VI.85)
0
Knowing this, we can compute simply the coefficient L,,; to each mono-

mer (r,) is applied a force ~ u', along x. The resulting solvent velocity
at point r, is

Usy (r,) = ( 2 z.u' (rl'rn» (- l"'p) (VL. 86)

where the sum is over all monomers in the solution. The average( ) is to be
taken over all locations and conformations of the chains. It gives

v, (r) = j L(ry 1) c(ry) dry (—p'p) (VL.87)

where c(r,) is the average concentration at r,. (The profile of c(r,) in a
cross-section is not flat, and ¢(r,) is equal toc only after averaging over the
cross-section.) Performing the integration, we get

1

b = o5 ¢D° (= ') (VL88)
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(since the integrand is nonvanishing only in a volume of order D?).
Multiplying v, by the cross-sectional area (~ D?), we obtain J, and L.,

Ly =J,/(— p'p) = (V1.89)

Let us now apply a similar argument to the calculation of L,,. Here, with
the same applied forces (— w'y), on each monomer (r,) we look at the
velocity induced at the level of another monomer (r,,)

Up, (rm) =< 2 z.u- (rpr 1)) (— ) (VI-9O)

After averaging, this becomes
Up, (r) = fg(rl'rz) Lrp (Kgrry) dry (— p'p) (VL.91)

where g(r, r,) is the pair correlation function for monomers inside the tube.
For the intervals r;, ~ D of interest in eq. (VI.91), we have

glryr;) ~ £4 (VL.92)
where gp is the number of monomers per blob of size D, introduced in
Fig. 1.12. Similarly ¥, = 1/%,D, and finally

&p

vy, () ~ 2.D (= u'p) (VL.93)

Multiplying by the cross-section (D?), this gives
Lyp = v, D*/(~ p'p) = 5;”_? (VL.94)

This completes our scaling program for the Onsager coefficients. A physi-
cal discussion will help at this point.

Eq. (VI.93) gives the polymer velocity (v,) for a given force (— p'y)
applied on each monomer. The total force of one coil N (— u',) = fi,: and
the coil mobility are

Mot = Vp/fror = ﬁf’iz‘)
8

1
7R,

where R, is the total length of the confined coil, discussed in eq. (I.53).

IR

(V1.95)
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This mobility is larger than expected from naive arguments. If, following
Debye,*2 we had represented the region occupied by the coil as a “‘sponge”’
of uniform density of monomers (N/R,D?), each with a friction coefficient
~ ma (where a is a monomer size), we would have arrived at a mobility

1 D a\?3
— Myt = (‘_l')") Mot (V1.96)

Hepebye = W‘a = agp

smaller than the correct value g, by a factor (a/D)?3. The assumption of
uniform density overestimates the friction. In reality the monomer concen-
tration has large fluctuations inside the tube, as shown in Fig. VI1.14, and
the solvent manages to pass through the ‘‘channels’’ in the structure.

Another important property described by the L coefficients is coupled
transport. Assume again that u', = O but that a force (— u',) is applied to
the chains. They drift, and we expect them to drag some of the solvent
with them. The resulting current is, from eq. (VI.82),

L _

Jy = Lsp (- l"'p) = L::, Jp (VI1.97)

= 5, (V1.98)
8p

where we have used the scaling egs. (VI.89, VI.94) for the Onsager co-
efficients. Returning to Fig. 1.12 for the confined coil, we notice that

gp
25 = ok VI.99

D? ( )
is the concentration inside one blob and is also the concentration inside one

coil (since the blobs lie side by side). Thus, we may write

Jo o €

i3
Jp, c*

[
I

¥ (VI.100)

where s is the volume fraction occupied by coils inside the tube. Physically
this means that each coil drags its own volume of solvent when it moves.

[LLLL ]
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Vi.4.
Problems of Internal Friction
VI.4.1. Three forms of friction

Section VI.1.2 introduced the effects of internal barriers on the
friction coefficient of one ‘‘dumbbell.’’ For a given elongation r (assumed
small) and elongation rate dr/dt = V., the friction forces (f) contain three
separate contributions, to be presented below.

SOLVENT FRICTION

In the Rouse picture [eq. (V1.12)] this was additive and thus linear in N

. dr
f, =1 NI (VI.101)

With the more realistic Kirkwood picture, we would have [in analogy with
eq. (VL.33)]*

f, = 6mn, Ry %—; (VI1.102)

BARRIER FRICTION

Energy barriers between different chain conformations (such as trans
and gauche for simple carbon backbones) are responsible for a form of
friction discussed by Kuhn. The result is given in eq. (VI.15).

fi=N1Y -g; (VI.103)

CERF FRICTION

The two processes above do not account entirely for the data. Very
early, a third friction term was proposed by Cerf#* with the structure

f. = ce% (VI.104)

where the coefficient {, is independent of N and also independent of
solvent viscosity.

*Eq. (V1.33) refers to uniform translations, while eq. (V1.101) describes an internal defor-
mation of the dumbbell, but the two friction coefficients have the same scaling properties.
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The profound difference between eq. (VI.104) and the Kuhn term [eq.
(VI.103)] has not been entirely recognized by the scientific community.
We now summarize the experimental evidence for the Cerf term and some
possible interpretations of this form of friction.

VI.4.2. Evidence for the Cerf term

It is not easy to measure internal friction processes. For example, the
contributions of eqs. (VI.103, VI.104) do not show up in the static
viscosity for weak flows. This can be understood as follows. To discuss
the viscosity increment 8 due to our dilute coils, we may choose any
type of (weak) shear flow. It is then convenient (as noted first by Kra-
mers®*) to choose a longitudinal shear flow, such as the one shown in
eq. (VL.65). In this situation the molecule does not rotate but simply
stretches to a certain equilibrium length r (for a given shear rate s). Internal
friction is involved only if the chain varies its length (or, equivalently, its
conformations). In the present case the length is constant, and there is no
dissipation associated with internal friction.

To find an effect of f; and f, on observable quantities, one must investi-
gate finer points, such as the relaxation times of the dumbbell. In the
absence of internal friction, we have only one relaxation rate [eq. (V1.42)]

l/7 = T/"h Rg3

In the presence of internal friction, Kuhn and Kuhn noted that two distinct
relaxation rates are present:°

(i) Rotational relaxation is unaltered (7, = 7) since rotations do not
modify the internal conformations

(ii) Extensional relaxation is slowed and contains a contribution of
processes (ii) and (iii) to the friction. Using eq. (I.45) for the restoring
force and equating it to the total friction force, one finds a relaxation time:

2
rew =7+ BE(N1 L+ L) (constant)  (VL105)

What methods can measure 7.,,? In practice, the most convenient ap-
proach has been to study situations of relatively strong shear (s 7 ~ 1),
choosing transverse shears to ensure that the molecule rotates and ex-
periences a periodic extension/contraction cycle.*4*> The main parameters
measured were nonlinear features in the viscosity and in the flow bi-
refringence—the latter being slightly simpler to interpret. All these non-
linear corrections finally determine the product s7.,. The measurements
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are repeated for different solvent viscosities 7,. In eq. (VI.105) the first
term 7 is linear in 7, [see eq. (VI.42)], while the internal terms are, by
definition, independent of %,. Thus, by suitable extrapolations at very low
7, one may, in principle, determine the internal friction terms and follow
their dependence on molecular weight (on N). This showed a contribution
to 7.z, behaving roughly like N to the first power, which could not be
accounted for by the Kuhn term. (In our picture we would expect this new
term to behave like {. Ry2 ~ N®3, not very far from a linear law.)

This procedure is rather difficult because: 1) the nonlinear effects of
a shear gradient are complex, and 2) the extrapolation toward n, — 0 is
delicate since the residual internal friction terms are comparatively small at
large N. Also, when the solvent is changed, its quality is also changed (and
Ry varies slightly from one experiment to the next).

However, the patient experiments of Cerf and Leray did demonstrate the
existence of internal friction effects at low frequencies in long, flexible
coils and the fact that this friction is much larger than that pnedlcted by
the Kuhn process.

V1.4.3. Origin of the Cerf friction

Three microscopic explanations have been reported for the friction term
feleq. (VI.104)].

(a) The first is due to Freed and Adelman.# It is based on nonlinear
coupling between modes in a flexible chain. The nonlinearity originates
from the nongaussian character of the smallest subunits. According to
Ref. 45, this leads to friction terms which (when translated into the ‘‘dumb-
bell’’ language) have very nearly the structure of eq. (VI.104)—i.e., they
are independent of N. However, there is a fundamental objection: what
is discussed here is a friction of monomers against the solvent, and the
resulting friction coefficient is proportional to the solvent viscosity 7,
thus, it cannot account for the Leray observations, which were arranged to
remove this type of contribution. *

(b) A recent idea from Cerf*é is based on the mode structure computed by
McInnes*” for a Rouse chain with internal friction. The basic equation is
a generalization of eq. (VL.5)

Pr=W, = (VI.106)

*On the other hand, at high frequencies (wr > 1) the mechanical data do point towards an
added friction proportional to the solvent viscosity.
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Figure VL15. o

where W, = 3T u/a?, and 0 is an internal relaxation time measuring the
importance of internal friction. The resulting modes have relaxation rates

2
1w, (2) — L p=123... (VLIOY)
Tp

= P
NIy w,o(”—hﬂ

When W ,6(p /N)? is much larger than unity 1/ 7, reaches a plateau (1/ 6).
At intermediate values of p/N there is an inflection point in the plot of
1/7, versus p/N. If by accident we are operating in this region forp = 1,
the apparent dependence of 1/7, on 1/N may be linear.

(c) Another, tentative, explanation comes from the present author,*® and
is based on the notion of large loops inside a chain (Fig. VI.15).

In Fig. VI.15 we see two monomers (n) and (m) which are accidentally
in close contact although the chemical distance |n — m| is large. If we pull
on the chain extremities, the two monomers (n) and (/m) will slide onto
each other, and friction will occur. This monomer-monomer friction does
not involve the solvent, but will be somewhat related to the viscosity of a
fluid of monomers. '

We obtain a rough estimate of the friction by the following procedure. If
the total elongation is r and its time derivative ¢ = dr/dt, we assume that
the chain deforms according to a linear law*

Bo—=#, = ("—"N’"—).i’r (VL108)

If n and m are in direct contact (probability p,,,), we expect a dissipation

*In a Rouse model it can be shown that eq. (VI.108) is indeed the correct form for slow,
uniform stretchings.
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by monomer-monomer friction of the form { (¢, — #,)? where { is a
molecular coefficient independent of the solvent viscosity.
Thus, the total entropy source is

8 =—; (#)2L N-2 nzmp,,,,,(n — mp (VL.109)

There are two interesting contributions to this sum:

(i) The case where n and m are consecutive monomers (m = n + 1).
Here, friction is associated with changes in the backbone conformation,
Pam is of order unity and, after summing over n, we find

TS backvone = (F)2{ N (VL110)

Thus the resulting friction coefficient is of order N~1: we recover the
Kuhn theorem.

(ii) The case where n and m are partners in a large loop (|n — m| > 1)
as shown in Fig. VI.15. Here, p,, is small because we are in a good
solvent and the monomers tend to avoid each other. In fact we know the
structure of p,,, from scaling arguments. The end-to-end probability of
contact (P,y) was discussed in Chapter I and is given by egs. (I.29,
1.30).

Py = N-0d+7-D (VL111)

where d = 3, v = 3/5, and y ~ 1.17. Thus, to a very good approximation,
we may write:

Py = N 197 = N2 (VI.112)
A similar formula (with a different prefactor) is expected to hold for all the
probabilities p,, when both n and m are ‘‘well inside the chain’ (1 <
|n = m| < N).
Pmm = |Il - 'nl_2

If we insert this form into eq. (VI.106), we see that all pairs (nm) con-
tribute equally. Large loops are essential. The result is then independent
of N

TS 100ps ~ (P2 (VL.113)

and the friction coefficient has exactly the Cerf form.
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VI.4.4. Summary

(i) For uniform translations, a polymer coil behaves like a Stokes sphere
of the same size. (i) The principal relaxation mode of the coil can be des-
cribed by a dumbbell picture, where the elastic spring constant is derived
from scaling and the friction constant is of the Stokes type. (iii) The inner
modes of the coil, as probed by scattering methods at a scattering vector g,
can be understood qualitatively as the principal relaxation of a subcoil
having a size g~.
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Vil

Many-Chain Systems:
The Respiration Modes

Vil1.
Semi-Dilute Solutions

VIl.1.1. Longitudinal modes

We are concerned here with polymer-solvent or polymer-polymer
systems, where the concentration ¢ of one constituent fluctuates, and
where we probe the dynamics of these fluctuations. It is convenient to
examine a weak, sinusoidal modulation of ¢, as shown in Fig. VII.1 for a
polymer in a solvent

Cx)

A B A

Figure VIIL.1.
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c(xt) = ¢ + 8¢, (1) cos gx (6c/c < 1) (VIL.1)

This sinusoidal form in space is convenient because it is self-preserving;
if the profile c¢(x) is sinusoidal at time ¢ = 0, it will remain so at later
times, with the same wave vector g (and a decreasing amplitude 8c, (7).
In Fig. (VIL.1) we see high density regions (A, A’...) and low density
regions (B, B’ ... ). There is an elastic force f from A to B, etc., tending
to equalize the concentrations. The osmotic pressure II is largest at A,
A’, ... and the force f (per cm?) is related to the gradient of I1

oIl
f=-5 (VIL.2)

The main problem is to find the velocities v, (x) induced by the force f
in the polymer system. Both f and v, are parallel to the direction of
modulation x (more generally, we would say *‘parallel to the wave vector
q’’); this corresponds to what we call a longitudinal mode.

There is also a certain solvent flow v,(x). For longitudinal modes it is
simply related to v,(x). For the slow flows of interest here, the solution
may be considered incompressible. Then the average velocity o = &, +
®,, v, must be independent of x and must vanish if our sample is limited
by impermeable walls.

Thus, we must have

®, v, + D,v,=0 (VIL3)

where ®, = ca?® is the polymer volume fraction, and @, = 1 — @,

At all points the solvent velocity v, is opposite v,. In this section, we
deal with semi-dilute solutions where ®, < 1 and ®, ~ 1; in this case v,
is much smaller than v, and can be omitted completely.

Let us first recall the results for the dilute limit, obtained in Chapter VI,
for the simplest case where ¢ is small (long wavelengths). The basic
variable is the current

Jp ~ cv, (VIL4)

It can be related directly to the force per cm?, f, through the coil mobility
Mo (introduced in eq. (VI.32))

Jo = o f (VIL5)
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Also, in the dilute limit, the osmotic pressure Il corresponds to a perfect
gas of coils

T (VIL6)

Jp = Mot T (’ —) =-D— (VII.7)

where D is the single coil diffusion coefficient discussed in Section
VII.2.2. Writing a balance equation for the number of monomers in an
interval (x,, x,) we have

¥ dc -
j —dx = = Jy(xp) + Jp (xy) (VIL.8)
x, at
or
ac _ _ dJp
= " (VIL.9)

Inserting this into eq. (VIL.7) we recover a classical diffusion equation

dc dc . _
rri D E (with D = T, (VIL.10)
If we then look for sinusoidal solutions of the form of eq. (VIL.1), we

find that the amplitude decays according to
8c(t) = 8¢(0) exp (— Dg*t) (gRr < 1) (VIL.11)

Eq. (VIL.11) is the basis of the photon beat studies at long wavelengths,
summarized in Section II1.2.2. Qur aim in this section is to generalize eq.
(VIL.11) to semi-dilute solutions. We show that there still exists a co-
efficient D,.p (c), (dependent on concentration) which describes the
relaxation of concentration fluctuations. The reason for the subscript
“‘coop”’ (cooperative) is explained below.
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VII.1.2. Two diffusion coefficients

When we discuss diffusion coefficients, we must distinguish two types
of experiments:

(i) Dilute tracers. If a small fraction of the coils is radioactive, we
can see them spread out with a certain self-diffusion coefficient D, (where
the ¢ means tracer).

(ii) Cooperative motions. Here all coils participate and interact. This is
the case for the longitudinal modes discussed above and also for macro-
scopic studies where two compartments (with concentrations ¢ + 8¢ and
¢ — 8c¢) are brought into contact, and the concentration profile is monitored
as a function of time. '

The diffusion coefficient measured here D,,,; is in general completely
different from D, (they coincide only in dilute solution). We shall see that
D,0p increases with concentration, while D, decreases drastically.

For coil systems, the difference comes from the following fact. One
labeled coil has to worm its way through a maze created by the others,
while in cooperative motion all coils move together like a sponge; they do
not have to disentangle. We shall discuss D, in this section, and we shall
come to D, only in the next chapter, where we attack entanglement
effects.

VII.1.3. The sedimentation coefficient

Let us start with a semi-dilute solution where each monomer is subjected
to a certain force f,,,, (this may be a gravitational force, a centrifugal
force, or an electric force if the chain is charged). We want to compute the
drift velocity v,, of the polymer in this situation, and we write

Vo = Stmono (VIL.12)

where s is a sedimentation coefficient (written here in natural units).

To achieve this, we consider one monomer, M, that feels the flow fields
from all neighboring monomers, M’. This approach is due to Kirkwood and
Risemann [J. Chem. Phys. 16, 565 (1948)] and is illustrated in Fig. VII.2.
The velocity at M is a sum of backflow contributions from all sources of
force:

va (M) =3 Top (Fame) frnonos — f Lo (1) dr cfmonos  (VIL13)
M/

The Oseen tensor 5 was defined in eq. (VI.27).
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Figure VIL.2.

One monomer, M’, is subjected to a
force f. It then moves in the solvent
and creates a backflow indicated by
the arrows. A second monomer, M,
then drifts in this flow field.

Subtraction of the second term arises from the following. To maintain
the solvent in the steady state, we must have a pressure gradient Vp which
exactly balances the average force (f = ¢fuon, per cm®)

= Vp + cfnono = 0 (VIL.14)
The second term in eq. (VIL.4) corresponds to the effect of this average
pressure gradient. If we compute the average velocity, we must weight the

probability of finding monomers at M and M’ by the correlation function
{c (0) c (r))/c. Thus, we arrive at

b = (0 M) = [ dt Tug Ofsno o[ £ @ c () = ] (vIL1)
What we finally obtain is the static correlation function
glr) = l—[(c 0)cr) — (07 (VIL.16)

which was discussed in Section II1.2.6. Introducing the explicit form of
Tos[eq. (VI.27)], we arrive at the fundamental formula for the sedimenta-
tion coefficient

_ 1
s = f dr G 2(r) (VII.17)

A similar equation was derived (for the single chain problem) in Chapter
VI through the Kubo formula. The present derivation is more direct.
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Let us now write the scaling form for g(r) which is adequate for semi-
dilute solutions—namely,

gr) =c ﬁ,(é) (VIL.18)
Note that the normalization is correct

fg Ndr=c =g (VIL.19)

where g is the number of monomers per blob [eq. (II1.44)].
Inserting eq. (VII.18) into eq. (VII.17), we arrive at*

__ Y% __ & _ c&
= o= = VII.20
s Smono 6mn, € 61, ( )

Thus, the sedimentation coefficient defined as in eq. (VI1.20) should scale
like g/¢ ~ @2, Early data on s(®) do give a decreasing function,
but the power law was not yet entirely known. More recent data on high N
polystyrene in benzene give an exponent of — 0.59 * 0.10.!

VIl.1.4. Cooperative diffusion

Knowing the sedimentation coefficient, we can now return to the respi-
ration modes, balancing the osmotic pressure gradient [eq. (VII.2)] against
the viscous force described by eq. (VII.12)

oIl c 1 :
- _(E = Cfmono =Tvp = T"p (VIL.2I)

Using the conservation equation, eq. (VIL.9), we arrive at

ac _ &1 _ Il &°11
o aE T e o (ViL22)
[neglecting a nonlinear term 4%I1/d¢? (8¢ /dx)?]. Ultimately we find a diffu-
sion coefficient

oll
Dcoop =s % (VIL.23)

*The coefficient 67 in eq. (VI1.20) has no precise meaning but is a convenient reminder of
the similarity with the Stokes law for viscous motion of a sphere.
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Using the scaling form of eq. (VII.20) for s and of eq. (I11.27, II1.31) for
IT and g, we get

~_8& U
Deor = Gmeg 1% = wm €
Thus, D,,,, has the same structure as a simple Stokes-Einstein diffusion
coefficient for a single blob. The essential feature is that D,,,, increases
with concentration; the restoring forces (due to the osmotic pressure
gradient) are stronger at high c.

More precisely the scaling prediction for D is D ~ ®34, The data on
polystyrene in benzene? give D, ~ 067 = 0.-02__5 glightly smaller ex-
ponent.*

In discussing the limits of validity of eq. (VII.24), the entire analysis is
macroscopic and is meaningful only when the wavelength (27r/g) is much
larger than the mesh size (¢). The opposite limit (g¢ > 1) is difficult to
reach by optical means but is conceptually interesting. In this case we ex-
pect to return to a single chain behavior [eq. (VI.42)]—namely, to find a
linewidth in inelastic scattering, at given q, of the form Aw = Tq¢*/7,.
Note that this crosses over correctly to egs. (VIL.11, VII.24) when g¢ ~ 1.

Our discussion was restricted to very good (athermal) solvents. What
happens in theta solvents? The question is delicate because of the stronger
effects of entanglements mentioned in Section VI.1. However, on the
whole, we are led to think that entanglements are not very efficiently
coupled to the mode observed in light scattering.® Then at low g, eq.
(VIL.20, VII.24) for the sedimentation coefficient s (and the diffusion
coefficient D,,,p) should remain meaningful provided we reinterpret £ and
g as the blob parameters for 7 = O. As discussed in Chapter VI, this
corresponds to ¢ = a®~! and g ~ ®~%. The relationship g = ¢ £ is main-
tained, and m, s ~ ¢ £ is expected to increase when we decrease the
solvent quality. This is qualitatively confirmed by the data.!

(VIL.24)

VII.1.5. Summary

In a semi-dilute polymer solution, there is a certain mutual friction
between the coils and the solvent. The dissipated energy (per cm?) is of the
form

2

: v
TS =N g

*With a deviation from Kirkwood picture, described by an exponent z, we may improve the
agreement. We would write D, ~ £%2 ~ ®¥:-2/4 and using the dilute data on z
(Chapter VI) we would arrive at a rather good theoretical value for D (®); but the whole
concept of a z is doubtful.
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where v is the relative velocity. This formula can be understood from the
case where the polymer is at rest, and the solvent flows with velocity v:
then the typical shear rates for flows in pores of size £ are of order v/£.

This relative friction controls the relaxation of fluctuations of concentra-
tion in the solution: the corresponding *‘cooperative diffusion coefficient”
D,o,p increases with concentration.

ViL.2.
Dynamics Near a Critical Point

We consider now a polymer dissolved in a poor solvent, for which
demixing may occur. The general features of the demixing critical point
were discussed in Chapter IV. Here our aim is to analyze the cooperative
diffusion D,,,,. We follow the classical description of Kawasaki and
Ferrell for simple binary mixtures, incorporating the (few) special features
required for polymer systems.

The starting point is a general formula relating D,,,, to the static correla-
tions in the solution, which we have already written in eqs. (VII.22) and
(VIL.17). We have

oIl

s9e (VIL.25)

Deoop =

1
6, r

]

oIl
I f drg(r) (VIL.26)

Eq. (VIL.26) is not entirely rigorous because it neglects certain anomalies
in the viscosity of the solution which renormalize %, in the denominator;
however, these corrections are minor. It is also possible to express the
osmotic compressibility ac/aIl in terms of the pair correlation g(r) through
the sum rule

ac
f grydr =T i (VIL.27)
Thus, we arrive at the striking form
T
fdrg(r)
_ 67, r
D oop = —Tdre (VIL.28)

When we get close to the critical point, g(r) describes correlations extend-
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ing to a very large distance &,; &, is then much larger than the size of one
chain (the latter being ~ R, ~ N'2a near the O point). To an excellent
approximation, it is sufficient to describe g(r) by a classical Omstein-
Zernike form

#() ==~ exp(- r/£) (Vi)

Note that for r < R,, g(r) crosses over smoothly to the single chain
correlation [eq. (I.17)] for an ideal chain. If we choose a concentration
exactly equal to the critical concentration and vary the temperature above
T., we expect the following scaling form for the correlation length £,

—~ e—Tc vt
gs_Ro[T—Tc]

where v, is an exponent near 2/3. For T = O, eq. (VII.30) gives the correct
form ¢, = R,. Within the Ornstein-Zernike approximation, it is also
possible to relate £, to the osmotic compressibility through eq. (VII.29).
The result is

(VIL.30)

ac \!7?
Ey = a(T a_ﬁ) (Ormnstein-Zernike) (VIL.31)

Both forms [eqs. (VII.30, VIL.31) are nearly equivalent, and either can be
used, depending on the available data. We can now return to eq. (VII.28)
for D,y,p, and we find

jm drr? 1 exp(— r/&,)
D 1 J, P
coop — )
o7 [" ar rr Lexp(= /¢
(1]

T

= — VII.32

6, ( )
Eq. (VII.32) is the Kawasaki-Ferrell result.* The only special feature of
polymer solutions is the magnitude of £,; the prefactor R, in eq. (VII.30) is
acoil size, and the temperature factors multiply it by a large number. Thus,
we expect D,,,p to be small, and to vanish as AT?>® when we get near the
critical point. This has been found in laser scattering experiments at Stony
Brook .

The macroscopic analysis leading to a relaxation rate 1/7, = Dw;,, q*
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[eq. (VIL.11)] holds only at very small g (g€, < 1). At large g values the
linewidth Aw, is expected to become independent of £, and to have the
form*

Aw, ¢ (g&>1) (VIL33)

6,

This crosses over correctly at g&€, = 1 and also merges into the single chain
spectrum [eq. (VI.41)] at large g values (gR, > 1)

Entanglements are probably not essential at the polymer-solvent critical
point for the following reason. At ¢ = Cepicq the coils are essentially
adjacent, as explained in Chapter IV. They do not overlap very much, and
they are relatively free to move side by side. On the other hand, for
polymer-polymer systems (without solvent), entanglements are essential.
Their dynamics near a critical point are considered in the next chapter.

VIL3.
Dynamics of Gels

VI1.3.1. Longitudinal modes of swollen gels

Section V.3 showed that a swollen gel is very similar (regarding
scaling properties) to a solution (without crosslinks) at the overlap
concentration ¢ = c*. This analogy is also present in certain dynamical
properties. Our general formulas [egs. (VII.17, VII.23)] express the sedi-
mentation coefficient and the diffusion constant D,,,, in terms of static
correlations. All that we need is to insert for g(r) the correct form for gels
[eq. (V.30)]. More concisely, since we are dealing with a system where
¢ = c¢*, we must replace—in all the dynamical formulas of Section
VII.1—the mesh size ¢ by Ry and the number of monomers per blob g, by
N (N being the degree of polymerization of the constituent chains).

This leads to a sedimentation coefficient

N
67, Re

[

s ~ N5 (VIL.34)

and to a diffusion coefficient

~ N385 (VIL.35)
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Measurements of D,,,, by inelastic scattering of laser light were initiated
at M.I.T.¢ Systematic studies on gels with variable N values were per-
formed later in Strasbourg.” When comparing different gels (with the same
solvent and solute but variable chain lengths) it is convenient to plot the
results not as a function of N but in terms of the (more directly mea-
surable) concentration ¢ (or @) in the gel. The relationship between
@ = ®* and N is given in eq. (V.23). For very good solvents (v ~ a®)

P* ~ N5 (VIL.36)
One then expects
s ~ (p—l/2
D — g (VIL.37)
coop

The photon beat results on D,,,, agree roughly with this prediction. How-
ever, the experimental exponents are systematically slightly smaller than
0.75, except for special chains such as siloxanes.?

The numerical coefficients in eqs. (VII.34, VIL.35) depend on the func-
tionality of the crosslinks and on the details of gel preparation. Some dis-
cussion on these points can be found in Ref. 7.

VIL.3.2. Slow motions near the spinodal threshold

In Section V.3.4 we discussed experiments where a gel is rapidly
cooled. This corresponds (usually) to a decrease in the quality of the
solvent. The gel would like to contract, but it cannot during the experi-
mental time available. This type of metastable state can exist only above
a certain spinodal temperature 7,. When T is decreased to T,, an instability
appears. At T,, the Young modulus E of the gel vanishes.

In this section, we discuss longitudinal modes in the gel at temperatures
T slightly above T,. We see that the cooperative diffusion coefficient
becomes vanishing small when we get down to the spinodal. This has been
shown by the M.I.T. group.? Their original interest was connected with
studies on eye cataracts, where the occurrence of opacity upon cooling
was announced by a drop in the cooperative diffusion coefficient.!® Since
the eye lens is a highly complex system, these workers turned to model
systems and studied polyacrylamide gels, where they found a similar
phenomenon. They proposed an interpretation in terms of spinodal decom-
positions of the gel.®

The essential points are:

(i) For T = T,, the system is metastable, but it is still in local equilib-
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rium, and all our basic equations remain valid. In particular the Kawasaki-
Ferrell result for D,,,, in terms of pair correlations [eq. (VII.28)] and the
compressibility sum rule for the correlations [eq. (VII.27)]

(ii) Near the spinodal, the pair correlation g(r) becomes of long range
and is well approximated by an Ormnstein-Zernike form:

g ()= ,3;1‘21—, exp(— r/£) (VIL38)

where £, is a correlation range which diverges for T — T,. In the M.I.T.
analysis £, was extracted from a mean field theory and was assumed to
behave like (T — T,)"'2. More generally one may relate £, to Young’s
modulus using the compressibility sum rule. It is also interesting that eq.
(VI1.38) agrees with the requirement g(r) ~ ¢ = N/R;? for r ~ Rp. If we
compare eq. (VII.38) with our earlier result for the gel in complete
equilibrium [eq. (V.30)], we see that they agree at r ~ Ry, but that a long
range tail at large » has appeared when 7 — T,.

(iii) Finally, from eq. (VIL.28), we are led to expect a diffusion co-
efficient of the form

T

Deoor ~ Gonr 2

(VIL.39)

and this will vanish for T — 7, since £, — . Qualitatively all these
behaviors have been verified by the M.I.T. group on polyacrylamide gels,
using both intensity measurements (giving E~') and elastic measurements
(giving D.,,p). Perhaps there are some significant deviations from mean
field behavior, but the complications brought in by a gel may well obscure
that point.

VII.3.3. Dynamics at the sol-gel transition

Light scattering studies on longitudinal modes near the sol-gel transition
would not be very interesting for the following reason. In the reaction
mixture, where monomers begin to build up large connected clusters, the
fluctuations of concentration are not large near the transition point. A
single cluster would give a large intensity, but the overlapping set of
clusters gives a much smaller intensity because of destructive interference
between neighboring clusters.

Static pair correlation functions are not very sensitive to the establish-
ment of long range connections. This implies that dynamic parameters,
such as the diffusion coefficient D,,,,, are not very sensitive to the
establishment of a weak gel phase.
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A more interesting mechanical parameter is the viscosity of the reaction
bath, when the fraction p of connected bonds increases and becomes very
close to the critical value p.. Clearly the viscosity will diverge when
Ap = p. — p — 0—i.e., when we arrive at very large clusters.

In Chapter V we related one mechanical parameter of the gel phase (the
elastic modulus E) to certain electrical problems on a percolation network.
A related analogy can be established for the viscosity of the sol phase.
Here, we assume that the bonds (with probability p) correspond to super-
conducting links. The voltages X at both ends of such a link must be
equal X; = X;. On the other hand, when the pair (ij) is not linked (prob-
ability 1 — p), we assume that there is a capacitance C, between (i) and
(7). This corresponds to a current

Jy=CoXi — X)) (VIL.40)

As explained in Chapter V, the mechanical viewpoint amounts to taking X;
as the displacement of monomer (i) and Jj; as the force due to (i) and acting
on (j). Eq. (VII.40) gives a force proportional to the relative velocity and
correctly describes viscous effects between clusters of all sizes (for very
small, point-like clusters, eq. (VII.40) does lead to the Navier-Stokes func-
tion in a fluid of monomers).

Returning to the electrical problem, when we increase p toward the
threshold value p., we expect that the macroscopic dielectric constant, or
the polarizability (a) of the system will tend to diverge with a certain
exponent s

a = constant C, (p. — p)™* (VIL.41)
This is corroborated by numerical studies of Straley,!! which suggest
s = 0.7 = 0.1 for three-dimensional systems. The macroscopic polariza-

tion P is related to the field = ~ 3.X/dx by

- o - %) .
P= a( &‘) (VIL.42)

If we differentiate this relationship with respect to time, we get the
polarization current P = J

= -l
J=-az 9.4 (VIL.43)

As explained in Chapter V, the macroscopic current is the analog of the
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stress; thus, eq. (VII.42) implies a linear relationship between shear rate
and stress, and the viscosity thus coincides with a.

We do not have many reliable data on the exponent s in eq. (VII.41)
for the sol viscosity, but new experiments on this question are being
attempted.

On the theoretical side, the exponent s can be calculated rather simply at
high dimensionalities'*!3 (between d = 4 and d = 6). In polymer
language, this amounts to computing the friction inside each cluster in a
Rouse approximation (ignoring all backflow effects). The viscosity is then
proportional to the (weight average) square gyration radius of the clusters
[eq. (V.9)], and s = 2 » — B. In dimensions lower than 4, the backflow
terms become essential, and how to include them remains a problem.
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VI

Entanglement Effects

VIiL.1.
Dynamics of Melts and Concentrated
Solutions

Concentrated polymer systems have fascinating motions. They
show a unique combination of viscous and elastic behavior, which has
been studied in careful experiments and is analyzed in a classical book by
J. Ferry.! Theoretically, the situation is less brilliant; the dynamics of
entangled chains (which can slip onto each other but cannot cross each
other) is still poorly understood. The main ideas are described in a review
by W. Graessley. In this chapter, we first summarize the concepts ex-
tracted from the mechanical data on melts. Then we proceed to the simpler
problem of one chain which is moving inside a crosslinked network. Here a
relatively plausible picture of the motions can be constructed and is known
as the ‘‘reptation model.’” Finally we return to the melts and discuss some
generalizations of reptation for these systems. This third area, however, is
largely conjectural.

VIIl.1.1. Rubber-ike and liquid-like behaviors

The fundamental experiment on weak mechanical perturbations can be
presented as follows.! Starting with a fluid at rest, we apply at all times
(t > 0) a small perturbative stress o (the detailed specification of this
stress—extension, or transverse shear—is not essential for our discussion).
We now look at the strain e(f) induced by this step increase in stress. For
small o, the strain is a linear function of the stress

219
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e(t) = alJ(t) (VIIL.1)
The function J(#) is called the creep compliance of the polymer. For a melt

(or concentrated solution) of long chains it has the structure shown in Fig.
VIIL.1.

Jety

Liquid J~t/n

Rubber

Glass

T t
Figure VIIL1.

At short times, the conformations (¢trans, gauche, etc.) in all the chains
do not adjust, and the mechanical response is similar to what one measures
in a polymeric glass (where the conformations are permanently frozen). At
longer times the conformations do change, and the strain becomes more
important. However, there is a large span of time (t+ < 7,) where the
chains remain entangled and behave like a rubber network, as shown in
Fig. VIII.2.

Figure VIIIL.2.
In this range of ¢ values, the strain has a plateau
J({t) = J3 <) (VIIL.2)

Je is called the steady-state compliance. The inverse
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E = ()

can be called the elastic modulus of the transient network.

Finally, at very high times the creep compliance starts to increase linearly
with time. This is the normal steady-state behavior for a liquid, where the
strain rate (de/dt) is proportional to the stress o. The ratio between the
two is the viscosity, 0

7 %—j =0 t>7) (VIIL.3)

The time 7, when we cross from eq. (VIIL.2) to eq. (VIIL3) is called the
terminal relaxation time. It is the longest relaxation time observed in
mechanical measurements. There seems to be a scaling form for the creep
compliance that covers both the rubber and liquid regions

J() = Je o, (t/7) (VIIL4)

where ¢, (x) is a universal function (for monodisperse chains) with the
limiting behaviors
psx <) =1
(VILL.S)
ex=1)=x
If we compare the latter form with the viscous flow equation [eq.
(VIIL.3)], we are led to an important scaling relationship for the viscosity

n = Er, (VIIL6)

which is obeyed well in practice. We now summarize the data on the three
constants E, 7, and 7,.

VIII.1.2. Elastic modulus of the transient network

For long chains, the plateau modulus E is independent of chain length.
When the chains are fully flexible, E essentially measures the number of
entanglement points per unit volume in the transient network. Often the
modulus in a melt is written as

E = ¢T/N. (VIIL.7)

where ¢ (~ 1/a®) is the concentration in the melt, and N, represents the
average interval between entanglement points along one chain. Typical

!
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values of N, are of order 100.2 Our discussion here is restricted to long
chains N > N.,, so that entanglements are indeed essential. The value of
N, must be sensitive to the local rigidity of the chain and to the monomer-
monomer correlations. Unfortunately, little is known about the tempera-
ture dependence of N,, and no realistic calculation of N, is available.

Another question of interest is the concentration dependence of E if we
go from melts (& = 1) to less concentrated solutions. The region & ~ 0.1
to 1 is probably complicated by many nonuniversal features, related to
local monomer-monomer correlations. In the semi-dilute limit (®* < @
< 1) we could expect a scaling form

N = N (VIIL8)

where g is the number of monomers per blob.

The idea underlying eq. (VIIL.8) is that if we consider blobs as the
fundamental units, we are led back to a completely dense system, and eq.
(VIIIL.7) can still be applied: ¢/g is the number of blobs per unit volume.
However, this idea may not be vaiid. Although bl6bs afid monomers are
essentially equivalent in terms of thermodynamic properties, they may
differ in their modes of entanglements (blobs may entangle more easily
than monomers). This would show up in a direct dependence of N, on
® in eq. (VIIL.8). We shall meet this problem repeatedly in this chapter.

VIII.1.3. Viscosity and terminal time

The viscosity 7 is very sensitive to chain length. Both % and 7, increase
as a power of N

n ~ 7 ~ N™ (N > N, (VIIL9)

where n, is of order 3.3 to 3.4.2

The exponent m,, represents one of the major unsolved problems of
polymer physics. An early attempt to derive m,, is due to Bueche and is
based on the notion of one chain dragging other chains.? His analysis led to
n ~ N33, which is good, but to a value of the terminal time 7, ~ N5,
which is clearly ruled out by the experiments. More refined discussions
along similar lines were analyzed and criticized by Graessley.2

Another work, by Edwards and Grant,* attempted to give a self-
consistent description of a chain trapped in a tube due to neighboring
chains. This calculation gave n ~ N3. It suffered, however, from two
defects:
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(i) The discussion of stresses included only the stresses inside one chain
and did not incorporate interchain constraints. Thus, the elastic modulus E
was underestimated. The authors write E ~ ¢T/N rather than ¢T/N.,.

(ii) The self-consistent relaxation time 7, was found to be very large
T, ~ N*. Thus, in this calculation also, 7, and % do not scale in the same
way, and this is incompatible with the mechanical data.

Another group of models is based on the notion of a transient network,
introducing a finite lifetime for crosslinks into the classical rubber elas-
ticity.> This contains some excellent physical points. However, the depen-
dence of 7, on the molecular mass is not attacked and remains unexplained
in this picture. Thus, we do not describe the transient network models.

A different approach, based on the reptation concept, was initiated by
the present author® and was recently augmented by Edwards and Doi.” As
explained in the next section, it leads to » ~ 7, ~ N3, and there is no
obvious correction which might increase the exponent from 3 to the experi-
mental value of 3.3. Thus, the present situation is still unsatisfactory.

ViiL.2.
Reptation of a Single Chain -

VIil.2.1. Coils trapped in a network

Here we look at a system which is simpler than a polymer melt but
which still shows some nontrivial entanglement effects. This corresponds
to a single, ideal, polymeric chain P (with N monomers) trapped in a three-
dimensional network.

Incorporation of the chain into the network is difficult. It is not enough
to put a swollen gel into contact with a solution of chains. Even if thermo-
dynamic equilibrium allows for a finite concentration of chains in the gel,
the kinetics of chain diffusion are usually too slow. However, it is possible
to prepare a mixture of chains P with other chains C, and to crosslink the
C chains in a second stage. This was done by the Wisconsin group using
two different pathways: 1) with P = polyisobutylene and C = butyl rubber;?
and 2) with P = saturated ethylene propylene copolymer, C = ethylene
propylene terpolymer [+ crosslinking agent (sulfur)].?

Another possibility is obtained with block copolymers AB to which one
adds some chains (P) which are chemically identical to the A group.
Starting with a disordered solution or melt, by suitable changes in tempera-
ture or solvent concentration, one can reach a final state where the B group
segregates into micronodules. The A chains are then crosslinked by these
nodules, and the P chains are trapped in a network.!?

The best idea is probably to replace the network by a melr of chains that
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are chemically identical to P but much longer. Then the chains do not dis-
entangle in the times of interest and behave effectively as a network. Also,
the system is simple to prepare!

In all these processes, it is essential that the P chains never become
attached to the network. As shown later, the behavior of a long chain
which is attached at one end is very different from that of an unattached
chain. It is also important (for similar reasons) that the P chain be un-
branched.

Assume now that we do have one linear P chain moving in a given net-
work, as shown in Fig. VIII.3 below (for a two-dimensional example). The

Figure VIIL.3.

network is described by fixed obstacles O,, O,, etc. The chain P is not
allowed to cross any of them, but it can move in between in a wormlike
fashion. We call this “‘reptation.’” The basic reptation process is shown in
Fig. VIIL4. Reptation is similar to unraveling a knot. We begin by
accumulating a stored length in one portion of the knot, and then we
circulate it to different loops, up to the moment we have relaxed an essen-
tial constraint.

:'- ~\
¢\ /L
PSRN Figure VIIIL 4.

A B’ C

VIIl.2.2. The terminal time, 7,

To understand the effect of the obstacles at one moment, it is convenient
to think of the chain as being trapped in a certain tube (Fig. VIIL.5). The
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Tube

Figure VIILS.

notion of a tube is due to S. F. Edwards.!! Of course, the chain pro-
gresses by reptation. It leaves some parts of the tube, and it ‘‘creates’’
some new parts as shown in Fig. VIIL6.

T A

(n)

(m)

Figure VIIL.6.

Free successive situations for a reptating chain: (a) the chain is
trapped in its original tube; (b) the chain moves to the right and
a certain portion (I,F) of the original tube disappears; (c) the
chain moves to the left, and a portion (J,J;) of the original tube
disappears.
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A detailed statistical description of the fluctuations in the stored length
and of their dynamic effects is available.®” Here we present a simplified
discussion, which allows us to predict the main scaling laws.

The terminal time 7, is essentially the time required for complete re-
newal of the tube. We can derive the N dependence of 7, by a simple
argument. Let us assume for a moment that our chain is trapped inside one
infinitely long tube. For motions along the tube we can introduce a ‘‘tube
mobility’’ for the chain .. This is defined by applying a steady force f to
the chain (along the tube direction) and measuring the resulting chain
velocity along the tube v = gy, f. We assume that long range backflow
effects are negligible (which is correct for our dense systems). Then the fric-
tion force v/p,s. must be essentially proportional to the length of the
chain—i.e., to N. Thus we are led to

= ﬁ
Freube = 5 (VIIL.10)

where w, is independent of N. A similar property holds for the ‘‘tube diffu-
sion coefficient,”’ D,,;., which is related to p.p. by an Einstein rela-
tionship

Duupe = %T = 11)\/1 (VIIL.11)

As is clear on Fig. VIIIL.6, to eliminate its original tube, the chain must
progress by tube diffusion over a length comparable with its overall length
L. The corresponding time is:

NL?

7t = L*/Duupe = 5 (VIIL.12)
1
and since L is linear in N, we expect the scaling form
=1 N (VIIL.13)

How does this compare with mechanical measurements of chains trapped
inside a network? Of course, the measurements are difficult since one must
take the difference between the response of the doped and pure networks.
However, a certain number of data have been taken, on the second and third
systems listed at the beginning of this section.®*1° The first results sug-
gested 7 ~ N3, but recent experiments give a higher exponent 7 ~ N3-3—
similar to what is measured in solutions. We hope that future measurements
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on the last class of systems may clarify the situation. Again an essential
feature is to avoid all branching of the mobile chains, especially at high N.
Finally, notice how large the reptation time [eq. (VII.13)] can be. As-
suming that our melt is far above any glass transition temperature T,, 7, may
be of order 107! sec. If we have a long chain (N = 10%), this leads to
7, ~ 10 sec—i.e., to very macroscopic times.* Thus the reptation concept
does give us a plausible feeling for the viscoelastic behavior of polymers.

VIIl.2.3. Translational diffusion

In a time 7, a reptating chain has moved along its tube by a length
L ~ Na, but in space this motion corresponds to a much smaller displace-
ment because the tubes are contorted; assuming an ideal chain, the displace-
ment is R, = N'2 g. After one such time 7, all memory of the original con-
formation is lost, and successive time intervals of length 7, are statistically
independent. Thus, we can immediately estimate the translational diffusion
coefficient of the reptating chain

R,?

Tt

= D,N-? (VIIL.14)

This diffusion coefficient is expected to be very small. The prefactor D,
should be comparable with the diffusion coefficient in a liquid of monomers
and of order 10~% to 10~% cm?/sec. IfN is 100, this would lead usto D ~ 10~
cm?/sec, corresponding to a diffusion length \/ D, ¢ of only 0.3 mm for a
diffustion time # of 10 days. If we go to higher N values, the process
becomes even slower.

Experimentally, we do not have any data on the diffusion of trapped
chains in a network. What is available is the diffusion coefficient of a
labeled chain in polyethylene melts, measured by two techniques: 1) from
nuclear spin resonance data,'? and 2) using deuterated chains as labels, the
local concentrations of deuterated/protonated species being probed by infra-
red measurements. '3

The first experiment gives the dependence, D¢pai, ~ N%3. The second
experiment gives Dipgs, ~ N722%1. In both cases N is small (< 108).

Viil.2.4. Reptation in swollen systems

Our discussion of reptation has been limited to completely dense sys-
tems—e.g., a dry network with closely spaced entanglement points or a
polymer melt of very long chains, incorporating one extra *‘test chain.’’ To

*However, some important prefactors may modify the value of 7,: see the discussion after
eq. (VII.29).
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avoid relaxation times which might become prohibitively long at high N, it
may be convenient to work with a good solvent that is added the system.
Then the structure will be more open, and all motions will accelerate.

Do we expect simple scaling laws for the dependencies on concentration
of the terminal time, the self-diffusion constant, etc.? Theanswer is dubious.
For static properties, we know from Chapter III that a semi-dilute solution
can be pictured as a ‘‘melt of blobs.’” But it is not certain that this picture
can also be applied to entanglement properties. The crucial point is the
following: in a melt, we know from the mechanical data that a rather large
number (N, ~ 200) of consecutive monomers along one chain is required
to make one entanglement (or one knot). But if we go to a solution at
concentration ¢, the number N.,(c) of blobs required to make an entangle-
ment may decrease at low ¢. Even a single blob has a finite chance to
become entangled, while this has been ruled out for a monomer.

Thus the equivalence between blobs and monomers is imperfect; and
scaling laws for entanglements may be absent, or may be confined to
unphysically high values of N.

In the following lines, we shall, however, describe the scaling laws which
would occur in a melt of blobs, if the entanglement abilities of the blobs
were identical to those of monomers. We know that this is too crude, but
it may be a useful reference for comparison.

Also, for simplification, we shall not include explicitly the number N, in
our discussion, but assume that N, is constant and ignore al powers of N,,.
This is criminal, since N, ~ 200, but it simplifies the presentation! (An
improved discussion for melts, incorporating N,, is summarized at the end
of Section VIII.3.1.)

SOLUTIONS

We discuss first the case where the ‘‘network’’ is replaced by a semi-
dilute solution of concentration ¢, composed of chains with a large degree of
polymerization N,. In this solution we add one “‘test chain’’ (N) and ask for
the reptation time of the test chain 7, (c). For simplicity we choose an ather-
mal solvent (a® = v, or x = 0).

As usual, we can relate the semi-dilute region to the concentrated regime
using blobs as our fundamental units. If, as in Chapter III, we call g =
(ca®)™>" the number of monomers per blob, the number of blobs in the test
chain is N/g, and the reptation time is, by a natural extension of eq.
(VIIL.13),

3
T{c) = (%) Tolod (VIIL.15)
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where 75, is the relaxation time associated with one blob, of size £, and is
given, in analogy with single coil properties, by a transposition of eq.
(V1.49):

3
Tolod = ng (VIIL.16)
This leads to:
~ NEN: m, _ Lin,
Tdc) = (?) T = =7 (VIIL.17)

where L, = (N/g)¢ is the *‘primitive length of the tube’’ (made of N/g por-
tions each of length £). Using the results of Chapter III for £(c) and g(c) the
reptation time can be cast in the form

3
7dc) = ML Ne(ca®)” (VIIL18)

Eq. (VIII.18) can also be obtained by a direct scaling argument, imposing
the restriction that 7, be proportional to N° and to a certain power of ¢ and
demanding that 7/{(c*) be proportional to the single coil relaxation time [eq.
(V1.49)]. However, the derivation used above has more physical signif-
icance. Reptation studies on solutions at variable ¢ have been started
recently by H. Hervet, L. Leger, F. Rondelez—but precise exponents are
not yet known.

REPTATION IN A GEL

A similar law is expected to hold for swollen gels. Here the analog of g
is the number of monomers per chain N’ in the network, and the analog of
£ is the Flory radius Ry (N') given in terms of the excluded volume param-
eter v (measuring the quality of the solvent) by eq. (IV.49). We take N
> N’ to ensure that the chain is indeed trapped into a tube. Then we
expect a reptation time of the form:

r, = 2RAN) (%’.)3 (VIIL19)

3 3/5
2 (?vf) (___N",’;,s (VIIL.20)

l

n
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Since N/Rg*N') scales like the concentration ¢ in the gel, this may also
be expressed in terms of c. The result is simple:

3
7= 22 (copn N (VIIL21)

Eq. (VIIL.21) has the same structure as eq. (VIII.18) but is slightly more
general because here we allow for solvents of variable quality (variable
v)—a useful feature for swollen gels. [In all applications of eq. (VIII.21)
where the quality of the solvent is changed but N is fixed, we must recall
that ¢ is a decreasing function of v, as explained in Chapter V.]

VIIl.2.5. Reptation of a branched chain

We now show that when the reptating chain is branched or has some
long side groups, its motions are strongly quenched. A typical situation is
shown in Fig. VIII.7 where only one side group CE, (carrying N, mono-
mers) is present. Let us assume that with an external force, we have pulled
the main chain to the right, displacing the branch point from C, to C.

The distance C,C, measured in units of the mesh size, is 8. The dis-
placement C, — C reduces the entropy of the side group by an amount &
In z, where z is the number of ‘‘gates’’ surrounding one unit cell in the
network. As soon as p exceeds a few units, this entropy defect is large,
and there is a strong elastic force that tends to bring C back to C,,.
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Figure VIIL.7.

A reptating chain (E,F;) with a long side group (CE,). When the
chain is suddenly moved to the right (C, going to C), it takes
a long time for the side group to relax (through steps b, c, d).
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Let us fix p at some value for which the entropy defect is finite (say
8 = 1) and maintain the branch point at C by some external means. How
long will it take for the lateral chain CE, to return to equilibrium? This
requires that the original conformation CE,, be transformed into a com-
pletely different one, such as CEj. If the lateral chain were independent
and free to reptate, it would achieve this during one reptation time 7, (N,)
= 1, N3, but in our problem C is fixed; the single pathway available
from conformation CE,, to CE; amounts to having E, return to C, follow-
ing exactly the original tube that surrounded (CE,). After E, has retraced
its steps to C, it will be able to start again and to generate a new tube CE;.
It is only after all these steps are completed that the entropy defect of the
lateral group will be eliminated.

This leads us to compute the probability that E, retraces its steps exactly.
The total number of paths with N, steps starting from C is z%, where z is
the number of nearest neighbors to one site on the lattice in Fig. VIIL.7. We
want to count the fraction P of these paths for which: 1) the end point is at
the origin, and 2) the path is topologically equivalent to zero—i.e., it has
the ‘‘tree’’ structure shown in Fig. VIIL.8.

NA

(@) (®)
Figure VIILS.
The quantity P can be calculated'* and has the structure
P = A(N,) exp(—aN,) (VIIL.22)
where A(N,) is a prefactor with only a weak dependence on N, (a power

law), and the leading factor is the exponential. The quantity « is a numeri-
cal constant that depends on the lattice structure and is of order unity.*

*The detailed calculation of « described in Ref. 14 by the present author is wrong.
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We can assume that the tube mobility g, for the backbone is essen-
tially reduced by a factor P, or exp(—alN,), (omitting all weak prefactors).
Thus, as soon as N, is large, the reptation time for a chain with one (or
more) side groups becomes exponentially long

Treo —> T(N,N,) exp(aNj) (VIIL.23)

where the prefactor 7(N,N,) is not known precisely but is not essential for
our discussion. The difference between eq. (VIII.13) for linear chains and
eq. (VIII.23) for branched chains is spectacular. As soon as the extended
length of the lateral chain exceeds a few mesh units of the network, it
quenches all reptation.

This theoretical conclusion has not been confirmed by direct reptation
experiments, but it has some implications. Mechanical measurements on
strongly entangled, high molecular weight chains may be completely
dominated by the presence of a few branch points. If exponential laws such
as eq. (VIIL.23) are involved, we need only a small fraction of branch
points, and such fractions cannot be detected by standard physicochemical
methods. We conclude that mechanical measurements in long chain sys-
tems can be extremely sensitive to certain chemical defects. Unfortunately,
we do not have reptation data on controlled branched polymers. We do
have data on mechanical properties of branched melts,'® but the melt
problem is much more complex than the reptation problem, as shown in
next section.

A similar problem occurs when we have long dangling ends in the gel
such as shown in Fig. VIII.9. The above discussion on renewal of conforma-
tions applies also to this type of chain which is attached at one end. Again
we expect chain relaxation to be severely quenched whenever the dangling
end is much longer that the mesh size.

When the relaxation time 7,., becomes exponentially large (either for
branched chains or for long dangling ends), the behavior at frequencies
larger than 1/7,., becomes important. Consider, for example, a network
with one dangling end and assume that a constant strain e is applied from
time ¢ = 0 on. The network is strained; at early times the dangling chain is
strained exactly in the same way and wishes to relax toward a more iso-
tropic distribution of orientations. After a time ¢ a number / of monomers,
near the free extremity of the chain, have relaxed by processes similar to
those in Fig. VIII.8. The relationship between / and ¢ is the analog of
eq. (VIIL.23)
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dangling
end

Figure VIIL9.

t =7, exp (al)
¢ (VIIL.24)
= (Y)
T
It is plausible to assume that the mechanical stress a(f) at time ¢ will
have a component proportional to it)

a(t) = e [E, — ki{1)] (VIIL.25)

[where k is proportional to the concentration of dangling ends].

Thus, we expect that with long dangling ends, the stress response to a
stepwise strain relaxes logarithmically. This type of stress relaxation study
may provide a direct check on the effects of topological constraints on
branched structures.
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VIIL3.
Conjectures on Polymer Melts

VIIL.3.1. One long chain in a melt of shorter
chains

To understand the dynamics of one chain in a melt, it is con-
venient to start from a slightly different problem. We consider one ‘‘test
chain’’ of N, monomers, embedded in a monodisperse melt of the same
chemical species, with a number N of monomers per chain. We consider
three types of motion for the test chain: reptation, *‘tube renewal,’’ and
Stokes-Einstein friction. We first describe tube renewal and show that this
is probably negligible for most practical purposes. Then we discuss com-
petition between reptation and Stokes-Einstein friction.

TUBE RENEWAL

The basic process associated with this word was introduced in Ref. 14
and is shown in Fig. VIII.10, where we see one entanglement constraint
being altered: when one of the ambient chains (I') has an extremity in the
immediate vicinity of the test chain (I';), the relative positions of (I') and
(I';) may change qualitatively in a very short time. This may be viewed as
a modification of the tube.

We then try to picture the tube itself as a Rouse chain, following
early ideas of Edwards.!! The basic parameter in this description is the
microscopic jump frequency of one unit of tube—the analog of the con-
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Figure VIIL.10.
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stant W in eq. (VI.8). Since the process shown in Fig. VIII.10 is a rare
event, we expect this frequency to be much smaller than for a free chain:
W— W<Ww.

In an early attempt,'* the present author assumed that W was simply
reduced by a factor ¥ equal to the fraction of tube sites which are near the
extremity of a I" chain

W — ﬁ/ = Wy
2 (VIIL.26)

N

(since each I' chain has N beads, out of which only two are at the ends).
However, closer examination shows that the reduction in W is much
stronger than suggested by eq. (VIII.26). Each costraint, due to one (I")
chain, is relaxed only after one reptation time 7,.,(/N). Thus, it is probably
more correct to write, following an idea of J. Klein,*

1
Tren(N )

A more detailed justification of eq. (VIII.27) has been given recently by
Daoud and the present author (to be published in J. Polym. Sci.). The
frequency W is very low. For example, it leads to a diffusion coefficient
of the long chain

W= (VIIL.27)

Dyen(Ny) = Wazﬁ- = Dy N N3

(VIIL.28)
This could dominate over the reptation value D,.,(N,) = D,;N,"? only if
N; > N3, For most practical situations the opposite inequality holds—i.e.,
tube renewal is not observable.

STOKES-EINSTEIN DIFFUSION

It must also be realized that for very large N, reptation itself is not the
dominant mobility process for the long chain. For N; — ® we can think of
the N chains as forming a solvent of comparatively small molecules, with a
certain viscosity 7. This viscosity is discussed in the next section, and, in
the reptation model, it scales like ny = 1, N3. Then the diffusion constant
is given by the Stokes-Einstein equation

*Macromolecules 11, 852 (1978).
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7
Dysyores(N1) = SnmR(N,) (VIIL.29)
Using the ideal value R(N,) = 1/aN?, we can compare Dgp.s(N;) with
D, ,(N,). We find that reptation dominates only when N; < N2. Thus, we
are led to expect two regimes for the test chain
(i) N; < N?. The test chain is statistically ideal and moves by
reptation.

(ii) Ny > NZ?. The test chain is swollen, and moves as a hydrodynamic
sphere, dragging the solvent inside it.

PREFACTORS

Our scaling discussion ignores all detailed prefactors in formulas such as
eq. (VIIL.13) for reptation or eq. (VIII.23) for tube renewal. There is, how-
ever, anumerical constant which is important in melts and must be displayed
explicitly. This is the average number of monomers between consecutive
entanglement points N, introduced in Section VIII.1.2. This number de-
pends on the detailed geometry and fiexibility of the monomers, but in most
cases it is large (N, ~ 200), and thus powers of N, should be stated ex-
plicitly.

Elastic modulus E = T/(a® N,) (eq. VIIL8)
Reptation times T ,.p (N) = Typono N3/ N,
Melt viscosity 1) ~ NmonoN*/NZ

Here 7Ton0 and 7yon, are microscopic parameters defined at the monomer
scale. These equations can be derived either from a microscopic study at the
scale of one chain portion between entanglements or more directly, by
requiring that for N decreasing to N,, there must be a crossover toward
Rouse behavior.'® A more detailed discussion is contained in recent papers
by W. Graessley and co-workers.!’

VII1.3.2. Newtonian viscosities in a homodisperse melt

As explained in Section VIII.1 the viscosity () appears as the product of
an elastic modulus E' and a relaxation time 7,. In the reptation picture E is
independent of N, while 7, ~ N3, and 7 should thus scale like N3 for a
polymer melt of linear chains.

What happens if we go to branched chains? This has been discussed
recently by Graessley et al.!> Two effects come into play:



Entanglement Effects 237

(i) For a given molecular weight, a branched chain is more compact than
a linear chain; this tends to reduce the viscosity.

(ii} Entanglement effects are enhanced by chemical branching; this tends
to increase the viscosity.

After a close scrutiny of the experimental data, Graessley et al.!® were led
to assume that relaxation is controlled by reptation, and that the reptation
times for the branched species increase exponentially, as in eq. (VIII.23).
Again the complete solution to these problems will probably involve experi-
ments on dilute mixtures of branched chains in a linear matrix and vice-
versa.

VIIL.3.3. Behavior in strong transverse shear flows

Since the relaxation times 7, are very long, it is relatively easy to realize
shear rates (s) larger than 1/7, and to measure the resulting properties. It is
convenient to work in situations of permanent (s), where the molecules
reach a steady state with finite distortions. This can be achieved only in
transverse shears. For dilute solutions (Chapter VII) we discarded the trans-
verse shear situations because they led to small (and thus complex) ef-
fects.!”!® For concentrated solutions, the distortions become strong even in
transverse shear flows, and we can restrict our attention to this more
common case.

For example, in simple shear (v, = sy - v, = v, = 0) performed at finite s
we may still define an effective viscosity 7(s). The literature in this area is
vast and diffuse. However, there seems to be a convergence toward the
following results.?:'® The viscosity 7)(s) appears to follow a universal scaling
law

7(s) = N(0)fn(s70)) (VIIL.30)

where 7,(0) is the terminal time in the absence of flow. The dimensionless
function f;(x) has the following limits

f'n(o) =1

(VIIL.31)
fn(x)lz pp = X P

where p, is of order 0.8.
The relaxation time 7,{s) is much more difficult to measure, but it is
plausible to assume that it follows a similar scaling relationship:

T85) = 7L0)f{s7,(0)) (VIIL.32)

where f,(x) is another dimensionless function.
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If correct, eq. (VIIL.30) represents an essential simplification for hydro-
dynamic studies. It implies that sr(s) is a function only of s7,(0), and
thus that a single dimensionless parameter s7,(0) is required to characterize
non-newtonian effects in the flow.* At large x we find f,(x) ~ x~?- with p,
values which are of order 0.8.

No fundamental justification is available for these scaling laws. An
interesting discussion of transient entanglements is given by Graessley.!?
Another useful phenomenological picture, based on the kinetics of entangle-
ment points, was constructed by Marucci et al.?®

VIIL.3.4. Critical dynamics in entangled binary mixtures

We consider here a solution (or melt) with two types of polymer chains,
A and B, and a slight incompatibility between A and B. We want to investi-
gate the dynamics of the fluctuations of concentration 8P near the critical
point in the one-phase region. Experimentally it will help if we add a fraction
of solvent to the AB mixture, thereby decreasing the viscosities and relaxa-
tion times. However, for simplicity here we consider only the case without
solvent and a symmetrical situation (N, = Ng = N).

Dynamically, there is an essential difference between this case and the
more common problem of one polymer plus one solvent. In the latter prob-
lem, near the critical point, backflow is essential, while entanglements are
minor; but with a molten mixture of chains, the situation is reversed:; back-
flow is negligible, and entanglements are essential.

In practice what is measured is a cooperative diffusion coefficient D,
which controls the fluctuations of ® according to:

98%3 - DV’ (VIIL33)

Our discussion of D, proceeds in the two steps described below.

When the Flory interaction parameter x vanishes, the concentration is
equalized by reptation and by tube renewal, and we expect to have, accord-
ing to eq. (VIII.14)

D.(x=0)=D, N2 (VII1.34)

*The above presentation is restricted to flows where each molecule sees a constant shear
rate, However, there are reasons to believe that only one *‘Deborah number’’ Ur/L (where U
and L are characteristic velocities and lengths in the flow) is required for more general steady
flows.
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where D, is a microscopic constant, independent of N but dependent on
temperature.

When ¥ is finite and close to the critical value x. = 2/N [eq. (IV.11)],
the restoring force which tends to equalize the concentrations becomes very
small. This can be understood from the structure of the free energy per site
[egs. AV.6, IV.12)]

L = - 080 + 0 (509 (VIIL35)
site

where 8@ = ® — 1/2 measures the fluctuations from the critical concentra-
tion. The restoring force (conjugate to P) is

aF
Y Sl T(x. — x) 260 (VIIL.36)

and is very small near x = x.. To see how this is reflected in the diffusion
equation we write the diffusion current of A monomers in the form

= - LVu (VIIL37)

where u = dF/3® is the exchange chemical potential, and L is a transport
coefficient. Our central assumption, originally proposed by Van Hove?? is
to assume that L has no singularities near the critical point—i.e., all critical
properties are included in u [eq. (VIII.36)]. Inserting eq. (VIII.36) into eq.
(VIIL.37), we find

J=— LT (x. — ) 2V® (VIIIL.38)
and we can identify the coefficient with D,
D.=2LT (x.— x)a® (VIII.39)

We can eliminate the constant L by returning to a situation of zero x
described by eq. (VII1.34). The result is

D, (x,T) = D, (T) N2 Z‘_.X'_X_ (VIIL40)

<

Eq. (VIII.40) includes three major factors that act on diffusion: 1) tem-
perature through D, (T), 2) entanglements through N~2, and 3) weakness
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of restoring forces near x = x. through the last factor (x. — X)/Xc. This
third feature is typical of critical phenomena and has been called *‘thermo-
dynamic slowing down. 2324

We do not have any data to compare with eq. (VIII.40). However some
remarks may be useful at this stage. The diffusion described by eq.
(VIIL.40) is extremely slow. Factors 2 and 3 tend to make D, small. Fur-
ther, the Van Hove assumption is not rigorous (it neglects some weak
singularities that are known theoretically for simpler cases,? but is should
be adequate for the first studies on these difficult systems. Finally, why are
backflow corrections negligible? In analogy with eq. (VII.33) we could
think of backflow contributions to D, of order T/6mné, where &, is the
large correlation length observed in critical phenomena [eq. (IV.24)], but
here the viscosity 7 is the viscosity of an entangled system and is very
large. Using n ~ 1,N® and comparing with eq. (VIII.40) we can check that
backflow may be omitted at large V.

D 1/2
backnow __ N—a/z( Xe ) <1 (VIIL41)
D, Xe — X

VIIL.3.5. Summary

In an entangled melt of chains the fundamental relaxation time 7, scales
like a strong power of the degree of polymerization N (1, ~ N3). The repta-
tion model attempts to describe 7,by a calculation of the wiggling motions of
one chain inside of a ‘‘tube’’ formed by its neighbors. It leads to a somewhat
weaker exponent 7, ~ N3. The discrepancy is unexplained.
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IX

Self-Consistent Fields
and Random Phase
Approximation

IX.1.
General Program

Our aim is to find a relatively simple description for one (or more)
interacting chains. The chains can also be restricted by certain boundary
conditions—e.g., they may be confined in a pore or attracted to an adsorb-
ing surface or attached at one end at a given point, and so forth.

The natural approach—initiated by the classic workers (Kuhn, Hermans,
Flory, etc.) and formalized later by Edwards!-*—is based on the idea of a
self-consistent field. We describe it for a typical case where: 1) all mono-
mers are chemically identical, and 2) the interactions are repulsive and
local (no long range forces). We write the interaction between monomers
(i) and (j) in the form vT8(r 4), where v is the excluded volume parameter
defined in eq. (III.10). This form is adequate for uncharged molecules in
semi-dilute (or dilute) solutions with good solvents.

The procedure is then as follows. One assumes a certain concentration
profile c¢(r). To this profile one associates an average repulsive potential,
proportional to the local concentration:

Ur) = Tuc (r) Ix.1

One then describes each chain as an ideal chain subjected to an external
potential U(r). This type of calculation is feasible, and is discussed in
Section IX.1.2. At the end of this stage, one can compute all chain proper-
ties and in particular derive a new value ¢'(r) for the local concentration.

245
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One then iterates the procedure, defining a new potential U’ = Tvc’ and
solving again. We hope that the sequence of approximations c(r) — ¢’(r)
— ¢"(r) — ... converges to a stable solution, cgua (r). The potential
Usinat = vTcpnq is then self-consistent.

The entire calculation has some analogies with the Hartree method for
electrons in atoms or molecules,® and the level of complexity is roughly
the same. In this chapter, we do not discuss any numerical calculations, but
we do give some exercises where the self-consistent method can be applied
directly.

In the theory of many-body systems, the Hartree approximations can
generally be augmented by an application of self-consistent methods, not
to one body concentration c(r) but to two-body properties, such as the pair
correlations g(r, r;) which we have discussed often. This corresponds to
the ‘‘random phase approximation’’ (RPA) introduced by Bohm, Pines,
and Noziéres.* In electron systems, RPA is useful mainly for nearly free
electrons. Similarly, for our chain systems, RPA will work for nearly ideal
chains—i.e., in melts. The corresponding experiments are essentially
based on neutron scattering with labeled molecules and are summarized
briefly in Chapter II.

1X.2. s
Self-Consistent Fields . :

IX.2.1. An ideal chain under extemal
potentials

For definiteness, we inscribe our chain on a Flory-Huggins lattice
of parameter a. It is then described by a walk of N steps linking the lattice
points r, . .. ry. If a potential U(r) acts on each monomer, the statistical
weight associated with this particular realization is

exp (_ _}.[u(.-,) +UE) +... + U(r,,,)]) (IX.2)

Let us consider the sum of all such weights on paths with fixed ends
(ry, = r' and ry = r, fixed). We call this sum

N Gy (r',r) (IX.3)

where z is the number of neighbors of one site on the lattice. (It is con-
venient to extract the factor z™¥, which is simply the total number of paths
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of N steps.) The function Gy (r’,r) is real, positive, and symmetric
Gy (v’ ,r) = Gy (r,r’). Of course, if N is zero, Gy reduces to adelta function*

G, (r',r) = 8y ¢ (IX.4)

It is easy to find an equation for Gy by adding one unit to the chain:
, 1!
Gy (¥'r) = "2‘2 Gy (r',r") exp(—U(r)/T) (IX.5)
d

where the sum 2’ is over all sites which are neighbors of (r). Eq. (IX.5) says
that any path, of N + 1 steps, reaching r, must have reached one of these
neighbors at the next-to-the-last step. The factor 1/z results from the nor-
malization chosen in eq. (IX.3).

In most applications we are primarily interested in spatial scales which
are much larger than the lattice parameter a. Thus, we may assume that G
is a slowly varying function (of N and of r). We also assume that U/T is
small. In most cases of interest this may be verified a posteriori (what is of
order unity is NU/T rather than U/T). With these simplifications we write
eq. (IX.5) in the form

G (e') = (1 = &) 5 [GN () + (r - ) 2
*t3 (l' 1) (r — r”)“a_i_agr_ +... } (IX.6)

On the right side, the terms linear in r — r” vanish for a centrosymmetric
lattice, and we get:

Gys (r',r) — Gy (r',r) = a—G*“—’ (r',r)

U(r)

Gy (r',r) +—VZGN(r ) +.
(IX.7)

where we have used the geometrical sum property (for a cubic lattice in
three dimensions)

*When we deal with a discrete lattice we use a discrete delta function whichis I if ¢’ = ¢
and zero for different sites. When we go to a continuous limit, this becomes §(r — r’) a®.
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1 al
—Z Er l' - l‘”)a'(l' - l'”)ﬁ = 8@ ? (IX8)
It is usual to rewrite eq. (IX.7) as:
— 2
- g—g- = 6iv=c + 9,}'_) G (IX.9)

because eq. (IX.9) has a remarkable similarity to another celebrated equa-
tion of theoretical physics—namely, the Schrédinger equation for a non-
relativistic particle of wavefunction s (r, ¢). The latter is

—in %‘tﬂ - - i’%vw + Vo (IX.10)

where ? is the time, & = h/2m is the reduced Planck constant, m is the mass
of the particle, and V(r) is the potential energy. Note that V(r) is the
analog of U(r)/7. Potential energies play similar roles in both problems.
Note also that N is (apart from a factor i) the analog of time. One particular
chain conformation corresponds to one particular path for the particle, and
the wavefunction appears as a coherent superposition of amplitudes for
different paths.5

This analogy—between ideal chain statistics under external potentials
and a quantum mechanical problem—is often useful because 50 years of
manipulations of the Schrodinger equation have given us a wide spectrum
of solution methods.® However, in this book, we will not assume any
detailed knowledge of quantum mechanics by the reader.

Eq. (IX.9), supplemented by the boundary condition of eq. (IX.4), de-
fines the statistical weight Gy (r’,r) completely. In some cases one should
solve eq. (IX.9) directly. In many other cases, however, it is more interest-
ing to use an expansion in eigenfunctions which we now describe.

We introduce a linear operator § corresponding to the right side of eq.
(IXx.9)

9=- "2 v + UT' IX.11)

Then we introduce the set of eigenfunctions u,(r), uy(r),... u(r)...*
They are such that Du, is proportional to u;

*It is pdssible to restrict the functions u, to being real, but it is sometimes more convenient
to allow them to be complex—just as exp(ikx) is more convenient than cos(kx) for many wave
problems.
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Dui(r) = exiiy(r) (1X.12)

The numbers ¢, for a sequence, starting from a minimal value €, which
we call the ground state. It may be shown that the u; values satisfy two
important relationships:®

I u* (r) 4y (r) dr = &5 (orthogonality) (IX.13)

2 u* (r') u (r) = 8(r — r’) (closure) (IX.14)
k

The explicit form of Gy(r’,7) is an expansion in the eigenfunctions uy:

Gy (v',r) = d° 2 u* (r') uy (r) exp(—Ney) (IX.15)
* k

The reader may check that this Gy satisfies the differential equation [eq.
(IX.9)]. It also obeys the boundary condition of eq. (IX.4) as seen from the
closure property, eq. (IX.4). Thus, it is indeed the solution.

One essential property of the weights Gy (r’,r) (for ideal chains under
external forces) is the composition law, which we write

GN (l",l') = 2 GNI (l",S) GN_NI (S,l') (IX.16)
$

Physically this means that we can divide the chain into two consecutive
sections (N’) and (N — N’) with a certain junction point s. We then com-
pute the weights for the first section extending from r’ to s, and for the
second section, extending from s to r. The product of these two weights,
summed over all possible positions of the junction,* gives us Gy (r’.r).
[We have already used eq. (IX.16) in eq. (IX.5), where we separated a
chain of N + 1 links into (N) and (1).]

The composition law [eq. (IX.16)] is very specific for noninteracting
chains. If we had interactions between N’ and N — N’, the weights could
not be factored into two terms. Technically we can verify eq. (IX.16) on
the eigenfunction expansion [eq. (IX.15)] using the orthogonality of the u
values.

In a certain sense, eq. (IX.15) solves our problem. If we look at one
chain under the external potential U(r), we first derive the eigenfunctions
u(r) by direct calculations. Then we can construct Gy (r’,r) and derive
any physical property of interest. If we wish to know the concentration c(s)

*In the continuous limit we write 2 - al—,- I ds.
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at one point s, we look at the statistical weight for a chain, starting from
an arbitrary point r’, reaching s and then extending to an arbitrary point r

>3 3Gy (r',s) Gy-n (s1)
D(s) = a® c(s) =L M= (IX.17)

2 Y, GuMr',x)

The denominator of eq. (IX.17) is the sum of all weights and ensures the
normalization. If we have many independent chains in the same external
potential U(r), we simply multiply eq. (IX.17) by the total number of
chains.

IX.2.2. Situations of ground state dominance

The eigenfunction expansion [eq. (IX.15)] contains a factor exp(— &N)
that tends to give maximum weight to the ground state wavefunction u(r)
for which €, = €, is minimum. For certain situations, it may be enough
to retain only the term & = 0 in the expansion. We then say that the
ground state is dominant, and we give a special name to the corresponding
eigenfunction u,(r) = Y(r). If we retain only (r) in eq. (IX.15) and if we
use eq. (IX.17), we arrive at the very formula:

c(s) = N|(s)|? (IX.18)

Note that ¢ is proportional to the square of y; this is because rwo chain
portions converge at point s, each carrying a factor y. The normalization in
eq. (IX.18) is easily checked since [c(s)ds = N for a one-chain problem.

The validity of the truncation is, of course, limited. One has to check
that the intervals €, — €, are large enough to make the ground state
dominant, and the answer may depend also on the particular quantity
which is ¢computed. Below we give some examplés where ground state
dominance can be justified.

Exercise 1: One ideal chain confined between two strorigly repulsive
walls (separation D < R,). Compute: 1) the reduction of entropy, and 2)
the concentration profile (E. Cassasa).”

Answer: If we put the walls at x = 0 and x = D, the eigenfunctions
ux must vanish at both walls. Inside the interval they satisfy €; u; =
(—a?/6) V2u,. The ground state is simply
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¥ = u, = constant sin (%) (IX.19)
and the corresponding eigenvalue is
l 2
€ = -E(T) (IX.20)

The main factor in the statistical weight is exp(— €, N), giving an
entropy reduction

__mR?
AS = 6 D Ix.21)
in agreement with the scaling form of eq. (I.12).
The concentration profile is deduced from eq. (IX.18):
¢ = constant s'inz(%) (IX.22)

It vanishes quadratically near both plates (see Fig. IX.1).

If we investigate the validity of ground state dominance for these two
specific questions (AS and c(x)), we find that there is a whole branch of
states near the ground state; the general structure of the eigenfunctions is

Up,q (xyz) = (constant) sin ( ) ) expli(qyy + ¢.2)) (I1X.23)

C(x)
"‘----~ *( x)
Cd -
R ~\
/ N
4 \‘
/. A
\
Figure IX.1. O D
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where n = 1, 2, 3, etc. The eigenvalues are:

al(n

e =% [(‘1‘)‘)2 n® + qz] (IX.24)

Thus near g = 0 there are many eigenstates (u, ,) with eigenvalues near
€,; they would be important for a complete calculation of Gy (r',r), but
fortunately they are not important for AS and for c(x). What is essential here
is the interval between the eigenvalues for n = 1 and higher n. The error
(on AS or c¢) due to the assumption of ground state dominance is of the
order

R?

exp [— N(ey — €oo)] ~ exp [— (constant) ] (IX.25)

and it is small if R, > D.

Exercise 2: An ideal chain is weakly adsorbed on a flat surface. Find the
gain in free energy and the concentration profile.

Answer: The chain sees a potential of the form shown in Fig. IX.2,
where the range b of interaction is assumed to be small (of order @). Out-
side of this range the ground state wavefunction is ruled by the simple
equation ‘

g IS '] (IX.26)

The effect of the potential is essentially to impose a boundary condition?

1d
'J.% == K IX.27)

where « is a positive parameter when the attraction dominates. For a given
potential shape, « may be computed explicitly by solving the eigenvalue
equation in the attractive region. [This part of the calculation cannot be
done in the continuous approximation because the potential varies rapidly
in space near the surface; return to eq. (IX.5).] We are mainly interested in
the case of small x (ka < 1). This defines weak adsorption. The solution
P outside of the attractive wall is then
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Ux) k
— b —
Of----mmmen--es - X
(@)
Yoo
-— K -1
- X
(®)
Figure IX.2.
¥ = (constant) exp(—«kx) (x> b) (IX.28)
with an eigenvalue
a*
€ = — -6—K’ (IX.29)

We conclude that: 1) the concentration decreases as exp(— 2«x), and 2) the
change in free energy due to adsorption is (per chain)

Net

AF=-T 6

Iy (IX.30)
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In this case we can check that the assumption of ground state dominance
is correct when xR, < 1—i.e., when the chain is confined within a thick-
ness much smaller than its natural size. Note that the result for AF for
ideal chains agrees with our scaling arguments of Chapter I, where we
looked for confinement in a thickness D = x™! and wrote the free energy as
a sum of localization and attraction contributions:

AF _ R

a
T~ MNp

(T3 is an effective attractive toward the surface.) Minimizing AF gave
D = a8 or & = xa. This gives a microscopic meaning to &; from a
precise calculation of the ground state wavefunction near the surface and of
the resulting x, we can calculate 8.

iX.2.3. Self-consistency with ground state dominance®

Whenever ground state dominance holds, it is possible to simplify con-
siderably the self-consistent program sketched in the introduction to this
chapter. Fundamentally, what we have is a concentration proportional to
[[*. In this section we normalize ¢ differently, replacing eq. (IX.18) by

c = |y (IX.31)
Then the self-consistent potential is
U(r) = Toc(r) = T |P(r)} (IX.32)

Consider the following integral
' at 1 .
1= 11§ Vet + 5o lgl*y dr = F/T (IX.33)

Physically it contains an entropy term (Vi)*> and an interaction term, and
can be interpreted as a free energy F (divided by T'). Let us demand that/ is
a minimum for all variations of {y which keep the total number of mono-
mers constant

The latter condition is included through a Lagrange multiplier, writing that
the variations 8/ and 8N, be related by
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8l = €8Nm¢ (IX.35)

writing 81 and 8N,,, for arbitrary variations of ys, (8ys(r)), at each point, we
find :

e = — %—2V2¢ + vyl (IX.36)

which is exactly the eigenvalue equation (IX.15) but with the self-
consistency condition [eq. (IX.20)] imposed on the potential.

The program is then much simpler. We try to solve the nonlinear equa-
tion [eq. (IX.36)] and, if we succeed, we know the self-consistent potential.

Exercise I: Find the density profile for a semi-dilute solution, in good
solvent, near a repulsive wall (in the self-consistent field approximation).

Answer: If the wall is located at x = 0, the boundary conditions on ys(x)
are

¥(0) =0
x> @) = ¢ (IX.37)
where ¢ is the bulk concentration. We set iy = ¢! fix).
Eq. (IX.24) then becomes
2 2
% g;{ = —¢f + vcf* (IX.38)

Far from the wall we must have f = 1 and d%f/dx? = 0. This means that
€ =vc (IX.39)

We then multiply both sides of the equation by df/dx and integrate,
obtaining

@ (df\? _ ve o |
-1-2(3;) =X -+ (IX.40)

where the last constant is chosen to ensure that df/dx = 0 when f = 1.
Both sides are exact squares, and this allows for the simple form



256 CALCULATION METHODS

% = l—f—f;, (IX.41)
where
E= ;’uc (1X.42)

is a correlation length (calculated here in a self-consistent field approxi-
mation). .
Eq. (IX.41) is integrated easily and gives

f) = tanh(i) (IX.43)

We conclude that:
(i) There is a depletion layer of thickness £, the concentration profile
being
cx)=c tanh’(%) (IX.44)

(ii) The concentration on the first layer is

ca) = c%: ~ 2 (IX.45)

(iii) The interfacial energy is

2 1
y= TI(% (Vy)? +5v |tl;|‘) dx = cT-‘-g- (IX.46)

= c32

In practice all these results are wrong. The correct powers of ¢ entering
in &, in c(a), and in vy are discussed in Chapter III, and are different.

Exercise 2: Find the concentration profile c(x) for chains in a good
solvent near a weakly adsorbing wall, in the self-consistent field approxi-
mation (Jones and Richmond?).

Answer: The difference from the earlier exercise on adsorption is that
now we have repulsion between the monomers. The self-consistent poten-
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tial has the shape shown in Fig. IX.3a, where the short range, attractive
part is maintained but where a repulsive part arises from the finite chain
concentration at some distance from the wall. The nonlinear equation [eq.
(IX.36)] becomes

&

a
6

S

2= — e + vy® (IX.47)

and the effects of the short range attraction (x < b) can again be replaced
by the boundary condition [eq. (IX.27)].

If we fix the concentration in the bulk c(x — ®) = ¢, this means that
€ = vc. We then go to reduced variables ( = c'/? f) and find the same
equations [eqgs. (IX.38, IX.40)] for f than in the previous exercise. There is
one essential difference, however. Now we have f > 1, and the solution is
a cotanh (instead of a tanh)—a decreasing function of x

B ui---f

Figure IX.3.
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(IX.48)

f= cotanh(Jr + x.,)

3

Here we have kept an integration constant x, which will fit the boundary
condition at the adsorbing plane (f'/f = -~ ). This gives

=1+ fX0) _ = Xo
“LALO0 ( £0) = cotanh?) (IX.49)

There are two simple regimes:

(i) If x¢ is small, f{0) is not much larger than unity, and flx) — 1 is
essentially an exponential relaxing in one length ¢. This limit corresponds
to bulk solutions which have a large ¢, for which the attractive wall gives
only a weak perturbation.

(ii) If «¢ is large (low concentration), the effect of the wall is more
spectacular, and f(0) is much larger than 1. At distances x smaller than £,
the decay is relatively slow

) =g f’rkx (IX.50)

and in the range k™! < x < ¢, f(x) ~ 1/x. However, once again, this self-
consistent result is incorrect; the correct scaling form is f(x) ~ x~#" where
B and v are exponents (defined in the next chapter), and 8/v ~ 1/2 in
three dimensions:*

Apart from these scaling modifications there is a serious physical limita-
tion to the above discussion—namely, the assumption that the wall attrac-
tion (measured by «) is independent of the surface concentration. In reality
the first layer begins to be filled, and the effective value of « should
decrease

Ker = K[1 — (constant) y2(0)] ax.sn

This leads to more complicated self-consistent equations.

1X.3.
The Random Phase Approximation for Dense
Chains

We wish to compute all correlation functions in a dense mixture
of strongly interacting polymer chains. This seems to be a formidable task,

*Note also that in the correct scaling approach the concentration profile c(x) is not propor-
tional to f2 = x~28*, The correct law is ¢(x) ~ x=* ensuring that ¢(£) = cpun.
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but on closer inspection it is not unfeasible. Some of the simplifications
that we found in polymer melts (Chapter II) are still helpful here—i.e., the
chains are nearly ideal. :

This allows us to use a simple scheme, the ‘‘random ¢ approxima-
tion”’ (RPA). This name was introduced by Bohm, Pines, an% J

connection with electron problems in metals. However, the maij As;.o‘mpts
are in a certain sense older and appear, for example, in the Dety -Hiickel
theory of electrolytes.'® The first application to polymers ns nS. F.

Edwards.!! The general idea as follows. .
What is computed is a response function S(r,r’). Tlns is d’ﬁned
applying a weak perturbing potential W at one point (r’) and lookmg at the
resulting changes in concentration 3 at a different point (r). It'may be
shown that, apart from normalized factors, S(r,r') is identical to the corre-
lation function (8® (r') 6®(r)). Thus, a calculation of S will give us the

correlations.

To compute the response S, we treat each chain as ideal but subjected to
a potential which contains two parts. One is the external potential W(r'),
the other is an internal, self-consistent, potential, due to the surrounding
chains, and includes terms linear in ®. In many cases there is a strong
tendency toward cancellation between the two parts; this we call this screen-
ing. Finally we arrive at a self-consistent prediction for §, which is rather
accurate for concentrated chains. Thus RPA is a self-consistent field cal-
culation for pair correlations.

iX.3.1. Definition of response functions

As our example we choose a dense system of chains that fills all sites
of a Flory-Huggms lattice. Each chain has a sequence of monomers
a, 2,... . N), and they are all chemically identical. However,
since we are mterested in scattering experiments where some of the units
are labeled, we treat the different monomers separately. For example, we
introduce a (dimensionless) concentration ®,(r) which gives the average
number of monomers of rank n on site r. The average value of ®, in a
filled lattice is ®/N = 1/N, but they may be local deviations @, from
this average.

Let us now apply a set of weak perturbing potentials to the various sites
(r'); we assume that they depend not only on the site but also on the index n
of the monomer which probes the potential. Then the perturbation is char-
acterized by N functions Wy(r’)... Wu(r')... Wx(r'). We ask, what are
the average changes 8®, at another r which will be induced by the pertur-
bations W,,(r’). For small W;, this response must be a linear function of
W,,. The most general form is
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BOL0) = — 72 T Sunlr™) Walr') (x.52
rom

We call S,,,(r,r') aresponse function. The choice of the minus sign in eq.
(IX.52) is natural. A positive (repulsive) potential tends to deplete the con-
centrations. Also the factor 1/7T makes S dimensionless.

In bulk systems, which are invariant by translation, the functions
Sam (r,r’) depend only on the relative distance r — r’. It is then convenient
to introduce Fourier transforms for all quantities of interest:

Wai@) = 3 Wale) exp(—ige) = = [ d’ W (") exp(—ig'r)
Sam(@) = 3 Sum (r — 1') explig-(r' — 1) etc. (IX.53)

The composition theorem for Fourier transforms gives a simple form to eq.
(IX.52)

50u0) = = F 3 Sunl®) Wal@) (IX.54)

Having defined the response functions, let us now discuss the relation-
ship between them and correlation functions. This is contained in a
classic theorem of Yvon.!? With our notation, it reads

(3DR(r) dDu(r')) = Sam(r,r’) (IX.55)

where the left side is a correlation function at equilibrium, defined in the
absence of any perturbing potential. The only assumption underlying eq.
(IX.55) is that quantum effects are negligible. This is entirely correct for
our systems. (The quantum effects mentioned here derive from the un-
certainty principle; it is not possible to localize an atom, or a monomer,
exactly. In our case the resulting ‘‘zero-point motion”’ is much smaller
than thermal motion and is negligible).

iX.3.2. Response functions for noninteracting chains

We first define the response functions for a noninteracting system of
chains (which would fill the lattice at random, each site then being allowed
to carry more than one monomer). Later we introduce the interactions.
Consider one ideal chain, and ask for the correlation
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(8D4(0) 3Dp(r) igear = Sam(r) (IX.56)
Its Fourier transform may be presented as
Sam(q@) = (explig:(ra — ) idear

where the average is taken over all conformations of the ideal chain. We
know that (for large n — m) the interval r, — r,, then has a gaussian dis-
tribution. For any gaussian variable x, we can use the theorem

(expligx)) = exp (- -zl-q2 <x’)) (IX.57)
In our case, the average square of one component of the vector r, — r,, is
(G = xn = 3ln = m| a? IX.58)

and the noninteracting response function is (for qa < 1)
Samlq) = exp [— |n — m| g*a*/6] (1X.59)

At this point we may note the relationship with the Debye scattering func-
tion gp(q) introduced in Chapter I. This function arises when we superpose
equal scattering amplitudes on all monomers. With the normalization of
Chapter I, it is

go(@) = N7 Y Sam(@) (IX.60)

=20 - 20 - exp-w)] (IX.61)

where u = Ng%a?/6. It is easy to check that g,(g), as given by eq.
(IX.60), has the limiting behaviors described in Chapter I.

We also find it useful to consider sums of the responses S,,, over one
index, defining

Sag) = 2 Saml@) =

q26_a2 {2 — exp [— n q26a2] - exp [— (N—-n) q’:’]} (1X.62)
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Physically S; describes the response of the nth monomer to perturbations
which act equally on all monomers in an ideal chain.

Now we have listed all our tools. The next problem is to proceed from
ideal chains to strongly interacting chains.

iX.3.3. Self-consistent calculation of responses

We now return to the problem of a dense chain system where weak
perturbations W, (r’) are applied on all sites. Our assumption will be to
write the responses 8®,(r) as the response of ideal chains, with the chains
experiencing not only external potentials W but also a self-consistent
potential U (which will be a linear function of §®).

For a semi-dilute solution we would write

U@') = Tv 8 (r') = Tva™® 2 8d, (') 1X.63)

However, the main domain of application of the RPA is not the semi-
dilute regime (where inside each blob, an ideal chain picture is not
acceptable) but rather the melt regime, where the total concentration is
fixed

60, (r') =0 X.64)

U will be defined so as to maintain the identity of eq. (IX.64).
Let us first state our assumption in detail, writing 8®, as a function of
W

l ! 1 ] ’
; 8D, (r) = —7§ 2S:’.,,.(rr HWam (r') + U(r')] (X.65)
or in terms of Fourier transforms

30, (@) = — T SWWa (@) + U@]  (X.66)

It is essential to note that the self-consistent potential U is the same for all n
(just as it is in the semi-dilute case of eq. (IX.63)). This expresses the
chemical identity of all monomers and reduces our self-consistent problem
considerably. There is only one unknown function U, and we can obtain it
explicitly from the condition of constant total concentrations eq. (IX.64).
Inserting eq. (IX.64) into eq. (IX.66) we get:
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U@y Sam (@ == Sam (@ Wn (@ (IX.67)
or with the notation introduced above:
___1 <
Uq) = ng(q)gS;.(q)Wm(q) _ (IX.68)

Finally, if we use this self-consistent potential in eq. (IX.66), we arrive at
the explicit form for the response functions

8, (q) = — _;-' zsm(Q)Wm(Q)

Sam (@) = S:m(q) - S;;.V(?T)lfznq(g (IX.69)

Eq. (IX.69) is the central RPA result for dense chain systems.'® It allows
for detailed calculations of scattering by partly labeled chains. If the
scattering amplitude of the nth monomer is a,, the intensity scattered at a
wave vector g has the form '

I (q) = constant 2 Qp Oy Sam (@) (IX.70)

We discussed I(q) in Chapter II. Here we simply note that for ¢ — 0, I(q)
always vanishes: for g = 0, S, = 1, and S, = §,, = gp = N. Physically
this means that on large scales the concentrations ®, cannot fluctuate be-
cause they become simply proportional to the total concentration

-d),.—>%=-1-:,-=constant (g—0)

However, at larger ¢ we do get some scattering because although the total
® is constant, we can have local fluctuations where monomers of a particu-
lar n become more numerous in one small region.

Quantitative experiments on partly labeled polystyrenes (with molecular
weights ~ 10°) have been performed by Cotton and co-workers.'* They
show that egs. (IX.69, 1X.70) give a rather accurate fit to the data, with
no adjustable parameter (see Fig. IX.4).
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Figure IX 4.

Small-angle scattering of neutrons
by a melt of triblock copolymers:
polystyrene H—polystyrene D—poly-
styrene H (where D stands for deute-
rated). Each block has a molecular
weight of 13000. ¢ = 4/ sin 6/2
is the scattering vector. The points
give the scattered intensity /{g) in
arbitrary units. The continuous curve
is the prediction of egs. (IX 69, 70),
computed for this case by J. P.Cotton.
The only adjustable parameter was
the unperturbed size Ry of the chain,
or equivalently its radius of gyration
R,: the curve corresponds to R, =
56 A. The R value expected from
separate neutron studies on PS melts

- containing a few labeled chains is 60

A. After F. Boue et al., Neutron In-
elastic Scattering 1977, International

o e . L Atomic Energy Agency, Vienna,
! ) a@k 1978
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X

Relationships Between
Polymer Statistics
and Critical Phenomena

X.1.
Basic Features of Critical Points

X.1.1. Large correlated regions

There is a strong analogy between the statistics of linear, flexible
polymers and various features of critical phenomena. To make it clear, we
first describe some essential aspects of ferromagnetic transition points—
ferromagnets are the best example for our purpose. For a more detailed
introduction, the classic reference is the book of H. E. Stanley.!

From a macroscopic point of view, ferromagnets are characterized by a
magnetization M. This is a vector with a number n of independent com-
ponents. The case n = 3 is frequent, but other values of n are also
important. For example, if the magnetic moments are necessarily parallel
to one axis (uniaxial ferromagnets), we have n = 1. If the moments are
restricted to an t‘easy plane’’ of magnetization, we must put n = 2, The
average magnetization M is a function of the temperature 7 and of the
magnetic field H. (We use 7 to represent the temperature of the magnetic
system. When we shall relate this to a polymer problem, the temperature T
of the polymer system will not be equal to 7.) In zero field, we might
guess naively that the magnetization must vanish by symmetry, the
moments having equal chances to be “‘up’’ or ‘‘down.’’ This is correct at
high temperatures, but at low temperatures, the situation is different. The
plot of free energy F as a function of M has two equivalent minima (Fig.
X.1), and the system will reach one of them. Then we measure a finite

265 -
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T>Te

\ /\Tac

.
[
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=M (T)+

Figure X.1.

average magnetization M, (7). The plot of M, versus () is shown in
Fig. X.2.

A critical temperature 7, (first studied by P. Curie) separates the two
regimes. The following discussion is concerned with the immediate vicin-
ity of 7, for the following reason. Consider a temperature 7 = 7,1 + €
with € small and positive. Since we are above 7., the average M is zero.
However, if we look at the local distribution of M(r), (as is possible by
neutron scattering techniques?) we find that for small €, there are regions
where M does not average to zero. The characteristic size of these regions is
called the correlation length £, and it obeys a scaling law of the form

E=dalef* (e—0) (X.1)

where a is the distance between neighboring atoms, and v is a certain ‘“crit-
ical exponent.’’ The essential feature is that when € is small, ¢ is much
larger than a. In solids we can typically achieve values of £ of a few hundred
Angstroms. The correlated regions are much larger than a lattice unit, and
all details of the lattice structure, of the couplings, and so forth, become
irrelevant. We reach a very universal regime, where only two essential
parameters remain; one is the dimensionality (d), the other is the number of
equivalent components (n). It turns out that all critical exponents such as »
depend only on d and n. ‘

M,

Te T Figure X.2.
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This trend toward universality is identical to what we found in Chapter I
for polymer chains of large N, where certain laws become universal and
independent of the details of the monomer structure. In fact if we think of
the single-chain problem in a good solvent, the analogy is very close. Here
we have a Flory radius, R, which is also in the range of a few hundred
Angstréms, and which has the scaling form:

Rp = aN’ (N > ») (X.2)

Comparing this with eq. (X.1), we notice a correspondence between N !
and e. To reach a high degree of universality, we want e > Q0 or N = .
This correspondence can be cast in a precise theorem (discussed below).

X.1.2. Critical exponents for a ferromagnet

Let us first consider the high temperature side of the transition and deter-
mine the main effects that indicate the onset of ferromagnetic order. A first
method applies a small magnetic field H to the system and measures the
average magnetization M induced by H. For small H this must be of the
form M = x,H where x, H is called the susceptibility (not to be confused
with the Flory interaction parameter). x , depends on temperature and di-
verges when € = (7 — 7.)/7 becomes very small:

X = Xo l€|™” (X.3)

A second, more local method of probing was mentioned above—i.e.,
neutron scattering-—which is sensitive to the size £ of the correlated regions,
described by the exponent » [eq. (X.1)].

A third approach is based on the specific heat C. In some ferromagnets
one finds a singularity in C (the specific heat in zero field) which can be
represented as

C=GC,lef™* (e—>0) (X.4)

where « is a (small) exponent.

We now go to the low temperature side (¢ < 0). We again find singu-
larities and exponents for a correlation length, for the specific heat, and so
forth, with the same values a, v, and so forth (although the prefactors such
as C, in eq. (X.4) are different below 7.). Another exponent of interest
is obtained from the magnetization law in zero field (Fig. X.2). At small €
we have '
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My(T) = M,|e/? (X.5)

X.1.3. Relations among exponents

The above list seems to indicate a very large number of mysterious
exponents. However, there are relations among them, and only two ex-
ponents are independent. These relations are:

a+28+y=2 (Widom) (X.6)
a =2 — vd (Kadanoff) X.7

The Widom relation can be related to a simple scaling structure for the free
energy F(M, v, H) (per atoin)

FM,r, H) = F, + T(M) - MH

T(M) = ef, (—le-",%) (X.8)

In eq. (X.8) the first term F, is regular at T = T and is unimportant for
our purposes. The second term I'(M) is represented in Fig. X.1. It gives a
minimum at M = M, ~ €® when we are below 7. This forces the function
f# to depend only on M/M,. The factor €2~ before fr is required to give us
the correct singularity in the specific heat above T,. Here M = 0, and f is
a constant. If we differentiate F twice with respect to temperature, we get
the entropy first and then the specific heat; the latter must behave as eq.
(X.4). The third term in eq. (X.8) is simply the coupling between moments
and field.

If we again choose € > 0 and H small, we expect the equilibrium M to
be small, and we may then expand fg(x) in powers of x = M/M,. As is
clear in Fig. X.1, fp(x) is an even function of x, and the expansion starts
with a term in x2

F = F(x = 0) + (constant) €™ (—;‘242;) - MH
Minimizing this with respect to M, we get the susceptibility

M
—= = constant >#+>—2

H

and comparing with the definition of exponent vy [eq. (X.3)], we are led to
the Widom relation [eq. (X.6)].
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The Kadanoff relation [eq. (X.7)] is more delicate (and may even re-
quire some slight corrections for 4 = 3). However, we may get some in-
sight into it by the following procedure. Instead of thinking of individual
atomic moments, it is more realistic, near 7., to choose consecutive re-
gions of size £ as basic units. Inside one such region, the correlations are
strong, and the only independent variable is the total momentof the region.
If we then compute a partition function and a free energy AF for these
total moments, we expect AF to be extensive—i.e., proportional to the
number of regions per unit volume—which is (in d dimensions)

1 _ g

§a=5

Thus we are led to a AF(M = 0) proportional €*®. Comparing this with
eq. (X.8) we obtain to the Kadanoff relation [eq. (X.7)].

Our presentation of the scaling relationships has been strictly pheno-
menological. A more fundamental approach, based on renormalization
group ideas, can be found in various advanced texts.3

X.1.4. Correlation functions

We have introduced the notion of correlated regions near the Curie
point. Now we make this discussion more precise. We choose a tempera-
ture 7 slightly above 7., in the absence of any external field. A good
measure of correlation properties is given by the following thermal aver-
age, involving the magnetization M measured locally at two points separated
by a distance r:

(M(0) - M(r)) = correlation function

An enormous amount of information—theoretical and experimental—
has been accumulated on these correlations and is summarized below.

SPATIAL SCALING

The correlations at temperature close to the Curie point can be written as

MO - M) = 727 S () X.9)

where 7) is another critical exponent, first introduced by Fisher,* ¢ is the
correlation length, and fy, is a dimensionless function that satisfies: -
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f0) =

Ax) = X" exp(— x) x>1)
The limit x > 1 corresponds to small correlated regions (small £); in this
region a simple Ornstein-Zernike picture becomes valid,' and the spatial
decay of correlations has the form 1/r exp (— r/€) (for d = 3). The limit
x = 0 corresponds to 7 = 7., (£ infinite); at 7 = 7., the correlation decays
slowly, like a power law r~4~2*”, We return to the region of smallx in the
section, ‘‘Connection with the Specific Heat.”’

CONNECTION WITH THE MAGNETIC SUSCEPTIBILITY

The exponent 7) can be related to the other exponents through a general
thermodynamic theorem connecting the space integral of the correlation
function to the susceptibility’

™ = n"? f {M(0) - M(r)) dr (X.10)
Using eq. (X.9) and switching to the dimensionless variable r/¢, this gives

~ fl—")

E—Y ~ 6'1'(2—1))
and hence
y=v(2 -7 (X.11)

In practice 7 is only slightly larger than 2v and % is small for all three-
dimensional systems.

CONNECTION WITH THE SPECIFIC HEAT?

If we choose two neighboring points r = a, the correlation (M(0) M(a))
is expected to measure the coupling energy which is responsible for
magnetic order. This energy must contain a term of order €™ since by
differentiation it gives the specific heat (~ €®). Thus, we must have

(M(0) M(a)) = (M(0) M(a)),—,, — constant €™ (X.12)

Comparison with eq. (X.9) implies that the function f(x) for small x must
behave according to the law
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1 — f(x) = x-on
This property will be useful when transposed to polymer problems.

X.1.5. The n vector model

We now describe the system of atomic moments or “‘spins’’ §; in more
detail on a specific model, the n vector model. We assume that the mag-
netic atoms are located on a periodic lattice. Each magnetic atom (i) carries
a spin S;; this is a vector, with n components S, Si . . . Si,. In our con-
siderations, we ignore all quantum effects; the components §,, are just
numbers. There is one constraint—i.e., the total length S of each spin is
fixed. We choose the following normalization:

5= i S.=n (X.13)

a=1

Neighboring spins are coupled, and their energy is minimized when they are
parallel. The coupling energy, or ‘‘Hamiltonian’’ , has the form

i

i>j

The constant K;; is positive, K;; = K, for nearest-neighbor pairs (i) and
vanishes for all other choices of i and j. In eq. (X.12) we have also
incorporated terms (— H-S;) describing the effect of an external field H.
The partition function of the spin system is ’

zZ = Ilfdﬂ, exp(—9H/7 (X.15)
f

where [d(), represents an integration over all allowed orientations of spin
S;. (For example, with n = 3, 8Q); = sin 6,d6,dy;, where 6, and ¢; are
the polar angles of spin S;.)

It has been a traditional temptation to expand the partition function in
powers of the coupling energy K;; for each pair:

A2
exp(~KySeSr = 1= TL8es) + 5 (58 srspe +..

T
(X.16)

Usually when such expansions are inserted into eq. (X.15) for Z, they re-
sult in a complicated structure. There is one case, however, when they
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become simple—namely, if we go to the limit n = 0. This is a very formal
step since our definition of n implied that it was a positive integer. How-
ever, this step can be performed and is useful. We shall see that when
n = 0 the expansion [eq. (X.16)] leads to a problem of self-avoiding chains
on a Flory-Huggins lattice.

X.2.
The Single Chain Problem

X.2.1. The limitn =0

We begin by a purely geometric discussion of vector orientations
in an n-dimensional space and present it so that the calculations are mean-
ingful when n is not a positive integer. Our approach follows the appendix
of Ref. 6 and is due to G. Sarma.

AVERAGE OVER ORIENTATIONS

Let us first define an average over all orientations (equally weighted) of
each spin. This is the analog of the integration over solid angles (for n = 3).
We denote this average by ( ),.

The subscript (0) emphasizes the difference between this type of average
(where all states are equally weighted) and a thermal average (where they
are weighted by the Boltzmann exponential exp (—/7); thermal averages
are written { ) (without a subscript). The relationship between the two
types of averages is, for any function G(S, ... S;... ) of the spins:

(G = (xR 9/MG),

(exp(—9/7))o X7
The partition function is from eq. (X.15)
Z = Qexp(-9/™, (X.18)

where = II; [ d(); is the total volume of the phase space for the spins,
and is an uninteresting factor.

THE MOMENT THEOREM

We now focus on one of the vectors S; (which we call S for simplicity).
If we perform an expansion of the partition function Z following eq. (X.14)
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and use the averaging rule [eq. (X.18)], we are led to consider averages
such as:

(Sado
(susﬂ)o
(5555,)e etc.

where a, B, etc. are component subscripts. We now show that when n =
0, only one type of average is nonvanishing—namely, the quadratic term

(SeS@o = Bas (X.19)

Eq. (X.19) is not surprising; the diagonal terms must all be equal, and their
sum is equal to n as can be seen from the normalization condition of eq.
(X.11). The nondiagonal terms vanish by symmetry.

The real surprise comes when we look at higher moments and find them
all equal to.zero—e.g.,

(88), =0 (X.20)

Clearly, this will bring enormous simplifications to all thermodynamic
calculations.

The proof proceeds as follows. We start with an integral (positive) value
of n and with our spin length normalized in agreement with eq. (X.11). We
then introduce the ‘‘characteristic function’’ f{k) of the variables S,; this is
a function of a vector k, also with n components k,, and is defined by

fk) = (exp(ik-S)), X.21)

From this function all the moments of the distribution of S for random
orientations can be extracted. For example, the second moment is:

(SSao = (~i ) (-1 i) %

and similar formulas hold for all moments. Let us now try to construct
Jk) explicitly. Clearly, f depends only on the length of k since it represents
an average over all (equally weighted) orientations. If we start from the
definition of eq. (X.21) and differentiate twice in k space, we get

(X.22)

k=0
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vr=s 3L - _ 9 (52 exp(ik-S) X.23
f = % ak?, - % o CXpU o ( . )

and with the normalization [eq. (X.13)], this gives
Vif = — nf (X.24)

It is convenient now to use [k| = k as our variable since our function f
depends only on k. Writing for such a function that kdk = ' kedk,

of _ ka Of

Bk, ~ K OK

ﬂ:li’f+"_?rﬁ(lﬂf)

e " T ok EAVE.

&2 _ny _a(li)=("‘1)a_f 7
A AR AVE K)okt ok

Inserting this into eq. (X.22), we arrive at the final equation for f{k)
92 -1\ 9
a—k{+(———-"k )a—{+ nf=0 (X.25)

This is supplemented by boundary conditions at k = 0, which are

fk=0)=1

ﬁ(k =0 =0

The second condition says that f(k) is even and regular at small k.

What is important in egs. (X.25, X.26) is that they remain valid for alln
values (not necessarily positive integers). Starting with them, we can con-
struct a function flk) which is adequate for any n. This function will repre-
sent the analytic continuation of the standard forms known for n = 1, 2,
etc. to more general values of n.

In what follows we specialize in cases where n = 0, which tumns out to
be the interesting choice for our purposes. Eq. (X.25) then becomes

&f 1df _

e kak =0
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and the solution (satisfying the boundary conditions of eq. (X.26)) is a
parabolic form

fl)=1- -;-kz (X.27)

There are no powers higher than k2. If we return to the equations for the
moments (e.g., eq. (X.22)), this implies that all moments involving 3, 4,
etc. components of § must vanish; this is how we prove equations such as
eq. (X.20).

X.2.2. The magnetic partition function expanded in
self-avoiding loops

Now we return to the partition function Z and more specifically to the
case of zero external field. We can rewrite egs. (X.13, X.16) in the form

Z .
ﬁ = ( I>IJ eXP(‘I:—uE Siasja))o ’ (X.28)

- Ky 1 (KyY
= 2 [1 + 7% SiaSia +7(-T—) azﬂ Sﬁi‘sﬂi])o (X.29)
The essential feature is that all higher terms in the expansion of the
exponential vanish because of the moment theorem. Successive terms of
Z /) may be represented by graphs on the lattice. To each nearest neighbor
link K;; is associated a continuous line. To each site i must be associated
two spin components S;, S, (to obtain a nonzero average). These rules
mean that the only allowed graphs are closed loops, such as shown in Fig.
X.3. The loop can never intersect itself. If it did, at one site i, this would
| AP

B

|

Siox

Slo—1—

ar”]

Figure X.3.
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imply an average (S,*, which vanishes by the moment theorem. At this
point we begin to see the connection between magnetism and self-avoiding
chains.

First let us settle some technical points concerning the partition function.
The quadratic terms (Ky;/7)? in the expansion simply correspond to the
smallest loop, and could be drawn as

ey

i J
Note that each loop has a single value of the component index « occurring
at all its sites. This comes from eq. (X.17) and means that the two factors

S, at one point involve the same component.
When we sum over the component index « for one loop, we get

(K/7¥"n

where N is the number of bonds in the loop, and » is the component index.
Because n = 0 in our case, the contribution of all loops ultimately vanishes,
and we can write

olN
[}

(n=0) (X.30)

Thus, after all this effort, we get a trivial result for the partition function.
However, we have progressed and can now proceed to more interesting
subjects such as correlation functions.

X.2.3. Spin correlations and the one-chain problem

Consider the spin-spin correlation function in zero field:
(SuSi)

(where we have chosen one component (/)). Apart from normalization
conditions, this is identical to the magnetization correlation function
{M(0) M(r)) introduced in eq. (X.9); the distance between the two points
(i) and (j) is ry = r. Applying the rule of averages [eq. (X.17)], we get

(Su Sp) = “’%’gp?f %/i‘)')f’b ° (X.31)
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Note that the denominator of eq. (X.31) is equal to 1 (from eq. X.30).
Then expand the exponential in the numerator. Again, for n = 0, the only
graphs which contribute are self-avoiding paths, but here they are not
closed loops because eq. (X.31) contains two extra spin factors §; ;. In
fact what we have is a sum over all self-avoiding walks linking sites i and j
(Fig. X.4). If the walk involves N steps, the resulting contribution to eq.

(X.30) is simply
K N
t

All along the walk the component index o« must be equal to the chosen
value (a = 1). There is no summation to be carried on a.
Finally we are led to the fundamental theorem:

= 2 N (—I:-)N (X.325

where N, (i) is the number of self-avoiding walks of N steps linking points
() and (j) on the lattice (discussed in Chapter I). Eq. (X.32) is the basic
link between chains and magnets. We now present some of its applications.

X.2.4. Properties of self-avoiding walks (SAW)

TOTAL NUMBER OF WALKS

The total number of SAWs of N steps, starting from point (i) is:

Ny totar = 2 Ralif) (X.33)
]

(4} 4}

Figure X.4.
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The asymptotic form of Ny was given in eq. (I.21): Ny=z¥ N1, We now
check that this agrees with the definition [eq. (X.3)] of x as a suscepti-
bility exponent. The susceptibility x, may be expressed in terms of mag-
netic correlations by eq. (X.10) or, in terms of correlations for one
component (Sy,) of the spins (S)):

X == 3 (SuSy) (X.34)
1 K\
= T % Nw totad (—1',—)
=13 (&) w- (X.35)
N

This series converges at large 7 and diverges when 7 reaches the critical
value

7. = K2 (X.36)
If we consider temperatures 7 slightly above 7., we can write
=7, (1 + €) = 7, exp(e)

—1 _l_. i ~1
Xy = . % exp(—Ne) N7 (X.37)

and replacing the sum by an integral f dN, we get
0

IR

XM 'rl € (X.38)

in agreement with the definition [eq. (X.3) of the singularity for the
magnetic susceptibility.

N AND € ARE CONJUGATE VARIABLES

Having located the transition point, we return to the general correlation
(SuS; and rewrite it (for small €) in the form
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‘t (SuSid = 3, exp(—Ne) Rli) (X.39)
N

Thus the relationship between number of paths 9 y(i) and magnetic correla-
tions is of the Laplace transform type. We can say that € and N are con-
jugate variables. This is the precise form of our statement in Section X.1.1,
according to which a small € corresponds to a large N.

SCALING LAW FOR SELF-AVOIDING WALKS

. All the properties discussed in Section X.1.4. for magnetic correlations
now have their counterpart for self-avoiding walks. The first and most
essential is the existence of a single correlation length ¢ ~ € ” in eq. (X.9).
The analog of ¢ is the range of the self-avoiding walks Rp(N) ~ N*. The
spatial scaling law which corresponds to the existence of one single charac-
teristic length is eq. (1.24)

ASYMPTOTIC FORM AT LARGE R

The limiting behavior of the correlations at large distances is given by an
Omstein-Zernike form (introduced in Section X.1.4). Inverting the La-
place transformation [eq. (X.39)], it is then possible to find the asymptotic
form of Ny or of ¢, in eq. (X.40) at large r. The result is:”

r 1(1-»)
@p ~ €Xp — (R,,) (X.41)

(where we omit all power laws that enter before the exponential). Eq.
(X.41) was justified in Chapter I, using the simpler Pincus argument.
Thus, we do not give the full Laplace transform calculation here.

SELF-AVOIDING WALKS RETURNING TO THE ORIGIN

In Chapter I we introduced the number of closed polygons of (N + 1)
steps and pointed out that this was equal to z (number of neighbors of one
site) times Nya. We announced in eq. (1.28) that

Ri(a) =N = N2t (X.42)
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The magnetic analog of Ny (a) is the correlation function betwéen nearest-

neighbor spins and is related directly to the average energy per site E. From
the definition [eq. (X.14)] of the couplings, we can write

E=—- %ZK (S"S}k) (X43)

i and j being nearest neighbors; the factor z/2 counts each pair only once.
Let us now check that eq. (X.42) agrees with the scaling properties of
the energy E. From the basic theorem of eq. (X.32) we have:

E

- -;— zK 2 exp(—Ne) Nya
N

0

— K3 exp(—Ne) N2+ (X.44)
N

We split eq. (X.44) into two parts
E(e) = E(0) + ¥ [1 — exp(—eN)] N~>*™ (X.45)

M

or replacing the last sum by an integral

E=E(©) + f " AN(1 — exp(—eN)N-?"  (X.46)

0

E (0) is a finite number, and the second integral has no singularities
either for N — 0 or for N — «. Then we may set eN = t and write

Jw dNN=% (1 — exp(—eN)) = e““‘f du 2t (1 — exp(—t)) = '™
0 0
Thus, we arrive at an equation equivalent to eq. (X.12)

E(e) = E(0) — constant '™ (X.47)

This completes our proof; « is indeed the specific heat exponent defined in
eq. (X.4).
SUMMARY

All properties of one self-avoiding wﬁlk on a lattice can be related to the
spin correlation of a ferromagnet with an n-component magnetization
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when we formally set n = 0. This introduces a link between the exponents
for self-avoiding walks and critical exponents.

Both sets of exponents become simple above d = 4. Then we have v =
1/2 and y = 1. For phase transitions, this is called mean field behavior.
For self-avoiding walks, this corresponds to ideal chain behavior.

The temperature 7' of the polymer system is not related to the tempera-
ture 7 of the magnetic system, but (v — 7.)/7. = € is the conjugate variable
of the degree of polymerization, N.

X.3.
Many Chains in a Good Soivent

X.3.1. The des Cloiseaux trick

Des Cloiseaux was the first to notice that certain problems involv-
ing many mutually avoiding chains also had a magnetic counterpart.® The
trick is to apply a magnetic field, H, along one direction (say a = 1), to the
associated spin system and to expand the partition function in powers of H.
The zero-order term is trivial Z(H = 0) = Q [eq. (X.30)]. Higher order
terms may be generated by expanding all Boltzmann exponentials in
powers of K/7 and H/r.

ZZL(OQ)_=<H (l +gs,,+...) 1} (l +§i-zswgm+-"))o

i >
T (X.48)

The expansion must be such that each site (i) is associated with a second
moment S7,. Thus, odd powers of H drop out, and we are left with graphs
proportional to (H/7)* (p = 1, 2. ..). In one such graph, we have p self-
avoiding (and mutually avoiding) chains of lengths N, ... N,. The total
number of links are N, = N, +... + N,. An example with p = 2 is
shown in Fig. X.5.

Finally we may write

where &(p, N,) is the total number of ways to put p polymer chains of total
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H
H
H
H H
H
H
H : Figure X.5,

length N, on the Flory-Huggins lattice, each site being occupied once at
most. Thus, we may think of £ = Z (H)/Z(0) as being the grand partition
function for a system of mutually avoiding chains. For each chain we have
a factor (H/7)? and for each monomer a factor K/7.

Note that in this system the chains are polydisperse, but their average
degree of polymerization N will be determined by a suitable choice of K
and 7. Let us introduce a monomer concentration (per site) ® and a polymer
concentration (number of chains divided by the number of sites) ®,,. Using
the standard relations between concentrations and fugatities, we have

1 olnZE

20, + b = m (X.50)
_ 1 alnE
20, = —'——Q 3 (i) (X.51)

(where Q is the total number of sites on the Flory-Huggins lattice).
We must impose a fixed value of N:
. @
N= o, (X.52)
(Note that in practice N will be large, and we can replace ® + 2 ®, by ®
in eq. (X.50)).
A typical thermodynamic quantity to be derived from the calculation is
the osmotic pressure I1 (divided by the polymer temperature 7). A general
thermodynamic theorem relates I1 to the grand partition function

—I—I-=-Lln
T V

nl

(X.53)

where V = Qa? is the total volume.
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Let us now return to the magnetic aspect of the problem. We introduce a
free energy (per site) as in eq. (X.8)

F(M)=F,+T(M) — MH  (with T(0) = 0 by convention)

When this is minimized with respect to M we get an implicit equation for
the equilibrium magnetization:

oI'(M)

= H (X.54)

If we insert the resulting value of M = M(H) into F(M), we reach the
conjugate potential G(H) = F{M(H)]. It is this potential which is related
to the partition function Z(H)

—rln ( Z((’(;’)) ) OLG(H) — G(0)] (X.55)

Finally we may write

or

‘ o)
oM M = M(H)

limg=- [r M
Qn

At this stage we have expressed all the polymer quantities (®, @, II) in
terms of the magnetic parameters (H, 7). We then write 7 = 7. (1 + €) and
note that near € = 0, dI'/de, for example, is more singular than T, this
result allows us to reduce eqgs. (X.50, X.51) to a simple form. We write first

(X.56)

_ g oo [OF aM _ oF
'zq’"‘”aH[M(H)]‘”[aMaH*aH]

Then we note that 3F/oM = 0 at M = M., (H) and also that dF/oH is
simply —M. We then arrive at

_or

®=— (X.57)
)

@, =M (X.58)

In the next section we insert the Widom scaling form for I' into these
equations.
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X.3.2. Overlap concentration ®* and related scaling
laws ‘

We use the Widom scaling form [eq. (X.16)] for T (M, 7) in the
polymer eqs. (X.57, X.58, and X.52). This gives

® = €91 fo(x) (X.59)
q)p = ¢ fp(x) (X.60)

where vd =2 — a and where x is a dimensionless parameter proportional to
M/|e|B. When € is negative (t < 7,), a convenient definition of x is

M@ H)

* ="M@, 0)

(X.61)

For the polymer problem, we can relate x to the length N of the chains
through eq. (X.52), this gives:

2‘8 = Ne (X.62)

Thus x is a function only of Ne = y. We can give a simple meaning to y if
we introduce the overlap concentration

o* = :,,“d= Nu-vd (X.63)
F
Then:
_(I) = (Ne)vd—1 = yrd—1
L (Ne) Solx) =y So(x) (X.64)

is only a function of y. Thus, any function of x (or y) only may be con-
sidered a function of ®/®*. Let us apply this result to the osmotic pres-
sure, I1. From egs. (X.53, X.56) Il is given by:

0L - e g (X.65)

_ a JaX)
= % TR
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(I) .
- 0.5 (55) (X.66)

where f}, is another dimensionless scaling function. Eq. (X.66) is the fun-
damental des Cloiseaux result, stating that Il is equal to its perfect gas
value, (®,T/a%), times a dimensionless function of ®/P*,

X.3.3. Crossover between dilute and semi-dilute
solutions

We know that solutions with ¢ < ®* (dilute) are very different from
solutions with ® > ®* (semi-dilute). How does this appear in the magnetic
analogy? ‘

Consider the temperature versus magnetization diagram (r, M) for the
magnetic problem, shown in Fig. X.6. The accessible regions of this
diagram are limited by the *‘coexistence curve’’—i.e., the curve giving the
spontaneous magnetization in zero field M(7, 0). Eq. (X.52) or (X.63) that
fixes the length of the chains gives one relationship between M and 7; for
a given N the allowed points are on a certain line, which we call the
isometric line (dashed line in the figure).

Consider first the dilute limit. Clearly, from the structure [eq. (X.49)] of
the grand partition function, this corresponds to a case where H — 0, so
that the weights for two chains, three chains, etc. are much smaller than the
weight for a single chain. Also the dilute limit must correspond to 7 > 7,

semi dilute limit

isometric line

\\ dilute limit
\ /
Dyvv/ E
X
S . Te
N
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from what we have seen in the discussion of the single-chain problem. The
conditions 7 > 7. and H = 0 correspond to line CE on the figure. The
isometric line intersects CE at some point D. From the results on a single
chain we expect that the distance CD (which is proportional to €) should be
proportional to N~'.

We now proceed to the other end ( > ®*). All thermodynamic proper-
ties tend to become independent of N in this limit. Thus, we may set
N = wor ®, = 0in calculating them. Looking back at eq. (X.58) where
®, = 1/2 MH, we see that this will again be obtained by taking H — 0.
Thus, the isometric line becomes very close to the coexistence curve. This
limit corresponds to the region marked S in the figure.

There are many interesting features hidden in the algebra for this semi-
dilute limit, which the reader can visualize in terms of blobs (defined in
Chapter III).

(i) The size of a blob is £ = € "a.

(ii) The number of monomers per blob is g, such that g'a = £. This
means that g = €7, Thus, the relationship between € and N in the dilute
limit becomes a relationship between € and g for semi-dilute solutions.

(iii) The parameter y = Ne is the number of blobs per chain.

X.3.4. Correlations in the solution

There is no simple magnetic analog for the complete correlation
{ P(0)®(r) ). However, as shown by des Cloiseaux, the most accessible
object is the comrelation between the extremities of each chain.?

If all extremities are labeled, the corresponding correlation function is
again related to the spin-spin correlations for the spin components S,
parallel to the field. If only one chain is labeled at both ends, the asso-
ciated correlation function can be related to a spin-spin correlation function
for a component S, transverse to the field H. Of course the reader may
shudder at the thought of discussing longitudinal and transverse correla-
tions in a system of vectors with a number of components n = 0. However,
a meaning can be given to these concepts; in fact, the first calculations of
the end-to-end chain radius R*(®) [eq. (I11.33)] in the semi-dilute regime
were based on these transverse correlations. However the direct argument
based on blobs (given in Chapter III) is much simpler.

X.3.5. Current extensions

IMPROVEMENTS IN GOOD SOLVENTS

The main impact of the des Cloiseaux calculation has been to show that
simple scaling laws do hold in polymer solutions. The main limitation,



Polymer Statistics and Critical Phenomena 287

already mentioned, is related to the polydispersity of the chain ensemble
which is considered. To be sure, we arrange that the average N is fixed and
independent of concentration, but the distribution of N values is not fixed
by the model and does not retain the same shape at all concentrations.

(i) For certain properties (and in particular for the region ® ~ ®*) this
is a serious defect. Direct calculations for monodisperse chains in the
region ® = ®* have been constructed to circumvent this difficulty, but
they are very complex.®

(ii) In the semi-dilute regime, all properties measured on the scale of
one blob (and independent of N) can be derived correctly from the des
Cloiseaux approach. For example, the numerical coefficients of the
osmotic pressure can be related to the known numerical approximations
for the magnetic free energy at general n, after taking the liI{lit n=0.

POOR SOLVENTS

Near the theta point, there still exists a magnetic analog to a polymer
solution—i.e., a so-called *‘tricritical point.’’'® From this observation one
can show that for a single chain, at T = O, the mean field theory is
approximately correct, except for some logarithmic corrections (explained
in Chapter XI). If we go below 7 = O and study the consolute critical
point, the des Cloiseaux procedure is no help because the inherent poly-
dispersity upsets the picture seriously.

WALL EFFECTS

We have discussed some scaling properties of solutions near a wall,
inside pores, etc. All these problems have their magnetic counterparts, but
the state of the art for these magnetic problems is not very advanced, and
the analogy does not help us very much.

X.3.6. What is the order parameter?

In the magnet problem, the onset of order is signaled by the appearance
of a nonvanishing magnetization M(r). We call this the order parameter
of the transition. - '

More generally, the order parameter is a quantity which shows diverging
fluctuations (and a diverging susceptibility) near the critical point.* In

*There may be more than one physical observable with these features. For example, in
a magnet both the magnetization and the energy have divergent fluctuations (related to the
divergence of x and C, respectively). The order parameter is then the observable with
the strongest divergence (x diverges more than C for the magnetic Curie point).
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practice, to find the order parameter for a given physical transition is not
easy. A classical example is superconductivity where the order parameter
is a wavefunction for electron pairs. It took 50 years for this point to be
understood.

A similar difficulty occurs when we compare polymer solutions with
magnets. In a formal sense, the order parameter is the magnetization of a
spin system with a number of spin components n = 0. This does not help
very much. A more concrete statement, based on ideas of S. F. Edwards, is
the following: the order parameter yi(r) for a polymer solution is similar
to a_quantum mechanical creation (or destruction) operator.!! A factor
Y(r) corresponds to the initiation of a chain (or to its termination).*

We can understand this statement through two approaches. In the grand
partition function £ = Z(H)/Z(O) for a polymer solution, we saw that
each chain (with two ends) was associated with a factor H2, where H is
conjugate to the order parameter . This means that each end has a factor
H, thus, the concentration of end points must be proportional to .

In Chapter IX we discussed one particular limit of the self-consistent
field method, where the ground state was dominant. We then introduced a
ground state wavefunction y(r) with the following properties:

(i) The concentration of chain ends is proportional to yi(r) because only
one weight factor Gy(rr’) integrated over r' is involved.

(ii) The concentration of monomers is proportional to |y because two
weight factors G(r,r) and G(rr;) are involved. These properties are repre-
sented in Fig. X.7.

The free energy functional F [ys(r)] obtained in eq. (IX.33) by a self-
consistent field argument coincides with the mean field (Landau) approxi-
mation for the free energy in the magnetlc problem (for which there are
many excellent reviews!).

Thus at some points it is useful to thmk of the order parameter as an
‘‘initiator’’ (or ‘‘terminator’’) for a chain. (In our case with both ends
equivalent we are not interested in distinguishing between the two.) How-
ever this viewpoint omits some important aspects related to the multi-
component feature of M(r). We saw, for example, (in connection with
certain correlations) that it helps to distinguish between components of M
parallel to the applied field H and perpendicular to H. (Strangely enough,
this distinction retains a meaning when we set n = 0.) These component
aspects must be superimposed on the ‘‘initiator’’ aspect.

With these restrictions in mind, we can say that we have reached a
certain level of qualitative understanding for the order parameter, but it is
striking to see how slow our progress has been.

*The notation () is preferable to (M) because of the analogy with a wavefunction,
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Figure X.7.

(a) The statistical weight for one chain, with ends at points (1)
and (2), is proportional to {(1), ¥s(2), where yi(r) is a “‘chain
initiator’’ or ‘‘chain terminator.”’ (b) The statistical weight for
a chain crossing through point r contains the weights s(1), y«(r),
and Y(r), Y(2). Integration over the end points (1) and (2) gives
a concentration at point r proportional to |y(r)[>.
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An Introduction
to Renormalization
Group ldeas

XL.1.
Decimation along the Chemical Sequence

Our aim here is to gain some insight in the calculation techniques
initiated by K. Wilson,! without going into the intricacies of field theory.
Fortunately, this is possible for polymers. The text in this chapter explains
the principles of the method but does not prepare the reader for perform-
ing any elaborate calculations. For the latter purpose, there are some ex-
cellent courses and reviews.?

XI.1.1. A single chain in a good solvent

We start with a linear chain of N monomers, each of size a, in a space of
arbitrary dimensionality d. (The size is defined in terms of the ideal chain
radius R, through a = R,N~'2.) The interactions among monomers are
described by an excluded volume parameter v:

v=a'(l-2x)>0 (XI.1)

In a continuous description, we say that for a local concentration profile
c(r) the repulsive energy is:

Frep

N)—

To f Ar)dr (X1.2)
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If we prefer to specify the problem by a pairwise interaction U,,, be-
tween monomers, we can write this as a point repulsion

Unm = Tod(tpm) (XI1.3)

Parameters a, v, and N are thp essential parameters of the one-chain
problem. Instead of the excluded volume v, it is sometimes convenient to
introduce a dimensionless coupling constant

u=£;=l—2x>0 (XL.4)

X1.1.2. Grouping the monomers into subunits

We do not directly attack the formidable problem of chain conforma-
tions with the repulsive interaction [eq. (XI.3)] included. More modestly,
we begin by grouping g consecutive monomers into subunits, as shown in
Fig. XI.1. We can choose the number g as we wish. For some problems it
may be convenient to take a rather large g (g = 10); for others, g = 2 will
be sufficient.

We have thus defined a number N/g of consecutive subunits. The idea
is to compute the size @, and the excluded volume parameter v, for the
subunits; this will require a direct calculation.

(i) All interactions inside one subunit must be taken into account for the
determination of a,.

(ii) All interactions between two subunits (which are widely separated
on the chemical sequence) must be taken into account for v,. This is
summarized in Fig. XI.2, where the solid lines are chains, and the dashed
lines are interactions.

Let us describe the structure of the new size parameter. If we were
dealing with ideal coils, we would have simply, a, = g'%? a. However,
the interactions tend to swell the subunit. This swelling is described by a
factor 1 + h, where h depends on g and on the dimensionless coupling
constant u
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subunit

(a) (b)

Figure XI.2.

(a) Principle for calculating the size of one subunit, incorporat-
ing all interactions inside this subunit. (b) Calculation of the
effective interaction between two subunits.

a, = ag'*[1 + h(g,u)] (X1.5)

Now consider the new excluded volume parameter. If the coils were nearly
ideal, the subunit-subunit interaction would be g* times the monomer-
monomer interaction (since there are g* possible interacting pairs). How-
ever, this is an overestimate. If the repulsion is strong, the two subunits do
.not interpenetrate each other well, and the number of interacting pairs is
smaller than g?. Thus, we must have

v, = vg? [1 — Ug,u)) (XI.6)

where [ is another correcting factor. Introducing a reduced coupling con-
stant &, = v,/a¥, we have

1 -1
A2 e =
g )

ug®*”2 [1 — k(g,u)] (X1.7)

uy

where we have introduced the notation

1 -1

k=1 =15y

(X1.8)
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The numerical calculation of functions 4 and k is painful but feasible.
The essential point is that the region of space concerned by the calcu-
lation (shown in Fig. XI.2) is comparable with the subunit size, and thus
much smaller than the chain size. The worst part is the calculation of
v,, but this is a problem involving at most (2 g) monomers, and it can be
calculated exactly on a computer. Other methods of approximation for h
and & can be devised, and we quote one of them later.

X1.1.3. lterating the process

The idea of grouping the monomers into subunits is a classical idea of
polymer physics. However, usually, with very few exceptions, polymer
theorists performed the operation only once, to dispose of certain non-
universal features of the monomer species.?

The essential idea of the renormalization group is to repeat the opera-
tion: at the next iteration, we have subunits of g monomers, with size
a® and reduced coupling constant u,, and so on. In this way we generate
a sequence

a a, a, a,
u u, Uy U,

Any pair (a,,, u,) in this sequence represents one possible formulation of
the smgle-cham problem.

The successive operations represented by the arrows can be associated
with a mathematical group, called the renormalization group (actually a
semi-group because we cannot define a unique inverse to the operations).

Successive steps are related by equations

Ap = Ap— 81/2 [1 + h(“m—l)] (X1.9)
Up = Unoy 879 [1 = k()] (XL10)

(In these equations, to emphasize the main features, the dependence of A
and k on g is not explicitly mentioned.)

At first sight, all that we have done is to replace the original insoluble
problem (involving a, u, and N), by a sequence of equally insoluble
problems (the m-th problem being based on a,,, u,,, and N/g,). However,
we have gained, as will become clear later.

Xl1.1.4. Existence of a fixed point

When the process has been iterated long enough (m large), the subunits
are large, and we know from the properties of dilute solutions that two
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subunits behave like impenetrable spheres.* This means that the excluded
volume v,, must scale like the subunit volume a%, or equivalently that the
reduced coupling constant tends toward a finite limit:

Uy, = %—) u* = constant XI.11)

The sequence of numbers u;,, ... 4, approaches a fixed point u* when
m— o,
The value of u* is obtained from eq. (XI.10) and is a root of

g2 [1 — k(u®)] = 1 (XI.12)

In most practical cases this fixed point is reached quickly. For example,
with g = 3 and m = 4 we are already dealing with subunits of 3* ~ 100
monomers, for which the hard sphere limit usually holds well.

XI.1.5. Scaling law for the chain size

The “‘fixed-point theorem”’[ eq. (XI.11)] is essential because when u,,
reaches its limiting value u*, the relationship between a,, and a,,, [eq.
(X1.9)] becomes a simple geometric series

An = Ay, 2 [1 + h(u*)] = pan-, (XI.13)

(where u is a known constant), and all properties on these large scales
become ‘‘self-similar.”’ The meaning of this word will become clearer if
we consider a specific observable property, such as the root mean square
end-to-end radius R of the chain. In the initial problem, we expect R to be
of the form

R = af(N, u) (XI.14a)

where the functionf is unknown a priori. However, let us write R using the
m-th formulation. We must have

R = a,,.f(g,{—,, um) = am_lf(é,i:’:,- um_.) (XI.14b)

with the same functionf. Let us apply this identity in the region of high m
where u,, = u*. Then we can drop # from the arguments of f, and we arrive
at the condition

*This statement holds for dimensionalities 4 <€ 4. The case of d = 4 is discussed later.
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-=p (XL.15)

where we have used eq. (XI.13) defining w. This imposes a power law
structure on f:

J(N) = constant N* (X1.16)

Thus, in eq. (XI.16) we prove the existence of an exponent ». Further-
more, we have an explicit value for », derived from eq. (XI.15)

g=upn
_Inp
Ing

(XI.17)

Here we see the enormous advantage of renormalization groups, when
compared with more classical methods, such as perturbation calculations
(Chapter 1.2). Even if we have only an approximate calculation of the 4
and k functions (and thus of u* and w), we obtain a nontrivial prediction
for the exponent ».

XI.1.6. Free energy of a single chain

We now show how the renormalization group transformation can be
applied to a discussion of the statistical weight (or of the free energy) of
the chain. Our discussion is purely qualitative, but it does give some in-
sight into the origin of the ‘‘enhancement factor’’ presented in eq. (1.21).

Let us call F(N, u) the free energy of a chain of N monomers with a
dimensionless coupling constant u. Then we associate the monomers into
subunits of g partners. We started with N independent vectors r, . . . ry.
We end up with N/g independent vector r; . . . ry,, defining the centers of
gravity of the subunits. The original partition function was of the form

exp [— —F—'(#l] = fdrl. ..o dry exp(—9u(r; . .. Ty)

©. being the original interaction energy between all monomers. When we
reduce the system to subunits, we integrate over g — 1 coordinates for
each subunit. The result of the integration is to introduce a factor which we
call exp(— AF/T)
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l ’ ’ ’ '
exp[— TF(N“)] = exp(— A].F—)fdrl - drN,, exp(—.@u‘(rl e rN,,))

A 1 N
exp( T exp[ TF (? ul)]

or in terms of free energies

F(N,u) = AF(N,u) + F( , ul)

What is the structure of AF? For an ideal chain we would get additive
contributions from different subunits, each of them proportional to the
number of integration variables g — 1

AFideal Ao_ -1

where exp (— A,) would be the partition function of one monomer. When
we switch on the interactions, two effects occur.

(i) A, is renormalized A, = A(u).

(ii) There is an end effect. The first and the last subunits in the chain
feel smaller repulsions because they interact only on one side on the
chemical sequence. This subtracts a contribution that is independent of N,
which we shall call B(u)

AF

x|z

< (8 — 1) AW) — B (XL18)
(Note that B vanishes for u = 0).
Let us now iterate eq. (XI.18); we get

PN = F (%, i) + (¢ = 1) {2 4w + 5 4w

+... % A(um_l)} — (B) + Bu) + ... + Bluy_ )}

The summation can be simplified if we assume that u,, is equal to u* as
soon as a few iterations have been performed. (The difference, u,, — u*,
will introduce corrections in the form of a rapidly converging sum and is
not important.) Then
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I AN NN (1 ]
LFN.uw) =7 gm,u*)g(g 1)(1+g+. g,,,_,)+mB(u*)

(For large m the geometric series adds up to g/g—1). We now choose a
value of m such that g™ = N. Then we have m = In N/ In g and

—; F(N u*) = -%—F(l,u*) + NA(u*,g) — [B(u*)/In g] In N

The first term, F(1,u*), is a constant. Returning to = = exp (—F/T), we
see that 5 has precisely the form described in eq. (I.21); it contains a factor
N7 with

B(u)

y-1= Ing

(XI1.19)

We see now: that this factor reflects certain end effects in an open chain.
This observation is interesting because it explains why the enhancement
factor disappears when we consider closed polygons [eq. (1.28)]. A closed
polygon has no ends!

A remark on the { parameter. In Chapter I we introduced a dimension-
less parameter { = pa~?¢ N?~%2 and we stated the following property
[eq. (1.42)]): a gaussian chain (unperturbed size R, = N'"2a) subjected to a
point repulsion between monomers [Tvd(r;;)] swells up by a factor R/R,
which is ‘a function of { only. One justification of this statement uses a
decimation procedure which is somewhat different from the above, and is
due to Kosmas and Freed.* We cite it here because of its great simplicity.

Using a continuous notation we write the weight factor £, /7 in the form

'bu_ jwd (dr sz dndmva"S(rn-l'm)

where the first term describes ideal springs, and the second term describes
interactions. We then perform a single decimation step by step switching to
a new variable n, = n/g. We then find that we can maintain the same
structure for §, if we change N into N/g and r, into g"2r, The only new
effect is then to change ¥ = va~4 into ug®> 2. Thus if we consider the

dimensionless partition function Z /=, (where =, would correspond to the
ideal chain) we can write

*M. Kosmas, K. Freed, J. Chem. Phys. 69, 3647 (1978).
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5/8, = fVu) = f{, ug-en)

We may then choose g = Nk, where k is a constant, independent of N (and
much smaller than unity, to ensure that the number of subunits N/g = k™ is
still large enough to justify the continuous notation). We arrive at

E/:'E":o = f(k, k2-—d/2 uN2-d/2) = ﬂk’ k2-—dlzc)

and conclude that 5/E, is only a function of {. The same argument can be
written for the swelling: coefficient R/R,. However, our readers should
remain aware of the strong limitations of this theorem, which applies only
to a special model: gaussian chains plus point-like pair-wise interactions.

If we start with a real chain, many other features will show up in the
original hamiltonian, for instance chain stiffness, three-body interactions,
etc. We must then decimate up to a point where all these nonpertinent fea-
tures have dropped out. However, by this time, the coupling constant  will
also have changed, and will be close to the fixed point value #*. Thus, for a
real chain, the {-theorem boils down to the statement that R/R,, is a function
only of u*N?~%?2 (that is to say of N) and is not very helpful.

X1.1.7. Calculations near four dimensions

In practice there are two main methods for calculating A and & in the
renormalization ‘group equations (XI.9, XI1.10): 1) direct numerical calcu-
lations for small g, and 2) perturbation calculations for dimensionalities
(d) ‘“‘slightly below 4>’ (d = 4 — €).* ;

We discuss this second approach briefly. The crucial observation is that
for d > 4, the fixed point value u* is equal to zero. This is clear from eq.
(X1.10) since

_“l < g

Up—y

and when d > 4, the right side is smaller than unity. This suggests that for d
slightly smaller than 4 (d = 4 — ), the fixed point value &* is small. This
guess can be confirmed by a self-consistent argument. If we assume u to be
small, we can compute the corrections h(u) and k(u) by perturbation

*Dimensionalities 4 which are not integers can be manipulated by analytic continuation of
the formulas for integral d. For example, the approximate Flory formula for » = 3/(d+2)
retains a meaning for nonintegral d.
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methods. To first order they are linear in u. The fixed point equation then
gives

1 —k(u*) = g¥22 =g92=]—¢/2Ing

Thus k(u*) (and u* itself) are proportional to €, and our assumption of
small u was justified. Perturbation calculations along these lines have been
carried out.* They give rather god results in three dimensions (e = 1).
All our presentation is based on a physical grouping into subunits. This
is pedagogically convenient but suffers from certain defects. For example,
interactions among neighboring subunits (Fig. XI.3) are not properly
taken into account if the new coupling constant u is defined as in Fig.
X1.2b through the interaction of subunits which are widely separated on the
chemical sequence. This defect can be corrected by operating not on the

L o) . Pr—

Figure XL3.

Interactions between two subunits which are consecutive on the
chemical sequence. Compare this drawing with Fig. XI.2b,
which shows interactions between nonconsecutive subunits,
and note the difference.

sequence of monomers 1, 2,. . N but on Fourier transforms with
respect to n. For the details of the procedure see related discussions in
Wilson and Kogut.!

XL2.
- Applications

Xl.2.1. Polyelectrolytes

Chains carrying ionizable groups (such as SO;~ or CO,~) are
frequent in nature and in many industrial applications requiring polymer-
water systems. To each ionized group (say SO3~) is associated a counterion
(say K*) which moves rather freely in the surrounding water. General
reviews on these ‘‘polyelectrolytes’’ are listed in Ref. 5. The effects of



300 CALCULATION METHODS

coulomb repulsions between the ionized groups are strong and complex.
From a scaling point of view, the properties of polyelectrolyte solutions
are not yet fully understood.® Here we restrict our attention to one soluble
problem—namely, a single polyelectrolyte chain, with counterions dis-
persed very freely in the solution.

These assumptions are very restrictive because, as we shall see, poly-
electrolytes are very stretched, and the resulting overlap concentration c*
is very low (®* is of order N2 instead of N5 for neutral chains).
Experiments at ¢ < c* are often unfeasible.

The assumption of dispersed counterions (negligible screening) is also
very delicate. Manning” and Oosawa® showed that this assumption is
correct only if the charge density along the chain remains below a certain
threshold. If e is the electron charge and a is the length per monomer in a
fully stretched chain, we must have (for monovalent ions)
e2
eal

<1 (X1.20)

where € is the dielectric constant of water.

If the inequality [eq. (X1.20)] is violated, the counterions ‘‘condense’’ on
the chain and decrease the charge density, bringing it back to the threshold
value. Another limit to the assumption of negligible screening is given by the
residual ionic content of the water itself. If we use pure water (completely
salt free) as the solvent, we still have a certain number of H* and OH™ ions
that arise from spontaneous dissociation. These ions give a Debye screen-
ing length «~! which is large but finite (in the micron range). Our con-
siderations hold only if the chain length is much smaller than « 1.

With all these difficulties theoretically eliminated, we ask: what is the
conformation of one charged chain (of N monomers) in d dimensional
space. The interaction between monomers () and (/m) separated by a dis-
tance r,n is of the general coulombic form
e2

a2 (X1.21)

V(ram) = ka

where k,; is a numerical constant.*
For d = 3, V(r) is the usual 1/r interaction. For more general dimen-
sionalities, eq. (XI.21) ensures that V satisfies the Poisson equation

*k, is related to the area A, of a d dimensional sphere of radius r: k; = 4n/(d—2)r""1/A,.
This equation can be checked by applying the Gauss theorem to eq. (X1.22).
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41re?
€

V2V = &(r) (X1.22)

As usual we describe the strength of the interaction ¥ by a dimensionless
coupling constant u, obtained by comparing the coulomb repulsion be-
tween neighboring sites V(a) with the thermal energy T

(XI1.23)

The original problem of one chain with electric repulsions is then defined
entirely in terms of a, u, and N.

To this problem we associate other problems obtained by grouping
the monomers into subunits of lengths g, g2,... g™ along the chemical
sequence. The equation for the sizes a, . . . a,, of the units will still have
the structure of eqgs. (XI.5, XI.9) (although the precise structure of the
correction function h(g, u) will, of course, differ).

What is peculiar here is the equation for the coupling constants &, . . . up,.
The charge of g units is exactly g times the charge of one unit. This
implies that no other unknown function enters into the equation for u,,. Eq.
(X1.10) is replaced by

d—2
Up = Up—y 8 (a";;‘) (X1.24)
= Upoy &7 [1 + h(Up-) P (X1.25)

We can construct the relationship between u,,_, and u,, explicitly for the
two essential limits, corresponding to weak coupling (&, — 0) and strong
coupling (u,, > 1).

In weak coupling the chains are nearly ideal (h — 0)

Um g <)) (X1.26)

Um—y
In strong coupling the chains are completely stretched, and

Am

=g (X1.27)

am-1

Inserting this into eq. (X1.24), we find
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Hm_  gt-a (Uy > 1) (X1.28)

U

From these two limiting properties [egs. (X1.26, X1.28)] one can recon-
struct the general structure of u,, versus u,,_, (Fig. XI1.4). Depending on
the dimensionality d, we find three cases: d > 6,4 <d < 6, and d < 4.

For d > 6 the plot of uy, versus (4,,—,) is always below the first bisector.
Then, if we construct successive iterations, as shown in the figure, we find
that the fixed point is #* = 0. Physically this means that a long chain is
ideal.

For 4 < d < 6 the plot of u,, versus (i,,.,) must cross the first bisector
because the slope at the origin [given by eq. (XI.26)] is larger than unity,
while the slope at infinity [eq. (XI.28)] is smaller than unity. Then succes-
sive iterations lead to a finite fixed-point value.

limpwo Uy = u* (X1.29)

Returning to eq. (X1.24) we then find the behavior of the lengths a,, in the
fixed point limit

am = gzltd-z) (XI.30)

Am—1

We could then derive the chain size using the detailed arguments of egs.
(X1.14-17). Here we use a simplified method, which is always used in
these matters. We choose 4 = u* for our original problem. This improves
the convergence and simplifies the argument. Then the sequence of size
a,, ..., a, is a geometric series a, = ag*™ 2. We now choose m so
that at the m-th step, one subunit spans the entire chain (g™ = N). Then the
chain size is

d>6 6>d> 4 d< 4
Uy Un Um

Um.-1 U* Uny Un-y

Figure XL4.
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R = a, = aN*9™?

and we find an exponent®

(XI1.31)

This result was obtained first by a more complex perturbation calculation
near d = 6, but it is valid in the entire range 4 < d < 6,

For d < 4 the iteration leads to u,, — o, i.e., to rigid chain behavior.
This applies particularly to the practical case for d = 3. A single poly-
electrolyte chain (in the absence of all salts, etc.) should be fully stretched.

One case is of special interest. If we have a very weak charge density
(one ionized group for N, monomers, with N, > 1), the first iterations
will correspond to the weak coupling limit; it is only on large scales that the
chain will behave as a rod. The corresponding picture is shown in Fig.
XL5.

The diameter D of the effective rod may be estimated as follows. At
scales r smaller than D, the chain is ideal. Thus, a section of overall size
D has a number of monomers

gp = (D/a)? (XL.32)

and a charge gp/N, e, corresponding to a coulombic energy

o= gDe 2_1

Vv, = (N) 5 (X1.33)
= == 2 -2
_e_(ea Da) N. (X1.34)

If D is the crossover size, the dimensionless coupling constant constructed
with blobs of size D is of order unity, or V, is comparable with 7. This
gives

(RS

Figure XL.5.
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2 -1/3
= N23 ( e ) (X1.35)
The overall size of the chain is

Ry EiD (X1.36)
&p
This discussion could be refined by more detailed renormalization group
calculations,* but it shows clearly the interest of diffraction studies on
chains that carry only a few charges along their length. If the chain is not
very long, we may reach a moment where g, = N. Below this point, we
return to an ideal chain, only weakly perturbed by coulombic effects.

Xl.2.2. Collapse of a single chain

TWO COUPLING CONSTANTS

In Section IV.3.2 we gave a crude discussion of the properties of a
single chain near the compensation temperature ©. We saw that the chain
was nearly ideal but that some delicate corrections were introduced by the
three-body interactions. We shall now return to this problem using the
decimation approach. Our starting point is a set of interactions described
by eq. (II1.9):

(i) A pair interaction 1/2 vTc?.

(ii) A three body interaction 1/6 w? Tc3. (X1.37)

where ¢ is the local concentration in the chain. We are interested in small
values of the excluded volume v, and then the ¢ terms cannot be omitted
as pointed out in Chapter IV. However, higher order terms (c*4,... ) re-
main negligible because ¢ ~ N ~!2 is small. Thus, we must introduce two
dimensionless coupling constants

Uu

v = —_
Z o 1 - 2x

(X1.38)
w

t pe

THREE TYPES OF CHAIN BEHAVIOR

We then construct a renormalization group, associating the monomers in
subunits of g elements and iterating the process

*Also the effects of counterion screening should be incorporated.
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u [/ Um
(t)—»(t,)...—»(tm) (X1.39)
a a, am

It is convenient to show the successive values of ¥ and ¢ in a two-dimen-
sional diagram (Fig. XI.6). Each step is represented by one point, and
successive steps define a “‘trajectory.’’ (We draw trajectories here in the
limit where g is close to unity—i.e., where they are nearly continuous.)

Fig. XI.6. is drawn specifically for three dimensions. As explained in
Section 1V.3.2 the value d = 3 is very special. There are two types
of trajectories: 1) trajectories converging toward the fixed point (4 = u*,
t = 0), and 2) trajectories going toward large negative u values. These two
“‘basins’’ are separated by a dividing line, often called the ‘‘tricritical
line”* in analogy with certain problems in phase transitions.?*

The physical implications are as follows. If we start with values of 4 and
t corresponding to a point A in the first basin, and if we look to larger and
larger subunits, we find that our subunits repel each other like hard spheres
(4w — u*) and that the three-body interaction described by ¢ becomes
irrelevant (¢, — 0). This means that on large scales our chain will be
swollen and behave as a good solvent. If, on the other hand, we start at
point B in the other basin, we go toward more and more negative (attrac-
tive) u values. This means that for large N (many iterations) we tend
toward a collapsed situation.

THE RENORMALIZED © TEMPERATURE

If we choose an initial condition corresponding to point C (on the divid-
ing line), the iteration leads to a universal behavior which is neither

t
B G A

dividing line
/

COLLAPSED SWOLLEN

o ) v
Figure XL.6.
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swollen nor collapsed and which we call quasi-ideal behavior. Note that an
arbitrary point C on the dividing line has a nonzero value of the u para-
meter [u = uq(t)); quasi-ideal behavior is not associated with u = 0.

In practice, for a given three-body interaction parameter w2 (or t), we
must distinguish between two temperatures: 1) the temperature at which
u = 1 — 2x vanishes, which we might call the bare © temperature, and
2) the temperature at which a large chain is quasi-ideal, which corresponds
to the value of ¥ = uy(t) on the dividing line. We call this temperature
6(1) the renormalized © point. Most empirical definitions of a compensa-
tion point are based on 6. For example, one can define @ from the require-
ment that the chain size R be close to the ideal value

limy_... [R?/N] = constant (X1.40)

Another practical definition of © can be proposed. We may call © the
temperature at which the second virial coefficient between two very large
coils vanishes. Fortunately, these two definitions coincide. When we are
on the dividing line, the parameter u, (at the m-th iteration) gives (in
dimensionless units) the virial coefficient between two subunits. Since the
dividing line ends at 0, where u = 0, this coefficient vanishes when the
subunits are large enough. The distinction between © and © is essentially
absent from the polymer literature (which has been written mainly on the
mean field level).

CHAIN BEHAVIOR AT THE COMPENSATION POINT

We now sketch briefly the structure of the relationships between (i, £,
ay) and (Upm—y, tm—y, Gm—y) near the fixed point O. In this region,  and ¢
are small, and perturbation calculations can be used. The first essential
result concerns the sizes, for which we have

An = 82 apy [1 + kyltny + kitoy + O, 22,ut)] (X1.41)

Eq. (XI.41) can be understood easily when g > 1 (in which case the sub-
unit is itself a small coil). The factor g'” corresponds to ideal chain be-
havior. The u correction is derived from the perturbation calculation de-
scribed in eq. (I.42). The second correction k¢ results from a similar
perturbation treatment applied to the three body interaction. The constants
k, and k, depend on the value chosen for g.

Eq. (X1.41) applies in the entire neighborhood of O in the (u,?) plane. Let
us now focus to the dividing line u = wu4(f). On this line the chain must re-
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main ideal. This means that the corrections linear in # and ¢ cancel. Thus,
the slope of the dividing line is defined by

ugt) = —{it (X1.42)

Then in eq. (XI.41) the only corrections which remain are of second order
inu ort. Asour parameter here we use the distance p = \/u? + 2 from the
origin along the dividing line, and we write

am

m — 1 = constant P?n-—l (X1.43)

Let us now turn to the equation for ¢,, (or for p,,, which is proportional to
t,,) on the dividing line. On this line we have

tp = tm—y — kt2_, . (X1.44)

In three dimensions the first term #,,_, on the right has a coefficient which
is exactly unity. This can be seen from a regrouping in subunits in the
three-body interaction [eq. (X1.37)]

-TtaSc®

1 3 '
FTz(gléa)6 (%) (X1.45)

All corrections to this result come from higher order interaction effects and
thus are of order p? (or #2) as indicated in eq. (X1.44) (k is a positive con-
stant). The essential feature of eq. (XI.44) is that it does not give an ex-
ponential convergence of t,, toward the fixed-point values but only a slow
convergence . *

The asymptotic law for ¢,, (or p,,,) is found easily in the limit of g slightly
larger than 1, where t,, and ¢,,_, are very close, and where m can then be
treated as a continuous index. Instead of eq. (XI1.44) we then have

Mm _ _ 0
m ke, (X1.46)

*Ford smaller than 3 there are two fixed points near O, one describing gaussian chains and
the other describing chains at © conditions. These two points merge when d = 3, and this

confluence is the source of the slow convergence found in eq. (X1.44). This is called
marginal behavior in renormalization language.
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which integrates to

tn = (X1.47)

where m, is an integration constant, related to the initial value of ¢
k
m, =— (X1.48)
tO

As explained, on the dividing line, the distance p to the origin is propor-
tional to t. For large m, both scale like 1/m. If we insert this result into the
size equation [eq. (X1.43)], we arrive at

Am

T2
"% amy

=1+ km? (X1.49)
or, introducing b,, = g™™2a,,, we have in the continuous limit

1 ab,
b, om

= k'm™2 (XI1.50)

This integrates to

_ k'Y _ k'
bn = bexp (m) b(l m)
am = gm2 a(l + —-k’) (X1.51)
" m :

We can now choose m so that g" = N (i.e., one subunit coincides with the
whole chain), and we find a size:

2 = __3_7___]
R = Na* [1 timeN| N—® (X1.52)

In this final result, we have inserted the numerical coefficient derived in a
complete calculation by M. Stephen.!® (Note that in the final result g drops
out; the properties of the chain are independent of our choice of subunits.)

The main conclusion is that at least for the size of the chain, quasi-ideal
behavior is not very different from ideal behavior. The only corrections are
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proportional to 1/In N and are probably unobservable in practice. How-
ever, there are some other effects where they might show up, some of
which are discussed below.

VICINITY OF THE COMPENSATION POINT:
QUASI-IDEAL BLOBS

We consider now a temperature that is not exactly equal to the compen-
sation temperature ©. In the (u,?) plane of Fig. (XI.6) this means that we
start at a point (4,,f,) which is not exactly on the dividing line. For
simplicity, we ignore the difference between © and 6; this corresponds to
a dividing line that is vertical. Then we have

w~1-9
° o (X1.53)

t, ~F~ 1

If we choose a small, positive u,, a long chain will show excluded volume
effects at large scales. On the other hand, at small scales it will still be
quasi-ideal. Our main purpose here is to find the boundary rp between
these two scales. We can also speak in terms of blobs, each containing gp
monomers and having size rz. Each blob is quasi-ideal, but the necklace of
blobs is a swollen necklace, with excluded volume effects. Note that the
relationship between rp and gp must be of the type in eq. (XI.52); in
this equation we have seen that the size corrections are negligible, and thus
we can write

a2 (rg)® = gs (X1.54)

A similar problem occurs if we start with 4, < 0. Then we can again
define blobs, of size rp and monomer number gp. Each blob is still
quasi-ideal, but the necklace of blob is a collapsed structure—the blobs fill
the available space, with a certain filling density.

To determine the blob size, we construct a renormalization group equa-
tion for u. The quantity # measures the distance to the dividing line (since
we ignore the difference © — 6). This equation has the form:

Up = ' Up_y — Clipy tm—y + O() (X1.55)

The first term g'’2 corresponds to an ideal chain [as in eq. (X1.10)] and
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leads to an expgnential increase in u. However, this increase is moderated
slightly by the second term, and this will have some importance. * Note that
¢ is not a concentration, but in a numerical constant, dependent on g.
Iterating eq. (XI.55) we may write

Up = " uy [1 — et,][1 — et,)... [1 = étmy]  (X156)

with & = ¢g™"'2. We assume for the moment that we are very close to the
dividing line, and that t,, is still given by eq. (XI.47). For large m we write

1l —ét,=1—¢k/m=1—-p/m=exp(—p/m) (XL.57)
where we have introduced an important numerical parameter p = ¢k. A
complete calculation of k and ¢ shows that p is independent of g'! and is a

purely geometric constant

4

P=Tj (X1.58)
Returning to eq. (XI.55) we have
m p
Up = g™ u, exp — f dm’w = g"2 y, exp(— pIlnm)
1 . )
1
= g"'"" Tn;uo (X1.59)

Thus, near the dividing line ,, increases a little more slowly than g™”.
This expresses a correlation effect: the number of monomers in one subunit
is G = g™; in the ideal chain limit, counting all possible interacting pairs
between two subunits, we would arrive at a coupling between them u =
G?/G3? u, = G'2 u,. However, the subunits do not interpenetrate each
other freely because of the three-body interaction described by ¢, and this
reduces the effective value of u.

We now return to the equation for the other coupling constant . We
wrote it on the dividing line to the form of eq. (XI.44). Now we must
extend eq. (XI.44) to the vicinity of the dividing line (with our convention,
to u # 0). It then has the form

*Note that there are no terms of order # in eq. X1.55. If we start on the dividing line
(u = 0), we never leave it.
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_d_’_= — k2 + I + sut + ... (X1.60)

dm

There are no terms linear in 4. A two-point interaction cannot generate a
three-point interaction in first order. The dominant new correction will be
the «2 term (since u increases exponentially, while ¢ decreases). The con-
stants / and s depend on g. We now retain only the k and / terms and
estimate the contribution from the ! term to #(m), which we call 8t(m)

m mo . dm’
! = 2 m
l f Updm' = u, f g )"

8t(m)

. 1 g"
~ 2 ,m = 2
=yl g n g™ = u, o (XI1.61)

For the integration we used the fact that g"’ varies much faster than 1/m’,
and we replaced (m’)™?” by m~2?, We have to compare 8¢(m) with the
value of ¢ on the dividing line [eq. (X1.47)]

)
m

[

t (m>1) (X1.62)

From eqs. (X1.61) and (XI.62) we find that ¢ is negligible whenever the
following inequality is satisfied
uoz gm/mzzl < to m™!

Uz <t, g™"/m-2 (X1.63)

Let us now use as our variable the number G of monomers per subunit
G = g™. The inequality in eq. (XI.63) may be transformed into

G < u,2/|In u,|'-2» (X1.64)

In terms of a blob size g, this must be equivalent to G < gj. Thus:
gs = Uy 2/|In u|' "% = u,"2/|In u P (X1.65)
‘Whenever G is smaller than g5, the effect of i, (i.e., the departure from
theta conditions) is negligible. Thus, eq. (XI.65) is the fundamental equa-

tion for the blob size. Related equations were derived originally (in connec-
tion with tricritical points and in a very different language) by Riedel and
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Wegner,'2 Abrahams and Stephen,’® and Wohrer.!! Notice that if we omit
the weak logarithmic factor |In 1,[**!, eq. (XI.65) agrees with the naive
estimate of rp (or gz) discussed in Chapter IV—cf. eq. (IV.53) where
v/a® = u,. For many experiments the naive estimate is enough.

PHYSICAL PROPERTIES NEAR T = O

The practical consequences of these delicate logarithmic effects have
been analyzed in detail for the related problem of tricritical phase transi-
tions'll,12,13

On the polymer side the understanding is less complete.!%:15:16 Recently
the present author has proposed a qualitative picture of the transition based
on the blob concept described above.!” The idea is to estimate first the
interaction constants 4 and ¢ berween blobs. They are obtained from egs.
(IX.59) and (XI.62), using the value of m which corresponds to the blob size
(g™ = ga). Then knowing the interactions between blobs u, and ¢ we can
calculate the size R of a chain made of many blobs simply. For scales
larger than the blob size, the blobs behave as would be predicted from the
Flory theory; for instance, above the © point, where ¢z becomes irrelevant,
we obtain R from the Flory eq. (1.38) applied to N / g 3 blobs of size rp and
excluded volume ugrz3. Because of the logarithmic factor in eq. (XI.65)
there also appear logarithmic factors in the size R. However, these factors
seem extremely hard to see in any practical experiment. Another property
of interest is the specific heat. A specific heat anomaly proportional to
In © / AT was suggested by M. Moore.!* In Ref. 17 a slightly different
structure is proposed: namely that the singular part of the free energy be
simply T per blob. For the whole chain this then gives a free energy F,,, =
NT / g g, and from eq. (X1.65) one arrives at a specific heat proportional to
(In ©/ AT)3'1. The peak value would correspond to g5 = N and is of order
(In N)3m, .

At the time of this writing, our main information on these properties is
from numerical studies on a single chain on a lattice.® The chain is con-
sidered self-avoiding, but an attractive interaction (among monomers
which are located on neighboring sites) is added. This gives a © point and
a specific heat maximum (for T — ©) which may well be logarithmic in
N.16 However, the possibility of fractional powers (In®'!) has not been
considered in the analysis.

From an experimental point of view, thermal measurements on very
dilute chains are unpractical. What could be done is to study the number
N, of contacts between monomers by ultraviolet spectroscopy. N, is
essentially proportional to dF,,/du,. The derivative dN,/dT should show
an interesting anomaly near T = ©.
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SUMMARY

A single chain at the compensation point © has a quasi-ideal behavior.
The size R scales like N'/2, and the pair correlation function g(r) decreases
like 1:r (for r < R). However, the three-body repulsive interactions remain
effective even at T = ©. Their effect (in three dimensions) is to introduce
some correlation between the monomers. The probability of contact be-
tween two (or three) monomers is reduced by certain logarithmic factors.
These factors could show up in certain measurements which are sensitive
to local properties (e.g., specific heat) and possibly in certain optical
properties.

X1.2.3. Semi-dilute solutions and blobs

Renormalization groups can be applied to many chain problems. Here
we take as an example a semi-dilute solution, with d = 3, in a good
solvent. The dimensionless parameters characterizing the solution are a,
u, and the volume fraction & = ca®. On each chain, we regroup the
monomers into consecutive subunits, each made of g monomers. We reach
new values a,, u,, and a number of subunits per volume a} which is

@, =%a’,’ . (XL66)

We then iterate the process m times. The resulting @, will be defined as
the ratio between the average number of monomers in the volume a},(ca;,)
and the number of monomers in one subunit g”. When @, is less than 1 we
are dealing essentially with a one-chain problem. When &,, > 1, inter-
chain effects become dominant.

The successive iterations may again be represented as trajectorles in a
(u, @) plane (Fig. XI.7). For @ = 0 the points of # axis converge exponen-
tially toward the single-chain fixed point u*. For an initial ¢ which is
small but nonvanishing, the early iterations are much as they are for a
single chain with regard to «, but ¢ increases. We can then approach
u, = u* if &, is still smaller than 1 (single-chain behavior), but further
iterations will modify the picture. When &, becomes of order 1, we be-
gin to deal with a dense system, for which the Flory theorem of Chapter
II will hold; the effective iterations decrease, and # drops from a value
close to u* to values near zero. If we stop the iterations at the levels &, =
1 and u,, ~ u*, we have reached subunits that are identical to the ¢‘blobs’’
of Chapter III. Thus, the blob concept can be related to renormalization
group trajectories. The example discussed here is somewhat trivial, but
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v U Figure XL.7.

similar calculations would be of interest for more complex systems such as

CO!

nfined chains.
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relation to critical phenomena, 275

Flexibility of chains
dynamic, 24
static, 21
Flory-Huggins theory of solutions
critique of, 76, 115
general features, 69, 101

SUBJECT INDEX

interaction parameter ¥, 71
validity for mixed polymer melts,
112
Flory theory of gels
critique of, 153, 154
summary, 152
Flow effects on polymers
longitudinal flows and dilute
solutions, 186, 193
transverse flows and melts, 237
Fluorescent probes, proposed
experiments
for interfacial problems, 88
in semi-dilute solutions, 83

Gaussian chains, see Ideal chains
Gelation
classical picture, 137
percolation model, 137
and precipitation, 168
and vulcanization, 146

Hydrodynamic radius, 38, 176, 183

Ideal chains
adsorption of, 35
under constraints, 33, 34
‘free, 29, 32
Interfacial effects
polymer plus poor solvent, 123
semi-dilute solutions plus wall, 86
Internal friction
Cerf form for, 198, 199
theoretical models, 200
weakness of, 167

Knots
and dynamics at the @ point, 171
and olympic gels, 132
Kuhn theorem, for internal friction,
168, 171

Labeling techniques
deuteration, 13
in melts, 62
mixtures of labeled and unlabeled
chains, 66
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Light scattering
elastic, 38
inelastic, 13, 38, 177, 180

Mesh size, in semi-dilute solutions, 80
Mixtures
long chain plus short chain, 59
polymer plus solvent, 69
polymer A plus polymer B, 103
polymer A plus polymer B plus
solvent, 123
Mobility
of a confined chain, 197
of a reptating chain, 227
of a single chain, 176
* in a ‘‘tube,”’ 225

Olympic gels, 132
Order parameter
mean field functional, 254
for polymer statistics, 287
Osmotic pressures
in the Flory-Huggins picture, 74
scaling form in semi-dilute solutions,
79
virial expansion, 77
Overlap threshold (c*)
for athermal solvents, 76
for confined chains, 89
for good solvents, 119

Pair correlations
and correlation hole in melts, 63
in gels, 153
in an ideal chain, 36
in a real chain (good solvents), 42
and response functions, 260
for spin systems, 276
near the @ point, 118
Percolation
and elastic networks, 141
exponents, 139
model for gelation, 137
Perturbation calculations
near four dimensions, 298
for one chain in a melt, 59, 60
for a single chain, 45
Phase diagrams
gelation versus precipitation, 148
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polymer plus polymer, 106

polymer plus solvent, 108, 114

polymer plus polymer plus solvent,
124

Photon beat experiments, see Light
scattering
Polydispersity
definition, 20
and the des Cloiseaux trick, 282
effects near a consolute point, 110,
286
Polyelectrolytes, 299
Polymer melts
correlation hole in, 63
dynamical scaling laws for, 221, 222
ideal behavior of chains, 54
random phase calculations for, 262,
263
Porous media, behavior of polymers in
dynamical effects, 193
semi-dilute solution, 88
single chain, 34, 49
Precipitation
competition with gelation, 148
of polymer in solvent, 121

Random networks, electrical properties,
141
Random walks
in confined geometries, 34
ideal, 29
self-avoiding, 39
Relaxation modes -
for a reptating chain, 225, 226
for semi-dilute solutions, 205
for single chain, 165, 171, 178, 179
Reptation
for a branched chain, 230
calculation of terminal time, 224
competition with tube renewal, 234
model, 223
Rouse model, for chain dynamics, 165

Scaling laws (dynamic), see Dynamical
scaling laws
Scaling laws (static)
notation, 26
for semi-dilute solutions, 78, 85
for the sol-gel transition, 138, 140
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Scaling laws (static) (cont.)
for swollen chains, 39, 43
in the @ region, 119
for two polymers plus solvent,
127
Screening of interactions
full random-phase calculation,
in polymer melts, 56
simplified approach, 85
Sedimentation coefficents, 208
Segregation effects
in polymer mixtures A plus B,
cases of weak, 100
in gels, 148
general features, 98, 103
Self-avoiding walks, see Random
walks
Self-consistent calculations
Flory method for single chain, 43
formal principles, 245
for pair correlations, 262
simplified situations with ground
state dominance, 254
Semi-dilute solutions :
crossover between good and poor
solvents, 119
definition, 78
scaling laws in good solvents, 78,
82
screening in, 85
Sol-gel transition, see Gelation
Solvents
athermal, 72
effect on gelation, 148
good, 72
poor, 113
Spinodal curve
definition and limitations, 107
of gels, dynamics, 215
of gels, statics, 158
of solutions in poor solvents, 122
Star-shaped polymers
dynamics, 230
neutron scattering by, 156
Subunits, see Decimation method

125,

262

103

SUBJECT INDEX

Terminal time (for mechanical
relaxation)
for branched systems, 232
definition, 221
effects of dilution, 227
reptation model, 223
scaling laws, 222
Two-dimensional problems
correlation hole in melts, 66
perturbation calculations for melts,
60
semi-dilute solutions, 96
Tube
chains confined in, 34, 49, 88, 193
effective (for entanglements), 224
renewal, 235
Tubeless siphon, 187
Theta point
deviations from ideality at the, 116,
305
Flory picture, 115
polymer mixture in a 6 solvent, 126
renormalization group description,
304
semi-dilute solutions at 7 = @, 118
shift due to higher order interactions,
115, 304

Van der Waals interactions
effect on adsorption, 52
and sign of the Flory parameter, 72
Virial coefficient (2nd)
of coils, 77
of the solvent in a concentrated
system, 75
Viscosity
of dilute solutions, 38, 183
frequency dependence (single chain),
185
internal, 199
of melts, 222, 236
Vulcanization, critical exponents for,
146

Zimm relaxation time, 181
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