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Preface 

This book can serve as an introduction to students interested in learning 
the techniques used in developing mathematical models of physical 
phenomenon; or it can furnish the background information to the 
experienced professional desiring to broaden his/her knowledge of 
polymers. 

The senior author presented material in this book to students 
interested in learning the fundamental mathematics underlying many 
areas of polymer physics and in lectures to audiences with varying 
backgrounds in polymer physics. 

The material in this book should prove helpful to readers who have 
knowledge of introductory mathematics, chemistry and physics. 

The text emphasizes the derivation of many equations used in 
Polymer Physics. The assumptions used in modeling, and in making the 
mathematical apparatus solvable in closed form, are presented in detail. 
Too many times, the basic equations are presented in final form in 
journal articles and books from either lack of space or the assumption 
that the derivation is widely disseminated and does not require repetition. 

The fundamentals of any discipline have to be constantly tested 
against new findings. This book presents the assumptions and 
simplifications of the fundamentals of many areas of Polymer Physics so 
that the testing process can be expedited. 

The authors have discussed this material with many colleagues and in 
return received many pertinent suggestions for improvement. These 
include Philip Wilson, Mohan Srinivasaro, Hiromichi Kawai, Shigeharu 
Onogi, Garth Wilkes, Takeji Hashimoto and Marion Rhodes, James J. 
Burke and many others who attended courses or collaborated with 
Professor Stein in research projects. 

The improvements belong to our colleagues. The residual factual 
errors, typos and other problems belong to the authors. 

For supplementary material, corrections and communications with us, 
please visit http://web.mac.com/rssteinl/iWeb 
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Chapter 1 

INTRODUCTION 

1.1. Background 

The concept of long chain molecules in which the atoms forming the 
backbone are bonded by strong primary valence forces, usually covalent 
in nature, is the foundation of polymer science. Until relatively recently, 
chemistry, which is the study of molecules in all their ramifications, 
emphasized the study of small molecules. These could be readily purified 
to yield materials with constant composition and well characterized 
properties. Naturally occurring polymers, such as natural rubber or 
cellulose, did not fit into this framework of small well-characterized 
molecules [1]. Many investigators considered that the naturally occurring 
polymers constituted a fourth state of matter, essentially colloidal in 
nature, because these materials did not seem to obey the laws derived for 
gases, liquids, or solids as these laws were then understood. The 
assertion that, since rubber and cellulose were the products of living 
organisms, a vital principle, not amenable to physico-chemical laws, was 
involved reinforced this viewpoint. 

Based on chemical evidence, Staudinger [2], in the early 1920s, was 
the first investigator to strongly advocate long, linear chain structures for 
polystyrene, polyoxymethylene, and natural rubber. During this time 
span, x-ray diffraction developed as a tool for determining the structure 
of molecules. The diffraction photographs of natural rubber and cellulose 
taken by Meyer and Mark were interpreted as showing that these 
polymers did have long chain structures [3]. Carothers furnished a key 
argument, based on purely chemical reasoning, in favor of the view that 
polymers, in the main, were composed of long linear chains. By the late 
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1920s, organic chemists had accumulated a large store of knowledge on 
the reaction conditions, products, yields and structures of many small 
monomeric molecules involved in organic chemical reactions. For 
example, the reaction between an amine and an organic acid was known 
to produce an amide with the elimination of a molecule of water: 

RrNH2 + HOOCR2 -* R,NHCOR2 + H20 

(Ri, R2 being typically methyl, ethyl or other aliphatic radicals). 
Carothers reasoned that, if both molecules were difunctional (i.e., two 
amine groups on R] and two organic acid groups on R2), sites would be 
available for further reactions: 

H 2NRjNH 2 + HOOCR 2COOH -» H 2NR ,NHCOR 2COOH + H 2 0 

The reaction would continue until the starting materials (difunctional 
amines and organic acids) were exhausted. Thus, a long chain polymer 
structure could be synthesized using a well known and well understood 
organic chemical reaction. In a classic series of investigations [4], 
Carothers and a small group of co-workers were able to demonstrate that 
this and similar chemical reactions produced long linear chain molecules. 
As a point of interest, Carothers produced nylon 66 by using CgHi2 
(hexamethylene) for Rj and C4H8 for R2. Carothers [4] coined the term 
condensation polymers for the long chain molecules produced by these 
reactions because the elimination of small molecules such as water 
condensed the length of the polymer repeat unit compared to that of the 
starting molecules. Conversely, Carothers called polymers such as 
polystyrene and polyoxymefhylene addition polymers because the 
monomer units add through the opening of double bonds. Thus, these 
latter polymers added monomers during formation with no elimination of 
small molecules. 

Many of these linear chain polymers have the advantage for 
characterization that they are soluble in organic solvents. This has aided 
greatly, as will be shown later, in the analysis of chain structures and 
reaction mechanisms and the determination of molecular weight. Most 
linear polymers, both condensation and addition, also reversibly soften 
and flow on heating and conversely harden and become rigid on cooling. 
These materials are sometimes called thermoplastics because they flow 
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at sufficiently high temperatures. This thermal characteristic is used to 
advantage in reprocessing these polymers. The thermoplastics did not 
become commercially available, with a few exceptions such as cellulose 
acetate, polystyrene, poly(methyl methacrylate), until after World War II. 
A second class of polymeric materials (thermosets) had been introduced 
earlier (ca. 1910) starting with the phenol-formaldehyde polymers 
developed by Leo Baekeland [5]. Thermosets are composed of non-linear 
polymer chains (based on a functionality of 3 or more) that combine 
chemically to form three dimensional network polymers. They are 
soluble and fusible only up through the intermediate stages of 
polymerization. Once polymerization is complete, the thermosets form 
hard infusible insoluble structures that soften on heating over a 
temperature range. The average temperature for the range is called the 
glass temperature. On heating to higher temperatures, thermosets 
decompose because of their network structure. The lack of solubility and 
general intractability rendered thermosets difficult to study from a 
fundamental standpoint. 

Elastomers or rubbers represent an intermediate stage in terms of 
functionality between thermoplastics and thermosets. Elastomeric 
behavior in polymers originates from a special type of chain structure. 
This point is discussed more fully in Chapter 7. Elastomers to be useful 
articles of commerce require a controlled number of crosslinks (chemical 
bonds between neighboring chains). Natural rubber (and its progeny, the 
synthetic rubbers, spawned during and after World War II) elongates 
readily to several times its original length on the application of a small 
force and readily retracts with release of the applied force. But, unless it 
is crosslinked, rubber will tend to flow on being held at high elongations 
and gradually lose its ability to retract. Goodyear [6] found in the 1830s 
that, upon adding sulfur to natural rubber latex and heating, the 
coagulated latex changed from a flowable gum to a retractive elastic 
material. He also observed that the hardness of natural rubber ranged 
from a soft crepe rubber (essentially thermoplastic) on small sulfur 
additions to hard infusible rubber (or thermoset) with large sulfur 
additions. 

3 
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Figure 1.1a. Linear Polyethylene. 
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1.2. Linear Chain Molecules 

1.2.1. Structure 

Polyethylene, the prototype or model chain for linear addition polymers, 
is composed of ethylene monomer units linked by covalent bonds to 
form long chains (Figure 1.1a.) But, this linear chain was only produced 
in the mid 50's by the Ziegler-Natta catalysts. Before this, the Fawcett 
process that required high pressure and temperature produced a 
polyethylene chain that contained many small side chains or branches 
attached by covalent bonds to the main chain (Figure 1.1b). Nuclear 
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magnetic resonance (NMR) work [7] elucidated the type and number of 
branch chains in high pressure polyethylene. These results support a 
mechanism for branch chain formation proposed earlier by Roedel [8]. 
The extent of branching and the branch length alter polymer properties. 
Linear polyethylene has a higher density, greater degree of crystallinity 
(Chapter 8) and higher melting point than branched polyethylene. 

As a trivial example, the higher melting point of high-density 
polyethylene allows it to be used in the manufacture of sterilizable baby 
bottles. At the temperature required for steam sterilization, branched or 
low density polyethylene bottles soften, flow and collapse into a hollow 
blob. Linear or high density polyethylene bottles on the other hand 
maintain their shape. Substitution of a hydrogen atom in the ethylene 
monomer by a different atom (say chlorine to form poly (vinyl chloride)) 
or a molecular group (by a methyl group to form polypropylene) imparts 
a directional character or orientation to monomer addition during 
polymerization. Three types of monomer additions are possible: head-to-
tail, head-to-head, or tail-to-tail (Figure 1.2) with the carbon atom having 
the substituent group termed the head. The sequence of monomer 
orientation during polymerization determines the polymer chain 
configuration. Synthesis sets the chain configuration. It cannot be altered 
without breaking chemical bonds. Most commercial vinyl polymers have 
configurations based predominantly on head to tail monomer orientation 
[9,10]. Until the mid 1950s, catalysts based on free radicals (see Section 
1.2) were the customary agents used to produce linear addition polymers. 
Chain branching and monomer orientation were the main areas 
investigated in the structure determinations of substituted linear addition 
polymers. The advent of the Ziegler-Natta or coordination catalysts 
opened up new vistas in polymer structure work [11]. Using these 
catalysts, it became possible to produce stereoregular polymers by 
controlling the placement of a substituent group with respect to the axis 
of the main chain. As a result, monomers such as propylene, that had 
previously only yielded low molecular weight waxy oils, could now be 
polymerized as high melting, highly crystalline solids. 

G. Natta [12] first synthesized many of these stereoregular polymers 
using coordination catalysts and defined many terms used to describe 
these polymers. Using polypropylene as an example, its monomer 
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orientation is predominantly head to tail, but polymers with different 
stereoregularity (or tacticity) and different configurations can be 
produced by varying the polymerization conditions. Natta initially 
considered three possible placements with respect to the chain axis. [For 
simplicity, the chain backbone is assumed to lie in a plane with the subst-

Head-to-Tail 

Head-to-Head 

Tail-to-Tail 

if X / X 

H 

V V , 
' c ^ c 

V ^H 

H H H* X 

X = -CI, -CH3, -H, 

0 

-OCCH 

Figure 1.2. Possible Monomer orientations. 

tuent groups lying either above or below the plane (Figure 1.3).] 
Isotactic - the R substituents are all on the same side of the plane 

defined perpendicular to the chain backbone axis. 
Syndiotactic - the R substituents alternate above and below this plane. 
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Atactic - the R substituents vary randomly in placement along the 
chain backbone. 

Bovey and others [7] refined tacticity concepts by using NMR 
techniques to specify the placement of three consecutive main chain 
substituents or triads. In addition to isotactic or syndiotactic triads, 
another type, the heterotactic, was defined in which pairs of isotactic 
placements alternate with pairs of syndiotactic placements in regular 
fashion (Figure 1.3) More recently, polymer chain tacticity has been 
described in terms of tetrads or the placement of four consecutive chain 
substituents. 

V- v V V V V y 
Isotactic „-'l .K <.* k j ' \ 

"' CH, / * H 3 / C H3 H CH: A, A, A. A A A 
v \,» V V V \ 

Syndiotactic \ iCK. /TX A 
CH-, , H H CH 

CH, ^ " 3 

A B 

Hetrotactic A B B A A B B 

Atactic B B A B A A B 

Figure 1.3. Types of Polymer Chain Tacticity. 

The nomenclature described above has been elaborated to include 
diene polymers and optically active chains among others [13]. As 
mentioned above, tacticity or stereoregularity of chain substituents 
modifies polymer properties. For example, isotactic polypropylene forms 
a helical chain structure because of severe over-crowding between 
neighboring methyl groups and has a crystalline melting point of ca. 
165°C. Syndiotactic polypropylene has a linear chain structure similar to 
that of polyethylene and has a melting point of ca. 131°C. Atactic 
polypropylene, polymerized by free radical catalysts forms low 
molecular weight, non-crystalline waxes or oils. Rubbers, based on new 
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monomer compositions, have been produced using Ziegler-Natta 
catalysts. One of these, for example, is produced from ethylene and 
propylene monomers in which neither homopolymer is an elastomer 
since they crystallize. But, when their monomers are combined to form a 
copolymer, crystallization is prevented and the product is an elastomer 
that has found many applications. 

Many tactic polymers have asymmetric backbone carbons - the 
condition for a compound to show optical activity. Tactic polymers 
usually are not optically active. This lack results from several factors. 
One is that the asymmetric groups attached to a given carbon are so long 
in length that a difference of a few carbons does not have a significant 
effect on the optical activity. Second, one optically active form does not 
predominate so that right and left hand forms compensate. This topic is 
discussed in more detail in the references cited [14]. 

1.2.2. Synthesis 

Chain growth during addition polymerization has the three steps of 
classical chain reactions (other examples are combustion processes or 
nuclear explosions): 

a. Initiation - formation of a reactive free radical (I*), ion or 
monomer unit usually generated by catalyst or heat. 

I -> I* 
I* + M -> M* 

b. Propagation - formation of a long polymer chain by reaction 
between a monomer unit (M) and a reactive chain end, 
transfer of the reactive site to the new end, etc. 

M* + M - * M2* 
IMi* + M -»> IMj+i* 

c. Termination - loss of the reactive site by 
1 .disproportionation Mj+M* - H > M ; - H + M , = C -

2. combination Mj* + Mj* —* M;+j 
d. Chain transfer M;* + Mj —» Mj-H + Mj* 

Chain transfer is not a true termination in that the active radical is not 
terminated but is transferred. This transfer results in modifying the final 
molecular weight distribution of the polymerizing polymer. The 
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polymerizing mixture during chain growth, if examined instantaneously, 
consists of monomer, high molecular weight chains and a few actively 
growing chains. Initiation is the slow step in this mechanism. Once 
initiated, the polymer chain grows rapidly to form long, high molecular 
weight polymers. 

Step growth, on the other hand, follows the classical reactions of 
organic chemistry, but uses, as mentioned earlier, difunctional monomers 
to link molecules together. For example, on reaction of 

HOOC-Ri-COOH + HO-R2-OH -» HOOC-Ri-COO-R2-OH + H20. 

The product contains end groups that are available for further 
reaction. In contrast to chain growth, the polymerizing mixture in step 
growth at any given instant consists mainly of low molecular weight 
polymer chains with little of either monomer or high molecular weight 
polymer present. The polymerization must be carried to high monomer 
conversion rates to attain high molecular weight polymer by a step 
growth mechanism [15]. The presence of impurities or of side reactions 
that reduce monomer conversion to polymer must therefore be avoided. 

The above classifications are based on polymerization mechanism or 
on polymer molecular weight. The physical process however by which a 
polymer is synthesized is sometimes used for classification. The four 
main processes are bulk, solution, suspension and emulsion. Bulk 
polymerization, as the name implies, is carried out by adding catalyst 
(initiator) to the undiluted monomer. This process has the advantage of 
simplicity. Methacrylate monomer is cast directly into thin sheets by this 
process. But, because most polymerizations are exothermic, heat build
up leading to a runaway reaction can be a problem. Solution and 
suspensions are variants of the bulk process designed to minimize heat 
build-up. In solution polymerization, the monomer is diluted with an 
inert liquid that may act as a chain transfer agent thereby reducing the 
molecular weight of the final product. Because of environmental 
concerns in use of organic solvents and because of solvent recovery, 
solution polymerization is becoming less popular. In suspension 
polymerization, the monomer droplets are dispersed or suspended in a 
liquid phase, usually water. Thickening agents such as gelatin are added 
to improve dispersion. Each droplet serves as a site for bulk 

9 



TOPICS in POLYMER PHYSICS 

polymerization and the liquid medium dissipates the heat generated. 
Removal of the last traces of liquid in order to obtain pure polymer is a 
problem in both the solution and suspension processes. Emulsion 
polymerization is carried out by dispersing monomer droplets in an inert 
liquid, usually water. Surface active agents or detergents stabilize a 
portion of the droplets. The water-soluble initiator migrates into the 
monomer droplet. As polymerization proceeds, fresh monomer from the 
bulk phase migrates into and adds to the growing chain within the 
stabilized droplet. 

1.2.3. Molecular Weight 

As indicated previously, polymeric materials can be prepared over a 
wide gamut of chain lengths, or alternatively, molecular weights. 
Oligomers are short chains, containing roughly three to eight monomer 
units. Telomers are chains composed of an intermediate number of 
monomer units. Above 15-20 units, the chains are high polymers. 
Properties improve with increasing chain length up to the high polymer 
range. Properties tend to approach a constant value with increasing size 
within the high polymer range. 

The ability to measure the size and shape of polymer molecules has 
been a key factor in the transformation of polymer technology into a 
science. The techniques used to measure molecular weight share the 
common characteristic, with few exceptions, that the polymer must be 
soluble. The polymer molecular weight is calculated by multiplying the 
molecular weight of the monomer unit by the number of monomer units 
or alternatively by the degree of polymerization (DP). 

The last statement is deceptively simple. Polymers have a distribution 
of molecular weights in contrast to the set structure and hence constant 
molecular weight assigned to small molecules such as ethylene or 
styrene. Differing molecular weights can be obtained from the same 
sample because different techniques measure different averages over the 
molecular weight distribution. 

Osmotic pressure, equilibrium centrifugation, end group analysis, 
freezing point depression (cryoscopy), boiling point elevation 
(ebulliometry) and vapor pressure lowering measure the colligative 

10 



INTRODUCTION 

properties (the number and not the kind of molecule). The equilibrium 
centrifugation technique is the only one capable of measuring the number 
average molecule weight of high molecular weight samples. These 
measurements, except for equilibrium centrifugation, are analogous to 
those used in the perfect gas law. Thus, these techniques measure the 
number average molecular weight ((M„)) 

< " . ) -
I W. > N.M. 

2"- 2 N. 
(1.1) 

where Wn is the weight of material with degree of polymerization n and 
Nn is the number of molecules with degree of polymerization n whose 
weight is Mn 

Light scattering and centrifugation techniques (sedimentation and 
equilibrium) measure the weight contribution of each polymer molecule. 
Molecular weight data obtained by these techniques yield a weight 
average molecular weight ((Mw)): 

1 WM \ NM2 

( M > - ^ — ^ T T T r (1.2) I". 2 N.M. 

Viscosity is a commonly used technique for determining polymer 
molecular weights because it is rapid and requires only simple 
equipment. However, the equipment requires calibration based on 
samples with molecular weights previously determined by other 
techniques. The molecular weight average ((Mj)) determined from 
viscosity measurements lies between Mn and Mw, The sedimentation 
centrifugation technique can also be employed to measure a Z average 
molecular weight ((Mz)) 

^>NMl (1-3) < " • > -
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Length of Chain 

Figure 1.4 Relation between different molecular weight distributions. 

Data of this type are useful in evaluating theories of molecular weight 
distributions. Figure 1.4 illustrates the different types of molecular 
weight distribution. If the polymer distribution is monodisperse (i.e., all 
chains have the same length), then it naturally follows that (M„) = (Mw) = 
(M^) = (Mz) and different characterization techniques will give the same 
molecular weight. But, polymer distributions are usually polydisperse 
and the broadness of the polymer distribution can be estimated by taking 
the ratio of 

where P is the polydispersity index. Narrow molecular distributions can 
be obtained by 'living' anionic polymerizations. In other cases, narrow 
molecular weight distributions are obtained by fractionation of polymers 
with a broad distribution. Commercial polymers commonly fall in the 
range of P = 2-5 or greater. The most probable distribution (Appendix 
1A) is a special case in molecular weight distributions. It occurs in 
condensation polymerizations and in random chain cleavage during high 
temperature degradation [15,16]. The weight average molecular weight is 
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twice the number average molecular weight in this distribution; 
therefore, its polydispersity ratio has a value of two. On the other hand, 
heterogeneous catalysts produce broad dispersities because initiation 
starts from many sites. 

Heated Oven, Heated sample inlet—C J, ! y" y Sample valve 
Glass Gage T«J-

Reference column 
- Sample column 

Control valve 
Degasser 

Pump-
Filter 

Control -vj(-—^j=p 
valves ( t ^^k - i - J 

Waste-y, ,y-

Refractometer 

O ^ - Light source 
"©T^Photocell _ j 

Fraction collector 

Figure 1.5 Diagram of a Gel Permeation Chromatograph. 

Molecular weight distributions were originally measured by fractional 
precipitation [17]. In this technique, the polymer sample is dissolved in a 
suitable solvent, a small amount of a nonsolvent added and the mixture 
allowed to reach equilibrium. The largest molecular chains precipitate, 
while the smaller chains remain in solution. The process is repeated to 
obtain fractions of lower and lower molecular weight. The amount of 
added nonsolvent can be adjusted to obtain distributions of any desired 
size differences. The availability of gel permeation chromatographic 
(GPC) (or size exclusion chromatography) equipment has transformed 
determination of molecular weight distributions from a tedious, time 
consuming procedure into a routine operation. Dissolved polymer is 
placed at the top of a column containing porous polymer particles 
(commonly polystyrene beads crosslinked with divinyl benzene). 
Washing or eluting the sample down the chromatographic column with 
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solvent (Figure 1.5) segregates the polymer chains. In gel permeation 
chromatography (GPC), the largest polymer molecules travel through the 
column by the shortest path because they cannot fit into the porous beads 
and therefore are the first to exit. The shortest chains conversely travel a 
long tortuous path in and out of pores so that they are the last to emerge 
from the column. Alternatively, in high performance liquid chromatogra
phy (HPLC), differences in solubility between components are used to 
separate polymer and additive fractions. The HPLC technique usually 
detects eluent stream composition by ultraviolet measurements in the 190 
to 600 micron range. Until recently, all commercial GPC instruments 
required calibration with polymer (usually polystyrene) of a known 
molecular weight distribution. For calibration, the polymer is eluted 
through the column and a plot is constructed of molecular weight 
fraction against the aggregate volume of solution collected to that point. 
Any subsequent fraction from a polymer with an unknown distribution 
collected at that particular aggregate volume has the same molecular size 
because it travels the same path through the column as the calibration 
fraction. In one commercial instrument, a refractometer measures the 
amount of polymer in the exit stream. A siphon collects the sample 
stream into 5 ml sequential fractions. The fractions are counted as they 
flow between a light source and a photocell detector into a collector. The 
molecular weight for a particular fraction number or aggregate volume is 
then read off the calibration plot [18]. There is a caveat however to the 
use of the GPC technique. GPC measures the polymer hydrodynamic 
radius of a chain that is a measure of chain stiffness. Therefore, a sample 
needs chain stiffness similar to that of polystyrene for accurate 
measurement. Light scattering calibration, which measures the polymer 
chain radius directly, avoids this problem. Benoit et al. [18] have 
developed an "absolute" calibration technique. 

Two developments in instrumental technique eliminate the need for 
preliminary calibration: one is based on chromatography and the other on 
mass spectroscopy. 

The chromatographic technique eliminates the need for preliminary 
calibration by using a laser light source and measuring the stream 
turbidity or light scattering as the sample flows to the collector. The 
molecular weight can thus be determined directly on stream. In another 
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variant, the sample absorption is measured as the sample flows between 
an ultraviolet or an infrared source and a suitable detector. Thus, 
copolymer composition can be determined by locating a wavelength at 
which absorption is sensitive to composition and then observing the 
changes in absorption as the sample is eluted from the column. By 
setting up suitable calibration curves, molecular weight distribution and 
copolymer composition can thus be measured simultaneously by gel 
permeation chromatographic techniques. A second instrument developed 
by Yau [19] measures the solution viscosity at a constant flow rate for 
the eluent on exiting from the G P C unit to measure the molecular 
weight. 

In the mass spectrometric technique, MALDI (matrix assisted laser 
desorption/ionization), the polymer sample is dissolved, the solutions 
atomized so that a single polymer chain is contained in a droplet. The 
droplets are then ionized and pumped into a mass spectrometer where 
they are accelerated and separated based on their mass. The resulting 
spectrum is based directly on the molecular weight of the polymer chain 

1.3. Network Molecules 

1.3.1. Structure 

Carothers based his work in condensation polymers on the concept of 
functionality (i.e., sites available for chemical reaction). As mentioned 
earlier, molecules with two reactive sites form linear or two-dimensional 
chains. Molecules with three or more reactive sites form network or 
three-dimensional polymers. Although the mechanism was not elucidated 
until much later, Baekeland [5] used multifunctional monomers in 1909 
to produce the first completely synthetic polymer by reacting phenol with 
formaldehyde: 

The structure (I) on the right is an idealization because many possible 
permutations for linking phenol and formaldehyde are possible. Also, the 
three dimensional nature of this polymer is difficult to depict properly on 
this two dimensional page. As might be expected, the product of these 
reactions is a hard, infusible, insoluble polymer because essentially it is 
one molecule, albeit gigantic, with many bonds between segments. 
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OH 

n [ Q ] + mCH20 

1.3.2. Synthesis 

The properties and processing characteristics of thermoset polymers can 
be varied by adjusting the ratio of monomeric reactants. Baekeland 
developed different products by varying the ratio of phenol to 
formaldehyde and the nomenclature he used to describe his results is still 
used today. 

In the one-stage process, phenol reacts with excess formaldehyde, so 
that the phenol to formaldehyde ratio is less than one. Bases such as 
sodium hydroxide or ammonium hydroxide catalyze the reaction. At 
short times, A- or B- stage resins form. The A-stage resin (or Resol) is a 
low molecular weight linear polymer that readily dissolves in basic 
media. The B-stage resin (or Resitol) has a higher molecular weight and 
a small amount of crosslinking between chains. Resitol is insoluble in 
bases, but completely soluble in organic solvents and is thermoplastic. 
Heating B-stage resin at higher temperatures produces C-stage resin (the 
thermoset). 

In the two-stage process, the phenol to formaldehyde ratio is greater 
than one. The mixture is reacted using heat and an acid catalyst until no 
further reaction occurs. The reaction product, novalac, is readily soluble 
in organic solvents. In the second stage, novalac resin is ground to a fine 
powder and a compound ("hexa" or hexamethyl tetramine) that generates 
formaldehyde on heating is added. Subsequent heating produces a 
thermoset resin through network formation. 

1.3.3. Molecular Weight 

A completely crosslinked polymer consists of one molecular chain. 
Therefore, no molecular weight distribution, as discussed above, can be 

OH 
CHz CH2 OH v. X. / \ 2 ^H2 W 

+ H20 
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defined. An incompletely crosslinked thermoset contains both 
crosslinked fractions (gel) and soluble factions (sol). As the degree of 
crosslinking increases, the gel to sol ratio rises until finally the sol 
fraction effectively disappears. The extent of crosslinking can be 
followed by measuring the amount of sol phase compared to insoluble 
gel phase. The gel point concept as developed by Flory [20] can be used 
to determine the point at which a network forms. This concept is also 
discussed in Chapter 7, Section 8. 

The molecular weight between crosslinks affects polymer properties. 
At high strains, differences in molecular weight between crosslinks lead 
to different failure modes. 

1.4. Rubber 

1.4.1. Structure 

The elastic character of natural rubber (and the synthetic rubbers) 
originates because it is a polymeric liquid, albeit one with a very long 
relaxation time. Most polymers show rubber-like behavior over some 
temperature range, but only a comparative few are rubbery near room 
temperature. Figure 1.6 that diagrams the modulus change with 
temperature for an idealized polymer illustrates the rubbery state in 
polymers. Many polymer properties (viscosity, density, and heat 
capacity) show similar changes with temperature, but modulus was 
selected because it changes by several orders of magnitude with 
temperature. At low temperatures, a polymer exists as a hard, brittle 
glass. A tennis ball, cooled to liquid nitrogen temperature, will shatter on 
impact when dropped from a height of four to five feet. On heating to a 
temperature that varies with the polymer, the polymer chains soften with 
a concomitant decrease in modulus and become rubbery. The glass 
temperature is the midpoint of this transition from the glassy to the 
rubbery state. [The word transition is not used in the thermodynamic 
sense, see 8.2.4]. For thermoplastics such as polystyrene or poly(methyl 
methaprylate), the glass temperature lies near 100°C. Therefore, these 
polymers are hard, brittle solids at room temperature. On raising the 
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temperature further, a polymer changes from a rubber to a fluid liquid 
with a further reduction in modulus. 

Glassy 

Modulus 

Glass 
Transition 

Lightly cross linked 

Temperature 

Figure 1.6 Modulus temperature plot depicting the different states of an idealized 
polymer. 

Crosslinking the polymer chains will inhibit this fluidity and, with 
sufficient crosslinks, a polymer will decompose at high temperatures 
rather than pass through a fluid state. Thus, heating cannot render rubber 
fluid for reprocessing because of crosslinks. Semi-crystalline polymers 
such as polyethylene can be made into rubbers by crosslinking the 
polymer chains and then heating them above their crystalline melting 
point to form a rubbery liquid. Polyethylene crosslinked at room 
temperature by irradiation with a Co beam is a commercial product used 
in low cost gaskets and sealants in applications where intermediate 
thermal stability is satisfactory. 

Structurally, most polymers that are rubbers near room temperature 
are composed of long linear chains with: a) freely rotating links and b) 
weak interactions between chains. This combination results in flexible 
chains that can readily extend in response to an applied stress. Crosslinks 
introduced in the rubber during processing generate retractive »forces 
required for elasticity. As shown in Chapter 2, Section 7, the length of 
the polymer chain limits the total extension. The molecular weight of 
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natural rubber is commonly reduced by mechanical means such as the 
use of a Banbury mixer to produce material suitable for processing into 
finished articles. Because of the superiority in applications such as truck 
tires where heat buildup is a concern, natural rubber is still processed in 
large quantities. As a point of interest, the superiority of natural rubber 
compared to man made natural rubber lies in the higher degree of 
stereoisomerism of the natural product (99.9% stereoisomeric for natural 
rubber compared to 99.0% for the man made product). 

H 

Isoprene 

1,4 Polyisoprene 

— 1,2 Polyisoprene 

3,4 Polyisoprene 

Figure 1.7. Polyisoprene configurations. 

As mentioned previously, Mark and Meyer [21] determined the chain 
structure of natural rubber (poly-1,4 isoprene) in the late 1920s. This 
molecule has two double bonds which means that the monomer can 
polymerize in one of three ways to form three possible isomeric chains. 
Figure 1.7 shows the possible arrangements. The presence of double 
bonds in the 1,4 polyisoprene chain restricts bond rotation so that two 
chain isomers are possible. Using terminology borrowed from classical 
organic chemistry, if the carbon atoms lie on the same side of the double 
bond (Figure 1.8), the polymer is termed cis-1,4 polyisoprene. In 
trans-1,4 polyisoprene, the carbon atoms lie on opposite sides of the 
double bond (Figure 1.8) is called gutta percha. 
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The importance of the isomeric form can be illustrated by comparison 
of the properties of two natural products. Natural rubber is almost 
exclusively composed of cis-1,4 polyisoprene, an arrangement that 
allows freely rotating links. At high extensions, however, natural rubber 
crystallizes thereby limiting flow. Again, at low temperatures, this 
material crystallizes and embrittles. Gutta percha, the trans-1,4 
polyisoprene isomer of natural rubber, is also a natural product. But, 
synthetic polymers have displaced gutta percha, a poorly elastic rubber, 
from its main application as the cover material in golf balls. The trans 
isomer that crystallizes above room temperature (35° C) does not have 
sufficient liquid like character near room temperature to constitute an 
acceptable elastomer. 

\ CH3 

/ \ 4 

CH3 C 4 

cis - 1,4 polyisoprene trans - 1,4 polyisoprene 
natural rubber gutta percha 

Figure 1.8. Cis-trans isomers in dienes. 

Vulcanization or cross-linking chains by reacting the double bond in 
natural rubber with sulfur and other crosslinking agents is used to limit 
stress induced flow in natural rubber. Various means were tried to 
crosslink the synthetic elastomer ethylene propylene rubber (EPR). The 
technique commonly used is based on experience with natural rubber. A 
small amount of a diene [a monomer with two double bonds] is 
incorporated into the EPR chain to furnish sites for vulcanization 
reactions. 

A crosslinking technique, based on the use of thermoplastic/block 
copolymers discussed in Section 1.5, has recently been developed for 
limiting flow at high extensions. 
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1.4.2. Synthesis 

Synthetic rubbers first developed in the 1930s were based on butadiene 
and its copolymers with styrene and acrylonitrile. Emulsion 
polymerization of these monomers using free radical initiators yielded 
high molecular weight polymers at high polymerization rates. During the 
Second World War, production in the United States was concentrated on 
producing butadiene-styrene (SBR). This rubber is still one of the leaders 
among all rubbers used in commercial applications. 

The synthesis of cis-polyisoprene that approximated the molecular 
weight and structural regularity of natural rubber was first achieved by 
the use of Ziegler-Natta catalysts in the 1950s. 

1.4.3. Molecular Weight 

The molecular weight of uncrosslinked rubbers is measured by the same 
techniques applied to other addition polymers. The concept of a 
molecular weight for individual chains is not applicable to bulk rubber 
crosslinked to a degree exceeding the gel point; rather, the concept of 
chain length between tie points is substituted. The use of swelling liquids 
to elucidate this quantity is described in Chapter 7, Section 8. 

At one time, it was expected that a narrow molecular weight 
distribution would improve polymer properties. Samples of narrow 
molecular distribution were tested Properties of these samples changed 
over a narrow range. For many applications then, a sample with a broad 
molecular weight yields better properties because properties change over 
a broad range. 

1.5. Multicomponent Systems 

These systems have proven highly successful in tailoring or modifying 
the properties of two or more polymers to fit a particular application or 
end use requirement. Multicomponent systems encompass several 
different types: 

1.5.1. Copolymers 
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When two or more monomers react chemically to form a polymer chain, 
the result is a copolymer. One example of a copolymer, styrene 

Random 
f ^ * A 

Block copolymer 

Block-Thermoplastic Rubber 

B " ^ Pf0*?fm*t 

Figure 1.9. Copolymer arrangements. 

butadiene rubber, has already been mentioned. Several types of 
copolymer structures can be distinguished. These are diagrammed in 
Figure 1.9. The same pair of monomers may be fabricated into different 
copolymer types by proper selection of reaction conditions. For example, 
styrene/butadiene copolymers have random placement (Figure 1.9) along 
the chain backbone if emulsion polymerized by a free radical initiator. 
Alternatively, batch reaction of these two monomers using an ionic 
initiator such as butyl lithium produces a block copolymer. Under these 
conditions, the butadiene monomer polymerizes almost completely 
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before the styrene monomer starts to polymerize (Figure 1.9). The size of 
the blocks can be regulated by the amount of each monomer added to the 
batch reactor. Block copolymers have been applied in recent years to the 
production of thermoplastic rubbers. As pointed out previously, rubbers 
require crosslinks or interchain bonds to have adequate strength. This 
requirement has usually been met by forming chemical bonds through 
treatment with crosslinking agents based on sulfur compounds or 
peroxides. However, the presence of chemical crosslinks renders the 
processing of rubbers difficult and their reclamation almost impossible. 

Thermoplastic rubbers avoid these drawbacks. In a typical system, 
polystyrene blocks attached to each end of a polybutadiene block provide 
reinforcement to the rubbery polybutadiene at or near room temperature 
through microphase separation of glassy polystyrene domains. The 
reinforcing effect is lost on heating the block copolymer to temperatures 
at which the polystyrene chain segments soften and flow. The block 
copolymer can thus be processed at temperatures and on equipment 
suitable for homopolymer polystyrene. On cooling, the polystyrene 
blocks harden to provide linking points for the polybutadiene rubber 
domains (Figure 1.9). Both the relative domain sizes and the over all 
chain lengths are critical factors in determining the desired degree of 
elasticity. 

Graft copolymers are a third copolymer type in which the 
polymerization of a comonomer initiates at reactive sites present on a 
preformed chain backbone. This technique improves the mixing of two 
incompatible polymers. As an example, grafting butadiene monomer 
units onto the polystyrene chain backbone (Figure 1.9) increases the 
impact resistance of polystyrene. 

Alternating copolymers alternate comonomers in a regular sequence 
along the chain backbone (Figure 1.9). 1,2 disubstituted ethylenes are 
usually difficult to polymerize as homopolymers. But, when present in 
excess, they readily form alternating copolymers with more tractable 
monomers. Thus, reacting iso-2-butene with ethylene using a 
Ziegler-Natta catalyst produces an alternating copolymer. The resulting 
copolymer chain is a head-to-tail polypropylene [22]. 

Living polymerization was a phrase coined by Michael Szwarc [23] 
to describe a polymerization process that stops because it runs out of 
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monomer and has no termination step. He was awarded the Kyoto Prize 
for his work in this area. When additional monomer is added, 
polymerization resumes. A block polymer such as polystyrene and 
polyisoprene, for example, can be formed if the second monomer is 
isoprene when the polymerization continues. This principle of limited 
monomer supply with no termination step has been combined with 
strereoregular catalysts [11] to design new polymer chain structures with 
narrow molecular weight distributions, controlled structures and 
functional groups. For example, this combination has produced a 
syndiotactic polypropylene [24]. 

Living polymerization and stereo-specific catalysts led to novel 
polymer structures such as: dendrimers, star and comb (Figure 1.10). 
Living polymerization techniques are used to produce. These polymers 
are finding applications as catalysis and light amplifiers. 

Dendrimers (Figure 1.10) are three dimensional spherical structures 
composed of chains arranged similar to tree branches, Hence their name 
derived from the Greek word for tree, dendros. Dendrimers can be 
synthesized with a dense array of functional groups and are finding 
applications in catalysts and light amplification. 

T ~ S ft/ywuywfc/yw^,^ 

Star Comb Dendrimer 

Figure 1.10. Newer polymeric structure diagrams. 

Comb polymers (Figure 1.10) alter a polymer structure and can be 
used to modify the functionality of polymer surface. 

Mediated radical polymerization is a derivative of living 
polymerization in which the chain ends are capped with a protective 
chemical group in order to better control the polymerization process [25]. 
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Several acronyms are used to describe these polymerizations: Reversible 
Addition-Fragmentation Transfer (RAFT), Group transfer 
polymerization, Ring Opening Metathesis Polymerization (ROMP), 
Group Transfer polymerization. 

1.5.2. Polyblends 

Polyblends are physical mixtures of two miscible polymers that are 
thermodynamically stable. By contrast, compatible polymers are mixed 
systems that are not thermodynamically stable, but phase separate over 
very slow time scales. Polymers are less miscible than low molecular 
weight compounds because the high molecular weight of polymers 
results in a low entropy of mixing (Chapter 3.6). One commercial 
polyblend is the polystyrene/polyphenylene oxide mixture. 
Polyphenylene oxide, by itself, softens and flows above 300°C - the 
temperature at which this polymer starts to show oxidative and thermal 
degradation. Addition of polystyrene allows the mixture to be processed 
well below 300°C. Other polymers investigated for blending because of 
their wide compatibility range are poly(butylene terphthlate), 
polycaprolactone, and poly (vinyl chloride). Interpenetrating polymer 
networks (IPN) represent polymer blends that use crosslinking in an 
attempt to circumvent miscibility limitations [26]. True IPNs consist of 
crosslinked chains mixed on a molecular level. This ideal is rarely, if 
ever, realized. Interpenetrating phases have been formed, but not 
interpenetrating networks. Several methods have been devised for 
forming IPNs. One scheme involves forming a crosslinked network and 
then subsequently polymerizing and crosslinking a second independent 
network in situ. Polystyrene/polybutadiene IPN's formed in this manner 
show improved dimensional stability at higher temperatures than do 
polystyrene/polybutadiene mixtures. 

1.5.3. Composites 

Incorporating fillers or reinforcing agents is another means of improving 
polymer properties. High particulate loadings improve the dimensional 
stability of electronic circuit boards so that the thermal expansion is 
greatly reduced. Particulate fillers (talc, mica, silica, clay, etc.) are used 
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to modify polymer properties in other ways. Carbon black in small 
amounts increases the oxidative resistance of polyethylene film many 
fold. Reinforcing agents, usually in fiber form, are used to increase 
polymer strength. Silica is distributed uniformly throughout a rubber by 
mixing a silane into the mixing step and subsequently reacting the silane 
to form silica. Glass fiber or glass fiber mats combined with thermoset 
polyester produce the strong, rugged structures that are required in boat 
hulls. Thermoset epoxy and polyimide resins are being combined with 
carbon, glass, and Kevlar™ fibers to build structures for aerospace 
applications. These materials offer lightweight, high stiffness and good 
temperature stability. Thermoplastic composites such as 
polyetheretherketone (PEEK™) and carbon fiber are being developed. 
Polyetherimide (PEI™), polyethersulfone (PES™), RYTON™, and 
polysulfone are other thermoplastic resins being used in composites. 
These resins have the advantage of short processing time and reusable 
scrap - both factors in reducing cost while maintaining part quality. 
Torlon™ has a long processing time (several days), but offers excellent 
thermal stability at high temperatures. Torlon™ has been used to 
fabricate the engine blocks in racing cars. 

1.5.4. Ceramers 

Combining polymers with inorganic glass formers has recently been used 
to form ceramers [27]. These hybrid materials show many desirable 
properties for example, the optical properties of polymers, and the 
hardness/wear of glass. 
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Appendix 1A - Derivation of the Most Probable Distribution 

For condensation polymerization, the repeat unit reactivity is 
independent of chain length. This means that probability arguments can 
be used to derive the number average or the weight average molecular 
weight [1]. Thus, the probability (P„) of forming a chain containing n 
number of monomers is 

Pn = P"-\l-p) (1A.1) 

where p is the probability of propagation. The total number of molecules 
is given by 

JV = C^=C^P"'1(1-P) = C (1A-2) 

where C = a proportionality constant, 
since 

w (1A.3) 

based on the series expansion 

.2 . _3 t 1 S0-l + p + pl + pi + ...+ p'— (1A.4) 
1 - / 7 

The weight (Wn) of the «-bonded chain is 

Wn=MnPn=nM0Pn (1A.5) 

where M0= the molecular weight of a monomer unit. 
Mn = the molecular weight of the chain of degree of polymerization, n. 
Substituting equation 1A.2 into equation 1A.5 

W =CM0^nPn =CM0 ̂  «/>""'(l-/>) (1A.6) 

CMn 
= - ^ (1A.7) 

1 - / 7 

since 
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L (1-P (1-P) 
(1A.8) 

based on the series expansion 

dp dp (l-py 
(1A.9) 

substituting equations 1A.7 and 1A.2 into 1A.1, the number average 
molecular weight ((M„)) is given by 

CMn 

X "' N C \-p 
(1A.10) 

A similar procedure is used to derive an analogous expression for the 
weight average molecular weight, (M\. Using the definition of (M) 
given in equation 1.2, 

<"->-
]j^X 

and modifying equation 1A.6 for the square term in equation 1.2, 

2NnM^CM^n2p"-l(l-p) 

(I-P) (\-p) 

based on the series 

S2 = pSl = p + 2p2 + 3p3 +... + ip' 

- ^ - ^ = l + 4p + 6/72 + ... + / V = — -

(1A.11) 

(1A.12) 

(1A.13) 
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(l-pf.p[2(l-p)(-l)] 

_ l-p2 {l-p){l + p) l + p 

>/>r t-py ~(M3 

Substituting equation 1A.11 and 1A.7 into equation 1.2 

c^( i - , ) ( 1 + p ) 

(1A.14) 

/M\ ( M M°(l + P) 

w — C M ; =~tp) «A-15) 
( l - p ) 

Taking molecular weight ratios using 1A.7 and 1A.15 

(M 

(M 
As /? approaches 1, as will be the case for a high molecular weight 

polymer where the probability for propagation is high, 

kr (1A17) 
It should be recalled that condensation polymerizations must go to 

high degrees of conversion to attain high molecular weight polymer 
chains. For example for a p value of 0.22, the ratio has value of 1.22. 
Thus, these polymers show the most probable distribution. 

Reference 
1. P.J. Flory, J. Am. Chem. Soc. 1936, 58, 1877; Chem. Revs. 1946, 39, 137 
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Chapter 2 

STATISTICS OF CHAIN 
CONFORMATIONS 

2.1. Introduction 
The experimental data and mathematical models derived for the isolated 
polymer chain and for the size distribution of polymer chains in the 
aggregate have been the basis for describing many polymer properties in 
rubbers and thermoplastics. Early work in this area concentrated on 
simplified models that were amenable to the calculation devices then 
available. With the advent of high-speed computers and the consequent 
reduction in computational labor, the more exact rotational isomeric 
model has been developed and fruitfully applied to many polymer 
problems. 

This chapter lays the groundwork for the various topics discussed in 
subsequent chapters. The mathematics associated with the statistics of 
the isolated chain are developed starting with the bonding and structure 
found in small molecules. Several models of chain structure are pre
sented. Finally, the size distribution of polymer chains is introduced and 
their description in terms of mathematical equations derived, origin of 
rubber elasticity, the nature of polymer crystalline and polymeric heat 
capacities and the miscibility of polyblends. 

2.2. Small Molecules 
Most polymers of technological importance are based on the carbon atom 
and the covalent bonding typical of organic compounds. In this sense, 
organic polymers represent only one branch, albeit a substantial one, of 
classical organic chemistry. The structural concepts elucidated for small 
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molecules can be applied to the much larger chain molecules or 
polymers. Small molecules whose atoms are linked by covalent bonds 
such as H2O, CO2, and CH4 have fixed geometry (Figure 2.1). The 
arrangement of atoms is determined once the bond lengths and angles 
have been established, for example, by electron diffraction [1]. (There is 
vibrational motion, of course, but at a given temperature, the average 
positions are fixed). Configurational isomers are set during synthesis and 
cannot be interconverted except by chemical reaction. 

o H 
1.09A 109^8' 

0 = C = 0 H ^ \ H 

Carbon Dioxide Methane Water 

Figure 2.1. Examples of fixed geometries in small molecules. 

In methane, each pair of hydrogen atoms forms a tetrahedral angle 
(109° 28') with the central carbon atom and the carbon-hydrogen distance 
is 1.09 A. The tetrahedral geometry changes slightly when a methyl 
group replaces a hydrogen atom, with a small increase in the tetrahedral 
angle. In addition, the carbon-carbon bond distance increases to 1.54 A. 
However, in contrast to the double bond case, rotation of substituent 
groups about the axis of a carbon-carbon single bond is possible. 
Substituents interact as they rotate about a single bond and go through 
minima in their interaction energy at certain rotational angles. 

Substituents interact as they rotate about a single bond and go through 
minima in their interaction energy, V(</>), at certain rotational angles, <p. 
The probability of finding a system with rotation angle, <f>, at a 
temperature, T, is described by the Boltzmann equation (Appendix 2A), 

P(0) = Cexp[-V(0)/kr] 

where k is Boltzmann's constant. This means that it is most probable to 
find systems in states of lowest energy. Thus, if there are energy minima, 
one is most likely to find systems with values of <p corresponding to 
these minima. These states are referred to as rotational isomers. It is a 
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good approximation to consider only these rotational isomeric states, 
although it should be realized that other values of (j> occur, albeit with 
lower probability. It should be that at sufficiently high temperatures, this 
weighing of probabilities becomes less significant, and ultimately, all 
values of <j> become equally probable, a state of free rotation. 

Figure 2.2. The tetrahedral angle GT and the rotational bond angle <p. 

The rotational angle (0) or the angle between non-bonded atoms 
(Figure 2.2) is thus required to describe these structures completely [2]. 
The result for a symmetrical molecule is shown in Figure 2.3. 
Conformations can be described by using 1,2 dichloroethane as an 
example. One conformation is the same as in the double bond case: trans 
represents the conformation in which the two chlorine atoms are furthest 
apart and have the least steric hindrance the second conformation, 
because of the threefold symmetry of the carbon atom substituents, is the 
gauche (right or left). The energetics for internal rotation about the single 
covalent bond axis in 1,2 dichloroethane can be summarized by a plot of 
potential energy against rotational angle 0 (Figure 2.4). The trans 
conformation has the lowest potential energy the gauche conformer 
represents intermediate states of potential energy for this molecule. 
While most probable, small deviations from the trans and gauche angles 
can lead to appreciable differences in the overall chain conformation. 

Evidence for such internal rotation comes from infrared spectra [3] or 
from dipole moments of substituted hydrocarbons [4]. For example, if 
the average value of (p = 0, then the dipole moment of 1,2 dichloroethane 
would be zero. At finite values of <p, the dipole moment is finite and can 
be calculated from the non-vanishing components given by 

Hx =jusin0(l-cos0) (2.1) 
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and 

where 

fi =Jusinf3sin^) 

[i = the dipole moment for the C-Cl bond in units of Debyes 
x = the direction along the chain axis 
y = the direction perpendicular to the chain axis 

(2.2) 

U(<2>) 

120 240 
Rotational Angle, <p 

360 

Figure 2.3. Potential Energy Diagram for symmetrical barriers. 

For free rotation, in which all values of 0 are equally probable, so that 

( / ^ = ;U sin 0(l-(cos 0M = jU sin 0 (2.3) 

and 

since 

(u\ = (Usin0(sin0^ = 0 

/cos0\ = /sin0\ = O 

(2.4) 

(2.5) 
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Because the trans conformation has the lowest energy, it is preferred. 
Therefore, the dipole moment is not zero, which is what is found 
experimentally. 

-AM 
0 120 240 360 

Rotational Angle, 0 

Figure 2.4. Potential Energy Diagram for a molecule with symmetrical barriers 
and with trans the lowest energy state. 

Rotation, then, is not completely free. The probability of a given 
value is specified by P (<p), which can be obtained from a theoretical 
analysis of bonding and interaction potentials, giving rise to a calculated 
potential energy function U ((p) and using a Boltzmann expression 
(Appendix 2A), 

Because of the difficulty in carrying out direct calculations, an 
approach sums over the pair potential between atoms 

i J 

where ry is the interaction potential between the /* and the / h atoms 
separated by the distance r (which is a function of 0). Typical potential 
functions that have been used include the Lennard-Jones [5] potential, 
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C/..(r.) = 4 - ^ (2-8) 
•J\'J) r12 r i 

U 'J 

or exponential forms [6,7] such as 

u 

or more complex functions. Summaries of the results of such approaches 
have been given [8,9]. 

For substituted ethanes such as 1,2 dichloroethane, one-parameter 
equations such as 2.8 are not adequate, and a better approximation is 

U(<p) = ^.[x(l-cos<l)) + (l-x)(l-cos3(pj\ (2.10) 

giving rise to the variation shown in Figure 2.5 [6,10]. In equation 2.12 
below, x is the fraction of conformers with a cos0 type potential. Taylor 
[8] gives values of costp 

120 240 360 
Rotational Angle, 0 

Figure 2.5. Potential Energy Diagram for a two parameter equation 2.11. 

obtained by using the potential of equation 2.12 in equation 2.6 and 
numerically evaluating the integral of equation 2.5. It is possible, for 
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example, by substituting this value and the corresponding value of sin 0 
into equations 2.3 and 2.4 to predict the variation of the dipole moment 
of 1,2 dichloroethylene with temperature. Since the value of P (<f>) 
depends exponentially upon U(tf>), it will be much greater for 0 = 0°, 
120° and 240° corresponding to potential energy minima than for other 
values. 

CI CI 

0 120 240 360 
Rotational Angle, 0 

Figure 2.6. Potential Energy Diagrams for CI2H-CHCI2 
in which the gauche forms have the minimum potentials. 

This is the basis of the rotational isomeric approximation of Volkenstein 
[9] and others. The lowest energy conformation at (f> = 0° is the trans 
conformation, while the two minima at 0=120° and 240° are the gauche 
plus (g+) and gauche minus (g-) conformations (Figure 2.6). It is a good 
approximation in the calculation of molecular properties to assume that 
the molecule is an equilibrium mixture of these conformers, so that 
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U(0>) 

Rotational Angle, 3> 

Figure 2.7. Potential energy diagram for BrCLHC-CHCIBr in which the gauche forms 
are the minimum energy conformers. 

-U(t)/RT 

^ = - # ^ - ^ = ^ = 0 ° ) 
e - t / ( , ) / R r + 2 e - t / ( s ) / R 7 - (2.11) 

and 

p(z) = -m, 
-U(g)/RT 

Now, from equation 2.10 

u(t) = u(o°)=o 

= P((t> = 120°) = P((p = 240°) (2.12) 

and 

U(g) = £7(120°) = {UJ2){\ -cosl20°) = (3/4)[/0 (2.13) 

so that 
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W 1 + (2.14) (l + 2cx) 

and 

^ M s + M H = ( J | _ (2l5) 

where 

a = cxp[-U(g)/RT] = exp[-3[/0(^)/R7] (2.16) 

Then 

(cos <p) = (cos 0°)/>(r) + (cos 120°)/>(g +) + (cos 240°)p(g -) = — — (2.17) 

and 

sin0 = (sinO°)/>(f) + (sml20°)P(g +) + (sin240°)p(s -) = 0 (2-18) 

Thus, the average dipole moment of 1,2 dichloroethylene with its 
hindered rotation (equation 2.1) is 

v") = ̂ c-cisin 3a 

l + 2a 
(2.19) 

For other arrangements of substituents, the potential energy barrier 
has a different shape. For example, for [CI2HC-CHCI2], the gauche 
conformation has the lowest energy and the potential energy varies as in 
Figure 2.6. For an asymmetric potential as in Figure 2.6, P (g-) £ P (g+). 
Whether g (-) or g (+) is lowest energy state in an asymmetrically 
substituted molecule such as BrH2C-COBr2 (Figure 2.7), the barrier 
height depends upon which optical isomer (about the asymmetric carbon) 
is present. In this case, sin <p^ 0 (cf. equations 2.4 and 2.18). The 
presence of asymmetric carbons can be detected by rotation of plane 
polarized light on passage through an organic compound. The 
polarization direction of the light can rotate clockwise or 
counterclockwise depending on the type of asymmetry about the 
asymmetric carbon. 
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2.3. Larger Molecules, Statistical Variation of Molecular 
Conformations 

For larger molecules, the dimensions of the molecule depend upon the 
internal rotation. If the first three carbon atoms lie in the plane of the 
paper, then the dimensions of the molecule depends upon the internal 
rotation angle (<p) defining the position of the forth atom. 

To calculate the dimensions of the molecule, one defines a vector (R) 
connecting the first to the fourth atom (Figure 2.8). This may be 
described in terms of the unit vectors ai, &2 a nd a3that giv e the direction 
of each of these bonds. The bond length is £. Then 

(R) = 4(aI) + (a2) + (a3)) (2.20) 

The mean-square length of the molecule is then, using the scalar 
product of two vectors (Appendix 2B) 

(i?2) = (R.R> = ^[(a1>2
 + (a2)2

 + (a3)2
+2((a1 .a2» + 2((a2.a3)) + 2((a1.a3>) 

(2.21) 

Figure 2.8. Vector distance between the end atoms in the n-butane molecule. 

/ i\xl2 

(R ) is the root mean square distance between the ends of the molecule 
and should not be confused with the molecular contour length or the 
distance along the molecule's backbone. The contour length has a 
constant value set by the molecular bond angles and lengths in contrast to 
(R\ which varies depending on the rotation angle. 

As will be discussed later, (R ) is only one measure for 

characterizing molecular dimensions. Another measure is the radius of 
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gyration (Appendix 2C). The bond vectors in equation 2.21 are 
transformed in terms of molecular parameters as shown in Appendix 2D 

(a1)
2 = (a2)

2 = (a3)
2^l 

(a, .a2) = (a3-a4) = cos0 

and 

/a, • a2) = cos16 +sin2 6cos<j) 

Therefore, by substituting into equation 2.21, one obtains 

(fl2) = /2[3 + 4cos0 + 2(cos20 + sin20(cos0)) 

For free rotation, (cos <f) = 0 and 

(/?2) = ^2[3 + 4cos0 + 2cos20] 

(2C.22) 

(2C.24) 

(2.22) 

(2.23) 

2.4. Statistical Segment Model 

Several theories dealing with polymer topics embody the use of the 
statistical segment model first proposed by Kuhn [10]. This model, 
though admittedly not realistic in terms of chain structure or geometry, 
has the great virtues of simplicity and ease in calculation [see for 
example Section 4 in this chapter]. For this model, a fictitious chain 
composed of Z stiff segments of length, L, joined by freely rotatable ball 
and socket joints replaces the real chain with its bond lengths and angles. 
Then, if a; is a unit vector along a Kuhn segment, (a,-a/) = 0. If/ *j since 
Kuhn segments orient randomly with respect to each other, (R2) = Zl?-. 
Two equations relate the model chain to the real chain: 

(R2)=M: l + cos0(l+*?) 

1-COS0 ( l - ^ ) 
= ZL2 

and 

R = Nlsina = ZL 

(2.24) 

(2.25) 

41 



TOPICS in POLYMER PHYSICS 

where a = the dihedral angle as shown in Figure 2.8. The statistical 
segment length (L) is expressed in terms of the bond length (I) and bond 
angle (6) by the following transformations. From Figure 2.9, the relation. 

Figure 2.9. Relationship between quantities used in the statistical segment derivation. 

6 + 2a = n 

ji-d 
a (2.26) 

is seen. 
Using the trigonometric identity 

sin(9O°-0) = cos0 

The angle a can be expressed in terms of 6 by 

'n-e\ . In 6) 6 
since = sin| = s i n =cos — 

From equations 2.25 and 2.27 

7 l m \ • 
Z = \ — since = 

L 

(N£\ (6 
— cos — 

Substituting equation 2.28 in equation 2.24 yields 

l+cos# 1+r} 
L = l 

1-COS0 \-T] 

(2.27) 

(2.28) 

(2.29) 

This equation states that the statistical segment length L increases 
with increasing values of rj. Thus a stiff er chain has a larger r] , a larger 
L and a smaller Z. The Kuhn segment length is thus adjusted to account 
for chain stiffness. On the other hand, L depends on temperature since 
freedom of rotation, and hence, chain stiffness, is temperature dependent. 

42 



STA TISTICS OF CHAIN CONFORMA TIONS 

The following example illustrates the simplicity of calculation 
afforded by the statistical segment model. From equation 2.25, the chain 
contour length is R = ZL and from equation 2.24, the mean square end-to-
end distance is 

<R ! ) - ZL2 

or 

^ ) = ^ 

Taking the ratio (aM) of the contour length to the mean square length 

GL = • 
ZL 

ZL 
7.rz (2.30) 

Thus in a few steps, equation 2.30 demonstrates mathematically the 
intuitively reasonable idea that a stiff chain contains fewer segments for 
a given chain length. Because the extension increases as the square root, 
this equation also shows why rubbers are composed of high polymer 
chains. 

This is one of the most important results in polymer physics. Since Z 
is proportional to the molecular weight, it predicts that the root mean 

/ 2\1/2 

square dimension of a polymer molecule, (R ) is proportional to its 
molecular weight, M, an important consequence in understanding 
solution viscosity and differing from the Staudinger stiff rod which 
predicts dimensions proportional to M. This formalism was used in the 
"problem of the Random Walk" prior to its polymer application and has 
been basic to the understanding of Brownian motion and diffusion, error 
calculations, and the critical mass for nuclear chain reactions. 

One should point out that the statistical segment is a mathematical 
fiction, used to make calculations easier, and differs from the true 
monomer unit. It may contain more than one monomer unit and L 
depends on chain stiffness, with stiffer chains being represented by larger 
L values. Since the freedom of rotation is temperature dependent, the 
statistical length, L, may vary with temperature. 
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2.5. Generalization to High Polymers 

The procedure given above for n-butane may now be generalized to a 
chain containing N identical bonds of length / in which 

TV 

w - ' 2 a ' (2-3i) 
replaces the three bonds considered in the n-butane example. On 
expanding equation 2.24 

(rf)-((R.R»-
n JY-I JV-Z iy-3 

2 a) + 2 ^ (a, • 8W +1) + 2^(a,. • aM + 2) + 2^(a , • aM + 3) +.. 
M i-l i-1 M 

(2.32) 

By analogy with n-butane (equation 2.20) and, as before, using equation 
2C-22 

< « • > ' - ' 

and 

(a,.-a.+1) = cos0 

for all values of /. Similarly, as in the n-butane case (equation 2C-24) 

(a, .ai+2) = cos26/ + sin20(cos0,,2) (2.33) 

where 0,-+2 is the (p coordinate of a i+2 in the coordinate system defined 
by a, and a ,-+]. If we make the assumption that the 0's are independent 
because of no interaction between chain segments, then (cos (b ,-+2) will 
be independent of $and we shall define, as does Eyring [11] and also 
Volkenstein [9], an average cos <b value 

rj = (cos0) (2.34) 

Then, substituting equations 2C.29, 2C.31, 2.33 and 2.34 into 
equation 2.31 and collecting terms 

(/?2) = l2[N + 2(N - l)cos 6 + 2(N- 2)(cos2 d + sin2 0^/ +....] (2.35) 
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In the special case of free rotation for which rj = 0, equation 2.35 
becomes (see Appendix 2D for treatment of higher terms) 

(R2} = 12IN + 2[(tf - l)cos 0 + (N - 2)cos2 0 + (N - 3)cos3 0 +... + cos""1 ell 

2(cos 0 + cos2 0 + cos3 0 +... + cos""10)1 

-2/[cos0 + 2cos20 + 3cos30 + ... + (AT-l)cosAM0]j 

= lz N 

Using the trigonometric relations 

cos0 + 2cos20 + 3cos30 + ... + (Ar-l)cosAW0 = 
cos0-cos'v0 

1 - cos 0 

(2.36) 

(2.37) 

and 

cos0 + 2cos2 0 + 3cos30 + ... + (7V-l)cosw-1 0 

_ cos0-JVcos* 0 + JVcos^'10-cosw+10 

(l-cos0)2 

Substituting equations 2.37 and 2.38 into equation 2.36 yields 

7V-A^cos20-2cos0 + 2cosA,+,0 

(2.38) 

(R2) = /: 

(1-COS0) 
(2.39) 

For the case in which N = 3, this equation reduces to the special case 
of equation 2.23. For very large N, cosN+16 is negligible for angles other 
than 0°, and terms multiplied by N are much larger than the other terms, 
so that equation 2.39 reduces to 

(R2) = iW2 1 + cos 0 

1-COS0 
(2.40) 

2.6. Polymer Chains Containing Two Kinds of Atoms 

The same procedures apply to chains containing two different atoms such 
as the backbone chains of a silicone polymer or polyoxymethylene 
(Figure 2.10). In this case, while all bonds have the same length, £, 
there are two different bond angles, d\ and 02- Thus, instead of equation 
2.32, we have 
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N 

(R2) = ^2(2a?-H2[(a1.a2> + (a2 .a3) + (a3.a4) + ... + (aN.1.aN)] + 

i - l 

+ 2[(a I .a,) + (a2 .a4) + (a3 .a5) + ... + (aN.1.aN)] (2-41) 

+ 2[(a1.a4) + (a2 .a5) + (a3 .a6) + ... + (aN.3.aN)] + ...) 

N 

Ya2=l As before, Za ' . However, two groups of dot products must now be 
;-i 

distinguished. 

a1 .a2 = a 3 . a 4 =a 5 - a 6 = ... = cos01 =x (2.42) 

and 

a 2 - a 3 = a 4 - a 5 = a 6 - a 7 = ... = cosf?2 = y (2.43) 

Also, for the case of free rotation 

a, • a 3 =a 2 . a 4 = a3-a5 = ... = cos0!cos02 = xy (2.44) 

But 

a, .a4 = a 3 . a 6 = a 5 . a 8 = . . . = cos2f31cos02 = x2v (2.45) 

and 

(a, . a4) = (a2 .a5) = (a4 .a7) = . .. = 0080, cos2 62 = xy2 (2.46) 

Figure 2.10. Polyoxymethylene chain showing the two backbone angles. 
Brackets enclose the chain repeat unit. 

Then, for the infinite chain with free rotation, equation 2.41 becomes 
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(R2) = Nl2[l + x + y + 2xy + x2y + xy2 + 2x2y2 + x3y2 + x2y2..] 

= M2[l + x + y + (2 + x + y )(xy + x2y2 + x3y2 + ...)] (2-47) 

Now, for an infinite series [8] 

xy 2 2 3 3 

xy + x y +x y +...= (l-xy) (2.48) 

So that substituting equation 2.48 into equation 2.47 and rearranging 
terms gives 

(R2) = M2 (l + x)(l + v) 

(l-*y) 
-Ni 

(l + cos0,)(l + cos02) 

(l-cos0,cos02) 
(2.49) 

For the case in which 6\ = #2, this equation reduces to equation 2.40. 

2.7. Model Chains with Restricted Rotation and No Interaction 
Among the ^'s 

In this case, terms such as the one containing r\ of equation 2.32 must be 
retained. The calculation is best accomplished using matrix 
multiplication [10, 11, 13-16] and leads to the result [see Appendix 2F 
for details]. 

(R2) = Nt 1 + cos 6 

1 - cos 6 

l+rj 

I-77 
(2.50) 

for an infinitely long chain with a symmetrical potential energy barrier 
((sin 0)=O) similar to those depicted in Figures 2.4, 2.5 and 2.6. These 
would be expected for polymer chains like polyethylene or, more 
generally, those with the repeat unit [-CX2-CY2-], but not for the case of 
chains with asymmetrical barriers [-CX2-CYZ-]. While this approach can 
be extended to describe this more complex case of asymmetrical barriers, 
it is better to use newer methods such as the rotational isomerism 
approach. In the case for which N = 0, equation 2.50 reduces to equation 
2.40. By using a potential function of the form of equation 2.12, Taylor 
[12] has calculated the variation of (if2) for polyethylene with 
temperature giving the result shown in Figure 2.11 where {R2)0 is the 

47 



TOPICS in POLYMER PHYSICS 

value for free rotation. The chain contracts and approaches the free 
rotation case with increasing temperature. 

2.3 

1 

) 

N ̂  ̂  

-180 Temperature (°C) 400 

Figure 2.11. The temperature dependence of R for Polyethylene based 
on the Taylor equation. 

It should be noted that the dimensions of this molecule decrease with 
increasing temperature because the trans conformation, which is the 
extended chain conformation and the one of lowest energy for 
polyethylene, has a potential energy curve like that of Figure 2.3. If the 
polymer chain has a different sort of potential energy barrier such as the 
one shown in Figure 2.5 in which the gauche conformations have the 
lowest energy, then 77 is negative and the chain would extend with 
increasing temperature. This type of response has been observed in 
silicone polymer chains [15]. 

These types of calculations may be generalized to describe more 
complex types of chains. For example, for cis 1,4 polybutadiene, the 
dimensions are given approximately by [16] 

< R 2 > 4 M : (l + COS0)(l+77) 

while for trans 1,4 polybutadiene 

( R 2 K M : 

(l - cos 0) (I-17) 

(i+cosa)(i+»;) 

(2.51) 

2 [(1 - cos 6) (1-TJ) 
(2.52) 
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where / is the length of the monomer unit. Differences in lengths and 
valence angles for single and double bonds have been neglected in these 
equations, but have been considered in a more complete analysis [17]. 

2.8. Rotational Isomeric State (RIS) Approximation 

The RIS model [18] is based on known chain structure and geometry in 
contrast to the statistical segment model described in Section 2.4. The 
RIS model assumes that the energetics of a chain conformation, in many 
cases, can be expressed in terms of a few discrete rotational angles 
between neighboring bonds [Appendix 2E]. In polyethylene, for 
example, the bond lengths and the bond angles are well characterized and 
fixed, so that only the rotational angles remain to be specified in order to 
characterize the conformational energies involved in the interaction of a 
given rotational angle 6„ with its two nearest neighboring angles 6n.\ and 
dn+\. These interactions can be summarized by potential energy contour 
plots in which one rotational angle is taken as the abscissa and a 
neighboring angle as the ordinate (see for example Figure 2.6). The 
potential energy of a chain having a given conformation is thus 
dependent upon the pair interaction between adjacent bond rotational 
angles. Certain conformations however are energetically unfavorable due 
to steric hindrances. One variety of those is the so-called pentane 
interaction that is more fully described in Section 2.11. Rotational 
isomers have been discussed previously (Section 2.2). The statistical 
weight assigned to each rotational isomer can be written as 

£ « ~ e (2.53) 

where, as before U\, the potential energy of the trans state, is the state 
with the lowest potential energy and is assigned a value of one. Thus, 

-UJRT U./RT 
£ « = e "' e (2.54) 

For a threefold rotational barrier, with one trans and two gauche 
isomers, the partition function, Q, (Appendix 2A) is given by 

Q-l=\+2a (2.55) 
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Further, the average value of the cos$ in the RIS approximation is 
given by 

N 

(cosct)) = Q-l2/Uncos<l)n (2.56) 

For the special case of a threefold rotational barrier, equation 2.56 
becomes 

(cos<p} = 
(cosO°)(l) + 2(cosl2O°)0 

1 + 2(7 

\-o 
l + 2a 

(2.57) 

This equation was derived previously for the case of 1,2 
dichloroethylene (equation 2.17). The possible permutations for 
neighboring bonds with a threefold potential barrier can be represented 
by a statistical weight matrix composed of elements based on individual 
statistical weights. The matrix methods involved are described in 
Appendix 2E. The reference bond angle Q, is placed in a right-handed 
coordinate system. Transformation matrices |A| (see for example 
equation 2C.25) are then used to transform the coordinates of the Q/* 
bond into that of the <2M o n e- The process is repeated until the 
coordinates of all the bonds in a given conformation are generated. 

As mentioned above, values of conformation dependent properties 
such as those for the root mean square chain distance ((R2)), the dipole 
moment or the strain optical coefficient can be derived by the RIS 
approximation. For example, the values of (R2) for a given chain are 
calculated (assuming no interaction between rotational angles on 
adjacent bonds) from (see equation 2F.23, Appendix 2F). 

(R2> 2 •I'W' (2.58) 

where £ = the bond vector or column vector 

= colU, 0 0 = 
*, 
0 

0 
- ' , 

1 

0 

0 
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I = the transpose of p Or row vector = |^; 0 0 | ^ ^, j 1 0 0 | 

I A I = the transformation matrix which for the case of restricted bond 

rotation 

cos0 -?7sin0 esin0 

sin0 r] cos 6 -£cos0 

0 n 
(2.58A) 

where 

n = (cos<£). 

£ = (sin0)_. 

ion 2.58 can be shown to be equivalent to equation 2.50 

< * • > _ 

nt 
1 + COS0 l+T] 

l -cos0 1 —r7 

which was derived from vector analytic considerations. Although the 
form of equation 2.43 makes it easier to visualize the change in chain 
dimensions from structural parameter variation, equation 2.58 is better 
suited for computer computation of chain dimensions. 

2.9. Chains with Interactions between <p Values of 
Neighboring Monomers 

A realistic chain structure has to take into account the occurrence of 
combinations of bond rotational angles that would bring the chain atoms 
into sterically prohibited arrangements. Simply put, atoms would be 
required to occupy the same space. One example is the pentene 
configuration in polyethylene. For four consecutive bonds, a sequence 
g(+), g(-) and g(+) (or more gauche pairs of opposite sign) would place 
the first and the fifth carbon atoms in the same location. As discussed 
previously for n-butane, the distance between two carbon atoms 
separated by three consecutive bonds is specified by one rotational bond 
angle. This can be termed either a three-bond interaction or a first order 
interaction. In analogous fashion, the distance between carbon atoms 
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separated by four bond angles involves the specification of two 
successive rotational bond angles. These are termed either four bond 
interactions or a second order interaction. The possibility of generating 
gauche pairs of opposite sign and hence "pentane type" interaction is 
encountered in second orders as can be seen by inspection of Figure 2.12. 

\ H» -"« Interaction site 
H" 

Figure 2.12. Pentane type interaction. 

For linear polyethylene, the first order interaction can be given by a 
diagonal statistical weight matrix 

\D = 

1 0 

0 o 

0 0 

0 

0 

o 

= diag(l, o,o) (2.59) 

where, as previously (equation 2.54) 
a = exp(cr/RT] = the statistical weight of the gauche conformer 

Second order interactions for a symmetrical chain such as linear 
polyethylene may be given in matrix form, assuming a three minima 
RIS,by 

' 8+ S~ 

\\ = g + 

8-

1 

0 

1 

1 

V 
0) 

1 

CO 

xp 
(2.60) 

where a> = the statistical weight for the steric overlap of g+g- pairs 

52 



STATISTICS OF CHAIN CONFORMATIONS 

xp = the statistical weight of for g-g- or g+g+ pairs 
Multiplying the matrices in equations 2.59 and 2.60 

|U| = |VD| = 

1 1 1 

1 Xp (O 

1 0) Xp 

1 0 0 
0 a 0 
0 0 a 

= 

1 a a 
1 Oip 0(0 

1 0(0 Olp 

(2.61) 

yields the statistical weight matrix for the combined four-bond matrix. 
oip denotes the combined statistical weight for a g+g- (or g-g+) pair, 
oat, for a g + g+ (or g-g-) pair neighboring bonds. For linear 
polyethylene, it has been found [19] that the value of oa) is small enough 
that it can be set equal to zero. The aw pair bonds occupy the same 
position so that steric hindrance exists. Equation 2.61 for a second order 
interaction may be accordingly modified 

U = 

1 a a 

1 oip 0 

1 0 oip 

(2.62) 

By this device, equation 2.64 eliminates g+g- pairs in computation of 
chain dimensions. Second order interaction matrices have been expanded 
to include intermediate rotational states. Heatley [20] has used a 21x21 
matrix for polymethylene. In analogous fashion, Boyd and Breiting [21] 
set up a 3x3 matrix. 

Interactions of third (or higher) order can be extended in a straight
forward manner. The order of equation 2.61 has a dimensionality of n=3. 
A third order interaction (involving five bonds or three bond rotational 
angles) has a dimensionality of n2 = 9 because the rotational states of two 
bonds have to be considered. Thus, the state of bond i-2 has to be 
included with that of bond i-l. Similarly, the state of bond i+l has to be 
included in that of bond i. This calculation thus involves the transition 
between bonds i-2, i-l to bonds i, i+l. 

2.10. Asymmetric Barriers 

The results of the previous section assumed that the potential function is 
symmetrical 
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U{h) = U{-h) (2.63) 

so that barriers such as those depicted in Figure 2.13 are prohibited. This 
assumption is not valid, for example, for tactic vinyl polymers 
(-CH2-CHX-), the most common type. R2 can be calculated by taking 
the more general case for which the potential function is unsymmetrical. 

Two matrices that describe conformations that alternate in sequence 
are used to specify conformation in tactic vinyl polymers. Tacticity 
introduces asymmetric elements into the chain. One convention used in 
specifying chain asymmetry consists of distinguishing between right 
handed chains termed d and left handed or 1 chains. This convention, 
admittedly arbitrary, is borrowed from the field of optical activity. For a 
tactic polymer with a threefold potential (Figure 2.13), the statistical 
weight matrix for a d placement between neighboring bonds is 

PA-
T 1 T 

1 1 TO) 

1 a> x 
(2.64) 

where x = the statistical weight for a gauche conformation. 

180 240 
Rotational Angle 

360 

Figure 2.13. Potential energy diagram showing the minimum in potential 
energy for the trans form for a tactic polymer chain. 

Incorporating a third bond with the same asymmetric d element yields, 
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CO TO) I 

1 XCO CO 

CO 0 CO 

(2.65) 

Analogous matrices can be constructed for 1 type placements or for Id 
types [22]. 

The conformational partition function for tactic vinyl polymers using 
two statistical weight matrices is given by 

Z - J 1 n*rc (2.66) 

where as in equation E-8, J represents the transform of the column 
matrix J 

JT = and J = 1 1 1 

The equation, analogous to equation 2.58, for the characteristic ratio 
for asymmetric barriers is modified to the form 

£-w-^r....o]cift«; 
0 

J x l 

J 

where JJCI = the direct product of J with the column vector |1 0 0 | 

U'(E sxlT) (U'xE3)||T|| 0 

0 (U'xE,)| |T| (Exl)U' 

0 0 U' 
S\-

U"(EsxlT)||T|| (U"xE3)||T|| 0 

0 (U"xE3)|T|| (E ,x l ) lT 

0 0 U" 

(2.67) 

(2.68) 

(2.69) 
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r 

T3 

= the pseudo-diagonal matrix formed from the transformation 
matrices T\, ...,TS for the different rotational states. 

References 23 and 24 give techniques for evaluating equation 2.70. 

2.11. Comparison with Experiment 

Polymer chain dimensions are usually determined experimentally on 
dissolved polymers using either intrinsic viscosity (rj) (Chapter 3), light 
scattering angular dependence (Chapter 4) or neutron scattering 
measurements. These measurements are carried out in very dilute 
solutions to minimize interactions between chains. In addition, theta (6) 
conditions are commonly used in order to balance long range interactions 
between non-adjacent segments of the same chain and solvent 
interactions. A theta solvent refers to experimental conditions of 
temperature and solvent selected such that the polymer is just on the 
verge of precipitation. Under such conditions, the chain expansion 
arising from excluded volume is balanced by the repulsive forces of the 
solvent, so the system is "pseudo-ideal" and chain dimensions assume 
the values for the unperturbed state. This means that a given polymer 
chain segment is indifferent as to whether it has a solvent molecule or 
another chain segment as a neighbor. 

Light scattering can only be used for stiffer chains or higher 
molecular weight chains; molecules whose dimensions are greater than 
about 50 to 100 nm. The shorter wavelength neutrons can be used for 
smaller molecules. In addition, with deuterium labeling, neutron 
scattering can be extended to concentrated or bulk polymer studies. 

The chain dimensions obtained from the theoretical treatments 
described previously in this chapter may be compared by use of the 
characteristic ratio (C„) expressed as either 

R2 

C " s ^ (2-71) 
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for a chain of finite length with n monomers, or 

R2 

C . - l i m — (2.72) 
«~ nl2 v ' 

for infinitely long chains. This characteristic ratio may serve as a 
measure of the chain stiffness. 

For the statistical segment model (equation 2.25) 

C . - l (2.73) 

For the case of tetrahedral bonding with free rotation (equation 2.40) 

l + (cos0r) 
C = T7(c^)=2 (2'74> 

where (cos 6T) = 1/3. This equation states that the imposition of 
tetrahedral bonding increases the end-to-end vector length by a factor of 

compared to the statistical segment model. 
Table 2.1 lists values of CM derived from experimental 

measurements. These data show that the unperturbed polymer chain is 
more flexible and more coiled up than is implied by chain model 
calculations based only on fixed bond angles and restricted bond 
rotation. The RIS approach [24] has had better success in matching 
measured Coo values because it includes longer range interactions and 
excluded pentane type interactions in the calculations. The chain 
parameters thus determined, in most cases, correspond well to values 
determined by structural techniques. The change in chain dimensions 
with temperature offers an important means for estimating the energetics 
of chain conformations. Two approaches have been followed for 
obtaining the temperature dependence. One approach uses the 
straightforward procedure of calculating chain dimensions at several 
temperatures from light scattering or viscosity measurements. However, 
to attain theta conditions over a range of temperatures, several solvents 
are usually required. The resulting solvent/polymer interaction effect 
tends to obscure the quantity of interest - the change in chain dimension 
with temperature - because of the small magnitude of the change. 
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The second approach is indirect and involves the measurement of the 
stress-temperature coefficient of a solid polymer. For the measurement, 
the polymer must be in the rubbery state. Crosslinking a thermoplastic 
polymer at room temperature and then heating it above its melting point 
accomplishes this. Chapter 3 describes the mathematics involved in 
calculating stress-temperature coefficients. Other approaches use the 
birefringence dependence on temperature or the Kerr Effect to measure 
the stress-temperature coefficient. 

As seen in Table 2.1, the change in Coo with temperature is small. 
Polyethylene chains contract on heating since the shorter gauche 
conformations become more numerous at higher temperatures because of 
energetic considerations. This chain contraction with increasing 
temperature was previously discussed in this chapter (Section 2.7). 

Table 2.1 Characteristic Ratio Values for Typical Polymers 

Polymer 

Polyethylene 

Polypropylene, isotactic 
'olyisobutylene 
Dolystyrene 
Poly-dimethyl silicone 

Solvent 

a-chloronapthalene 
diphenylmetane 
dodecanol-1 

diphenyl ether 
benzene 
cyclohexane 
butanone 

Temperature ( C) 

140 
142 
138 

145 
24 
34.8 
20 

C<x> 

6.6 
6.8 
6.7 

5.7 
6.6 
10.2 
6.2 

a.) P.J. Flory, "Statistical Mechanics of Chain Molecules'^ Hansa Publishers New 

York 1989 

2.12. Chain End-to-End Distribution Functions 

2.12.1 One Dimensional Case 
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The probability of an end-to-end vector distance can be derived. For this 
derivation, the statistical segment model (Section 2.4) is used in which 
the chain is approximated by Z statistical segments [25]. Each segment is 
assumed to be comprised of several monomer units. The statistics of the 
random walk are applied to this model. 

For one dimension, the chain axis is constrained to lie parallel to one 
axis of a Cartesian coordinate system, say the x-axis. N\ segments lie in 
the +X direction and N2 segments in the -X direction with equal a priori 
probability (Figure 2.14). The probability of obtaining a given value of 
P(RX) [see Appendix 2G] is given by 

> « - p ( - ^ y <2-75) 
This equation is substituted into equation 2.21 to derive the entropy 

of a single chain (equation 2.22) and the force required to restore a chain 
to its equilibrium dimensions (equation 2.21). 

Equation 2.75 is the probability that P(Rx) can be found in the interval 
P(Ry) to P(RX) + P(RJdR. Thus 

R* 
/W^ = Cexpl-^j (2.76) 

where C is a normalization constant determined from 

A*-* J —00 

leading to 

C = 
•\J2JIZL2 

Substituting equation 2.78 into equation 2.76 

(2.77) 

(2.78) 

This is a Gaussian function, plotted in Figure 2.14 which has a most 
probable value of Rx = 0. It should be noted that P(<R^>) asymptotically 
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approaches zero as <R*> (or <-R*>) approaches infinity. This must be in 
error at large <R*> values because P(<RX>) must discretely become zero 
for the completely stretched out chain for which <R^> = Ro> and 

H=ZL (2-80) 

This error due to the neglect of higher terms of the expansion will be 
considered later in the discussion of "non-Gaussian" behavior [Section 
2.12.3]. Another source of error is the use of Stirling's approximation for 
factorials that is valid only for large numbers. This is not the case at high 
chain extensions when the number of possible chain conformations 
becomes small. Neglect of expansion terms is a Gaussian function that 
has a most probable value of Rx = 0. It should be noted that P ((Rx)), 
asymptotically approaches zero as Rx(or -Rx) approaches infinity. This 
must be in error at large \RX\ values because P ((Rx)) must discretely 
become zero for the completely stretched out chain for which Rx = R& 
and the mean value of Rx is 

i 

/ 
/ 

/ 
/ 

/ 
/ 

s s' 
^ 

-* n-

L 

P(RX) 
\ 
\ 

\ 
\ 

\ 
\ 

\ 
\ 

\ 

' • 

Figure 2.14. The variation of Px for a one dimensional Gaussian chain. 

W-Jl** P &K-0 (2-81) 
This follows because P (+RX)= P (-Rx)- However, the mean squared 
value of Rx 

60 



STATISTICS OF CHAIN CONFORMATIONS 

(**)=/32^2K=ZL2 

in agreement with previous results (Section 2.4). 

(2.82) 

2.12.2. Extension to a Three Dimensional Chain 

Consider a three dimensional chain composed of Z statistical segments of 
length L. Suppose these segments can have projections along the x, y and 
z axes of ±Lx, ±Ly, or ±Lz where 

(2.83) 

and 

w-mwi) 

{SHIHS)-^ (2.84) 

Also, since the contribution of a given segment to the extension of the 
chain in the x direction (called Rx) may be either Lx or -Lx, the 
probability of a projection Rx of the end-to-end length will give a result 
identical with the solution for the one-dimensional chain (equation 2.79) 
or 

P ( ^ ) ) - T j _ e x p [ - ^ 
^Z(L2

X) 2ZL: (2.85) 

Similarly, for Ry 

and for Rz 

%*.))-

« -

f^fi) 

VM4) 

exp 

>\\ 

2ZL? 
(2.86) 

exp 
* \ \ 

2ZL? 
(2.87) 

If one end of a chain is at the origin, the probability of a vector R 
being located close to the other end of the chain is 
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P{R) = P(Rx)p(Ry)p{Rz) (2.88) 

where 

R - R . + R + R . 

since for the end-to-end vector to be R, the x, y and z components must 
be RJC, Ry and Rz. If the probabilities for the components are independent 
of each other, then the probability of that they have a joint value of (R ,̂ 
Ry, Rz) is the product of the individual probabilities. Thus 

P(R)dR = 1 
\V2 expi-

where 

J_ 
2Z (2*zf«L^X4)) 

3 )exp[-3R2/2ZL2]dRxdRydRz 

Ll Ll + Ll + ^ 

2riZL2 

o3 

TC 
3/2 

Qxp(-p2R2)dRxdRydRz 

dR 

(2.89) 

and 

J32 = 
2ZL2

 24W 

~* ^y ^z / 3 

(2.90) 

The probability of a given scalar distance between ends is found by 
integrating P(R) over all angular orientations of R. Transforming from 
Cartesian to spherical coordinate system (Figure 2.15) simplifies the 
integration process. In spherical coordinates, 

j 2 . 

so that 

dRxdRydRl = R'sinOdRdedtp 

p(R)dR = ell'x'R2dR-P—r f" fP(R)sinddRded<p 
v ' JJ; ' J <t>-oJ e-oJ a v ' 

(2.91) 
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= 4jt-?wexp\-l3R2]~'>'','R2dR (2.92) 

X 
Rv 

Figure 2.15 Cartesian to Spherical coordinates transformation relations. 

It is easily verified that 

f° P(R)dR = l (2.93) 

and that 

(R2) = £o(R
2)p(R)dR = ZL2 (2.94) 

This is in agreement with the previous result. 
The most probable end-to-end distance [Rm, see Figure 2.16] is 

obtained by differentiation of equation 2.92, 

^ - 0 - 4 wi£.[2 ite-'-" {-P2R2 +1)] (2.95) 
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yielding 

W4-5M P (2.96) 

P(R) 

R 

Figure 2.16. The most probable end-to-end distance (Rm) plot. 

2.12.3. Extension to Non-Gaussian Case 

The failure of the Gaussian statistical theory becomes noticeable when 
the distance between chain ends assumes values between one third to one 
half its fully extended chain (or contour) length because of the neglect of 
higher terms in the expansion and the limitations of Stirling's 
Approximation as mentioned in Section 2.13.1. Equations based on the 
following derivations yield calculated values that better agree with 
experimental data at high elongations, but sacrifice simplicity and 
general applicability to a variety of polymer structures. As in the 
Gaussian case, the problem is to determine the probability that one chain 
end is located in a volume dFat a distance R from the other end. 

For the non-Gaussian case, the distribution in angle of the individual 
chain segments is calculated first. Then, the probability of a given 
conformation is determined. Finally, the most probable distribution is 
derived by differentiation, as in the Gaussian case. 

64 



STATISTICS OF CHAIN CONFORMATIONS 

dA = 2jtsin(9A<9 

Figure 2.17. a-priori probability of segment being proportional to the size of the volume 
element. 

Consider again, a three-dimensional chain composed of Z statistical 
segments of length L. These segments are considered to be freely 
orienting so that the a-priori probability of a segment being oriented at an 
angle, 6, with respect to R is just proportional to the size of the volume 
element (Figure 2.17), or 

yp(Ad) = CsmGAd (2.97) 

The constant, C, is determined by normalization 

yp(Ad)= f p(Ad) = Crsmddd = 1 = 2C (2.98) 

Thus 

C - l / 2 

and 

p(Ad) = -smdA8 (2.99) 

Now consider a chain in which n\ segments are oriented with respect 
to R in the angular interval {Ad\), n2 in (AG2), etc. The probability of such 
a distribution is 

p-c^r{WAe.)r[^r...]}-c^7n[K^r (2.10O 
« i 
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It is useful to take logarithms to utilize Stirling's approximation for the 
factorials (equation 2G.11) 

lnP = \nC + \nN!-yinNl! + ynllnp(&di) = lnC + NlnN-N 

+ N^[-n, In n,. + n, + n, ln/?(A6>)] (2.101) 

since 

Thus, 

N -1-

lnP = lnC + yVlniV + 2«,ln P(M,) 

(2.102) 

(2.103) 

We now wish to find the distribution of the rij's that maximizes P, 
that is, one that makes d In P = 0. Now 

d\nP =2 dlnP 

dn, 
dn.=0 

and 

—]-MA0.) - lnn , - l 

(2.104) 

(2.105) 

However, not all «,'s are possible. One must maximize In P subject 
to the restriction that N and R are specified. Thus from equation 2.102 

dN =o = 2 ^ (2.106) 

If the end-to-end length of the chain is held fixed at a particular R (Figure 
2.18), then 

2> Lcos6, = R 

so that 

N L cos djdri; =0 

(2.107) 

(2.108) 
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Figure 2.18 Relations used in finding maximum probability. 

P must be maximized subject to the constraints of equations 2.106 
and 2.108. This is accomplished using Lagrange's method of 
undetermined multipliers. Equation 2.106 is multiplied by the arbitrary 
constant (a - 1) and equation 2.108 is multiplied by the arbitrary 
constant |3 fiot the samjS as defined in equation. 90]. Then these are 
added to equation 2.104 to give 

A0i)-lnn,.+a + /3cos0,.]cfo,.=O (2.109) 

Since this equation must be valid for arbitrary values of d«,'s, the 
coefficients must be zero. Thus 

l n ^ A ^ - l n ^ . + a + ^cosfl,. =0 (2.110) 

so 

n(=N- p JA^ jeV 8 - ' = ̂ sinfJeV0058' A0, (2.111) 

The coefficients, a and /J, may be evaluated from the constraints of 
equations 2.102 and 2.107, 

2M 
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sinh/? 

P P P P (2.112) 

Also 

- = ̂ n,cose, = y i-sin0,.cos0I.e
ae/,coseA01. 

= e" 
cosh/J sinh/S 

/S p 2 

Now using equation 2.112 for e a 

R N6 

L sinh# 

coshjS sinh/2 

P P2 
coth/3 

/3 

where 

X(x) = cothx — 

(2.113) 

-N£{p) (2.114) 

(2.115) 

is the Langevin function of x. Thus, taking the inverse of the Langevin 
function, 

f-M- (2.116) 

The distribution function obtained by combining equations 2.1 Hand 
2.112 is 

n I . - - ^ - e ' c o , H s i n 0 , A 0 , 
sinh/3 

(2.117) 

where j8 is defined by equation 2.116. 
Equation 2.117 describes the number of segments making an angle 6j 

with respect to the displacement vector. This approach follows the same 
one used by Langevin and others for calculating the orientation of 
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dipoles in an electric field or of magnetic species in a magnetic field. 
One might think of it as the orientation of polymer segments in a 
mechanical field. This approach will also be used later in the discussion 
of the optical properties of polymer chains (Chapter 4). Now from 
equations 2.103 and 2.112 

ln(/yc) = NlnAr + 2 " , m ^ ^ = NlnN + \ra, ln[eVpco,fl'] 

m = N\nN-aS n, - ftT nicos6,= NlnN _ a / v ~ — 

Using equation 2.110 

= N\n-aN-^-

(2.118) 

Inserting equation 2.117 

In NlnN-Win 
C 

so that 

Nfi 
sinh/3 

/3R 
= mnN--mnN--N\n 

ln—m-N 
C 

-*-Wb/-£ 
NL) \sinhy5/ 

P 
sinhj3 

]3R 

L 
(2.119) 

(2.120) 

or 

P = Cexp\-N ikd-A-
NL) I sinh/3 

(2.121) 

This is a distribution function that is valid for R larger than the 
Gaussian function of equation 2.92. When R = Rx = NL 

/>-£-(£)-r-(i)-. (2.124) 
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and P = 0 as expected for an extended chain. If the inverse Langevin 
function and the exponent of equation 2.121 are expanded in series, this 
leads to 

/>(R) = Cexp -N 
3(_R_ 

2\NL 20\NLJ 35(H 

R 
NL 

(2.123) 

P(R) 
non Gaussian 

Figure 2.19. Comparison of rubber elasticity models. 

At small extensions or for very long chains, R « NL and only the 
first term in the series expansion of the exponent is important, so 2.123 
becomes 

P(R) = Cexp 
3 R2 

2\NL2 (2.124) 

which is similar to equation 2.79. Thus, equations 2.121 or 2.123 
represent an improvement over the Gaussian distribution in being more 
accurate at larger R (see Figure 2.19). 

It should be pointed out that, in the non-Gaussian case, P(R) going to 
zero at R*, leads to the force going to infinity (Figure 2.20). 

An alternate measure, the radius of gyration, Rg, is derived in 
Appendix 2C. In the Appendix, the radius of gyration for a linear 
polymer is shown to be given by the equation 

(*2
S)=(HR2) (2.125) 
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the effect of branching on (R*\ and the Stockmayer branching index are 

also discussed in the appendicies to Chapter 2. 

/ 

non-Gaussian 

Gaussian 

R R„ =ZL 

Figure 2.20. Comparison of force-extension curves between the Gaussian and non-
Gaussian cases. 
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Appendix 2A - Statistical Mechanics 

Atoms and molecules in all their facets (structure, reaction and 
properties) form the subject material of chemical science. Classical 
thermodynamics, on the other hand, describes the energetic interactions 
between macroscopic systems and takes no cognizance of the molecular 
constitution of matter. Statistical thermodynamics bridges these two 
disciplines by using partition functions to calculate the average 
macroscopic values of thermodynamic functions such as energy or 
entropy. The concept of a partition function, in which the total energy of 
a molecule is partitioned or separated into the various contributions from 
vibrational, rotational and translational energies, is central to statistical 
thermodynamics. As shown below, the state functions of classical 
thermodynamics (Appendix 3A) can be derived from partition functions. 
For the present application, only the partition function for the 
conformational changes based on bond rotation is considered. The 
partition function is derived from probability or statistical arguments as 
would be anticipated considering the large number of molecules 
comprising even a small sample (recall that 1 mole of a substance 
contains 6xl023 molecules). The first step in the derivation of the 
partition function is the calculation of the number of ways (N) of 
distributing n distinguishable molecules over R states. The result (see 
Appendix 2G) is 

N = ^ - £ - (2A.1) 

W - V Y\ns 
s-0 

The probability (P) of a given distribution is assumed to be proportional 
to the number of ways the distribution can occur (the ergodic hypothesis) 

P = C—-^ (2A.2) 
nv'n2!...n.! 

where C is a constant of proportionality subject to the conditions of a 
constant number of molecules 
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and constant energy 

n,£, = E (2A.4) 

While the average state of a system should be determined by an 
average over all distributions, the most probable distribution is very 
much more probable than any other. Therefore, it is a good 
approximation to just consider this distribution. This may be 
demonstrated using the more rigorous "method of steepest descents" [1]. 
To obtain the maximum probability, equation 2A.2 is recast into 
logarithmic form. Thus 

lnP = lnC + ln«-lnn,/-lnn2/...ln«,./ (2A.5) 

Then, Stirling's approximation [This approximation does not work well 
for values of N of the order of 10 or less, but improves with increasing 
N.] 

\nN.'=NlnN-N (2A.6) 

If In Pis a function of «i,«2, -"i ••••, then for In P to be a maximum, 

d(\nP) = (d\nP/dnl)dnl +(d\nP/dn2)dn2 + ... + (dlnP/dni)dni (2A.7) 

By differentiating 2A.5 after using Stirling's approximation, 

(<?lnP/dn.) = -lnn. (2A.8) 

so substituting gives 

^1(lnn1) + o,n2(lnn2) + oW3(lnn2) + ... + o,n.(lnnj) = (?iV = 0 (2A.9) 

Changes between states in terms of energy and number of molecules, 
while maintaining the overall values constant, can be expressed in 
differential form. 

From equation 2A.3 

dnx + dn2 + dn3 +... + dni = dN = 0 (2A.10) 

and from equation A-4 

1 
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Exdnx + s2dn2 + e3dn3 +... + eidni =dE= 0 (2A.11) 

Lagrange's method of undetermined multipliers is now applied to find 
the maximum in P. Two new variables (a for equation 2A. 10 and B for 
equation 2A.11), the undetermined multipliers, are introduced as 
restrictions on equation 2A.9. Thus 

dnl(lnnl} + dn2(lnn2} + dn3(lnn3\ + ...+adnl+adn2+adn3 + 

... + Bs^ + Be2dn2 + Be3dn3 +... = 0 (2A.12) 

Grouping terms 

(in«j + a + Bex)dnx + (inn2 + a + Be2)dn2 + (inn3 + a + Bs3)dn3 +... = 0 m . 13) 

In general, if one has an equation of the sort 

Ax + By + Cz + Dw + .... = 0 (2A.14) 

where x, y, z and w, can assume any value independently, then the only 
possible solution is 

A = B = C = D = = 0 (2A.15) 

Thus, for all terms in equation 2A. 13 

In n, + a + Bex = 0 
. . . (2A.16) 

In n3 + a + Be3 = 0 

Rearranging terms in equation 2A.14 and taking exponentials 

n , = e - V E ' (2A.17) 

This result is Boltzmann's distribution, one of the most general equations 
in physical science. 

The multipliers a and B can be determined from the system 
requirements of constant number and constant energy. Thus substituting 
equation 2A.15 into equation 2A.3 

i 

n, - e " V * +e-ae-^ +... = e-
a[V/i£' +e-"'1 +...] - e " " ^ " V * =N 

i 

(2A.18) 

75 



TOPICS in POLYMER PHYSICS 

or 

N 
e = 

2V'" 
(2A.19) 

Substituting equation 2A.19 into equation 2A.17 

NtPc' 
", = V T — (2A.20) 

2 e 

The denominator in equation 2A. 18 is the partition function (or the sum 
over all energy states) discussed at the beginning of this section 

Q = \ e - ^ (2A.21) 

It can be shown by any of several approaches [2-4)] that fi meets all the 
requirements for a parameter, i.e., 

P = ^ (2A.22) 

where k = Boltzmann's constant and T = temperature (in units of degrees 
Kelvin). 

Therefore, equation A-18 can be rewritten 

Afe-'/kr Ne^7 

n, = -^ — = : (2A.23) 

' 2> 
-fl/kT Q 

The classical thermodynamic state functions [enthalpy (E), entropy 
(S), free energy (A)] can be expressed in terms of the partition function as 
shown in the following derivations. 
Combining equation 2A.4 

£• = «,£, +n2£2 + ... 

with equation 2A.20, yields 

E-(AVG)[e-*+e-*+...] (2A.24) 

then differentiating 
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d^Q_ 1 3Q__ 1 d I" pE ^ 

d(l/6) Qd(l/6) QdB IB) Odd1 -I (2A.25) 

since 

de" _ „ du 

dx dx 

then equation 2A.25 can be transformed 

7h*~-•**-]- E_ 
N 

(from equation 2A.24) or 

E = -N 
dlnQ 

dB 

Converting to kTby use of equation 2 A. 22 

E-Nd-W-E~N-dl*Q 

dB d(l/kT) 

k = 
where 

_R_ 

N . 

(2A.26) 

(2A.27) 

R = the gas constant 
NA = Avogadro's number 

Rearranging equation 2A.27 by use of the relations 

dlnQ dlnQ( dT ^ 

d(l/kT) dT [d(l/kT)^ 

and 

dT 
d(l/kT) d(l/kT) j 7 _ J _ ' 

dT *\ T 

= -kT2 

(2A.28) 

(2A.29) 

Substituting in equation 2A.25 
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E = +kT2 ni d\nQ 

dT 
(2A.30) 

From classical thermodynamics, the entropy (S) is related to the specific 
heat at constant volume (Cv)) by 

Jo T 

where 

c.-i '*'i -
kT 

dlnQ 

dT 

dT 

Therefore 

Jo T 

{^] 
dT 

dT 

Equation 2A. 31 can be integrated by parts or 

d\uv\ = udv + vdu 

Then 

I udv = I d(uv)- I vdu = uv+ I vdu 

Selecting as variables for equation 2A.31 

dlnQ 

Therefore 

u = — and dv = d kT 
T ST 

du = -\dT and v = kTldXnQ 

Substituting the terms in equation 2A.36 into equation 2A. 34 

5 = I k 7 ^ lng 
dT o Jo I 

dlnQY 1 

(2A.31) 

(2A.32) 

(2A.33) 

(2A.34) 

(2A.35) 

(2A.36) 

dT A T2 k r ' ^ + klnfi 
dT 

(2A.37) 
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The Helmholtz free energy (A) is given in classical thermodynamics by 

A = E-TS (2A.38) 

Using 

and 

dT 

Substituting these terms for E and S into equation 2A.38 

A = k r 2 ^ g - T ( k r ^ + k l n e ) = - k r i n e (2A.39) 

The Gibbs free energy (G) is given in classical thermodynamics by 

G = A-PV (2A.40) 

Assuming that the PVterm can be treated as a perfect gas 

A = E-TS 

dA = dE- TdS - SdT -dq-dw-lf^U -pdv - SdT (2A.41) 

r.J±) .al^O) -kr^e 

G = -kT\nQ-kT^^- (2A.43) 
dV 

Entropy may be expressed in terms of probability (wo) by use of the 
following transformations. 

Substituting equation 2A.23 

into equation 2A.37 

e-£ ' /kr=w0e-£ ' /kT
+. 
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S = ̂ M + k lnQ 
arr 

yields the equation 

S = kT 
o,lnw0exp[-£1/kr] 

+ kln[w0exp[-e./kr]] 

= k7 

= kr 

d(et/kT) 

JT 
+ klnw0+kln(e£ ' /kT) 

kT2 + k l n w 0 + k ( ^ 7 ] = klnw0 (2A.44) 

Equation 2A.44 states that: 
The entropy of a molecule is proportional to the logarithm of the 

number of states accessible to the molecule, and the constant of 
proportionality is the gas constant divided by Avogadro's number. 

References 
1. R.H. Fowler, Statistical Mechanics, 2nd. ed.; Cambridge University: London, 1936 
2. E. Schrodinger, Statistical Thermodynamics, 2nd. ed.; 

Cambridge University London, 1952 
3. M. Dole, Introduction to Statistical Thermodynamics; Prentice-Hall: New York, 1954 
4. E.A. Guggenheim, Thermodynamics 3rd. ed. ; Interscience: New York, 1957 
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Statistical Thermodynamics of an Ideal Monatomic Gas 

A molecule of a gas can be considered as a particle in a box. Its energy 
levels may be described by quantum mechanics. In one dimension, an 
integral number of deBroglie half wavelengths must fit into the length of 
the box, a. That is 

n(A/2) = a (2A.45) 

Then, using deBroglie's equation, A = h/mv 

nti/2mv = a (2A.46) 

or 

v = nh/2ma (2A.47) 

Assuming the only energy is kinetic energy, mv2/2, the energy of this n 
quantum states is 

en = (m/2)[nh/2maf = n2a2/8ma2 (2A.48) 

The translation partition function for this one-dimensional system is 

Qa = 2)exp(-£„ /kT) = ̂ e x p ( - & V ) (2A.49) 

For a large number of closely spaced energy levels, one may 
approximate the sum by an integral, so 

Qa = f exp(-/35V)dn = jt1/2/2p =(2mnkT)y2a/h (2A.50) 

where ft = a2/8ma2kT 
The sum is from n = 1 to co; so the limits of integration are from 0 to oo in 
three dimensions. We may consider the molecule to reside in a 
rectangular box with dimensions, a, b, and c. The three-dimensional 
partition function then becomes 

Q = QaQbQc = (2jimkTf,2abc/h3 (2A.51) 

where abc = V, the volume of the box. 
We have seen that the internal energy (2A.30) is 
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E = kT2(dlnQ/dT) (2A.52) 

Now 

ln£ = ln (2;imk)3/2/fc3l + (3/2)ln:r + lnV (2A.53) 

Then 

(<?ln Q/dT) = 3/(2J) (2A.54) 

so 

E = kT2(3/2T) = (3/2)kT (2A.55) 

The heat capacity at constant volume is then 

Cv - (dE/JT)v = (3/2)k (2A.56) 

This is the value for a single molecule. For N molecules, it is 

Cv = (3/2)Nk (2A.57) 

and for a mole, where N = NA, Avogadro's number 

Cv = (3/2)NAk = (3/2)R (2A.58) 

and R is the gas constant = NA k. 
This is in agreement with the value obtained from the kinetic theory of 
gases. 

We have seen that the Helmholtz free energy, A, is 

A = -kT\nQ = -kT\\r&(2mitf12/h^(3l2)\nT + \nv\ (2A.59) 

The pressure of the gas is then found from 

P = -{dA/dV)T = kTN (2A.60) 

Again, this is for a single molecule. For N molecules, 

P = Nk77V - (number of moles) (RT/V) (2A.61) 

This is the ideal gas law. 
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Appendix 2B - Vector Analysis 

Figure 2B.1. Illustration of the parallelogram rule for vector analysis. 

A vector is a quantity that has both magnitude and direction. A 
common example given in this book is the carbon-carbon bond. Its 
magnitude is the bond length (1.54 A for single bonds); its direction is 
the bond orientation related to an arbitrary reference coordinate system. 
Vectors are used to describe dipole moments and electromagnetic wave 
propagation (infrared dichroism, x-ray diffraction and light scattering). 

2B.1. Vector Addition 

Vectors can be added using parallelogram rule. Consider two vectors 
(A and B, Figure 2B.1) that share a common origin. If two lines parallel 
to these vectors are drawn to form a parallelogram, the diagonal is the 
sum of these two vectors or the resultant vector, C. Mathematically, 

A + B = C (2B.1) 

Because vectors have both magnitude and direction, it is convenient 
to separate a vector into its components by means of the following 
convention. A unit vector specifies direction. The unit vector is 
multiplied by a scalar quantity in order to characterize magnitude. For a 
three dimensional coordinate system, three unit vectors (i, j , k) are set up 
at right angles to each other to form a unit orthogonal triad (Figure 2B.2). 
Thus, the vector, A, by this convention is 

A = axi + ayj + azk (2B.2) 

Similarly, 

B - ^ i + ^ + ^ k (2B.3) 
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The result of adding these two vectors is 

A + B = (ax + bx)i + (ay+by)j + (az+bz)k (2B.4) 

2.B.2 Scalar Product 

The scalar or dot product obtained by multiplying two vectors is 
defined by the operation. 

A ' B = |A|fl|cos0 (2B.5) 

where 6. is the included angle between the vectors (Figure B-2) and |A| 
and |B| are the scalar magnitudes. 

Because cos 6=1, 

A ' A = |A|2 (2B.6) 

The result of multiplying two vectors using a dot product is a scalar 
quantity. 

Since the vectors i, j and k have a magnitude of one by definition 
and are at right angles to each other. 

(cosO°=l) i»i = j « j = k»k = l 

(cos90°=0) j«k = k«i = i»j = 0 (2B.7) 

(cos90°=0) k»j = i»k = j«i = 0 

therefore, writing 

A'B = (axi + ayj + azky(bxi + by3 + bzk) (2B.8) 

and carrying out the indicated multiplication yields 

A'B = axbx + ayby + azbz (2B.9) 

because all the cross product terms are equal to zero (equation 2B.7). 
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k 4 

Figure 2B.2 Two vectors set in a unit orthogonal triad 

Reference 
Banesh Hoffman, About Vectors, Dover Press New York, NY (1975) 

85 



TOPICS in POLYMER PHYSICS 

Appendix 2C - Radius of Gyration 

In much of this book, the dimensions of a polymer molecule have been 

defined in terms of the mean squared distance its ends,IK2)- In this 

section, a different statistical measure will be introduced called the radius 

of gyration, Rg, whose mean square radius is defined as 

1=1 

where Tj is a vector measured from the center of gravity of the molecule 
(Figure 2C.1) defined by 

2)r,-0 (2C.2) 

In terms of Physics, (Rg) represents the moment of inertia of the 

molecule. 

center ftf gravity 

Figure 2C.1 Vector quantities used in describing the radius of gyration of a polymer 
chain 

The use of ( « ) is desirable because, for a branched molecule, there are 

many ends so that \°g/ cannot be easily defined, while \^g/ is useful, 
both the intrinsic viscosity and the angular variation of scattered intensity 

are closely related by theory to \ °* / . 

The vector z extends from the end segment (i = 1) to the center of 
gravity and the vector r; from the end segment to the center of gravity to 
the i* segment (Figure 2C. 1). 
Now, 
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r , - x , - z , (2C.3) 

2 r ' - ix«-2 z« (2C4) 
i-l i-l i-l 

Z 

Y z = Zz (2C.5) 

so 

1 V 
z = - 2 x d (2C.6) 

w 

The square of the length of z may be obtained by taking its scalar product 
with itself 

z z 

(z2} = z-z. = I2(( X ' * X ; ) ) (2C.7) 
i-l i-l 

Now let us examine 
z z 

2 ) v ( r , + z ) = 2 ( r . T , ) + z5)r1 (2C.8) 
i-l i-l 

It follows that 
z 

2r'2-5Mr'+z) 
i-l 

Z 

= ^ ( x i - z ) « x i 

i-l 

z z = 2 x ' - z *2 X i (2C9) 
i-i i-i 

using equation 2C.3 for r{. 
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( * ) • 
i - l i-l 

equation 2C.6 for z 

<*."> 

equation 2C.7 

i-l i-l 

H-i2>?> 
1=1 

W-W) 
XU = X i " X J 

(2C.10) 

(2C.11) 

(2C.12) 

(2C.13) 

(2C.14) 

Taking the scalar product of Xy with itself 

^ = x i i , x « = ( x i , x j ) , ( x i , x j ) = ̂  + ̂ 2 - 2 x i ' x j (2C15) 

Thus 

^ ' ^ i = \(xi+xj+xl) (2C.16) 

so, substituting in equation 2C. 11 

;=i ;=i j=\ i-i j=\ i=i y=i 

(2C.17) 

However, in the average (Figure 2C.2) 
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SO 

z z 

IIW-HW-^ 
i-i j - i ;-i > i 

<*.!)=^S2<4 2 Z 2 ^ ^ 
i-1 >1 

(2C.18) 

(2C.19) 

til 

/ segmen 

First 
segment 

. / segment 

Figure 2C.2. 

Now for the end-to-end length of a chain 

(R2) = ZL2 (2C.20) 

where L is the length of a statistical segment. The same formula applies 
to (xjj), the distance between the ith and f1 segment providing (j- i) is 
large enough. Thus 

where \i - j \ is the absolute value of (/ -j). 
Thus, from equation 2C.19 

(2C.21) 

i-l /-l 
2 Z 2 ^ 

i-l 

2M+2(;-O 
>1 >i+l 

Now from the formula for the sum of the arithmetic series 

(2C.22) 
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Z'-Wk-p] (2C.23) 

so 

("'.) L\y}^''i^'+^.[(z-')*'Iz-'i 

•—y 
2Z2 ^ 

(z-/f 

2Z2 2J* 

I 
— + -
2 2 

;2-z/ + -z 2 

2 
(2C.24) 

Now 

1>J>4 (2C.25) 

so 

w- L2 Z 3 / - 7 2 \ 

2Z2 3 

2 ' 

4Z"(2) 

£ T-4T]+z '<z>i 

-a^-^-iW 
w-iw 

(2C.26) 

(2C.27) 

for an unbranched random coil. 
The radius of gyration of branched chains (one trifunctional point 

with equal branch lengths) 

(*;) = ZL2[l/6-l/27] (2C.28) 

90 



STATISTICS OF CHAIN CONFORMATIONS 

The branching index, g, is defined as 

(R2
g) ZL2(l/6-l/27) , , N 

\ * /branched \l I ' = 1 - 2/9 = 0.778 (2C.29) 

As seen from the above, the value of (R^) varies with the chain 
configuration. The branching index varies similarly with chain 
configuration 
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Appendix 2D. Evaluation of (am+n * am) 

Locate the (a m )* bond in a coordinate system in which a m lies along 
the X axis (a m = i „). i m+\ lies in the direction of am+i. The y axis of the 
coordinate system of the (m+l) bond lies in the plane of i m and i ^i and 
is of course perpendicular to 

Y 

Jm+l 

Figure 2D.1. Rotation of coordinate axis used in derivation of equation 2C-41. 

i m+1. k m+i is perpendicular to i m+iand j m+i (Figure 2D.1). dm is the angle 
between i m and \m+\. It follows from this figure that 

im = (cos0)im+1+(sinf?)jm+1 

Jm=(-sin0cos^m)im+1+(cosf3cos^m)jm+1+(sinf3)k 

K =(sin0sin^)m)iml +(-cos0sin0m)jml +(cos^)km+1 

Suppose a vector P is represented in the two coordinate system as 
p = cii

m+C2Jm+c3km 

m+\ 

or 

p=c 1 'L 1 +c; j^ 1 +c;k 

(2D.1) 

(2D.2) 

(2D. 3) 

(2D.4) 

(2D.5) 

Now by substituting (2D.1), (2D.2) and (2D.3) into (2D.4), one obtains 
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P = [(cos0)c1-(sin0cos0m)c2 + (sinasin0m)c3]im+1 

+ [(sm0)c1+(cos0cos0m)c2-(cos0sin0m)c3]j„ 

+ [ (sintf>m)c2 +(cos0m)c3]km l 

Comparing with ((2D.5), it follows that 

c[ = (cos #)c, + (- sin0cos0m)c2 + (sin0sin0m)c3 

c2 = (sin#)c, - (cos 0cos0m)c2 + (cos 0sin0m)c3 

(sin0m)c2 +(cos0m)c3 

(2D.6) 

c, = 

(2D.7) 

(2D.8) 

(2D.9) 

The coefficients of this equation define the matrix of the transformation, 

u = 
cos0 -s in0cos0m sin0sin0m 

sin# - cos0cos0 cos 6 sin <t> 

0 sintf>m costf>m 

« n «i2 

OE31 a32 

a,. 

a, 

a. 

= K (2D. 10) 

If a second matrix I B I is 

\B\ = 
A, A2 A3 

A, A2 P 23 

Ai A2 /3 
33 

=w 
The multiplication of two matrices is defined as 

lcl=MIAl=W 
where an element of the \C\ matrix is obtained by 

k 

A vector may be represented by a row matrix 

(2D. 11) 

(2D. 12) 

(2D. 13) 

or a column matrix 
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cx 

C, 

In matrix notation, the set of equations (2D.7), (2D.8), and (2D.9) may 
be represented by 

r' /-' /-' \-\A\ (2D. 14) 

Thus, the product of a matrix with a vector gives the components of 
the vector in a new coordinate system. The product of the matrix and the 
vector is carried out using the rule ((2D. 12) for matrix multiplication, so, 
for example 

3 

C2 = 2 a « c * (2D. 15) 

which is identical with equation 2D.8. 
Similarly, if in a third coordinate system 

(2D. 16) 

where 

i 5 i i 

n"= ^,bif'j - 5 ) 2 [ f y v J ' 2y*C* (2D-17) 
j-i k-\ >1 

It follows that 

7-1 

(2D. 18) 

which is identical with (2D. 14). Thus 
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If ft It | \f* 

cx c2 c3 — u 

Cl 

C2 

c3 

-ww 
cx 
c2 

c3 

(2D. 19) 

Let us now apply this to the problem at hand. In the coordinate system of 
the w* bond 

a „ = (2D.20) 

while in the coordinate system of the (m+l)s t bond 

1 

a „ = | A | 0 

0 
(2D.21) 

Thus (am+i -am) taken in the coordinate system of the (w+l)st bond is 

1 

0 =»m+i 'K ' m + i +«2iJm+i
 +«31

k
m+i] = «n =cose (»«ri*a™)-a*i-H 

(2D.22) 

If now |fi| is the matrix that goes from the coordinate system of the 

(m+l)st bond to the (m+2)nd bond which are related as in Figure 2D.1 so 

cos d - sin 6 cos 0m+1 sin 6 sin ^ 

|fi|= sin0 cosflcos^! -cosfls ini^ (2D.23) 

0 sin0m+1 cos0 w l 

Then 

( a ^3- a
m )=L2- | S | =w 5H 
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= 1m+2-H = U i -[yni^H.2+72iJ^2+r3i
k^2] = Yn 

= J A»a« = Ai«n + A2«21 + A3«3i = cos2 0 - sin2 e c o s ^ (2D.24) 

This is identical with equation 2.28 obtained for n-butane except the sign 
of the second term (because of the 0 defined in Figure 2D. 1 differs from 
thatofFigure2.7byl80°). 

Similarly, if we call | A | = | Am |, B = \ A m+i | and define | Am+21 as the 
matrix to take us from the (m+l) to the (m+2) coordinate system, where 
in general 

cos0 -sin0cos0m+n sin0sin0m 

sin0 cos0cos<^„ -cosSs in^^ (2D.25) 

0 s in^„ cos0m+n 

so 

where 

Thus 

1 

0 

0 
= im+2-|£>| 

1 

0 

0 
(am+3 ' a m ) - 1 » 2 ' P » » 2 Antl K 

I I 1/1 | WH-Z | f m+l | j m [ 

(»*3 ' a
m ) = >m+3 ' ( A l L s + 5 2 l L 3

 +,531i
m+3) 

= Ai = ^ / u 7 j i = £nYu +el2Yn + ^13/31 

(2D.26) 

(2D.27) 

(2D.28) 

where 

\A \ — \F\ 
\Amn\-fij\ 

(2D.29) 

Thus 
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(am+3-am) = cos0(cos20-sin20cos0m+1) 

+ sin0cos0ra+2(sin0cos0ml) 

-sin0cos0m+1(sin#cos0 + sin0cos$cos0m+1) (2D.30) 

In the approximation of free rotation where all of the 9's vary randomly 

(aTOtl-ara) = cos0 (2D.31) 

(a^2-am) = cos20 (2D.32) 

(am+3-am) = cos30 (2D.33) 

The last equation could be arrived at using 

1 

( a m t 3-a m ) = im+3-|(Am+2)||(Am+1)||(Am)| (2D.34) 

to the approximation that the 0's are independent. Now 

cos0 -sin0/cos0) sin0/sin0\ 

{A) = {A^) = (A^) = (Am)= sin0 cos0(costf>) -cos0(sin0) 

0 /sin0\ /cos0\ 

(2D.35) 

For free rotation where the 9's vary randomly, cos 9 = sin 9 = 0, so 

1 

( ( •«,-a.) ) - i«3-K (2D.36) 

where 

H-
cos0 0 0 

sinfl 0 0 

0 0 0 

(2D.37) 
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SO 

HI 2 -

\(4-

cos20 

sin0cos# 

0 

cos30 

sin0cos20 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

cos3e o o 
sin0cos20 0 0 

0 0 0 

( ( a m l - a m ) ) = i„ 

= i j c o s 3 0iml + sinflcos2 0jm+3] = cos3 6 

(2D.38) 

(2D.39) 

(2D.40) 

((am+„-am)) = im+3=H" = i „ 

cos"0 0 0 

sin 6cos""16 0 0 

0 0 0 

= cos"d 

(2D.41) 
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Appendix 2E. Restricted Rotation with Symmetrical Barrier 

In the case of restricted rotation, the transformation matrix (equation 
2.58A) is 

cos0 -t] cos 6 esinfl 

\A\= sin0 77 cos 0 -£cos0 (2E.1) 

0 £ T] 

where 

and 

so 

Now 

rj = (cos0m) 

£ = (sin0m) 

( a „ - a» r i ) -K | - cos0 

(am •ami,\ = U| 

(2E.2) 

(2E.3) 

(2E.4) 

(2E.5) 

etc. 
where (| |u)(stands for the 1,1 element of the matrix. For a symmetrical 
potential where V(Q) = V(-Q), 

£ = 0 (2E.6) 

and 

m = o (2E.7) 

For infinitely long chains 

i?2 = W2{l+2(am.am+1> + (aM.am+2>+(am.am+3> + ...} 

-Nl 

where the matrix S is 

{2[(|A| + |Af + |A|3 + ...)J} = M2[l + 2|5[i] (2E.8) 
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|S| = IA|+|A|2+|A|3 + ... (2E.9) 

Now the formula for the summation of a geometric series applies to 
matrices since 

s||i| = |s|=U|+U|2+U|3 + . 

where |I| is the identity matrix 

1 

0 

0 

0 

1 

0 

0 

0 

1 

Then 

so that 

and 

If 

1 = 

i5iui=ur+iAi3+ur+... 

\S 1 - 5 A = A 

5 = A I - A 

M = I - A 

the reciprocal of \M\ (or \M\~l) is 

M = 
M 

D 

(2E.10) 

(2E.11) 

(2E.12) 

(2E.13) 

(2E.14) 

(2E.15) 

(2E.16) 

(see, for example, R.N. Hochstrasser, Molecular Aspects of Symmetry; 
Benjamin: NY, 1966, p 30). 

|M| is the adjoint of matrix | M\. This is the matrix of the cofactors of the 
transpose of \M\ (designated \M'\E is the determinant of \M\. 

In equation 2.8, we need the 1,1 element of \S\ where 
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(\A\M ) i 
l5lu"(|AM») D

 = ^ ( " " ^ ' + " A + al3m31) 
where 

Now 

so 

Then 

and 

Also 

a i j = \ A \ 

\mu\ = M 

\M\ = 

M' = 

l -cos0 rjsinO 0 

-sin0 \-r]sind 0 

0 0 1-/7 

l -cos0 -sin0 0 

r]cosd \-rjcosd 0 

0 0 I-/7 

m, 

m21=(-l) 

1-TJCOS0 0 

0 1-77 

•sin0 0 

0 1-/7 

= (l -T]COS#)(l -77) 

= +/7 sin ^(l-/]) 

m . = ( + 1 ) 

sin0 0 

(l-?7)cos£> I-/7 
= 0 

D = (l-/7)(l+/7)(l-cos0) 

Thus, from equation 2.17 

(2E.17) 

(2E.18) 

(2E.19) 

(2E.20) 

(2E.21) 

(2E.22) 

(2E.23) 

(2E.24) 

(2E.25) 
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. , (cos#)(l-r7cos0)(l-r/) + (-rism0)(+sin0)(l-77) 

' ',! (l-7?)(l+*?)(l-cos0) 

cos 6-77 

(l+rj)(l-cos0) 

Therefore, from equation 2E.8 

ie-N.Au 2^e~^ } ^f(1+cosg)M)l 
[ (l+ri)(l-cos0)J [(l-cos0)(l + T7)J 

(2E.26) 

(2E.27) 

77 is more usually defined by taking <j> = 0 for the trans conformation. In 
this case, the sign of <p is reversed so that equation 2E.27 becomes 

R2 = Nt 
(l + cos0)(l+rj) 

(l-cos0)(l-r7) (2E.28) 
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Appendix 2F. Rotational Isomeric State (RIS) Approximation 

2F.1. Introduction 

In the rotational isomeric state approximation, a few discrete rotational 
angles [1,2,3] replace the continuous range of bond rotational angles. 
Potential energy considerations determine the number and the values of 
the rotational angles. Potential energy surfaces generated by use of semi-
empirical potential functions (Section 2.2) show the potential energy 
minima for a particular polymer developed for one-dimensional lattices 
as applied to problems in ferromagnetism (4) are used in the RIS method. 
The polymer chains can be considered as one-dimensional lattices 
without loss of rigor. Knowledge of the chain geometry (bond angles and 
lengths) and the locations and energies of the bond rotational states are 
required to apply these methods. Bond angles and lengths are available 
from x-ray diffraction and other techniques mentioned in Chapter 2. The 
rotational states (number, locations and energies) selected for a given 
polymer chain are ultimately determined by fitting the results of 
calculating conformational dependent properties to the experimental 
data. Thus, the calculated values of r2or u2 and their temperature 
dependences are compared with experimental measurements. 

The rotational state parameters are adjusted until the best agreement 
with several types of experimental data is obtained. The RIS 
approximation permits the use of matrix methods based on the following 
considerations. The conformational partition function (Qc) (Appendix 
2A) is required for averaging over all possible conformations of a 
polymer chain. 
Thus 

Qc-Y^-U.U.rij, (2F.1) 

T 
where 

Uxt].. = exp[-Exn ../RT\= the statistical weight of a conformation 
with£„z* " (2F.2) 

z refers to the rotational state of bond M and n to that of bond i. 
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Qfj, = the statistical weight of the entire chain. 
The partition function is obtained by first forming the product of 

statistical weights U„ for each chain conformation and then summing 
over all possible conformations. As written, equation 2F.1 would tax the 
capacity of high-speed computers for even short chains (N < 20 atoms). 
However, by using the RIS approximation, the evaluation of equation 
2.F.1 becomes tractable. Essentially, the sequence of operations 
described by equation 2.F.1 is reversed (i.e., the conformational 
statistical weights are first summed and then the sums are multiplied). 
Present day computers can readily handle this revised sequence. 

2F.2. The Conformational Partition Function 

The energetics of a polymer chain conformation can be readily specified 
by its partition function (see Appendix 2A). In the rotational state 
approximation, the conformational partition function (Qc) can be 
expressed as the product of the statistical weights for each bond (U) from 
2 to n-\ summed over all rotational states. Thus 

Qc = ^[u2u3...u^] (2F.3) 

for an n-bond chain. Alternatively, this sum can be expressed as the 
product of statistical weight matrices (|U;|) or 

& - ! > • (2F.4) 

As an example, the statistical weight matrix for polyethylene with its 
three-fold rotational states (trans, gauche plus, gauche minus) is 

(2F.5) u, 
1 

= 8 + 

8-

t 
1 

1 

1 

8 + 
o 

a 

oa> 

8~ 
o 

0(0 

o 
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The potential energy of the trans state has the lowest energy and is 
assigned a value of one (Section 2B). The statistical weight for the 
gauche states is 

a = exp[- (£ , -£ s ) /kr ] (2F.6) 

|U,.| refers only to the rotational states of neighboring bonds and the 
interactions are considered in pair wise fashion. The rows in the |U,.| 
matrix denote the i-l bond and the columns, the i'h bond. 

The statistical weight matrix is raised to the n-1 power thereby taking 
into account all the internal bonds 

U" (2F.7) 

and the sum of the elements extracted by premultiplying by J* and 
postmultiplying by J 

GC = JT|U""2|J (2F.8) 

where 

J* = the row specifying the first bond = ll 0 0| 

1 

J = the column specifying the nth bond = 1 

1 

Equation 2F.8 is then diagonalized by application of the transformation 
matrix (A) (Appendix 2.F, equation 2F.1) that transforms the coordinates 
of bond i-l into those of bond i. 

A-'|U|A=> 

where 

>=thediagonalmatrix = 

with the elements from the secular equation 

A, 0 0 

0 A2 0 

0 0 A, 

(2F.9) 

(2F.10) 
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U|-A|l| = 0 (2F.11) 

(2F.12) 

(2F.13) 

where |I[= the identity matrix 
A = the eigenvalue 

Transposing equation 2F.9 

\\J\ = A>A-1 

and substituting equation 2F.12 into equation 2F.8 

a = J T A > - 2 A - ' j = ^G.fr2 

number of roots 

Equation 2F.13 may be approximated for large values of n by 

Qc-K1 (2F.14) 

where Xx is the value of the largest eigenvalue. 

2E.3. Mean Square Distance 

As mentioned previously, R2 is a common means of specifying chain 
dimensions, and is calculated from the RIS approximation by the 
following procedure. 

An orthogonal coordinate system is set up for the chain by taking the 
jc-axis as lying along the bond i, the y axis as situated in the plane defined 
by the bonds z'-l and i, and the z,- axis taken at right angles to XJ andy\ to 
define a right handed system of coordinates (Figure, Appendix 2E.1). As 
before (Appendix 2D), the coordinates of bond z'-l are transformed 
orthogonally into the coordinates of bond i by the transformation matrix 
A. 

The total end-to-end vector distance (R) can be expressed in terms of 
the bond length vector, 1, by, in vector notation: 

n 

R = 2 , , = 1 : + l 2 + l 3 + - - - + 1 " (2 R i 5) 
or, in matrix notation: 
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»-2K 
-I,+|A|I,+N|4|I,+".+N|A|-"4,-,I, 

where lj is a column vector or 

£ 
0 

0 

1 

= £0 
0 

1,-colU 0 0 | = 

The mean square distance, in matrix notation, is 

R2 = RTR=\ y£]£j 

J i 

where R is the transpose of R 

and lj1 is the transpose or row form of 1, 

lj =\l. 0 0| = /,|1 0 0| 

(2F.16) 

(2F.17) 

(2F.18) 

(2F.19) 

(2F.20) 

(2F.21) 

Assuming no interaction between the rotational angles on adjacent 
bonds, and after separation of diagonal terms, equation 2F.19 can be 
written as 

R' =Y'i+Y'rwM--AM 
KJ 

or 

R?_ . 2 

nl2 nl nl2 ^ ' ' 

(2F.22) 

(2F.23) 
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Appendix 2G. Random Walk of Gaussian Chains 

P(R) equation 2.79 is proportional to the probability that there are x 
more segments in the positive direction than in the negative direction. 
This probability is identical with the probability of having x more heads 
(H) than tails (7) in S coin tosses (1) 
F o r ^ l 

/>(#) = ! P(T) = ± (2G.1) 

For S = 2 

P(ffi/) = i . i = i 

P(HT) = 2.1.1 = 1 

P(7T) = ! 4 - 1 etc. (2H.2) 

Inspection of 2H.1 and 2H.2 demonstrates that the sum of the 
probabilities for a given number of tosses equals one. 

The probabilities for any number of tosses can be computed from 

< : ) - c ^ 
(2G.3) 

where C'x is the number of ways of obtaining x more heads than tails. 
An analytic expression for C* can be derived from the following 

considerations. The number of ways of arranging n objects in n locations 
is just n factorial. For example, given a men and b women, the total 
equals n people. No distinction is made as to individuals, thus 

n\ 
= the number of permutations (2G.4) 

a\b\ 
Returning to coin tossing, assume that x represents the number of times 
heads came up than did tails 

for x = 0, the number of heads = a = — 
2 
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S + X 

for x = x, the number of heads = a = (2G.5) 
2 

s - x 
for x = x, the number of tails = b = (2G.6) 

2 

The symbols s and x are related as can be shown by rearranging 
equations 2G.5 and 2G.6 

, ,'s + x\ (s-x^ 
a + b = \ + 

a-b = 

therefore, by analogy, the number of ways of obtaining a heads and b 
tails in s coin tosses is 

2 ; 

(2G.7) 

s + x\ I s-x' 

(2G.8) 
a\b\ 

or, substituting equations 2G.5 and 2G.6 into equation 2G.8 

c:=MM (2a9) 

or, referring to equation 2G.3 

s S\ 

MM- ( tf (2G.10) 

For any significant number of coin tosses, the use of factorials 
becomes cumbersome. Stirling [1,2] in the eighteenth century discovered 
an approximation that greatly simplifies the mathematical computation. 
Stirling's approximation substitutes logarithms for factorials, thus 

lnN\=NlnN-N N >\0 (2G.11) 

The approximation improves with increasing values of N. (For JV<10, 
short chains, calculation using factorials gives better results). Taking the 
logarithms of both sides of equation 2G.10 

110 



STATISTICS OF CHAIN CONFORMATIONS 

InPl " | = ln5!-5 + 5 1 n i - l n ( ^ - ! - U ^ l ! (2G.12) 

and applying Sterling's approximation 

\nP > 5 1 n 5 - 5 + 5 1 n i - ^ l n £ ^ 

On rearranging terms, the semi final result is: 

^ ?s + x\ 

s-x \, s-x ) s-x 
In + 

(2G.13) 

lni 
S + X V I. X 

In 1 + 
s-x 

\ 2 
In 

( x 
1 - -

V s 
(2G.14) 

To obtain the final result, a second approximation is used. This is based 
on the Taylor power series 

ln(l + M) = u - -L u2 +... 

Wl - u\ = -u-\u1 +... 

Substituting equations 2G.15 and 2G.16 into equation 2G.14 

(2G.15) 

(2G.16) 

ln i s + x 

s-x 

x\ 1 / x 
~s)~2\2 

x\ \( x 

~~sj2[l 

(2G.17) 

Rearranging terms and canceling yields. 

In/5 x 

25 
(2G.18) 

I:H-S (2G.19) 

This equation states that, in S occurrences, the probability that there 
will be x number of deviations is proportional to an exponential function. 
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Based on the assumptions used in this derivation, the greater the number 
of trials or occurrences, the better the probability calculated from 
equation 2G.19 will agree with experimental data. 

Equation 2G.19 is the basis for the Gaussian distribution. Its 
application to the random walk problem illustrates its usefulness. Setting 

iM-Z 
where R =XL = end to end distance 

L 
L = segment length 

and C = aconstant of proportionality 
Replacing X by R/L as indicated by the Random Walk model 

P(R) = CexA 
-R2 

2SL2 

To evaluate C, P(R) is integrated over the limits -<» to +<», 

f° P(R)dR = l = cfexA 

and equation 2E.22 is simplified by letting 

y = R 

Then substituting 

-R2 

2SL2 iR 

a = 2SL2 

c/->xpf^H=cX>xp[-a^2]^ 2SL j 

_ VJT _ 1 

a ~C 

Rearranging equation 2G.23 

(2G.20) 

(2G.21) 

(2G.22) 

(2G.23) 
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V25L2 

or 

•\l2SL2Jt 

Substituting equation 2G.24 into equation 2( 

•4lSL2K 

This is a Gaussian distribution and can be plotted as shown in Figure 
2.13. As the number of segments increase, the probability value of R will 
tend to lie within a narrow size range. 
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J .21 

2SL 

(2G.24) 

(2G.25) 
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Appendix 2H. Radius of Gyration, Size and Shape 

Real objects like polymer molecules often have ill-defined shapes which 
may change with time and conditions. A problem is one of describing 
them in terms of a parameter that may be determined experimentally. 

We have calculated the scattering from an object of known shape like 
a sphere for which measurements of the angular dependence of intensity 
permits a determination of its radius. Similar calculations are possible 
for other shapes like rods or ellipsoids leading to measures of their size. 
For a polymer coil, the shape and size is not fixed, so a statistical 
description is necessary. In addition, chain branching will affect the 
shape and size of the polymer coil. 

A problem is that it is not possible to determine both size and shape 
separately, so scattering will reveal parameters that depend on some 
combination of these. A parameter that can be determined is the average 
radius of gyration, (r~). This section will deal with a description of this 
quantity, its calculation for a few shapes, and a discussion of how the 
radius of gyration may be determined from light scattering. 

Definition of (r*\ 

Consider an array of points of mass m1,m2,m3,...mi,... located at vector 
distances rx ,r2 ,r3,... r,,... from some arbitrary 

Figure 2H.1. Diagram illustrating the terms used in deriving the radius of gyration. 
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The origin is then shifted so that it is located at the center of gravity of 
the distribution defined by 

m,r,=0 (2H.1) 

2 

Figure 2H.2. - The arbitrary origin superposed on the center of gravity. 

Then, if the r's are measured from this point, 

<'«}-2>2/2> (2H.2) 

/rq
2\ for a Rigid Rod 

Consider a narrow rigid rod of length, L and cross-sectional area, A. It 
may be divided into segments of length, AL (Figure 2H.3). The origin 
should obviously be taken as the center of the rod. T h e n , 
mi = pAAr which will be the same for all segments (where p is the 
density of the rod). 
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« « - L 

II 

—1 
». 

Figure 2H.3. Diagram showing the terms used in deriving the radius of gyration for a 
rigid rod. 

Then W'I'>/2* (2H.3) 

On replacing the sums in equation 21.3 by integrals, this becomes 

('/)-/'W/* (2H.4) 

The limits of integration for equation 21.4 are from 0 to L/2 
This becomes 

('/) = P/3] /H = (L3/24)/(L/2) = L2/12 (2H.5) 

(r*\ for a Sphere of Radius R 

For this, the elements at distances between r{ and r-t + Ar will be in the 
volume of a shell of thickness, Ar and area A = Am?, so mu = 4 jtrt pAr 
(Figure 4H.4). The origin should obviously be the center of the sphere. 
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Area = A*Mf|r2 

Figure 2H.4. Diagram showing the terms used in deriving the radius of gyration for a 
sphere. 

Thus 

(r')'^Ar/^r^ (2H-6) 

Again, replacing the sums in equation 21.6 by integrals, 

(i,)-/'4*//',*-[('1/s)A^)] 
where the limits of integration are now from 0 to R. Thus 

{r;)-(ie/5)/(!?/3)-(3/5)B> 

Determination of (r*\ from Scattering 

The Debye-Bueche theory (Section 4.9) gives 

l(<l) = Kjy(r)(smqr/qr)r2dr (2H.9) 

sin x may be expressed as a power series 

sinx = ̂ -x3/3!+JC5/5!-... (2H.10) 
Thus 

(2H.7) 

(2H.8) 
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l(q) = k\f y(r)r2dr - q2 f y(r)r4dr + q4 [y(r)r6dr +..] (2H.11) 

Now, /(0) = Jy(r)r2dr (2H.12) 

On dividing equation 2H. 11 by equation 2H. 12 

I{q)/I{0) = 1 - (q2/3l)[fy(r)r4dr/fy(r)r2dr] 

+ (q4/6\)[fy(ry6dr/fy(r)r2dry... (2H.13) 

For a dilute solution of particles, it may be shown that 

y{r) = Pl2{r) (2H.14) 

where y(r) is the correlation function and pn(
r) is the probability that 

two volume elements separated by distance, r, will both lie within the 
particle. Using this, the second term in the expansion may be related to 

r^ V It may be shown that 

[ / Pur*dr/f pnr
2dr\ = 2(rg

2) (2H. 15) 

Thus, I(q) becomes 

I{q)/l(0) = l-[{r2)/3]q
2

 + ... (2H.16) 

so (r*\ may be determined from the initial slope of a plot of I(q)/I(0) 

against q2. 

The low q part of the plot should be linear, but there will be 
deviations at higher q's because of the contribution of higher terms of the 
expansion. This initial slope only depends on <rg") and is independent of 
shape, so one cannot decide on shape from the value of the initial slope 
alone. The deviations at higher q are shape dependent, but their 
resolution into shape and size contributions is difficult, especially if there 
is a distribution of sizes. 

It is important that measurements be made at small enough q so that 
one can be sure that there are only contributions from the second term 
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varying as q. For large objects, this may require either going to very 
small angles or using longer wavelengths of radiation. 

One might note that if one uses the equation for the intensity of 
scattering from a sphere obtained previously (equation 4.55) by summing 
amplitudes, thus 

/([/) = K "[sinC/ - [/cos uf ( 2 H 1 ? ) 

where U = qR, and one expands both sin U and cos U in series, the 
coeffii 
R2/6. 
coefficient of the q2 term gives the same value of the radius of gyration of 

% ) 

Deviation from higher 
powcr.tcrms 

\ t 
_Porod | , | r 
Region \'' 

. * - -
slope 

intercept •MA 

Figure 2H.5. A plot of K(q) versus q1 used in deriving a value for (I" ) 

A test of whether one has gone to small enough angles is to see 
whether one is in the "Porod region" by examining the product of (rq)q . 
For a valid measurement, this should be less than one. 

While shape cannot be easily established from scattering alone, 
determining the dependence on molecular weight can be useful. If the 
molecule was a rod, its length, L, should be proportional to the molecular 
weight, M, so(rq ) should vary as JW2. However, it may be shown that for 
random coils, [r~) = A M, Thus, if one establishes n in the equation, 

« > = *"M" (2H.18) 

from a plot of In (r2\ against Mobtained by measuring (r^\ for samples 

of differing M. For rods, n = 2 and for random coils, n = 1. A 
measurement for cellulose acetate, for example, revealed an intermediate 
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value, indicating that this was a "stiff coil" or a "flexible rod" (for which 
theories exist.) 



Chapter 3 

THERMODYNAMICS 

3.1. Introduction 

Thermodynamics, both classical [Appendix 3.A] and statistical 
[Appendix 2A], have been applied to many topics in polymer science. 
The results have provided insights into the origin of rubber elasticity, the 
nature of polymer crystalline, polymeric heat capacities and the 
miscibility of polyblends. 

This chapter develops the fundamental thermodynamics underlying 
these and other topics. The equations thus developed provide a 
theoretical framework for organizing material presented in subsequent 
chapters. 

3.2 Thermodynamics of Elasticity 

Equations describing rubber elasticity can be derived in a straightforward 
fashion from classical thermodynamics based on free energy 
considerations. Free energy in turn can be related to experimentally 
accessible quantities as shown in the derivation below. 

At constant pressure and temperature, the Gibbs free energy (G) 
[Appendix 3.A] can be expressed as 

dG = -dWe-VdP-SdT (3.1) 

where ~dWe represents all types of work, other than pressure-volume 
work, done by the system, P is the pressure, V is the volume, S is the 
entropy and T is the temperature. The basic equations leading to equation 
3.1 are given in Appendix 3A. 

The elastic work ( -dWe) involved in stretching a one-dimensional 
chain a distance {dlj on applying a force (J) is 
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dWe=-fdl (3.2) 

If the length increases by {dlj, the system has work done on it. 
Conversely, if the length decreases, the system does work. Assuming no 
other type of work, then 

dG = fdl + VdP-SdT (3.3) 

Differentiating equation 3.3 with respect to length yields 

'*£.) =f (3-4) 
dl /PT 

and with respect to temperature 

Thus, differentiating equation 3.3 with respect to length and using the 
definition of the state function, G 

G = H-TS 

where H = the heat content or enthalpy, an equation for the elastic force 
at constant temperature and pressure can be obtained 

f-(*G) -(**) -T(^) ( 3 - 6 ) 

I dl )rj { dl j p - T I dl j P - T 

and from the equation 

G = E-PV-TS 
where E represents the internal energy 

fJ*E) J»L) -T(^) (3-7) 
\, dl yp T V dl Jpj \ dl Jp;T 

If no change in volume is associated with a length change, the middle 
term on the right hand side of equation 3.7 equals zero or 

/-(f) -if) <3-8) 
V dl / , , V dl /P T 
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Equation 3.8 states that the total force on a material may be separated 
into a force (fe) related to the internal energy and a force (fs) associated 
with entropy effects, or 

/ - / . + /. (3.9) 

Both intermolecular and intramolecular forces contribute to fe. The 
intermolecular forces for covalently bonded materials include a) bond 
bending and stretching, b) forced internal rotation to higher energy 
conformations and c) pulling chain molecules apart (or pulling them 
together) against intermolecular forces such as hydrogen bonds or van 
der Waals forces. On the-other hand,^ arises from intramolecular forces. 
The entropic force chiefly relates to the decrease in conformational 
entropy with stretching. 

An equation analogous to equation 3.8, but for constant volume and 
temperature conditions, can be derived from the Helmholtz free energy 
(A) or 

/V,T 
(3.10) 

The internal energy terms in equations 3.8 and 3.10 are usually not 
equal, that is 

di 
*T (»L) (3.11) 

/P,T \ " ' /V,T 

This inequality can be shown by an expansion of (3E/91)T,P or 

,dlL = U L +ULUJr,T 
(3.12) 

The (9V/91)T)p term is usually small for rubbers and is often 
neglected. But, the term can make a significant contribution to (dE/dl)r, p 
because it represents the dilation or volume increase in sample dimen
sions associated with the decrease in internal pressure on stretching. 
These arguments also hold for the entropy terms in equations 3.8 and 
3.10. 
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To separate the contributions of the internal energy from the entropy 
due to the elastic force, the derivatives must be taken at constant volume 
and temperature. Most force measurements are carried out at constant 
temperature and pressure because of experimental simplicity. The data 
are then corrected to constant temperature and volume conditions by one 
of several approaches [1,2]. For this reason, equation 3.10 will be used in 
the following discussion. 

The two contributions to the elastic force may be experimentally 
distinguished by the following means: From the Helmholtz free energy 
analogy to equation 3.4 

Similarly, from equation 3.5 

#-] m 
dTh, 

d 
dT 

(SA) 

[dl) 
V , T . 

5 

^L= dA^ 

KffT) v/Jv 

V) 

(3.13) 

(3.14) 

V,T 

Since equations 3.12 and 3.13 differ only in the order of 
differentiation, they must be equal. This gives the Maxwell-type equation 
(see Appendix 3A) 

ST 

On substituting this equation into equation 3.9, one obtains 

or, rearranging terms 

/ = 

/ . -

(3.15) 
vy 

.5L-M& (3.16) 

Thus, from a measurement of the variation of force with temperature, 
one may determine (9E/31)V,T - the internal energy contribution. Again, it 
should be noted, that because most force-temperature measurements are 
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carried out under constant pressure conditions, corrections are applied to 
convert the experimental data to constant volume conditions. For rubbers 
at temperatures above their Tg, one finds experimentally that, to a good 
approximation, 

f = KT 

Table 3.1. Thermoelastic Data of Selected Elastomers a'' 

(Reference temperature: 30 C) 

-din-G 

(3.17) 

rj -5 -
•xlOJ 

fe/f 
0.04 
0.05 
-0.12 
0.03 
0.10 
0.18 
0.53* 
0.42* 
0.02* 

Ref. 
a. 
a. 
a. 
a. 
a. 
b. 
c. 
c. 
c. 

dT 

Polymer 
Poly(ethylene-co-propylene)(EPR) 
Poly(tetrafluoroethylene-co-perfluoropropylene) (Viton A) 
Poly(butadiene-co-styrene) (SBR) 
Poly(butadiene-co- acrylonitrile) (Hycar) 
Poly(cis-l,4-butadiene) (Budene) 
Poly(cis-isoprene) (natural rubber) 
Poly(2-hydroxypropyl acrylate) 
Poly(isobutylacrylate) 
Poly(isobutylmethacrylate) 

•Reference temperature: 120 C 
a.) E.H. Cirlin, H.M. Gebhard, and M. Shen, J. Macromol. Sci., Part A (1971) 
b.) M. Shen, Macromolecules 1969,2, 358 
c.) M. Shen, E.H. Cirlin, and H.M. Gebhard, Macromolecules 1969, 2, 682 

Thus 

(&-) =K (3.18) 

and, from equation 3.16 

/ . -
tdE^ 

\ dl hi 
= KT-T(K) = 0 (3.19) 
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An ideal rubber, analogous to an ideal gas for which (dE/dV)T = 0, 
has only entropic forces on stretching. The ratio of fe/f commonly 
measures the internal energy contribution to the elastic force [3] [also see 
below]. Real rubbers deviate from ideality as shown for example by the 
/e/fdata on several rubbers in Table 3.1. Mark [4] has compiled extensive 
data on fe/f values obtained under various experimental conditions. These 
fe/f data show that internal energy forces usually constitute 5 to 20% of 
the total elastic force at room temperature. These data also show that the 
internal energy arises from intramolecular forces. If a chain has a 
sufficiently large number of segments (x) so as to permit the application 
of thermodynamics to a single chain, then the force on such a one-
dimensional chain behaving as an ideal rubber is 

A=iidv, <3-20) 
where Sx is the conformational entropy of a chain and Rx is the vector 
distance between chain ends. The force of chain contraction in an ideal 
rubber can be shown to originate in the Brownian motion of its segments 
(Figure 3.1) just as the pressure in an ideal gas originates from the kinetic 
movement of the gas molecules. In addition, as with an ideal gas in 
which the molecular free path changes but the kinetic energy is 
conserved, the kinetic energy does not change on stretching an ideal 
rubber only the direction of the force changes. For an unextended chain 
(Figure 3.1), the end (E) will experience tugs in all directions because of 
the random motion (like holding a snake by its two ends). If now the 
application of a force (F) stretches the molecule, Brownian motion will 
tend to pull the chain in a direction to bring the ends closer together 
(Figure 3.1) and restore the chain to its more probable (or more coiled) 
conformation. This is the molecular origin of the entropic elastic 
restoring force on an ideal rubber. 

The conformational entropy of a chain in molecular terms may be 
calculated from statistical thermodynamics using Boltzmann's equation 

Sx=klnP (3.21) 
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If we now substitute from equation 2.79 for the probability of an end-to-
end length of a one-dimensional chain, 

/ 
S,=kln| 

and, then from equation 3.20 

exp 
V 

-R 
2ZL2 

^ -Rl 

J / 2ZL2 

dS [A J*L 

(3.22) 

(3.23) 

HKo£ t 
S'%* 

Figure 3.1. Brownian motion of chain segment illustrating effect of extension 
on average segment dimension. 

Thus, the restoring force is proportional to the extension and the one-
dimensional chain behaves as a Hookean spring. This important result 
simplifies the analysis of the normal modes of motion of a polymer. 
Polymer chain models can be treated mathematically by the much 
simpler linear differential equations because second order effects are 
absent. (It should be noted that, while the elastic equation for a polymer 
chain is identical in form with Hooke's law, the molecular origin of the 
restoring force is very different). 

Equation 3.23 must clearly be valid only at small values of Rx since, 
when the extended dimensions of the chain approaches Roo, the force 
must increase with Rx , at a greater than linear rate (Figure 3.2). This 
difference is clearly the result of using the Gaussian approximation for 
P(RX)- As expected, use of the more accurate distribution function 
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derived for the non-Gaussian chain (equation 2.123) gives better 
agreement, 

P(Rx) = Cexp-N 
R 

P + U 
NL lsinh.0 

(3.24) 

/ 

/ 

Real chain. 

/ 
/ 

/ 

Gaussian 

R R^=ZL 

Figure 3.2 Sketch offeree against end-to-end distance, Rx, 
showing the non-linear increase. 

substituting into equation 3.21 

5 =klnC-ldV ^ I n M 
NL \sinh/3 

and using equation 3.20 for the case of an ideal rubber (equation 3.39) 

(3.25) 
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f,—T 
dS^ 

i 
= kTN 

P | R (d$\ sinhft 
NL +NL\dRJ+ p 

' sinh P{dP/dR) - p cosh p(dp/dR) 

(sinh pf 

Y) 

- -coth/3 

where 1 
-cothjS R 

NL 

If one expands the inverse Langevin function (equation 2.124) in a 
series 

1 ; 5 175 

Then, equation 3.26 becomes 

(3kT* 
/ = 

\NL2 
i*w£ +m -

(3.27) 

(3.28) 

Thus, at low elongations, equation 3.28 obeys Hooke's law, but 
curves upward at higher R values (Figure 3.2). When R = NL, the series 
in equation 3.28 diverges, and/becomes infinite as would be expected 
for a completely extended chain. In real chains, the breaking force does 
not reach infinity but breaks at some lower value due to bond breaking. 

3.3. Force on a Chain in the Presence of Energy Contributions 
to Elasticity 

Equation 3.26 assumes the ideal rubber case, in which all the force is 
entropic in origin. Guth and James [5] showed that this result is more 
general, however, using a method analogous to that used by Debye for 
describing the orientation of a dipole in an electrical field. Thus, if a 
segment is oriented at an angle 9 to the displacement vector (R) and a 
force {f) is applied parallel to R (Figure 3.3), the component of the force 
perpendicular to L applied in such a direction as to rotate the segment is 

/ ± - / s i n 0 (3.29) 
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The work of rotation is then 

dW = f±ds = fJLdB = fLsinddd (3.30) 

The potential energy, V( 9), of a segment oriented at an angle 6 is 
then the work of rotation, or 

(3.31) 

Figure 3.3. Sketch showing the relation of L, Or and R for a model chain. 

V(e) = -JdW=f JL[sinddd] 

= -JL[-cos df = Jicos d 

The probability W (6) of a segment having an orientation angled is 
given by 

W(e) = Cei-vm>kT) = Ce(-acose) 

where 

a = JL/kT 

Thus, the average value of cos 6 (equation 3.31) is 

f cos 6W(e)dW 

(3.32) 

(3.33) 

/cos#) = - — 
J W(9)dW 

Using this equation, the mean extension of a chain is (Figure 3.3) 

(3.34) 
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(R) = nL{cos6) 
NL J cos6exp[-acosd\sinddd 

I exp[-acos0]sin6taf0 

and, from equations 2.117 through 2.119 

(R) = nL£(a)NL£{jk 

On taking the inverse of the Langevin function 

kT 
W) 

or rearranging terms 

"ffi* 

ZL 

\ Z L ! 

(3.35) 

(3.36) 

(3.37) 

This is identical with equation 3.26 if (R) = R. [However, Flory, 
Hoeve and Ciferri [6] have pointed out that the inversion process 
between equation 3.35 and 3.36 is valid only at large n values. For n <10, 
the error is large.] The entropic origin of force was not assumed in the 
derivation of equation 3.37 so that this result is generally valid and not 
restricted to ideal rubbers. The energy contribution to rubber elasticity 
may be calculated from equation 3.16 

9E_ 

Hi = f-T\ 
V,T V 0 ^ /VJ 

£\ 
and using the expression for / in equation 3.37, for the non-Gaussian case 
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d_E_ 

dR VT 
L \NL L dT L 

kT_ 

L 

kr 2 

\NL) L [NLJ L 
\NL) 

dT 

eLA^-
NL 

dT 
(3.38) 

and for the Gaussian approximation (equation 3.23, modified for three 
dimensions, hence the factor 3 in the numerator) 

SE 3k7 Td 
dRKj (R2) dT 

:^LR-.™LR-3kTR\ 
(R

2) (*) dT 

hkTR 

3kT2R(dlnR2\ 

(*•>' ^' 
dT (3.39) 

If \R/ is independent of T, then (5 2s/di?)V/r = 0, and the chain behaves 
as an ideal rubber. 

Based on the above consideration, the term 

/ • | -Je [dR (3.40) 

defines the energy contribution to elastic force. Thus, the ratio (from 
equation 3.39) 

L 
J, 

3k77?Y<?ln(/?y 

{(R2)k " 
I \ 

3k77? 

= T 
dln(R2y 

dT 
(3.41) 
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can be used to calculate the temperature dependence of R2. The value of 
the dependence on temperature determined from force-temperature 
data may be compared with that obtained from solution measurements of 
R2 [see Chapter 2.10]. 

Values of fg/f can be estimated from extension to the rotational 
isomeric state model. We have seen, for example, for an atactic chain 
with a symmetrical energy barrier (Figure 2.5) that (equation 2.50) 

< « 2 > -
M ' 

1 + COS0 

1-COS0 

1+/7 

1 - 7 7 
(3.42) 

where 77 = (cos 6} and is temperature dependent. In the rotational 
isomeric approximation, equation 2.59 or 

_ (cosO°)exp(-V; /RT) + 2(cosl20o)exp(-V,/RT) „ 4 ~ 
V exp(-V, /RT) + 2exp(-V*/Rr) 

where V, and Vg are the potential energies of the trans and gauche 
conformations, respectively, then if 

W=exp(-e/RT) (3.44) 

where 

e-V-V. (3.45) 

On substituting the expression for Win equation 3.43, one obtains 

77 = — — 

(1 + 2W) 

Then substituting this expression for 77 into equation 3.42 

\ ' (l-cosd\3W) 

(3.46) 

(3.47) 

After taking logarithms, differentiating with respect to T and using 
equation 3.41, the equation 

/ . "2 £ 
/ 2 + exp(-£/kr) RT (3.48) 
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is obtained. 
This equation states that, for an atactic chain with a symmetrical 

energy barrier, the energy contribution to the total force would originate 
from transforming a mixture of gauche and trans chain conformers to 
mainly all gauche conformers - the higher energy state. This was one of 
the mechanisms proposed at the beginning of this discussion. Both the 
temperature dependence of retractive force and the swelling data yield 
the same value oife/f. This observation shows that the chain interactions 
are intermolecular and not intramolecular in origin. 

3.4. Solution Thermodynamics 

3.4.1. Flory-Huggins Theory 

Although this book addresses itself primarily to various topics on solid 
polymers, some material on dissolved polymers is included in order to 
comprehend concepts and results that are common to both areas. Thus, 
the end-to-end vector distance is determined from solution techniques. 
The concept of theta conditions is better understood from knowledge of 
solution theory. In addition, as will be shown below, the effect of chain 
ends and irregularities on polymer crystallinity is similar to the effect of 
liquid diluents. More recently, the solution concepts of a liquid used for 
calculating the entropy of mixing and free energy of mixing have been 
extended to the compatibility of solid polyblends. 

To be considered ideal, a low molecular weight liquid must meet 
three criteria: 

a) the liquid is indifferent to the solvent, 
b) mixing of molecules must be random, and 
c) the molecules of solute and of solvent are of equal size. 
Based on these assumptions, the additivity rule for the entropy of 

mixing can be derived in a few steps. 
The free energy of mixing is 

Gm=Hm-TSm 

at constant temperature (T), 

AGm=AHm-TASm (3.49) 
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since, for an ideal liquid (condition b), AHm = 0. The entropy of mixing 
may be derived from the Boltzmann equation (Appendix 2A) 

ASm=klnP (3.50) 

and, the probability (P) or number of ways of placing N\ solvent and N2 

solute molecules into a total of N spaces is given by (assuming molecules 
of equal size) 

P = C-
N\ 

tf,!JV2! 

Taking logarithms 

l n P - l n C + lnJV!-lntf,!-lnW,! 

(3.51) 

(3.52) 

and using Stirling's approximation (equation 2.101) to remove factorials 

Since, 

\nP = \nC + NlnN-N-Nllr\Nl+Nl-N2\nN2+N2 

A5 = klnP 

then, from equation 3.52 

A5m = -R[«,lnx, +n2lnx21] 

where xx= mole fraction solvent 

(3.53) 

Figure 3.4. Lattice schematic ( • polymer segment). 

n\ = 

and R = the gas constant 
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Thus, for low molecular weight solutions, the entropy of mixing is 
proportional to mole fractions. Deviations from ideality could arise from 
molecules not being of equal size, from a finite value of AH or from a 
combination of both. 

Polymer solutions deviate strongly [7] from ideal behavior. This is 
not surprising considering the large disparity in size between a polymer 
molecule and a monomeric solvent molecule. A lattice treatment 
developed independently by Huggins [8] and by Flory [9] can be used to 
handle this type of problem. The artificial lattice serves as a device for 
enumerating the possible combinations of polymer segments and solvent 
molecules. The polymer segments do not necessarily have the 
dimensions of a repeat unit because they are arbitrarily constrained to 
have the same size as the solvent molecule. For the calculation, polymer 
chains comprising x-segments are added successfully only to a lattice 
with sites or cells of a size that can fit only one segment. 

For the lattice model, Figure 3.4, 
let 

Ni = number of solvent molecules = number of solvent cells 
N2 = number of solute molecules 

xN2 = number of solute segments = number of solute cells 

volume of polymer molecule 
x z—l (3.54) 

volume of solvent molecule 
The total number of lattice cells is N 

N^N^+xN, (3.55) 

Then the total probability (P) for all polymer molecules is 

P = [ W 3 . . . P J - ^ — (3.56) 

where Px is the number of ways of putting the first molecule in the 
lattice, P2 is the number of ways of putting in the second molecule, etc. 
f\ may be calculated by the following procedure. For the first segment 
of the first molecule, there are TV possible locations. For the next segment 
of this molecule, there are z locations, where z is the coordination 
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number of the lattice. There are (z-\) possible locations for each 
succeeding segment. 

P,=N[zpl][{z-l)p2][{z-l)p3]....[{z-l)Px_i] (3.57) 

The p's are the probabilities that the available cell is already occupied 
after (x-\) segments have been added. The assumption of the 
Flory-Huggins theory is that this probability is just the average 
probability throughout the lattice and is just equal to the fraction of the 
cells that are still empty. 

P = ± '- (3.58) 
N 

(N-2) 
P2 = ± '- (3.59) 

N 

(N-3) 
P, = ̂  '- (3.60) 

AT 

etc. 
This assumption is probably the weakest part of the theory especially 

at low concentrations, where the local concentration near a polymer 
molecule is higher than the average concentration. 

Restrictions imposed by a lattice moreover can lead to errors in the 
calculation. The lattice model assumes that segments of the polymer 
chain occupy successive cells in the lattice. This may not allow for 
configurations of chains where cells adjacent to filled cells may be 
occupied by portions of molecules such as side groups [10]. 

The Flory-Huggins calculation assumes that a segment may enter any 
unoccupied cell adjacent to itself with equal probability. This assumption 
does not accommodate chain stiffness, for example, where cells causing 
chain bending might be assigned different probability than those that do 
not. 

The model also assumes random placement of segments where the 
probability being placed in a given cell is not dependent upon whether 
neighboring cells are occupied by solvent molecules or polymer 
segments. If there are specific interactions, this would not be so. 
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Now if, for the purpose of simplifying the notation, y is set equal to 
(z-1) 

? = (z - l ) (3.61) 

and one neglects the difference between the z in the first term of equation 
3.57 and the (z-\) factors, equation 3.57 becomes 

/ H T T I [N(N-1)(N-2)(N-3)....(N-X + \)] (3.62) 

3.4.2. Calculation of P2 

For the first segment of the second molecule, there are (N-x) possible 
locations. Thus 

P2 = [[N - x][zp2x+, ][(z - l)pw J[(z -1)^+3 ] . . . . [ (*-1)/^]] 

= ( ~ ) [{N-x)(N-2x-l)(N-2x-2)(N-2x-3)....(N-2x + lj\ 

(3.63) 

Similarly, 

P3-[N- 2x][zp2x+l ][{z - lK+ 2][(z - l K 3 ] . . . . [ ( z ~ 1 ) ^ , ] 

= ( ~ ) [{N-2x){N-2x-l)(N-2x-2)(N-2x-3)....(N-3x-lj\ 

(3.64) 

Upon substituting these expressions for P\, Pi, P3, etc. into equation 
3.57, one obtains 

P4i) m(N-l)(N-2)(N-3)....(N + l)]- NJ Jy)N'{-'] Nv' 
,NJ LV M n A ' x UNV'N2! \N) NJN2! 

(3.65) 

Whenx=l 

N! 
P = 

WN2'/ 
(3.66) 
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which is the ideal solution result, equation 3.51. Taking logarithms on 
both sides of equation 3.66, and using Stirling's approximation, 

lnP = [(x-\)N2]lny-[(x-\)N2]lr{Ni + xN2] + N,+xN2ln[N,+xN2] 

- [A> + xN2] - JV, InN, +Nl-N2 \nN2 + N2 

(3.67) 

rearranging 

= [Af1+A^2]ln[^1+xiV2] 

- AT, In JV, - N2 lnN2 + [(x - l)N2] I n y - ( x - l)N2 

Substituting equation 3.67 into equation 3.52, the conformational 
entropy of the solution is 

512 =klnP = k{[N, +A^2]ln[N, +N2]-NllnNl 

-NJn^ + Kx-lJN^lny-lx-lJN,} 

The entropy of mixing is 

ASm = o12 - o, - o2 

St may be obtained from S12 by setting A^ = 0 to give 

AS, =k{Ar i lnN 1 -#>#,} = () 

Similarly, if N\ = 0,S\2 gives S2 which is 

AS2=k{N2\n[xN2]-N2\nN2+[(x-l)N2]lny-(x-l)N2} = 0 ( 3 - 7 1 ) 

Thus on substituting equations 3.68, 3.70, and 3.71 into equation 
3.69, one obtains 

^m =k{[Wi +N2]ln[Nl+xN2]-N,InN, -Af2ln[xA^2]} 

(3.68) 

(3.69) 

(3.70) 

=-WAT, In N, 
Nt + xN2 

+ N2\n 
xN, 

Nl+xNlj 

- -k j^ i ln^+A^j ln^} 

(3.72) 

where 

139 



TOPICS in POLYMER PHYSICS 

0, = - — = the volume fraction of solvent 
N,+xN2 

xN 
<p2 = — = the volume fraction of polymer 

Nt + xN2 

Equation 3.72 has the same form as equation 3.53. It should be noted 
that the lattice parameter y is absent in equation 3.72. The equations 
differ in that equation 3.72 is additive in volume fractions while equation 
3.53 for monomeric liquids is additive in mole fractions. 

The derivation of equation 3.72 assumes no interaction between 
polymers. Although the use of a three dimensional lattice to represent a 
polymer solution is admittedly artificial (particularly regarding the 
assumption that polymer segments and solvent molecules have the same 
dimensions), equation 3.72 has proven useful in correlating many 
experimental results. A major drawback, as mentioned previously, is the 
assumption that the polymer molecules are randomly distributed on the 
lattice. This assumption becomes untenable in dilute solutions in which 
polymer molecules exist as isolated islands surrounded by a sea of 
solvent. Flory [11], Flory and Krigbaum [12] and Ishihara and Guth [13] 
have derived expressions for the dilute solution case. 

Another assumption is that there are no vacancies or holes in the 
lattice, i.e., that the change in volume on mixing is zero. Sanchez and 
Lacombe [14, 15)] have extended lattice calculations to include holes 
and thereby allowed for the condition that AVm * 0. 

3.3.3. Entropy of Mixing 

The Flory-Huggins treatment can be extended to the calculation of an 
interaction parameter (3C,) used in many theories dealing with polymer 
miscibility. The concept of a theta (or Flory) condition is a major 
consequence. As mentioned in Chapter 2 in the discussion on chain 
dimensions, the use of the theta condition removes the complication of 
long chain interaction in assessing chain conformations. 

The expression for the entropy of mixing as derived from the Flory-
Huggins treatment is applied in deriving an equation relating the free 
energy of mixing to the interaction parameter X,. The latter can be 
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evaluated by any of several techniques, but particularly by osmotic 
pressure measurements. 

The partial molal entropy of mixing (ASm)i is defined as 

(WX- \ ^i l w 
(3.73) 

Substituting from equation 3.72 

(KA--* —[n,ln<ft + n2ln02] 
dn (3.74) 

= -R 

The partial differentials in equations 3.73 to 3.74 are solved as follows 

1 (<*M _ 1 ^ n . + X n 2 J 

(n, + x n 2 ) 

0, 
(n, + xn2}-nx 

(« , + x n 2 ) 

n, 
xn. 

{nx + xn2) 
xn, 

n,(n, + xn2) 
(3.75) 

Similarly, 

' d l n ^ 

<?n. i / „ . 

(n,+xn2) 

/ 

I 

n ] + xn 2 

<?n, 

_ 1 

02 

IM, 

xn, 
(n, + xn2) 

xn, 

-xn, 
•xn, (n, + xn2) "i + • 

Substituting equations 3.75 and 3.76 into equation 3.74 

(3.76) 
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(K)) 1 =- R P + 47^)+» 2 (T^ 

l n ^ * - l ) ( n ^ n - ) 

(3.77) 

= -R 

Then since, 

JOT, 

n, + xn2 x 

ln<ft+-—cj)2 
x 

(3.78) 

The expression for derived in Appendix 3B is given by « * » . » , 

« " - » - & ) - " * * (3.79) 

where % = the polymer/solvent interaction parameter 
Since 

«4C.ft-«4H4-T(K» 
Substituting from equations 3.78 and 3.79 yields 

( ( A G . ^ - K - t f - R T 
JC-1 

Z 1 0 2 + l n ^ + <t>2 
X 

(3.80) 

where (see Appendix 3C) 

ft°-

tt-

dG_ 

\dr\j 

= the chemical potential of the solvent in pure solvent 

= the chemical potential of the solvent in solution 

Several experimental techniques have been used to determine values 
of the polymer/solvent interaction parameter, see for example Scott and 
Hildebrand [16] or Orwell [17] who describe these techniques in 
extensive reviews. 
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I 
Figure 3.5. Idealized plot of osmotic pressure against solute concentration. 

Osmotic pressure (n) given by equation 3.81 is a common techniques 
used to measure X\ 

JI = RT 
M, 

(3.81) 

(This equation is derived in Appendix 3C) 
where 

(L-x) 
A, = — — = the second virial coefficient 

2 P& 

The slope of the plot in Figure 3.5 

Rr ( i -X i ) 
slope = 

Pft 
(3.82) 

where V\ is the molal volume and p 2 the solution density yields a value 
ofZi. 
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Table 3.2 Miscible Polymer Blends 

Compatibility Ref. 
Polymers Criteria 

1. Polystyrene/Poly(2,6 dimethyl phenylene oxide) a 1 
2. Polystyrene/Poly(vinyl methyl ether) b 2 

3. Polyvinylidene fluoride/Poly(methyl methacylate) c 3 
4. Polyvinylidene fluoride/Poly(ethyl methylate) c* 3 

5. Polyvinyl chloride/random polyester copolymer c** 4 
(tetramethylene ether glycol terephthlate/ 

tetramethylate terephthlate) 
3. Polyvinyl chloride/Poly(ethyl methacrylate) d 5 

7. Polyvinyl chloride/Poly-e-caprolactam e 6 
8. Polyisoprene/Polybutadiene f 7 

9. Polybutylene terephthlate/polycaprolactone 8 

* Composition limits 
** Temperature limits 

Miscibilitv Criteria 
a. Single glass temperature, Tg observed from DSC measurement 

b. Transparent film formed when cast from a selected solvent 
c. Single Tg observed for dynamic mechanical measurement 

d. Compatible at 30% solids 
e. Single Tg 

f. Single T during linear thermal expansion 
g 

The value of the slope in Figure 3.5 tracks solution miscibility 
because of the (^ -X\) term. This term may be generalized (1) to two 
parameters ty(l-8/T) where ip =an enthalpy term to show the relation 
between X\ and 0 .If ("J- Xi)=0or 6=T, the polymer/solvent 
combination forms a pseudo ideal or "0" solution in which there is no net 
interaction. For X\ < j , the polymer/solvent pair is immiscible and a two 
phase system results. Polymers are inherently less miscible in solvent 
liquids than are monomeric substances. Because of their chain structure 
and the consequent connectivity between chain segments, the possible 
permutations of segments in liquid mixtures are severely restricted and 
therefore their entropy of mixing is low. Therefore, even a small positive 
enthalpy on mixing suffices to render the free energy of mixing positive 
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and the polymer/solvent combination incompatible. Solubility tends to 
decrease with increasing polymer molecular weight as would be 
expected based on the entropy considerations just discussed. 

3.5. Polymer Miscibility 

The concepts derived from polymer solutions have been extended to 
considerations of polymer/polymer miscibility Scott [18] discussed the 
case of two homopolymers dissolved in a common solvent forming an 
equilibrium mixture and derived expressions for the free energy of 
mixing, using the Flory-Huggins theory 

AG, = RT 

AG2 = RT 

ln^ + 

lntf>2+ 1-

+ x,Xx<Pl 

+ xxXx(t>l 

(3.83a) 

(3.83b) 

where 

Xl = -= degree of polymerization 

Vi = molal volume of polymer 1 
V2 = molal volume of polymer 2 
V0 = molal volume of an idealized polymer molecule 
These equations are analogous to equation 3.80, but with the 

stipulation that the requirement for the existence of a 6 condition for a 
polymer/polymer mixture (a value of x\ equal to l/l) applies only to the 
case of infinite molecular weight. The critical value of Xi for the theta 
condition will be somewhat less than Vl for polymers of moderate 
molecular weights. Also, the compatibility of a polymer/polymer mixture 
increases as the molecular weights of the individual polymer decreases. 

Scott's conclusion that only a few polymer mixtures are miscible 
agreed with the experimental data then available on ternary systems 
comprising two polymers in a common solvent [19)]. More recent work 
on newer polymers has revealed several miscible systems (Table 3.2). 
Criteria for miscibility of a polymer/polymer mixture include optical 
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transparency, the existence of a single glass temperature for the polymer 
mixture and shifts in the dynamical mechanical spectra. 

The subject of polymer miscibility has received fresh impetus from 
the development of polyblends, graft and block copolymers and 
thermoplastic elastomers. In these systems, immiscible polymer chains or 
blocks covalently bond. Because they are immiscible, the two polymer 
blocks separate into two microscopic domains or regions in which only 
one polymer is present, but the presence of covalent bonds prevents 
complete separation into two microscopic phases. The 
polystyrene/polyethylene oxide system studied by Benoit was an early 
example of the effect of the interaction between polymer miscibility and 
copolymer bonding [20]. Varying the block or graft length, the 
composition and location of the blocks in the chain can produce different 
morphologies [21,22]. The limiting cases of morphology are the sphere, 
the cylinder and the lamella (Figure 3.6). 

Figure 3.6 Morphology of some polyblends. 

Meier [23] has derived equations relating block copolymer 
morphology to thermodynamics using lattice models. His model explains 
quantitatively the observations of Merrett [24] on the influence of 
preferential solvents on the mechanical properties of graft copolymers. 
Merrett found that, depending on the solvent used in casting films of a 
natural rubber/poly(methyl methacrylate) graft copolymer, he could 
obtain either a hard stiff film characteristic of poly(methyl methacrylate) 
or a soft, flexible film typical of natural rubber. He interpreted these 
results as follows: a solvent for poly(methyl methacrylate) collapsed the 

146 



THERMODYNAMICS 

rubber blocks into discrete domains. On drying, the poly(methyl 
methacrylate) became the continuous phase interspersed with rubber 
domains and the film would be hard and stiff. A solvent for natural 
rubber reversed this order and the dried film would be soft and flexible 
because the rubber blocks now constituted the continuous phase. 

Krause [25] and Helfand [26] have given theories, based on lattice 
models, for estimating block copolymer miscibilities including the type 
of interface developed between the microphases in these systems. 
Coleman, et al. [27] have assessed the validity of solubility parameters in 
estimating the miscibility of polymer pairs. 

3.6. Spinodal Decomposition 

Phase separation usually occurs by the mechanism of nucleation and 
growth. Another mechanism for phase separation, spinodal 
decomposition, is more common for blends. Blends of miscible polymers 
are materials in which the phase separation by nucleation and growth is 
so slow that phase separation spinodal decomposition can occur. Polymer 
blends and liquid crystals are therefore good candidates for observing 
spinodal decomposition because the chain structures slow the transition 
rate. The basis for an experimental approach is shown in Figure 3.7. The 
upper section in this figure shows a one-phase region. The concave solid 
line depicts the boundary between the one phase and the two-phase 
regions for the transition occurring by a binodal (nucleation and growth) 
mechanism. The dashed line represents the boundary between a binodal 
transition and a spinodal decomposition transition. The region enclosed 
by the dashed line constitutes a region in which phase transition by 
spinodal decomposition is the stable form. The two boundary lines 
coincide at only one point, Ts. 

Figure 3.7 shows an Upper Critical Solution Temperature (UCST) as 
is predicted by Flory-Huggins theory. This theory as presented cannot 
predict the Lower Critical Solution Temperature (LCST) sometimes 
observed. A LCST curve can only be predicted if one has temperature 
variation of c different from that described in the theory developed here. 

The point, Ts, corresponds to the condition that the second derivative 
of the free energy with respect to composition equals zero. If a point in 
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the one phase region, say at A, with a composition given by AB could be 
suddenly cooled to the temperature at B, then the phase transition would 
occur by spinodal decomposition alone. Experimentally, this is exactly 
what is done and the technique is called "temperature jump". 

Composition 10° 

Figure 3.7 Phase diagram showing the spinodal region. 

Light scattering (or neutron scattering) measurements can be used to 
determine the spinodal point using the following procedure. For a 
constant temperature, the intensity of scattering is measured 
simultaneously over a range of angles using a special detector. The 
measurements are repeated for different times. The data are then 
rearranged to form a plot of scattering against reduced angle at constant 
time for a series of temperatures (Figure 3.8). The plots are then 
extrapolated to zero scattering angle, the slope is just the apparent 
diffusion constant, see equation 3.12. A plot of Dapp against temperature 
extrapolated to zero Dapp (Figure 3.10) yields the spinodal temperature 
(Ts). Physically, the spinodal temperature represents a state in which the 
activation energy for spinodal decomposition is zero while that 
nucleation and growth is precluded because it has an activation energy. 

Spinodal decomposition can be divided into three stages depending 
on the mathematical equations used to describe them and on the degree 
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of coarsening observed in the developing structure. The Cahn-Hilliard-
Cook equation [28] is used to describe the first stage. 

q.«r 

l(q,t) = l(q,t = 0)exp[2R(q)t] (3.84) 

where / (q,t) = the scattering intensity at time / and scattering angle q 
R (q) = the growth rate at angle q 

sin 6 
4 = • = the reduced scattering angle 

Scattering 
Intensity 

4 

^ ^ 3 
~ ~ ~ ~ - ~ 2 ^ _ 

• ^ 1 

1 0 Reduced Scattering Angle, q 

Figure 3.8. Diagram showing series of curves used in extrapolation 
to determine the limiting scattering angle. 

or rearranging by taking logarithms on both sides 

\ogl(q) = 2R(q)t 

In the first stage, the angle of the scattering maximum remains the 
same, but the height of the maximum increases. 

Then, for a second intermediate stage at longer time, the maximum 
moves towards smaller angles. This second stage is fit by the relation, 
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%) = ̂ ? 2 ^ l - ^ r J (3.85) 

or, rearranging terms and extrapolating to zero angle. 

1-0 

so that a plot of R(q)/q2 versus q2 yields a straight line that can be fit by 
the straight-line relation, y = nuc+b for which the slope is the apparent 
diffusion, Dapp (Figure 3.9). A plot of the slope values at several 
temperatures against temperature extrapolated to the temperature value at 
zero apparent diffusion yields the spinodal temperature (7S), as shown in 
Figure 3.10. 

Reduced Scattering Angle, q 

Figure 3.9. Plots showing the increase in scattering intensity with increasing time. 

The maximum in the first stage reflects a fluctuation in composition 
that travels rapidly and forms a web-like structure. The second stage 
arises from the growth in size of the new phase. In a third stage, the 
growth of phases is controlled by viscous flow. At the end of the phase 
separation processes, it is difficult to tell whether they occured by 
nucleation and growth or by spinodal decomposition. One must observe 

I2 
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them at earlier stages to tell which process was followed during phase 
separation. 

Apparent Diffusion (Dapp) 

0 T s Temperature 

Figure 3.10. Plot showing extrapolation to obtain the spinodal temperature. 

In the initial stage, an empirical curve is used to approximate the 
scattering changes with angle that continually increase with time 

? « a f a (3.86) 

For the intermediate stage, the empirical curve can be approximated 
by 

Im-t" (3.87) 

In many cases, /3 is greater than 3 times the value of a 

fi>3a 

But, for the special case of fi =3 a, the intensity is given by 

r(<H>72)%) (3.88) 

where S(q) = the scattering intensity corrected for electronic density, 
Since S(q) can be approximated by, 

S{q)^q;i 

therefore 

/M-(i?2)%)-(iV (3.89) 

151 



TOPICS in POLYMER PHYSICS 

The quench depth, £, or 

£ = — ^ = X~XJL = quench depth 

is a measure of the thermodynamic driving force [29,30]. 

(3.90) 

B 
i-t -.tftftttttttt W'V'Vf.XXVV, 

S t t ' S ; ^ 

f.'. *. f. f. *. f. 

mm 
B 4P 

f * t t f t t.t.t.t. 

B 

Figure 3.11. Diagram showing spinodal phase (A) superimposed on a 
bindal phase (B) during decomposition. 

A third stage is usually observed in which the spinodal structure 
coarsens (Figure 3.11). This process can be described by an exponential 
dependence of the maximum intensity and the maximum reduced 
scattering angle on time, viz. 

£> „ = D,e 

where Dc = the diffusion constant for coarsening. 

A/s 
1 1 1 

N^A NwB<PB) 

1 

AC, 

(3.91) 

(3.92) 

determines the composition of the final spinodal phases, similar to the tie 
lines found in distillation. A, B are the phases as stated above, N is the 
weight average and 0 is the weight fraction. Over time, the two phases 
change composition along the tie lines and finally achieve the 
compositions at C and D (Figure 3.7). 
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3.7. Heat Capacity 

Heat capacity (C) is defined by the relation 

C = - ^ (3.93) 
dT 

where dQ = the amount of heat transferred in or out of a system. 
AT = the temperature change accompanying the transfer process. 

This quantity is more conveniently measured at constant pressure 

^ (dH\ 
Cr-[-[ (3.94) 

where H= the enthalpy, than at constant volume 

C.-[%\ P.95) 

where E = the internal energy. The two quantities are related by 

CV = C P = 7 V — (3.96) 
P 

where V = the specific volume 

a = the coefficient of the (cubic) thermal expansion = — 
v K d T yP 

/ 
(3 = the (isothermal) compressibility : 

l\dV\ 

\V\dP). T 

Heat capacity is a quantity used in many areas of polymer studies. It 
is applied for example in determining the absolute value of entropy (see 
below), by use of the relation 

where So = the value of the entropy, at absolute zero, as calculated from 
third law considerations. 
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3.8. Thermodynamics of Crystallization 

Crystalline polymers never are completely composed of a single 
crystalline phase. An amorphous or liquid like phase coexists with the 
crystalline phase. The degree of crystalline and the morphology 
associated with this two-phase system are covered elsewhere in this book 
(Chapter 8). The crystalline phase in polymers meets the thermodynamic 
requirements for a crystal including the existence of a first order 
transition or melting temperature (Tm). Above this temperature, the 
polymer chains possess a random, liquid like order. On cooling to a 
temperature range, which varies for different polymers, below Tm, the 
chains spontaneously form regions with ordered arrays interspersed by 
less ordered or amorphous regions. The question of whether semi-
crystalline polymers possessed melting points that fit the criterion for 
reversible first order transitions has engendered much controversy. Early 
experiments using, for example, specific volume against temperature 
measurements showed that crystalline polymers melted over a range of 
temperature. This contrasted with the very narrow melting temperature 
range found with pure low molecular weight substances such as benzoic 
acid. In addition, polymers on cooling below the melting point 
crystallized 10-50°C below Tm suggesting a lack of reversibility. 
Subsequent measurements such as those of Chiang and Flory [29] and of 
Mandelkern et al. [30] have met these objections and demonstrated that 
semi-crystalline polymers undergo a first order transition on melting. 

The chain' structure of polymers however modifies the manifestations 
of crystallinity. Strictly speaking, a thermodynamic phase should have 
properties independent of its size. This is not so for polymer crystals that 
are small and surface properties that can be very important. Also, 
because of chain irregularities and non-equilibrium growth conditions, 
polymer crystals are usually imperfect. X-ray diffraction patterns of 
polymer crystals, for example, show fewer higher reflections indicating 
poorer crystal regularity. Another difference is that polymer molecules 
are usually bigger than the crystals, so interconnection and chain folding 
affect properties. This results in diffuse interfaces between crystalline 
and amorphous phases as compared to sharper interfaces for low 
molecular weight crystals. 
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Several topics that illustrate the relationships between 
thermodynamics, polymer structure and polymer crystalline are given 
below. 

3.8.1 Polymer Structure - Melting Point 

Several qualitative conclusions can be drawn from free energy 
considerations on the effect of polymer chain structure on melting point. 
The melting point is defined as the equilibrium point between the 
crystalline and molten phases in a polymer. The criterion for 
thermodynamic equilibrium is 

AGm=0 (3.98) 

where KG =G -G 
^^m '-'cryst "amorph 

= the difference in the Gibbs free energy 
since 

AG = AH-TAS 

w h e r e AH = //amoiph - HCTyst 

AS = S h - S , 
amorph cryst 

Then, for equilibrium between the crystalline and amorphous phases 
to exist at the melting point 

0 = AG =AH - T AS (3.99) 

or, rearranging terms 

rm = ̂ L (3.ioo) 
A5M 

Both terms on the right side in equation 3.100 are positive because 
both the enthalpy and entropy are greater in magnitude in the amorphous 
phase. 

From an examination of equation 3.100, one can draw the following 
conclusions: 

i. As AH becomes more positive, the melting point increases. A large 
negative value of AHm accompanies a low Hcryst value in which chain 
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molecules are strongly bonded together. Molecules that contain polar 
groups such as -CCO-, -CHC1-, -CHOH-, form hydrogen bonds such as 
nylon or cellulose, or are regular in structure and can pack closely 
together (linear polyethylene, Teflon or stereoregular polymers) have 
strong bonding. 

ii. As ASm becomes smaller, the melting point increases. This 
condition exists if there is only a small decrease in order upon melting; a 
condition that occurs for ordered melts. An ordered melt in turn is 
associated with stiff chains in the melt (polyphenylene, -CF2-, Kevlar™). 
With such cases, the melt is often liquid crystalline rather than 
amorphous. An equilibrium melting point is one where the crystalline 
phase transforms into a completely disordered amorphous state. With 
high molecular weights, this transformation may be slow. Thus, for 
example, for ultra-high molecular weight polyethylene, the apparent 
melting point may be extraordinarily high since the melt, which initially 
forms, retains the orientation imposed by the crystals. In such cases, the 
melting point depends upon the rate of heating. 

iii. Chain orientation also orders the melt thereby raising the melting 
point because of the decrease in ASm. Examples are natural rubber and 
poly(ethylene terephthalate) that crystallize on stretching. This topic is 
discussed in detail below. 

iv. Crystals of finite size and defects in crystals result in a lower 
AHcrys, a lower AH and a lower melting point. This topic is expanded in 
the next section. It should be realized that the equilibrium state of a 
crystalline material is one with infinitely large perfect crystals. Thus, 
crystals of finite size with imperfections represent a non-equilibrium 
state. In addition, polymer crystals differ from low molecular weight 
crystals in having diffuse phase boundaries. With annealing, polymer 
crystal sizes increase and imperfection content decreases as equilibrium 
is approached with a consequent increase in the melting temperature. In 
such cases, annealing may occur in the course of slow heating, so the 
observed melting point may also depend upon the heating rate. 
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3.8.2. Effect of Diluent and Impurities 

An analogy to the effect of salt in water can be made for semi-crystalline 
polymers. Pure polymer crystal is at equilibrium with its polymer melt at 
the melting temperature. If the temperature is raised, the molecules move 
more rapidly so the crystal phase decreases and the melt phase increases. 
Physically, this change results because fewer molecules return to the 
crystal; while, the crystal continues to move molecules into the melt at 
the same rate. On the other hand, below the melting temperature, the 
molecular motion slows down; the crystal phase increases at the expense 
of the melt phase. 

If impurities are added to the polymer at its melting point, fewer 
molecules return to the crystal phase because the impurity molecules 
displace polymer crystal molecules and fewer polymer molecules are 
able to deposit on the crystal phase. The rate of movement of chain 
molecules into the melt is not affected by the presence of impurities. So, 
the melting point of the polymer/impurity composition is lower than that 
of the pure polymer. 

The influence of impurities (chain ends, solvent or co-monomer) on 
the melting point can also be treated from a consideration of the chemical 
potential (for further details on chemical potential, see Appendix 3C). At 
the melting point, 

/*>/*„ (3-101) 

where 
Hc

u= the chemical potential (the free energy per mole) of the 
crystalline phase 

JAU= the chemical potential (the free energy per mole) of the 
liquid phase 

For the crystalline phase, at temperatures below the melting point, 

°_ 'J30') (dGA -(dAG) 
\ dn /Tp \ dn )1S \ dn )T? 

where ;U°= the chemical potential of the standard state assumed to be 
that of the pure liquid at the same temperature and pressure, 

and n = the number of moles of the chain repeat unit 

157 



TOPICS in POLYMER PHYSICS 

Since chemical potentials are derived from free energy, 

AG = AH-TAS = AHu[l-T(ASjAHu)] = AHu[l-(AsjAhu)] (3.103) 

where 

4 H . - ( ^ ) (3.104, 

If we assume that 

(A,/A/l) = (A,7A/t°) = (l/7;0), 

As /Ah refers to the real material 

then 
and As0/Ah0 refers to the perfect crystal 

AG = AH[I-(T/T:)] 

III - £ = (dAGu /dn)jp = {dAHldn\\ - ( T / ^ ) ] 

= M[i-(r/rm
0)] (3.105) 

If the temperature is not too far below T°, then 

and analogous to equations 3.101 and 3.102 

AS„ _ A5„° 1 

where AS° and AH° are the values of A5„ and A//u at Tm. Thus, 

(3.106) 

tf-rt-AffJl-|rj (3.107) 

The condition for equilibrium to exist between the crystalline phase 
and the amorphous phase diluted with monomeric liquid is 

M°-M„c = iU°-^„ (3.108) 
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Equation 3.108 states that the difference in chemical potential 
between a standard state and the crystalline phase equals the difference 
in chemical potential between the same standard state and the diluted 
amorphous polymer unit. An equation similar to equation 3.80 derived 
from the Flory-Huggins treatment can be applied to the case of an 
amorphous phase containing diluent 

where Vu = the molar volume of the repeat unit 
Vi = the molar volume of the diluent 
0j = the volume fraction of the diluent 

^1 = the polymer/solvent interaction parameter: 

RT 

At the melting point for a semi crystalline polymer containing diluent, 
then from equations 3.107, 3.108 and 3.109 

A/Jl-^j = Rrj.^|ft-^#| (3-110) 

or, rearranging terms 

(3.111) 

The term (1/Tm - l/Tm ) is roughly proportional to the amount of 
diluent present. 

The presence of diluent depresses the undiluted melting point (Tm). 
The same polymer will differ in the extent of a melting point depression 
with changes in diluent due to the presence of the solvent interaction 
parameter term in equation 3.102 such as shown in Figure 3.12, This 
term yields a value of B that agrees well with values determined by other 
techniques (e.g., light scattering or osmotic pressure). The intercept also 
furnishes a value of the heat of fusion that compares well with values 
obtained by direct calorimetric measurement. In addition, the diluent 
approach has the advantage that the degree of crystallinity does not have 
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to be known, a requirement for the calorimetric measurement. The good 
agreement supports the model of a two-phase crystalline-amorphous 
structure on which the derivation of equation 3.109 is based. 

Slope = rYiB 
AHu 

i/r 

Figure 3.12. Polymer diluent plot showing the same polymer in three different 
Solvents from equation 3.48. 

Value of the slope depends on the value of B. 

It should be pointed out that melting points determined using the 
diluent technique are more likely to be equilibrium melting points since 
there is mobility in the presence of diluent. 

The melting point depression of solid polymers (with no liquid 
diluent) may be derived from classical solution theory considerations. 
For ideal solutions of low molecular weight molecules, the equation 
analogous to equation 3.100 is 

(t°H-t*M-RTlnX2 (3.112) 

where Xi = the mole fraction of solute. 
If the solution contains only a small fraction of diluent ((t>i»l), then 

the following approximations can be made without introducing serious 
errors: 
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lnX2 = - Z 1 = - - i T = - ^ (3.113) 

so that, using equation 3.112 

rf-ft-RT.^-^-^-Afffl-^j (3.114) 

or rearranging terms 

J 1 _ R Va 

Tm~T: = AHuVl
 ( 3 - H 5 ) 

Equation 3.115 is identical with equation 3.111 when 5 = 0. The diluent 
or component that depresses the melting point may be a constituent of 
the polymer itself. For example, if a copolymer consists of A units that 
crystallize and B units that do not, then equations 3.112, 3.114 and 3.115 
give 1 1 R , T. 

m m u 

The assumption that one of the monomer units is excluded from the 
polymer crystal can entail several consequences. In this case, the, the size 
of the crystal is limited by the sequence length of the crystallizing 
monomer units, so the effect of comonomer concentration becomes 
mixed up with the effect of crystal size. In addition, if one of the units is 
excluded, it will probably reside at the crystal surface and affect the 
melting point. In many cases, comonomer units get included in the 
crystal, for example polypropylene in polyethylene. Thus, the situation is 
more complicated than what is described by the mathematics in this 
section. 

Equation 3.116 assumes the chain structure is a random copolymer. 
Similar expressions have been obtained for non-random (block) 
copolymers and for partly tactic polymers. A second example is chain 
ends. These may be excluded from crystals and act as impurities in 
which case equation 3.116 is modified 
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tt^-X'] <31,7) 
where Xz is the mole fraction of chain ends. For linear chains, there are 
two ends for X„ monomer units where {X„) is the number average 
degree of polymerization. Thus, 

X* = 7V\ (3-118) 
« 

and, from equation 3.129, 

J _ _ 7 ^ = _R 1_ 

T T° AH (X) ( 3 > 1 1 9 ) 

A plot based on equation 3.119 predicts that the melting point increases 
with increasing molecular weight (Figure 3.13). This prediction agrees 
with experiment [31]. 

The above discussion is oversimplified since if a chain end is 
excluded, it must reach the surface. This requirement limits the size of 
the crystal and affects its surface energy. Exclusion is more likely with 
slow crystallization. On the other hand, with fast crystallization, chain 
ends (and comonomer units) might be trapped within in the growing 
crystal. The derivation then assumes that the molar volume of a chain 
end is the same as that of a monomer unit, but this is not necessarily so. 
The effect may depend on the nature of the chain end. 

Finite crystal size reduces the equilibrium melting point. For crystals 
of finite size, the melting point is given by (analogous to equation 3.101) 

r-"f <3-120> 
where 

AH = AH0-AH^SS (3.121) 

&t* excess per crystal ~~ OO v J • 1 ^^) 

AH = excess per unit volume = —— = — (3.123) 
a I I 
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T„ 

Figure 3.13. Schematic illustrating change in melting temperature with 
molecular weight (equation 3.137). 

The amount of enthalpy per mole associated with the finite crystal 
surface energy (a) reduces the equilibrium enthalpy for the infinite 
crystal (AH0). Thus, from 

A / i excess per mole — v„ (3.124) 

where Vm = the molar volume. Substituting equations 3.114 and 3.111 
into equation 3.120, 

aV-_ 
(3.125) T.^M, 

or, rearranging 

rp rrtO 

m m 

A5n 

m 

lAHn 

(3.126) 
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Thus, the greater the surface free energy and the smaller the crystal, the 
larger is the melting point depression (Figure 3.14). 

800 

Thickness 
(Angstroms) 

400 

0 
110 120 130 

Crystallization Temperature (°C) 

Figure 3.14 Change in melting temperature with crystal (lamellar) thickness 
S. Kavesh, J.M Schultz, J. Polymer Sci. 1971, 9A, 285. 

3.8.3. Crystallization Induced by Stretching 

Stretching and preferentially orienting the chains parallel to the 
stretching direction (Figure 3.15) enhances the ability of polymer chains 
to crystallize. The parallel chains more readily form crystalline 
aggregates. Thermodynamic arguments also support this conclusion. 
Chain entropy decreases with entropy and crystallization will occur when 
TAS < AHf for chain structures possessing sufficient regularity. 

Flory [32] derived expressions relating the equilibrium degree of 
crystalline to chain elongation by a statistical segment model of a three-
dimensional crosslinked rubber network. The process was assumed to 
comprise two distinct steps. The network was first elongated at a 
temperature sufficiently high so that no crystallization occurred. The 
temperature was then gradually lowered to a temperature at which the 
elongated network could crystallize. This sequence differs from the usual 
practice in which elongation and crystallization are carried out 
simultaneously. The consequences of this difference are discussed below. 
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Extension 

Figure 3.15. Schematic illustrating change chain order on stretching. 

This result of this two-step process is 

X = 1 -
! - / ( « ) 

-d 

where 

*H.!)\ a _2 a_ 
n 

and a = the elongation ratio 
n = the number of statistical segments per cc 

0 = Atf 
R 

(3.127) 

(3.128) 

A plot of equation 3.128 (Figure 3.16) using reasonable values of the 
parameters for natural rubber shows that i) at a given temperature, the 
degree of crystalline increases with increasing elongation, ii) for a given 
value of a , the degree of crystalline decreases with increasing 
temperature. The maximum at high elongation may or may not be 
significant because the model assumes a Gaussian chain distribution that 
becomes invalid at high elongations. 
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This treatment by Flory which predicts that stretching lowers melting 
points and promotes the crystallization assumes that extended chain 
crystals form which is probably true at higher elongations. Extended 
chain crystallization results in a decrease in force at constant length or an 
increase in length at constant force. The latter is given to explain the 
observation that if a rubber band is held stretched between nails which 
crystallizes; the rubber band can lift off the nails. At lower elongations 
where chain folded crystals might form, these effects are reversed. 

Wu [33] has rederived equation 3.127 using a more general model 
with two independent parameters: the fraction of the total chain end-to-
end distance assigned to the crystalline region and the degree of 
crystalline. He then analyzed the relative stability of the folded chain 
versus the extended chain morphology [Chapter 8] as a function of 
elongation and temperature. 

The Flory model also leads to a prediction of the effect of 
crystallization on the retractive force (oo) exerted by a stretched rubber 

(£)Rr[a-X]_(M)\ 
« L L L J " J XJtl (3.129) 

1-Xc 

where a is the elongation ratio, Nc number of chains per unit volume (V), 
n the number of statistical segments per chain and Xc the degree of 
crystallinity. This equation predicts a decrease in stress with the onset of 
crystallization for a stretched rubber sample. Several workers (40) have 
found this effect. 

The results cited above apply to systems in the thermodynamic 
equilibrium state. For the non-equilibrium state in which elongation and 
crystallization occur simultaneously, the retractive force or tension 
increases with elongation [34]. For this case, the crystals formed at a 
given elongation serve as crosslinks that impede further extension 
thereby increasing the force required for elongation. Further, the degree 
of crystalline can attain values greater than the equilibrium value because 
the increased tension deforms nominally amorphous regions and forces 
them into crystalline alignment. 
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Figure 3.16. Plot of degree of crystalline against elongation at three temperatures 
For n=25, h=600R and Tcry=250°. 

At low elongations, crystallization in natural rubber can be very slow. 
Natural rubber will crystallize slowly, often several months, at no 
elongation. This rubber crystallized at room temperature is termed "stark 
rubber" because it is stiff and rather rigid at room temperature in contrast 
to the flexible sheets of coagulated natural rubber latex usually found at 
room temperature. 

Optical techniques (birefringence and low angle light scattering) have 
been used to characterize stress-induced crystallization [35]. The 
crystallization temperature is more important than is elongation in 
determining the final degree of crystalline. 
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Appendix 3A Classical Thermodynamics 

Classical thermodynamics deals with the interconversion of energy in all 
its forms including mechanical, thermal and electrical. Helmholtz [1], 
Gibbs [2,3] and others defined state functions such as enthalpy, heat 
content and entropy to handle these relationships. State functions 
describe closed energy states/systems in which the energy conversions 
occur in equilibrium, reversible paths so that energy is conserved. These 
notions are more fully described below. State functions were described in 
Appendix 2A; however, statistical thermodynamics derived state 
functions from statistical arguments based on molecular parameters 
rather than from basic definitions as summarized below. 

Assume the existence of two phases separated by a phase boundary or 
interface. Phases, in this sense, can exist in any of the three states of 
matter: gaseous, liquid or solid. Their only requirement for existence is 
that their intensive properties such as pressure and free energy (see 
below) are the same everywhere within the phase. This assumes that the 
phases are large in size since the free energy of phases near surfaces will 
be different. The two phases constitute a system in the thermodynamic 
sense. At equilibrium, for the conditions of constant temperature and 
pressure, the following state functions are defined as: 

G^H-TS (3A.1) 

H = E + PV (3A.2) 

EmdQ-dW (3A.3) 

where 
G = the Gibbs Function 
H= the enthalpy or heat content at constant temperature 

and pressure 
T= the temperature expressed in units of degrees Kelvin 
S = the entropy 
E = the internal energy at constant temperature and volume 
Q = the heat absorbed by the system 

W= work done by the system 
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The first law of thermodynamics is based on the conservation of 
energy. It can be formulated in several ways. Equation 3A.3 is one way. 
Another is: 

<£dE = 0 (3A.4) 

which states that, for a reversible process, E depends only on the initial 
and final states of the system and not on the path/sequence traveled 
between these states. Therefore, E is a state function. 

The second law of thermodynamics defines the maximum amount of 
work that can be obtained from a system. Entropy is the state function 
used to express the second law in mathematical terms and is defined, for 
a reversible process, by 

dS = (analogous to equation 3A.3) (3A.5) 

or by, 

dS = 0 (analogous to equation 3A.4) (3A.6) 

Differentiating the state functions defined above leads to a criterion for 
equilibrium and to the concept of chemical potential (for an example, see 
Appendices 3A and 3C and equation 3.114). Thus, 

(From 3 A. 1) dG = dH-TdS + VdP (3 A.7) 

(From 3 A3) dE = dQ- dW (3 A.8) 

(From3A.5) dQ = TdS (3A.9) 

and dW = PdV (3 A. 10) 

These equations hold for reversible processes. Equation 3A.10 
assumes that only pressure-volume work is done by or on the system. 
But, equation 3A.7 can be modified to include other types of work such 
as stretching a rubber chain (Section 3.2) or charging an electrical 
condenser. 

The Gibbs free energy is a function of temperature and pressure. The 
following relations show the dependence. Inserting equations 3A.5 and 
3A.10 into equation 3A.9, 

f 
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dE = TdS-PdV (3A.11) 

Then, using equation 3A.8 

dH = TdS - PdV + PdV + \dP = TdS + VdP (3 A. 12) 

and substituting equation 3A.12 into equation 3A.7 

dG = TdS + VdP - TdS - SdT = VdP -SdT (3 A. 13) 

At constant pressure and temperature, dP = dT = 0; so that the 
relation 

dG = 0 (3 A. 14) 

defines the condition needed to specify thermodynamic equilibrium at 
constant temperature and pressure. 

For irreversible processes 

ds>^T (3A.15) 

and 

dG<0 

If matter is transported between phases A and B, assuming the system 
is isolated from the rest of the universe (a closed system), the free energy 
of the system (G) is given by 

G = GA+GB (3A.16) 

At equilibrium 

dG = 0 = GA + GB (3A.17) 

If there are two components present in the system that are common to 
both phases, then at equilibrium 

\dnlA) \dn2A) 
dn2A (3A.18) 

where 

(dG 
= mlA = the chemical potential of component 1 in phase A 

dn,, 1A , 
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nlA= the number of moles of component 1 in phase A 

Similarly, 

dGB = frBdnlB + (x2Bdn2B (3A.19) 

At equilibrium 

dGA = dGB (3A.20) 

Equations analogous to those of 3A.7 through 3A.15 may be derived 
for the conditions of constant temperature and volume. These are based 
on the Helmholtz free energy (A): 

A = E-TS (3A.21) 

From equation (3 A. 11) 

dA = TdS - VdV - TdS = -PdV - SdT (3 A.22) 

At constant temperature and volume, dV= dT= 0; so that the equation 

dA = 0 (3A.23) 

states the condition necessary for the attainment of equilibrium at 
constant temperature and volume. 

Relations, first derived by James Clark Maxwell (the Maxwell 
equations) can be used to express the state functions of entropy and free 
energy in terms of physically measurable quantities: the coefficient of 
volume expansion (a) and the isothermal compressibility (/3). 

Using equation 3A.13 

dG = VdP-SdT 

and equation 3A.22 

dA = -PdV-SdT 

and the relations, derived from differential calculus 

(3A.24) 

It is shown below that 
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since 

then 
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Also 
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dS\ (dV 

dP)T \ST 
dV 

dS) JdP_) _a_ 

SfT 

' dV\ = didA_ 

\dV)T dV\dT 

A = -PdV-SdT 

dA_ 

dV 
= - P 

\d_(dA_ 

dAdV T J V 

dA_ 

ffT 
= -S 

_d_(dA\ 1 =JdS_ 

• dV\dT V J T dV h 

Equating equation 3A.31 with 3A.29, based on 3A.27 

dS\ (dP\ (dP^dV* 

dV ffT v\dvkffr) 

(3A.25) 

(3A.26) 

(3A.27) 

(3A.28) 

(3A.29) 

(3A.30) 

(3A.31) 

Rearranging 
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dS 

dV_ 

dT )p a 

dV)T [dV\ 0 
dP 

Similarly, from equation 3A.24 

dT\dPJT dP\dT 

(3A.32) 

(3A.33) 

since 

and 

Also 

and 

G = VdP-SdT; 
dG_ 

dP)T 

= V 

:_d_(dG_ 

\dT\dP 

dG_ 

dT 

\_d_(dG_ 

\dP\ffT 

SV_ 

Tjp V ^ / P 

= -s 

P J T 

dS\ 

dPh 

Equating equations 3A-37 with 3A-35 based on 3A-32 

J«) .JUL) = „V 

since 

W\dT)P 

(3A.34) 

(3A.35) 

(3A.36) 

(3A.37) 

(3A.38) 

174 

file:///dT/dP
file:///dP/ffT


THERMODYNAMICS 

References 
1. H. Helmholtz, S.B. Preuss, .Akad. Wiss. 1882,1, 22 
2. J.W. Gibbs, Collected Works, Dover Press, New York, 1961 
3. G. Astarita, Ind. Eng. Chem. Funderm. 1977,16, 138 

175 



TOPICS in POLYMER PHYSICS 

Appendix 3B. Heat of Mixing 

The heat of mixing is derived from a lattice treatment. But, energy of 
interaction terms must be considered as well as the probability of 
molecular placement. Nearest neighbor pairs of molecules are the only 
energy interactions considered. If the distance between all the nearest 
neighbors is assumed the same, then the total internal energy of the 
solution is given by 

En = -[Wii£n +Nl2en + N22e22] ( 3 B j) 

where Nu = the number of solvent-solvent contacts per cm3 
Nii = the number of solvent-solute contacts per cm3 
N22 = the number of solute-solute contacts per cm3 
-eu = the potential energy of a solvent-solvent contact 
-£12 = the potential energy of a solvent-solute contact 
-e22 = the potential energy of a solute-solute contact 

The negative sign is arbitrary and is used so that other quantities such as 
cohesive energy density will be positive. 

The terms in equation 3B.1 are evaluated by the following procedure. 
Let 

Nn-WzPn (3B.2) 

where N\ is the number of solvent molecules per cm3, z is the 
coordination number of the lattice, the number of lattice sites making 
nearest neighbor contact with a given site (assuming that a solvent 
molecule or a segment of a solute molecule occupies each site). Pu is the 
probability that a lattice site about the central site is occupied by a 
solvent molecule and is assumed to be proportional to the volume 
fraction of solvent (<j>\) or 

^ i " A = ' (3B.3) 
Nt + xN2 
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where x = the number of lattice sites occupied by a solute molecule 

volume of solute molecules /„„ . \ 
= (3B.4) 

volume solvent molecules 
The factor of (}/l) is necessary in equation (3B.2) since each solvent-
solvent contact is counted twice. Similarly, since there are xNi solute 
segments, 

N = ^xN zP (3B.5) 
22 2 9 22 

where 

P22 = 02 £ ^ 1 _ (3B.6) 

Equation 3B.6 is not as good an approximation as is equation 3B.3 in 
that a given solute segment site must automatically be surrounded by the 
neighboring solute segments on the same chain. Thus, P22 will be 
somewhat higher than $2, the average volume fraction of segments in 
solution. Now, let 

Nl2=NlZPu (3B.7) 

where P\2 is the probability that a solvent molecule occupies a lattice 
site. Assume that 

pn = pi2 = (t>2 (3B.8) 

so that, using equations 3B.8, 3B.6 and 3B.7 

Nn = (xN^N^KN, + xN2) (3B.9) 

Note that the same result can be obtained from 

Nn = xN2zP2l = xN2zfx = Nu = {xNxN2z)l{Nx + xN2) (3B. 10) 

On substituting equations 3B.2, 3B.5 and 3B.9 in 3B.1 

^ = (K, Z Kr\bN?£» + xN^ + ±#2*^22] (3B. 11) 
(N, + xN2J

L J 

The £ terms in equation 3B.10 are evaluated by an analogous 
procedure. The internal energy change upon mixing is 
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^Em=En-(El+E2) (3B.12) 

where E\ is the internal energy of N\ molecules of pure solvent, and is 
given by 

E^-\Nxzeu (3B.13) 

Similarly, 

E2=-^xN2ze22 (3B.14) 

so that, on substituting equations 3B.12 and 3B.13 into 3B.12m 

AEm = , * x N JfcAfc, + xNA2 + ^Nlx\2) 

-{\Nxen +^xN2e22)](Nl +xN2) = - * + ' ^ J g 1 2 - - ^ u -^e22] 

(3B.15) 

Converting 

xznxn2 x™\n2 r j , -i 

where «;- = the number of moles of i 

Thus, 

HiEm=(A£)nl(t>2 (3B.16) 

where A £ = ̂ A[en -{\/2)eu +(l/2>-,] (3B.17) 

N A = Avogadro's number = 6.02xl023 

a n d & ^ 2 — (3B.18) 
T\ +xn2 

Avogadro's number is inserted into equation 3B.16 to reflect the change 
from A.E per molecule to Ae per mole. 

The heat of mixing at constant pressure is 

AH=Em + PAVm (3B.19) 
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but according to the lattice model, the volume change upon mixing, AVn 

is zero, so that, from equation 3B.15 

AHm = ( A £ ) ^ 2 (3B.20) 

This is the A//m per cm3. To obtain the molar heat of mixing, this must be 
multiplied by V\, the molar volume 

m _ RTftw^ (3B.21) 

where X\ is an interaction parameter , dependent upon the molecular 
types, defined by 

(Ae)K B ^ 
X i = - (3B.22) 

RT RT 

This equation predicts that %\ should vary with 1/ T. Experimentally, 
it is often found that it varies in a manner described by the empirical 
equation 

X . - A + B/T (3B.23) 

contrary to the above discussion. The meaning of A is uncertain and it is 
often referred to "an entropic contribution to Xi "• This may be a 
consequence of errors inherent in the theory for the entropy of mixing. 

The partial molal heat of mixing is 

A#! = dH_ 

dn. 
Vi-RTKd 

1 /P.Tjl, 

xnln2 

n, + xn2 

= RT*, 
2 2 

x n2 = R T ^ ( 3 B . 2 4 ) 

This equation is used in deriving equations 3.80 and 3. 113. 
For athermal solutions (Ae = 0) 

so that 

and Xi = ° 

( A ^ ) - O 

(3B.25) 

(3B.26) 
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For good solvents £12 > (£\\ + £22)^ so that Xi *s negative and (AH,) is 
negative. Heat is therefore given off on mixing. 

In the absence of specific interaction such as hydrogen bonding 

f!2=V^I (3B.27) 

[This result arises from the London theory of "dispersion forces" and is 
reviewed in Hildebrand and Scott, Chapter IV. For original work, see 

R. Eisenschitz and F. London, Z. Physik. 1930, 60, 491, 
F. London, Z. Physik. 1930, 63, 245 
F. London, Z. Physik. Chem. 1930, Bll, 222 

Trans. Faraday Soc. 1937, 33, 8] 
For this case 

2 
A£ = -zA0[(l/2)£n - JTfe + (l/2)£22] = - ( l /2)zA 0 [^ - ^ ] (3B.28) 

A consequence of equation 3B.26 is that Ae and therefore AHm is 
always positive and heat can only be absorbed on mixing. If heat is 
evolved, this must mean that there is specific interaction and equation 
3.25 is not obeyed (e.g. H2SO4 + H2O where hydration of the H+ ion and 
ionization of H2SO4 occurs). A positive AHm tends to make a positive 
contribution to AFm and opposes solution. Therefore the larger the 
difference between •yjen and -^£22, the more positive AE and the poorer 
the solubility. This is a quantitative proof of the empirical statement that 
"like dissolves like" 

It should be pointed out that experimentally, one sometimes find that 
with polymer blends, AHm is sometimes negative, suggesting that in such 
cases, there are specific interactions between components such as ionic, 
dipolar or hydrogen bonding. A negative AHm promotes miscibility. 
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Appendix 3C Osmotic Pressure 
Consider an idealized cylinder model containing two compartments 
separated by a membrane permeable only to the solvent (Figure 3C.la) 
Each compartment has a sliding piston. One compartment contains only 
solvent the other, solvent plus solute. When no outside force acts on the 
system, solvent will tend to migrate from the compartment containing 
pure solvent into the solution compartment. As the solvent compartment 
becomes depleted, the resulting 

pressure = fl = h p g 

piston 
E 

r 
h 

solution 

0 
solvent*^ 

semi permeable membrane ^ — x ' 
semi permeable membrane 

Figure 3C.la Cylinder Figure 3C.lb Idealized osmometer. 

pressure will slide the piston to the right. The model assumes that a 
reverse flow of solute molecules does not occur because the membrane is 
not permeable to solute molecules. The pressure exerted by the solvent 
can be gauged by measuring the force required to restore the piston to its 
original position. Osmometers in which the pressure head produces 
solvent flow through a semi-permeable membrane (Figure 3C.lb) use 
this principle. Osmotic pressure (n) is defined as the pressure required to 
stop solvent flow. The chemical potentials for this process are defined as 

ft°-

&=\ 

<dG^ 

' dG 

TP 
the solvent chemical potential in pure solvent (3C.1) 

dnj 
T p 

"the solvent chemical potential in solution at 1 atmos. pres. 

(3C.2) 
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When ^o 1 > Mi' s ° l v e n t flows through the semi-permeable membrane. 
At equilibrium, 

where A/ii = the increase in n j , because of the applied pressure. 
A(Xi can be evaluated by integrating over pressure 

(3C.3) 

tt- \<ap/ 
JP (3C.4) 

Tfl.fl, 

Rearranging 

and 

Tfl,4l, 
Tfl.fl, 

(3C.5) 

- V 

T " i f l i 

(3C.6) 

since 

Thus 

dF = VdP-SdT 

'w^ -K (3C.7) 

where V, = the partial molal volume which is assumed to have a constant 
value. 

Substituting V, into equation 3C.4 

[v^dP-ydP-nv^rf-H (3C.8) 

Thus 

M,°-M1=nK 

where 
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jtXj — t̂, = the difference in chemical difference 

JX = the work to move a mole of solvent from pure solvent to solution 

or 

u-f^Z^ (3C.9) 

Osmotic pressure is thus the work required to move a mole of solvent 
from pure solvent through the membrane. From the Flory-Huggins 
equation (3.80) 

n = 
RT 

T 
l n ^ + ( 1 _ iK + ^ : 

(3C.10) 

Equation 2Cm.lO can be transformed into a more tractable form by the 
following operations. If we let 

ln<ft=ln[l-02] (3C.11) 

and expand In [1 - fo] by a Taylor's series 

ln[l-02]S-02-l02
2 

Then substitute into equation 3C-10 

n = S -^-h*Hl-^Y+xA=WMk-x¥ 

(3C.12) 

(3C.13) 

The following definitions are used to modify equation 3C.13 into 
experimentally accessible quantity 

02 = 
volume solute wt. solute volume solute 

volume solution volume solute wt. solute 

J_ 
Pi 

f f 
and 
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X = 
volume mole fraction 

weight mole polymer 

_ volume mole polymer weight mole polymer 

volume mole solvent volume mole solvent 

Pi f Mi 
V, f 

Thus 

n = 
RT 

T 
M c2 
M2 p2 • ( 2 - * ) ^ 

For low concentrations, Vj can be approximated by V\, so that 

n = RT 
M, 

2 ~ Xi 

~P& 
= RT 

M, 
- + A2c2

2 

where A2 = the second virial coefficient = = (1/2)-X! 

pl\ 

(3C.14) 

(3C.15) 
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4.1. Introduction 

The optical properties of polymers are important in terms of both their 
applications as technological materials and the information obtained on 
their structure. For example, many applications ranging from packaging 
film to glazing materials require transparent polymers. At a higher 
technology level, the transmission of information by fiber optics, the use 
of optical discs for storing music, video and computer data and the use of 
non-linear optical devices in "optical switches" are common 
applications. Means for obtaining transparency are therefore a prime 
concern in these applications. The structural information gleaned from 
optical techniques ranges over a broad size distribution from the 
molecular level examined by neutrons and x-rays to the macroscopic 
sizes visible to the unaided eye. Thus, a hierarchy of structural sizes can 
be constructed based on optical data. In addition, optical techniques have 
the advantages of being non-destructive, specific and rapid. 

The subject matter of this chapter deals with the interaction of 
radiation with matter. While most of the discussion deals with 
electromagnetic radiation, much of the formalism also applies to "matter 
waves" or deBroglie waves such as those associated with electron beams 
or neutrons. Although the equations describing this interaction are valid 
for all classes of materials, the treatment in this chapter is restricted to 
solid polymers. Chapter 5 treats the properties of polymers in terms of 
their intrinsic electrical behavior. The material in this chapter is also 
limited because only the case of the response of materials when subject 
to radiation of constant frequency (or wavelength) without gain or loss of 
energy to the system is discussed. The effect of varying frequency 
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because of its importance is described in a separate chapter on 
spectroscopy (Chapter 6). This chapter addresses primarily the topics of 
refraction and its offshoot, double refraction or birefringence, scattering 
phenomena including diffraction, light absorbance and fluorescence. 

Figure 4.1. Diagram showing the relation between the magnetic and the electrical fields 
for plane polarized light. 

4.2. Nature of Electromagnetic Waves 

Electromagnetic radiation consists of simultaneous fields varying 
periodically with position and time. In free space, these fields act 
perpendicularly to each other and to the direction of propagation of the 
wave. The direction of polarization of the radiation is defined as being 
parallel to the electrical field. For unpolarized light, the polarization 
direction varies randomly about the propagation direction; while for 
plane polarized light, the field is restricted to a plane containing the 
propagation direction (Figure 4.1). For the interaction of the wave with 
matter, it is usually sufficient to consider only the effect of the electrical 
field. With circularly polarized light, the direction of polarization rotates 
about the propagation direction, either clockwise or counter clockwise in 
phase with the wave. It may be generated by two perpendicular plane 
polarized waves differing in phase by 1/4 wavelength. The wavelength of 
the radiation is the distance between corresponding points on the wave. 
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The velocity of propagation (c) is the product of the wave length (K) and 
the frequency (V), the number of waves per unit time, or 

C = Xv (4.1) 

c has a value of 3.00xl08 m/s in free space. The electromagnetic 
spectrum covers a wide wavelength span from 10"10m, the x-ray region, 
to <=»105 m, the low frequency radio region. Visible light with wavelengths 
from roughly 300 nm (violet) to 800 nm (red) constitutes only a small 
fraction of the electromagnetic spectrum. When electromagnetic 
radiation impinges on matter, the radiation may follow one of several 
paths depending upon the wavelength and the material characteristics. It 
may be reemitted - the so-called elastic process - as scattered radiation. 
Scattering causes losses in transmitted energy, and in the limit of 
periodic structures and radiation with wavelengths of the same 
magnitude as the structural periodicity, leads to diffraction effects. The 
interaction of the radiation with molecules of the medium results in a 
decrease in the velocity of the waves leading to refraction phenomena. 
Finally, the molecule may absorb radiation. The absorbed energy may be 
transferred to other modes of motion and subsequently dissipated as heat. 
Another possibility is that part of the energy may be transferred to or 
from other modes and may be emitted as a photon of higher or lower 
frequency. If the transfer occurs with phonons, Brillion lines result. 
Transfer between molecular energy levels leads to Raman lines. If the 
excited state is electronic, fluorescence occurs, or for high level states, 
phosphorescence. Energetic (x-ray or uv) photons can produce 
dissociation of chemical bonds leading to chemical reactions or may 
eject photoelectrons (XPS) [x-ray photoelectron spectroscopy] or ESCA 
[electron spectroscopy for chemical analysis]). Fluorescence is observed 
with the transfer of the residual energy to electronic modes; whereas, 
Raman scattering is associated with energy transfer to or from rotational 
or vibrational modes. 

4.3. Refraction 

The interaction between electrical fields and matter can be described in 
terms of polarizability (Chapter 5). The dipole moments induced in 
matter by electrical fields slow down wave propagation. The result of 
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polarizability on a macroscopic level is refraction. Electromagnetic 
radiation traversing a polarizable medium is slowed down from its 
velocity in vacuum, c, to a lower velocity in the material, v . The 
refractive index (r\) is defined as the ratio 

c 
rj 

v_ 

The frequency of propagation is Kummm anu uura uui n 
between vacuum and the medium, so that, from equations 4.1 and 4.2 

(4.2) 

constant and does not change 

c 
r] = — 

v_ ' vA 
(4.3) 

where A0 is the wavelength in vacuum and A, that in the medium. The 
refractive index for visible light is usually greater than one. For a typical 
polymer, X) may be of the order of 1.5. Values less than one can be 
encountered with x-rays and neutrons. 

_ 6 
incident 

ray 

refracted ray 

Figure 4.2. Relation between the angle of incidence and the angle of refraction 
As is exemplified in Snell's Law. 

The retardation or slowing down of electromagnetic radiation in 
passing through a medium results in bending of the rays at a planar 
boundary. This bending or changes in direction of the radiation rays can 
be used to measure 1, from Snell's Law 
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sinfy 
sinfl 

(4.4) 

Light or X-Ray : | | | | j |p | | i ' 

Neutrons 

%• . i i V . • 

Figure 4.3. Diagrams showing that x-rays and light scattering involve 
extra-nuclear scattering, while neutron scattering depends on the nature 

of the atomic nucleus. 

where 0, is the incident angle and 0r; the refraction angle (Figure 4.2). 
For light rays, the formation of an image in the optical microscope 
depends on this phenomenon. However, because x-rays are only slightly 
retarded in traversing a medium, the refractive index is so close to one 
that the amount of bending is small. Because of its low refractive index 
and absorption by most materials, no material analogous to glass in 
optical microscopy is available to refract x-rays. However, devices such 
as x-ray microscopes have been constructed by employing reflection 
optics or zone plates. Neutron radiation also shows the phenomenon of 
refraction although its origin differs from that of electromagnetic 
radiation. The neutron beam interacts with the nucleus (and not the extra 
nuclear electrons, (see Figure 4.3). Also, the scattering intensity of 
neutrons does not regularly increase with atomic number as occurs with 
x-rays or light, but varies in a more complex manner related to nuclear 
structure. The interaction of neutrons with matter is weak. This has 
advantages in that many materials are transparent to neutrons simplifying 
experimental design as well as exhibiting minimal background hazards. 
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On the other hand, since the low energy neutron radiation used for 
scattering is not ionizing, its detection is difficult. The fact that neutron 
radiation is usually not ionizing results in its being less of a biological 
hazard and presents less danger to the experimenter than x-rays do. 

The refractive index is related to the polarizability per unit volume, 
P, by the Lorenz-Lorentz equation (Appendix 5B) 

where P = Na = the polarizability per unit volume 
a = m/E = the molecular polarizability 

and 
N = the number of molecules per unit volume 

The P or polarizability term is that for the radiation of light wave 
frequencies and does not include contributions from dipole orientation as 
might happen at low frequencies. 

In defining a = m/E, one is assuming linear optics. In general, 

M = aE + a'E2 + a"E3 + ... (4.6) 

where a' and a" are hyperpolarizabilities. At the low intensities of light 
we are considering, E is sufficiently small that the higher terms be 
neglected. At the higher intensities obtainable with lasers, E is 
sufficiently large that these terms must be considered, giving rise to the 
important area of non-linear optics described later in this Chapter (4.12). 

In deriving this equation, the effect of the surroundings of a molecule 
(internal field) is taken into account by assuming that it resides within a 
spherical cavity (Lorenz field). This assumption can restrict the 
applicability of this equation. The macroscopic quantity, P, is related to 
the microscopic quantity, the molecular polarizability (assumed in this 
case to be isotropic so that a and P are scalar quantities) 

f"lH ( (4-7) 
where [am). is the molecular polarizability of the j"1 molecule and the 
summation is carried out over all molecules in the unit volume. Equation 
4.7 assumes that the molecule is located at the center of an isotropic 
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force field. For an anisotropic force field, the refractive index varies with 
the polarization direction. In this case, equation 4.6 can be applied to 
each direction using a different refractive index. The change in refractive 
index corresponding to small changes in polarizability can be found by 
differentiation, 

6r\dr] _(AS 

fa2+2) 
Jtdp (4.8) 

Thus, for small refractive index differences, 

2 (W2 + 2 f 
Ar7=r7l-r72 = - J r V ; (Px-P2) (4.9) 

9 ((,,)) 

where A 7̂ refers to the averaged value of ^i and t]2 and A r] is the 
birefringence. The equation becomes a poor approximation when A Y] is 
large or when higher order terms in AP are neglected. Equation 4.9 
relates refractive index, birefringence and polarizability. It also shows 
that birefringence can be calculated from the polarizability difference. 
Details of this calculation are presented in Section 4.8. 

4.4. Scattering 

Light scattering and polarizability arise from fluctuations in refractive 
index associated with the outer electrons. X-ray scattering depends on 
fluctuations in electron density where all the electrons contribute equally. 
Thus, there are polarization effects in light scattering but not in x-ray 
scattering. Neutron scattering, by contrast, is related to fluctuations in 
neutron scattering wavelength usually related to fluctuations in the 
correlation of various isotropic species. The electrical field (E) from 
electromagnetic radiation incident upon an atom can be expressed as 

E = E0 cos cot (4.10) 

where E0 is the amplitude of the incident field and co, the angular 
frequency (2nv). If the polarizability of the atom in an isotropic force 
field is given by a, a dipole moment, m, will be induced 

m = oE = E0a cos cot (4.11) 
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This assumes that the frequency of the radiation is less than the 
resonant frequency so that the dipole vibrates in phase with the field. 
According to electromagnetic theory [1], this oscillating dipole will serve 
as a source of secondary radiation (scattering) of amplitude 

£ _L^cos</> (4-12) 
c2r dt2 

where c is the velocity of light, (Figure 4.6) and r is the distance of the 
observer from the scatterer. The angle ip is that between the dipole 
moment and the plane of the polarization seen by the observer. 

Substituting equation 4.11 into 4.12 gives 

Es = j—cosipcosycot) (4.13) 

for the electrical field amplitude at the scattering center, and 

Es= ?— c o s V* cos( cot -tp) (4.14) 

c r 
where $ is a phase angle which takes into account the distance, d, a wave 
must travel to reach the observer or 

2nd cod . . . 
4> : (4.15) 

A c 

The distance, d, is measured from an arbitrary reference point and 
may include a portion of the distance traveled by the incident beam as 
well as by the scattered beam. These equations assume that the electric 
field at the scattering point is not modified on crossing dielectric 
boundaries. This assumption is referred to as the "Rayleigh-Gans 
approximation". Deviations from this assumption can be treated in 
simple cases such as in the Mie scattering from spheres. 

Equation 4.14 was derived for the Rayleigh scattering case - the limit 
in which the frequency of the light is small compared to that of the 
resonance frequency of the electrons. For x-ray scattering, the frequency 
of the radiation is higher than resonance. In this limit, the case of 
Thomson scattering holds and 
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Es = - -—r-^-cos t// cos(a>t -<p) (4 16) 
m0c r 

where q is the electronic charge and m0 the electronic mass. Thus, all 
electrons scatter x-rays equally, so that the x-ray scattering ability of an 
atom just depends on the number of electrons given by its atomic 
number, Z. At these high frequencies, the force on the electrons is largely 
a result of the momentum rather than the restoring forces arising from 
chemical bonding. This explains why x-scattering does not depend on the 
arrangement of chemical bonds, and hence, does not depend on 
orientation nor result in "x-ray birefringence". It should be noted that 
Thomson scattering is independent of frequency and polarizability while 
Rayleigh scattering is dependent on frequency and polarizability. Thus, 
more polarizable molecules (larger, conjugated, more aromatic) are 
better Rayleigh scatterers than others. The x-ray scattering ability of an 
atom just depends upon the number of electrons it possesses as given by 
its atomic number. Neutron scattering depends upon nuclear properties. 
Hence, hydrogen is a strong neutron scatterer although it is a weak 
electron scatterer. In both cases, the scattering equation may be 
compressed from a trigonometric form to a complex exponential form 

(£,).-tf,exp[i(orf-0y)] (4.17) 

where the subscript, j , refers to the scattering from the/h object and Kj is 
proportional to the scattering power of they"1 scatterer. For a collection of 
scattering objects, the total field strength of the scattered waves is 
additive, or, 

E- - 2 ( £ ' ) ; = Eo^Kjexp^cot-^)] (4.18) 

This expression is the basic equation in scattering theory for two 
reasons. First, all scattering phenomena (light, x-ray, and neutron) can be 
interpreted in terms of this equation. These techniques differ mainly in 
the structural entities that contribute to the Kj term. For light, as pointed 
out previously, the refractive index or polarizability is the principal 
contributor. For x-rays, the electron density is important, and, for 
neutrons, the nature of the scattering nucleus [2]. Secondly, equation 
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4.18 represents a starting point for the discussion of the interference 
problem presented below. 

4.4.1. Intensity of Light Scattering for an Isolated Atom or Molecule 

The intensity of light scattering for an isolated atom or molecule is 
proportional to the mean squared amplitude (product of the scattered 
intensity and its complex conjugate in complex exponential notation) 

I,-K(E]) (4.19) 

where the proportionality constant, K, is equal to c/4n for 
electromagnetic radiation and c is the speed of light. Combining 
equations 4.14 and 4.19, 

lt = K ^ f ^ c o s ^ ( c o s 2 ( ^ - 0 ) ) (4-20) 

The average is over all values of time. Thus, the relation 

/
'2x 

cos xdx i 

J> 2 
0 

holds, so that equation 4.20 can be simplified to 

a2£nV 
^ _ x ^ « c o s 2 ( 4 2 2 ) 

2r2c4 

Since the incident intensity is given by 

/„ = K(£2) = K£0
2(cos2 am) = - K£2 (4-23) 

The ratio of the scattered to incident intensity is given by 

/ a V 
4 „ 2 h cV 

cos ip (4 24) 
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Figure 4.4. Resolution of a plane unpolarized incident beam into 
polarized components. 

4.4.2. Effect of the Polarization of Light 

Equation 4.24 is valid only for a plane polarized light beam. For 
unpolarized incident light, the beam is resolved into two polarized 
components at right angles to each other and to the transmitted light 
beam (Figure 4.4). The scattered intensity can thus be expressed as 

(4.25) W , 2 

or, on substituting equation 4.25 into 4.24 

Is aiQyi (cos2V,+cos2i/>2) 
7^"'c5r^ 

From Figure 4.4, it can be seen that ty\ = d and ifa = 0° so that 

I, aw(1 + cos2e) 
i c4r2 

(4.26) 

(4.27) 

The frequency term may be converted to wavelength by means of the 
relations 

c c 
and on substituting in equation 4.26 

a>4 _ 16JTV4 _ 16^4 

4 _ _ 
(4.28) 

A4 
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L = ^L(l + cos*8) (4.29) 

This equation states that: 
(i) / »1/A4 this relation states that shorter wavelengths scatter more 

than longer ones. Thus, if the incident light is white, the short wave 
lengths (blue) scatter more than the long ones (red). It should be noted 
that violet would be scattered even more strongly. However, the sky 
looks blue because the sensitivity of the eye decreases as one increases 
frequency in going from blue to violet. Therefore, the light from a clear 
sky is blue due to scattering by gas molecules in the atmosphere. Also, 
sunsets are red because the transmitted light from the sun that has passed 
through the atmosphere and has lost the higher frequency blue-violet 
component because of scattering. It also might be pointed out that 
Polaroid™ filters are useful for taking photographs of clouds, since they 
can make the polarized blue light from the sky appear dark, whereas the 
white light arising from scattering by the larger water droplets in the 
clouds is not (as will be discussed later) so its intensity is not reduced by 
the filter. 

(ii) At 6 = 0° the scattering comprises both polarization components 
of the incident beam. At 6 = 90°, the scattered light is one half as intense 
because it arises from only one component ZToi- Consequently, the 
scattered light at 90° will be plane polarized [specifically vertically 
polarized with the electrical vector vibrating perpendicular to a plane 
defined by the directions of propagation of the incident beam and the 
scattered beam (Figure 4.4)] (Appendix 4A). The polarization of 
scattered light from the sky may be demonstrated by viewing the blue 
sky through Polaroid sunglasses. Complete polarization at 90° is only 
true if the scattering is from isotropic molecules. Actually, the 
atmosphere is composed of O2 and N2 molecules that are anisotropic 
leading to partial polarization as discussed later in this chapter. 

4.4.3. The Scattering Intensity for a Collection of Scattering Objects 

The amplitude of scattering from a collection of objects is found by 
summing the amplitudes from the components, taking phase differences 
into account. For random locations of such objects, phases will be 
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random. Then, intensities are additive. The result for N identical 
randomly oriented molecules (see equation 4B.10) is 

/ . 8*r4Ate2, 
s __ 

h *V 
-(l + cos26>) (4.30) 

is similar to equation 4.29 except for the inclusion of the term N. A 
modified form of equation 4.30 is conveniently used to express the 
scattering power of a system in terms of the "Rayleigh Ratio" defined as 

(l + cos20) (4-31) 

where Vs is the scattering volume. In terms of the Rayleigh Ratio, 
equation 4.30 becomes 

R'ir{v)v^^e) <4'32) 

It should be noted the R is independent of 6 only if it is divided by the 
term (l+cos20) (for unpolarized light). 

Thus, in this case, the scattering serves as a means for counting the 
number of molecules per unit volume (N/V). It is apparent that a is 
greater for larger molecules that scatter more. A simple theory for 
scattering of uniform spheres of radius Rs gives a = Rst so that R is 
proportional to the molecular radius or the molecular weight. It is of 
historical interest that this equation was used to estimate an approximate 
value of Avogadro's number from the scattering intensities of gases. One 
of first determinations was done by Raman's group [3]. 

The above treatment is valid for molecules that are small compared to 
the 

Es=k-^— cosip^ccjcos^cot-fij") (4.33) 
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Rayleigh 
Ratio 

R large molecule 

Scattering Angle Q 

Figure 4.5. Variation of Rayleigh Ratio with scattering. 

wavelength of the incident beam. Thus, in equation 4.16, the volume 
term was assumed to act as a point scattering source. The polarizability 
term a in equation 4.33 represents the total polarizability of the 
molecules in a volume element and it is assumed that all parts of a 
molecule are sufficiently close so that the spacing term dj /A may be 
taken as the same for all molecules. This leads to the prediction that the 
Rayleigh Ratio value is independent of the scattering angle 6 (Figure 
4.5). For molecules having dimensions comparable with the wavelength, 
phase differences will occur between waves scattered from different 
regions of the molecule. These phase differences result in an angularly 
dependent reduction in scattered intensity. This reduction may be 
expressed using of an interference factor P (6) such that 

( * - * > ) - ( * - * ) , / • ( * ) (4.34) 

where (R - R0)o is the Reduced Rayleigh ratio neglecting intramolecular 
effects and R0 is the Rayleigh ratio of the solvent of a solution. 

It follows, from this expression, that 

(4.35) 
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where the summation is over all parts of a molecule and < > denotes an 
average. 

Large Molecule / 

Figure 4.6. Variation of P(6) with change in scattering. 

The nature of P (6) may be qualitatively deduced as follows. The 
diagram in Figure 4.6 shows that, for scattering in the forward direction 
at angle 0j, to 0, the path difference between the rays from elements A 
and B of the molecule (dB - dA j is less than that at the backward angle 
02 to observer O2, I dB - dA I. So, a greater phase difference occurs at 62, 
and if the dimensions of the molecule are something less than a wave 
length, destructive interference occurs and P (6) < 1. If the molecular 
dimensions are much greater than a wavelength, destructive and 
constructive interference occur leading to maxima and minima in P (6). 
These may be experimentally seen from samples in which the scattering 
objects are of uniform size with white light, the maxima and minima 
occur at different 6's for different A's, so colors are seen. With a 
distribution of sizes, the maxima and minima occur at different 6's, so 
they are "washed out". Thus, only a uniform drop in intensity with d is 
usually observed. For 6 = 0°, no path difference exists, [dB -dAj, and P 
(8) = 1. Thus, this technique may be used to estimate size, since with 
increasing molecular size, the phase difference decreases more rapidly 
with increasing angle and therefore P (6) decreases more rapidly with 
scattering angle (Figure 4.7). 

Equation 4.16 gives the total amplitudes of scattering from a 
collection of objects and represents a logical starting point for an 
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exposition of interference phenomena associated with molecular size. 
From equation 4.12, an alternate form of equation 4.18 

Interference 
Factor, P(f?) 

Scattering angle, 9 

Figure 4.7. Angular variation of the interference factor P{6) in different 
molecular sizes. 

Es = E0 \ Kj exp icAt - [^ /c l ] = E0 V Kj exp[iatf]exp[-ia*i,./c] 

may be derived as follows. 
From Figure 4.8, the following relations can be deduced 

d,=A + B 

A = Tj-s0; B = D-C; C = r . . s , 

Thus 

(4.36) 

(4.37) 

(4.38) 

dj=r,s0+D-r,sx=D + r,(s0-sl) = D + (r,s) (4.39) 

where s = s0- s = the propagation or scattering vector 

s0 =the unit vector in the incident ray direction 

s, = the unit vector in the scattered ray direction 

r, = the vector to the j'hscattering element 

On substituting the expression for dj in equation 4.39 into equation 4.36 
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Es = E0 exp[zWjexp[ikD] Y A} exp| -Mrj • s H = Fexp[jwf]exp[ikD] 

j 

(4.40) 

reference planej. to SQ; incident wave front 

i element of scattering object 

*1 

large value 

Figure 4.8. Relationships between vectors S] and s0 and a scattering angle. 

where i = (-1)1/2 andF = 2^Ajexp[-ik[ri»s)\ is the structure or form 

factor for the object that is a characteristic of the object's geometry in 
calculating the form factor in terms of system geometry. As an example, 
consider F for a system composed of spherically symmetric scatterers. 

For a medium regarded as a continuum consisting of an infinite 
number of infinitesimal elements, the summation in equation 4.40 may 
be replaced by an integral 

F = 2A - j exp[-^(r. • s)] = | p(r)exp[-^(r j.. s)]rf3r (4.41) 

where p(r) dr is the amplitude scattered by a three dimensional element 
with a volume d3p. In polar coordinates (Figure 4.9), this volume 
element becomes 

d3r = r2 simpdrdxjjdcj) 

so that, on substituting in equation 4.41 

(4.42) 
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F= J I I p[r,ip,(t>)exm-ikltj • sjcostp r2sinipd<pdr\ (4.43) 

: i; : :v *XY 

^s* ^ 1 plane 

Figure 4.9. Polar coordinate system for locating the position of a scattering volume. 

For spherically symmetric systems, p(r,ip,(p) is independent of the 
angles ip and 0 so that 

p(r,y,<p) = p(r) (4.44) 

and from the definition of a dot product 

IV •S = r5COSM (4.45) 

where u is the angle between r and s. In the present case, we may rotate 
the coordinate system so that u = ip since, for a spherically symmetric 
system, this may be done without changing p and 

J*" i*x f*2x 

p(r} I exp[-ikcosV]sint/;di^ I d<j)r2dr (4.46) 
x-0 J y-0 J 0-0 

Since 
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2K 

d<f> r2dr = 2JZ (4.47) 

then 

p(r}r2dr I exp[-ikr.scosi/>]sim/;dt// (4.48) 

The second integral in equation 4.48 when integrated by parts yields 

I exp[-ikrj cos y 1 sin ydy = — eydy = —ey I 
J y-o a J-a a Ua 

'ihr „ - ihr 

e - e 
a ihr 

Equation 4.49 may be simplified by noting that 

(4.49) 

e - e 
sinx — (4.50) 

The expression for the form factor becomes, 

F = 4n plr)S™3Lr*dr (4.51) 
r-o qr 

4TT 
where q = sin# 

A The interference factor described previously (equation 4.34) may be 
expressed in terms of the structure factor as 

f p(r)™2ir>dr 

I p\r)r dr 
J x-0 

Using the following approximations, the scattering from an isolated 
sphere may be calculated from equation 4.51. This derivation neglects 
the influence of the sphere surface in distorting the electrical field. This 
is valid provided the radius and scattering power are not too high (the 
Rayleigh-Gans-Debye approximation). Also, the derivation also assumes 
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the sphere be uniform, so that p(r) = p0 and surrounded by non-scattering 
material so that p(r) if r > R. With these assumptions, equation 4.51 
becomes 

l(U) 

u 
Figure 4.10. Sketch showing the dependence of l(lf) on U. 

rSP=4m 
sin or 2 i — r dr 

Changing variables, x = qhr 

F*P = 

4jtPo nR-n, w 

— p - I xsmyx jdx 

Integrating by parts gives 

Fsp=^.[sinU-UcosU] = Vspp0<S>(u) 

(4.53) 

(4.54) 

(4.55) 

where Vsp = the sphere volume 

F(U) = the sphere scattering function = J7j[sinU ~ Ucos u] 

The sphere scattering function shows a damped response with 
maxima and minima (Figure 4.10). Equations 4.53 - 4.55 are valid if the 
sphere is surrounded by non-scattering material. For the case where the 
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sphere is surrounded by uniform scattering mattering of scattering 
amplitude, ps , then the same equations would result except that instead 
of p0 , the expression (p0 - ft ) would be substituted. Then the intensity 
depends on the contrast, (p0 - pk )2. Thus, the scattering goes to zero when 
ps = p0 (contrast matching). This also illustrates the reciprocity principle 
where the scattering remains the same if the scattering powers of the 
medium and the surroundings are interchanged, so that spheres of a solid 
in a liquid scatter the same as spheres of liquid in a solid. 

The parameter U is a measure of the scattering angle and depends 
upon the ratio of R to A. 

U = qR = 4 jr(i?/A)sin(0/2) (4.56) 

Equation 4.56 also shows F is proportional to the sphere volume, Vsp 

or to R3 so the intensity varies as R6. Thus, the scattered intensity 
increases greatly with sphere size, and if there is a distribution of sizes, 
the scattering is dominated by the larger ones. This dependence indicates 
why it is essential to remove larger dust particles when studying 
molecules by scattering techniques. A sphere 10X as large as another 
will scatter 1,000,000X as much. 

4.5. Diffraction 

Diffraction is a special case of scattering that arises when spacings are 
regular. The spacing between atoms in crystals is on the order of 
angstroms (1010 m). The wavelengths of electrons, x-rays, and neutrons 
are in the same range. 

The "wave-vector Bragg" equation describes diffraction phenomenon 
and can be derived using the reciprocal lattice approach as shown in the 
next section. 

4.5.1.The Reciprocal Lattice 

Consider a crystal unit cell (Figure 4.11) defined by the three lattice 
vectors, ai, a2 and &3 (not necessarily orthogonal). 

We shall also define a set of "unit" reciprocal lattice vectors, bj, b2 

and b3 by 
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b , 3 x a 3 
[a^al 

b2 = a 3 xa , b, = . a ' x a * , (3.57) 
[aia2a,] 

Here [a1a2a3] is the "triple product" defined by 

[aia2a3] = (a, xa2)«a, = a, «(a2 xa3) [a,a2a3] (3.58) 

and is the volume of the unit cell, Vu. 

Figure 4.11 Diagram of a crystal cell defined by three lattice vectors. 

Recall that A • B = Aficos dAB for a scalar product (Figure 4.12) 

A x B = ABsin 8ABk (for a vector product) 

Figure 4.12. Diagram showing the angular relation between vectors A and B. 

k is a unit vector perpendicular to A and B and in the direction of a right 
handed screw rotating from A to B 

Let us now define a "reciprocal lattice" vector, H, by 
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H = /i1b1 + /z2b2 + A3b3 (4.59) 

h\, h2 and /z3 are integers called the "Miller Indices" (often designated 
h,k,l) whose nature will be described later and which describe the 
orientation of crystal planes. 

Let us consider the scalar product a t • H 

H = /?,bj + /j2b2 + /j3b3 4.60) 

Consider the term 

( » i " b i ) - a i ' 
a2xa3 = 

[a,a2a3] 

[a,a2a3] 
= 1 

Similarly 

It also follows that 

(a2-b2) = (a3 .b3) = l 

(a1 .b2) = a 1 . T
a ^ T = 0 

(4.61) 

(4.62) 

(4.63) 

since (a3 x a 1) lies perpendicular to ai so its dot product with ai is zero. 

By similar reasoning, it follows that 

( a , -b 3 ) = 0 

and in general 

(».*bjK 

where <s is the "Kronecker delta" defined by 

l ^ -Oi f i . y 

Thus 

a , ' H = ^ 

similarly 

(4.64) 

(4.65) 

(4.66) 

(4.67) 
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a 2»H = /t2 (4.68) 

and 

a3«H = A3 . (4.69) 

This may be compared with the modified equations for constructive 
interference for a three-dimensional crystal 

a1«(s/A) = n1 

a2«(s/A) = n2 

a3«(s/A) = n3 

It is evident that these equations are of the same form and are identical if 

H = (s/A) (4.70) 

and 

/j1,/i2,/z3 = n1,n2,«3 (4.71) 

4.5.2. Interpretation of the Vector Bragg Equation 

Equation 4.70 is referred as the "Vector Bragg Equation" which 
expresses the relationship between H, a vector characterizing a crystal 
plane, and s, a vector characterizing the scattering geometry, for 
constructive interference to occur. Such a vector equation implies two 
conditions: 

The directions of H and s are the same. 
Their magnitudes are equal 
The first condition defines the orientation of a crystal necessary for 

diffraction to occur. The second condition leads to the conventional 
"scalar" Bragg equation, 

nA = 2dsin0fl (4.72) 

where 
n = the order of the diffraction 
d = the distance between crystal planes, and 
0B = the Bragg angle {612), 
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where 6 is the scattering angle between the incident ray, s0 and the 
scattered ray, Si 

This defines a set of 0's corresponding to the set of d's.We may now 
interpret the vector Bragg equation 

H = (s/A) (4.73) 

We see that the vector, H, is perpendicular to the ( f y ' ^ A ) crystal plane 
(Appendix 4C). It must be parallel to the vector, s, whose nature we will 
now examine. From its definition 

s — Sj s 0 (4.74) 

Since H is perpendicular to the crystal plane and H is parallel to s, s must 
be perpendicular to the crystal plane. Therefore, triangles ABC and DBC 
(Figure 4.13) are congruent, 

0,=02=0/2 = 0B (4.75) 

Therefore, the Bragg diffraction angle 0B is equal to one half the 
incident ray, s0, and the scattered ray, si. 

CRYSTAL PLANE B/-.^ j 
/y "%# ,6C2 

CONGRUENT , ' 
W:> 

TRIANGLES 

UNIT LENGTH 

N. 
90° 

D 

Figure 4.13. Relationships used in deriving the Vector Bragg equation. 

4.5.3. The Distance Between Crystal Planes 
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Since, see Appendix 4D, 

H = \ll\ = l/d (4.76) 

it follows that 

\/d2=H2=H'H (4.77) 

Now 

H = /i1b1+/i2b2 + /i31b3 = Y/i,.b. (4.78) 

so 

w 2 = 2 E^(b' , b^)=S / i'b'+22^(b' , b^ (4-79) 
i j '*j 

Since the crystal system is specified by the ai's and determines the 
b^s, this permits the calculation of the d's for any (hi h2 h3) plane of a 
crystal. 

Orthorhombic crystals have their axes perpendicular. Thus, since bi is 
perpendicular to &2 and a3, it will be parallel to ai. Then bi, b2 and b3 will 
be perpendicular to each other, so 

(b, • ! > , ) - 6 , ^ (4.80) 

where di} = the Kronecker delta (equation 4.100) 
Since, for an orthorhombic crystal, 

|a,a2a3J 0,0^3v 

where (a,/a,) is a unit vector in the at direction. Thus 

^ - ( l / o , ) (4-82) 

Similarly, 

b2 = (l/a2) and b3 = (l/a3) (4.83) 

so 
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w 2 =2^ 2 + 22^( b - - b j ) (4-84) 
For the special case of a cubic crystal, a, + a2 + a3 = a, so 

lA/ 2 =(l /a 2 )^>, 2 (4.85) 
i 

and 

d= , a (4.86) 
•^hf + hl+hl 

4.5.4. The Diffraction Phenomenon in One Dimension 

To illustrate the diffraction phenomenon in one dimension, consider a 
linear array of identical scattering objects separated by a distance, a. The 
sum over the atoms in equation 4.41 

F = K l + r ' + e v '+ex '+. . . (4.87) 

This equation predicts a maximum in scattering when the phase 
differences between waves scattered from the different particles are 
integral multiples of the wavelength. 

k(a.s) = n(2tt) (4.88) 

since 

exp"(2,t>=l 

and the scattering from all the atoms will be in phase, or 

a . s = «A (4.89) 

where n, the multiplicity factor, is an integer commonly termed the order 
of the diffracted ray. The scattering peak sharpens as the number of 
objects, ./V, in the linear array increases. For very large numbers, the peak 
is restricted to a small, angular range. On the other hand, the broadening 
of diffraction peak with a smaller number of objects provides a means for 
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the determination of crystal size. For smaller crystals, N is less and the 
diffraction peaks are broader. 

An extension of this concept to three-dimensional crystals provides a 
means for measurement of crystal size from the width of diffraction 
peaks. Larger crystals lead to sharper peaks. The numerous sharp peaks 
observed at discrete angles for this scattering form a diffraction pattern. 
For radiation incident at an angle 02 to the array, the scattering angle dq 

(Figure 4.14) is given, from equation 4.89, by 

a(cos 0, - cos 02) = nX (4.90) 

Since a . 8 = a . [ 8 , - 8 J 

a-s, -a-s 2 = a(cos0j -cos02) (4-91) 

As illustrated in Figure 4.14, vectors for the two angles sweep out conic 
sections in three dimensions on rotation. The apices of the cones join at 
the diffracting surface. In addition, as shown in Figure 4.14, the 
intersection of the diffracting cones with a photographic film yields the 
characteristic x-ray diffraction pattern. In 2 or 3 dimensions, a 
corresponding equation must be obeyed in each direction, each defining 
a set of cones as the locus of constructive interference in that direction. 

The condition for constructive interference in all dimensions is a set 
of the common intersection of these cones, defined by the simultaneous 
solution of the respective equations. Thus, the equations represent one 
form of the scattering conditions required for diffraction to occur in three 
dimensions 

a-s = 2asin0cosa = /iA 

b-s = 2bsin0cos/3 = £A (4.92) 

c • s = 2c sin 0cos y = Ik 

where a, ft and y are the direction cosines of the vector s, i.e., of the 
normal to the reflecting plane determined by the coordinate system a, b 
and c. Ifd(hkl) is the spacing of the lattice, then 
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d(hkl) = —cos a = —cos B = —cos y 
K ' h k I (4.93) 

a cos 6\ = n A 

The geometry of 
diffraction has the form 

,$1 depends upon QQJT\ 

Photographic Diffraction7 

film / pattern 
The diffraction 
consists of a 

Incident f a m i l y o f 
b e a m parabolas. 

Figure 4.14 Diagram showing Bragg diffraction condition for one-dimension. 

because the direction of s is normal to the reflecting plane. On 
substituting equation 4.83 into 4.92, the Bragg equation based on the 
reflection condition 

2d{hkl)sin6 = nX (4.94) 

for the diffraction of x-rays from a crystal lattice is obtained. The Bragg 
equation express the interference conditions that must be met 
simultaneously so that a maximum be observed with a three-dimensional 
periodic structure or diffraction grating. 

Klug and Alexander [4], James [5] and Kakudo and Kasai [6] cover 
in monographs the spacing for different unit cells, the intensity, the 
application of the reciprocal lattice to the structural assignments, and 
other topics regarding diffraction. 
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This formalism also permits the calculation of diffracted intensities. 
We have seen (equation 4.40) that 

F = 2K 7 - exp(qT; ) (4.95) 

and since 

q = k s = ( 2 ^ / ) AH = 2;rH (4.96) 

and 

iv = Xj& + y^b + ZjC (4.97) 

Then 

q«r, =2^H»(x.a , + y^ + z/i,)] (4.98) 

but, for example 

H»a1=(/i1b1+fc2b2 + /i3b3)-a1=/i1 (4.99) 

since 

b ;.a.=<5, (4.100) 

where 8y = the Kronecker delta. 
The Kronecker delta has a value of 1 when i equals j and has a value 

of 0 when / is not equal toy. 
Thus 

q-iv =2ji(h]xlj + h^Xy + hix3j) (4.101) 

and 

F = 2 Kj exp[2;R '( V u + K*v + * i ^ ) ] (4.102) 

While the sum should be over the entire crystal, it is sufficient to 
carry it out over only a unit cell since the diffraction condition requires 
that rays from different unit cells be in phase. Thus, from knowledge of 
the location of atoms in a unit cell, the intensity of diffraction may be 
calculated. 
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4.6. Absorption 

From a quantum mechanical viewpoint, absorption requires that the 
photon energy be equal to the difference between the energies of two 
states in the system, or 

hv = E2-El (4.103) 

where h is Planck's constant, E\ and E2 are the energies of the lower and 
the higher states and v is the photon frequency. The classical mechanical 
equivalent of this is that the frequency of re-radiation corresponds to the 
resonance frequency of the electrons of the absorbing system. The 
energy level difference for absorption is greatest for x-rays where inner 
shell electrons are involved and decreases as the electromagnetic 
spectrum is traversed towards lower frequencies where transitions 
between energy levels involving outer electrons of the atoms take place. 
The energy in the infrared region is absorbed as molecular vibrations or 
rotations. Electronic resonances lead to absorption of x-rays (inner 
electrons), ultraviolet, or visible light while vibrational or rotational 
resonances in molecules result in absorption of infrared (from the near to 
the far) radiation. 

The absorption can be characterized by a transition moment, i.e., a 
vector parallel to the direction of the polarization of the radiation that is 
absorbed. The transition moment intensity depends upon the symmetry 
of the electronic or molecular motion associated with the absorption 
process. Thus, for the vibrational motion of a diatomic molecule, the 
transition moment induced in the molecule is parallel to the molecular 
axis and only occurs when the two atoms are different and so possess a 
dipole moment. A polyatomic molecule, on the other hand, may absorb 
at several frequencies, each having a transition moment characteristic of 
a process involving a particular motion of a molecule. The electronic 
motions in the x-ray and ultraviolet regions couple directly or resonate 
with transition moments of the radiation. 

The extinction coefficient, e, of a material with thickness, /, is defined 
as 

£ = (l//)ln(/0//,) (4.1 0 4) 
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where 7, is the transmitted intensity and IQ the incident intensity. This 
coefficient can be related to the extinction coefficient for a particular 
mode, a,, with its associated transition moment by 

e, =aicos26i (4.105) 

where 0, is the angle between the transition moment axis and the 
polarization direction of radiation (Figure 4.6). 

For an isotropic body, the extinction coefficient is independent of the 
polarization direction of the incident radiation beam. However, for an 
oriented structure, the extinction coefficient depends on the polarization 
direction and three principal extinction coefficients e\, £j, £3 may be 
specified. For uniaxial orientation of the body, only two of these are 
independent. The dichroism, D, is the ratio of extinction coefficients 
associated with principal direction of absorption, viz. 

U~s (4.106) 

For uniaxial orientation, it may be shown that [7] 

n_i /3cos20-l\ 
±!—L=\ L = f (4.107) 
D + 2 2 JM 

where fM is the orientation function for the transition moment. 

4.7. Fluorescence 

As mentioned previously, absorbed radiation may be re-emitted at a 
different frequency because part of the energy from the incident beam 
transfers to other electronic or molecular states and the balance may be 
emitted as a photon of lower frequency. The change in energy for the 
photon is given by 

/j(va-vc) = A£ ( 4 1 0 8 ) 

where va is the vibrational frequency and vc the emitted frequency. The 
intensity of the polarized fluorescent light for oriented systems depends 
upon both the orientation of the transition moments for absorption and 
for re-emission. If the absorbed radiation is polarized in the direction of 
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the unit vector P and the emitted radiation is viewed with an analyzer 
transmitting radiation polarized along the unit vector A, the intensity of 
the emitted light is [8] 

7 = K(M l l«P)2(Me«A)2 (4.109) 

where M a is the unit vector along the absorption transition direction, Me 

the unit vector along the emission transition moment direction (Figure 
4.15) and K is proportionality constant. If the M's are parallel and P and 
A are parallel to each other, equation 4.101 reduces to 

/n=(Kcos40M) 
(4.110) 

Figure 4.15 Diagram illustrating relationships between vectors in fluorescence 
and Raman scattering. 

where 9m is the angle between the common transition moment direction 
and the polarization direction. The condition that M „ and M e be parallel 
requires that the molecule not move during the lifetime of the excited 
state. Examination as to whether or not this condition is met can provide 
information about dynamics. Thus, this component of fluorescence (also 
Raman scattering) depends upon the forth moment of the orientation 
angle, in contrast to the second moment dependence found with 
birefringence and dichroism. Other polarized components of 
fluorescence depend upon both the second and forth moments. Bower [9] 
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and Kimura and Desper [10] have presented general analyses of the 
relation between fluorescence and molecular orientation. 

For fluorescence, the transition occurs between different energy states 
of the electrons. For Raman scattering, the transition involves molecular 
or rotational energy states so that the displacement of a Raman line from 
the incident frequency corresponds to the frequency of a molecular 
transition. Raman and infrared spectra cover transitions in the same 
spectral region of the electromagnetic spectrum, but the Raman 
measurements are made using visible light techniques. However, the 
selection rules or the requirements for absorption to occur differ for the 
two techniques. Infrared absorption requires the presence of a change in 
net dipole moment in the molecule whereas Raman scattering requires a 
change in molecular polarizability. The techniques are complementary 
because often functional groups in the same molecule fulfill only one of 
these requirements. 

4.8. Birefringence 

Birefringence techniques are capable of measuring the stress in materials. 
Brewster's Law states that the birefringence of a material is proportional 
to the stress applied to the material. The constant of proportionality 
calculated from Brewster's Law is termed the stress-optical coefficient 
(SOC) and is 

»C.*l. J » > H ft.O (4111) 
o 45kr (*?) 

This equation predicts that the birefringence is directly proportional 
to the applied stress, inversely proportional to temperature and 
independent of the degree of crosslinking and elongation. Experiments 
[11-15] have confirmed these predictions. Brewster in 1816 first 
observed the proportionality that is the basis for the photoelastic analysis 
of structures. The stress-optical coefficient is expressed in units of 
Brewsters (10 cm2/dynes). The above theory is formulated in terms of 
the anisotropy (b{ - b2) - a property of the statistical segment that is a 
mathematical idealization of the real chain (Chapter 2). Work has been 
done in attempting to attach a molecular significance to this quantity. 
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This effort has tried to relate the statistical segment anisotropy (bl - b2)s 

to the anisotropy of the monomer unit (bx - b^m. The latter quantity is 
calculated from the assumption that bond polarizability tensors are 
additive. The number of monomer units in the statistical segment, ZQ, 
may then be estimated from the relation 

z ° - ( ^ r (4-112) 

The parameter Z0 is a measure of chain stiffness. In the statistical 
segment model, the greater the number of monomers in a segment, the 
fewer the segments for a given length and the stiffer the chain [16] 
(Chapter 2.6). 

If one assumes a configuration for the monomer unit, one may 
calculate its polarizability using the relation analogous to equation 7.33 

w.-S[^-^ c o s l f l*+wJ (4-n3) 

where (b\)j and (b2)j are the principal polarizabilities of they* bond that 
lie at an angle 6^ with the i* axis (Figure 4. 12). It is necessary, for this 
calculation to assume a reference monomer configuration that establishes 
the geometry for specifying the 0,7 angles. This equation of tensor 
additivity of polarizability assumes that each bond approximates the 
external field which is not modified by the arrangement of surrounding 
bonds (other than as described by the Lorenz field). The Lorenz field is 
based on a spherical cavity model that may not be appropriate. Bond 
polarizability values determined by independent techniques are also 
required. Different values are found depending upon the method of 
measurement. Values obtained from gas phase measurements [17] are 
often lower than those calculated from data on the refractive indices of 
crystalline solids [18]. Internal field effects [19] can account for this 
divergence. Values of (b\ -bj) can also be obtained from streaming 
birefringence measurements and are in approximate agreement with 
those obtained from the stress optical coefficient measurements. These 
differences again may be understood by consideration of differences in 
the internal field. Expressions in terms of bond polarizabilities suffer in 
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that they do not consider the effect of one part of a molecule on another. 
Thus, this formalism predicts that the SOC for polyisobutylene is zero in 
contrast to the appreciable value found experimentally. There also have 
been attempts to calculate internal fields in crystals. 

The difficulty arises from the assumption that all C-C bonds make an 
equivalent contribution to polarizability. In fact, the contribution of the 
bonds in the main chain differs from those of the CH3 group. These 
errors are particularly serious in molecules with electron derealization, 
where equal polarizability of main chain bonds to the side chain bonds is 
a poor approximation. 

The idealization involved in the statistical segment model renders 
calculation of the anisotropy of polarizability difficult. Newer theoretical 
techniques avoid this problem by summing over bond polarizabilities 
directly using actual parameters such as bond angles and potentials 
opposing rotation about single bonds. Thus, in equation 4.114, the 
summation is taken over principal polarizabilities of bonds rather than 
statistical segments using the rotational isomeric state models of Flory 
(20-22) and Nagai (23,24) (Appendix 2F). For these calculations, the 
anisotropy of the segment is given by 

fa-^r^ZTy (4-114) 

where rT is the transpose (i.e., the row form) of the end-to-end vector r 
and a, is the traceless tensor representing the anisotropy of the 
polarizability associated with the group i of the chain. This is defined by 
the expression 

a i = « , - a i | E | (4.H5) 

where ai is the polarizability tensor a, is the average scalar polarizability 
and |E| the identity matrix. The summation is taken over all groups in the 
chain. The symbol ( \ denotes averages over the free unperturbed chain. 
The sum is evaluated using matrix multiplication methods and is given 
by 
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n n 

2 ( r V ) = 2Z-'2|Q,| (4.116) 
;-i i-i 

where Z is the conformational partition function evaluated by serial 
multiplication of the statistical weight matrices and \Q.\ is the generator 
matrix [20, 21, 25]. The IQJ term includes the structural data for group /', 
bond lengths, angles and rotational barriers as well as @( and Ut for 
group i. 

The result of the evaluation for a polyethylene chain is 

(A -b2\ = A r t e -b*)cc +Acn{bl ~b2)cH (4.117) 

For tetrahedral bonding, Smith and Mortensen [26] have shown that 
the ratio of Ach/Acc is equal to 2. For the actual values determined for a 
polyethylene chain of <CCC = 112° and <HCH = 109.5° and a carbon-
carbon bond length of 0.153 nm, the value of Ach/ACc was 1.88±0.02 [27] 
in good agreement with the value of 1.87 proposed by Nagai [23]. Thus, 
equation 4.147 may be expressed by 

(b,-b2) = AccTpm (4.118) 

where Tpm is the effective anisotropy of the methylene group defined by 

r p m =te-& 2 L-1.88te-& 2 ) c h (4.119) 

The geometric factors are included in the quantity A , whereas the 
values of bond anisotropy comprise Tpm The statistical calculations 
made using weighing factors of the rotational isomeric states consistent 
with the chain dimensions yield a value of Acc = 4.0±0.6. It is also 
possible to relate the variation of the stress-optical coefficient with 
temperature to the derivative d (lnAcc)/dT [equal to -1.25 (±0.25) x 10" 
3K"' for a polymethylene chain]. By fitting data on cross linked 
polyethylene samples swollen with decalin (with volume fraction 
polymer of 0.33) for which (bx - b^)1 = 4.0 A3, a value of 1.0 (±0.2)A3 is 
found. It might be noted that this value of Gpm is roughly twice the value 
of 0.54 (±0.05) as obtained from light scattering depolarization of n-
alkanes in CCU [28, 29]. The difference is probably because the 
polyethylene SOC measurements were made in a solvent that is not 
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isotropic (because of the difficulty in finding suitable solvents). It should 
be noted that in order to obtain molecular anisotropies from solid-state 
measurements that may be compared with theoretically calculated 
values, it is necessary that the solid be swollen with an isotropic solvent. 
An isotropic solvent separates chains from each other by decreasing the 
internal field anisotropy as well as disrupting "nematic ordering" which 
probably occurs in polymers that are not swollen with an isotropic 
solvent. 

4.9. Scattering from Inhomogeneous Media 

The basic expression for scattering from a collection of scattering objects 
(equation 4.18) is 

Es =ei0"^Kje
i* =e ia"F (4.120) 

The structure of the scattering system determines the magnitude of F, 
termed the form factor. 

The intensity of scattering obtained by taking the product of the field 
strength and complex conjugate is given by 

I
s=^-EsE>^-FF (4.121) 

4jt 4JT 

where the asterisk represents the complex conjugate, 
The central problem of describing the scattering from a system 

revolves around calculating the form factor in terms of the system 
geometry. Two approaches are taken in calculating: the model and the 
statistical approach. 

The first uses a model of the scattering system to evaluate equation 
4.121. This approach works best for a system composed of a dilute, 
randomly dispersed arrangement of discrete scattering particles that have 
a definite shape. Also, if the distribution of interparticle distance can be 
stated, interparticle interference effects can be included in this approach. 
The model approach is used in deriving equations 4.51 and 4.55. More 
specifically, this approach is the basis of the electron and the x-ray 
scattering techniques for determining the structure of small molecules. 
Van de Hulst [30] and Chu [31] have covered in detail the effects of 
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particle size, and of the refractive index difference between a particle and 
its surroundings. 

The statistical approach is applied to systems that assume a 
continuum model with a large number of scattering objects that are not 
regularly arranged in space. In this case, the scattering can better be 
described in terms of fluctuations from uniformity. A perfectly 
homogeneous medium does not scatter light because destructive 
interference results in cancellation of scattered waves. This may be 
demonstrated geometrically in the following way. Consider two 
scattering elements, A and B, of a uniform medium (Figure 4.8). If A and 
B are identical, the scattered rays ESA and ESB> will have equal 
amplitudes. It is possible to choose the distance between A and B, dAB> 

such that ESA and ESB, are 180° out of phase and thus at the location of 
the observer, the two rays will just cancel other. All pairs of volume 
elements (except for those within a layer near the walls of thickness 
comparable with the wavelength) may be paired in this way so that the 
total scattered amplitude may be shown to be zero. 

For real media, the polarizabilities of A and B will not be the same 
and their scattered amplitudes will differ so that the cancellation will not 
be complete. Thus, the observed scattering from a condensed (solid or 
liquid) phase is a consequence of incomplete cancellation resulting from 
fluctuations in uniformity. With increasing fluctuations, the medium 
becomes more optically heterogeneous with a concomitant enhancement 
in scattering. Four kinds of fluctuations may occur: 

i.) Density fluctuations: there may be a different number of 
molecules in A and B. 

ii.) Concentration fluctuations: in a multicomponent medium, the 
composition of the molecules in A and B may differ. 

iii.) Orientation fluctuations: for anisotropic molecules, the average 
orientation of the molecules in elements A and B may differ resulting in 
a difference in their scattering ability. [Orientation fluctuations are 
discussed in detail in Appendix 4E.] 

iv) Chirality fluctuations in the case of optically rotatory media where 
the rotation of the plane of polarized light may vary among volume 
elements. 
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A theory due to Einstein [32] that was later generalized by Debye 
[33] describing the scattering from a fluctuating medium. Debye and 
Bueche [34] later formulated the scattering for an isotropic medium 
having no macroscopic orientation. The deviation in scattering power, 
Pi, at position, rj from the average (p) was expressed in terms of the 
fluctuation Vi defined as 

rii-Pi-{p) (4.122) 

The scattered intensity is then 

/ = KJJW«*-> = KJfp^y^d^ (4.123) 

in the approximation of a continuous medium where the scatterers are 
isotropic and the fluctuations are small enough so that the Rayleigh-Gans 
approximation may be employed. Here p[r^d'rt represents the scattering 
contribution from those elements included in the volume element d rt 

(which is assumed to be small enough so that all elements scatter in 
phase). Then 

7=KJXhw- ( ^ H ^ ' ^ A 
1 = KfjT](r)n{r)fkWa)d\d\ - ( p ) J \ ( n > " ' V V r A (4.124) 

-(p) f \ ( r , ) e x p ' * ' V \ v V ( p ) 2 fexP ' V ° ^ V 3 0 

The last term is zero since this represents the scattering from a uniform 
medium. The second and third terms are also zero since these represent 

an average over the product of t]^) (or Vyj)) with exp[ik(iv • a)] . The 
four terms are positive or negative with equal probability in a manner not 
correlated with rtj. Thus 

1 = K JJ^M r >) e X p N r * ,a)]rfV3'i, (4.125) 
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Now, for an unstructured medium, the average value of the product 

yl(r)i
r](r) •) depends only on r,y and not individually on r;- or on r,. 

Thus, the integration over r; and ry- may be replaced by one over 

7 = KJJ(^M r4 e x p '̂  
-KJJ(^(r'W^))(,

Mp A / A 
7=KVff{v(Mrj))*xp d^ (4-126) 

where Fis the scattering volume of the sample given by 

- / • 
V= I d3r. 

One then introduces a correlation function defined as 

* ) , -

(4.127) 

(4.128) 

(iVJ) 
This function decreases from unity at r,y= 0 where /?(rj) = /?(r/') to zero as 

rv -> oo, since in a medium not having long range structure, there will be 

no correlation between h(rj) and h(rj) when the volume elements are far 

apart. The rate at which 7(ry) decreases with r,-, characterizes the 
scattering entity. 

Then 

I = KV(rj2)J y\r..yxp\k[rij.a]d3ri (4A29) 

This is the three dimensional form of the Debye-Bueche equation which 
may be used to describe the scattering of oriented systems. For samples 
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having spherical symmetry, one may integrate over the angular 
coordinates of r,-, to give 

/ = AKKV 
sin or 2 , 
— — r dr 

qr (4.130) 

where r = |r#|. Here the geometry of the system is described by the one-
dimensional function, y(r). 

For many systems, y(r) has a simple functional form 

y(r) = txp(-r/ac) (4.131) 

where ac is a correlation distance equal to the average value of 
a,,a2 and a3 (pjgUre 4.I6). Debye, Anderson and Brumberger [35] show 
that this form may be derived for a random, two-phase system having 
sharp boundaries. 

Equation 4.130 is the usual form of the Debye-Bueche equation. This 
equation generally describes the scattering from a spherically 
symmetrical system provided a suitable expression can be found for the 
correlation function. For many systems, an exponential correlation 
function is adequate 

/ - K ' ( i 7 2 ) 
(l + acV)2 (4.132) 

Figure 4.16 Idealized plot showing the fluctuation parameters n2 and a^ 
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In this case, a plot of /~V vs. q should be linear with a slope/intercept = 
ac. The interpretation of «c must be made using the approach of Porod 
[36] who showed 

\ a 
- • . / ( '> ) • • . / ( ' • ) (4.133) 

for a two-phase system in which <p\ and <fo are the volume fractions. Here 
/l\ and h \ are the average chord lengths of random lines drawn 

through the respective phases. When 0> is small, 0i approaches unity so 

\ a -1/I or flc= (iy In this case of dilute phase 2, ac is a measure 

of its size, analogous to the measurement of the dimensions of molecules 
in dilute solution. When the phases are present in about equal amounts, 
where 0j = 02 = 1/2 

(4.134) 

so 

'H/<<>/<<>>] 

/c = l/2 
(0(0 
(0+(0 (4.135) 

in which case ac represents a "harmonic average" phase size. 

The quantity yj2) may also be readily interpreted for a two-ph; 
system. It may be shown to be 

.ase 

(r7
2) = 0102(p1-p2)2 

(4.136) 

where pi and p 2 represent the scattering power of the phases. This means 
the refractive index for the optical spectra or the polarizabihty for the 
electronic fields. It is evident that the intensity, proportional to \l/, 
passes through a maximum when 0i = 02 = 1/2. 
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The Debye-Bueche equation is more general than just for light 
scattering and applies also to x-ray and neutron scattering, but in these 
cases, the p's and the K's will be different. 

The correlation function, y(r), may be generally be determined by the 
Fourier transform oil(q) 

While, mathematically, one should integrate over q from 0 to oo, this 
is not experimentally possible, since q cannot exceed the value of qmax = 
4JT/A when sin(#/2) = 1. The resulting error is referred to as a 
"termination error" which is often not too large. 

At r = 0, y(r) = 1 and sm(qr)/qr = 1 so 

(^) = K"J I(q)q2dq-K'Q (4.138) 

The quantity, Q, is called the "invariant" or "total integral" and may be 
used as a means for m 

Review articles cited [2,37] describe the application of scattering 
techniques to the elucidation of structural information on polymeric 
solids in more detail. 

4.10. Quasi-elastic Light Scattering 

The Raleigh scattering from a stationary object occurs at the same 
frequency as the incident light. However, just as the sound from a 
moving source is shifted upward or downward as frequency is shifted 
upward or downward depending upon whether it is moving towards or 
away from the observer, frequency shifts also occur from a moving 
scatterer. Thus, the frequency spectrum is broadened from a system 
undergoing Brownian motion by an amount dependent upon mobility; 
this phenomenon of "quasi-elastic light scattering" (QELS) provides a 
means of determining diffusion coefficients of molecules in solutions as 
well as mobility in emulsion bulk polymers. For example, there is an 
increase in the width of the frequency spectrum upon heating through the 
glass temperature as mobility increases. In favorable cases, translational 
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and rotational motion may be distinguished by observing polarization 
behavior. 

Quasi-elastic techniques can also be applied to other types of 
scattering. For example, as facilitated by the spin echo technique, the 
method may be may be applied to neutron scattering to look at mobility 
of smaller regions at larger wavelength light. Isotropic labeling permits 
studies of motions of selected parts of molecules. 

Matrix Liquid Crystal 

"1 II 
ft 
l/$ 

Figure 4.17. Sketch illustrating the mismatch between the refractive indices 
and the crystal orientation fluctuation. 

4.11. Variation of Scattering with Electric Fields 

The change in light scattering of conventional polymers with electric and 
magnetic fields is small. However, much larger effects may be obtained 
with liquid crystalline systems that have cooperative orientation. As with 
Kerr effect devices (see Section 4.14), more rapid orientation times 
desirable for display devices are obtained using low molecular weight or 
side chain polymer liquid crystals. 

A way of combining the desirable mechanical properties of polymer 
with the rapid response times of low molecular weight liquid crystals is 
through use of polymer dispersed liquid crystals. These consist of 
droplets or domains of low molecular weight liquid crystals or a polymer 
matrix. In the absence of fields, these may be highly scattering as a 
consequence of both orientation fluctuations within the liquid crystal as 
well as refractive index mismatch between the liquid crystal and the 
matrix (Figure 4.17). With proper design, both sources of scattering may 
be reduced upon applying a field, which produces molecular orientation. 
A typical device may exhibit a light scattering change from 5% to 85% 
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upon application of a field. Since the orientation is usually produced 
through interaction with induced dipoles, alternating current voltages, 
often quite modest (10-50 volts) may be employed. The use of 
alternating current has the advantage in that with sufficiently high 
frequency, turbulence will not result because of conductivity of ionic 
impurities. 

Turbulence can be employed to advantage in bistable switchable 
devices. The above devices require the electrical field to be on to remain 
transparent. However, with a properly designed smetic polymer - low 
molecular weight mixture, the orientation remains for a considerable 
time after a high frequency electrical pulse is applied. When a low 
frequency pulse is used, the ensuing conductivity produces turbulence, 
which brings the device back to a turbid state. Thus, the system is 
rendered transparent by a high frequency pulse and turbid by a low 
frequency pulse. It is not necessary to apply a voltage in the intervening 
time period. 

4.12. Non-Linear Optics 

The previous material in this chapter dealt with the linear response of the 
material to the electromagnetic field. As described by equation 4.5, for 
example, the electric field as measured by the polarizability (P) induced 
in an atom is linearly related to the amplitude of the incident electric 
field amplitude (E) by proportionality constant, the polarizability (a). 
The advent of high intensity lasers giving radiation with high intensities 
leading to high electrical fields has increased the range of response in an 
atom beyond the linear range [37]. In addition, non-linear birefringences 
have also been observed. 

The reason for frequency multiplication with non-linear optics may 
be seen from the realization that the amplitude of the scattered light is 
given by 

E , ~ (4.139) 
at 

If 

m = aE + pE2 + yE3 + .... (4.140) 
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and 

then 

and 

E = E0e
ial (4.141) 

— = E0[icoae'°" + 2i<w>2i0" + HoW" +....] 4.142) 

i ^ . — E J w W " ' + 4o>>2iM
 +9coV3ia" + ....1 (4.143) 

Thus Es will have components at double, 2co, triple, 3ft), etc. of the 
incident frequency dependent upon the magnitudes of fi and y. 

Materials with appreciable values of /3 leading to frequency doubling 
are called second-order Non Linear Optics (NLO) materials. Such 
materials lack a center of symmetry since the magnitude of the induced 
M is different for +E and -E. Molecules of this sort typically have donor 
and acceptor groups on opposite sides of the molecule making it easier 
for electrons to move in one direction than the other. Of course, to be 
active, the molecule must be oriented. With polymers, this can be 
accomplished by "poling" where the material is subjected to an electric 
field above its glass temperature and been quenched with the field on so 
as to "freeze" the molecule in their ordered state. 

Third order NLO materials are often molecules in which the electrons 
are delocalized as with conjugated molecules. It may be shown that as 
the size of the region of delocalization increases, y increases more 
rapidly than a. 

NLO materials find use in optical recording devices. To improve 
resolution, it is desirable to use higher frequency light. Frequency 
multiplication with NLO provides a means by which higher frequency 
light can be obtained from a laser. 

NLO can also be used for optical switches. Since polarizability of 
NLO materials increases with field strength, refractive index also varies. 
Thus, as light intensity changes, an interface may pass from a transmitter 
to a totally reflecting regime, so one beam of light may be used to switch 
or modulate a second one. 

231 



TOPICS in POLYMER PHYSICS 

Most materials with nonlinear optical (NLO) properties are inorganic 
such as lithium borate. Only a few low molecular weight organic 
compounds with nonlinear optical properties have been reported. 
Recently the preparation of a thermoset copolymer of 4-nitro-l,2-
phenylenediamine (NPDA) and bisphenol-A diglycidyl ether (Bis-A) 
with N L O properties has been reported [38, 39, 40, 41]. This area 
overlaps with electrical effects in that pi charge conjugation along the 
chain backbone and non centro-symmetric separation of the positive and 
negative charges seem to be required to observe non linear behavior in 
polymers, The polysilane family [42] represents one specific polymer 
type that shows these characteristics and these chains exhibit non-linear 
optical behavior. 

4.13. Piezo-Electric Materials 

As with NLO materials, molecules with a permanent dipole moment may 
be "poled" by thermally exciting them through their glass temperature in 
an electrical field. Such materials with "frozen-in" dipole orientation 
have polarization charge on their surface. They may be distorted upon 
applying a voltage or, in turn, they generate a voltage upon distortion. 
Thus, they may serve as transducers. 

Such poled materials are generally birefringent and birefringence will 
vary when an electric field is applied. Thus, when placed between 
crossed polarizers, the transmission of light will vary with applied 
voltage. With appropriate optics, the birefringence change can provide a 
means for rotating the direction of polarization with applied field. 

Such "piezo-electric modulation" is useful for devices such as 
polarimeters and spectrometers where one wishes to study optical 
phenomenon as a function of polarization. 

Piezo-electric polymers are often materials like the /3 form of 
poly(vinylidene fluoride) in which the unit cell has a residual dipole 
moment. 

Chapter 5.4 contains additional material on piezo-electricity. 
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4.14. Kerr Effect 

We have seen that molecules may be oriented in an electric field. If these 
molecules are anisotropic, such orientation produces birefringence. This 
is the Kerr effect. The orientation may occur because molecules have a 
permanent dipole moment, or else they may arise because of an 
anisotropic induced dipole moment with molecules having anisotropic 
polarizabilities. 

Polaroid Kerr Cell Polaroid 

Light on Transmitted light 

Electric field on 

Polaroid 

No light 

Light on I <3_J;£ 

Electric field off 

Figure 4.18. Sketch of Kerr Cell illustrating application as a light beam switch. 

A Kerr cell can be used to switch or modulate a light beam by placing 
it between crossed polars (Figure 4.18). This effect finds use in electro 
optical devices. 

Kerr effects can be very large with liquid crystalline systems where 
cooperative orientation can occur. This finds use in display devices. 
Generally, low molecular liquid crystals are employed because of their 
more rapid orientation times. However, polymers with liquid crystal 
forming side chains are sometimes used. The advantage of polymers is 
their mechanical integrity. 

A similar phenomenon occurs with magnetic fields and is related to 
the anisotropy of magnetic susceptibility. 

233 



TOPICS in POLYMER PHYSICS 

References 
1. R.W. Ditchburn, Light; Interscience: New York, 1953 Appendix VII-B 
2. J.S. Higgins, R.S Stein, J. Appl. Cryst. 1978,11, 346 
3. C.V. Raman, Indian J. Phys., 2, / , (1927) 
4. A.P. Klug, L.E. Alexander, X-Ray Diffraction Procedures; John Wiley: 

New York, 1954 
R.W. James, The Optical Principles of the Diffraction of X-Rays; 
G. Bell and Sons, Ltd: London, 1962 

6. M. Kakudo, N. Kasai, X-Ray Diffraction of Polymers; Elsevier: New York, 1972 
7. R.D.B. Fraser, J. Chem. Phys. 1953, 21, 1511 
8. Y. Nishijima, Y. Onogi, T. Asai, Rep. Prog. Polym. Phys. Jpn. 1965, 8, 31 
9. D.I. Bower, J. Polymer Sci. Part A-2 1972, 70 2135 

10. C.R. Desper, I. Kimura, J. Appl. Phys. 1967, 38, 4225 
11. L.R.G. Treloar, The Physics of Rubber Elasticity, 3nd. Ed.; Oxford 1975 
12. A.N. Gent, V.V. Vickery,./. Poly.Sci.Part A-2. 1967, 5, 547 
13. A.N. Gent, Macromolecules. 1969, 2 262 
14. D.W. Saunders, Trans. Faraday Soc. 1956, 52, 1414 
15. M. Fukuda, G.L. Wilkes, R.S. Stein, J. Polymer Sci. Part A-2. 1971, 9, 1417 
16. R.S. Stein and R.J. Volungis, J. Chem. Phys., 1955,23, 1179 
17. K.G. Denbigh, Trans. Faraday Soc. 1940, 36, 936 
18. C.W. Bunn, R. deDaubeny, Trans. Faraday Soc. 1954, 50, 1173 
19. R.S. Stein, J. Polymer Sci. Part A-2 . 1969, 7, 1021 
20. P.J. Flory, Statistical Mechanics of Chain Molecules; Interscience: New York, 1969, 

Chapter IX 
21. P.J. Flory, R.J. Jernigan , A.E. Tonelli, J. Chem. Phys. 1968, 48, 3822 
22. M.H. Liberman, Y. Abe, P.J. Flory, Macromolecules 1972, 5, 550 
23. K. Nagai, J. Chem. Phys. 1964, 40, 2818; ibid. 1968,49, 421 
24. K. Nagai and T. Isikawa, /. Chem. Phys. 1966, 45, 3128 
25. P.J. Flory, J. Chem. Phys. 1972, 56, 826 
26. R.P. Smith, E.M. Mortensen, J. Chem. Phys. 1960, 32, 502 
27. Y. Abe, A.E. Tonelli, P.J. Flory, Macromolecules. 1970, 3, 294 
28. G.D. Patterson, P.J. Flory, J. Chem. Soc, Faraday Trans. 1970, 2, 68 
29. R.S. Stein, Rubber Chem and Technol. 1976, 49, 458 
30. H.C. Van de Hulst, Light Scattering by Small Particles: Wiley: New York, 1957 
31 B. Chu, Laser Light Scattering, 2nd Ed., Academic Press, 1991 
32. A. Einstein, Ann. d. Physik. 1910, 33, 1275 
33 P. Debye, J. Appl. Phys. 1944,15, 338 ; J. Phys. Colloid Chem. 1947, 51,18 
34. P. Debye, A.M. Bueche, J. Appl. Phys. 1949, 20, 518 
35. P. Debye, H.R. Anderson, H. Brumberger, J. Appl. Phys. 1957,28, 679 
36. G. Porod, Z. Kolloid 1952,125, 51-122 
37. P.N. Butcher, D. Cotter, The Elements of Non-Linear Optics, Cambridge: NY 1990 

234 



OPTICS 

38. M. Eich, B. Reck, D.Y. Yoon, C.G. Wilson, G.C. Bjorklund, 
J. Appl. Phys., 1989, 66(7), 1, 3241 

39. D. Jungbaur, B. Reck, R. Tweig, D.Y. Yoon, C.G. Wilson, J.D. Swalen, 
Appl. Phys. Lett. 1990, 56(26), 2610 

40. E. Infeld, G. Rowlands, Nonlinear Waves, Solitons and Chaos, 
Cambridge:New York, 1990 

41. G.M. Carter, Y.I. Chen, M.F. Rubner, D.J. Sandman, M.K. Thakur, S.K. Tripathy, 
Nonlinear Optical Properties of Organic Molecules and Crystals; 

D. Chemla, J. Zyss, Eds., Academic: New York, 1987, Vol. 2, pp. 85-120 
42. R.D. Miller, J. Michl, Chem. Rev. 1989, 89,1359 

235 



TOPICS in POLYMER PHYSICS 

Appendix 4A Depolarization of Scattering 

The prediction that the scattering of vertically polarized incident light at 
6 = 90° is completely vertically polarized is only true if the scatterer is 
isotropic and its polarizability is a scalar. In this case, the induced dipole 
will lie in the same direction (vertical) as the incident field. For 
anisotropic molecules, polarizability is a tensor, so the induced dipole is 
not necessarily vertical (Figure 4A.1). 

Vert. Pol. 
incid. Light 

Isotropic scatterer Anisotropic scatterer 

Scattered Light 
Completely 
Vertically Polarized 

Finite Horizontally Polarized 
Component of Scattering 

Figure 4A.1 Diagram illustrating depolarization of scattering 

Let us consider the scattering from a molecule with its optic axis in 
the direction of the unit vector, a, and with principal polarizabilities, a\ 
and a-i (Figure 4A.2). 

Figure 4A.2 Diagram relating terms in equation 4A.2 

The induced dipole moment, M, induced by the electrical field, E, is 

M=(5(a«E)a + a2E (4A.1) 
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where d is the (uniaxial) molecular anisotropy defined as 

<5 = « i - « 2 (4A.2) 

From this equation for the induced dipole moment 

M = <5(a«E)a + a2E (4A.3) 

and the previously obtained equation for the scattered amplitude in the 
direction of M 

^ _ -oafE-e^m2 

Es = E0 J cos %jf (4A.4) 
c r 

We can obtain the result by replacing the polarizability, a, by the 
effective polarizability for the anisotropic system defined by 

«eff = ( M ' 0 ) / E (4A.5) 

so that insertion in the above equation gives 

-T(M-O)/E1V 
Es = E0 - t i - i i -J cos ip (4A.6) 

c r 
Here, O is a unit vector perpendicular to the direction of propagation 

of the scattered ray and in the direction of the electric field transmitted 
by an analyzing polarizer. For randomly oriented molecules, the 
Rayleigh factor becomes 

^ ) = (N/Vs)(a;4/c4)^(M,.-0)2(M..O)2^ (4A.7) 

Let us consider the case of Hv polarization at a scattering angle, 6, of 
90°. In this case 

E = Ek, 0 = i and COS2T/> = 1 (4A.8) 

Thus 

^ ( 9 0 ° ) = (N/V.)(a>7c4)<52((ai • k)(a. • l ^a , • i)(a, • i)) (4A.9) 
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Figure 4A.3 Diagram showing the angular relations in deriving equation 4A.11 

The unit vector, a, may be described in terms of its angular coordinates, 
(j> and y, defined as 

( (a . -kXvkXa.- iXvi)) 

=/sin y£. cosy, cos 0f •siny /cosyycos0 /\ = /sin271cos27,cos20£\ (4A.10) 

assuming that there is no correlation between the orientation of the Ith and 
the / h scatterers. (The case of correlation will be considered later.) If 
there is no correlation between y and (p and there is uniaxial orientation 
so all values of <j) are equally probable, 

/sin2 y. cos2 y( cos2 0,. \ = /: sin2 Yi cos2 Yt x cos2 0,.) 

= (l/2)(sin2
 Yl cos2

 Yl) = (l/2)[(cos2 y) - (cos4 y,.)] = (l/2)[(l/3) - (1/5)] = 1/15 

(4A.11) 

assuming random orientation in y. Thus, 

^ ( 9 0 ° ) = (N/Vs)(W7c4)(l/15)52 (4A.12) 

For isotropic molecules, 5 = 0 and R^(90°j = 0. A measure of RH (90°j 

serves to give 62. If the molecules are polar and, for example, an 
electrical field tend to line up the molecules in the vertical direction, 
(cos2 Yi) and /cos4 y,\ can be calculated as before and will both 

approach unity so RH^(90°J will approach zero. 
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Appendix 4B Scattering from a Collection of Molecules 

For a collection of molecules, equation 4.14 must be generalized to give 

p 2 N 

^-2Wx—^-c o s^2)a 'c o s(a*"A) (4R1) 

(It is assumed that all of the molecules are close enough together that 
the distance to the observer, r, may be taken as the same for all of them.) 

On calculating the intensity of scattering from this equation, one 
obtains 

( / , / /„)-(16*7AV)( 
1 

\ G^COS^/-^.) (4B.2) 

Now 

so 

and 

N a,.cos(wf-0j)= 2.a,[cosa>/cos0; + sina>/sin0;] (4B.3) 

/sin2 o)t\ = /cos2 a>t\ = 1/2 

/sinto/cos<y/\ = 0 

(4B.4) 

(4B.5) 

so 

\ a,cos(a>/-0,.) \ = - N N a,alcos0,.cos0 j + sin0,.sin0j 

=2 2Ea '^ c o s(^-^) 
(4B.6) 

But 

0;_0 J±U-d\J*Ld 
' A v ' ' A ' 

(4B.7) 
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SO 

CA) = yy«,«; c° s(2^/A) 
* j 

(l + cos2#) (4B.8) 

A special case of interest is where all molecules are identical and are 
randomly located. In this case ai =a}=a and the sum in equation 4.7 

may be separated into two terms, one for which i = j and the other for 
which /' *j 

yyaiaJcos(2mlu/?i) = yaf + yycos(2jtdij/X) = Na2 (4B.9) 
' * j 

Thus 

(4B.10) [Uh) j4^-(1 + c o s 6) 
AV 

The scattering power of a system is conveniently expressed in terms of 
the "Rayleigh Ratio" defined as 

2 

R = 
(lJlo)r 

V(l + cos2e) 

where V is the volume of the scattering system. Thus, 

8;r4 

R = -(N/V)a2 

(4B.11) 

(4B.12) 

The molecular polarizability, a, may be related to the refractive 
index, r], by the Lorenz-Lorentz equation (Appendix 5B). 

r f - 1 4 (N/V)a 
ri' + l 3 v ' ' 

For a dilute gas, n = l , s o r j 2 + 2 » 3 and 

7]2-1 = 4JI(N/V)CC 

Using this value of (NfV)a in equation 4.B12 gives 

(4B.13) 

(4B.14) 
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R = K
 Al '' . (4B.15) 
2X\N/V) 

Now 

(4B.16) 
JV pNA 

V M2 

where pis the density of the gas, NA = 6.02x1023 and M2 is the molecular 
weight of the gas molecules. Thus 

(rj2-l)2
 JI2M2 

R-- 1 ~ (4B.17) 
2A4p. 

This equation applies to a gas where the molecules move about 
independently so that the second term of equation 4.09 is zero. It may be 
tested by measuring R for a gas of known refractive index. It has been 
used as a means of determining the value of Avogadro's number, NA. 
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Appendix 4C The Nature of the Reciprocal Vector H 

The reciprocal lattice vector, H, is defined by, 

H = /z,b, +/z2b2 + h3b3 (4C.1) 

where h\, h2 and h^ are the Miller Indices of a plane. We shall show that 
H is perpendicular to the plane. The Miller indices are defined as 
integers giving the reciprocal of the fraction of the unit lengths, ai, a2 and 
a3 intercepted by the crystal plane closest to the origin. Thus, the plane 
with the index, hi, intercepts the ai axis a distance ajhi from the origin. 

Perpendicular to plane 

a3/h3 

- (h 1 , h 2 , h 3 ) plane 

" • a i 
a j M j 

Figure 4C.1. Diagram showing the distance d from origin to crystal plane. 

Consider a vector, P, lying in the (hi, h2, h3) plane, 

Perpendicular to plane 

<h1.h2.b3) plane 

Figure 4C.2 . Sketch showing vector P in the (hi, h2, h3) plane. 
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This is given by 

P = (aiA)-(a2M2) (4C.2) 

If H is perpendicular to the plane, then H and P must be perpendicular 
and H»P = O.Thisis 

[W1+h2b2 + h3b3]<[(aJhl)-(*Jh2j\ 

-A1[(a1-b1)/Al]-A,[(a2-b1)/A1] 

+^[(ai*b2)A]-A,[(a2-b,)//i1] 

+*i[(a1-b,)//k1]-^[(aa-b,)/A1] 

-[l-0] + [0-l] + [0-0]-0 (4C.3) 

Thus, H is perpendicular to the (hu h2, h^) plane. 
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Appendix 4D The Magnitude of the Reciprocal Vector H 
The distance between crystal planes corresponds to the distance of the 
(hi, hi, hi) plane from the origin. 

»#» a, 

Figure 4D. 1 Diagram showing the distance d from origin to crystal plane 

where d = distance of plane from origin 
Now the scalar product of two vectors, A and B is 

Figure 4D.2 Projection of vector A on vector B 

A'B = ABcos6AB (4D.1) 

This may be interpreted as the product of the magnitude of B with the 
projection of A on B. Since d is the projection of aj //i, on H, 

It follows that 

(aJfh)-H = dH = (aJhi).[fhb1 + h2b2 + h3b3] 

= /i1(a,»b1)//i1+0 + 0 = 1 (4D.2) 

so 

dH=l (4D.3) 
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and 

H = 1/d = s/A = 2sin 6fe 

245 



TOPICS in POLYMER PHYSICS 

Appendix 4E Orientation Fluctuations 

The equation for a system with orientation fluctuations 

Rj?] = 4^KLv(52)JV(r)̂  
qr 

where 

f(r) 

(4E.1) 

Figure 4E.1. Diagram showing exponential dependence of on r. 

/ ( r ) = [3(cos20)-l] /2 (4E.2) 

involves the mean-squared anisotropy, \62), of the scattering element 
and its correlation function in orientation, f(r). f(r) behaves in a similar 
manner to y(r)- It represents the probability that two optic axes a 
distance, r, apart are parallel. As with y(J"), an exponential orientation 
correlation function often suffices. 

f(r) = e-r/- (4E.3) 

(7i//\///x 

Figure 4E.2. Diagram illustrating the quantities used in deriving equation 4E.5. 
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A model for an exponential orientation correlation function has been 
proposed. 

[R.S. Stein and S.N. Stidham, J. Appl. Phys. 35, 42 (1964)] 

This model involves a "random walk" in orientation and gives 

a0 = d/2e2 (4E.4) 

For such a correlation function, ao, may be determined from a 
"Debye-Bueche type" plot. The orientation correlation function may be 
generally determined by Fourier inversion. 

The theory also leads to an expression for the Vv intensity 

Rv,tq]-4*tV ((W)r*)^*^«xn/>)! 
-rVr 

qr 
(4E.5) 

Thus, it is seen that the Vv scattering depends on both the orientation 
and the density fluctuations. By measuring both components of 
polarization, it is possible to separate the two contributions. 

Figure 4E.3. Sketch showing the orientation correlation function model. 

Some observations are: 
For liquid crystalline polymers and volume, crystalline polymers, 

most of the scattering arises from orientation fluctuations. 
For non-volume filling crystalline polymers, there is an appreciable 

contribution arising from the difference in scattering length of the 
crystalline and amorphous phases. This gives rise to a (Vv) scattering 
maximum during the course of crystallization. 

The above theory predicts a cylindrically symmetrical scattering 
pattern (independent of ;u). This is a consequence of the "random 
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orientation fluctuation" assumption made in its derivation where f(r) 
depends only on the magnitude of r and not upon the angle between r 
and a. The theory has been generalized. 

[R.S. Stein, P.F. Erhardt, S.B. Clough and G. Adams, 
J. Appl. Phys. 37, 3980 (1966)] 
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Appendix 4F Scattering from Concentration Fluctuations 

The concentration fluctuation contribution to the scattering from dilute 
solutions is given by 

Ic(q) = K(da/dc)2((Ac)2Sj (4F.1) 

To calculate ((Ac) \, one proceeds as with density fluctuations to give 

/(Ac)2\ = f P(Ac)(Acfd(Ac)/p(Ac)d(&c) (4F.2) 

where P (Ac) is given by a Boltzmann distribution, 

P(Ac) = Cexp[-w(Ac)]/kr (4F.3) 

where w (Ac) is the work required to produce a concentration fluctuation, 
(Ac). 
The change in G involved in a concentration change may be given in 
terms of the chemical potential, pi. 

AG =JVi4An0 
where 

JUJ = (dG/dn^ 
P,T 

(4F.4) 

(4F.5) 

where nx is the number of moles of solvent. Consider a volume element 
of size v, 

Figure 4F.1 .Change in chemical potential due to moment of solvent into the volume 
element. 
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If dnx moles of solvent move into the volume element where the 
chemical potential is «j from outside the volume element where the 
chemical potential is \\, the change in free energy is 

dG = fad^ - [A,x(-dn^ (4F.6) 

Let x be the instantaneous value of «j which goes from nx to n,. Then 
An, = nx-nx so 

AG = fdG = j^-fiiyx (4F.7) 

where the limits of integration are from x-nxto x-n^Now, by 
expanding ft in a power series in [x - nx) and neglecting higher terms 
small fluctuations, one obtains 

fj[ = fa + (dn/dnx}(x - «,) (4F.8) 

giving 

AG = f [d\ijdnx )(x -nx)dx = {dn/dnx )f(x-nx)dx (4F.9) 

assuming (dfi/dn^ to be independent of concentration. This gives 

AG = (dfx/dn^Ux2^ - nxxT 

= (dfi/dnx)[(nx
2/l) - nxnx -(n?/l) - nf (4F.10) 

It might be noted that this equation is analogous to that for the work 
for stretching a Hookean spring by an amount, AL, which is {1/2)KAL2 

where K is the force constant of the spring. Here, [dfi/dn^ is the 
effective "force constant" expressing the resistance of a solution to a 
concentration change. 

Now, An may be related to Ac since c is given by 

c = n2M2/v = n2M2j{nxVx + n2V2) s n2M2/nxMx (4F. 11) 
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where n2 and M2 are the number of moles and molecular weight of the 
solute. V̂  and V2 are the molar volumes of the two components. The 
approximation is valid in dilute solution where nlVl))n2V2. 
Then 

Thus 

Now 

so 

(dc/dn^ = -n2M2/Vl n\ = -c/n, = -cVjv (4F.12) 

(ntf-^/cX^f (4F.13) 

(<W*»i) = (d^/dcfdc/dn,) = -(d^/dclcVjv) (4F. 14) 

AG = -{Nj/l^/dc^v/vV^Acf (4F.15) 

Avogadro's number, NA, is required in the above equation since AG is 
required in amount/mole. One notes that AG depends parabolically 
upon Ac and is the same for positive and negative fluctuations in 
concentration. 
This result may then be substituted into the equation for P(Ac) giving 

P(Ac) = Cexp{-(N A /2Rr) [ - (^ /^) ] (v /cy) (Ac) 2 } 

= Cexp(-ay2) (4F.16) 

where y = (Ac) and 

a = (Nj2RT)[-(nJdc)](v/cV) (4F.17) 

This leads to 

((Acf ) = (l/2«) = RTcV/l-^/dc)] vN A (4F. 18) 

It is noted that ((Ac) ) varies inversely with v, the size of the volume 
element. The smaller the volume element, the bigger the fluctuation. 
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Evaluation of (da/dc} 

In the derivation of the Lorenz-Lorentz equation, we showed that 

rj2-\ = 4nKiP = 4jzKla/v (4F.19) 

where r] is the refractive index N, the number of molecules per unit 
volume and Kt, the internal field factor that we found, for a spherical 
cavity is 

Ki = Einl/Eappl=(r1
2 + 2)/3 (4F.20) 

P is the polarization per unit volume and a is the polariability of the 
volume element of volume, v. 
Then 

2ri(dr]/dc) = 4nKi(da/dc)/v (4F.21) 

We are assuming that the internal field does not fluctuate. On 
substituting into the equation for Ic(q), one obtains 

Ic(q) = K(l/v)(v/2^ i>7
2(^/(?c)2RrCv/{NA[-((?Mi/^)]}(4F.21) 

The constant, K, may be evaluated referring to the electromagnetic of 
scattering. If the scattering is measured in units of the "Rayleigh Ratio", 
R, defined as 

Rc(q) = Ic(q)/l0Vs (4F.22) 

where /0 is the incident intensity and Vs is the scattering volume. Then 

Rc(q) = IjiY^/dcfRTcV^ftl-^/dc)]} (4F.23) 

Evaluation of [-(<?/*,/<?c)j 

The chemical potential, pi, may be related to the osmotic pressure, n , by 
(Appendix 3C) 

n = (tto-Mi)/^ (4F.24) 

where ^ 0 is the chemical potential of the solvent. Thus 
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(m/dc) = -(l/V, )(dft /dc) (4F.25) 

Therefore, light scattering can provide information about osmotic 
pressure (without the need of having a membrane). The osmotic pressure 
varies with concentration according to 

n = cRr[(l/M2) + A2c + ...] (4F.26) 

where M is the molecular weight of the solute and ^2 is t n e second virial 
coefficient expressing the deviation from ideality. For an ideal solution, 
this reduces to van Hoff s equation. 

II = cRT/M2 (4F.27) 

conventionally used to determine the molecular weight of low MW 
species from osmotic pressure. It is noted that the higher the molecular 
weight, the fewer the number of molecules and the lower the osmotic 
pressure. The precision becomes too low for practical use for molecular 
weights greater than about 10,000. 
By differentiating equation, 

[-(d^/dc)] = VlRT[(l/M2) + 2A2c + ...] (4F.28) 

The result may then be used in the equation for light scattering. 

Molecular Weight from Light Scattering 

On using the above result for the chemical potential change, one obtains 

Rc(q) = Hc/[(1/M2) + 2A2c +...] (4F.29) 

This gives for ideal solutions, 

Rc(q) = HcM2 (4F.30) 

It is evident that the scattering arising from concentration fluctuations 
increases with concentration, and, in contrast to osmotic pressure, 
increases with molecular weight. Hence, it is a good technique for 
studying polymers. 
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This equation can be used to explain the average molecular weight 
obtained by light scattering. For a multicomponent mixture, the above 
equation generalizes to 

Rc(q) = Hy2c(M2). (4F.31) 

where the sum is over all molecular weight species present. The "average 
molecular weight" obtained from light scattering (MLS) is 

Rc{q) = Hc(Mas) (4F.32) 

where c is the total concentration 

c = y c , . (4F.33) 

Thus, 

W=2C'M'/2C'=E^'2 / S ^ ' (4R34) 

This is a weight average molecular weight, (Mw \, which might be 
contrasted with a number average, (Mn \, (obtained from osmotic 
pressure) defined as 

(M)-2"M/2"' < 4 R 3 5 ) 
Upon rearranging, the equation, it becomes 

He/% (q) = (1/M2) + 2A2c +... (4F.36) 

Thus, a plot of Hc/Rc [q) versus c has an intercept of (1/Af2j and a slope 
of 2A2 (twice the slope of a corresponding osmotic pressure plot). 

To use this method, one must obtain the value of//. This requires: 
1. That absolute intensity be measured. The apparatus must be 

calibrated. 
2. The value of \dn/dc} be known. This is relatively independent of 

molecular weight and primarily depends upon the chemical 
nature of the polymer and the solvent. For known/solvent pairs, 
values may be found in the literature. Otherwise, it can be 

254 



OPTICS 

obtained from the slope of a plot of refractive index versus 
concentration, or else, directly, using a differential refractometer. 

(1/M2) 
__I 

c 

Figure 4F.3. Plot of HC/RC (^)against c. 

This consideration is valid for small molecules where the assumption that 
there is no correlation among fluctuations of nearby volume elements is 
valid. Such correlation lead to interference among scattered rays from 
different parts of large molecules causing a decrease in scattered 
intensity with increasing scattering angle. The effect of this discussed in 
the next section. 

Dealing with Large Molecules 

We used the result in the above discussion that 

l(q) = K((AAf} (4F.37) 

which a special case of the more general equation 

I(q) = *((AA).(AA).) = K((AAfy(q) (4F.38) 

where, for spherical symmetry 

P{q) = jy(r)[sin(qr)/qr]r2dr (4F.39) 

giving, at small q in the Guinier approximation, 
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P(q) = l + (R2
g)/3q2

+... (4F.40) 

Obviously, at sufficiently small (R2 V this approaches unity. For larger 

(R2 V it approaches unity as q -* 0. A problem is whether one can 

collect data at sufficiently small q\= (4jr/A)sin(0/2n to reach this limit. 

Smaller g's can be reached by going to smaller ff s or larger A S. 
Thus, in dealing with large molecules, it is necessary to extrapolate 

data to q = 0 to correct for this intermolecular interference effect. To get 
the proper molecular weight from a HcjR[q\ plot, one must carry out a 
"double extrapolation", both to c -»0 and q -»0 . One way of doing this 
is by a "Zimm Plot". 

slope gives <Ra >/3 

extrapolated c = 0 

He 
/?(q) 

L~— 

I extrapolated 6 = 0 

slope gives 2A 

sin2(6/2) + k'c 

Figure 4F.4. Zimm Plot "double extrapolation". 

Software now exists to automatically carry out a Zimm Plot. One 
makes measurements at a number of angles and concentrations and 
inserts these in the program. Values of M2, (R2) and A2 are then 
calculated. The connection between scattering and molecular weight is 
discussed further in Appendix 4G. 

Extensions to Other Kinds of Radiation 

The theory developed here is not limited to light scattering, but also 
applies to x-ray and neutron scattering, provided the appropriate values 
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of K and A are used. The selection may be made so as to achieve the 
desired contrast and wavelength to best suit the problem at hand. For 
example, as will be shown, contrast for neutron scattering can be 
controlled by isotropic substitution. 

Extensions to Concentrated Solution and Bulk Polymers 

The equation 

((Ac)2) = (l/2a) = RrcV/{-[(^1/(?c)]vNA} (4F.41) 

is not limited to dilute solutions, so long as the appropriate values of ^ 
is used. While the theory exists, light scattering is not normally carried 
out on concentrated solutions and bulk polymers because of the difficulty 
of removing impurities such as dust which can be appreciably contribute 
to the scattering. However, such measurements are now possible using 
neutron scattering since by replacing hydrogen by deuterium, the 
molecular contrast can be enhanced so that it can appreciably exceed that 
due to impurities. 

Effect of Anisotropy and Orientation 

The preceding discussion was limited to isotropic unoriented systems in 
which the scattering power (such as polarizibily) was a scalar and where 
there was spherical symmetry. The effect of anisotropy (where, for 
example, polarizabilty is a tensor quantity) will be discussed laterm. 

Appendix 4G Why Concentration Fluctuations Relate to Molecular Weight 

For a given concentration, c, the number of molecules/cm3, N, becomes 
less as the molecular weight, M, increases. 

N = (c/M)NAV (4G.1) 

Thus, for low molecular weight, 
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Homogeneous Fluctuation 

Figure 4G. 1. Molecular distribution for low molecular polymers. 

while for high molecular weight. 
Homogeneous Fluctuation 

Figure 4G.2. Molecular distribution for high molecular polymers. 

The amount of fluctuation, and hence the intensity of scattering, is 
greater for a fewer number of large molecules. 

How to Measure the Size of an Elephant 

Assume that two elephants weigh as much as 50 people. Both may 
fluctuate in mass. 
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Figure 4G.3. The elephants represent high molecular weight polymers. 

while, for people, 

Figure 4G.4. The elephants represent low molecular weight polymers. 

The group of people is obviously more homogeneous. As a scattering 
experiment, a baseball thrown into the group of people would hit 
someone most of the time. 
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Figure 4G.5. A baseball thrown into people will probably hit at least one person. 

The same experiment with the elephants will give misses most of the 

time, but occasionally, it will produce a big reaction. 

Figure 4G.6. The probability that a baseball will strike an elephant is much less. 

ANOTHER WAY OF LOOKING AT IT -

The work required to produce a concentration fluctuation, AG, is energy 

expended in forcing the solvent to move against the osmotic pressure, II 
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The greater AG, the lower P(Ac), the lower <(Ac) >, and the less the 
scattering. Now according to van't Hoff s equation 

n = (c/M2)Rr (4G.2) 

so high M2 *• low IT *• high scattering. That is, for osmotic 
pressure, 

n/c 

Low Mol. Wt. 

slope = A 2 

t RT/M2 

c 

n/c 

High Mol. Wt. 

^ 

c 

Figure 4G.7. For osmotic pressure, scattering decreases as molecular weight increases. 

while for light scattering, 

Low Mol. Wt. High Mol. Wt. 

Figure 4G.8. For light scattering, scattering increases with increasing molecular weight. 
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SO 

Low Mol. Wt. 
slope = 2A 2 

< 

1 

RT/M2 

r 

High Mol. Wt. 

Figure 4G.9. Comparison of scattering behavior by two techniques. 

Thus, polymers, having high molecular weight, give low osmotic 
pressure but high light scattering. For this reason, light scattering is the 
preferred technique for polymer studies. 
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Chapter 5 

ELECTRICAL PROPERTIES 

5.1 Introduction 

This chapter discusses the electrical properties of solid polymers in terms 
of the interaction between electromagnetic fields and matter as measured 
by electrical apparati. The interaction between electromagnetic fields and 
matter that gives rise to scattering, absorption, and reflection phenomena 
is the subject of the previous chapter on optics. The electrical interaction 
for polymers discussed in this chapter encompasses a variety of behavior 
from insulators on one end through semi-conductors to materials with 
conductivities in the metallic region. Insulators resist the flow of 
electrical current and therefore have high dielectric coefficients. This 
high resistance has led to the application of polymer films as dielectric 
separators in capacitors. The phenomena of piezoelectricity, 
pyroelectricity and static electricity are associated with the dielectric 
character of most polymers. An important application of the piezoelectric 
effect in polymers is the use of poly(vinylidene fluoride) film as 
transducers in microphones, speakers and similar electro-acoustical 
devices. 

Ordinarily, polymers have very low conductivity and serve as 
insulators. They can serve the very important function of separating 
conductors from each other and preventing transfer of electrons between 
them. While such is useful for everyday use such as insulating power 
lines, polymers also serve more "high tech" applications such as in 
making printed circuit boards on which computer components are 
formed by processes such as lithography. The trend is for such devices 
to become increasingly smaller so as to permit more complex circuitry to 
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occupy less space. This means that conductors must be spaced more 
closely but still separated by insulators. One asks if there is a limit to the 
smallness of such insulators. There is, since Ohm's law as applied to 
describe the resistance of macroscopic insulators no longer works when 
dimensions approach the atomic scale. Then, the phenomenon of 
"quantum mechanical tunneling" occurs whereby electrons can pass 
through insulators in a manner not permitted by classical considerations. 
This places limits on materials and dimensions suitable for insulator 
applications, 

For computer applications, the rate at which data can be transmitted 
determines the speed of computer performance. This is determined by 
the "time constant" of the electronics that describes the rate at which an 
electrical pulse decays that determines the possible interval between 
pulses. This time constant is proportional to the capacitance of the 
circuits that relates to the dielectric constants of their components. For 
this purpose, polymers are attractive, since they generally have lower 
dielectric constants than their non-polymeric alternatives. For this 
consideration, knowledge of the relationship between dielectric constant 
and molecular structure is essential. 

This chapter first derives the basic equations relating dielectric 
behavior to polymeric structure. The equations defining the change in 
dielectric behavior with frequency and temperature are then developed. 
The application of dielectric phenomena to polymeric structures is 
described next with particular emphasis on piezoelectricity. Finally, the 
relation between static electricity and polymer structure is discussed. 

Figure 5.1. Diagram illustrating the force-distance relation between 
two electrical charges. 

5.2. Dielectrics 

5.2.1. Dielectric Constant 
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The dielectric constant (e) of a material may be defined using Coulomb's 
Law, which expresses the force, F, between two point charges, qx and q2, 
separated by distance, r, as (Figure 4.1) 

F = ^ (5.1) 
er 

In vacuum, e = 1 in electrostatic units (ESU) when F is measured in 
dynes and r in cm., in which case, Coulomb's Law becomes 

F = - ^ | 1 (5-2) 

so 

e = FjF (5.3) 

where Fo is the force between charges in vacuum. Hence, a dielectric 
shields the charges from each other and reduces the force. For air, e = 
1.00059 and for water, e = 80. Thus, the force between ions in aqueous 
solutions is substantially reduced as a result of their being surrounded by 
polar water molecules. This is the principal reason for water being an 
excellent solvent for ionic species, in that it shields oppositely charged 
ions from each other and permits them to function independently. 

The electrical field strength, E, is defined as the force on a charge of 
+1 ESU and is a vector quantity. At a distance, r, away from a charge, q, 
Coulomb's Law gives 

E = -^- (5.4) 
er 

or 

T, q r 

and E is oriented in the direction of r. 
The electromagnetic displacement (D) is the value of E in a vacuum 

when e = 1. For a dense medium, the two quantities are related by 

D = £E (5.6) 
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The dielectric properties of a material are also important in capacitor 
applications. The capacitance (Q of a body is defined as 

V 
(5.7) 

where V is the voltage in electrostatic units. The capacitance increases 
with increasing values of the dielectric constant (Figure 5.2). 

To understand equation 5.6, one must first introduce the concept of 
"lines of force", <P. One may then show that the number of lines 
emanating from a point charge, Q, in vacuum is 

<I> = DA = (Q/r2)(4m-2) = AnQ (5.8) 

where D is the number of lines of force per unit area (Appendix 5 A) 

i ' 

A 

+Q 

Figure 5.2. Schematic diagram of a parallel plate condenser with plate 
Area .4 and charge Q.. 

For a point charge, these lines are in the direction of the force that is 
radially outward, whereas for a parallel plate condenser, they are 
perpendicular to the plates (except near the edges) (Figure 5A.5). 
Therefore, for such a condenser, D in the region between the plates is 

D = 0>/A (5.9) 

and 

E = D/e = 4;r/£A (5.10) 

The voltage between the plates is the work necessary to carry a unit 
charge from one plate to the other, separated by distance, s, and is 
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V - Es - Es 

Since E is the force on a unit charge. Thus, 

E = V/s = 4nQ/eA 

Thus 

C = Q/V = eA/4ns 

\<4 A — 

Figure 5.3. Rolled sheet showing the relation of area A to thickness s. 

The capacitance then is proportional to e and A, and inversely 
proportional to s. Thus one way to make a condenser of high capacitance 
is to roll up a conducting film separated by a thin spacer into a tube 
giving a large A and small s. (Figure 5.3). 

The flux density per unit area in the presence of the dielectric, E, is 
less than that in its absence, D, because of the opposing lines of flux 
arising on the surface of the dielectric from its polarization. This 
polarization charge density, P, gives rise to the flux density, 4nP, so that 

E = D-4; iP (5.14) 

and 

e = D/E = l + 4^(P/E) (5.15) 

or 

e - l - 4w(P /E) (5.16) 

Now the polarization charge density arises from the N dipoles of 
moment, n per cm3 lying in the volume of the dielectric a distance, L, 
from its surface. Thus, 

0 

(5.11) 

(5.12) 

(5.13) 
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? = NqL = Nn (5.17) 

where ft = qL 
In the absence of permanent dipoles, n arises from the induced 

dipole moment of the atoms or molecules having a polarizability, a, and 
experiencing an effective field, Ee#. So fJ, = dEejf, The effective field is 
related to the applied field by 

E e f f =D-4, iP + E I n t =E + EiIlt (5.18) 

The internal field, Eint, is that arising from the charges on the surface of 
the cavity within which a molecule resides. This was calculated by 
Lorenz using the assumption that the cavity was spherical as shown in 
Appendix 5B giving rise to 

E in t=(4/3)^» = ( £ - l )E /3 (5.19) 

Thus, 

Eeff = E + (e - l )E/3 = E[3 + (e- l ) ] /3 = E(e + 2)/3 (5.20) 

Then 

e-l = 4aNa(Eett/E) = 4nNa(e + 2)/3 (5.21) 

or 

£-1 

£+2 
= (4/3)nNa (5.22) 

This is the Clausius-Mosotti equation. 
At high frequencies, it can be shown [1] that E = r)2 where r] is the 

refractive index. Substitution of this relation into equation 5.22 yields 

r j 2 - l 4JZ: T 

or the Lorenz-Lorentz equation that is a link between the bulk and the 
molecular optical properties. The Lorenz-Lorentz equation is often 
expanded as, by substitution from equation 5.21 
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This equation represents the starting point for molecular refraction 
discussed in Chapter 4. 

5.2.2. Orientation of permanent dipoles 

The preceding discussion has to do with induced dipoles; whereas, the 
relaxation studies deal with the motions of parts of polymer chains that 
have different relaxation times for orientation. Many polymers such as 
polyvinyl fluoride, polyvinyl chloride and nylons have permanent 
dipoles that may be reoriented on the application of an applied field. The 
response of the oriented permanent dipoles will vary with the strength of 
the applied field. 

5.2.3. Dielectric Loss 

The Boltzmann superposition principle holds for dielectric as well as 
mechanical phenomena (Appendix 8A). One means of applying this 
principle to dielectrics is the differential equation 

dD(t) . , dE(t) . . 
t U. + D(t)mTE0—

{-!- + eaE(t) (5.25) 
dt w ° dt w 

where D(t) is the time dependent electric displacement, E(t) the 
corresponding electric field and x the dielectric relaxation time. The 
equation for alternating current voltage imposed across a dielectric body 
has the form 

E{t) = E^ (5.26) 

and for the corresponding displacement 

D(t) = D0e
i(°*-s) (5.27) 

where co is the angular frequency and 6 is the dielectric loss angle 
analogous to the mechanical loss angle. Substituting equations 5.26 and 
5.27 into equation 5.25 and solving 
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£ = £ „ + e 0 -e-
1 + iewr 

(5.28) 

£* is the complex dielectric constant, eo the static or low frequency value 
of the dielectric constant, £00 the limiting value at high or optical 
frequencies and x is the relaxation time or the time required for the stress 
to relax to 1/e of its initial value. Equation 5.28 summarizes the basic 
frequency dependence in dielectrics as shown by the following 
derivation, e* may be written as 

£* =E' + ie" (5.29) 

where e' is the in phase or energy storage component and e" the out of 
phase or energy dissipating component of the energy absorbed by the 
dielectric at different frequencies, e* may be separated into its real and 
imaginary components by multiplication of equation 5.28 by (1 - ia>r)/(l 
- iurt) yielding 

„ / x (OX 
e =(£o-e-J: — (5.31) 

1 + cox 
The dielectric loss tangent (tan 6 ) analogous to the mechanical case is 
obtained from the ratio 

tan<5 = - (5.32) 
e' 

and, from equations 5.31 and 5.32 

tan<5 = ̂  V-T (5.33) 
£ 0+£„O)O) v ' 

Equations 5.30 through 5.33 are termed the Debye equations and contain 
the basic framework used for the analysis of the frequency dependence 
of polymer dielectrics [2]. Thus, for example, integration of equation 
5.33 assuming a single relaxation time yields 
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^ / - ° ° 

tan6c?lnv = ( £ O - £ . Q ) 

/ \l/2 

( £ o £ » ) 

(5.34) 

The area under a plot of tan 6 against In v provides a measure of the 
relaxation process. 

•fi 
o 

.9 a 2 

£ u 1 

2 4 6 8 
Real Dielectric Constant e' 

Figure 5.4. Schematic diagram of an idealized Cole-Cole plot for a single relaxation time. 

Cole and Cole [3] have shown how the real and the imaginary 
components of the complex dielectric constant may be evaluated by an 
Argand diagram in which each point corresponds to one frequency. This 
diagram plots e" as the ordinate and e' the abscissa (Figure 5.4). The 
shape of the plot is given by 

e'-(e0-eA 
-(*")2 = 

(5.35) 

obtained from the rearrangement of equations 5.30 and 5.31. Thus, a plot 
of e" against e' yields a semi-circle of radius (e0 + £oo)/2 with its origin 
lying at a distance (eo + £oo)/2 along the abscissa based on equation 5.35. 

A distribution of dielectric relaxation times is observed for most 
materials analogous to what is found for mechanical relaxation 
processes. The single relaxation time used in equations 5.30 and 5.31 is 
therefore replaced by an integral, or 
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And 

e'(a>) = £„+(e0-e„) 

e " H = (£o-£oo) 

<P(T) 

l + ft)V 
dim 

<p(r) art 
1 + CoV 

dim 

(5.36) 

(5.37) 

where 0(r)dln is the fraction of the change in dielectric constant 
originating from mechanisms having relaxation times between In r and in 
T + d(ln T). The simple relations used to obtain the Cole-Cole plot in Fig. 
5.4 for a single relaxation time are not valid for a distribution of 
relaxation times. For the latter case, Cole and Cole [3] therefore 
proposed the empirical relations 

and 

£ ' (« ) = £„ + ( £ ( , - £ „ ) 

e"(co) = (£„+£„) 

1 + (CDT0) COS(/3JT/2) 

l + 2(arr0) cos(/3jr72) + (a>T0) 

(orc0) cos(/frr/2) 

2(8 (5.38) 

1 + 2(COT0) cos(/frr72) + (ftn:0) 
(5.39) 

/? is a parameter with limits 0 < /3< 1. The limit of /3 = 1 corresponds to 
the single relaxation time case. As with mechanical relaxations, the 
frequency at a> = 1/TO is that of maximum loss. 

References 4 and 5 give details on experimental procedures and 
results for individual polymers. The use of dielectric techniques to 
monitor orientational changes in an ethylene-carbon monoxide 1:1 
alternating copolymer is described in reference 6. 

5.3. Piezo- and Pyroelectric Effects 

The polarization induced in polymer dielectrics by the application of an 
electric field or by other charging treatments can, in a few cases, persist 
for long (ca. months) periods at room temperature. The polymers thus 
treated are termed electrets. Polymer films that have been subjected to 
this polarization treatment or poled manifest piezoelectric and 
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pyroelectric phenomena. Piezoelectricity (or pressure electricity) refers 
to the generation of electric current on the application of a stress (or 
pressure) to a material. (The reverse effect, a change in sample 
dimensions on application of electrical stress, also occurs in piezoelectric 
materials). Pyroelectricity (or thermal electricity) is an analogous 
phenomenon in which the application of heat causes the generation of 
electricity in certain materials. 

Piezoelectricity links the fields of electricity and acoustics. 
Piezoelectric materials are key components in acoustic transducers such 
as microphones, loudspeakers, transmitters, burglar alarms and 
submarine detectors. The Curie brothers [7] in 1880 first observed the 
phenomenon in quartz crystals. Langevin [8] in 1916 first reported the 
application of piezoelectrics to acoustics. He used piezoelectric quartz 
crystals in an ultrasonic sending and detection system - a forerunner to 
present day sonar systems. Subsequently, other materials with 
piezoelectric properties were discovered. These included the crystal 
Rochelle salt [9], the ceramics lead barium titanate/zirconate (pzt) and 
barium titanate [10] and the polymer poly(vinylidene fluoride) [11]. 
Other polymers such as nylon 11 [12], polyvinyl chloride) [13] and 
poly(vinyl fluoride) [14] exhibit piezoelectric behavior, but to a much 
smaller extent. Strain constants characterize the piezoelectric response. 
These relate a vector quantity, the electrical field, to a tensor quantity, 
the mechanical stress (or strain). In this convention, the film orientation 
direction is denoted by 1, the width by 2 and the thickness by 3. Thus, 
the piezoelectric strain constant dl3 refers to a polymer film held in the 
orientation direction with the electrical field applied parallel to the 
thickness or 3 direction. The requirements for observing piezoelectricity 
in materials are a non-symmetric unit cell and a net dipole movement in 
the structure. There are 32-point groups, but only 30 of these have non-
symmetric unit cells and are therefore capable of exhibiting 
piezoelectricity. Further, only 10 out of these twenty point groups exhibit 
both piezoelectricity and pyroelectricity. The piezoelectric strain 
constant, d, is related to the piezoelectric stress coefficient, g, by 

d = exg (5.40) 
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and the dielectric constant at stress level x, ex. The piezoelectric strain 
constant, d, relates the applied electric field to the resultant (units of 
meters per volt, the piezoelectric stress coefficient, g, relates the stress 
applied to a crystal to the resultant electric field in the crystal (units of 
volts meters per Newton). 

5.4. Piezo-Electric Coefficient 

To determine the factors that influence the efficiency of piezoelectric 
materials, one starts with the voltage equation 

V = Q/C (5.41) 

where V= Voltage 
Q = the electric charge 
C = the capacitance 

Differentiating equation 5.41 by s, the thickness of the piezoelectric 
material 

(dVlds) = Q[d(\IC)/ds\ (5.42) 

(5.43) 

Then, substituting the capacitance equation, 

Q=\ns 

eA 

into equation 5.42 

ds 

4 ns 4nQ 4TIP 

eA e 
(5.44) 

where s = the condenser spacing 
A = Condenser plate area 
P = Polarizability 
e = Dielectric constant 

The response of the piezoelectric material to sound waves or variation 
of voltage to stress is given by 

(dV/do) = (dV/ds)(ds/do) (5.45) 

Since Young's Modulus = Y = s[do/ds\ 

274 



ELECTRICITY 

Thus 

("/*)-*=££ (5.46) 

An advantage of polymers is that they have low £ and Y values as 
well as high polarizability. Thus, polymers can provide sensitive piezo
electric detectors with large areas. 

Thus, the greater the dielectric constant, the greater is the 
piezoelectric effect. This is true only when comparing polymers with 
similar symmetry. There are certainly high dielectric constant polymers 
that are not piezoelectric. The electric displacement, D, (equation 5.6) for 
the combined effects of stress and temperature is given by the linear 
relation 

D = dx+exE-PxAT (5.47) 

where E is the electrical field strength, AT the temperature difference and 
px the piezoelectric coefficient. 

The poling operation enhances piezoelectric effects in polymers in 
contrast to the case with other materials. As mentioned previously, 
poly(vinylidene fluoride) (PVDF) shows the greatest response to poling 
of any polymer. By way of background, the crystallinity of PVDF2 
ranges between 30 and 40% [15]. The non-polar a-crystal phase forms 
preferentially on initial extrusion of PVDF film. Subsequent drawing or 
orientation increases the amount of the polar j3-crystal phase at the 
expense of the a phase. Poling however may result in increasing the 
amount of the /3-crystal phase [16]. Orienting the polymer prior to poling 
may be desirable since this can align the polar groups in such a way they 
are then more prone to poling. Higher crystallinity is also desirable for 
poling since the crystals orient better than do the amorphous regions. In 
addition, efforts have been made to increase the jS-crystal phase by 
modifying the crystallization conditions. For example, the amount of the 
j8-crystal phase of PVF2 can be increased by blending with PMMA to 
supplement the effect of poling on its concentration. 

The reasons for the superiority of pvdf film as a piezoelectric material 
are obscure. Other polymers such as Nylon 11 are similar in structural 
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characteristics: a non-symmetric unit cell, chain conformation and 
crystallinity, but do not respond to poling to the same degree. 

Unpolled 
sample 

Heat and Apply 
Field 

+ + + + + + 
Cool and Remove 
Field 

Electret 

Figure 5.5. Diagram of a typical poling assembly in which permanent dipoles 
are aligned to form electrets. 

In one common poling procedure, the polymer film is placed between 
two electrodes and a direct current is applied to the assembly (Figure 
5.5). Films are usually covered with a thin metal (aluminum, nickel, gold 
or silver) layer before poling to reduce surface contact resistance. 
Samples are commonly heated to a temperature below the melting point, 
held at temperature while the electrical field is applied and then cooled in 
the presence of the field. As an example [17], poly(vinylidene fluoride) 
film (6 mm thick) was plated with aluminum, placed between electrodes 
with the film orientation parallel to the electrodes surfaces, heated to 
110°C and a voltage of 5xl05 volts/cm applied for 45 minutes. Poling 
can also be accomplished with treatment of polymer film samples by 
corona discharge at room temperature [18] or by plasma treatment at 
room temperature [19]. 
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Appendix 5A. Lines of Flux 

5A.1. Electrical Field Strength 

The electrical field strength is a vector in the direction Of and equal in 
magnitude to the force on a unit positive charge. 

Thus the field strength, E, at a distance, r, from a charge, +q, in a 
material with a dielectric constant, e, is 

E = q/er2 (5A.l)m 

force = E 

Figure 5A. 1. Diagram showing the relations used in deriving the electric field strength. 

5A.2. Electric displacement and Flux Density 

D = Displacement = Field Strength in a vacuum (e = 1) 

D = eE (5A.2) 

Lines of flux are in the direction of D with a number/cm2 equal to D 
Lines of flux between two opposite charges flow from positive charge to 
negative charge (Figure 5.A.2) 

Figure 5A.2. Sketch showing the lines of flux between two charges, 
one positive and one negative. 
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Number of lines of flux passing through the surface of a sphere with a 
charge +q at its center (Figure 5A.3) 

4> = DA = eEA = e[$/er2][4 JIT2] = Ajtq (5A.3) 

Figure 5A.3. Sketch showing the lines of flux passing through the surface of a sphere. 

The lines of flux are continuous. Their number is independent of the 
radius of the sphere, so that the number of flux lines is constant 

The lines of flux are not shape dependent (Figure 5A.4) 

Figure 5 A.4. Diagram illustrating independence of shape on lines of flux. 

•f <ML a i l 

Figure 5A.5. Diagrams showing different types of electric field configurations. 
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Lines of flux can only start at positive charges and end at negative 
charges. They must be continuous and will minimize their curvature 
(Figure 5A.5). 

5A.4. The Electrostatic Potential (Voltage) 

asmsD 
+q 

Figure 5A.6. Lines of flux between parallel plates. 

The potential V(x) at point x is the potential energy required to bring a 
unit positive charge from infinity to x, or 

V(x)= [F-dr= [E'dr 

where F = the force vector 
r = the displacement vector 

since the force on a charge of q is 

F = ^E 

and q = +1 

Example: What is the potential at a distance, r, from a charge q? 

V(r)-fE.*-r-^-£[l /r]-
Er 

(5A.4) 

(5A.5) 

(5A.6) 

5A.5. The Field between Parallel Plates 

Assume a » s ; Area = A = ab 

Number of lines of flux = O = 4JIQ 

D = Flux density = AnQj A 
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E = Field strength = D/e = 4-jtQ/sA 

V = Potential = ¥s = Es = [4nQs]/eA 

+Q 

Figure 5A.7. The electrical field between parallel plates. 
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Appendix 5B. Lorentz Calculation, Internal Field Correction 

The inner electric field produced by material between the plates reduces 
the total electric field (Figure 5B.1) 

+ + + + + + 

tfftffit 
+ + + + + + 

Figure 5B. 1. Charge distribution between capacitor plates without and with 
material between capacitor plates. 

Eint is the internal field 
Thus 

£ - l = 4^Va(E int/Ee„) (5B.1) 

To evaluate (Eint /Eeff), we will adopt the model of Lorenz and 
assume that the molecule is in a spherical cavity in the dielectric 

This involves the following assumptions: 
The cavity must be at least as large as the molecule. 
The molecule must be approximately spherical so as it fits in the 

cavity. 
The material outside the cavity must be uniform. 

+ + + + P + + + + 

Figure 5B.2. Sketch showing a spherical field around a charge used in the 
Lorenz calculation. 
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Figure 5B.3 relates the Cartesian coordinates to the spherical coordinates 
used in this derivation. 

dA = asin 0d<l>(ad0) 

V_ 
£ ^ - J ^ d<7 = P c o s # d A 

d E 2 = d E c o s 6 

Figure 5B.3. Spherical coordinates used in deriving equation 5B.4. 

Now the x and y components of the field are zero because of symmetry, 
and only the z component remains which is 

Ez = [dEcosd = F f " rcos20sm&/<^0 = (4/3)7tP (5B.4) 

Now 

Eint = D - (Fieldfromflat surface) + (Fieldfromspherical cavity) 

-D-4J& + (4/3)J&-E + (4/3)JIP (5B.5) 

We have seen that P (equation 5.16) can be given by 

4JIP = ( £ - 1 ) E (5B.6) 

Thus 

Eint = E + ( £ - l ) E / 3 - ( £ - l ) / 3 (5B.7) 

so 
(E int/E) = ( £ - l ) / 3 (5B.8) 

This is the Lorenz internal field factor which is 0 in a vacuum (e - 1) 
and greater than one in a real media. 

For (E i n t /E) on rearranging equation 5B.07, we obtain 
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£-1 4 
= -7iNa (5B.9) 

e + 2 3 
This is the Clausius-Mosotti equation which relates the macroscopic 

dielectric constant, molecular polarizabilities and condensed matter. 
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Chapter 6 

SPECTROSCOPY 

6.1. Introduction 
The change in absorption or emission of waves by matter with frequency 
(or wavelength) of impinging waves forms the subject matter of 
spectroscopy. The best known and most intensively studied wave 
phenomena are those associated with the interaction of electromagnetic 
waves (ultraviolet, visible and infrared) and matter. Molecules absorb 
radiation, from a quantum mechanical viewpoint, by excitation from a 
lower (Ei) to a higher electronic or molecular energy level (£2) through 
absorption of a photon of frequency v. The energy-frequency relation is 
given by the Bohr equation 

AE = E2-Ex=hv = fi— (6.1) 
A 

where h = Planck's constant, 
c = the velocity of light 

and A = the wavelength. 
The energies calculated from equation 6.1 for the infrared and Raman 

frequencies lie in the range of the vibrational and rotational motions of 
molecules. Infrared and Raman spectroscopy provide structural 
information once the various absorption bands are assigned to specific 
molecular vibrations. Similarly, the energies associated with the visible 
and ultraviolet radiation lie in the range of electronic transitions within 
the atoms and provide information about chemical bonding. 
Electromagnetic radiation is the most widely used because of the 
availability of sources and detectors and the interpretation of the data in 
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terms of structure. Other techniques however based on neutron 
scattering, acoustical, dynamic mechanical and nuclear magnetic 
resonance also provide valuable information on polymer structure and 
properties. 

This chapter treats principally the vibrational spectra determined by 
infrared and Raman spectroscopy. The means used to assign infrared 
absorption bands are outlined. Also, the rationale for the selection of 
permitted absorption bands is described. The basis for the powerful 
technique of Fourier Transform Infrared (FTIR) is presented in Appendix 
6A. Polyethylene is used to illustrate both band assignment and the 
application of selection rules because its simple chain structure and its 
commercial importance have made polyethylene the most thoroughly 
studied polymer. The techniques of nuclear magnetic resonance, neutron 
inelastic scattering and ultraviolet spectroscopy are briefly described. 
The areas of dielectric loss and dynamic mechanical loss are not 
presented in this chapter, but material on these techniques can be found 
in Chapters 5. 

6.2. General Background 

The basic wave equation (6.2) states that the product of the frequency (v) 
and the wave length (A) is equal to the wave velocity, or 

c = Av (6.2) 

(in the case of electro-magnetic radiation, c equals the velocity of light) 
Radiation is described either by its wavelength (micrometers for the 

infrared range, or those of frequency in reciprocal length or wave 
number). From a wave standpoint, the absorption of energy introduces a 
decrease in the amplitude of the wave as it transverses the medium. This 
decrease is associated with a loss of energy in the transmitted wave. 
From a classical viewpoint, the absorption may be considered to occur 
when the frequency of the radiation equals a resonant frequency of 
electronic or molecular motion in the medium. The absorption may be 
characterized by a transition moment, a vector in the direction of the 
dipole moment (or polarizability) change of the absorbing species. The 
absorption depends on the component of this transition moment along the 
polarization direction of the oscillating electric field. A polyatomic 
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molecule may absorb at several frequencies, each corresponding to a 
particular electronic or molecular motion in the medium with each 
having its characteristic transition moment. At first glance, one might 
reasonably expect long chain molecules with large numbers of atoms to 
show many absorption bands. However, the periodicity and symmetry of 
polar molecules usually reduces the number of absorbing frequencies and 
simplifies polymer spectra compared to those of low molecular weight 
compounds. 

Beer's Law states that the reduction in intensity, dl, of the wave in 
passing through the increment of thickness, dl, is given by 

-(dl/dl) = e/0 (6.3) 

where h and // are the incident and transmitted beam intensities [1] 
respectively and the extinction coefficient is e. Integrating 

/(/) = /0e-£/ (6.4) 

The extinction coefficient is obtained on rearranging equation 6.4 

(6.5) 

This quantity may be related to the absorbance a; along the associated 
transition moment by 

ei = aicos2di (6.6) 

where 0; is the angle between the transition moment axis and the 
direction of polarization of the radiation (Figure 6.1) of the ith absorption 
band. 

Incident beam 
polarization 

fl Transition 
- • x^Direction Z Propagation 

Direction 

Figure 6.1. Relation between the bond transition moment and the incident beam 
polarization direction. 
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6.3. Infrared 

In molecular terms, absorption in the infrared occurs classically by 
interaction between the incident radiation field and dipoles (see Chapter 
4) in the medium. These dipoles, as in the case of the chlorine-carbon 
atom dipoles in polyvinyl chloride), absorb due to the dipole moment 
varies along with the vibration. The equations of motions for these atoms 
(nuclei) are for point masses vibrating (or rotating) in the 400-2000 cm"1 

frequency range. The simplest model uses point masses linked by 
weightless springs that obey Hooke's law. Also, the masses oscillate in 
simple harmonic motion about an equilibrium configuration. For the 
infrared region, the masses are of atomic magnitude; the links are the 
bonds between atoms. Then, from Hooke's law (which assumes that the 
force varies linearly with the displacement) 

F = fx (6.7) 

where/is a force constant or constant of proportionality, F is the applied 
force, and x the associated bond deformation. A consequence of solution 
of the equation of motion is that the total energy, E, is conserved so that 
the sum of the potential energy, V, and the kinetic energy, K, is constant 
during the vibration 

A linear molecule composed of three atoms (Figure 6.2) is described 
by the equation 

mtf | m2vl | m,v\ | f{x2-x,f < f(x3-x2f _£ ( ^ g ) 

kinetic energy potential energy 

where mt represents the atomic mass, v, the vibration for the /'* atom. The 
equation of motion for atom 1 is given by 

m, 
d2xx 

X~dF 
-/(*2-x,)-0 (fi.9) 
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Similar equations can be written for atoms 2 and 3 (Appendix 6B). 
Solving equations 6.8 and 6.9 as written above in terms of Cartesian 
coordinates is cumbersome due to interaction terms between the various 
motions. Transforming the Cartesian coordinates into a set of normal 
coordinates as described in Appendix 6B greatly simplifies the 
mathematical manipulation because each vibration is expressed in terms 
of only one normal coordinate. The Cartesian coordinates can then be 
expressed as a linear combination of normal coordinates {B\B2B^) with 
the result that 

m i i i i i m LULL rn 

a s a s I 

-X2 ». 

X ̂3 ^ 

m = atomic mass a s = spring constant 

Figure 6.2. Coordinate system for a three state linear molecule. 

xl =— fi| +—B2cosco2t + — B3cosco3t (6.10) 

3 2 6 

x2=-Bx+-B3cosa)3t (6.11) 

1 1 1 
x3 -— Bl +—B2cosa)2t +—B3cosa)3t (6.12) 

3 2 6 
These linear combinations show the type of vibration, symmetric or anti 
symmetric, and are thus useful in assigning absorption frequencies to 
specific molecular vibrations. 

In writing the equations of motion for a chain of N atoms, matrix 
notation is preferred for conciseness. In matrix notation, the potential 
energy can be written as 
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w-yft (6.13) 

where |x| is the column vector of the Cartesian coordinates 
or, for a three-atom molecule, 

x = (6.14) 

fij is an element in a square 3 x 3 matrix and |xTj is the transpose or row 
vector of Ixl 

—T I 
X = X (6.15) 

Similarly, the expression for the kinetic energy in matrix notation is 
given by 

2K = xT\M\x 

where fx| is the column vector of the velocities, 
Cartesian coordinates or 

x = 

(6.16) 

X, expressed in 

(6.17) 

M | is the 3 X 3 diagonal matrix (Appendix 6B) of the atomic masses and 

is the transpose or row vector of |x | 

• T I • 

x = x (6.18) 

The extension from the three atom, one-dimensional case to that of an 
isolated polymer chain of finite length is straightforward. As before, the 
linear chain is composed only of equal masses, m, separated by a 
constant distance, d (the repeat distance). Hookian springs with force 
constants, / join the masses. Again, the chain is assumed to vibrate in 
only one dimension, say the x-axis. The equation of motion for the w"1 

mass, when it is displaced from its equilibrium position, is (analogous to 
equation 6.9) 
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m « - ^ T " / ( * « * ! - * « - l - 2 * « ) = ° (6.19) 

Solutions to equation 6.19 take the form of 
xn = Aexp[i(atf + knd)] (6.20) 

where k is termed the wave vector whose modulus is equal to 2n/A, and t 
is the time. Differentiation of equation 6.20 and substitution into 
equation 6.19 yields a solution only if the condition 

°H4%,fs i f%) <«» 
is met. A plot of a>(k) against / , called the dispersion curve, given by 
Equation 6.21, has the properties common to all harmonic waves and is 
not restricted to only the case of atomic vibration. It describes a wave 
propagating along the chain with a wavelength of 2n/k. Each mass 
vibrates with frequency co(k). The allowable vibration frequencies that 
can propagate along the chain are restricted to a band between co = 0 and 
wmax = (4/7?w)1/2 corresponding to k = 0 and k = +n/d respectively. At k = 
0, all masses move in phase with each other so that the chain motion is 
one of translation (equation 6B.30). Between the k limits, traveling 
waves move along the chain. At k = ± %ld, the masses are out of phase 
with each other and a standing wave of length / =TO2d is set up. The 
interval between +n/d and -n/d is termed the first Brillouin zone [1]. 
Repetition of a vibration occurs when the value of k is greater than +n/d 
or less than -n/d. The existence of a bound between ± n/d simplifies the 
mathematical description for isolated polymer chains in that only some 
chain subunit, and not the entire chain, need be considered. 

In principle, use of a suitable coordinate transformation can convert 
equations 6.13 and 6.16 into secular equations and the vibrational 
frequencies calculated [2,3] if all the force constants are known. 
However, the observed frequency bands are commonly much fewer than 
the number of force constants. Calculations therefore concentrate on 
assuming values for the force constants and refining the best fit to the 
observed frequencies. Selection rules reduce the number of force 
constants required in the frequency calculations. These rules determine 
whether a given molecular vibration is active and are based on molecular 
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symmetry considerations. For a vibrational mode to be active in the 
infrared, the change in the dipole moment, m, set up during the vibration 
must have a component along the vibrational direction (Figure 6.3). 

Figure 6.3. Infrared active vibration showing change in the dipole moment. 

Polyethylene furnishes a good example of the simplification produced 
from symmetry considerations. The idealized molecule consists of 
methylene groups linked in a linear chain. The number of degrees of 
freedom for a chain with N atoms is 3N. Of these, three are assigned to 
translation and three to rotation so that 3N-6 remain to be assigned to 
vibrational modes of motion. Taking the ethylene moiety (N=6) as the 
repeat unit, the number of vibrational degrees of freedom in polyethylene 
is 12. Since a normal coordinate describes each vibration (Appendix 6B), 
and one coordinate characterizes a mode, interaction terms are 
eliminated. Appendix 6C presents the nomenclature denoting the 
vibrational modes. The vibrations are commonly referred to by their 
changes in skeletal geometry such as methylene stretching, bending, 
twisting or wagging. These vibrations can be either symmetrical or anti-
symmetrical with respect to a center of gravity. The usual convention for 
a Cartesian coordinate system places the chain axis along the x axis, the 
plane of the carbon atoms is then used to define the y axis and the z axis 
is taken as perpendicular to this plane (Figure 6.4). Only eight of the 
twelve methylene vibrations in polyethylene result in a dipole change: 
three along the x-axis, three along the y-axis and two along the z-axis. 
Their approximate location in the polyethylene spectrum may be 
estimated from the magnitude of the force constants associated with a 
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particular vibrational mode. Thus, the observation that the stretching 
modes are found at higher frequencies (2900 cm"1 than are the bending 
1500 cm"1) modes correlates with their respective force constants 
(4.6xl05 dynes/cm for stretching 0.35xl05 dynes/cm for bending). The 
use of a polarized (Chapter 4) incident infrared beam facilitates 
interpretation of the spectrum in that vibrational symmetry determines 
the polarization of an absorption band. 

A Z 

Y 

Figure 6.4. Relation between a chain axis and a Cartesian coordinate system. 

The main absorption bands of the polyethylene spectrum have been 
assigned to the different mfrared active modes [4-6], but details, 
particularly in the fingerprint region of 700-600 cm"1, remain to be 
worked out because of interactions between vibrational modes. Several 
references [2,3,6,7,8] give details on the mathematical apparatus used to 
interpret the infrared spectra of polymers. 

Vibrational spectra are interpreted at several levels of sophistication. 
The simplest level compares the spectrum of an unknown polymer with 
those of known polymers. A good match or correspondence between 
absorption bands in the spectra of a known and an unknown polymer in 
the fingerprint region (700-600 cm"1) constitutes strong evidence that the 
two polymers are identical. The numerous infrared bands originate from 
many types of atomic motions and slight changes in structure or 
composition result in perceptible spectral changes such as frequency 
shifts and band intensity variations. Another level combines structural 
information obtained from other techniques (x-ray, chemical analysis, 
mechanical and thermal properties) with the location of infrared 
absorption bands in compounds with homologous structures in order to 
assign the origin of a particular band to a specific vibration. Thus, in the 
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polyethylene spectrum, the 2860-2900 cm"1 doublet is assigned to 
methylene CH2 stretching modes based on comparison with n-paraffin 
structure and chemical structure data. The most difficult level in 
interpretation of infrared spectra involves calculation of band frequency 
based on vibrational motion. Molecular symmetry, Raman 
spectrographic and polarization data are used as aids in interpretation. In 
principle, the dynamical equations for vibratory motion worked out by 
physicists over the last century (Rayleigh [9], Brillouin [1], Herzberg [7]) 
should be capable of being applied to infrared data by scaling the 
equations to atomic dimensions. In practice, the interactions between 
vibratory motions, the imperfections present in real chains and the 
selection of force constants present formidable difficulties in calculating 
the infrared band frequencies of polymers. 

Assignment may be aided from studies of the polarization behavior of 
oriented polymers. For example, when polyethylene is stretched, the 
chain of carbon atoms become oriented in the stretching direction. As a 
result, the plane of the C-H bonds of the CH2 groups will be 
perpendicular to this direction. Consequently, the CH2 bending vibration 
will result in absorption polarized perpendicular to the stretching 
direction while the wagging vibration leads to absorption for parallel 
polarization. 

Assignments may also be aided by isotopic substitution. For example, 
replacements of H by its isotope, D, doubles the mass but little effect on 
force constants, Consequently, vibrations involving it are shifted to lower 
frequencies by a predicable amount. 

Deuterium substitution is also used in fiber optics. For fiber optics 
communication, it is necessary to have fibers of high transparency to 
avoid attenuation of signals. Optical fibers are conventionally made from 
very pure glass, but polymeric fibers are often of interest because of their 
lighter weight and superior mechanical properties. These have the 
disadvantage that they offer greater attenuation arising from scattering 
from impurities and density fluctuation, but sometimes arise from 
absorption due to the tails of infrared bands which extend into the 
visible. One approach to this is to employ deuterated polymers so as to 
shift these infrared band to lower frequencies. 
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Normal coordinate calculations on polymers are discussed in 
Appendix 6B. 

Avi 
-M Rayleigh 

, / L i n e 

AH'K 
AV2 111 Stokes 

taman Lines 

Intensity Anti-stokes 
Raman Lines 

Frequency 

Figure 6.5. Diagram showing the relation between the transmitted beam and 
the Stokes and anti-Stokes lines. 

6.4. Raman 

Raman scattering is a technique for studying vibrational spectra that has 
gained in popularity with the availability of lasers that generate coherent, 
intense, parallel light beams. Prior to their use, light sources such as 
mercury arcs were necessary. These were cumbersome and of lower 
intensity than is available with lasers, so data acquisition times were 
long. Consequently, the technique was not widely used. The major 
portion of the scattered radiation has the same wavelength as that of the 
incident beam (Chapter 4). However, for certain molecules, a portion of 
the incident radiation is absorbed at one frequency va and scattered at a 
lower frequency ve (Anti Stokes line) or at a higher frequency (Stokes 
line) (Figure 6.5). The absorption occurs from energy transitions between 
vibration and rotational states. The equation describing the absorption 
process in Raman scattering is given by 

AE = h(va-ve) (6.22) 
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where ti is Planck's constant. A change in polarizability of the molecular 
bonds characterizes the absorption process in molecular terms. Thus, the 
electric field, E, incident on a diatomic molecule, with an electric field E0 

of a frequency v0 is given by 

E = E0sin27rv0/ (6.23) 

The incident field induces a periodic oscillation of the bonding 
electrons with time. The bond therefore acquires an induced dipole or 
electric moment vector 

aE = P = aE0 sin 2jtv0t (6.24) 

where a is the polarizability. The molecule acts as a Hertzian oscillator 
and radiates energy. If the polarizability is constant with no variation 
over time, the energy is radiated in the form of electromagnetic waves at 
a constant frequency v0. If however, the oscillation produces a periodic 
variation in bond polarizability, then it is assumed that equation 6.24 
may be expressed by a series of the form 

E0sin2;rv0f[a0 + — scos(2jntf+ e) 

, }«> (6.25) 

+ 
a 

2\dq2
 l 

S2COS2(2JTV? + £) + ...] 

where ^ is the amplitude of the normal coordinate q specifying a 
particular vibration and e is the phase of the vibration. It is further 
assumed that the change in polarizability may be approximated by the 
first two terms in equation 6.25. On truncating and rearranging, equation 
6.24 becomes 

aE = aoE0 sin2;rv0 + E0w — sin2;rv0/ + cos(2jrvr + e) (6.26) 
\d<l)o 

By using the trigonometric identity, 

sinAcosfi = (i)[sin(A + fl) + sin(A-fi)] (6.27) 

and rearranging, equation 6.25 is transformed to 
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aE = (-0[sin{2 JT(V0 + v)t + e} + sin{2;r(v0 + v)t - e} 1 (6.28) 

The radiation scattered from Raman active molecules thus has three 
components: the central line at a frequency v0 due to Rayleigh scattering 
and two ancillary lines displaced to either side: the Stokes (v0 + v) and 
the anti-Stokes (v0 - v) lines (Figure 6.6). The magnitude of the shift and 
the peak intensity can be related to molecular vibrations using normal 
coordinate analysis and other mathematical tools discussed in Section 
6.3. 

Active Mode Vibration Direction 

IR active M • 

Raman active 

Raman active 

IR active 

Both modes active 

Both modes active 

Both modes active t 
Figure 6.6. Raman and infrared active frequencies. 

The complexity of Raman spectra for polymers is reduced as with 
infrared spectra because vibrations of the same type superimpose. In 
addition, as with infrared spectroscopy, selection rules aid in determining 
which molecular vibrations are active. However, the criterion for Raman 
activity is a change in bond polarizability with molecular vibration or 
rotation in contrast to the infrared criterion of a change in dipole moment 
(Figure 6.6). This means that, for molecules such as carbon dioxide that 
show both a change in dipole moment and a change in polarizability, 
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additional information about their atomic structure may be obtained by 
using both infrared and Raman measurements. 

The number of normal modes is reduced by symmetry considerations. 
For polyethylene, with a center of symmetry in the repeat unit, 
vibrational modes that are infrared active are Raman inactive and vice 
versa. Eight modes are active: four in the infrared [lAu, lBiu, 2B2u and 
2B3u] (Appendix 6C) and four in the Raman [3A2g, 25lg> 2B2g and 15lg] 
with the Au mode being inactive in both. Thus, only four normal modes 
out of a possible twelve are associated with the normal modes of 
vibration in the polyethylene repeat unit. 

Thus, Raman spectroscopy complements infrared in that normal 
modes not observable by infrared spectroscopy may be accessed. For 
molecules having a center of symmetry, Raman and infrared bands are 
mutually exclusive in that normal modes observed by one technique are 
not seen by the other. 

There are experimental advantages to Raman spectroscopy in that 
conventional glass optics can be employed and better detectors are 
available for visible radiation than for infrared (although there have been 
impressive developments in the latter stimulated by military needs). 
Also, infrared absorbencies are such that very thin samples are usually 
necessary; whereas, thicker samples can be employed with Raman. Also, 
laser beams can be focused to illuminate small areas making it possible 
to study the spatial variation of the spectra. Fiber optics can be employed 
to "pipe" the incident radiation to the desired position in the sample and 
to collect the scattered light. 

There are disadvantages to the Raman technique. Many samples 
contain florescent impurities or are inherently fluorescent. This 
fluorescence leads to background radiation, which often makes the 
observation of Raman spectra difficult. However, methods have been 
devised, for example using high resolution monochromators, which help 
circumvent this problem. 

Also, phase separated or crystalline samples exhibit intense Rayleigh 
scattering, rendering difficult the observation of the Raman satellites in 
the presence of this intense central band. 
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6.5. Ultraviolet and Visible 

The energy associated with ultraviolet (v = 200-400 nm) and visible (v = 
400-700 nm) light photons can be calculated from equation 6.1 and lies 
in the region of electronic transitions. In contrast to the relatively small 
number of vibrational and rotational transitions available to nuclei (the 
basis for infrared and Raman spectra), electrons possess a multitude of 
transition states. Electrons can move from any of a number of ground 
states to many accessible excited states on absorption of a proton. In 
comparison to an infrared spectrum that typically shows many sharp 
absorption bands, a typical ultra-violet spectrum has only a few broad 
absorption bands. The frequency at which the band has a maximum (vmax) 
and the intensity of the absorption (emax), the extinction coefficient (see 
equation 6.5) at vmax characterizes these bands. For polyvinyl alcohol, the 
maximum in the spectra shifts from the ultraviolet to the visible regions 
of the electromagnetic spectrum as the alcohol group is systematically 
removed from the main polymer chain and the number of conjugated 
double bonds increases (10). This same process is used to produce one 
type of Polaroid™ film. Polyethylene is rendered more biodegradable by 
introducing C=0 groups in polyethylene to absorb ultraviolet light and 
lead photo degradation. As with infrared and Raman spectra, the 
ultraviolet and visible intensities vary with the orientation of a polarized 
light source. 

Figure 6.7. Diagrams showing the relation between the distance of the hydrogen atom, r, 
the applied magnetic field, H0 and <p the angle between H0 and r. 

Ultraviolet dichroism has been applied to polymer orientation studies 
[11,12]. Quantitative analysis of the amount of conjugated unsaturated 
structure in rubbers can also be determined from ultraviolet and 
spectroscopic data. Conjugated systems such as polyenes or aromatics 
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lower the electronic frequencies to the ultraviolet range. These 
compounds thus can be measured by fluorescence. 

The development of unsaturation as a result of polymer degradation 
(as with poly(vinyl chloride) which can do so by losing HC1) which often 
develops a yellowish color as it ages. To obtain colorless polymer, it is 
necessary to avoid such changes and to eliminate impurities which may 
absorb in the visible. 

6.6. Nuclear Magnetic Resonance 

Certain atomic nuclei possess spin angular momentum and a resulting 
magnetic moment («0). When placed in a magnetic field, these nuclei can 
occupy one of two spin states, either with or against the field direction 
[13]. The proton, with a spin quantum number of 1/2, is a prominent 
example of a nucleus with a magnetic moment. Other nuclei with a 
magnetic moment are carbon13, fluorine19, silicon29 and phosphorous31. 

The energy absorbed or emitted (AE) in the transition between energy 
levels by nuclei with spin is given by 

A£ = s (u 0 'H 0 ) (6.29) 

where H0 is the applied magnetic field and g is the spectroscopic splitting 
factor (with a value of 2 in the case of the proton). The frequency (vo) at 
which a particular transition occurs is given on combining equations 6.1 
and 6.29 by 

/zv0=2u0-H0 (6.30) 

where h is Planck's constant. Nuclear magnetic resonance measurements 
may thus be performed by varying either the frequency or the magnetic 
field strength. Typically, the magnetic field strength is varied (or swept) 
while the frequency is held constant and the energy change in the form of 
a resonant absorption peak between the magnetic field strength and the 
fixed frequency is recorded. 

Commercial spectrometers commonly sweep in the field strength 
range between 9000 and 23,000 Gauss. Newer equipment is capable of 
generating field strength of 60,000 to 220,000 Gauss with a concomitant 
narrowing of the absorption bands. Calculations based on equation 6.30 
show that, a frequency of 40 Mc/sec (the radio region of the 
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electromagnetic spectrum) gives rise to a proton resonance at a magnetic 
field strength of 10,000 Gauss. The dipole-dipole interaction between 
pairs of identical nuclei of spin 1/2 (e.g. protons) broadens the absorption 
line into a band (H) characterized by the expression. 

3 M / *j8-l) (6.31) «--ik cos2 

where r is the distance between protons and /3 is the angle between a line 
joining the protons and O (Figure 6.7). The magic spinning angle 
technique (14) is based on equation 6.29. The nuclei are oriented at a 
beta value of 56.3° by an auxiliary magnetic field in order to minimize H 
and thereby narrow the absorption band [14]. The band broadening may 
be calculated either from the line width at half the peak intensity or by 
the second moment of the NMR curve defined by 

r(H-H0ff(H)dH 

L f(H)dH 

where S2 represents the mean-square deviation of the field from the 
center of the line H0. The NMR technique is used to characterize 
polymer transitions (Chapter 3), polymer orientation and to estimate the 
degree of crystallinity (Chapter 8). It is particularly suited for the study 
of chain configuration or microstructure and atomic motion because of 
its high sensitivity and selectivity to protons and carbon 3. 

6.7. Neutron Inelastic Scattering (NIS) 

The condition that the incident and scattered radiation have the same 
wavelength defines elastic scattering. Inelastic scattering, on the other 
hand, involves a shift in scattered radiation frequency associated with the 
motion of the scattering atoms. This shift originates from the Doppler 
effect. The broadening of scattered radiation frequency compared to a 
monochromatic neutron incident beam characterizes the spectrum of 
vibrational motions of the atoms or molecules involved in the scattering 
process. If such motions are quantized, as in the vibrational transitions in 
solids, discrete frequency shifts occur resulting in Brillouin spectra [14]. 
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Neutron scattering involves interactions of a neutron beam with 
atomic nuclei (Figure 4.3). The wave like nature of a beam of neutron 
particles each with mass M„ is incorporated in the deBroglie equation 
which states that the wave length of a neutron beam, A, is inversely 
proportional to the particle velocity, v, or 

where h is Planck's constant. The neutron source temperature determines 
the velocity, a range of wavelengths and hence a spectrum can be 
generated by use of equipment such as a rotating channel 
monochromator [15,16]. In contrast to scattering by electromagnetic 
radiation in which the scattering power increases roughly with increasing 
atomic number, the scattering power of a neutron beam varies in an 
erratic fashion with atomic number. A great advantage of neutron 
scattering is that hydrogen scatters much more strongly than does 
deuterium. 

As shown in Table 6.1, the scattering power may be changed by 
isotopic substitution, in this case, the replacement of hydrogen by 
deuterium with negligible effects on chemical structure. Thus, NIS 
measurements are particularly useful for studying hydrogen-containing 
compounds that include most of the common polymers. 

Table 6.1 Comparison of the Scattering Intensity for Hydrogen and Deuterium 

Species 

Hydrogen 
Deuterium 

CH2 

CD2 

Steutron Scattering Length 
cmxlO12 

-0.372 
+0.667 

-0.083 
+1.109 

A second advantage is that the frequency distribution or density of 
vibrational states can be obtained from these measurements. These data 
complement those determined from infrared and Raman measurements. 
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A disadvantage is that the frequency can be measured only up to roughly 
600 cm-1 because of source intensity limitations. The energy of thermal 
neutrons lies in the same range as that of the chain lattice vibrations. 
Neutrons in this energy range can either gain or lose energy when 
traversing a medium. In addition, the possibility exists that interference 
effects (Chapter 4) may occur between the scattered neutron beams. If 
these effects are observed, the scattered beam is said to be coherent; if 
not, the beam is incoherent. For solid polymers, analysis of the energy 
distribution of an incoherent, inelastically scattered neutron beam 
furnishes information [17,18] on the low frequency internal and lattice 
vibrations («15 cm1). 
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Appendix 6A Fourier Transform Infrared (FTIR) 

The infrared absorption frequencies may be determined either by direct 
measurement using a grating or prism to separate individual frequencies 
or by indirect measurement using a Michelson interferometer. 

The direct method records frequencies individually after they are 
separated. Slits for collimating the beam are required in order to resolve 
the frequencies properly. Collimation discards most of the beam intensity 
so that the transmitted beam intensity is low with a consequent low 
signal to noise ratio. In order to increase intensity, scanning times are 
lengthened. The dispersive technique however requires relatively simple 
equipment and, for many samples, furnishes thoroughly adequate 
spectra. However, for conditions in which the sample has high 
absorbance or whose properties are changing rapidly, the Fourier 
transform infrared (FTIR) technique is preferred [1,2]. The technique 
measures the intensity distribution generated by a Michelson interfer
ometer. The interference conditions are obtained by comparing the 
intensities after the incident light amplitude has been split by mirrors and 
then recombined. The distance that one beam travels is held fixed X\ and 
the distance of the second xi is varied by means of a movable mirror. The 
changing path distance A (= x2 - x\) thus results in a shifting interference 
pattern or interferogram. The recombined amplitude (A) over the 
frequency range Am is given (Chapter 4) by 

A = rTAA exmi(o)t - 2;m, )1 + expn(fttf - 2nvx2 )1 \dv (6A. 1) 

where r is the reflection coefficient and T the transmission coefficient of 
the beam splitter. The intensity at a given path difference is obtained by 
squaring the amplitude or, more exactly, multiplying the amplitude by its 
complex conjugate 

/(A) = A(A,v)xA*(A,v) (6A.2) 

On substituting equation 6A. 1 into 6A2, and using the relation 

exp[i(<w/ - 27tvxx H = sinlcot - 27na,) + cosUot - 2jtvxl) (6A.3) 

the intensity can be expressed by 
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/(A) = 2A^(rT)2l\ + cos[2^(x2 - *,)v]Wv (6A.4) 

The total intensity at any path difference is obtained by integrating over 
the frequency range, or 

r(A) = C" l(A,v)dv = 2(rT)2[ r A^(v)dv + f A^(v)cos(2jtAv)dv (6A.5) 

The intensity at zero path difference 1(0) is equal to the first term on the 
right hand side of equation A.5 

l(0) = 2\rT\2f At(v)dv (6A.6) 

The interference pattern in terms of intensity can thus be expressed as 

1(A)-£/(0) = 2\rT( f A^(v)cos(2jtAv)dv (6A.7) 

The frequency distribution A(v) can be obtained by performing a Fourier 
transformation [3] on equation 6A.7. This theorem states that, the 
periodic, orthogonal functions [3] 1(A) and B (v) are related by the 
symmetrical integral equations 

/ (A)- f°fl(v)cos(2;rAv)dv (6A.8) 

and 

B(v)= f l(A)cos(2jiAv)dv (6A.9) 

On performing a Fourier transformation on equation 6A.7, the frequency 
distribution F(v) can be extracted from the interferogram 

/(A)= f B(v)cos(2jtAv)dv (6A.10) 

B(v) is generated by multiplying each data point by cos (277VA) at each v 
value thereby entailing a great deal of computational labor. This 
redundancy however improves the signal to noise ratio since the signal 
increases linearly with the number of points, JV, while the noise increases 
as the square root of TV. For a 1 cm"' resolution over a 3600 cm" range, 
the signal to noise ratio improves by a factor of 60 for the FTIR 
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compared to the dispersive technique. Scanning speeds are limited only 
by the rate of mirror movement and not by energy considerations as 
happens sometimes with dispersive instruments. A complete scan can 
thus be done in seconds. The FTIR technique became feasible for routine 
applications with the development of microcomputers that could be 
dedicated to one spectrometer and the invention of short cuts in solving 
Fourier transforms such as the Cooley-Tukey algorithm [4]. The Fourier 
transform technique data are obtained in digital form in contrast to the 
analog data obtained by the dispersive technique. Data in digital form 
can be readily used by computers to subtract one spectrum from another 
or to add additional scans to a spectrum to improve the signal to noise 
ratio. 

This technique has given added impetus to the examination of 
polymer problems such as the interaction between carbon black and 
rubber [5], the influence of plastizer on poly(vinyl chloride) properties 
[5] and chain orientation [6]. 
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Appendix 6B. Normal Coordinate Analysis 

Many problems in vibration analysis are difficult to solve using a 
Cartesian co-ordinate system. These coordinates change in a complex 
manner with the translation, vibration and rotation of molecules or other 
bodies because of interaction terms. When Cartesian coordinates are 
transformed into normal coordinates, as shown below, the interaction 
terms disappear and a motion can be expressed in terms of a single 
normal coordinate. 

Consider a one dimensional approximation of a triatomic linear 
molecule represented by identical mass points with mass, m, linked by 
weightless Hookian springs with force constants, as, (Figure 6.2). The 
equations of motion for this system is given (equation 6.9) by 

-a , ( j c 2 - jq ) -0 (6B.1) 

m—f—as(x2-xx)-as{x,-x2) = Q (6B.2) 

and 

-a,(x3-x2) = 0 (6B.3) 

These are Newton's equations for the forces on the three atoms. For ease 
in manipulating coefficients later on, equation 6B.1 is multiplied by an 
arbitrary constant d , B-2 by C2 and B-3 by C3, or 

„ d2x1 d2x2 d2x3 

dt2 dt2 dt2 (6B.4) 

-C, (x2 -x,)- C2f(x3 -2x2-xx)- Cj(x2 - x3) = 0 

Rearranging terms 

n d2xx d2x2 <5>2x3 

Cxm—± + C2m—+ + C3m
 3 

d2x 
dt2 

d2x. 
m—f-

dt2 

' as{X 

d2x, 
m—f-

dt2 

dt2 2 dt2 3 dt2 (6B.5) 

a j[(C2-C1)x1-(C1-2C2-C3)x2-(C2-C3)x3] = 0 
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At this point, if the coordinates in equation 6B.5 are transformed into a 
set of normal coordinates, q, that constitute a linear combination of the 
x's, the equation of motion can be simplified. That is, if 

3 

q=/ hixi = hixl+ h2x2 + h3x3 (6B.6) 
1-1 

then the equation of motion can be written as 

dt2 
+ kq=Q (6B.7) 

where A is the root, characteristic value or eigenvalue for equation 6B.7 
(24). This is a typical wave equation (see Chapters 4) for which a 
solution (1) is 

q = Aeia* (6B.8) 

where a> equals 2TTv (v is the frequency) and A, a constant amplitude. 
The term in A may be evaluated by substituting equation 6B.8 in 
equation 6B.7 

-a>2Ae"" ,+te*"-0 (6B.9) 

or 

K = o)2 (6B.10) 

The coefficients in equation 6B.5 and h in equation 6B.6 may be related 
by the following procedure. Substituting 6B.6 into 6B.7, yields 

d2x d2x d2x 
\—j- + h2—Y- + h3—i

1 + ft)2/z1x] +co2h2x2+(o2h3x3 =0 (6B.11) 
dt dt dt 

Then, on comparing equations 6B.5 and 6B.11 and rearranging terms, the 
result may be written in the form 

(C/ + l)C,+ UC2 +C3=0 (6B.12) 

C,+ UC2 +C 3=0 (6B.13) 

C2 + (C/ + 1)C3=0 (6B.14) 

where 
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U = ̂ - = 2 
f 

Solving for Cj by the method of determinants (25) gives 

Q -

(6B.15) 

0 1 0 

0 U 1 

0 1 U + l 

U + l 1 0 

1 U 1 

0 1 U + 1 

(6B.16) 

The number is obviously equal to zero. Ci will be different from zero 
only if the denominator is zero. Similar considerations apply to C2 and 
C3. Thus, non-zero solutions for C\, C2 and C3 exist only for solutions of 
the secular equation 

U + l 1 0 

1 U 1 

0 1 U + l 

= 0 = £/([/ + l) -2(U + l) = (U + l)(U + 2)(U-l) (6B.17) 

Equation 6B.17 has three solutions U = -1, -2, +1. The corresponding 
values of co (from equation 6B.15) aref/m, 0 and 3f/m. For the solution 
a>i = 0, substituting into equations 6B.12, 6B.13 and 6B.14, 

C,=C2 = C^C (6B.18) 

and 

hi=cm = h2 = h3 (6B.19) 

Thus, the normal coordinate, q, is given (equations 6B.6 and 6B.8) by 

#, = cm(xx +x2 + JC3) = Ae""1' = \ (6B.20) 

Similar substitutions for (o\ = (ajm) and Oil = {^as/m) yields 

q2 = cm[xx - x3) = A^ exp""1' = A^ cos a>2t (6B.21) 
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Figure 6B.1 . Normal modes of vibration for a triatomic molecule, labels C and D show 
different atoms. 

and 

<?3 = cm{xi ~2*2 + x
3) = A3cosco3t (6B.22) 

respectively. If now, 

3=A,./cm (6B.23) 

equations 6B.18, 6B.19 and 6B.20 become 

xl+x2 + x3=Bl (6B.24) 

xl-x3= B2 cos oi2t (6B.25) 

x, - 2x2 + x3 = B3 cosa>3t (6B.26) 

The Cartesian coordinates x\, xj, *3 can be expressed on rearranging 
equations 6B.24, 6B.25 and 6B.26 as motions that are combinations of 
normal modes 

xl = \BX + \ B2 cos a>2t + \B3 cos u>3t (6B.27) 

x,=-Lfi, -^B3cosco3t (6B.28) 

x3 =\B^ -1B2 cosa>2t + \B3 cosco3t (6B.29) 

The B terms represent the relative amounts of the various modes 
contributing to a given motion and they are determined by the initial 
conditions. 

Thus, for B2 = 5 3 = 0 (from equations 6B.27 to 6B.29) 
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x,=x2=x3=\Bl (6B.30) 

This motion corresponds to a translation of the molecule (top line Figure 
6B.1). 

Fo r5 !=5 3 =0 

*i=--2B2COSftV (6B.31) 

x2=0 (6B.32) 

x3 =-\ B2 cos co2t (6B.33) 

corresponding to symmetric stretching (middle line Figure 6B.1). This 
normal mode is Raman active because the vibration is symmetrical. 
F o r 5 , = 5 2 = 0 

xx = x3 = ̂ B3 cosoV (6B.34) 

x2 = -^BJcoscoit (6B.35) 

corresponding to an anti-symmetric mode of vibration (bottom line 
Figure 6B.1). This normal mode is infrared active because the dipole 
moment is an unsymmetrical vibration. 

These are the three normal modes of this molecule. Each motion is 
expressed in terms of only one normal coordinate. Any other motion can 
be represented as a linear combination of these normal modes. These 
arguments can be extended to the case of long polymer chains. 
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Appendix 6C. Spectrographic Notation 

The symmetry operations of rotation, reflection, inversion and glide 
reflection obey all the tenets of group theory [3,5]. Matrix equations can 
express the results of these operations. The trace or spur of diagonal 
matrices (Appendix 3D) is particularly valuable in condensing the 
information contained in symmetry operations on polymer chain 
subunits. The terms irreducible representation, symmetry type, and 
species are also used in denoting the trace [12]. 

The line group concept was formulated for a one-dimensional chain 
[14]. The species for the operations on a molecular line group are 
denoted as follows: 

A and B represent the species group symmetric and non-symmetric 
respectively to an axis of symmetry. The subscript g (German gerade-
even) denotes a species symmetric with respect to a center of symmetry 
or an inversion operation while the subscript u (German ungerade-odd) 
refers to a species non-symmetric to a center of symmetry. The 
subscripted number refers to the number of symmetry operations in a 
given operation. 

Thus, the notation B lg for polyethylene stands for a symmetry 
species that is non-symmetric with respect to a symmetry axis, is 
symmetric with respect to an inversion operation and has only one 
irreducible representation. 
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Chapter 7 

THE RUBBERY STATE 

7.1. Introduction 

Rubbers are fascinating materials for study (as well as having enormous 
importance in technological applications) because they combine 
characteristics typical of the three states of matter. Uncrosslinked, they 
resemble liquids in their flow behavior. Crosslinked, they are able to 
recover their original dimensions after being severely deformed 
(stretched, compressed or sheared) above their glass temperatures. 
Rubbers or elastomers however resemble solids in their resistance to 
flow and to maintain their shape, if crosslinked and below their glass 
temperature, when subjected to deformation. Finally, as mentioned 
below, an explanation for their response to deformation can be described 
in terms of the behavior of a perfect gas. 

As stated in Chapter 1, the rubbery state is unique to polymeric 
materials. Material classes such as silicates or organic liquids are capable 
of forming glasses and other classes such as metals or ceramics form 
polycrystalline aggregates. This uniqueness is associated with the 
extensible one-dimensional chain and sheet structures possessed by 
polymers, in contrast to the rigid two-dimensional (graphite) or three 
dimensional (diamond, metals) structures characteristic of other 
materials. As discussed in Chapter 2, the single isolated polymer chain 
extends from its equilibrium conformation on the application of a force 
because of free rotation about the backbone bonds. This extension 
reduces the chain entropy because fewer conformations are available to 
the chain at the larger end-to-end distance (Figure 7.1). On removal of 
the force, the increase in chain entropy from the larger number of 
conformations now available to the chain favors chain contraction. Based 
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on these thermodynamic arguments, the contractive force is proportional 
to the distance between chain ends (equation 7.1) so long as the chain 
does not approach complete extension and its statistics are Gaussian. In 
addition, internal energy contributes little or nothing to the retractive 
force as is true for an "ideal rubber". For a real rubber, there may be an 
internal energy contribution. In the bulk polymer, the application of a 
tensile force can lead to slippage between chains, large-scale flow and 
ultimate sample fracture. The amount of flow however can be regulated 
by the insertion of crosslinks between chains. A small number of 
crosslinking junction points suffice to suppress large-scale chain flow 
without sacrificing the chain extension on a local scale required for 
elastomeric behavior. 

In summary, the requirements for a material to exhibit rubber-like 
properties are: 

1. a long chain structure with little or no hindrance to rotation 
between chain segments. 

2. low intermolecular interactions [1]. 
3. the formation of an extended network structure by a few 
crosslinking points between chains. 
This chapter deals with the properties of large assemblages of rubber 

chains, in contrast to the thermodynamic properties of isolated chains 
considered in Chapter 3. The chains are considered to be only lightly 
crosslinked; at most, to the extent that there is sufficient chain length 
between crosslinks so that Gaussian random chain statistics are 
applicable. Equations are also derived relating the network structure 
produced by crosslinking to deformation and to swelling - the two most 
important means of characterizing a network structure. In most cases, it 
is difficult to predict the number of crosslinks formed from the chemistry 
of the crosslinking reaction, so other means are needed for their 
determination. The equations derived below for solvent swelling of 
rubbers or for rubber deformation can be used to estimate the number of 
crosslinks a quantity important in many rubber applications. The 
thermodynamics of rubber elasticity is discussed in Chapter 3. 
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7.2. Force - Extension Relation for Rubbers 

7.2.1. Simple Case 

The equation of state for rubber networks (analogous to the equation of 
state for a perfect gas) may be derived in only a few steps. As shown 
previously, the force (J) on & single chain is described by the equation 
3.23 

f-?S-R n (7.1) 

where R is the distance between chain ends and k is Boltzmann's 
constant. Let us consider a solid composed of such chains in terms of a 
simple model proposed by James and Guth (2) in which a cube of a 
rubbery solid has initial dimensions, Lo, in the unstretched, and LxLyLz in 
the stretched state (Figure 7.1). There are a total of N chains. It is 
assumed that (N/3) chains run parallel to each of the three coordinate 
axes that is, 

Figure 7.1 Dimensional changes on stretching an isotropic cube. 

N 
N=N=N= — (7.2) 
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The contractile force (fz) of the chains in the Nz direction is then 

. If the contractile force were not balanced by an opposite 

and equal force, the network would collapse. For an incompressible 
rubber, the source of this opposing force is the volume of the chain that 
is assumed to exert a hydrostatic force P equal in all directions. Thus the 
balance of forces on the face normal tofs gives 

3NkTL 
L+PLL- n (7-3) 

where ̂  is the applied force in the z direction. 
For a face normal to the X axis, there is no external force and 

« A - ^ (7.4) 

Solving for P and using equation 7.2 gives 

P 3MJZ,, 

This is then substituted in (7.3) to give 

r2 i 

and rearranging terms 

a f = N k r 

Jz 
L-~L. 

(7.5) 

NVJL\Ly _ NkTL, , 7 6 ) 

(7.7) 

Now, the extension ratio, a, (for example for the z axis) is defined as 

az=Lz/L0 (7.8) 

If the extension occurs at constant volume, (the material is 
incompressible) 

LxLyLz=Ll (7.9) 
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Also, if the network is initially isotropic, then the contraction in the X 
and Y directions will be equal so that 

and equation 7.9 becomes 

L. = L 

{aL0)L)=L\ 

or 

L =L = 
x y a 

Substituting equation 7.12 into equation 7.7 

A -
NkT 

( * 2 ) [ ° ~ «L0 

NkrLn 

<«•> 
a--

a 

(7.10) 

(7.11) 

(7.12) 

(7.13) 

This equation is in the proper functional form for rubber elasticity and 
predicts the correct functional relationship between / and a. However, 
the relationship between the number of hypothetical chains in this 
network and the number of actual chains is not clear from our discussion 
but James and Guth [2] thoroughly explore this relationship. 

7.2.2. Consideration of Network Crosslinks 

A more exact calculation involves the calculation of the energy stored in 
a rubber network because of network deformation. This stored energy is 
expressed in terms of the Helmholtz free energy (A) and is derived from 
entropy considerations. The force-extension relation can then be 
calculated by taking the derivative of A with respect to elongation, as 
described below and in Chapter 3.2. 

Consider a network that is crosslinked with v crosslinking points per 
cm3, each of functionality, / A network chain will be defined as that 
element of the network between two adjacent crosslinking points. There 
are N0 such network chains (this network chain is to be distinguished 
from the original chain, the molecular entity present before the 
introduction of crosslinking points). Since / network chains emanate 
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from each crosslinking point and each chain is shared by two 
crosslinking points 

V 2 

If, as is most common,/= 4, 

^ - 2 v 
V 

(7.14) 

(7.15) 

Figure 7.2 Definition of a network displacement vector. 

A network displacement vector is that vector which connects two 
adjacent crosslinking points. This will be designated as Rywhere j is the 
number of statistical segments for the network chain associated with the 
/'* vector (Figure 7.2). 

Now assume that the chain distributions are in their most probable 
(which is assumed to be Gaussian) conformations at the time the 
crosslinks are introduced. (This is not always so, as in the case of 
crosslinking in the swollen state as will be discussed below.) The 
number, Ny, of displacement vectors of type R,y (in the unstretched state) 
is 

Nv-NjP„ 

where 

V fi 
it 

3/2 exp [-W] 

(7.16) 

(7.17) 
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Nj is the number of network chains per cm3 having j statistical 
segments and P.. is the probability that a chain of/' segments will have a 
vector distance, R, between its ends. Also 

$ - & ( 7 ' 1 8 ) 

where L is the statistical segment length. It should be noted that it is 
possible to modify the derivation at this point to accommodate situations 
where the crosslinks were introduced in other than the most probable 
fashion. This would occur, for example, for elastomers crosslinked in a 
deformed, a swollen or a crystalline state. (These cases are discussed 
below.) Also, entanglements are neglected so that the conformations 
available to a chain are not restricted by the requirement that the chain 
cannot pass through another chain. The quantity, TV, is related to the 
statistics of introduction of crosslinks. In a regular copolymer of a di-
and polyfunctional monomer, this may be a fairly sharp distribution 
function. A more common situation, however, is that in which the 
crosslinks are randomly introduced in which case. 

Nj=Nc(l-q)qH (7.19) 

where q is the probability that a segment is not crosslinked. It is noted 
that 

2"'-j <NC (7.20) 

Let CI be the number of conformations of a network and Wy be the 
number of conformations of a chain of j segments with distance Rj 
between its ends. Then 

o CNJ I T i,,*. 

y 

where, as we have seen 

% - ^ « P [ - W ] (7.22) 
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The factorial terms arise from the assumption that the network chains 
are identical and indistinguishable. The derivation can be generalized to 
the case of a distribution in A/, In the unstretched state, where Q = Do, 
the entropy is 

S0 = kinW =klnC + NClnNc -Nc- VNVlnN.. + X V . + ^ V l n W t j 

•j y ij 

(7.23) 

Using Stirling's approximation (equation 2G.10). 

5>*=2N'ip^ - "A - q)%M r ^ - ^ = N < 
U i j-i ** " 

(7.24) 

(7.25) 

s0=k InC + NJnN^^N^ln 
W„ 

M 
stretching direction 

A 

a) Unstretched b) Stretched 

Figure 7.3. Transformation of chain vectors on stretching. 

The use of Stirling's approximation assumes a sufficiently large value 
of Njj . This assumption fails at high degrees of crosslinking and high 
extensions. The failure leads to "non-Gaussian" behavior. Note the 
similarity of the last term of this sum and that evaluated in the 
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consideration of the expansion factor of a single chain equation. The 
designation ( )0 around NtJ indicates that this is the distribution of network 
vector applicable to the unstretched state. 

When the network is stretched, the function Nin changes. The change 
in displacement vectors drawn from a common origin is shown in Figure 
7.3. The three changes that occur are: 

a) Vectors rotate toward the stretching direction. 
b) Vector components oriented parallel to the stretching direction 

increase in length. 
c) Vector components oriented perpendicular to the stretching direction 
decrease in length. 

7.3. Affine Transformation 

To quantitatively describe the change in Ny upon stretching, Kuhn and 
Mark [3,4] assumed (and that may be partially verified) that the affine 
transformation fit. This affine assumption states that the components of 
the displacement vectors in the bulk sample change in the same ratio as 
do the external dimensions of the rubber, that is, 

"•-•ms: (7-26) 

and 

"--TZ'X (727) 

The Kuhn/Mark assumption undoubtedly overemphasizes this 
limitation on mobility as it presumes that the crosslink lacks mobility. 
The only part of the network not free to move are those on the 
constrained external surfaces of the sample, and a more exact treatment, 
covered by Guth and James, would sum over all conformations of the 
network, only subjected to those constraints on the external dimensions. 
This treatment gives special significance to the crosslinking points in that 
their average positions move in the same way as the external dimension 
of the rubber, but the intervening parts of the chain can adopt any 
configuration consistent with these constraints (referred to as the 
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"phantom network"). The only restriction on the crosslinking points is 
that several chains must meet at these locations. This means that they are 
not as free to move, as are other parts of the chain, that motion of the 
crosslinking points is possible subject to these constraints. The 
constrained external surface of the sample is the only part of the network 
not free to move. While the Kuhn/Mark theory does not allow spatial 
fluctuation of the mean position of the crosslink about its mean position, 
the Guth-James theory permits such fluctuation albeit independent of 
elongation. Because of this fluctuation, the entropy reduction upon 
stretching is less and the predicted modulus is 1/2 of that predicted by 
Kuhn/Mark. Both theories neglect the entropy reduction arising from 
entanglements. One attempt to include these is to consider such 
entanglements as physical crosslinks [5]. 

Flory [1] has pointed out that this device of defining microscopic 
variables (the fixed junction locations) by use of macroscopic constraints 
cannot be defended on statistical mechanical grounds. However, the 
same results can be obtained from statistical mechanics using a different 
procedure. The applicability of the affine transformation has been 
discussed [2,6,7] and equations of state have been derived that do not 
require the assumption of an affine deformation [1,2]. The derivation is 
based on the phantom network construct, mentioned previously, in which 
chains (and junction points) are permitted to move through locations 
occupied by neighboring chains and junctions. In real networks, steric 
hindrance restricts chains from a close approach to neighboring chains. 
Essentially, then, the phantom network model, being more exact and 
rigorous because it entails fewer assumptions, suggests the basic 
correctness of the affine deformation. Recently, Flory [8] has derived a 
model for the non-Gaussian behavior of electrometric networks on 
tensile deformation by combining elements of the affine and phantom 
network models. An outline of the Flory derivation is presented later in 
this chapter. 

Benoit and coworkers [9] have furnished experimental support for the 
affine deformation of rubber networks. They carried out neutron 
scattering experiments on polystyrene/deuterated polystyrene polymers. 
Their analysis of the neutron scattering data showed that network 
structures do deform affinely. More recently, Han, Yu and coworkers 
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[10] measured the small angle neutron scattering (SANS) from 
polybutadiene networks. They concluded that their preliminary data 
supported the affine rather than the phantom network model. Although 
the precision was too low to make a firm decision on the choice between 
these alternatives certain, Flory [11] has suggested the need for an 
additional consideration in the theory. In the derivation, the number of 
chains, (Ntj)0, having a displacement vector, Roi, with coordinates (RoXi 
Royb RozO associated with a chain having^' segments is given by 

Pj N = NJ ̂ re*p{-#K, + < + <]} (7-28) 
realizing that 

K=[tfxi+RZyi + RVzi] (7.29) 

Now introducing transformations (7.26) and (7.27) (and the 
analogous one for Rz) 

M-"; P) 
(axayaz)n 3/2 exp - # ^0x1 _,_ \ ' ^ ^0z. 

2 + 2 + 2 

ax ay az 
(7.30) 

The I axayaz I term in the denominator is necessary for normalization, 
so that equation 7.24 is still obeyed in the stretched state. 

The entropy arising from the conformational disorder of the chain in 
the stretched state is given by analogy to equation 7. 25 

S = k InC + NAnN. 
•••2 

AUn 

Upon evaluation (see Appendix 7A) 

5 = k InC + N^nNc-^NjlnNj—N^at + a' + a'-SJ + NJn^a^) 
j 

(7.31) 

So is obtained from these expression when ax = ay = az = 1 
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S0=k InC + AUntf ~yN.lnN,—Nc (7.32) 

The change in entropy on stretching is then 

ASELAST = S - S0 = kNc[- t(a2
x + « ; + a*) + l n ( a , « A ) ] (7.33) 

If the uncrosslinked, undeformed network is taken as the reference 
state, a second contribution to the entropy (called ASnel) must be included 
that is the reduction in entropy arising from the restriction of network 
chain ends to crosslinking points. To form a crosslink, a chain end must 
be in a small volume element (V). The decrease in entropy caused by 
such a constraint on the chain end is 

(7.34) 5 = k l n ( ^ 

where Fis the total volume of the sample 

V = (axaxax)V0 

This is equivalent to the ideal gas case in which all the gas molecules 
are located in a volume, V. The smaller the ratio of the volume available 
to the gas molecules to the total system volume, the less probable this 
state becomes. A V will depend upon the extent of fluctuation in the 
crosslink point that is assumed constant, independent of Mc and of 
elongation. For crosslinking points, in analogous fashion, the probability 
of forming crosslinks approaches zero at the limit of AV = V0 - V = 0 
where VQ is the volume of the network in the unstretched state. 

For v crosslinking points per cm 

AS' =kvln AV 
(axayaz)V0 

= kvln 
AV -kv\n(axayaz) 

= A S l - ^ l n ( a , a A ) 
(7.35) 

For a tetrafunctional network where v= N0/2, the change in Snel on 
stretching is 
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AS = AS; (-AS:,(a = l) = - ^ l n ( a x « A ) ; ( a - l ) (7.36) 

The total entropy of the network is then 

AS = ASElM-ASne,=kNc^(at+a2
y+at-3) + Un(axayaz) (7.37) 

The ASnetterm is zero if there is no volume change on stretching so that 

axayaz=\ (7.38) 

It should be noted that there is some controversy regarding the 
quantitative nature of this term. Yu and Mark [12] and Neuburger and 
Eichinger [13] have reported work on swelling networks prepared with 
differing values of V0 and measuring the resultant elastic tension. Their 
results suggest the existence of a In (axaya z) effect, but the magnitude is 
uncertain because of experimental problems. It is apparent that the 
contribution from this term depends on the nature of constancy of AV, 
which in turn depends upon the junction fluctuation. We have previously 
indicated that junction fluctuation may depend on chain entanglements 
that we have not specifically considered in the theory. 

For an ideal rubber, 

AH=0 

and 

AA£te = -TAS = kNc^(a2
 + a2

y+a2-3)-L\n(axayaz)} (7.39) 

This equation represents the answer to the problem posed at the 
beginning of this section of deriving the stored energy function (Aei) for a 
deformed rubber network. Note that this equation contains only the 
extension ratio (a) terms for characterizing the network structure. Special 
cases of equation 7.39 are considered in the following sections. 

Equation 7.39 has proved successful in relating network structure to 
mechanical properties. However, a more general form of equation 7.39 
that attempts to allow for the approximation used in the derivation of 
equation 7.39 is often taken as the starting point for network structure 
property studies. This is given by 
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MEiasl=g—^-(a2
x+a2

y+a2
z-3)-BvkT(axayaz) (7.40) 

where g and B are constants whose values depend on the network model 
(Table 7.1). 

Table 7.1 Values of g and B for Various Rubber Network Models 

Model 

Affine Junction 

Chain 

Phantom Network, James-Guth 

Graessley 

g 

1 

1/2 

B 

1/2 

0 

Reference 

3-5,7 

9 

2, 13 
16 

The constant g is also called the front factor and is introduced to 
correct for several approximations associated with rubber elasticity 
theory. Reliable values of g and B are desired to estimate the number of 
elastically effective chains (v) that contribute to network mechanical 
properties. Crosslinks are one source of these. Trapped entanglements in 
which both chains forming the entanglement have their two ends linked 
to other chains in the gel (Figure 7.4) are another. The earlier models for 
deriving the stored energy function made the plausible assumption that 
the chain conformations between crosslinks had the same conformations 
as the free chains before crosslinking [3,4,6]. James and Guth [2] 
critically examined this assumption by postulating a phantom network 
model in which the effect on the shear modulus was estimated. They 
found, as a result, that the front factor (g) was 1/2 compared to a value of 
unity for the affine theories [3,6]. Edwards and Freed [14] later obtained 
the same result as James and Guth without assuming any details on the 
crosslinking process. Edwards and Freed [14] have pointed out that a 
trapped entanglement is not equivalent to a crosslink in that the chain can 
slip at such a location. Also, the slipping of such an entanglement and its 
effect as an additional crosslink depends upon elongation, so that the 
dependence of stress upon a maybe affected. Such an entanglement will 
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reduce the conformational entropy but not as much as a chemical 
crosslink. Also, the effectiveness in reducing the entropy will depend on 
elongation, so a different elongational dependence of stress will arise. 
This cannot be adequately described by equation 7.40, and requires the 
introduction of terms with a different elongational dependence as in the 
"Mooney-Rivlin" formulation, to be discussed 

Figure 7.4 Illustration of a two dimensional affine transformation. 

Edwards and Freed have introduced the "slip-ring" model as an 
approximate treatment of the effect of such trapped entanglements with 
some degree of success. 

Langley [15] has derived the contribution of trapped entanglements to 
v for gelled rubbers 

v-g-W?» + 2eT. (7.41) 

where p = the sample density, 
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M0 = the molecular weight of the polymer repeat unit, 
q = the fraction of polymer repeat units that are joined by a random 

tetrafunctional crosslink. 
Wg= the gel fraction. 

The contribution of entanglements to v is included in the 2e Te term 
where Te is the probability that all four strands emanating from a 
randomly located entanglement are bonded at the ends to the gel. 

The validity of equation 7.10 was evaluated by Langley and 
Polmanteer [16] for polydimethylsilicone networks. They found 
excellent agreement and estimated that trapped entanglements 
contributed more than crosslink junctions did to the measured elastic 
modulus. 

Graessley [17,18] has developed a statistical mechanical calculating 
device based on small network regions, the micronet, for estimating the 
change in chain conformation as a consequence of crosslinking. He 
found that the front factor depended only on the functionality (/) and not 
on the details of network topology, formation or crosslink distribution. 
His final equation is 

AA£te = (t±j kT(al + a) + a\ - 3) (7.42) 

For a tetrafunctional (/ = 4) random crosslink, g =1/2 - the James-
Guth and Edwards-Freed result. In the limit of high / values, g 
approaches one, the value for the affine transformation theories. Flory 
(1), using cycle rank theory, has obtained the same result as Graessley. 
Mark [19] gives an introduction to cycle rank theory. Table 7.1 lists the 
various models and values of g obtained from each. 

7.4. Uniaxial Stretching at Constant Volume 
At constant volume, equation 7.38 applies. For uniaxial stretching in the 
z direction (Figure 7.1) 

«, = «,; a X - i ; ccx = a;112 a A3) 

Thus, from equation 7.39 
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M = kTNc 

Differentiating equation 7.44 

1 2 1 
- a . + — 
2 z a 

£-\ 
( dA^ 

dL 
z /V,T 

da. 
da 

Since 

Also 

V z /V,T\ z /V,T 

K/^)-(VAo) 

z /V,l 

= k77V. a. - -
a. 

(7.44) 

(7.45) 

(7.46) 

(7.47) 

(7.48) 

Thus the stress based on the original cross sectional area (or 
engineering stress) from equations 7.46 to 7.48 and equation 7.45 is 

A kTN„ 

M l x A ) ? A>xM)j rA)z 
a, --

1 

a., 
= k 7 l ^ a, --

1 

a. 

The stress based on the true cross sectional area is 

a = 
A A 

LxLy {axL0x)(ayL0y) axay { V [ a2
z 

(7.49) 

(7.50) 

The stress may be expressed in terms of the elastic (E) and shear (G) 
moduli by the following. Since the tensile strain (E) is given by 

-f-a-1 (7.51) £ = • 

The slope of the stress-strain curve based on the original cross 
sectional area is simply the elastic modulus 

£ = 
do_ 

de 
do_ 

da Kde) \V 
1 

a, - -
a. 

(7.52) 

From the binomial series 
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a (Uef 
- = l -2e + . (7.53) 

For very small strains, the higher order terms can be neglected. 
Substituting equations 7.51 and 7.53 into equation 7.52 and taking the 
initial modulus E0 (or, the limit as / - * /0), 

En = 3k7l 
( * 

(7.54) 

For crosslinked incompressible rubbers, Poisson's ratio is nearly 
equal to 0.5, so that (20) 

E = 3G (7.55) 

or, substituting into equation 7.53 

v 
G0=kT\ (7.56) 

These moduli equations are similar to equation 3.20 for an isolated 
chain in that the modulus (or force) is directly proportional to the 
absolute temperature. However, for a network structure, the modulus also 
depends on the number of crosslink junctions: the greater the number of 
junctions the higher the modulus and the stiffer the network. 

7.5. Biaxial Stretching at Constant Volume 

Consider stretching in the x andy directions so that 

a. = 
1 (7.57) 

<*x<*y 

Thus, using equation 7.39 

AA=k77V" «,2 +a,2 + -rT-3 (7.58) 

Then differentiating 
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/ . = 
dk\ Jda\ (dA_\ kTNc 

dLx\
=\dLx)\dax) V,T \ x /V,T °* 

or 
«X2 (7.59) 

Thus 

o. = 
\ L0yL0z ) \ V I • aV 

V,T L x y 

(7.60) 

Similarly 

a,-J0a',-4 y 2 2 (7.61) 

Thus 

ox-oy=kT\ 
N. •jh'X] (7.62) 

so that the difference between the principal stresses is proportional to the 
difference between the squares of the principal strains. For "balanced" 
biaxial stress 

ax=ay=a (7.63) 

so 

».-,=«l£]«'-£ (7.64) 

Figure 7.5 Diagram illustrating the model used in 
deriving equation 7.69. 

332 



THE RUBBERY STA TE 

7.6. Application to the Inflation of a Balloon 

A "balanced" biaxial tensile stress is equivalent to uniaxial compression. 
Inflation of a rubber balloon is a specific example of this type of stress. 
The pressure required to inflate a balloon passes through a maximum. 
This is intuitively obvious to anyone who has ever tried to inflate a 
balloon using only lungpower. One's lungs are usually strained almost to 
the bursting point before the balloon starts to expand. The mathematics 
for this situation can be given in a few steps. 

Consider the force ( J) pushing the two hemispheres apart (Figure 
7.5) 

The stress on the rubber is then 

a = • 
7lR2P 

IjiRd 2d \ V 
a2-

a 

Now 

and since the volume of the balloon is constant 

f nP J A ~T> ' 

so that 

R = aR0 

on is con 

AnR2d = A7tRld0 

K _d0 d = d, 
°R2 a2 

and 

P = kT\^ 
V 

2d\ 

R) 

' 2 1 ' 
a T 

a . 

1 1 

a a 

(7.65) 

(7.66) 

(7.67) 

(7.68) 

(7.69) 

(7.70) 

This gives the variation of P that passes through a maximum that 
occurs when a = 7 . Such a curve (Figure 7.6) is verified experimentally 
[21]. Inflation of balloons is only one example of elastic instability. This 
phenomenon also occurs in the generation of bubbles in foam production 
and the development of aneurisms in arteries in the human body. 
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Pressure 

Strain 

Figure 7.6 Variation of balloon inflation pressure with strain. 

7.7. Network Defects -The Relationship between Nc and v 

Inactive network 

Figure 7.7. Types of network defects. 

The derivation in the previous section assumes that all network junction 
points are effective in bearing an applied stress. However, a fraction of 
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these junctions will be rendered ineffective because of the network 
topology. Typical examples of network defects are illustrated in Figure 
7.7. Various schemes have been proposed to allow for some of these 
defects. Thus, it was assumed that (equation 7.14) that 

Nc Jv 
y - Y (7-71) 

or in words that the fraction of junction points (/v/2) is proportional to 
the number of chains between crosslinks (Nc) per unit volume. This 
neglects the portion of the chain adjacent to the end of the original 
molecule will not be an active network chain (Figure 7.7). If NQ is the 
number of original molecules, each original molecule will contribute two 
inactive chains, thus 

!L = £L=™± (7.72) 
V 2 V 

If Mo is the molecular weight 

^ = -£-NA (7.73) 

where p is the density and NA = Avogadro's number (6.02xl023) and if 
Mc is the molecular weight between crosslinks, the total number of 
network chains per cm3 (including the inactive ones) is 

V M 
c 

Thus the number of active chains is 

NA (7.74) 

(7.75) 

The modulus is proportional to the term, Nc /V, (from equation 7.56). 
Thus from a plot of modulus against 1/M0, one extracts a value of Mc 

from the ratio of the slope to the intercept. Figure 7.8 illustrates the 
procedure. The following section describes an alternative procedure 
based on swelling considerations for estimating values of Mc 
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Model networks have been prepared by end-linking groups. First, a 
linear chain with reactive side chains such as propylene oxide is 
synthesized. Then the side groups are reacted to form a known number of 
crosslinks and purposely introducing defects of known types [22]. 

7.8. Effect of Swelling on an Isotropic Network 

Rubber networks will imbibe solvent liquids until the elastic retractive 
force of the network crosslinks counterbalances the swelling force 
exerted by the liquid. If no crosslinks are present, the rubber dissolves 
completely on immersion in an excess of solvent. The degree of swelling 
is thus a function of crosslink density. As crosslink density increases, the 
degree of swelling decreases and vice versa. The average crosslink 
between junction points can be related to swelling measurements from 
potential considerations, as shown below. 

Modulus slope/intercept = 2M 

1/MQ 

Figure 7.8. Plot of modulus against 1/M0.. 

At the equilibrium degree of swelling 

(ft " f t o L = (ft - K o L * +(ft -/AoL,s (7.76) 

This equation presumes additivity of the free energy of mixing and of 
elasticity. Eichinger [23] has questioned and tested this assumption. The 
mixing term can be evaluated using the Flory-Huggins theory (equation 
3.83) 

(ft " ftoL„s = *4ln( l" * J + & + *»#] (7-77) 

where & is the volume fraction of solute. 
This equation holds for a network in which the molecule is infinitely 

large (x -* oo) and the swelling is isotropic. Thus, for filled rubbers 
where the rubber is locally bound to the filler particles, the extent of 
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swelling is reduced because of the filler-rubber bond. Again, rubbers do 
not swell isotropically when a rubber film bound to surfaces where 
dimensional changes in different directions are different. Because the 
bound rubber near the filler surface is constrained by the filler particle, 
the swelling of the rubber near the filler surface is reduced. 

The elastic term in equation 7.77 is evaluated by combining equations 
7.39 and 7.77 to obtain 

AAEteI = 
pRT 

2M„ 
[(<*! + al + < - 3) - ln(«,a,«z)] (7.78) 

For swelling of an isotropic network 

« . = « „ = a = 

[Vol 

so that 

M-Elas, = 

pRT 

2Af, 
[3fc*-3-tf] 

(7.79) 

(7.80) 

Then 

(tt-tto)ft 
<?AA„ 

dn 

/5AAW^ 

1 / N , ,T,V \ ^ Lzjy\ d<t>-2 I 
(7.81) 

The above expression for 4AEiast is that of 1 cm3 of polymer (dry). If 
«,• moles of solvent are added to 1 cm3 of polymer, then the volume 
fraction of solute (fc) is given by 

7 7 ^ <7-82> *2-

where V\ is the molar volume of the solvent. 
Then 

,<?«J (l + n,V;) 
L.-%. (7.83) 
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Also 

(dAAc pRT 

\ W2 2M„ 
~2<P: -V3 

4>2 
(7.84) 

so that 

(7.85) (A-A-L-f^tf-*] 
Thus, on combining equations 7.77 and 7.85 

The value of $2 at the equilibrium degree of swelling is the solution of 
this equation. The following approximations simplify finding a solution. 
At high degrees of swelling for which 02 is small, using a binomial series 
expansion 

ln( l -0 2 )S -0 2 -0 2
2 (7.87) 

Substituting into equation 7.86 

4+*,*^(2*r-*,)-o 2M (7.88) 

as compared with 0^when (j)2 «1 
While it is best to use this equation in this more exact form, it is 

useful to consider an approximation valid at high degrees of swelling 
(low degree of crosslinking). Neglecting the $2 term because of its small 
magnitude as compared with 0 V3when fa « 1 and rearranging terms 

TT^-U-*"" (7.89) 

or recasting 

# r - pv> 

MA--X, (7.90) 
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Therefore, use of this equation is a good way to determine Mc. It is 
noted that swelling is high (02 small) at high Mc (low degree of 
crosslinking). Normally, one needs to know X\ that can be obtained for 
example from osmotic pressure measurements on solutions of the 
uncrosslinked polymer. However, despite its constancy presumed in the 
Flory-Huggins theory, its value is often found to depend on 
concentration and degree of crosslinking. 02 is a maximum when X\ = 0 
(see Section 3.2) so that the value of Mc may be calculated from the 
minimum 02 value observed in a plot of 02 against the solubility 
parameter (<5i) (Figure 7.9). This Flory-Rehner theory of swelling 
involves the affine assumption in which it is presumed that the 
projections of the displacement vector increase in the same ratio as the 
external dimensions of the sample. Various attempts to verify this by 
neutron scattering [24] have suggested that the chain expansion is less 
than the affine prediction. A "chain-unfolding" mechanism [25] has been 
postulated to account for this. 

S\ = £2 when %i=0 

*i 

Figure 7.9 Determination of & using equation 7.90. 

Despite this problem, the swelling measurement has proved to be one 
of the best means of measuring Mc. 

7.9. Elastic Properties of Swollen Rubber 

Swelling of network rubbers by solvent liquids represents an isotropic 
deformation. Stretching a swollen rubber network superimposes an 
anisotropic deformation. The two deformations may be combined as 
described below to obtain an estimate of the force (or modulus) required 
to deform a swollen rubber compared to that for unswollen rubber. The 
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derivation given below is based on entropy considerations. This is 
equivalent to the strain energy function for the case of an ideal rubber 
(AH=0). 

Let AS" be the change in entropy in going from the unstretched, 
unswollen state to the stretched swollen state, from equation 7.38 

AS' = -l
JkNc{[a2

x+a2
 + a2-3\-ln(a,

x+a'y+a'z)} (7.91) 

L (stretched,swollen) 
where a'x = — ^ '—. (7.92) 

Lx (unstretched,unswollen J 

ASSV/ is the entropy change on swelling the unstretched network (from 
equation 7.81) 

ASSW =-l
J{kNc[3fV-3]-ln<p-2

1} (7.93) 

Then AS is defined as the entropy of stretching a swollen network, or 

AS s AS' - ASSW = - i{kWc[a
2 + a2 + a2 - 30"2/3]} (7.94) 

(assuming no volume change upon stretching). From equation 7.79 

L (stretched,swollen)L (unstretched,swollen) 
a'x = — ' V : 1 /y 95") 

Lx (unstretched,swollen)L^ (unstretched,unswollen) 

so that 

AS - -LkNc<t>?3[a2
x +a2

 + a2 - 3] (7.96) 

Then, differentiating with respect to length 

where 

daz 

^ 1 

_j_ 
L 

(7.98) 

and 

340 



THE RUBBERY STATE 

a. = 
Lz (stretched,swollen) 

Lz (unstretched,swollen) 

Thus, from equation 7.95 (and equations 7.40 to 7.43) 

-2/3 / 

/ , " 
WJft a . -• 

1 

a. 

and 

°z = 
A kNcW2

2/3 ( 

LxLy LxLyLz 
°-z 2 

a z I 

(LxLyLz) is the volume Vs in the swollen state, which is 

a =^-kTd>: 
Z y a. --

a z I 

(7.99) 

(7.100) 

(7.101) 

(7.102) 

(7.103) 

The stress may be converted to modulus by following the sequence given 
in equations 7.51 to 7.56 

^swollen "unswol lenr2 
1/3 

(7.104) 

where G is the shear modulus that is equal to (}a.TNc/V) or pRT/Mc (see 
equation 7.75). The modulus is less for stretching a swollen sample when 
compared to an unswollen sample with the same cross sectional area, 
because the ^jrterm will always be less than one. 

7.10. Elasticity of a Sample That is Swollen When 
Crosslinked. 

The topology of a network rubber that is crosslinked in the swollen state 
differs from that crosslinked in an unswollen state. The initial boundary 
conditions describing the chain conformation used in deriving the strain-
energy function can be modified to allow for these differences. The 
resulting equations have been used to elucidate possible reasons for the 
deviations of stress-strain data from statistical theory. 

The distribution function used previously, equation 7.28 
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Kl = ̂ ^ K + ^ + 4 ) ] (7-105) 

is replaced for a swollen network, by 

W.-: 
Jt 

3/2 -exp 
, x1 v2 z 2 N 

2 
i / l a ; a ; a (7.106) 

where the subscript s refers to the swollen state and o to the unswollen 
state. 

On stretching, the dimensions for the swollen, crosslinked sample are 
given by 

«. =-
x„ 

«> = 2L-

Recasting equation 7.106 

Ki= Njj 

^ 3 / 2 « X « , « z 
exp -v 

a. =• 

yl 

(7.107-109) 

x„. 

a)al a2
sa

2
y a)a\ f 

(7.110) 

Then, following the analogous procedure used in evaluating equation 
7.37, 

S = Sn-kN-
«,2(«x+",2+««2) - 3 --ln(aX«,«z) (7.111) 

The strain energy function (equation 7.39) follows directly from 
equation 7.111 assuming AH = 0 as in the ideal rubber case. The function 
for a swollen sample will be modified by the inclusion of the as term. 
This term that is essentially a scaling factor relating the unswollen 
dimensions to the swollen dimensions for a stretched sample, is given by 

a?- _t!) 
(7.112) 

where/r2\and/r0
2\ are the mean squared end-to-end chain lengths in the 

swollen and the unswollen states respectively. 
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For the case of uniaxial stretching at constant volume, the stress (see 
equations 7.40 to 7.48) modified for swelling is given by 

a--
1 

a 
(7.113) 

For an ideal rubber, in the absence of solvent, the relation//-2\=/r0
2) 

should hold. However, Tobolsky and Goebel [26] contend that even 
without solvent, \r2)~(ro) because of steric effects. Chains are 
postulated to deviate from their most probable (or random) 
conformations because of steric hindrance between chain segments. This 
order is locked in during crosslinking even in dry rubber. 

Gaussian 

Figure 7.10. Sketch of force against end-to-end distance (Rx) showing the non-linear 
increase. 

7.11. Elasticity of Rubbers at Small Extensions 

The force-extension relation derived previously from statistical 
considerations does not agree well with experimental data at small 
extensions. As an example, a plot of unixial force-elongation data for 
natural rubber falls below the curve calculated from the theoretical 
equation (equation 7.48) in the region between 1.1 to 2.0 elongation 
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(Figure 7.10). This occurs only because the two curves are superimposed 
at low strains. The modulus of real networks is higher than theoretical 
because of entanglement effects. Use of non-Gaussian statistics only 
lessens the discrepancy between the calculated and the experimental 
curves; but the reasons for this discrepancy are not understood. 

In practice, the discrepancy is minimized for uniaxial extension by 
using a two parameter equation that Mooney [27] first proposed on 
empirical grounds and later Rivlin and coworkers [28,29] developed 
from non-molecular, phenomenological arguments based on classical 
elasticity theory. As in the statistical theories, the central problem is the 
derivation of a stored energy function (W). In the present context, the 
stored energy function is obtained from the symmetry conditions 
associated with the deformation of an elastic body. Since the body is 
assumed to be a continuum, no assumptions regarding its molecular 
constitution are required. The requisite symmetry conditions for the 
extension of an elastic body at constant volume are given by three 
invariants [27, 28] 

/j = oc1
2+a2+a3

2 
(7.114) 

/2 = a\a\ + a\al + a]a2 (7.115) 

Ii=ala2ai (7.116) 

that do not change with deformation. 
Only the first two deformations are independent since 73 = 1 (based 

on the assumption of incompressibility). The simplest strain energy 
function that meets the criteria is 

W=C 1 ( / , -3 ) -C 2 ( / 2 -3 ) (7.117) 

where Q and C2 are constants. Substituting from equations 7.115 to 
7.117, the strain energy functions in terms of the extension ratios 

W =Ci(a? + a2
2+a2

3)-C2\\ + \ + \-3\ (7.118) 

This can be expressed for uniaxial extension by the Mooney-Rivlin 
equation 
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dw _ °Q _ ? r +<k 
da~L-lX a (7'119) 

where 0\ is the retractive force (/) per unit initial cross sectional area. 
Treloar [4] has pointed out that the empirical two-parameter equation 
that results from dW/da does not concur over all strain ranges with the 
invariant formulation of Rivlin and coworkers that use dWIda. 
Additional details regarding the phenomenological theory may be found 
in Treloar's monograph [4]. 

The constant Q can be readily identified by inspection with the 
NckT/V term in the force-elongation equation derived from the statistical 
treatment. The interpretation of the C2 term, on the other hand, has been 
the subject of much debate. Mark [30] has published an extensive 
compilation of C2 values under a variety of experimental conditions. 
Values of C2 depend on the overall conditions of network formation and 
subsequent treatment. The general features of the manner that the values 
of C2 shift with experimental conditions can be summarized as follows: 
a.) C2 changes with time and temperature indicating a non-equilibrium 
nature [31,32]. However, other results suggest that some portion of the 
C2 term is at equilibrium [33, 34]. b.) C2 decreases with swelling [35, 36] 
and reaches a value of zero at a polymer fraction of roughly 0.23 [36]. c.) 
C2 increases for unswollen rubber with increasing crosslink density [37]. 
However, the value is usually small for networks crosslinked in the 
swollen state and then dried [38]. d.) C2 is similar in magnitude to Ci for 
simple elongation measurements (Networks crosslinked in the swollen 
state and then dried.), but in simple uniaxial compression, C2 has a very 
low or zero value [39]. 

It should be emphasized that the Mooney-Rivlin equation is empirical 
and is based on phenomenological principles; it does not involve 
molecular concepts and is not an explanation for the deviations from 
molecular theories. 

Several theories based on molecular considerations have been 
advanced in order to interpret these and similar data. These theories have 
examined: a.) the role of local regions of ordered chain segments or 
bundles locked into the rubber during network formation [40,41], b.) 
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intramolecular energetic effects originating from the barriers to internal 
rotation along the chain backbone [42]. A more extended calculation 
later indicated that this effect is minor [43]. c.) Volume exclusion for the 
isolated chain and found the effect to be minor [44]. Several workers 
[45-48] have investigated the volume exclusion properties of networks. 

None of these models has proven satisfactory in assigning a 
molecular interpretation to the C2 term in equation 7.117. Additional 
difficulties with these models are that none can predict the change in 
slope that occurs when an initially compressed rubber network is 
elongated and the sample goes from compression to elongation [49] 
Also, theories do not treat the large increase in stress associated with 
high elongations (Figure 7.10). 

An approach based on statistical theory has recently been proposed 
[49-51] that is capable of showing a smooth transition from compression 
to extension as well as good agreement in the region of moderate 
elongation. It is based of the observation that, in the phantom network 
theory of James and Guth [2], the force required to elongate a network is 
smaller than in the affine model. As mentioned previously, both models 
show the same functional relationships and differ only by a numerical 
factor whose value is dependent on the chain functionality. For a 
tetrafunctional network, the force required to deform a phantom network 
is one half that for an affine one. Both models also assume that the strain 
does vary with reduced force [f/fa-l/a1)]. According to this approach, a 
real network is assumed to obey an affine model at low extensions and 
the phantom network at high extensions. Both limits are assumed to have 
constant reduced force values with changes in strain. However, the force 
changes with strain on transition between the two limits. The physical 
model assumes that the junction points are impeded in their movement to 
accommodate an applied stress by neighboring entanglements. This 
restriction in mobility is approximated by a well with the width of the 
well determining the degree of restriction. The final equations can be 
fitted to compression-extension data on polydimethylsilicone with 
reasonable agreement [50], using only one adjustable parameter. 

346 



THE RUBBERY STATE 

7.12. Guth-Smallwood Equations 

Filler particles such as talc or carbon black are routinely incorporated in 
rubber compounds to improve mechanical properties. Guth [51] related 
this reinforcement effect to the Einstein viscosity law for colloidal 
emulsions 

T7*=r7[l + 2.5tf>] ( 7 1 2 0 ) 

where 17* = the viscosity of the emulsion 
r] = the viscosity of the solvent 
cp = the volume fraction of the dispersed phase 
In Guth's model, the filler particles assumed to be spheres at low 

concentrations act as energy concentrating centers thereby increasing the 
elastic modulus. At low concentrations, up to 30% by volume, equation 
7.120 is expanded in series to 

£*=E[l + 2.50 + 14.102] (7.121) 

where E is the elastic modulus. The factor 2.5 is valid for spherical 
inclusions, and different values would apply for other shapes, generally 
depending on the aspect ratio of the particle. Good agreement with 
experiment has been found using this equation. 

A further refinement is the inclusion of a correction term, / , into 
equation 7.120. Thus, 

£*=£[ l + 2.50 + 14.1/202] (7.122) 

Inclusion of the / term in the Guth-Gold equation improved the 
agreement. 

From a practical point of view, carbon black is commonly used as 
filler. Its role is not well understood but the reinforcement varies greatly 
depending the kind of carbon black. Carbon black particles are fibrous 
and interact to apparently form some sort of network structure. There is 
often hysteresis in the stress-strain curves, possibly indicating breaking 
of the filler-rubber bond during stretching. 
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Appendix 7A - Evaluation of Equation 7.30 
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CHAPTER 8 

THE CRYSTALLINE STATE 

8.1. Introduction 

The crystalline state in polymers illustrates an important rule of thumb 
used in polymer science: viz, polymers have properties similar to low 
molecular weight organic compounds, but the long chain structure in 
polymers modifies these properties. In this instance, many thermoplastic 
polymers do possess crystalline structures analogous to those exhibited 
by low molecular weight paraffins and other organic crystals. The 
presence of a slow, kinetically determined nucleation and growth rate 
however reduces the amount of crystallinity and produces greater 
disorder. A few polymers such as polytetrafluoroethylene [1] or 
polyoxymethylene [2] are essentially completely crystalline in the 
polymerized state. An irreversible loss in the degree of crystallinity 
however is observed if these polymers are melted and cooled. As with 
other materials, the basic crystal unit cells in polymers are arranged in 
larger structures that become apparent as the scale of measurement 
increases. Thus, electron microscopy shows polymer single crystals with 
well-defined faces and characteristic growth habits [3] grown from dilute 
polymer solution. At still larger sizes, optical microscopy shows that 
these small crystals branch and splay, forming sheath-like structures 
which evolve toward spherical polycrystalline aggregates (or 
spherulites). 

X-ray diffraction can study the ordered, crystal structures at the 
molecular level. Crystallographers were at first reluctant to accept that 
these large molecules could form crystals which were smaller than the 
molecules. They eventually became convinced and realized that parts of 
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molecules could reside within the crystals, but could emerge, enter the 
amorphous phase where they might end, or else reenter the crystal as a 
fold or connect to another crystal as a tie chain. Mark and Meyer [4], in 
the early days of x-ray diffraction investigations, obtained x-ray 
diffraction patterns from natural polymers (silk and cellulose). 
Subsequent work by many investigators on other polymers revealed that 
different polymers in common with other material classes exhibit 
different unit cells, crystal dimensions and can even undergo 
polymorphic transitions [5]. The unit cell for a specific polymer depends 
on packing considerations such as relative atomic sizes and interactions 
in the atoms comprising the chain structure. X-ray diffraction has also 
been used to estimate crystal orientation, the degree of crystallinity, and 
crystal size and perfection. 

Optical microscopy has elucidated the morphology of larger 
structures in crystalline polymers. A detailed knowledge of spherulitic 
and other structural aggregates and of nucleation and growth rates during 
the crystalline transitions of many polymers has emerged from light 
microscopical studies. At a more fundamental structural level, electron 
microscopy has enabled polymer single crystals to be analyzed [3]. The 
folded chain models of polymer structure developed when these analyses 
were applied to bulk crystallized polymers. These techniques and others 
(infrared, thermal analysis, NMR) used in studying crystalline polymers 
have demonstrated that, by suitable thermal and mechanical treatments, 
the degree of crystallinity and morphology of many semi crystalline 
polymers can be varied over a wide range. Because of the strong 
influence that crystallinity exerts on polymer physical and optical 
properties, polymers with different properties can be produced by 
suitable control of crystallization during fabrication and processing. This 
conclusion has obvious implications in the production, for example, of 
polymer fibers and films. 

This chapter discusses the topics of crystallinity detection and 
measurement, the morphology of polymer crystalline aggregates at 
different levels of size and the kinetics of melt-crystal phase 
transformation. Chapter 3 presents thermodynamic aspects of 
crystallinity in polymers. The treatment is intended to provide a broad 
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but necessarily brief introduction to a very active and lively area of 
polymer physics. 

A bibliography at the end of the chapter provides material for study in 
greater depth of any particular topic. 

8.2. Evidence for Crystallinity 

Intensity Intensity 

20 
A.) Low Molecular Weight 
Crystalline Compound 

amorphous 

B.) Polymer 

Figure 8.1. Comparison of x-ray diffraction patterns. 

8.2.1. X-Ray Diffraction 

The x-ray diffraction pattern of a typical inorganic crystal (Figure 8.1 A) 
shows the sharp peaks at discrete diffraction angles characteristic of large 
well-formed crystals. There is also usually little background scattering 
present. By contrast, the pattern for a typical crystalline polymer (Figure 
8.IB) has broader peaks and the entire diffraction pattern is 
superimposed on a diffuse background. These features have been 
interpreted as arising from a two-phase system - a mixture of a 
crystalline and an amorphous phase where the broader peaks arise from 
the small size and imperfection of the crystals. The greater background 
scattering mostly comes from the diffuse scattering of the amorphous 
phase. A second interpretation holds that there is a one-phase structure in 
which a second amorphous phase is not required. The diffuse scattering 
and broadened diffraction peaks can be explained based on imperfections 
or defects in polymer crystals. The two-phase or fringed micelle model 
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was the earlier model favored for interpreting x-ray diffraction data. 
However, more recent work on polymer single crystals and on polymers 
with high degrees of crystallinity has supported the model of a defective 
crystal structure. The model of a two phase structure also is supported by 
its conforming to the thermodynamics of phase changes for such 
systems. 

The molecular structure determination of any crystal is based on the 
Bragg equation: 

x-ray 
source 

n 

u 

\J 

nh = 2dsindk (8.1) 

Collimation 
Slits 

photographic 
film 

A 

polymer film 
sample 

Figure 8.2. X-ray diffraction experimental arrangement. 

where d is the interplanar spacing, n the order of the reflection, A the 
wave length of the x-ray radiation and 0fcthe diffraction angle. 

Figure 8.2 depicts the geometrical arrangement. The crystal structure 
may be determined by fitting the observed diffraction spacings and 
intensities. The procedure can be illustrated using polyethylene as an 
example. 

The x-ray reflections of the polyethylene d spacings can be calculated 
from the equation for an orthorhombic unit cell [6,7] 
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v e_ e_ (8-2) 
a2 + b2+c2 

where a, b, and c are the unit cell dimensions and h, k, and / are integers, 
the Miller indices, that describe the location of the crystal plane with 
respect to the unit cell axis. Thus, the Bragg equation predicts diffraction 
maxima at discrete values of dt corresponding to each set of h, k, and /. 
The task then is to determine the crystal unit cell and unit cell 
dimensions. A procedure termed indexing is used. Maxima calculated 
from equation 8.2 are compared with the measured maxima until a 
suitable match is obtained. The crystal density (p) is given by 

p-^f^ (8.3) 

where n = the number of monomer units of molecular weight Mm 

NA = Avogadro's number 
Vu = the unit cell volume (abc for an orthorhombic unit cell) 

The kind, number and location of the atoms comprising the unit cell 
determine the diffracted intensity. The fitting of calculated with 
measured intensities is the basis for the art of structure determination. 
The intensity of the diffracted x-rays is 

/ = KFF* (8.4) 

where K is a proportionality constant, F the "structure factor" given by 

F = yfiexp[2m(hxi + kyi + lzi)] (8-5) 
i 

and F* the complex conjugate of F. The sum is over all atoms in the unit 
cell, fj is the atomic form factor for the iih atom and is a measure of its 
scattering ability at a given angle. Xjt yj and ZJ are the coordinates of the 
/ h atom expressed in units effractions of the a, b and c spacings. Since n 
must be an integer, approximate measures of a, b and c together with an 
experimental density serves to define n. A problem with polymers is that 
one cannot obtain them in a hundred percent crystalline form. An 
approximate value is usually obtained by extrapolation. It is more 

356 



THE CR YSTALLINE STA TE 

common to use this equation with experimental values of a, b and c to 
calculate an accurate value for the crystal density for use in crystallinity 
determinations. The intensity calculations lead to predictions of 
characteristic extinctions that depend on crystal symmetry. The 
intensities calculated for a proposed structure are compared with 
experimental data. Alternatively, an electron density map may be 
constructed by Fourier inversion [6,7]. A problem with this is that the 

1/2 

Fourier inversion requires a knowledge of F* obtained from (I) . The 
ambiguity in the "phase problem" lies in establishing the sign and 
resolution of F* into its real and imaginary parts. 

c c 

Figure 8.3. Section through the ab plane in the orthorhombic polyethylene unit cell, 
a and b are the unit cell dimensions. 

The unit cell dimensions calculated by these procedures for polyethylene 
are a = 0.740 nm, b = 0.493 nm and c = 0.254 nm and the density is (8.6 
kg/m3. Figure 8.3 shows the ab plane. The c-axis is parallel to the chain 
axis and its length of 0.254 nm is equal to the distance between alternate 
carbon atoms. This structure for polyethylene is identical with that 
determined for crystals of pure n-paraffins such as C32H66 - low 
molecular analogs of polyethylene. X-ray structures have been 
determined for many crystalline polymers. Miller [5] has published an 
extensive compilation of polymer unit cell data. 

For large perfect crystals, sharp diffraction peaks with several orders 
of the same reflection are commonly observed. For smaller crystals with 
imperfections or defects, the peaks broaden and the intensities of the 
higher order reflections decrease. The effects of size may sometimes be 
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distinguished from that of defects by use of the paracrystalline lattice 
statistics proposed by Hosemann [8]. An effective crystal size 
(neglecting the effect of crystal defect on peak broadening) may be 
estimated from the Scherrer equation [6] 

d = ^FZ^T (8-6) Wcos0, b 

where W is the peak width at half the peak intensity and B is a constant 
near unity that is dependent on the peak shape. 

8.2.2. Electron Microscopical Observations 

Figure 8.4. Polyethylene crystal grown from dilute solution. 

Single crystals of many polymers have been grown from dilute solution 
[3]. For polyethylene, these are identical in appearance with single 
crystals of the n-paraffins. Polymer single crystals typically form lozenge 
or diamond shaped thin platelets (Figure 8.4). Electron microscopes or 
low-angle x-ray scattering can measure single crystal thickness. For n-
paraffins, the thickness increases at first with increasing molecular 
weight and the molecules lie perpendicular to the crystal face. By 
carrying out such measurements for diffraction from different crystal 
planes, one may deduce crystal dimensions in different directions. Such 
measurements are in approximate agreement with those observed by 
electron microscopy and those deduced from small angle x-ray 
diffraction measurements. Keller has shown that, as molecular weight 
increases above about 100 carbon atoms, chain folding commences. For 
polymers, the thickness approaches an asymptotic value independent of 
the molecular weight, but dependent upon the crystallization temperature 
(Figure 8.5). 
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Since the chain length for high polymers is at least several times the 

crystal thickness, it is postulated that, for polymers, the chains are folded 

back and forth through the crystals. Three models have been proposed 

(Figure 8.6). The regularity of this chain folding has been discussed 

extensively and is dependent upon crystallization conditions (see Section 

8.4). 

Thickness 

increasing 
temperature of 
crystallization 

of the order 
of 100 A 

i 
Molecular Weight 

Figure 8.5. Lamellar thickness variation with molecular weight. 

8.2.3. Optical Microscopy 

A 

u 
regular folding with irregular folding with irregular folding with random 
adjacent re-entry adjacent re-entry re-entry (switchboard model) 

Figure 8.6. Three models of the folded chain surfaces in polymer single crystals. 
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The optical microscope shows the presence of crystalline structures 
representing a higher level of organization than the lamellar. As 
discussed later, crystals particularly in bulk often grow from 
heterogeneous nuclei (foreign particles). Crystals grow radially outward 
from these nuclei leading to expanding spheres termed spherulites of 
partially crystallized material. The spherulites originate from nuclei, 
usually heterogeneous, at their centers. The number of these nuclei 
increases with higher degrees of super cooling, so that more and smaller 
spherulites result from crystallization at lower temperatures. Small 
amounts of added materials such as sodium benzoate can serve as 
nucleating agents and can produce polymers having smaller spherulites, 
greater clarity and modified mechanical properties. 

8.2.4. Thermodynamic Transitions 

Chiang and Flory [9] demonstrated by dilatometric measurements that 
the melting process in polyethylene met the requirement of a first order 
phase or melt to crystal transition. Semi-crystalline polymers usually 
melt over a range of several degrees in contrast to the narrow melting 
range displayed by most pure inorganic crystals as they evolve a latent 
heat of crystallization. The greater range of melting temperatures 
observed for polymers arises from the distribution on their crystal size 
and perfection. 

Chiang and Flory used three conditions to demonstrate the presence 
of a latent heat in polyethylene. They cleaned the sample of possible 
impurities to eliminate adventitious sites for heterogeneous nucleation 
and annealed the sample before melting commenced to ensure that the 
highest possible crystallization was achieved. Finally, Flory and Chiang 
heated the polyethylene sample slowly (over the period of a week before 
each increase in temperature) to allow the sample to equilibrate. 

Enthalpy changes with temperature on solid semi crystalline 
polymers show similar sharp transitions buttressing the argument that 
semi crystalline polymers possess a phase that meets all the requirements 
of a thermodynamic crystal. 
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8.3. Determination of Degree of Crystalline 

8.3.1. Density Measurements 

Volume dilatometry measures changes in the specific volume, the 
reciprocal of density. The degree of crystallinity is calculated using the 
assumptions that: 

i) The_ crystalline specific volume, Vc, and the amorphous specific 
volume, Va, weighted by the respective volume fractions ( X) are additive, 
or 

V-XV+X.V. (8.7) 

where, Vs, is the sample specific volume , Xc, the volume fraction of the 
crystalline phase andZa the volume fraction of the amorphous phase. 

change in>lope due to 
thejatfalexpansion of 
the amorphous phase 

X sp 

region of crystal 
"melting 

Temperature 

Figure 8.7. Specific volume against temperature plot for polyethylene illustrating the 
extrapolation of Va to lower temperature. 

ii) For a two-phase system, the volumes are additive. Using the 
additivity assumption, and rearranging equation 8.7 yields 

V -V 
Xc=^-Ur 

v-v 

(8.8) 
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Vs at any temperature is determined from extrapolation of a specific 
volume-temperature plot (Figure 8.7). Vc is determined from x-ray 
density 

V..-L (8.9) 

where pca\c is the crystal unit cell density obtained from equation 8.3 or 
its equivalent. The specific volume of the amorphous phase is obtained 
by assuming that its value is the same as that of the completely 
amorphous polymer. This may not be true, since the amorphous density 
may be affected by the constraints imposed by the crystals. This has 
shown to be so, for example, for poly(ethylene terephthalate), where 
independent measures of the amorphous density were made from 
quantitative analysis of small angle x-ray scattering data. Figure 8.8 
shows the temperature dependence of Xc, based on pcaic, for 
polyethylene. 

Melting 
Point 

Temperature 

Figure 8.8. The temperature dependence of the crystal unit cell density of polyethylene. 

From density data obtained on many semi-crystalline polymers, the 
following qualitative observations may be summarized: 

i) Most polymers are not completely crystalline, 
ii) Annealing polymers may increase the degree of crystallinity. 
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iii) Most polymers melt over a range of temperature, and not at a 
discrete temperature. 

iv) The maximum melting point Tm and melting point range depend 
upon the crystallization temperature (Tc). Tm approaches the true 
(thermodynamic) melting temperature Tm as crystallization is carried out 
at increasingly higher temperatures (or the equivalent, longer times). 
Figure 8.9 illustrates the graphical technique for estimating T° based on 
this observation. 

v) The equilibrium melting point assumes that the crystals are in 
equilibrium with the isotropic amorphous phase. The amorphous phase in 
the vicinity of the crystals may not be isotropic because of the constraints 
of the crystals and because some chains are anchored to the crystals as 
loops and tie chains. When the crystals melt, the melting point may be 
dependent on the rate of heating. 

6 T 0 

<S 
u 

- I — * a u <u 

I 

Crystallization Temperature, Tc 

Figure 8.9. Estimation of the equilibrium melting point ( 7^) by extrapolation of 
crystallization temperature-melting point data. 

Several explanations have been advanced to account for the 
observation that the measured Tm is lower than the equilibrium melting 
point. Among these are: 

i.) Crystals have finite size and their melting points decrease because 
of surface energy considerations. At lower crystallization temperatures, 

45 degree l ine / ' 

/ Experimental 
A Points 
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the crystals are smaller and melt a lower temperature. An equation based 
on this hypothesis is derived in Chapter 3.8.1. 

ii) Crystals are imperfect. At lower temperatures, crystallization 
occurs more rapidly, the number of imperfections is greater thereby 
reducing the melting point. 

iii) Amorphous tie chains trapped between crystals become taut as 
crystallization proceeds. This has the effect of increasing crystal surface 
energy and lowering the melt temperature. (This effect is greater with 
higher molecular weight chains.) At lower crystallization temperatures, 
the faster crystallization rate results in a greater probability of tie chain 
entrapment. Also, tie taut chains, in addition to the effect on surface 
energy, influence the melting point through their influence on the 
entropy of the amorphous phase. 

The broadening of Tm or the range of melting temperature may arise 
from the contributions of the three effects. 

8.3.2. X-Ray Diffraction 

Because polycrystalline polymers exhibit a two-component diffraction 
pattern, the degree of crystallinity may be obtained from the relative 
areas [3]. Thus, 

K riJS)S2dS 
Xc =

 J° (8.10) 

So I^S2dS 

where S equals (2/A)sin db, Icr(S) is the intensity of the crystalline 
component of the diffraction observed at S and I(S) is the total intensity 
(Figure 8.10). This technique involves the assumption that the 
contribution per unit mass of the crystals does not depend upon order. 
Ruland [10] has examined this assumption and shown that a correction 
should involve allowing the constant, K, to depend upon crystal order. In 
principle, this dependence could be evaluated, where possible, by 
examining various orders of the diffraction peak. This is difficult to do 
and is seldom done. K is a constant, with a magnitude of roughly unity, 
dependent upon the amount of disorder. Icry can sometimes be determined 
from model compound studies (e.g., n-paraffin crystals for polyethylene). 
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Another technique [11] takes the ratio of the amorphous area for a semi 
crystalline polymer to that of a completely amorphous polymer 
(measured, for example, by melting a polymer sample). The areas are 
obtained by integration, then 

Scattering Angle, 20 

Figure 8.10. Diagram showing the ration of crystalline area to amorphous area in an 
x-ray diffraction pattern. 

Kfiam{s)s2ds 

8.3.3. Infrared (IR) and Raman 

It should be mentioned that for most IR bands, absorption is sufficiently 
strong that samples must be thin. Alternatively, IR can be studied by 
reflectivity using attenuated total reflectance (ATM) techniques, but such 
measurements provide information about portions of the sample close to 
the surface which may not be the same as within bulk samples. 

One caution in evaluating crystallinity from the intensity of 
crystallization temperature is that the intensity is affected by the 
orientation of the transition moment of the band relative to the 
polarization direction of the radiation. Thus, if the polymer is oriented, 
this dependence should be considered. 
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Infrared spectra for crystalline polymers differ from those of 
amorphous polymers for at least two reasons: 

i) Infrared bands are often sensitive to conformation. Polymer 
molecules in crystals are often restricted to a particular conformation. 
Thus, for polyethylene, the infrared data may be used to resolve the 
amorphous bands into gauche and trans contributions [12]. 

ii) Coupling of vibrations between different molecules in a unit cell 
may lead to the splitting of bands. For example, the 720 cm"1 CH2 

rocking mode in a polyethylene crystal splits into bands at 720 cm"1 and 
729 cm1 corresponding to the out-of-phase vibrations for the two chains 
in the polyethylene unit cell (Figure 8.3). Many crystalline polymers 
show a mixture of crystalline and amorphous absorption bands. Thus, 
polyethylene has crystalline bands at 1894, 1176 and 1050 cm1, while 
amorphous bands are observed at 1368, 1352 and 1303 cm"1 [13]. The 
ratio of absorbance for a crystalline band to that for an amorphous 
correlates well with density and x-ray diffraction. Thus, Cobbs and 
Burton [14] used the 972/975 cm"1 ratio for the infrared spectrum of 
poly(ethylene terephthalate) and observed a linear correlation 
measurements. 

For Raman spectra, on the other hand, an experimental advantage is 
that samples can be thicker compared to those needed for infrared. Also, 
fiber optics techniques may be employed for measurements in local 
regions using Raman spectra. A disadvantage is that Raman 
measurements give problems in samples that are turbid as a consequence 
of Rayleigh scattering by inclusions. 

8.3.4. Wide Line Nuclear Magnetic Resonance 

The width of NMR bands is dependent upon the heterogeneity of the 
average magnetic field (H) about an absorbing nucleus [15]. Thus, 

£ = /?v = c(H.u) (8.12) 

where v = the absorption frequency 
c = a constant 
u = the magnetic moment of the absorbing nucleus and 

H = H 0 -H* (8.13) 
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where H0 = the applied magnetic field 
H*= the local field about a given nucleus due to neighbor 

interactions. 
For molecules in dilute solution in which mobility is high, field 

heterogeneities average out and absorption bands are narrow. Such 
averaging does not occur with a glassy or a crystalline polymer because 
the molecules are too rigid. Broad bands usually characterize NMR 
absorption in the solid state. For molecules in a rigid environment, H*, 
depends on the local state of the nucleus with different bonding (e.g., the 
change in chemical environment between the protons in a methyl and a 
methylene group). Thus, there is present a distribution of frequencies that 
form a wide band. In addition, in a solid, the local magnetic field is 
anisotropic so that the width depends upon the angle between the crystal 
and the magnetic field (Figure 6.8). 

narrow component from 
mobile phase 

A r 

Magnetic Field Intensity, H 0 

Figure 8.11. Sketch showing resolution of NMR spectrum into mobile and rigid phases. 

For a polycrystalline polymer, the absorption band possesses a broad 
component from the crystalline phase (if it is above its Tg) (Figure 8.11). 
The degree of crystallinity (Xc) may be calculated from the ratio 

A. 
X=- (8.14) 
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where A is the area under the broad components and Ar the area under 
the narrow component. Nmr results do not always correlate with those 
obtained from other methods. The difficulty is that nmr measures 
mobility rather than crystallinity. Thus, below its Tg, a rigid amorphous 
phase behaves like a crystal in response to nmr magnetic fields. 

8.3.5. Thermal Measurements 

This determination is based on measurement of enthalpy, a fundamental 
thermodynamic quantity. The basic equation is given by 

AH 
X = • 

Atf 
(8.15) 

where AH = the enthalpy of fusion of the sample 

AHU = the enthalpy of the completely crystalline polymer. 

Heat Capacity 

Ti Temperature T2 

Figure 8.12. Plot of Cp against temperature for the graphical integration of 
equation 8.21. 

Thus 

AH = Ha-H 

A f f - H -W 

(8.16) 

(8.17) 
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where Ha, Hc and H are the enthalpies of the completely amorphous, the 
completely crystalline and the polymer sample respectively. AH between 
any two states can be obtained from the heat capacity at constant 
pressure (CP) by integration, or 

AH= f C p d r (8.18) 

This expression may be evaluated by computer (Figure 8.12) by 
plotting CP data obtained from calorimetric, DSC or (indirectly) from DTA 
measurements [16]. One finds that enthalpy varies with temperature in a 
manner similar to that of specific volume (see, Figure 8.18). 
Section 6.6 discusses other aspects of nuclear magnetic resonance. 

8.4. Morphology 

8.4.1. Electron Microscope 

As discussed above (Section 8.2.2), crystal lamellae are composed of 
folded chains. No means however exist for direct observation of these 
folds so that the detailed morphology of the fold surface must be inferred 
from indirect evidence. Three models for folded surface morphology 
have been proposed (Figure 8.6). 

For very low degrees of super cooling, model A is postulated to 
predominate. The evidence for regular folding with adjacent reentry is: 

i) The observed pyramidal structure. 

The single crystals are not planer, but instead form hollow pyramids. 
Four sectors may be distinguished based on their differing orientation on 
microscopic observation. The tilt of the sectors is due to the fold packing. 
The tilt angle a may be calculated from crystallographic considerations 
as 

£ 
tana = — (8.19) 

d 

where d is the distance between chains in the crystal and A = nc where n 
is an integer and £ is the monomer repeat distance. The fold surface lies 
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along the 110 crystal plane but the four sectors differ in the orientation of 
the folds (Figure 8.13). 

It should be mentioned that pyramidal crystals are only seen if they 
do not collapse as occurs when they are dried on a surface. When they do 
collapse on drying, cracks develop. 

Figure 8.13 Diagrammatic sketch showing relation between the crystal plane and fold 
surface in a polymer single crystal. 

ii) Moire Patterns 

In more concentrated solutions, crystals stack in layers. Adjacent 
layers give interference patterns with each other analogous to the effect 
observed when window screens lie on top of one another. These "moire 
patterns" show that the layers are in crystallographic register with each 
other and are best interpreted in terms of packing of regular folds on the 
single crystal surface. 

At higher degrees of super cooling, the fold surface, proposed in 
model B (Figure 8.14), is more likely. The evidence for irregular folding 
with adjacent re-entry is based on: 

i.) Density 
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The experimental density of the crystal is lower than the density 
calculated from crystallographic data (11), or 

weight MnmlA 
pca,c — r 2Lf^- (8.20) 

volume abc 
The lower density however has been hypothesized as originating from 
disordered material deposited on the fold surfaces, 
crystallized polymer samples. 

Figure 8.14. Tie molecules between crystal lamellae. 

ii) nmr 

Nuclear magnetic resonance (nmr) studies indicate the presence of a 
mobile compound even for solution grown crystals. 

Hi) X-ray diffraction 

X-ray diffraction from single crystal preparations proves the presence 
of disordered material [3]. 

iv) Kinetics 

Theoretical kinetic predictions are consistent with irregular surface 
folding. For bulk crystallized polymer samples, etched surface and 
fracture sections [17] show lamella structure. The thicknesses of the 
lamellae in bulk polymers are comparable with those of solution grown 
single crystals. These structures are interpreted as originating from chain 
folded layers. It is probable, based on kinetic arguments of crystallization 
in bulk polymers, that folding in these lamellae is not regular and that 
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there are tie chains between lamellae (Figure 8.14), as shown by Keith 
and Padden [18]. These tie chains are responsible, in part, for the 
mechanical strength of bulk crystallized polymer samples. 

The evidence cited in support of the model B structure also supports 
the model C fold surface structure. In addition, Flory and Yoon [19] have 
argued that the steric hindrance to forming a sharp bend over a few chain 
atoms precludes the prevalence of adjacent reentry. 

The relative amount of random reentry to adjacent reentry will vary 
with polymer chain structure. The energy required for a chain to form a 
bend determines the extent to which adjacent reentry is favored. The 
lower the energy expended to form a tight bend, the more adjacent 
reentry loops will occupy a fold surface [20]. 

8.4.2. Optical Microscopy 

Spherulitic structures are often large enough to be visible by the optical 
microscope. Crystalline lamellae form the radii of these spherulites with 
one crystalline axis (the b axis in polyethylene) tending to lie in the 
radial direction. The lamellae often twist and form branches. The 
branching is necessary to fill the spherulitic volume [21] Since one axis 
is radial, the spherulite is usually optically anisotropic the radial and 
tangential refractive indices having different values. If the spherulite is 
viewed between crossed Polaroids™, this optical anisotropy has the 
appearance of a Maltese cross (Figure 8.15). The transmission (T) of an 
anisotropic crystal located between two polarizers is 

r = sin2(-]sin20 (8.21) 

where 8 is the optical retardation of the crystal and 6 is the angle 
between the sample optic axis and the polarizers. The transmission is 
zero when 6= 0° or 90° and is a maximum when 6= 45°. 

This consideration assumes that the optic axis lies eithern parallel or 
perpendicular to the lamellae which would be the case, for example, if 
the chains were oriented perpendicular to the lamellae. There are cases 
where the chains are tilted with respect to the lamellae in which case, the 
optic axis may be tilted at some angle with respect to the lamellar axis. 
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For an angle of 45 , for example, the dark arms of the Maltese cross will 
lie at 45 to the axes of the crossed polars rather than along the 
polarization directions. 

Figure 8.15. Polyethylene spherulite between crossed polars showing Maltese cross and 
ringed structure. 

The ringed appearance (Figure 8.15) arises from twisted lamellae. 
The continuity of the rings through a 360° rotation suggests that the 
lamellae twist in phase. Spherulites contain amorphous material situated 
between and on the surface of lamellae. This is often polymer with low 
tacticity or branched polymer that does not readily crystallize and is 
therefore excluded from the growing crystal during the crystallization 
process. 

8.4.3. Liquid Crystals 

Liquid crystals, as the name implies, are fluid materials that show x-
ray (and other diffraction) peaks with the narrow widths characteristic of 
crystal like order. Polymers as well as low molecular weight compounds 
are capable of forming liquid crystalline phases for certain conditions of 
temperature, shear rate, chain stiffness and electrical fields. Phase 
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diagrams are used to summarize the temperature-pressure regime over 
which liquid crystals are stable. Liquid crystal polymer chains commonly 

Cholosteric Director 

Spacing 

y T" 

*-\ 

Smetic 

Nematic Director 
I • 

• I )? 
Spacing 

Figure 8.16. Liquid crystalline structures. 

comprise anisotropic structural units (mesogenic groups) either as chain 
backbone groups, as branches or both. The three main types are depicted 
in Figure 8.16. The common denominator is chain packing or the 
placement of stiff rods in a confined volume. The least ordered is the 
nematic which consists of the packing of long rods or order along the 
chain axis. Next is the smectic that has the packing for the spacing of 
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nematic planes. The final type is the cholosteric in which the spacing 
results from the helical packing of nematic rods. A director (a vector 
perpendicular to the axis or plane of the liquid crystal) is commonly used 
to specify the average orientation of a liquid crystal domain. Typically, 
birefringence and scattering techniques are used to measure director 
orientation. Correlation functions could also be used for the same 
purpose and, in addition, would furnish additional information on 
orientations at longer ranges. These could be determined at several 
characteristic distances by the use of visible, neutron and x-ray 
radiations. The resultant data could then be coordinated to provide a 
more complete description of the liquid crystal orientation. 

Kevlar™ fibers [22] were the first application of liquid crystals in 
polymers. A special technique had to be developed spin fibers because 
they were too stiff to be processed by the known fiber spinning methods. 
The straight stiff nature of these chains however confers exceptional 
strength on the final Kevlar fiber. 

Several fibers based on liquid crystal precursors have been 
subsequently produced. Keller [23] postulates the existence of a liquid 
crystalline phase during the melt-crystalline transition in polyethylene 
(and other polymers). 

8.5 Mechanisms of Crystallization 

8.5.1. Nucleation and Growth 

J. Willard Gibbs in the 1880s [24] first presented the basic premises for 
this mechanism. The stable phase in a crystal/melt system varies with 
temperature. Above the melt temperature, the liquid melt is the stable 
phase below the melt temperature; the crystal is the stable phase. At just 
below the melt or first order transition temperature, fluctuations in the 
size of the crystal phase occur. Most are too small and return to the melt 
phase. However, a few fluctuations are large enough to become stable. 
They therefore provide a surface for other molecules in the melt to 
transfer over to the crystal phase. The crystal phase then grows from 
these homogeneous nuclei at the expense of the melt phase. Dirt and 
other adventitious contaminants of the right size range can furnish a 
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surface on which a crystal phase can grow. This latter type of nucleation 
(heterogeneous) is common in polymers due to the presence of residual 
catalysts and polymer additives. Ross and Frolen [25] distinguished 
between the two types of nucleation mechanisms by applying a technique 
first used in cloud seeding experiments to polyethylene. The technique 
relies on the statistical principle that, if a sample is divided into many 
fine droplets, some droplets will not contain contaminants and therefore 
will nucleate by a homogeneous mechanism. The cleaned polymer 
samples were divided into small droplets, heated to above the melting 
point for several minutes to insure that all the chains had melted and then 
slowly cooled. An optical microscope was used to find the number of 
particles that crystallized. Two maxima in the temperature range were 
noted. The maximum at the higher temperature is due to heterogeneous 
nucleation while that at the lower temperature is due to homogeneous 
nucleation. This is discussed in more detail in Section 8.6 below. 

Growth occurs by a secondary nucleation mechanism in which 
crystals form on the surface of the primary nucleus. The assumed growth 
model is that of a sphere. The barrier to nucleation is lower for growth so 
that that the number of crystals formed during this stage is determined by 
the under cooling. At small undercoolings in which the phase transition 
occurs close to the melting point, few heterogeneous nuclei are present 
so that the transition proceeds mainly by a growth mechanism. This 
results in a few large crystalline structures. Conversely, for large 
undercoolings, many homogeneous nuclei form and growth proceeds 
from many centers resulting in many small crystalline structures. 

8.6. Kinetics of Crystallization 

8.6.1. Temperature Dependence of the Nucleation Rate 

The temperature dependence of the nucleation rate is described by the 
rate constant (&„) in the Avrami equation. This dependence is assumed to 
originate from a balance between diffusion of chain segments to the 
nucleus and the free energy barrier for incorporation of the segments into 
the nucleus. Thus, 

kn = Aexp[-^ /kr ]exp[-AG7kr] ( 8 .2 2) 
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where A = a pre exponential front factor. 
Ed = the activation energy for viscous flow. 

AG* = the free energy required to form a stable nucleus. 
AG* is estimated by minimizing the sum of the two free energies: the 

volume free energy decrease characteristic of a crystal volume increase 
and the surface free energy increase associated with the formation of 
fresh crystal surface. Mathematically, for an assumed spherical nucleus, 

(8.23) AG = Anr'o. W^S 
where Ag is the free energy difference per unit volume between the melt 
and an infinite crystal and oSj the surface free energy per unit surface 
area, or 

AG = 4tt 

The free energy is minimized when 

dAG 

i r3Ag 
r a. — 

dr 
= 0 = 4ji{2ros-r

2Ag)j 

(8.23A) 

(8.24) 

Solving equation 8.24 for r yields 

Free energy 
AG 

(8.25) 

Radius of Nucleus 
Figure 8.17 Free energy barrier to attainment of a critical sized nucleus. 
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where r* is the critical nucleus size that must be formed to attain a stable 
entity (Figure 8.17). Nuclei smaller than r* will not be stable because of 
their high surface energy. As r increases, the surface area to volume ratio 
decreases so stability increases. At r>r*, growth of the nuclei leads to a 
decrease in free energy. 

Classical nucleation theory assumes that the surface energy density, 
o, is independent of the size of the nucleus. This is probably not true 
when the nucleus is very small and consists of just a few molecules. 
Also, the theory assumes that the interface between the nucleus and the 
amorphous phase is sharp. On a microscopic scale, the interface is 
probably diffuse with a width that could be comparable with the nucleus 
size at high supercooling. 

It is further assumed in classical nucleation theory that A G reaches 
AG* by random thermal fluctuations and thereby is able to surmount the 
barrier to growth. Once r equals r*, then the nuclei will continue to grow 
spontaneously. AG* may be obtained by substituting equation 8.25 in 
equation 8.24 

r* 16 o] 
G = 1 " ^ (8-26) 

To evaluate g, the definition 

Ag^Ah-TAs (8.27) 

is used where Ah and As are the entropy and enthalpy differences per unit 
volume between the melt and the infinite crystal. At the equilibrium 
melting point, AGm = 0 and 

Ah 
- ~ = Tm (8.28) 

tn 

Assume as before, that in the temperature interval between T and Tm, 
(Ah/As), is independent of temperature, so that 

£ - ^ - 7 . (8.29) 
As Asm 

Then, from equations 8.26 and 8.28, 
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Ag = Ah 1 -TAs 
~A/T 

= A/J 1 - — =A/I 
AT 

(8.30) 
\ 

where AT is the "undercooling". Then substituting the expression for Ag 
in equation 8.29 into equation 8.27 

(8.31) 
. . _ 16 a 
Ag = AG = — K 

\ 

3 Ah1 T 

or into equation 8.24 

2a.T. 
(8.32) 

AhAT 

Thus, the larger the under cooling, the smaller the value of AG* (and the 
more rapid the nucleation) and the value of r* (the smaller the size of the 
critical nucleus) required to initiate crystallization. Other models for the 
nucleus give similar equations. For example, for disc shaped nuclei 

^.iO-.g^iJ (8.33) 

where os and oe are the side and the end free energies per unit surface 
area respectively. Thus, from equation 8.43 

Ag = £„=Aexp 
-EJ 

kT 
exp 

-16K a. 

3 Atf\AT 

I) 
(8.34) 

From these equations, it is evident that smaller nuclei form at higher 
AT (or lower crystallization temperature). The size of the growing crystal 
relative to the size of its nucleus decreases, so that smaller crystals arise 
from low temperature crystallization. As discussed previously, these will 
melt at a lower temperature, giving rise to the important observation that 
crystals formed at a low temperature melt at a low temperature. 

8.6.2. Nucleation and Growth 

Nucleation of the embryonic crystals in the liquid phase followed by 
growth or accretion of the solid phase onto the nucleus in the mechanism 
usually used to describe polymer crystallization kinetics as with metals, 
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ceramics and low molecular weight materials. The rate of polymer 
crystallization shows a strong temperature dependence (Figure 8.18). 

Vc sp 

k very high temperature 

^ O ' ^ ^ . ' ' 56°C 
^ ^ """ 54°C 

"""•- - - - 52°C • 
Time (min.) 

Figure 8.18. Temperature dependence of polymer crystalline rate. 

Also, most systems do not crystallize at reasonable rates until the 
temperature is at least several degrees below the melting point so that a 
measurable undercooling {AT = Tm-T) is required. The crystallization 
curves measured at several temperatures can be superimposed along the 
time axis when plotted in terms of \-Xc against In t (Figure 8.19). The 
nuclei may be classified into two types: heterogeneous nuclei present in 
the melt that may comprise residual catalyst, dirt particles and other 
adventitious impurities, and homogeneous nuclei formed from polymer 
chains as result of thermal fluctuations. 

The crystalline phase typically grows as spherical aggregates called 
spherulites. However, other geometries such as disks or rods may be 
found with, as shown below, a consequent modification of the rate 
equation. M. Avrami [26] first derived these rate equations in the form 
used for polymer kinetics for the solidification of metals. The weight of 
the crystalline phase is calculated as a function of time at constant 
temperature. As will be described below, the temperature dependence of 
crystallization can be derived from classical nucleation theory. 

Three growth regimes occur in polymer crystals. Regime 1 completes 
a surface layer of crystalline lamellae before starting another layer. 
Regime 3 starts new layers before the underlying layers are complete. 
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This gives rise to a rough surface. Regime 2 represents an intermediate 
stage between Regimes 1 and 3. Changes in the slopes of rate versus 
temperature plots distinguish the different growth regimes [27]. These 
ideas can be applied to solid polymers. 

Curves are horizontally superposable 

1-X< 
9UC 

In tmin 

Figure 8.19. Plots of 1-Xc against the logarithm of time at different temperatures. 

The Avrami equation is obtained as follows. For spherical growth 
from heterogeneous nuclei, for which all are assumed to start growing 
simultaneously, the number of nuclei per unit volume (v) is assumed 
constant. The growth rate (G) is given by 

dr 
G = -

dt 
(8.35) 

where r is the radius of the sphere growing from the nucleus. The growth 
rate may be observed microscopically and is usually constant. The 
significance of a constant G may be seen as follows. 

V.M-W)3 

dV . 2dR dR „ . 
= AJIT — = A — = GA 

dt dt dt 

(8.36) 

If G is constant, then the rate of volume increase is proportional to the 
surface area of the growing sphere, a reasonable conclusion since growth 
occurs at this developing surface. This assumption requires that the radial 
lamellae branch at a rate sufficient to maintain density and that the 
degree of crystallinity is constant throughout the spherulite. This infers 
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that there is no secondary crystallization, since if there were, 
crystallization would continue behind the growth front, so that the degree 
of crystallinity would vary with radius. 

The volume of spherulites M r) at time {t) is 

V . W - M ' ) S
 (8.37) 

The weight of spherulites Ws{t) at this time is 

W.(t)-p,V,(t) (8.38) 

where ps is the spherulitic density. The weight of crystals wc{t) is 

Wc(t)-XaW,(t) (8-39) 

where Xcs is the degree of crystallinity of the spherulite which is assumed 
constant. The degree of crystallinity of the polymer is then 

Wc(t) 
Xc=^^- (8.40) 

P 

where p is the density of the polymer (which will vary slightly during the 
crystallization process). Thus, on combining equations 8.23 through 8.26 

Xc = ̂ f-v(^(tf (8.41) 

If all nuclei start growing simultaneously at time = 0 (the case of 
heterogeneous nuclei), 

r(t) = Gt (8.42) 

and 

X c ( f )=*£A v ( i ) j tGy (8.43) 
r 

Equation 8.43 is the Avrami equation for heterogeneous nucleation 
followed by three-dimensional growth. This equation neglects the 
impingement of the growing spherulites on one another and assumes that 
the spherulites can grow in regions already crystallized 
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This equation predicts that the degree of crystallinity increase as t3. 
This is initially true, but obviously cannot continue since it would lead to 
X<>\. The difficulty arises because the supply of amorphous material 
becomes exhausted and the rate of crystallization decreases toward zero 
as the amorphous material is nearly all consumed. This decrease appears 
in the theory because growing spherulites impinge so that their volume is 
then 

A = 4nr2f(t) ( 8 4 4 ) 

where f(t) is the fraction of the area lost by impingement. A model of 
random location of nuclei leads to 

/ ( f ) - 1 - 0 c (8-45) 

where <pc is the volume fraction of spherulites. Thus f(t)=\ at the 
beginning of crystallization, but approaches zero as 0C approaches unity. 
In this case 

^ = vGA(l-0c) (8.46) 

On substituting 8.40 in 8.41 and integrating, the Avrami equation 
becomes 

- ^ _ = vG4 jrr2 = VG34M2 

1-fc 

- l n ( l - f ) = 4^G3^-

For two dimensional growth of discs, 

Vs = 1 - exp[-2jtvdG2t2] (8.49) 

For the case of heterogeneous nucleation, the exponent n of the Avrami 
equation is equal to the dimensionality of growth. 

For homogeneous nucleation in which the nuclei may form during the 
crystallization process, the exponent n is 

n = dimensionality of growth + 1 (8.50) 

(8.47) 

(8.48) 
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Table 8.1 shows the dependence of K and n on the mechanism of 
nucleation and growth. Measurements of n have shown that it decreases 
as crystallization proceeds. Mandelkern [28)] has considered the case of 
sporadic nucleation on predetermined nuclei that cause a decrease in n as 
crystallization proceeds. However, n may also decrease when Xcs is not 
constant but varies with time. A comparison of degree of crystallinity 
measurements with spherulitic growth rate measurements on the same 
polymer [29] shows this. The polymer continues to crystallize after the 
volume fills with spherulites. The value of n for this secondary 
crystallization is usually less than for the primary crystallization process. 
This difference gives rise to a change of n with time. Reference 30 treats 
this problem theoretically as do Hilliar [31] and Price [32]. 

Table 8.1 Correlation between Types of Nucleation and 

the Avrami Exponent n 

Nucleation Type n Growth Geometry 
Heterogeneous 2 Disc (or spherulite with 

severe impiiiLismenl problems) 
Homogenous 2.5 Sphere 

Heterogeneous 3 Sphere 
Homogenous 3 Sphere 

8.6.3. Experimental Determination of n and k 

/'. Slope-Intercept Method 

According to the Avrami equation, 

l -X c=X c=exp[-fe"] (8.51) 
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where Xa is the weight fraction of polymer in the amorphous phase and 
talking logarithms on both sides 

\n{-lnXA) = lnk + nlnt (8.52) 

Thus, a log-log plot of X^ against time (Figure 8.20) yields n from the 
slope and In ks from the intercept. 

In [1-Xa] „.---- slope = n 

^ 

In ks 

' — • 
In time 

Figure 8.20. Log-log plot of Xa against time showing technique for estimating values of 
Avrami parameters n and ks. 

ii. Half-life Method 

At the crystalline half-life (tm), XA = 1/2, so equation 8.39 becomes 
on substitution 

-ln(l/2) = ln2 = 0.69 = Vv 1/2 

or, rearranging 

k = 
0.69 

H/2 

(8.53) 

(8.54) 

The value of n may be determined from the slope (S) of the 
crystallization isotherm in the vicinity of t y2 

dX. dX„ dt dX„ 
S = -

dint dt din 
- = t ^ = t(-nkt"-1)exp\-ktn] (8.55) 
t dt * / L J 

Att = t, 
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ex. i 

a—-n(ln2) 0.35n 
dint v >2 

(8.56) 

Thus, the slope depends only upon n and is independent of ks. Also, the 
isotherms should be horizontally super-imposable. If they are not, this 
means that n is changing with time. 

G , 

if growth is 
diffusion 
controlled 

Crystallization Rate 

Temperature 

Figure 8.21. Diagram showing the maximum in crystallization rate due to the competing 
nucleation and growth controlled processes. 

8.6.4. Temperature Dependence of the Rate of Homogeneous Crystallization 

As shown below (Section 7.4d), the rate of homogeneous nuclei 
formation increases as the under cooling (Tm~T) increases. The converse 
behavior is associated with the rate of crystal growth. At high 
temperatures just below the melt temperature, nucleation is slow, but 
chain segmental diffusion is rapid so that crystallization will occur 
starting from a few centers giving rise to large structures. At low 
temperature, the nucleation rate is high but the growth rate controlled by 
segmental diffusion is slow. Thus, crystallization initiates at many 
centers giving rise to small structures (such structures will have a 
depressed melting point giving rise to the previously mentioned 
observation that crystals formed at a low temperature, and high 
undercooling, melt at a lower temperature). Often, spherulitic growth is 

386 



THE CRYSTALLINE STATE 

nucleation controlled so that a maximum in the growth rate-temperature 
plot (Figure 8.21) is observed as a consequence as discussed in Section 
8.6.1. 

Nucleation is a general phenomenon for phase changes such as 
condensation of a vapor (to form fog and rain), boiling of liquids and 
amorphous polymers-amorphous polymer phase separations (with a 
competing mechanism of spinodal decomposition). Nucleation requires 
an activation energy to surmount the free energy needed to form a stable 
nucleus (Figure 8.17). Spinodal requires no activation energy, but needs 
a very stable temperature control in order to remain within its stability 
region (Figure 3.7). In many cases, the temperature cannot be maintained 
and the spinodal structure switches to a nucleation and growth regime. 
The activation energy requirement does not hold for the case of 
heterogeneous nucleation because the heterogeneity (dirt, residual 
catalyst, etc.) serves as a pre-formed nucleus. 
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Glossary of Symbols Arranged by Chapters 

Chapter 1 

W„ = the weight of material with degree of polymerization n 
n = the degree of polymerization 

Nn = the number of molecules with degree of polymerization n 
whose weight is Mn 

(M„) = the number average molecular weight 
(Mw) = the weight average molecular weight 
{Mz) = the Z average molecular weight 

P = the polydispersity index 

p = the probability of propagation of a monomer unit 
n = the number of monomers 

Pn = the probability of forming a chain containing n number of 
monomers 

C = a proportionality constant 
MQ = the molecular weight of a monomer unit. 
Mn - the molecular weight of the chain of degree of polymerization, n. 

Chapter 2 

cp = the rotational angle or the angle between non bonded atoms 
H = the dipole moment for the C-Cl bond in units of debyes 
x = the direction along the chain axis 
y = the direction perpendicular to the chain axis 

P(4>) = the probability of a given value of (p 
U(<p) = a calculated potential energy function 
jj3n = Fourier coefficient terms 

UQ = the single parameter, defining the height of the rotational barrier 
U(<p) is described relative to an arbitrary reference value of zero at 6 = 0. 

ri: = the interaction potential between the fi1 and the y'* atoms 
separated by the distance r 

(R) = the straight line vector distance between the ends of the molecule 
<j>i+2 =the 0 coordinate of a,+2 in the coordinate system defined by sj and 

S;'+l. 
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Y] = an average coos 0 value 
/ = bond length 

0/+2 = the § coordinate of a;+2 in the coordinate system defined by s, and 
Si'+l. 

01 and 02 = two different bond angles 

Z = the number of stiff segments in a Kuhn-Grun model chain 
a; = a unit vector along a Kuhn segment, 

a = the dihedral angle 
L = the statistical segment length 
Q, = the partition function, 

C/j, = the potential energy of the trans state, 
En = the statistical weight assigned to the gauche conformer 

o = eo/^T:= the statistical weight of the gauche conformer 
Qj = reference bond angle 
|A| = Transformation matrix 
(R2) = the root mean square chain distance 

co = the statistical weight for the steric overlap of g+g- pairs 
ip = the statistical weight for g-g- or g+g+ pairs 
x = the statistical weight for a gauche conformation. 

P(RX) = the probability of obtaining a given value end to end chain 
distance 

Â i = the number of segments lying in the +X direction 
Â2 = the number of segments lying in the -A'direction 

C = a normalization constant 
a = arbitrary constant used in Lagrange's method of undetermined multipliers 
(3 = arbitrary constant used in Lagrange's method of undetermined multipliers 

L{x) = the Langevin function of x 
L(x)A = the inverse Langevin function of x 
N = the number of ways of distributing n distinguishable molecules over R states 

n = the number of distinguishable molecules 
R = the number of states 
P = the probability of a given distribution 
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C = a constant of proportionality subject to the conditions of a constant 
number of molecules and of constant energy 

k = Boltzmann's constant = R/Na = 1.38xl0~23 J/K 
T= temperature (in units of degrees Kelvin) 
E = enthalpy 
S = entropy 
A = free energy 
R = the gas constant = 0.0821 atmos-m3/kmol°K 
NA = Avogadro's constant = 6.02xl023 per gram mole the number of 

molecules in one mole of a substance. 
Cv = the specific heat at constant volume 

w = probability in equation 2A.43 
P = a vector in a two coordinate axis system 
S = the polymer chain matrix 
|I| = the identity matrix 
D = the determinant of \M\ 
| M| = the adjoint of matrix \M\ 
| M\ = matrix for restricted rotation with a symmetrical barrier 
\M[l = the reciprocal of \M\ 

r] = cos <p 
Unr] = the statistical weight of a conformation with E'zn' .and z refers to 

the rotational state of bond z'-l and n to that of bond i. 
QQ = the statistical weight of the entire chain. 

Z = the conformational partition function 
|U (-1 = statistical weight matrices 

A, = the value of the largest eigenvalue 

J = the row specifying the first bond = ll 0 0| 

til 

J = the column specifying the n bond 

R = the total end to end vector distance 
RT - the transpose of R 

lj = a column vector 
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1- = the transpose or row form of 1 
C\ = the number of ways of obtaining x more heads than tails 
S = the number of occurrences of an event 

Chapter 3 

H- the heat content or enthalpy 
E = the internal energy of the system 
G = the Gibbs free energy (constant pressure and volume) 

-dWe = all types of work, other than pressure-volume work, done by the 
system, 

P = the pressure 
V= the volume 

S = the entropy 
T= the temperature 

A = Helmholtz free energy (constant volume and temperature) 
dWe = the elastic work 
/ = the force required to stretch an elastic material 
fe = force related to the internal energy 
fs = a force associated with entropy 
K = proportionality constant in force-temperature measurements 
L{x)'x = the inverse Langevin function 
6 = the angle between a chain segment and the displacement vector (R) 
R = the displacement vector 
V(d) = the potential energy of a chain segment oriented at an angle 6 
W(d) = the probability of a segment having an orientation angle 6 
W = the statistical weights of the conformational matrices, trans and 

gauche 
AHm = the enthalpy of mixing 
ASm = the entropy of mixing 
AGm = the Gibbs free energy of mixing 
P = the probability or number of ways of placing Nx solvent and N2 

solute molecules into a total of ./V spaces 
./Vj = the number of solvent molecules 
N2 = the number of solute molecules 
N = the total number of spaces 
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X\ = mole fraction solvent 
JVJ = number of solvent molecules = number of solvent cells 
xN2 = number of solute segments = number of solute cells 
x = the ratio of the polymer volume to the solvent volume 
N = the total number of lattice cells 
P = the total probability for all polymer molecules 
Px = the number of ways of putting the first molecule in the lattice 
P2 = the number of ways of putting in the second molecule in the lattice 

N 
(j\ = = the volume fraction of solvent 

JV, + xN2 

xN 
(j)2 = -— = the volume fraction of polymer 

N{ + xN2 

AVm = the volume of mixing 
%i = the polymer/solvent interaction parameter 
(ASm)i = the partial molal entropy of mixing 
(AHm)\ = the partial molal enthalpy of mixing 
(AGw)i = the partial molal Gibbs Free Energy of mixing 

rf = 
i \ ° 1 dGx 

lii-

dnx 

IdG^ 

dnu 

= the chemical potential of the solvent in pure solvent 

the chemical potential of the solvent in solution 

n = the osmotic pressure 
A2 = the second virial coefficient 
Vx = the molal volume 
p2 = the solution density 
%p(l-9/T) = enthalpy term used in solubility determinations 
m\ = V\/V2 = degree of polymerization 
V\ = molal volume of polymer 1 
V2 = molal volume of polymer 2 
VQ = molal volume of an idealized polymer molecule 
I(q, t) = the scattering intensity at time t and scattering angle q 
R(q) = the growth rate at angle q 
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q=(sin d)/2=the reduced scattering angle 
Sm = the scattering intensity corrected for electronic density 
e, = quench depth, 
Dc = the diffusion constant for coarsening 
dQ = the amount of heat transferred in or out of a system. 
dT= the temperature change accompanying the transfer process. 
V=the specific volume 
a = the coefficient of the (cubic) thermal expansion 
(5 = the (isothermal) compressibility 
£0 = the zero point vibrational energy 
£vib

 = the vibrational energy 
£0 = the crystal energy plus the electronic energy (Joules/mole) of the 

crystal in its ground state 
Q = the partition function 
n.~ the number of normal modes of vibration with frequency Vj 
h = Planck's constant 
dv/dw = the density of normal modes 
AGm = Gcryst - Gamorph = the difference in the Gibbs free energy 
A*M = the chemical potential (the free energy per mole) of the crystalline 

phase 
Hu = the chemical potential (the free energy per mole) of the liquid phase 
jt^ = the chemical potential of the standard state assumed to be that of 
the pure liquid at the same temperature and pressure. 
n = the number of moles of the chain repeat unit 
Vu = the molar volume of the repeat unit 
(pi = the volume fraction of the diluent 
Xi = the polymer/solvent interaction parameter = equation 3.B-21 
T°= the undiluted melting point 
n = the number of moles 
X2 = the mole fraction of solute 
Xg = the mole fraction of chain ends. 
Vm = the molar volume 
a = the elongation ratio 
n ~ the number of statistical segments per cc 
Nc = the number of chains per unit volume (V) 
N= the number of statistical segments per chain 
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Xc - the degree of crystallinity 
G = the Gibbs Function (constant pressure and temperature) 
H = the enthalpy or heat content at constant pressure and temperature 
T = the temperature expressed in units of degrees Kelvin 
S — the entropy 
E = the internal energy at constant temperature and volume 
Q = the heat absorbed by the system 
W= work done by the system 

= ra,A = the chemical potential of component 1 in phase A 

«iA = the number of moles of component 1 in phase A 
iVj i — the number of solvent-solvent contacts per cm3 

Ni J = the number of solvent-solvent contacts per cm3 

N12 = the number of solvent-solute contacts per cm3 

N22
 = the number of solute-solute contacts per cm3 

En = m e potential energy of a solvent-solvent contact 
£j2 = the potential energy of a solvent-solute contact 
£22 = m e potential energy of a solute-solute contact 
JVj = the number of solvent molecules per cm^ 
z = the coordination number of the lattice 
P\ i is the probability that a lattice site about the central site is occu 

by a solvent molecule 
0i = the volume fraction of solvent 
x = the number of lattice sites occupied by a solute molecule 
P\2~ the probability that a solvent molecule occupies a lattice site 
«, = the number of moles of i 
Na = Avogadro's number = 6.02xl023 

Ajitj = the increase in /ij, because of the applied pressure. 

volume mole fraction 
x 

weight mole polymer 

A2 = the second virial coefficient 
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Chapter 4 

c = the velocity of electromagnetic wave propagation 
A = the wave length 
v = the frequency or the number of waves per unit time 
Vm = the wave velocity in a material, 
r) = the refractive index 
Ao = the wave length in vacuum 
A = the wave length in the medium 
6\ = the incident angle 
0r> = the refraction angle 
P = the polarizability per unit volume 
(am)i=tne molecular polarizability of the z'th molecule 
(rj) = the averaged value of t]\ and 172 
A?7 = the birefringence or the difference between r)\ and T72 
£0 = the amplitude of the incident field 
a>, = the angular frequency (2TTV) 

a = the polarizability of the atom in an isotropic force field 
m = the dipole moment 
r = the distance of the observer from the scatterer. 
y = the angle between the plane of the polarization seen by the observer 

and the dipole moment. 
<f> = the phase angle which takes into account that the wave must travel a 

distance, d, to reach the observer 
d = the distance a wave must travel from its source to reach an observer 
q = the electronic charge 
m0 = the electronic mass = 0.511 Mev 
Z =the atomic number of an element 
K,- = a constant proportional to the scattering power of the / h scatterer 
./V = the number of identical randomly oriented molecules 
R = the Rayleigh Ratio 
Vs = the scattering volume 
P(6) = interference factor 

(R - RQ) = the Reduced Rayleigh ratio neglecting intramolecular effects 
s = s0 - s = the propagation or scattering vector 
s0 = the unit vector in the incident ray direction 
st = the unit vector in the scattered ray direction 
Tj = the vector to the /Ascattering element 
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F = the structure or form factor for the object which is a characteristic of 
its geometry 

p(r)dr = the amplitude scattered by a three dimensional element with a 
volume d3r 

u = the angle between r and s. 
Fsp = the sphere volume 

<£([/) = the sphere scattering function =—[sinU-Ucost / ] eqn 4.57 

U = a parameter that is a measure of the scattering angle and depends 
upon the ratio of R to A. 

n, the multiplicity factor, is an integer commonly termed the order of the 
diffracted ray 

N = the number of spheres in a linear array 
a, P and y = the direction cosines of the vector s 
s = the vector 
H = the reciprocal lattice vector 
h\, hi, and hi - the Miller indices 
k = Planck's constant = 6.626xl0~34 J/Hz 
E\ and Ei = the energies of the lower and the higher states in the system 
v = the photon frequency. 
£, = the extinction coefficient of a material with thickness, /, 
/, = the thickness of a material 
It = the transmitted beam intensity 
To = the incident beam intensity 
a^ = absorbance 
d(hkl) = the spacing of the reciprocal lattice 
dj = the angle between the transition moment axis and the polarization 

direction of radiation 
va = the vibrational frequency 
vc = the emitted frequency. 
P = the unit vector polarized in the direction of the absorbed radiation 
A = the unit vector of the emitted radiation 
/ = the intensity of the emitted light 
Ma = the unit vector along the absorption transition direction 
Me = the unit vector along the emission transition moment direction 
K = a proportionality constant. 
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8m = the angle between the common transition moment direction and the 
polarization direction. 

SOC = the stress-optical coefficient 
b\ = the polarizability of bond 1 
&2 = the polarizability of bond 2 
(b\ - b2)s ~ the statistical segment anisotropy 
(b\ - b2)m. ~ the anisotropy of the monomer unit 
ZQ = the number of monomer units in the statistical segment 
(b\)j and (brfj - the principal polarizabilities of they'th bond that lie at an 
angle 8y with respect to the ft1 axis 
rT = the transpose (i.e., the row form) of the end-to-end vector r 
ai) = the traceless tensor representing the anisotropy of the polarizability 

associated with the group i of the chain 
ai = the polarizability tensor 
a, = the average scalar polarizability 
|E| = the identity matrix 
Z = the conformational partition function 
|Q,-J = the generator matrix 
Tpm = the effective anisotropy of the methylene group 
a = the linear term for the first order contribution to the polarizability 
/3 = the nonlinear term or hyperpolarizability optical coefficient for a 

second order contribution to the polarizability 
y = the nonlinear term for a third order contribution to the polarizability 

Chapter 5 

91 = <12 - 1 electrostatic unit (ESU) of charge in vacuum 
£ = the dielectric constant of a material 
r = the distance of the repulsive force (F) between like charges 
F = the repulsive force between like charges 
E = the force on 1 ESU of charge 
D = electromagnetic displacement is the value of E in a vacuum 
V= the voltage in electrostatic units 
C = the capacitance of a body 
r) = the refractive index 
A = the cross sectional surface area 
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o = the polarization charge density 
L = the separation of the centers of charge 
N= the number of atoms per cm^ 
P - polarization per cm^ 
a = the atomic polarizability 
P = the atomic polarizability higher order term 
N= the number density of atoms 
M - the molecular weight 
p = the density 
NA = Avogadro's number = 6.02x1023 /mole 
Dft) = the time dependent electric displacement 
Eft) = corresponding electric field 
t = dielectric relaxation time. 
co = the angular frequency 
<5 = the dielectric loss angle analogous to the mechanical loss angle 
e* = the complex dielectric constant 
e0 = the static or low frequency value of the dielectric constant, 
£00 = the limiting value at high or optical frequencies 
T = the relaxation time or the time required for the stress to relax to 1/e 

of its initial value 
e' = the in phase or energy storage component 
e" = the out of phase or energy dissipating component of the energy 

absorbed by the dielectric at different frequencies, 
tan 5 = the dielectric loss tangent 
v = the frequency 
(j)(r)dln r = the fraction of the change in dielectric constant originating 

from mechanisms having relaxation times between In x and In x + 
d(ln T). 

/J = a parameter with limits 0 < /3< 1 
0= the conductivity 
n = the number of charge carriers 
M = the mobility of a charge carrier 
e = the charge of the carrier 
/ = the current flow 
E = the voltage 
p = the resistivity 
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d = the piezoelectric strain constant 
G = the piezoelectric stress constant 
x = the stress level of a dielectric constant 
AT= the temperature difference 
px = the piezoelectric coefficient. 

Chapter 6 
fl = Planck's constant 
c = the velocity of light 
A = the wave length. 
El = a lower electronic or molecular energy level 
El - a higher electronic or molecular energy level 
v = frequency of a photon 
£ = the extinction coefficient for a material with thickness 
/ = material thickness 
IQ = the incident beam intensity 
It = the transmitted beam intensity 
cij = the absorbance along the associated transition moment 
&i = the angle between the transition moment axis and the direction of 

polarization of the radiation of the z'th absorption band 
f = a force constant or constant of proportionality 
F = the applied force 
x = the associated bond deformation. 
E = the total energy of a system 
V potential energy 
K = the kinetic energy 
mi = the atomic mass 
Vj = the vibration for the j - t n atom 
Bf = the fo normal coordinate 
N = the number of atoms for a chain in the equations of motion 
|x| = the column vector of the Cartesian coordinates 

fij = an element in a square 3 x 3 matrix 
|x| = the transpose or row vector of |x| 
|x| = the column vector of the velocities, X , expressed in Cartesian coordinates 
M| = the 3 x 3 diagonal matrix (Appendix VI-B) of the atomic masses 
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Ixl = the transpose or row vector of |x | 
k = termed the wave vector whose modulus is equal to 2TT/A, 
t = the time 
co(k) = frequency distribution 
va = the incident radiation is absorbed at one frequency 
ve (Anti Stokes line) scattered at a lower frequency to a higher frequency 

(Stokes line) 
£o = incident electric field with a frequency vo 
E= the electronic field induced in a diatomic molecule 
a - the polarizability 
s = the amplitude of the normal coordinate 
q = a particular vibration 
£ =the phase of the vibration 

Vmax = the frequency at which the band has a maximum 
£max = the intensity of the absorption 
Ho = the applied magnetic field 
g = the spectroscopic splitting factor 
r = the distance between protons 

P = the angle between a line joining the protons and Ho 
£2 = the mean-square deviation of the field from the center of the line Ho 
Mn = the mass of a neutron particle 
A = the wave length of a neutron beam 
v = the particle velocity 
A (= X2 - x\) = changing path distance 
r = is the reflection coefficient 
T = the transmission coefficient of the beam splitter 
A(y) = the frequency distribution 
1(D) and B(n) = orthogonal functions 
F(v) = the frequency distribution 
N= number of points in a Fourier Transform 
q = a set of normal coordinates 

A = the root, characteristic value or eigenvalue for an equation of motion 
a> = 2 77V (v is the frequency) = the circular frequency 
A and B represent the species group symmetric and non-symmetric 
respectively to an axis of symmetry at constant amplitude 
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The subscript g (German gerade-even) denotes a species symmetric with 
respect to a center of symmetry or an inversion operation; while the 
subscript u (German ungerade-odd) refers to a species non-symmetric to 
a center of symmetry. 

Chapter 7 

/ = the force on a single chain 
R = the distance between chain ends 
k = the gas constant 
T= temperature 
/ = the force on a single chain 
LQ, = Length in the unstretched state 
LyLJ^z = Lengths in the stretched state along the x, y and z axes 
N = the total number of chains with contractile force (fz) of the chains in 

the Nz direction 
fz = the applied force in the z direction 
P = a hydrostatic force 
a, = the extension ratio, 
v = the crosslinking points per cm3 

/ = the functionality of each crosslinking point 
R;y = a network displacement vector that connects two adjacent cross 

linking points 
j = the number of statistical segments for the network chain associated 

with the j * vector 
Ny, = the number of displacement vectors of type R« (in the unstretched 

state) 
Nj = the number of network chains per cm3 having y statistical segments 
Pjj = the probability that a chain of j segments will have a vector 

distance, R,-, between its ends 
L = the statistical segment length. 
q = the probability that a segment is not crosslinked 
CI = the number of conformations of a network 
Wjj = the number of conformations of a chain of j segments with 

distance Rt between its ends 
V- the total volume of the sample 
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A Êiast = the stored energy function for a deformed rubber network 
p = the sample density, 
M0 = the molecular weight of the polymer repeat unit, 
q = the fraction of polymer repeat units that are joined by a random 

tetrafunctional crosslink. 
Wg = the gel fraction. 
Mc = the molecular weight between crosslinks 
02 = the volume fraction of solute 
AS" = the change in entropy in going from the unstretched state, 

unswollen state to the stretched, swollen state 
Ii, h, h = the three invariants that do not change with deformation. 
These constants are used for the case of the extension of an elastic body 
at constant volume 
rf = the viscosity of an emulsion 
r] = the solvent viscosity 
$ = the volume fraction of the dispersed phase 

Chapter 8 

d= the interplanar spacing 
n = the order of the x-ray reflection 
A = the wave length of the x-ray reflection 
db = the diffraction angle 
a, b and c = the unit cell dimensions 
h, k and / = the Miller indices that describe the location of the crystal 

plane with respect to the unit cell axis. 
n =the number of monomer units of molecular weight Mm 

Na = Avagadro's number 
Fn= the unit cell volume (abc for an orthorhombic unit cell) 
K = a proportionality constant 
F = the structure factor 
F* = the complex conjugate of F 
/ i = the atomic form factor or the sum over all atoms in the unit cell, 

and is a measure of its scattering intensity at a given angle, 
x y and z = the coordinates of the j t h atom expressed in terms of 
Vs = the sample specific volume 
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Vc = the crystalline specific volume 
Va = the amorphous specific volume 
XQ = the volume fraction of the crystalline phase 
Xa = the volume fraction of the amorphous phase 
Pcaic= the crystal unit cell density 
Tm = the maximum melting point 
Tc = the crystalline melting point 
(Tm )° = the thermodynamic melting point 
5 = the intensity of the crystalline component of the diffraction at S 
7cr = the total intensity 
Xc = the degree of crystallinity 
K = a proportionality constant with a value near unity. 
H = the average magnetic field about an absorbing nucleus 
v = the absorption frequency 
c = a constant 
u - the magnetic moment of the absorbing nucleus 
H0 = the applied magnetic field 
H* = the local field about a given nucleus due to neighbor interactions. 
A = the area under the broad band component 
Ar = the area under the narrow band component 
Tg = the glass temperature 
AH= the enthalpy of fusion of the sample 
A//u = the enthalpy of the completely crystalline polymer 
hHa = the enthalpy of the completely amorphous phase 
AHC = the enthalpy of the completely crystalline phase 
AH= the enthalpy of the polymer sample 
Cp = the heat capacity at constant pressure 
a = the tilt angle between the sectors in polymer single crystals 
d = the distance between chains in the crystals 
/ = the monomer repeat distance 
Pcaic = the experimental crystal density 
T = the transmission of an anisotropic crystals located between two 

polarizers. 

<5 = the optical retardation of the crystal 
6 = the angle between the sample optic axis and the polarizers 
v = the number of nuclei per unit volume 
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G - the growth rate of crystalline phase nuclei 
r = the radius of the sphere growing from the crystalline nuclei 
VJJ) = the volume of spherulites at time (t) 
Ws(t) = the weight of spherulites at time (t) 
ps = the spherulitic density 
Wc(f) = the weight of the crystals 
Xcs = the degree of crystallinity of the spherulites 
Xc = the degree of crystallinity of the polymer 
p = the polymer density 
(j)c = the volume fraction of spherulites 
n = an exponent in the Avrami equation dependent on nucleation and 

growth mechanisms 
M= the mass of a fractal structure 
R = a measure of the fractral structure size 
D = the fractal dimension used as an exponent in the fractal equation 
A = a pre exponential front factor 
Ed — the activation energy for viscous flow 
AG* = the free energy required to form a stable nucleus 
Ag = the free energy difference per unit volume between the melt and a n 

infinite crystal 

0s = the surface free energy per unit surface area 
r* = the critical nucleus size that must be attained before a stable n u c l e u s 

is formed 

AT = the "under cooling" between the melt temperature and the a c m a l 
lower temperature 
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