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PREFACE

The goal of this text is two-fold. It is written, first, in the hope that those
individuals now {(or soon to be) involved in the polymer processing industries
will find it a useful vehicle for learning the fundamental principles by which
one can analyze a wide variety of polymer flow processes. The second goal stems
from my observation, as a teacher, that little opportunity exists, in most academic
environments, for the student to take a coherent and meaningful course in applied
Sluid dynamics with an emphasis on flow processes dominated by viscous effects.
I have tried to produce a text which will meet the first goal, and in doing so,
provide motivation and opportunity for development of 2 useful course in this
area.

The topics presented in the pages to follow provide a basis for one to two
semesters of course material. I have found the content suitable to senior chemical
engineering students looking for an elective course in this general area. Normally
I have taught this material to first- and second-year graduate students in the
Polymer Science and Engineering Department of the University of Massachusetts,
Amherst. Since most of these students have a B.S. in chemistry, this often rep-
resents their first exposure to the peculiar mind of the engineer. Because of the
lack of engineering background per se on the part of these students, I have
included introductory material in mechanics, Buid dynarmics, and heat and mass
transfer, otherwise often found as a part of a B.S. chemical or mechanical
engineering program. A brief survey of rheology is also included, although we
normally provide a full one-semester course in this area. The teacher, then,
has the option and the need to supplement this material if it does represent
a first exposure for the students, or gloss over the derivations and emphasize
the applications if the students have appropriate previous exposure to some
topics. A large number of problems are included to provide practice, and a
Bibliography is given which allows for extended study of specific areas of interest.
This text is a guide; it does not suggest a static syllabus for a course.

Xi




xii PREFACE

In many ways I have been more concerned with the opportunity to expose
students to the experience of modeling, rather than with the exposure to the
specific topic of polymer processing. My own experience as a teacher tells me
that most students are handicapped with the belief that the goal of their education
is preparation to answer questions like “Find the derivative of x* Such
questions, unlike those they will be paid to answer, have a correct answer.
In teaching this material, and in writing this text, I have tried to emphasize the
philosophy of modeling. My own personal approach is to attempt to convince
my students that I am teaching a course in mythology, with a goal of developing
the ability to create “useful” myths. Once the “grammar” and the other basic
tools of writing myths (mathematical models) are learned, we devote most of our
time to developing a sense of “plotiing.” With sufficient practice and exposure
the student will learn how to develop mathematical models which can be expected
to have some acceptable correspondence to reality.

This is not a comprehensive text in the field of polymer processing. Those
readers who now work in the polymer manufacturing industries will surely find
some of their favorite processes missing. This does not reflect the impertance of a
specific process—commercial importance was not the criterion for inclusion
in this text. Rather, I have tried to treat processes which are important, but
which also lend themselves to some degree of engineering analysis.

While this text grows out of some 13 years of experience in teaching, research
and consulting, its final format and content reflect the strong input of several
people who have given much of their thought to this project. My greatest debt
is to Professor Morton Denn of the University of Delaware. | am fortunate to
count him as a friend, and to be able to count on him for honest and constructive
criticism. Professor Denn read the entire first draft of the manuscript and wrote a
lengthy and detailed critique which provided the basis for improvement of the
final draft. The failures that remain are my responsibility, and stem from stub-
bornness.

Dr. Donald Bigg of Battelle (Columbus Lab.) read the first draft of the manu-
- scriptand made suggestions to improve its content. Many of my graduate students
have contributed to various sections of the text, but special mention must be made
-of Jehuda Greener and Mike Malone, who carried through the solutions of many
of the models presented here, and who corrected many of my errors. Tom Mumley
and Skip Rochefort provided some of the previously unpublished experimental
results that appear in Chapter 8.

The final revision of the manuscript was carried out whife [ was a Visiting
Scholar in the Chemical Engineering Department of Stanford University. I thank
Professor Andreas Acrivos for making my stay there possible.

My final debt is to my wife Jo-Ann, and my daughters Melissa and Sharon,
whose love sustained me through the insanity of authorship.

Stanley Middleman
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CHAPTER

ONE
POLYMER PROCESSING

Be sure to ask your teacher his reasons and sources.

Rashi

There is great diversity among those industries associated with polymeric mater-
lals. Some industries are principally concerned with the production of polymers
from the raw (monomeric) materials. Others are concerned with the physical
conversion of a polymeric material into a finished article. The diversity arises both
from the wide range of properties of the multitude of commercially avaiiable
polymers and from the great variety of physical processes that can transform a
polymer to an article of commerce,

In the development of a process one needs a means of anticipating the beha-
vior of the system, so that the relationships among the design and operating
variables can be estimated. Only in this way can one hope to put together a
process which can be made to operate successfully with a minimum of redesign.
Mathematical modeling plays a central role in process development and design.
This text is concerned with the methods of modeling a variety of important
polymer processes.

Let us consider, in somewhat simplified form, the flowsheet of a hypothetical
process for making a plastic film, as in Fig. 1-1. For this process we can list a
number of steps, and for each step there are several questions which must be
answered before elements of the system can be designed and integrated into 2
complete process. Let us look at some of these.
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Figure 1-1 Flowsheet ol a hypothetical process for making film.

@ Dissolution: Solid polymer, in the form of chips, for example, is dissolved by
contact with a solvent. What solvent is selected ? Is the rate of solution dictated
by the thermodynamic and other physical properties of the polymer-solvent
pair, or can the rate be affected by such factors as chip size, intensity of stirring,
and geometrical design of the stirrer and the tank?

& Pumping: Solution must be conveyed from one place to another. What is the
relationship between the power requirements of the pump, the size of the
piping, the flow rate, and the properties of the solution? Which properties of
the solution are most relevant?

@ Mixing of two liquids: How does one mix two liquids? How is the choice of
mixing process dictated by the physical properties of the liquids? How does one
define and measure mixedness? What properties of the liquids are most impor-
tant in mixing-design considerations?

o Extrusion: An extruder is a pump which alse can be used as a melter and a
mixer. What are the basic principles of extruder design? When does one select
an extruder over another type of pump?



POLYMER PROCESSING 3

® Flow through a die: A die is designed to produce a very specific set of condi-
" tions to be met by the emerging fluid, such as the film thickness, temperature,
stress level, linear speed, surface gloss, etc. How is die design coupled with
extruder design? In what detail must fluid properties be known in order to
~ design a die?
© Calendering: This is a process of “ squeezing ™ the film between two rolls for the
purpose of making the film thinner and/or imparting surface characteristics to
the film. How does the final film thickness depend on the calender design?
What forees act on the film as it is calendered ? Do these forces affect the fiow of
the film between the rolls?

© Drawing: This is a process of stretching the film by conveying the film between
a set of rolls which have a greater linear speed than another set upstream. How
do orientation and crystallinity change during the drawing process? Is
significant heat generated during the stretching, and if so, how does one
account for this in design?

@ Coating: Another liquid may be coated on one side, or both, of the film. What
factors determine the coating thickness? What choices are available for coating
geometry?

® Drying: The coating may be a solution from which the solvent must be
removed by application of heat. What factors affect the rate of heat transfer to a
film moving through air? How long must the drying section be to produce film
with a specified amount of residual solvent? What design factors, and physical
properties, affect rate of evaporation?

Let us emphasize again that this is a hypothetical process, and the questions
raised here are typical, but not comprehensive or inclusive of all the points that
need to be raised in designing an integrated polymer process. It should be clear,
however, that a variery of questions are raised. Many refer to fuid dynamics; some
to heat and mass transfer. A knowledge of physical property data for polymers is
essential,

Many of these questions refer to the so-called transport phenomena, the
processes of momentum, heat, and mass transfer. Fluid dynamics is associated
with momentum transport. It is with this topic of fluid dynamics that most of this
book is concerned. No attempt will be made to answer all the questions raised
above. However, an appreciation of the breadth and complexity of questions
which must be answered in considering an inregrated process provides a useful
perspective for the study of specific elements of the process.




CHAPTER

TWO
MODELING PHILOSOPHY

I am prepared for the worst, but hope for the best.

Disraeli

To analyze quantitatively the behavior of a fiuid as it interacts with a processing
system, it is necessary to formulate and solve the equations which describe the
process. This is called mathematical modeling. The modeling process, in its most
general form, begins when one writes the general conservation (of mass, momen-
turn, and energy) equations that a system must obey, along with the constitutive
equations which describe the properties of the material being processed. The
conservation equations must be solved subject to certain constraints, the boundary
* conditions, which typically describe and proscribe such factors as the geometry of
the system and forces or deformations imposed at or by the boundaries.

Generally, such mathematical formulations are too complex to admit simple
analytical solutions, and often these problems require numerical (computer) solu-
tions of such length and complexity that the effort is not justified. The term
modeling will be used more specifically to refer to the modification of the math-
"ematical formulation to yield 2 mathematical “ model " that is tractable. In short,
a simpler set of equations is used to describe the problem of interest.

How does one simplify a problem? By removing the offending complexity.
Consider the coupled set of equations

1 4 du
; 5(”“ a:) =P , (2-1)

Ldfodry __p (4
rdrrdr_ Z#dr
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where u=eT (2-3)
Boundary conditions are u=T =090 on r = 1, and du/dr = dT/dr = 0 on r = Q.
These equations arise in the analysis of viscous heating effects on capillary fiow
and will be discussed {rom a physical point of view in subsequent chapters. For the
" time being. let us look at the problem strictly from a mathematical point of view.
We may make the following statements about the problem:

@ The single independent variable is r, so we are dealing with ordinary differential
equations. )

@ The dependent variables (the * unknowns ") are u(r) and T{r).

@ Two parameters appear: P, and P,

© The equations are nonlinear: Eg. (2-1) has a product of u(T) and a derivative of
u, whereas Eq. (2-2) is quadratic in a derjvative of .

© The equations are coupled: if we use Eq. (2-3) to replace y as a function of T in
both Egs. (2-1) and (2-2), we find both dependent variables u and T appearing in
both differential equations.

Despite the coupled nonlinearities it is possible to obtain a formal analytical
solution to this problem, as shown by Sukanek. However, the analytical solution
requires use of a digital computer for the evaluation of the salution, and so is quite
awkward to use if one wishes a rapid estimation of the effect of the parameters P,
and P, on the solutions for v and T. Thus one might seek an approximate method
for solution of these equations. Depending upon the method used, one will define
a different model through each approximate solution.

Consider, for example, the approximation based on setting P, = 0. It is easily
verified that the solutions are

T=0  uw=Tii-r) (-4)
where we use a subscript 0 to denote a “zeroth-order” solution, It is obvious,
immediately, that the effect of P, on T and u does not appear. There should be no
surprise at this, since P, was set equal to zero and hence did not appear in the
approximated form of Eq. (2-2). Only slightly less obvious is the fact that the effect
of P, on T does not appear in this zeroth-order solution. In this case this occurs
because the equations become uncoupled when P, =0, allowing T, to be ob-
tained directly from Eq. (2-2) alone, where P, does not appear.

Our goal here is not to discuss in any detail the solution of this particular
problem. Rather, the point is to note that in the course of manipulating equations
to-simplify their solutions, we can g0 too far, with the result that we Temove some
of the features of interest from the problem. In the approximation cited (setting
P, =0) we have used a mathematical procedure known as * throwing out the
baby with the bathwater.” In order to remove the difficulty from the problem, we
removed part of the reason for solving the problem at all.
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The manner in which we develop approximate solutions often depends upon
our goal. For example, if our primary interest is in an estimate of the dependence
of T(r) on P, and P,, we might take the zeroth-order solution for u(r), substitute
that into the right-hand side of Eq. (2-2), and solve for T(r). We have, then,

1d{ dT ol Pir\?
v 5(”?) =~ Fae ( 7) - (2-5)
This again uncouples the differential equations, but we are still left with a nonlin-

ear equation for T(r). We could, however, linearize the right-hand side by using Ty
in the exponential term, with the result that (recalling that T, = 0)

1d{ 4T PP}, ,
il Padal IS Sl | 2.6
rdr(rdr) 4 ’ (2-6)
whose solution is
_P2P§ a4
T, = i {1--r*) (2-7)

Now we have a solution which meets two objectives:

@ It was very simply obtained.
@ It shows the effect of P, and P, on T,

But is the solution an accurate representation of the original set of equations?
This question must always be considered, but we must be careful not to focus on
the question to the exclusion of an even more primitive question: Is the original
set of equations an accurate representation of reality?

The former question will be taken up later when viscous heating problems are
considered in Chap. 13. The latter, and more important, question is more difficult
to answer because reliable experimental data are not available to a sufficient
- degree. This is not an uncommon problem. One is often in the position of develop-
ing models while lacking sufficient observational experience from which to draw
some guidance. Still, one must often do something, and the art of modeling cannot
be developed without the experience of trial and evaluation.

It is important, perhaps, to isolate here a basic statement about modeling:
The ultimate test of a model is its correspondence with reality.

On many occasions we will commit mathematical indecencies in order to
achieve some kind of tractable result. On some occasions the result will be'so
gross {in its correspondence with reality) that we will have to excuse curselves and
start over. But with some luck, some good sense, and some knowledge, we will
sometimes achieve a useful result, with the final judgment being made with regard
to the correspondence of the model with experience.

In summary, then, the goal of mathemafical modeling is to produce an entity
(in this case a set of equations and its solutions} which stands in place of the
physical reality of interest, which lends itself to computation and analysis in some
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convenient form, and which bears some resemblance to the world of observational
-experience. In this light one might return to the quotation in the front of the
book taken from a discussion by Professor Tolkien, one of the great creators
of literary fantasy, which addresses itself to the problems of creating imagin-
ary worlds as a background for his stories. If we replace the word writer by

* engineer, and substitute mathematical meodel for secondary world, then the creator
of the hobbits of Middle-earth speaks to us who would create something equally
fantastic: useful mathematical models of polymer processes.

BIBLIOGRAPHY

The viscous heating problem that leads to Egs. (2-1) to (2-3) is discussed in
detail in Chap. 13. An anaiytical solution is presented in
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Film Process, Polym. Eng. Sci., 15:708 (1975).

This should be required reading.




CHAPTER

THREE
CONTINUUM MECHANICS

There is no other source of knowledge bur the inrellectual manipulation- of
carefully verified observations.

Freud

Fluid dynamics is assoctated with the transfer of momentum from one region of a
fiuid to another. Momentum transfer involves events which are somehow em-
bedded within the formalism of Newton's second law of motion, We have to
develop that formalism now.

3-1 NEWTON’S SECOND LAW—POINT-MASS MECHANICS

d

—mv=F 3-1
o (3-1)
Newton's second law is embodied in the vector equation above. Such an equation
has a dual character: There is first a certain mathematical content, or structure,
which must be understood. Equation (3-1} is a vecror equation, relating the vector
F to the vector d(mv)/dr. Hence it is not one but three equations, of the form

7 e = F, (3-1a)
d
2 = F, (3-1b)
d
= vz = F. (3-1c)
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The subscripts x, y, z indicate that we are actually applying Eq. {3-1) to the
“components of the vectors v and F. [We have arbitrarily assumed that a cartesian
{x, », z) coordinate system would be used.
The other significant element of the mathematical character of Eq. (3-1) is
_that it is an ordinary differential equation (assuming that v and F are functions
only of time).

In addition to its mathematical character, Eq. (3-1) embodies a physical prin-
ciple, the observation that forces acting on a rigid body of mass m will cause
momentum changes at a rate d(mv)/de. For a point mass, i.e., for a body such that
its dynamics are completely specified by the motion of the center of mass, the force
F may be considered the sum or resultant of all forces acting on the body,and vis
the velocity of the center of mass.

Note, incidentally, that we avoid writing the simpler, easier-to-memorize
expression of Newton's second law, namely,

F=ma {(3-2)

Equation (3-2) is a valid simplification of Eq. (3-1) only if the mass of the body is
constant. While this is often the case, the format of Eq. (3-2) still obscures the
basic physical principle that Newton’s second law relates forces to the time rate of
change of momentum.

As an application of some of these ideas, consider a process for making nylon
microspheres. An aqueous solution containing a dizmine (e.g., hexamethylenedia-
mine) is formed into droplets which are then contacted with diacid halide (e.g.,
sebacoyl chloride) in an organic phase. At the boundary between the two im-
miscible fluids an interfacial polycondensation occurs to produce a nylon mem-
brane surrounding the aqueous drop. By controlling the time of contact (reaction
time), it is possible to control the membrane thickness.

Let us develop a model of one aspect of the process based on the following
design data:

© Agqueous drops of diameter 1000 gm = 0.1 cm are formed

@ These drops contact the less dense organic phase by falling under gravity
through a column of the organic phase contained in a cylinder of length 100 cm

@ The aqueous drops enter the top surface of the organic column with a velocity
of 100 cm/s

We want to find the residence rime, which is simply the time required for 2 drop to
fall the 100-cm length of the column.

Any model must be developed so as to be consistent with the known physics
of the problem. Hence the first step of modeling is an elucidation of just what the
physics of the process is expected to be. In this case, drops fall because the aqueous
phase is denser than the surrounding organic phase. Thus we will need some
quantitative information relevant to the motion of a drop through a fluid. Our
intuition suggests that the continuous phase, because it is viscous, will retard the
motion of a drop. Examination of the available information on the motion of 2
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particle through a fluid suggests that, under certain conditions, the fluid exerts a
retarding force given by

F = —6ruav (3-3)

where u = viscosity of the contiruous fluid
a = drop radius
v = relative velocity between drop and surrounding fluid

The minus sign arises since the force acts opposite the direction of motion.

One of the conditions for applicability of Eq. (3-3), which is known as Stokes’
law, is that the drop be a rigid sphere. As part of the modeling process we assume
that the formation of the nylon membrane creates a rigid surface on the drop.
Whether this is so, or not, will determine in part the success of this model.

Two other forces acting on the drop are gravity, p,4re’g, and buoyancy,
— p.%ra’g, where the densities of the dispersed and continuous phases are g, and
5., respectively, and g is the acceleration of gravity.

We are tempted to treat the problem of motion in a fluid as a problem in
point-mass mechanics. The resisting frictional force, for exarnple, has been treated
in such a way [through Eq. (3-3)] that, although it acts on the spherical interface
between the two phases, it is expressed in terms of the velocity of the center of
mass. Stokes’ law, in other words, gives the resultant force of the surrounding fluid
on the center of mass of the drop.

The presence of the surrounding fluid introduces another force that must be
considered, and which arises from the fact that this problem is not strictly a
point-mass mechanics problem. The motion of the particle induces motion in the
surrounding fluid. If one attempts to accelerate the particie, it is necessary to
overcome not only the inertia of the particle but also the inertia of part of the
surrounding fluid. It can be shown that the effect of the inertia of the surrounding
fluid can be exactly accounted for if the mass of the particle, in the momentum
term on the left-hand side of Newton's second law, is increased by an amount
- equal to half the mass of the fluid displaced by the volume of the particle. This
increment of mass is referred to as a virtual mass. By this device we again maintain
the point-mass character of this particular problem.

Introduction of these ideas into Newton's second law gives

d
I [$na®(p, + S0 V] = (py — pfima’y — 6muav (3-4)

dv 9w Ap
or E_E_ip’azv_ pfg (3-5)

where we have defined a hypothetical density as p’ = p, + 1p,, where we have
written the density difference as Ap = p; — p., and where we have written the
vertical component of each term of the vector equation. This is a first-order linear
ordinary differential equation, and an initial condition is required, namely,

U =10y att=20
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where v, is the initial velocity with which the drop enters the column. The solution
“of Eq. (3-5), satisfying this initial condition, is

: 2 Ap ga? 2
e R
U

(3-6)

T2pa 7S

v{t) dt (3-7)

Before carrying out this calculation, it is useful to examine the result for »
[Eq. (3-6)] so as to understand the physical significance of each term.

The first thing to note is that the velocity is made up of two terms. The
time-dependent term is related to the slowing down of the drop due to the retard-
ing force F. We usually refer to such a term as the transient part of the solution,
because the term, being exponentially decreasing, becomes successively smaller as
time goes on. When the transient term is insignificant, the velocity is a constant,

2 Ap ga®
b w200 a

t— g 1 (3'8)

v, is called the rerminal velocity.

A question of practical importance is “ How long a time is required for the
drop to reach its terminal velocity?” To answer this, it is helpful to rewrite
Eq. (3-6) it the form

E=1-I-t—19————35eﬁq:!(—w’f}ﬂ)r (3-9)
b b L

It is clear that an infinite time is required to make the second term vanish exactly.
It is more useful to find the time required to bring v to a value nearly equal to v,.
Let us arbitrarily choose v/v, = 1.05. Then, if we can specify values for the par-
ameters that appear in Eq. (3-9), we can answer the question. Let us take, in
addition to values already given, the following:

g=980cm/s?  p,=1g/em? p.=09
Ap=0lg/em®  u=001P p =145
It foliows that v, = 544 cm/s, and the time to retard the drop to within 5 percent
of its terminal velocity is only 0.47 s.
Returning to the earlier question, we can perform the integration indicated in

Eq. (3-7) and find, for L = 100 cm, that the residence time is {; = 10.8 s, by solv-
ing the mtegrated form of Eq. (3-7) for ¢, :

L (vo—v:)p’[ ( Ap gfL”
== U exp [— 22T 3-10
o Apg P P, (3-10)
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We note immediately that the residence time is quite long in comparison to
the transient time calculated just above, from which we conclude that most of the
process occurs under conditions of steady velocity v,. This fact suggests that we
simplify the relationship between the residence time and other controllable par-
ameters to the form

=L Ok (3-11)

v, 2Apga*

which is quite a bit simpler to deal with than the transcendental algebraic equa-
tion [Eg. (3-10)] that results from the more exact application of Eq. (3-7). I we do
0, however, we find that Eq. (3-11) gives a residence time of 18.4 s, which is nearly
twice the value obtained from the exact solution of Eq, (3-10). Why have we
suffered such a large error in calculating the residence time when the transient
period of the dynamics takes up only a few percent of the total time? In this
particular problem the error arises from the fact that the drop enters the column
at a velocity (v, = 100 cm/s) nearly 20 times the terminal velocity. Even though
viscous effects bring the drop to its terminal velocity in a very short time, the drop
does travel a significant distance during the transient peried. (In fact, the drop falls
through nearly half the column before it reaches its terminal velocity.)

Thus we learn a lesson here with regard to modeling. A simplification with
regard to one aspect of a problem does not necessarily produce corresponding
simplifications in other related aspects of the problem. One of the great dangers in
modeling physical problems is the tendency to focus on the superficial mathemati-
cal aspects of the model (eg., the transient-time period is clearly very short
compared to the total process time) and in doing se, to fail to think physically
about the problem. In dealing with physical problems, one must never lose sight of
the basic physical ideas. Mathematics is a tool which, once mastered, can be
misused with great facility.

In a very limited sense, Eq. (3-10) provides 2 mathematical medel for the
interaction of some of the parameters of this process. We could use it to make
estimates of the effect of changing various parameters on the residence time. With
an additionai model relating residence time to the membrane properties (e.g.,
thickness and mechanical strength), we would be in position to proceed with a
rational first design of the process.

3-2 CONCEPT OF A CONTINUUM

Simple point-mass mechanics concerns itself with the behavior of rigid bodies. For
the most part, one need only consider the motion of the center of mass of the body.
Application of Newton's second law then leads to ordinary differential equations
relating the position vector of 2 * point ™ to the single independent variable: time.

Now we have to introduce the concept of a continuous medium, or continuum.
A continuum is a region of space through which properties such as temperature,
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.pressure, density, and velocity may vary in a continuous manner. We suppose that
we can indefinitely subdivide the region into smaller and smaller volumes and stiil
retain the ability to define certain properties in that infinitesimal volume, Of
course, this concept reaches its limitation when we approach a molecular scale, but
-the fact is that one does not usually need to go to such a fine scale in order to
define the properties of interest in continuum mechanics.

Let us consider a few examples of continuous variables. Suppose we have a
fluid confined to a container. For definiteness, suppose the fluid is water, contain-
ing a small amount of dissolved salt. What can we say about the “state”™ of the
fluid?

One of the simplest descriptions is given if we know the mass of solution m,
the volume of solution ¥, and the mass of salt m,. In addition to these quantities,
we can “derive” some additional information. For example, the average salt
concentration is ¢, = m,/V, and the average density of the solution is 2 =miV.
But these are average quantities; they are * macroscopic ™ measures of the state of
the fluid. They give no information regarding the distribution of salt throughout
the fluid.

To characterize the distribution of properties we have to begin by considering
some fixed point P in the space occupied by the fluid. Now let us imagine a small
volume of fluid AV which encloses the point P, Within that differential volume
there will be amounts of mass Am and amounts of salt Am, . The average density of
the material within AV is simply Am/AV.

Now suppose we consider

By AV - 0 we must understand that AV becomes small compared to the volume
V of the body but still remains larger than molecular volumes. Then we define the
“local density™ p as

. Am .
p= lim — at the point P
ar—o AV

Similarly, the “local salt concentration™ is

. Am
¢, = lim -1

at the point P
AV —0Q AV

Now let us think about these densities physically for 2 moment. We have not
assumed that the fluid is homogeneous. Thus it is possible that ¢, varies through-
out the volume V. The same is true of p. Then, in general, p = p(x, , z) and
€. = cy(x, y, z), where (x, y, z) are coordinates of the point P. Furthermore, it is
possible that these densities are dependent on time. For example, il we are coolin 2
the fluid, and since density is a function of temperature, and temperature will be a
function of time, then actually p = p(x, y, z, ¢). In general, the quantities of interest
in specifying the state of a continuous medium vary with time and also vary
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continuously throughout the volume. This leads to mathematical complications
since generally we will have to deal with partial differential equations in order to
describe the behavior of a continuum.

3-3 STRESS IN A CONTINUUM

Let us still think of our container of water and now consider forces acting within
the fluid. The forces might arise from motion within the fluid wkich could be
generated if we were stirring the solution. Generally, the forces arise from several
sources. There might, for example, be “ body forces ™ due to the action of gravity
on the fluid. If flow is occurring, then the viscosity of the fivid will give rise to
forces between adjacent regions of flow. And, in general, there may be a pressure
distribution throughout the fluid which gives rise to forces.

Whatever the source, imagine a force acting on a small region of the fluid in
the neighborhood of the point P, Let us consider a differential area A 4 containing
the point P. Note that this area is reaily a vector quantity since it is characterized
not only by a magnitude AA but also by an orientation described by the vector n
normal to the area. Let the force acting on A4 be AF. AF is also a vector, of
course, and in general AF and n have different directions. Figure 3-1 shows the
situation,

We could resolve the vector AF into its three components in a coordinate
system defined by n and a pair of axes in the plane of AA. Let an arbitrary pair of
surface axes be s; and s,. Then s, s, , n define a cartesian coordinate system, and
the components of AF are called (AF,,, AF,,, AF,,).

The reason for the double subscripting is as follows. For any given force AF,
there is an infinite number of areas A4, each characterized by a particular normal
vector n. Hence, when we resolve AF into the $,. 8, , n coordinate system, we must
indicate {by the second subscript) which n vector, ie., which area orientation, we
. have chosen, and by the first subscript we must indicate which axis 84, 8q, Or o, 0f
that coordinate system the force AF has been resolved onto.

We will now define the stress vecror at point P as

T= lim AF
aa-0 A
If we consider
AF,

lim —% =T,
ad—o DA

Figure 3-1 Definition sketch for consideration of a force AF acting on a
surface of area A4 whose normal vector is n.
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Tﬂ:]
X
T3
T3T
r
T~ 2
Tn X1
T2
T'IZ
Figure 3-2 Definition sketch for resolution of the
Ton force ¥ into the stress components acting on each
X3 ef the three orthogonal surfaces.

where i refers 10 axes s;, s, , or o, then we have defined the components of the stress
vector T on the surface defined by n. Note that components of the stress vector
have two directions associated with them, one which characterizes the direction of
AF and the other which gives the orientation of the surface A4, that is, n.

But n was arbitrary. It appears that we could define an infinite set of compo-
nents of T. Does this mean that we cannot completely characterize force or stress
in a continuum without specifying an infinite set of numbers?

The answer, of course, is no. We can show that the maximum information
required is the components of F resolved onto three orthogonal surfaces. Let us
consider, ther, a set of cartesian axes x,, x5, X5, or simply x, in shorter notation,
as shown in Fig. 3-2. The origin of the axes is point P, and.the three orthogonal
areas in the planes x, x;, x; X3, X3 X, are understood to be differential areas,
although our notation will no longer reflect this.

Let the force F have been resolved into stress components T4, T5,, T3, in the
face perpendicular to x; Ty, T,;, Ty, in the face perpendicular to x,; and T4,
T,,, Ty in the face perpendicular to x,. We will prove the following: If we know
the nine components of T defined above, we can obtain the components of T in
any arbitrary surface.

Before proceeding we have to suffer one more annoyance: a convention where-
by we can agree on the sign that is to be associated with a stress component. Our
usual sign convention in mechanics is that velocities and forces whose action is in
the positive direction of an axis are taken as positive. But by Newton’s third law of
action and reaction we have to recall that if the material on one side of a surface
exerts a force on that surface, an equal and opposite force is exerted by material on
the other side of the surface onto that surface. Qur convention on signs will be the
following:

The stress 7;, due to action by material on the positive side of the surface on the
material on the negative side, is positive if the line of action is along positive
X




16 FUNDAMENTALS OF POLYMER PROCESSING

-
X

Figure 3-3 Definition sketch for consideration of the
Xq equilibrium of a tetrahedral-volume element.

Conversely, the stress exerted from the negative side of the surface on the material
on the positive side is positive if the line of action is along negative x,.

If, in Fig. 3-2, the stresses are all those exerted by forces from the negarive sides
of the three planes, then the stresses whose directions are as indicated in the figure
are positive stresses.

Our goal now is to show that if the nine components defined above are
known, we can find the three compenents of stress in any arbitrary surface in the
neighborhood of P. Consider a surface defined by a normal vector n’ which cuts
the coordinate axes x;, as shown in Fig. 3-3. The three orthogonal faces are acted
upon by the stresses T;; defined above. We are going to consider the equilibrium of
the tetrahedral volume of material defined within the four surfaces shown in
Fig. 3-3. Let us call the area of the slanted face AA4'. The area of the face normal to
the x, axis is just the projection of A4’ onto the 23 plane, or a,, AA', where a,, is
the cosine of the angle between x, and n".

Let us consider the components of force in the x; direction. On the face
normal to x, we will have a component —T,,a, AA". Note the minus sign, and
review our convention. We are taking forces to be positive if their line of action is
along positive x;. On the face normal to x, we find — T}, a,, AA4’, and on the third
orthogonal face we find — T}, 4,3, AA" Summing these three components, which
all act in the x, direction, we write

AF, = _(Tnam + Tisas, + Ty5 a:‘)n) A4 (3‘12)

If we consider the contributions of the three orthogonal faces to forces in the other
two directions, we find

AFZ = —(TZIGM + T)_;Gzn + T23 a3,,) AA* (3"13)
and

fl

— (T, + Tz ag, + Tia as,) AA’ (3-14)
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These last three equations can be written in the following shorthand notation:

3
AF, = _,-; T;a;, AA' (3-15)

This latter equation represents three equations for the components AF,, AF,,
AF,.

Now let us think of a set of orthogonal coordinate axes x;, such that Xy =n,
and x; and x} are in the plane of the slanted face of the tetrahedron. We now want
to resolve each force AF, into its components in the x;, coordinate system. This will
again introduce the direction cosines a;, between axes x; and x|. It is easy to see
that one finds

3
AFy= Y ay AF; = =3} ¥ aya;,T; AA' (3-16)
ol

i=]

Now let the stress vector acting on the inclined plane (which is the same as the
stress vector on the other three planes if AV is sufficiently small} be resolved into
the x; coordinates to give T, . Hence the forces in the x|, directions, in terms of the
stress Ty, , are

AF, =T, AA' (3-17)

Then the sum of the force components on all four surfaces which enclose the
volume AV, resolved into any of the three directions x|, may be written as

(T.;:n - Z Z Tip Ay le) A4
i

According to Newton's second law, these terms must be balanced by any force of
acceleration of the volume and by body forces such as gravity. In any event, such
other forces are proportional to the mass of the tetrahedral-volume element or,
equivalently, to its velume AV, Hence the equation of conservation of momentum
takes the form

(T3 S anap) = 0(aw) (3-13)
L
where O(AV) means “terms whose order of magnitude is proportional to AV.”
But if Ax is a measure of the linear dimensions of the tetrahedron, we know
that A4" = O({Ax)?) while AV = O((Ax)*). Hence if we take the limit as the
tetrahedron shrinks to the point P, we find the volume terms vanishing faster than
the area terms.
Newton’s second law, then, leads us to conclude that, in the limit as the
volume shrinks to the point P,

n = Z Z Ay gy T.:j (3‘19)
i
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But n" was an arbitrary vector, so Eq. (3-19) is valid for any orientation n’, and so
T, are the components of the stress vector in any coordinate system x;, in terms
of the components in the X; coordinates. In other words, if the nine components T;;
are known in some coordinate systern, they are known in all coordinate systems.
Thus the nine components T;; are necessary and sufficient to completely define the
state of stress at a point in a continuum. -

The array, or matrix, of stress components may be written in the format

T;:x T:t)' Tx:
T={Tx T, T. (3-20)

T is called the stress rensor, and the T;; are usually referred to as components of the
stress tensor.

T is a tensor because, by definition, if any array of numbers transforms from
one coordinate system to another according to Eq. (3-19), that array represents
the components of a tensor.

Another simple argument based on principles of mechanics leads us to con-
clude that the stress tensor is symmetrical, which means simply that

T = T; (3-21)

il

Consider a small parallelepiped with sides dx;, as in Fig. 3-4. The stress T,,
gives rise to a moment about the axis x; of magnitude (T, dx, dx;) dx,. The
stress Ty, gives rise to a moment of opposite sign of magnitude {7, dx, dx,) dx,.
None of the stresses acting on any of the other four faces of the parallelepiped
gives rise to moments about x;. The net moment due to stresses, then, is

My = (Ti,— Ta, ) dx, dx, dxy = 0((Ax)?) (3-22)

Body forces can also exert 2 moment about X, , but this will be of order (Ax)*. The
time rate of change of angular momentum will also be of order (Ax)*, Hence, as
Ax — 0, equilibrium (i.e, conservation of angular momentum) requires that
My 0, o0r

To=Ty (3-23)

X2

X4

Figure 3-4 Definition sketch lor proof of the symmetry
Xq of the stress tensor,
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Similarly, by considering moments about x, and Xz, we can show T,; = T, and
Tla = Ty,

The value of establishing symmetry is that we know that only six components
(instead of nine} are needed to completely specify the state of stress at a point.
Symmetry of the stress tensor must be considered an assumption, however. In
principle, materials with an intrinsic asymmetric structure, such as liquid crystals,
or dispersions of asymmetric particles, might be expected to show an asymmetric
stress tensor. Despite these reservations one normally assumes the symmetry of T,
and there is no strong experimental evidence to suggest that the failure of 2 model
is due to a failure in this assumption.

3-4 THE DYNAMIC EQUATIONS (EQUATIONS OF MOTION)

We shall derive two basic conservation equations here. The first will express the
principle of conservation of mass in a partial differential equatios knowa as the
continuity equation. The second equation expresses the principle of conservation
of linear momentum in a continuous medium. It is an analog of Newton's second
law which we used earlier in discussing point-mass mechanics. Both equations
result from setting up an arbitrary, fixed “control volume™ in the continuous
medium and keeping track of the net flow of mass and momentum zcross
the surfaces of the control volume.

Figure 3-5 shows the control volume, which we take as a parallelepiped
aligned parallel to the axes of a cartesian coordinate systern. The volume is to be
thought of as differentially small, of magnitude dV = dx, dx, dx,.In Fig. 3-5the
two sets of orthogonal faces are split for visual clarity. We may arbitrarily take
one set of orthogonal faces to coincide with the coordinate planes.

The net rate of change of mass within the control volume is
{¢/0t)p dxy dx, dx,. If there is to be a nonzero net rate of change of mass, it can

X5 X2
Uy u // |
4 |
r i
7 '
SN ooy eyl }
T : {dxy, dxg, dxg)
v i I
! ; X e it Xy
(0,0, 0}] s
| /
i /7
| /
X:_l )('3

Figure 3-5 Volume element for derivation of continuity equation,
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only arise from an unbalanced flow of material across the six faces of the paral-
lelepiped. The volumetric flow rate across a surface is given by the product of the
surface area and the velocity normal to that surface. Since we “ define™ a surface
by its unit normal vector, the volumetric flow rate across a surface normal to the i
direction will be u; dx; dx, (i # j or k). The mass flow rate, then, will be puy dx; dx,
across that surface.

Let us consider a pair of parallel surfaces, such as the pair which are perpendi-
cular to the x; axis. We arbitrarily take the x; coordinate to be x, = 0 for one
surface and x, = dx, for the second. The mass flow rate across the first surface is

[ou, dx, dx3]s =0
and that across the second surface is

—[puy dx; dx,]

x1=dxg

The minus sign on the second term reflects the convention that if the velocity
component i, is positive across the face at x; = dx,, then the flow is directed out
of the volume element and is considered a negative flow. The ner flow across that
pair of faces is just the difference

[,0111 dxz dx}]nnO - {pul dxz dxa]x:ﬂdxx

Now, let us think of each bracketed term as some function of position x; and time
t. We can then use Taylor's series to write the difference in a function evaluated at
two points separated by a distance dx, and obtain

i,
[Fl]x1=0 - [Fl]xx =dx & T EEFJ:;:O dx,

[Fl]x1~0(dx1)2 - (3-24)

where we have simplified the writing not by filling in the brackets with the term
puy dx, dx, but by using instead F,; to remind vs that it is the x,-directed flow
term. Note that partial differentiation is indicated since each function [F,] might
depend on time, as well as on x,.

In a similar way we can write the mass flow rate across a surface perpendicu-
lar to the x, axis as

[F2) = [pu, dx; dx,]

and the net flow rate associated with a pair of surfaces parallet to each other,
separated by a distance dx,, becomes

[Fz]xg=0 - [Fl]xz=dx2 =Tz
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Similarly we may write, for the final pair of surfaces that make up the volume
element, |

]
[Fa]’”:o - [F3]J<J“dx3 = a[‘p!]x;=o dx;
1 8° .
- ng_g [Fs]x:x:O(de)‘ - (3-26)

The time rate of change of mass within the volume element must equal the
sum of these three flow terms, with the result that

a
- E(pul dx, dx;) dx; — Odx)*

3 9
P4 dx, dx; dxg = — i (puy dxy dxs) dx, — O(dx)* {3-27)

2

d
— = (puy dx; dx,) dx, — O(dx)*
dx,4
where O(dx)* means terms which are at least fourth-order produets of the various
dx/s.
Since we regard the volume element to be fixed in space, the product
dV = dx, dx, dx, is a constant, and if we divide both sides by the differential
volume we find
dp a 0 0
S P — — -0l 28
ar (Bxi puy + %, puy + ox, P“a) (dx) (3-28)
If the volume element is allowed to become very small {(dV — 0), the deriva-
tion above gives the mass balance in the infinitesimal neighborhood of the point
that dV had surrounded. Terms of order (dx) vanish relative to the other terms in
Eq. (3-28), and the final result is the continuity equation:

—= -V - pu (3-29)

where the simpler vector format uvsing the divergence operator has been in-
troduced. In the special case of incompressible fluids (constant density), which we
normally assume to be the case for liquids, the continuity equation becomes

V-u=0  incompressible fluid (3-30)

Thus the principle of conservation of mass is expressed in the form of Eq. {3-29)in
general and in the form of Eq. (3-30) for the incompressible fluid.

Now let us consider 2 region of a continuum subject to stresses which may
vary continuously throughout the small volume dV = dx, dx, dx;,, as shown in
Fig. 3-6. We have again split the two sets of orthogonal faces for visual clarity.
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X2

xg T 3

Figure 3-6 Volume element for derivation of equations of motion.

On the faces which lie in the coordinate planes we have the stresses T;; as
shown. The stresses on the second set of planes may differ from those on the first,
since we allow T, to depend or the x; coordinates. If the stresses vary contin-
ucusly, we may write the stresses on one plane in terms of those on the plane
parallel to it by using Taylor series, in the form

0Ty 18T,
Tiledx;) = Tf0) + 52y o+ 5 =7 () -+
I -~ i
= T,{0) + dT;; (3-31)

Now let us consider the net force acting in some direction, say, x,, due to the
system of stresses T;;. We find, using Fig. 3-6 and the sign conventions,

(T, +dTy,) — T11] dx, dx; + [(Tzz + 4Ty ;) — Ty.] dx, dx,
+ [(Tys + dTy3) — T15] dxy dx,

to be the net x, component due to stresses. Using Eq. (3-31) we may write this as

aT aT
S, = (Wl:dxl) dx, dxs + (Flzzdxz) dxy dx;

aT,
+ (Exl_B a’x;,) dx, dx, + terms of O{dx)* (3-32)
3

In addition to surface stresses there may be a body force (usually due to gravity)
proportional to the mass. If we take f; to be the component in the x, direction of
the body force per unit mass, then the body force component is pf; dx,; dx, dxa,
where p is the density of the fluid in the volume element.
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Figure 3-7 Sketch for consideration of momentum
X4 flow through the control volume.

If the element of volume being considered were a rigid body, Newton's second
law would be completed by equating the stress term plus the body force to the
acceleration term, which would have the form

d
5P dx; dx, dxju,

But if we wish to apply our momentum principle to a continuous fluid, then clearly
the volume element is not a rigid body, since we allow fluid to cross the boun-
daries of the volume element. It is this latter point, the fact that fiuid crosses the
boundaries of the control volume, which must now be considered.

If fluid crosses the surfaces of the volume element, then that flow carries
momentum in and out of the volume element. Newton’s second law really repre-
sents a balance relating forces acting on the volume to the time rate of change of
momentum within the volume. In addition to the force terms, then, we must
consider the net flow of momentum through the volume element. The momentum
flow terms are handled in a similar manner to the mass flow terms in the deriva-
tion of the continuity equation. Figure 3-7 shows a definition sketch for the
analysis.

Let u be the velocity vector in the neighborhood of the volume element. Any
“parcel” of fluid crossing a surface of the control volume has a momentum (per
unit velume) of pu. Since we write the momentum principle in terms of components
of the appropriate vectors {(as we already have for surface forces and body {orces),
let us consider only the x; component of momentum flow, Then each parcel of
fluid has a “ density of x;, momentum ™ equal to pu,. How do we calculate the rare
at which momentum crosses each surface?

" 1t is only necessary to multiply the density of momentum (which is what pu,
really is) by the velocity with which that parcel crosses each surface. The appro-
priate velocity is simply the component of u normal to each surface. Thus we find
that the x, momentum flow into face dx, dx; is (pu, Ju, dx, dx;, the x, momen-
tum fiow into face dx, dx, is (pu,ju, dx, dx,, and the x, momentum flow into
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face dx dx, is {pu,)u; dx, dx,. Note that in each case it is the same momentum
density pu,, multiplying the velocity u,; normal to the face whose normal is dx;.
The area factor in each case converts the velocity u; to a volumetric flow rate
normal to each face. Multiplying the momentum {in the x, direction) per unit
volume pu, gives the rare of flow of momentum across each face, which is what we
are seeking.

The terms above represent momentum flows across the faces in the coordinate
planes. Across the faces in the parallel planes at dx, dx,, dx;, we have, by
Taylor’s theorem again, (ou, )u, dx, dx, + d[{pu, yu; dx; dx,), ete. Consequently
the net flow of x,-directed momenturn across ali six surfaces of the control volume
will reduce to ‘

] é
C, Ea(pulul) dx, dxy dx, + a(puluz) dx; dxy dx,

+ —ai— (pujus) dxy dxy dx; + terms of order (dx)*  (3-33)
3
We call these the convective terms.

Now, and almost finally, the time rate of change of momentum within the
volume element not only includes the convective flow terms above, which ac-
count for the net flow of momentum through the control surfaces, but must also
include the time rate of change of the momentum within the volume, or
8/0t(p dx, dx, dxy u,). This idea is better understood if we notice that the
convective terms vanish if the flow is spatially homogeneous, which means simply
that all spatial derivatives 8/dx,, 8/x,, 8/6x, vanish. Yet there could still be
unsteady-state effects causing momentum changes if u = u(z).

Now we must put everything together. To save some paper, let us write the
stress terms simply as §,, from Eq. (3-32), and the convective terms as C 1 from
Eq. (3-33). Then the momentum principle for the volume element becomes

S o) dV + C, =S, + g, dV + 0(ax)* (3-34)

We have used dV = dx, dx, dx;, and we must remember that both C,and S, are
proportional to dV.

Now we simply divide both sides of Eq. (3-34) by dV and take the limit as
dV — 0. We assurne that terms like &{pu, u,)/@x, remain finite and well behaved in
this limit. This is the essence of the continuum approximation: that spatial gra-
dients do indeed make physical sense in a region of material that is macroscop-
ically small but still molecularly large. If one goes through the limit exercise
carefully (the proverbial and annoying “ exercise for the reader "), one finds

] ] 8 ]
T (pu,) + 5:;1“ {puyu) + é""g (puyuy) + é}; (puy us)

0Ty, 0Ty, 0T,
B —_— r
fx;  8x, ' 0x,

+ eh (3-35)
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All the above was carried out only for the x, component of momentum,
forees, etc.. But by an identical process one can derive two similar equations, and
in fact all three can be written in the form

d g T
— “:’ + — W)= 4 . | = 2 -
ar (p ) axj {pl.i u;) axj + p.f: ! 1’ 1 3 (3 36)
where we agree to a summation notation: If 2 subscript is repeated, we sum over
that subscript, i.e.,

: 0T OTe 0T,

—T= = 33
axj i s ; Bxl 6x2 6x3 ( 7)

Mu
=3
?;

ey

Equation (3-36) is the dynamic equation for a continuous medium. (It is really
three equations.} It will form the foundation for subsequent analyses of flow
processes. It will be convenient for such analyses to cast the dynamic equations
into other formars. We emphasize the word format here because no new physical
information comes of changing the form of the equations; it is simply a matter of
convenience, and, in part, custom, to have the dynamic equations in other formats.

With the continuity equation we can rewrite the dynamic equations in the
form

R R (3-38)

a " Yax)) T

The only physical statement required in going from Eq. (3-36) to Eq. (3-38) is that
of conservation of mass. We have not assumed, for example, that the fluid is
incompressible; that is, p = constant. For the case of constant density, Eq. (3-38)
remains unchanged. In this format the dynamic equations are known as Cauchy’s
stress equations.

Some comments on the terms that make up the left-hand side of Eq. (3-38) are
in order. Physically, the term g du; /&t represents the contribution to the momen-
tum balance due to acceleration. It is analogous to the d(my)/d: term in point-mass
or rigid-body mechanics. The term pu; 6u;/8x; represents the contribution of
convection to the momentum balance. We note that the convective terms are
nonlinear in velocity; they involve a second-order product of velocity and velocity
derivative. This nonlinearity presents 2 major problem in analysis of flows, since
we cannot usually find analytical solutions of nonlinear equations and must resort
to numerical methods if an exact solution is needed. We will find, however, that in
many flows of particularly simple geometry the convective terms are exactly zero.

Because the left-hand side of the dynamic equations is proportional to mass
{really to density p) times velocity (and velocity derivatives), these terms are some
measure of the inertia associated with elements of fluid, and we refer to these as
the inertial rerms of the dynamic equations.

It is also possible to present an alternate interpretation of the inertial terms.
Suppose we could isolate a particle of fluid, and move with it through the flow
field, and observe changes in velocity while in this moving, or lagrangian, coordin-
ate system. Then we would recognize changes due to two factors: Qur velocity
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might change with time because there are real unsteady-state effects imposed on
the flow, and in addition our velocity would appear to change with time because
we would be moving spatially through regions of different velocity. But we could
not separate these two effects immediately, without additional information.
Thus we would report a time derivative du/de following the motion, i.e., in a
lagrangian coordinate system. Later we might recognize that u was a function of ¢
and position x. Just from the rules of calculus we could then say that if u = u(z, x),

du  {fu
de \ér),

But if we move with the flow, then dx;/dt is simply u i» 5O

+ (%)‘ % (Remember: Sum over j) (3-39)

Du Ja du

DT a T M, (3-40)

We change the notation to D/D: because we have gone from the general chain
rule of calculus in Eq. (3-39) to a special case, called the derivative following the
motion, or Stokes’ derivarive. We note also that in Eq. (3-40) we have indicated that
we are differentiating the vector u. In fact, Eq. (3-40) is just a shorthand notation
for three equations represented by

.DM,- @Hi au:‘ :
=5 + ujé‘Tj sum over | (3-41)

which is now recognizable as the inertial terms of the dynamic equations.
Hence we often use the simpler format

Du, 8T}
pD—r‘=5;‘Jf-+pﬁ i=1,273 (3-42)
to represent the three dynamic equations, or Cauchy’s stress equations.

Another aspect of format, as opposed to physical content, has to do with our
choice of coordinate system. The derivations given above have used a rectangular
parallelepiped as a volume element, and cartesian coordinates as the basis for
writing components of the vectors and tensors that describe velocity, force, and
stress. We could derive the dynamic equations and the continuity equation in
other coordinate systems as well. (See Prob. 3-3.) We will find that for most
problem formulations there is a best choice of coordinate system, one which
simplifies the format of the mathematical problem and in doing so renders the
method of solution somewhat simpler.

In Table 3-1 we present the dynamic and continuity equations (for incompres-
sible fluids) in the three most useful coordinate systems: cartesian, cylindrical, and
spherical.
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Table 3-1 Dynamic and continuity equations

Cartesian coordinates (x, v, z)

The dynamic equations:

Su,, du,, du, du, ap
X component p N + u,g;-i— uya+ u=a—_) iy
ar at, dr,
X g 2 LR A
(é‘x ay+a:)+pgx {4)

component o + Oy 1,2 + Py o
— o —tu
’ \a Tax o Y ay

du, du, du, ap
oz

du,
z component 'O(E + u":ﬂ: + ”'a_ +u,
i y 5]

dr,, Ot Bt
=y ¥ == .
+(ax+6y a:)+pg_ ©

The continyity equation:

du,  du,  Bu,

+==0
ax gy @z

Cylindrical coordinates {r, 8, =}

The dynamic equations:

; du, + du, N du,  uf tu du, ap
re —+u Ly )= -
omponent P\ T T -  dz ar
ta 187, T &1,
+(;§(rf")+;ﬁ- et a:) +rg, (4)
duy Cuy g duy  u du)y  1ép
& component p(a+u,g+?ag +u, )= "
1é . 10ty 07y,
+(r—25( ot oot tes (B
; du, + du, - Uy O + du, ap
4 -_— —_ —_—— R
component M e T e T 4 H
18 1é7,, &,
- —_— — _ C
+(r&r( v) ae*a:)“’g‘ ()
The continuity equation:
19 13w, Bu,
i, s o ez )
FE R T

Continued
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Table 3-1—Conrinued

Spherical coordinates {r, 8, ¢)

The dynamic cquations:

du du,  uygBu, o, du uy+ul
reomponen: {7+, g+ g 4 e - L)
op 13 13 1
= e o [ P2 A —— — ing L1
o (rlar{r Wt e O s
Tog T 1,
—m—rﬂ)ﬂ?g, ()
Ay du, u, O u, du, wu, uicoth
g t 4 _’J.+MQW_J+ d e B S
eomponen p(a:+'ar F 36 Trem6de T s x
1dp 1é .,
T rae (F’-E(r 1:"'J)+rs:rn'fhi‘ﬁ'(T‘msm )
1 &, t, cotd
Trn0de r x ’“)*"gﬂ (8)
du, 6u¢ u, du,, dy, Bu, uu, Uy,
¢ component "(a T rsinea¢+T+T°°‘9)
I _dr (16(,tr)+£aﬂ¢: 1 pe
Trsindag  \rar r 89 rsind o¢
7,  2cotl
+ 4 Ta¢)+P9¢ (©
The continuity equation:
14, toa L o
e ——  (uysin 6) 4 —— 2 =
P ey A R ey

3-5 KINEMATICS

Kinematics refers to the analysis and description of motion. By contrast, dynamics
is concerned with the relationship of motion to the forces causing, or accompany-
ing, the motion. In this section we establish some purely kinematical ideas.

Let us consider a continuous medium in motion, characterized by a velocity
vector u having components u, in a cartesian coordinate system x centered at some
point 0. We will denote the components of velocity at the point O by uy;. In the
near neighborhood of O we expect that the velocity components can be expressed
in terms of the kinematics at O by using Taylor’s expansion, with the result that

aui 2 -
U= Ug; + (5?)0 dx; + O(dx)) sum over j (3-43)

Ji



CONTINUUM MECHANICS 29

Now we want to answer the following question: What kinematic quantities are
necessary to tell us if there is deformation in the neighborhood of 07 We call
du; /0x; the velocity gradient of u, in the x; direction or, simply, the velocity
gradient. For small dx; we can neglect terms of order (dx,)*. Then the relative
motion between material af O and material near O is

U — g = (6”") dx; (3-44)

8x;f o

Now, for reasons that are clear only to prolessors, let us decompose the
velocity gradient into the following arbitrary form:

Gu,  Lidu  duy 18w Oy
— =+ =]+ = - 3-4
o, 2(axj+axl.) +2(axj 6xi) (3-43)
If we define
du;  Cuy
Y ik s 46
Ay ( 5t ax,.) (3-46)
du;  buy
then we may write
U, = uo;='%‘AU+%‘O:JU dxj (3-48)

Thus we have decomposed the relative velocity into two parts. Why?
Consider first the motion associated with ¢, ;, which we call (dw;), and define
by

{du), = ‘.lz‘w«'j dx; (3-49)
Multiply both sides of this equation by dx; to find
{du))e dx; = %o,; dx; dx, (3-50)

Keep in mind our summation convention; we must sum over repeated subscripts.
Note that in Eq. (3-50) we find, on the right-hand side, a pair of repeated sub-
scripts, so that there is a double summation implied there.

Since the subscript notation just serves as an index system for counting in the
summmation, the symbol used (format again) is irrelevant. We could changeiand j
to any other pair of symbols and still have the same meaning. In fact, we could
change i to j and J to i, and sdll find that

wy; dx; dx; = w, dx; dx, (3-51)
But, from its definition in Eq. (3-47), we can see that
wij = —wji (3-52)

Thus oy dx; dx; = —;; dx; dx; {3-53)
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But this is possible only if both terms vanish, because, format aside, we are
claiming some number equals its own negative. We conclude then that

oy dx; dx; =0 (3-54)
Referring to Eq. (3-49), we see that this implies
2(duy), dx; =0 " (3-55)
But Egq. (3-55) is the scalar product of the vectors (du), and dx:
2(du),, - dx =0 (3-56)

We are now within a few “buts” of our goal.

But the vanishing of a scalar product is just the consequence of the vectors
being mutually perpendicular. If we recall that dx is just the position vector
connecting the two points of interest, we conclude that the part of the motion

Table 3-2 Components of the rate-of-deformation tensor

Cartesian coordinates (x, y, z):

ﬂ,xzza—f Ax,=ay,—% %
A, 22—? Ax:=A,x=% %
A==2a—‘ij A,,—_-A,,:?_? a@iy
Cylindrical coordinates {r, 6, ):
Spherical coordinates (r, 6, ¢):
A,r=2% A0,=Am=-r%(£:ﬂ)+%%

1 Bu, u, uycotf 1 du a fu
A, =m0 Ay = A, m e — L p |22
g (rsin 8 ag + r r ) i * rsin 08¢ + e
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described by (du), is just motion perpendicular to the line connecting the points,
‘which is simply rigid rotation.

Hence we have proven that the relative motion between two points in a
flowing system, describable in terms of the velocity gradient components du, /6x I
can be arbitrarily decomposed into a rigid rotation that depends on w;;and into a
deformation whose components are given by A;;.

We refer to A;; as the components of the rate-of-deformation tensor. The
importance of A;; lies in the fact that we will assert, in Sec. 3-7, that the stress
components t;; depend only on the rate of deformation components A;; for a wide
class of materials. In other words, it is A;; which provides the essential connection
between the dynamics and the kinematics of motion in a fluid.

Equation (3-46) gives the components A;; of the rate-of-deformation tensor in
cartesian coordinates, Table 3-2 gives the components in the three commonly used
coordinate systems.

3-6 BOUNDARY CONDITIONS

The real flows of interest to us are of finite extent; mathematically we would speak
of them as bounded flows. Physically, of course, they are bounded as well.
Sometimes we have rigid boundaries imposed by the container or conduit, as in
the case of the wall of a pipe. Sometimes we have free boundaries, as in the case of
a jet of liquid issuing from the end of a capillary. On oceasion we treat two-fluid
problems, where a pair of immiscible liquids undergoes some deformation, and
the interface between the pair of fluids is an unknown boundary whose position
must be determined.

Certain physical principles dictate the conditions which must hold at the flow
boundaries, and these boundary conditions must be specified before the dynamic
equations can be solved. These conditions may be either kinematic or dynamic.

Kinematic Boundary Conditions: The No-slip Condition

Consider some solid moving relative to a fluid, and let the velocity of the solid be
U,. It might be useful to think of the solid, just for the sake of concrete example, as
the blade of an agitator immersed in a liquid.

The no-slip condition is a model which asserts that, at the solid-fluid boun-
dary, there is no relative motion. This means that the fluid velocity vector u must
satisfy the boundary condition

u=U,  at the solid-fluid boundary (3-57)

Let us look at an example that will occur later in the analysis of extrusion of
molten polymers. The example also will serve to emphasize the model concept,
particularly the idea that one must be aware that the model imposes conditions on
the solution that are not necessarily inherent in the real system.
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>

L_,X Figure 3-8 Two-dimensional rectangular channel with

x= W a moving upper surface,

Consider fluid enclosed in a two-dimensional rectangular channel, as shown
in Fig. 3-8. The term rwo-dimensional refers to the assertion that no variations in
the z direction occur, so that what happens in the xy plane is representative of the
dynamics of the three-dimensional system. The upper surface moves at the velo-
city U in its own plane. The other three surfaces of the channel are stationary.

The no-slip condition implies the following:

u. =90 x=10 b<y<H

oniy=10 O<x<sw
u, =0 x=W 0O0<y<H (3-38)
u, = U

ony=H D<x<W

Note that we have left the velocity undefined at the upper corners, ie., at
x, y =0, Hand W, H. As far as the model is concerned there is a discontinuity in
velocity in the upper comers. As we approach the corner along a vertical boun-
dary, the velocity is u, = 0. As we approach the corner along the upper horizontal
{and moving) boundary, the velocity is u, = U.

Thus the model inciudes, because of the boundary conditions, a condition
that is not physically realizable. This is what we might call a * mathematical
artifact.” It is important to recognize potential problems that may arise when
simplifications motivated by the need to reduce the mathematical complexity are
at variance with the physical reality of the system. In this specific case, we will find
that no serious problem arises from the discontinuity at the corners.

Boundary conditions do not necessarily give values of the variables in terms
ol known quantities, as in the case treated above. Consider, as another example,
the flow generated by the motion of a jet of one liquid through a second liquid in
which it is immiscible. Assume the physical system is qualitatively as shown in
Fig. 3-9.

Fluid 2 is contained within a cylindrical vessel. Fluid 1, immiscible in 2, and of
higher density, is pumped from a circular inlet at 4 and flows down toward the
outlet at B. It is assumed that only fluid 1 enters and leaves the system. Fluid 2 is
entrained and caused to circulate by the motion of fluid 1. The geometry is
assumed to be cylindrical, with the inlet and outlet both coaxial with the cylinder
containing fluid 2.
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B Figure 3-9 Sketch for analysis of a two-fluid problem.

Let us examine kinematic boundary cenditions for this problem. For fluid 2,
no-slip conditions imply

r=R, 0<z=sL
Z= RBSrSRQ (3"59)
=1 R,<r<R,

u, =0 on

Fluid 2 is also bounded by fluid 1, and the no-slip condition in this case states
equality of velocity on either side of the interface:

u, =, on the interfacial boundary (3-60}

Two points must be noted regarding this boundary condition. One is that the
position of the interface is not known & priori; it is actually part of the solution
being sought. The other point is that the velocity is not specified, it is simply
constrained, In other words, while neither u; nor u, is known, they are constrained
to be equal at their common boundary. In general, problems having boundary
conditions like this are very difficult to solve.

Between the entrance and exit, fluid 1 contacts no solid boundary. However,
there is a kinematic condition that can be imposed on fluid 1, arising from the
assumed symmetry about the axis of the cylindrical coordinate system. Symmetry
implies equality of the velocity profile on either side of the axis. The simplest
mathematical formulation of this geometrical notion is the vanishing of the radial
gradient of the axial velocity,

ar

=0 (3-61)

r=0

and the vanishing of the radial velocity component along the axis,

=0 (3-62)

These are the only kinematic conditions that can be imposed in this example.
Additional boundary conditions must be based on dynamic considerations.




34 FUNDAMENTALS OF POLYMER PROCESSING
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|.._2,q_,| Figure 3-10 Cylinder rotating in a flnid,

Dynamic Boundary Conditions

Sometimes the stresses acting at flow boundaries are specified in the formulation
of a problem. For example, consider a cylinder immersed in a fluid, as in Fig. 3-10.
A torque 7 is applied, causing the cylinder to rotate about its axis at an angular
velocity L.

The torque acting on the cylindrical surface of radius R imparts a reactive
torque (in the sense of Newton's third law) to the surrounding fluid, thus setting
the fiuid in motion. The fluid, then, exerts a torgue — 7 to the surface at R. But
the torque is simply the shear force T,y,27RL times the “moment arm™ R. (We
ignore the forces acting on the circular faces normal to the cylinder axis, which
would be small for a long cylinder, L » R). Thus a dynamic condition on the fluid,
at r = R, takes the form

7 3-83
Tl = T TRL (3-63)
i.e., the shear stress is specified at the boundary.
A kinematic condition would be
uy] = RQ {Q in rad/s) (3-64)
R

However, these two conditions are not independent. We cannot independently
specify both the torque and the rotational speed. One will determine the other. In
some problem formulations the kinematics are specified; in others the dynamics
are taken as given.

Another type of dynamic boundary condition occurs at a free boundary sep-
arating two fluids. The condition follows from the physical statement that the
stresses must be continuous across 2 boundary. Consider the flow of liquid en-
trained by the surface of a sheet being withdrawn from thesurface of the liquid, as
in Fig. 3-11. This type of problem occurs ir: the analysis of coating dynamics, and
we will later carry out such an analysis. There is, of course, a simple kinematic
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Figure 3-11 Liquid entrained by withdrawal of
a sheet through the liquid surface.

condition to be satisfied in this problem, namely, no-slip at the interface between
the liquid and the moving surface of the sheet:

u=0 and  u,=U atx=X,, X, (3-63)

Let us consider a region of the sheet up above the dynamic meniscus formed
near the surface. In that region the liquid coating js assumed to be approximately
paralle] to the sheet, i.e., of uniform thickness. We ask what kinds of stresses act on
the outer coating surface, the interface between the liquid and the ambient gas.

The gas can exert two kinds of stresses on the boundary. A shear stress T, will
be imposed since the gas has a finite (though smail) viscosity and so resists the
motion of the sheet and coating through it. Continuity of shear stress then takes
the form

Liquid T,

=gas T, (3-66)

X

Xs
A common model, however, foliows from the assertion that unless the speed U
is quite high, a low-viscosity fluid such as a gas is not capable of exerting a

significant shear stress. Hence a common form of shear-stress boundary condition
is

T,

»x

=0 at the gas-liquid boundary (3-67)
X
Normal stresses do not necessarily vanisk, since the external fluid is usvally cap-
able of exerting a pressure on the boundary. Thus another appropriate boundary
condition for this problem would take the form

=—p (3-68)

Xe

The minus sign on pressure follows from our earlier convention on stress.

To review briefly, we have asserted that appropriate d ynamic boundary condi-
tions follow from the principle of continuity of stress across a boundary, whereas
appropriate kinematic boundary conditions reflect the notion that velocity must
be continuous at a boundary.
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Figure 3-12 Differential area in the surface separating two immiscible
fuids.

Interfacial Tension

When we talk of a “boundary ™ between two fluids we speak mathematically. We
imply that it is possible to identify one fluid or the other on either side of a surface.
If the fluids are miscible, the concept loses its utility, because the fiuids will
interpenetrate, by diffusion and convection, and no clearly defined boundary
separates them.

If the fluids are immiscible, then a finite interfacial tension acts in a well-
defined boundary of separation. We can show that this interfaciai tension can give
rise to a pressure difference across an interface, and so the dynamic condition on
continuity of normal stress must reflect this fact,

We begin by relating the pressurc dilference due to interfacial tension to the
geometry of the surface. Figure 3-12 shows a differential element of area within the
boundary surface separating 2 pair of immiscible fluids. The area element is
bounded by two pairs of parallel arcs of radii R, and R, . If ds; is small enough, it
can always be represented as the arc of some circle of radius R, and included angle
ae,.

Now, how does interfacial tension manifest itself ? The interfacial tension o
can be thought of as a force per unit length acting across a line element in a

NS

/
-~ —r
-~ —

F =g ds,

—_—
' \\\ Figure 3-13 Surface tension [orces acting along the edges of
F=gds, the differential area.
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a sy o oy,

Figure3-14 Sketch for the force balance on the area separating
two immiscible fluids.

surface, the line of action of the force being normal to the line, and tangential to
the surface.

II'we isolate the differential area for the purpose of writing a force balance, we
may consider it in terms of Fig. 3-13. Along each arc a distributed force acts
uniformly, of magnitude ¢ ds. Let us now sum the components of these four forces
in the direction of the normal n to the surface. The n component of those forces
acting along the lines of length ds, is most easily calculated by using Fig. 3-14,
which Is a view normal to ds, and parallel to ds, . Along each of the lines ds, is a
force o ds, tangent to the surface. The n component of each force is simply
(o ds,) sin (% 46,).

The angle d9, is related to the arc ds, through the radius of curvature of the
arc, Ry:

ds; = R, df, (3-69)

For differential (i.e., small) angles, a good approximation is
sin (3 d8,) =1 db, {3-70)

Using these results, and summing the two forces along the pair of ds; lines, we find

a

Ry

By identical argument, the n component of forces acting along the pair of ds, lines
is

I, dsy ds, (3-71)

Fy=—ds, ds, (3-72)
R,
Thus the net n component of force due to interfacial tension is
1 1
Fo=0cds, dsz( + %) (3-73)
Ry R,

If the fluids are staric, then the only stresses on either side of the surface
separating the two fluids are hydrostatic pressures, say, po and p;, where p, is the
pressure on the concave side (*inside ") of the interface. These pressures also give




38 FUNDAMENTALS OF POLYMER PROCESSING

rise to forces in the n direction of magnitudes p, ds, ds, and —p; ds, ds,. Hence,
at equilibrium, the force balance on the differential surface results in

1 i
—
In the limit as the differential area shrinks to a point, Eq. (3-74) gives the

condition of eqguilibrium of normal stresses across an interface separating a pair of
immiscible fluids:

ds, dsy =0 (3-74)

1 1
Pi—Po= G(R_1 + —ﬁ;) (3-75)

Physically, the equation tells us that interfacial tension causes an increased
pressure on the “inside” of a surface, the magnitude depending on the radii of
curvature of the surface. The geometrical boundary separating two immiscible
fivids defines a region across which there is a discontinuity in fluid physical
properties. Equation (3-75) shows that there is a corresponding discontinuity in
normal stress across the boundary. Thus, to be precise, the dynamic boundary
condition on normal stress is not one of continuity in the case of the boundary
separating immiscible fluids, but rather one in which the normal stresses within
each fluid on either side of the boundary differ at the boundary by a hydrostatic
pressure given by Eq. (3-75).

Let us end this section with an application of some of these concepts, and
motivate as well the need for information that will be presented in Sec. 3-7. We
suppose that a spherical gas bubble of radius R(t} is expanding within a large body
of fluid. We seek a relationship between the pressure inside the bubble, P, and the
rate of growth.

For our model of this process, let us assume that the gas has an insignificant
viscosity, that the stresses in the region 0 < r < R{r) are strictly hydrostatic and
uniform with respect to r in that region, and that gravitational effects are of no
significance.

In the liquid outside the bubble, ie., in the region r > R(z), the velocity must
satisfy the continuity equation, which we naturally choose to write in spherical
coordinates for this problem:

;15;;3; (ru,) + r_silﬁ"é :—6(149 sin 8) + Z’:;’ =0 (3-76)
If the flow is spherically symmetric, by which we mean that
u=[u(r1),0,0] (3-77
then the continuity equation gives the result
A
=<3 ’ (3-78)

where A might be a function of time but is independent of the space variables.
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The kinematic boundary condition at the bubble surface is continuity of the
- radial velocity:

\ dR P
f - — = ~
e T e (3-79)
It follows then that
RR?
U, = —5- {3-80)

Now let us examine another kinematic feature of the flow, the rate-of-deformation
components, which in this case take the form (see Table 3-2)

4RR?
A _ _ARR

rr 1‘_3

2RR?
AOB = Aq}(p = f"3 (3-81)

All other A;; =0

The existence of finite deformation rates in the liquid suggests that there will
be stresses accompanying the deformation. Now we must relate the stresses asso-
ciated with deformation to the deformation rates. We do so by introducing a
mode] which is mathematically simple and consistent with physical experience.

We postulate the following: A particular stress component T; ; is related only
to the corresponding rate-of-deformation component Ay, and the relationship is
linear. Thus we write

Ty=—poy+udy (3-82)

where d;; is defined so that 6; =11 i =/, and J;;=0if i . The term —p §;
reflects the observation that in the absence of deformation, when A =0, it is still
possible for normal stresses to exist. In a stationary fluid the normal stresses
would correspond to a hydrostatic pressure, and our sign convention on stress
leads us to write this as —p.

The coefficient y is the viscosity of the fluid. At this stage we may regard
Eq. (3-82) as a useful postulare, in that it will let us arrive at a result which can be
subjected to experimental test. If the analysis does not lead to a realistic prediction
of reality, we must then reexamine the postulates, the elements of the model, which
led to the false prediction and attempt to improve the model.

Readers familiar with fluid dynamics will recognize Eq. (3-82) as 2 form of
Newton's law of viscosity. Thus the previous few paragraphs could have been
replaced by the statement: Let us assume, as part of this model, that the fluid
cutside the expanding bubbie is newtonian.

We can now calculate T,, in the outer fluid and find

4uRR?

T,=—p—=5 (3-83)
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while the other two normal stresses are

2uRR?
2u
Too = Tpp = = p - (3-84)

It would seem that the next step toward finding the pressure inside the bubble
would be to impose the dynamic condition on continuity of radial stress, since the
pressure P is, by definition, normal to surfaces, and so in this case directed ra-
dially, If the effect of surface tension is included, we find, at » = R{t),

20 4uR
— Pt =T = —pp— —— 3-85
+ R rrR pR R ( )
{Note that if there were no deformation, this would give 2¢/R = P — p,,which is
identical to Eq. (3-75).]

Recall now that our goal, as stated, is that we seek a relationship between
pressure inside the bubble (P} and the rate of growth (R/R). Equation (3-85) does
not quite achieve this, because we do not know the pressure p{r) within the outer
fluid, from which p{R) = pg would be known. How do we find p(r)?

We must now use the dynamic equations.

With the assumptions already made, we can show that the radial component
of the dynamic equations takes the form (neglecting any effect of gravity)

du, du, 1o, , T+ T,
P(—B_r M é‘r) h rzar(r w) ~ Ty

If Eq. {3-80) for u, and Eqgs. (3-83) and {3-84) for the stresses are introduced,

one can show that (see Prob. 3-§)

Pr = Po + p(RR +3R?) {3-87)

By p,, we mean the pressure far from the bubble. In a real physical system we
might have a bubble in a relatively large body of fluid, and p,, might be taken as
the ambient pressure acting on the (real finite) boundaries of the whole system.
Note that the contributions to pressure in Eq. (3-87) are independent of visco-
sity. If the derivation is studied (hence, Prob. 3-8) we find that these terms come
out of the inertial terms of Eq. (3-86).
QOur final result, then, is

(3-86)

P=m b=t p(RR + 3R*) + p,, (3-88)

3-7 CONSTITUTIVE EQUATIONS

The dynamic equations embody the principle of conservation of momentum. They
relate the velocity vector u to the stress tensor T and are.valid for any fluid for
which the continuum approximation is meaningful. There is no restriction as to
whether the fluid is newtonian or nonnewtonian, viscoelastic or inelastic.
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The continuity equation is strictly a kinematic constraint among the velocity

: gradientg. No information about the stresses appears, and so there is no implica-

tion regarding the type of fluid for which it is valid other than with regard to the

question of compressibility. In most processes of interest to us, we can regard the

_fluid as incompressible and use the continuity equation in the form given in
the appropriate section of Table 3-1.

The boundary conditions are statements of continuity of the kinematic and
dynamic variables, and again are not dependent on the type of fluid being
considered.

Where, then, does the mechanical constitution of the fluid enter our analyses?

Let us first be convinced that we do need additional information. It seems
reasonable to assert that a flow field is completely specified once the components
of w and T are known as functions of the independent variables (position and
time). u has three components, and the symmetric tensor T has six independent
compaonents, giving us nine unknown functions in all, But we have only four equa-
tions relating these functions: one continuity and three dynamic equations. The
boundary conditions are not additional equations serving to relate the unknowns
to the independent variables, sirce the boundary cornditions are valid only at
specific points {the boundaries) of the flow region: they are not valid throughout
the flow field.

It would appear, then, that we are short five equations before we will even
have formulated a problem which has 2 solution. These additional equations
(there will in fact be six more) are called constitutive equations, and they relate
components of T to the kinematics, usually through A, and thereby define the type
of fluid for which a solution is being sought.

Introduction of Pressure

We begin by separating the stress tensor into two parts: a dynamic stress T, related
to the deformation of the fiuid, and a normal stress of magnitude p. We write

0 is called the uniz tensor, because it is defined to have components of the form

100
5={01 0 (3-90)
00 1

Alternatively, we can write Eq. (3-89) in component form, as

where §;; = 1 ifi=j, and §;=01f i J.

Recall that the components of stress for which ; = J are the rormal stresses,
whereas the other components are acting in the plane of the surface on which they
act and are called shear stresses. Thus, for shear stresses (i # j), we have T, = 7,

4 i
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by our definition [Eq. (3-91)]. The normal stresses T;; (i = j) include a contribu-
tion —p which is identical in all three coordinate directions and which exists even
if the dynamic stresses t;; vanish, ie., under static conditions. The property of
independence of direction is called isotropy.

An isotropic stress in a static fluid is what we normally call a hydrostatic
pressure. We will still refer to p as ~pressure” in Eq. (3-81), although it is not a
priori obvious that it is the same pressure as defined in thermodynamics. (One
reason for this uncertainty is that deformation implies nonequilibrium conditions,
to which the principles and definitions of thermodynamics do not necessarily
apply.}

Introduction of Eq. (3-89) trades the six unknown components of T for the six
unknown components of ©. However, 2 new unknown is thereby mtroduced: the
pressure p. Thus we have lost ground in attempting to balance unknown functions
and equations; we are now short by six equations, and we shall find that these six
equations will be the constitutive equations of the fluid.

Behavior of Fluids in Simple Flows

Before examining specific forms of constitutive equations, we should inquire into
the types of responses these equations will have to accommodate in order to be
considered useful.

Most flow processes are complex in some sense, usually in terms of the
geométry of the boundaries or the motion imposed at, or by, the boundaries of the
flow field. Because of such complexities, we usuaily categorize flow fields in terms
of simple cases which provide a reference basis for the discussion and delineation
of mechanical respense. The two flows of greatest utility for this purpose are
the simple shear flow and the simple elongational flow.

The simple shear flow (SSF} is defined in such a way that the rate-of-
deformation tensor A has the form

01 0
A=%1 0 0 (3-92)
00 0

Note that this is a kinemaric definition. The scalar ¥ is calied the shear rare. This
definition does not require that ¥ be a constant, although in some flows it may be.
The simple shear flow can be achieved in several ways in the laboratory. For
example, if fivid is confined to the annular space separating a pair of long concen-
tric cylinders, and if one surface moves parallel to the other, then an SSF results so
long as the flow remains laminar. This is true whether the cylindrical surface
moves axially or rotationally. In the first case the velocity field raust be v = [0.{r),
0, 0], whereas in the latter case of rotational flow the velocity field must be given
by v =[0, vy(r), 0] In either case we have assumed angular symmetry (no 6
dependence) and no z dependence of velocity. The latter assumption holds so long
as no “end effects " occur associated with the presence of finite axial boundaries. If
the cylinders are very long, by comparisen to the distance dcross the annular gap
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Fipure 3-15 Configurations of several viscometric Aows.

separating them, these end effects are found to be unimportant and to be confined
to the regions near the ends of the cylinders.

Other such fiows can be achieved, and because they form the basis of design of
instruments for the measurement of viscosity, they are often referred to as viscomet-
ric flows. Figure 3-15 shows several viscometric flows.

It is possible to show that for a very general class of fluids {so-called simple
fluids) the SSF is completely characterized by three material functions, and if the
kinematics and dynamics are at a steady state, we may define these as
Generalized viscosity coefficient:

T, 1y

7‘1 = —_= 3"93
e (3-93)
primary normal stress coefficient:
- T )
"1112 = I'J"ITZ:' (3'94)
¥
secondary normal stress coefficient:
T, — T
W,y = H,E_-yz_” (3-95)

For steady-state SSF, these coefficients depend only on 9.
. The simple elongational flow {or simple extensional flow} (SEF) may be
defined kinernatically by a velocity field such that

2 0 0
A=ilo0 -1 0 (3-96)
' 0 0 -1
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and the dynamics are completely characterized by a single material [unction,
defined in the steady-state case as
Elongational (or extensional) viscosity,

Ty, — Tz'.z
¢

Ne = - (3-97)

The scalar coefficient ¢ is called the principal extension rate.

Elongational flows are more difficult to achieve in the laboratory, in part
because end effects are more difficult to eliminate. In Sec. 3-6 the problem of low
surrounding an expanding gas bubble was considered, Review of that example
should make it clear that this is an SEF. It is not a simple matter, however, 1o
create such a flow under controlled conditions.

The pulling of a cylinder of material creates an elongational flow (see
Prob. 3-22), but it should be clear that one cannot * pull™ on a low-viscosity fluid,
or “grip” it to hold one end in place. Nevertheless, some effort has gone into
development of experimental techniques for ereation of SEF, and bibliographical
references are noted at the end of this chapter,

If one does achieve these flows in the laboratory, then one can measure the
functions defined for them. Correspondingly, with a particular constitutive equa-
tion it is relatively easy to solve the dynamic equations for these fiows and calcu-
late the material functions that correspond to the constitutive equation. The
comparison of measured and calculared material functions defined for simple flows
is the usual means of evaluation of a constitutive equation.

Let us examine some typical experimental data to get an idea of how these
material functions depend on the kinematics of the flows in which they are
measured. Methods of obtaining such data are described in detail in references
cited at the end of this chapter.

Figure 3-16a, b shows the viscosity as a function of shear rate for melts and
solutions. Qualitatively the observations are the same: At sufficiently low shear
rates most fluids exhibit a viscosity independent of shear rate; they are newtonian
at low shear rate. As the shear rate increases, in most polymeric fluids, the visco-
sity falls off (often referred to as shear thinning), and on double-logarithmic coor-
dinates one often observes nearly straight-line behavior at high shear rates. Since a
straight line in logarithmic plotting means a power relationship, n = ¥*, one often
refers to this as power law behavior.

Figure 3-16¢ shows normal stress data. Such data are more difficult to obtain,
by comparison to viscosity data, over a wide range of shear rates, and so a less
complete picture emerges from examination of a set of data for a single fiuid at a
specific set of conditions. However, it is fairly well established that the normal
stress coefficient behaves in a qualitative fashion similar to the viscosity function:
constant ¥ at low shear rate, and nearly power law behavior at high shear rate,

Another feature of significance is the relative value of the primary coefficient
‘¥, ; to the secondary coefficient ¥, ;. Reliable data show ¥, ; to be opposite in
sign, and vsually quite a bit smaller in magnitude relative to ¥, ,.
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Figure 3-16 (a) Viscosity of low-density polyethylene. (From Chen and Bogue). (b) Viscosity of
polymer solutions. (Reproduced from Bird, Hassager, and Abdel-Khalik.)

4 2% polyisobutylene {Huppler et al.)

O 5% polystyrene in Araclor 1242 (Ashare)

¥V 0.75%, polyaerylamide (Separan-30)

O 7% aluminum soap (Huppler et al) :
(¢) Viscosity and normal stress coefficients for 3% polyethylene oxide. (Qlabisi and Williams.)
{d) Elongational viscosity of an isobutylene-isoprene rubber. (Data of Stevenson reproduced from
Bird, Hassager, and Abdel-Khalik.)
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0 Time Figure 3-17 A step change in shear rate.

In Fig. 3-164d data for both shear and elongational viscosity are shown for a
rubbery elastomer. The interesting feature here is the constancy of n, as a function
of ¢, while the shear viscosity n shows shear-thinning behavior. Stevenson’s experi-
ment was one of uniaxial extension, and for 2 newtonian fluid one can show (see
Prob. 3-29a) that 5, = 34 The observation here is that 77, is equal to 37, , where 1,
is the low-shear-rate asymptote of the (7} curve. Depending on which function
one examines, it would be possible to conclude incorrectly that this fiuid is
newtonian.

The functions shown in Fig. 3-16 are all defined for, and measured in, steady-
stare flows. It is of interest to examine the response of a fluid subjected to some
simple transient flow field, too. We often find that the transient response is charac-
teristic of a fluid and so provides another means of rheological characterization
that is independent of the steady-state material functions. Furthermore, many real
flow processes involve a changing flow field, and simple transient flows provide a
means of modeling such processes.

The simplest transient flows are those defined by Egs. (3-92} and (3-96), with
the allowance that $ and é may be functions of time. The simplest function of time,
what we might call the simplest “ program ™ of transient deformation, is the step
Jfunction, defined by

@ 0 fort<0
Yo
or = (3-98)
it
i) 1 fort =0
ECO

and shown schematically in the sketch of Fig. 3-17. Of course, an exact step
change is an idéalization, but since that is just another name for model, we should
not be held up by such a reservation.

For this idealized flow, we may define a set of material functions which
characterize the behavior of a fluid subject to such a flow. In fact, we maintain the
defiitions of the four material functions of Egs. (3-93) to (3-95) and (3-97), but we
recognize that now these functions depend not only on the steady-state value of
the deformation rate {J,, or &) but these material functions are now functions of
the rime of deformation as well. Thus we find it useful to -use a slightly different
notation and define the stress-growth functions:

_ Tia(t o) !

nr(t, Fe) o (3-99)
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C g, = 1675
1675

Figure 3-18 Stress-growth [unctions ™ and
¥r, for 4% polystyrene solution. (After
Carreau.)

. Tt 7)) — Taalt, 3
;‘z(t, ?m) = 11( ¥ )?2 22( ?d}) (3_100)
¥J, in a similar manner (3-101)
and }7: (t, ém) — Tll(tr an) ._ T22(r5 Ec\o) (3_102)

Cw
with the understanding that Eq. (3-98) is part of this definition; i.¢., these functions
are defined only with respect to this particular flow.

Figure 3-18 shows stress-growth functions in shear. Qualitatively the most
important feature is the possibility of “overshoot™ of the steady-state stress.
Quantitative features of importance are the magnitude of the overshoot, the time
at which the maximum stress occurs, and the time at which stress equilibrium,
steady state, occurs. Each of these features provides a means of characterization of
the fluid. A general observation of stress-growth data suggests that the overshoot
phenemenon occurs at high deformation rates, whereas a monotonic approach to
the steady-state stress occurs at low deformation rates.

- Although less experimental data are available, similar results are observed in
transient elongational response, as shown in Fig. 3-19. The fluid is a melt of a
low-density polyethylene. Of interest is the long time required for this fluid to
achieve the steady-state stress level; at an extension rate of 1072 s7* the equili-
brium stress is not reached for 1000 s. If such a fiuid were being processed under
conditions that the deformation rate changed in time intervals smaller than
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1000 s, the fluid might never be in 2 dynamic steady state, and steady-state rheclo-
gical data, the type of data normally available, would be of no relevance to the
design of the process. (That was significant; read it again!)

Too few sets of data are available for elongational fiows to allow a conclusion
that the observations of Fig. 3-19 are common to a broad class of polymeric fluids.
Other material functions (e.g., all the “dynamic™ functions of linear viscoelasti-
city: dynamic viscosity, loss modulus, storage modulus, ete.) may be defined for
other types of simple kinematic situations. In some broad sense, alf these material
functions together help to characterize the behavior of a fiuid subject to some
deformation. From a practical point of view there are two questions that must be
answered:

L. For a given process, what material functions are most refevant (i.c., essential) to
the dynamic description of the process?

2. What types of constitutive equations characterize fluids whose behavior is
similar to that illustrated in the preceding figures?

We turn first to consideration of the second question, recalling that in order to
solve the dynamic equations we must have the T (or 1} dependence on the flow
field, through A, for example. Having the material functions defined above, or any
set, no matter how large, of material functions, still does not permit us to solve the
dynamic equations that wiil describe a specific flow process. The material fune-
tions only characterize the fluid in simple flows. The constitutive equations charac-
terize the fluid in any flow. (Read this paragraph again.)
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Constitutive Equations for Viscous Fluids

Let us assert, postulate, claim, insist, or otherwise hope that there exists a class of
fluids for which

Tfj = }'] Aij (3‘103)

where 1 is some scalar coefficient, but not necessarily a constant,

It is essential at the outset to understand the *philosophical status™ of
Eq. (3-103). It is a definition of a class of fiuids. As a definition one cannot quarrel
with it. We may wonder if such a fluid exists, but this uncertainty does not prevent
us from defining the fluid.

The Bohr model of the atom is a similar philosophical construct. The model is
net directly accessible to observation. But the implicarions of the model are con-
sistent with experience, and so the model proves useful. Thus one may define a
unicorn, and in the company of knowledgeable people should only expect to be
asked “ Yes, but is it a useful definition?” The question * Does the unicorn exist?”
is not quite precise enough.

Indeed we know that fluids of the class defined by Eq. (3-103) do exist. In the
simplest case, where the coefficient # is & constanz u, we have the newtonian fluid;

Tp=H A, (3-104)

Let us examine some special consequences of newtonian behavior in a particular
simple flow, plane Couette flow (PCF). Figure 3-20 shows the geometry of
interest,
We consider a flow such that w=T[u,t, ¥), 0, 0], subject to boundary
conditions
0 ony=0

U, = o on y=b fort=>0

and an initial condition
=0 on0<y=<bhatt<0

When Eg. (3-104) is used to replace =, and the continuity equation is used, the
dynamic equations take the form

Bu,  dp Ju,

L e 28 3-105
> G TH ay? ( )
g
0=—2F (3-106)
dy
- - U
T —
b
5 s Y,y
;;/ ¥
Figure 3-20 Sketch for analysis of transicnt
l l|'7 L—"x flow in simple shear.
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From Eq. (3-106) we find that p is not a function of y. If u, is not a function of
x, and if no pressure difference in the x direction is imposed on the system at the
boundaries, then p is not a function of x either. Then we must find u(r, y} as a
sclution to

du,  3u,
Pt =H ay?

(3-107)

subject to the boundary and initial conditions stated above.
Equation (3-107) is easily solved by the method of separation of variables, or
by use of the Laplace transformation, and the solution may be written in the form

ugt, y) = % —Ft. y) (3-108)

The solution has been separated into two parts: a transient term F which
decays to zero exponentially in time, and the steady-state term, which can be seen
to be linear in y. In most cases of practical interest the transient term vanishes so
rapidly that it need not be considered (see Probs. 3-14 and 3-13).

Let us examine, then, the implications of the steady-state solution

u
u, = =% (3-109)
b
It follows easily that the only nonzero components of A are
U
Ay =4, = i ¥ {3-110)

We call § the shear rate, and this definition is consistent with the more general
definition of Eq. (3-92). In short, PCF is SSF.

Then, since the stresses t1;; are proportional to the corresponding components
of A;; [Eq. (3-104)], the only nonzero components of t are the shear stresses

U
Tay = Ty = EB" (3-111)

This is the form in which Newton's law of viscosity is usually stated in elementary
treatments of fluid mechanics. The more rigorous defipition is through
Eq. (3-104), including the statement that u is constant.

The most important implication of these results is that there are no normal
stresses {apart from 2 uniform isotropic stress, pressure) developed in PCF of a
newtonian fluid. The importance of this point is that there are fluids for which
finite normal stresses are measured in PCF. Hernce, Eq. (3-104) is too restrictive.

Let us go back to Eq. (3-103). 7 was referred to as a scalar coefficient. What we
mean by this, specifically, is that # might be some function rather than, as in the
case of the newtonian fluid, a constant. In this case we would refer to 5 as the
nornewtonian viscosity, or the generalized viscosity, coefficient.
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Of what, then, do we expect  to be a function? Rather than try to justify some
expectation, we will assume that # depends only on the kinematics of the flow, as
defined through the components of A. But if # is a scalar function, how can it
depend on: a tensor?
 Consider first a simpler, more familiar problem. The kinetic energy of a point
mass depends on its velocity. Kinetic energy is not a vector; it has no direction
associated with it. It has only a magnitude and so is a scalar function of velocity.
But velocity is a vector. The resolution of this point lies in the fact that there is a
scalar function of velocity, namely, the scalar product

w=u-u=ul+ul +ul {3-112)

We have written u - u in cartesian coordinates, but we can show that the squared
speed u® is independent of a coordinate system. A function of a vector that is
independent of a coordinate system is called an invariant. Any arbitrary vector v
has associated with it a single scalar function given by v - v.

This fact should evoke the following question: Does a tensor have associated
with it any invariant scalar functions? The answer is yes: three.

It is possible to show that there are three combinations of the components of
A which are scalar invariants. They are

I.ﬁ:Au'
I, = A, A,
3-113
Ay Ay Ag (3-113)
I, = 1A,y Ay, Ayl =detA
A31 A32 A33

In Egs. {3-113) we use the summation convention on repeated subscripts. It is a
simple matter to show that

I,=0  for an incompressible fluid (3-114)

Further, for the case of PCF, one can show that, even if  depends on the kinema-
tics (see Prob. 3-18}),

TI, = 23 (3-115)
and M,=0 (3-116)

At least for the PCF example we see that the assumption that n depends in
some unspecified way on the kinematics can be replaced by the simpler relation

n = n(ly) = n(j) (3-117)

We note that even for a nonnewtonian fluid of the type defined above,  is a
constant given by U/b (ses Prob. 3-16).
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If we again go back to the dynamic equations, we will find that now the shear
stresses are given by

Tap == Ty = n(%) % (3-118)
and the normal stresses are still zero. Thus the nonnewtonian fluid defined by
Eq. (3-103) allows for a nonlinear relationship between shear stress and shear rate
but still fails to predict the normal stresses commonly observed in shear flows of
fluids which exhibit this nonlinearity in viscosity.

Because of the results developed above, we refer to Eq. (3-103) as a purely
viscous fluid. In an S8F, as defined generalily in Eq. (3-92) and as illustrated here
specifically for the case of PCF, a viscous fluid does show a nonnewtonian visco-
sity since, by definition, n may be a function of shear rate.

Then, in the spirit of the philosophical statements made earlier, we would
conclude that if normal stress effects are important, the purely viscous fluid is not
a useful model for the description of shear flows.

Of course, not all flows of interest are simple shear flows. We have already
considered the kinematics of a nonshear flow in Sec. 3-6—flow outside an expand-
ing bubble. There we found that A had no shear components, the only nonzero
deformation rates being in the “normal™ directions. Thus that flow was an
example of SEF [Eq. (3-96)].

In such flows, of course, the purely viscous fluid does predict normal stresses,
and indeed only normal stresses (see Probs. 3-21 and 3-22). It is essential to
recognize, however, that these normal stresses are viscous in origin, since they
clearly vanish in the absence of the viscosity function 7,

Let vs examine another means of introducing a nonlinearity into a constitu-
tive equation. Consider a constitutive equation of the form

t=1o A+ f A2 (3-119)

where 7, and § are constants, and where we define A? to mean the tensor whose
components, in cartesian coordinates, are

(A%); =8y Ay (3-120)

The effect of this kind of nonlinearity is most casily seen by considering the
SSF defined by Eq. {3-92), for which it is easily shown that

100
Alm*ﬁ’g (1) 8 (3-121)

It follows, then, that the stress tensor has components given by

Bi* mep O
v=lny fp* 0 (3-122)
6 0 0
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and we see that #, is still the viscosity, but now we find a finite normal stress
coefficient of magnitude ¥,; = f, while ¥,, = 0.

By analogy to algebraic problems we might be tempted to continue this
process and write t in a power series in A of the form

T=17y A+ A%+ x A’ + more powers of A (3-123)

However, it can be proved that any power of a tensor higher than second can
be written in terms of lower powers with coefficients that depend on the invar-
iants. For example, the cube of A may be written as

A =1, A2 11, A +1II, (3-124)

Hence Eq. {3-119) is the most general form of algebraic constitutive equation, and
it is clearly inadequate, since ¥,, = 0 is not observed in most of the fluids of
interest to us.

Algebraic constitutive equations are also clearly unable to describe transient
material response. For example, a fluid defined by Eq. (3-119), subjected to a step
change in shear rate, will exhibit a step change in stress and cannot show material
functions of the kind observed in Fig. 3-18.

We must turn, then, to models which allow for more complex dynamic phen-
omena. These models are grouped under the term viscoelastic fluids.

Viscoelastic Fluids

Perhaps it is best to begin at the end, with an admission of failure. There is no
constitutive equation which does a good job of predicting all the material func-
tions that characterize the variety of simple flows that are useful in polymer
process models. There are several constitutive equations which predict the beha-
vior of some of the material functions with great accuracy, requiring only a small
number of free constants to do so. Some of the “good ™ constitutive equations,
however, are relatively complicated mathematically. If they are used with the
dynamic equations, the resulting mathematical model is so complex that analyti-
cal solution is impossible, and numerical computation with a djgital computer is
so tedious as to not be worth the effort.

Thus one must learn the art of constitutive compromise. We must be able to
examine a flow process and judge which elements of the kinematics are most
essential to the behavior we wish to model. Then we must select a constitutive
equation which is most appropriate to describe the dominant type of kinematics
of that flow ficld. The resulting solution of the dynamic equations, for the veloci-
ties and stresses, must then be interpreted in light of the known weaknesses of the
constitutive equation used. Finally, experiernce—the comparison of prediction and
observation—must be the judge of success.

In contrast to the purely viscous models of the previous section, viscoelastic
models must characterize two (usually) essential leatures of real viscoelastic fluids:
the development of normal stresses in shearing flows, and transient phenomena of
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the type characterized not only by the stress growth functions #*, ¥'*, etc., but
including classical stress relaxation phenomena as well.
Since we have used the word classical, let us begin with the classical
viscoelastic model, the Maxwell model, expressibie in the form
dt;;

Tij'i'j-_‘“"'&?]o A

= i (3-125)

where 4 and #, are constants.
This model is useless to our goals, except as a conceptual link to more
adequate constitutive equations. It is useless because:

@ It predicts newtonian behavior in shear

@ It does not give normal stresses in shear

o Its transient behavior is monotonic in stress growth, contrary to experience at
all but the lowest shear rates

Furthermore, it is not correct mathematically. It is possible to show that the
ordinary time derivative é/0r of a tensor t is not a tensor!

The notion of time derivatives of tensors is a difficult cne, and the reader who
has not studied continuum mechanics may find the ensuing modifications of the
Maxwell equation somewhat mystical. Several appropriate references are cited at
the end of this chapter, but some relevant physical ideas can be introduced here
before proceeding.

The proef that 9z/¢t is not a tensor requires a firmer grounding in continuum
mechanics and tensor anatysis than is required for the rest of this text. It is not too
difficult, however, to suggest the nature of the problem of time differentiation and
the general method of its resolution. We can do this with a very simple example of
a mechanics problem.

Imagine the turntable of a record player, and suppose two nails are driven
partway inte and perpendicular to the top surface. Let one nail coincide with the
axis of rotation and the other be somewhere out toward the periphery of the disc.
Now we stretch a rubber band so that it loops over and connects the two nails.
The rubber band is in tension. We wish to describe the mechanical state of the
rubber band.

Since the ends of the rubber band are fixed, and if we assume the rubber to be
perfectly elastic so that no stress relaxation is allowed for, then it wouid follow
that the tension in the rubber is independent of time. Now suppose that we wished
to specify the tension in a coordinate system outside the material, fixed in the
laboratory. Figure 3-21 shows the situation, and if the orientation of the rubber
band is known, it is not very difficult to find the components of tension in the
laboratory coordinate system. The components T, and T,, are independent of
time, of course.

Now suppose that the turntable rotates at a slow speed such that no centrifu-
gal effects occur. Then the tension in the rubber band is unchanged. However, in
the fixed coordinate system we now find that the components of tension are cyclic,
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Figure 3-21 Sketch lor consideration of stress in a rubber band attached to a turntzble.

as suggested in Fig. 3-21b. For example, at the instant of time when the rubber
band is aligned along the y axis, there is no x component 7,,. Thus we have a
situation where 87, /0t vanishes in one coordinate system but not in another.

The resolution of the problem is obvious in this simple case: In transforming
from the coordinate system of the rubber band {which we might call a material
coordingte system) to the fixed laboratory coordinate system, we need only
account for the rotation of the rubber band with the turntable. In the more
complex case of interest to us, where we wish to specify the state of stress in a
continuously deforming continuous medium, we must also account in some way
for the deformation of the material when we transform from a material coordinate
system to the laboratory coordinate system. The difficulty lies in the fact that there
is no unigue mathematical way to do this.

In any physically meaningful mathematical statement certain basic principles
must be observed. Some of these principles are so familiar that we rarely think of
them. For example, we can only add terms if they are dimensionally consistent.
Neither can we add terms which have a different mathematical “ character,” so we
cannot add, for example, a vector and a scalar, Thus, if we wish to incorporate a
time derivative of stress in a constitutive equation, we must find a way of writing a
time derivative which preserves the physical idea of time rate of change while
having the required mathematical character.

Two such time derivatives have been used, each of whick has a somewhat
different physical interpretation. One is called the Oldroyd contravariant deriva-
tive, whose cartesian components may be written as

h dt;; dv;; du; Ju;

Et;j=a—r”+ukgc’:—rkj£—rma—xi (3-126)
It can be shown that the Oldroyd derivative gives the components, in fixed coor-
dinates, of the time derivative as observed in a coordinate system which translates
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with and deforms with the flow field. Hence it is sometimes called the codeforma-
tional derivative.

Another time derivative that Is a tensor is the Jaumann derivative, written in
cartesian coordinates as

at;; 97y :
5t G g~ et — oy (3-127)
The Jaumann derivative can be shown to give the components, in fixed coordin-
ates, of the time derivative as observed in a coordinate system which translates
with and rorates with the local rotation, as given by the vorticity tensor o defined
carlier by Eq. (3-47). The Jaumann derivative is sometimes called the corotational
deripative.
Thus it is possible to define a Maxwell model using the Oldroyd derivative,
for example, which has the proper mathematical character to it, in the tensor
format

D
A= Ho A (3-128)
ot
The more difficult question is whether the equation has a realistic physical charac-
ter to it.
For this fluid, then, let us find the stresses for the SSF, except that we will let y
be a step function of time, as in Fig. 3-17. Tt is not too difficult to show the
following results (Prob. 3-35):

Tya = Mfel(l — ™) (3-129)
Tll = 2?70 A'}}i[l - e_”}'(l + %)J (3‘130)
Ty, =0 (3-131)

In terms of the appropriate materiai functions:

nt =l —e™") (3-132)
¥, :2,1;70[1 - e-'“(I +%” (3-133)
¥ =0 (3-134)

Thus we find that the Maxwell model with the Oldroyd time derivative exhibits
the following behavior:

1" increases monotonically (as is true of the classical Maxwell model)
¥, increases monotonically, reaching equilibrium somewhat later than #*
¥, = 0 for all time (also true of the classical Maxwell model)
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Now we have transient behavior, characterized by a relaxation time A, but we
still fail to predict overshoot phenomena. We have “achieved " a finite ¥, ,, so we

have made some progress. The finite ¥, arises directly from the introduction of a
mathematically appropriate time derivative.

Asg an example of a model—building exercise, consider a “superposition” of the
two previous models, giving the constitutive equation in the form

t+kb—:=noA+,6A2 (3-135)
For the transient SSF we find

ﬁj,y )( = e—:f}.)_ﬁ’ﬁie—m

—?7(1+
¢ He A

(3-136)

Ho

vy, = [uno( Bf’z) - ﬁ](l ~ emY

2l oo

¥ =Bl — e (3-138)

Now we find that both ™ and ¥, overshoot their equilibrium values,
whereas W33 monotonically approaches a value equal to the parameter . On the
basis of experimental evidence cited earlier, we conclude that § is negative.

n™ reaches its peak value at a time given by

t No
- - 0 3-139
(z)”;u i (3-139)

Note that the time at which the maximum occurs decreases as the shear rate
increases, which is qualitatively consistent with experience,
¥, reaches its peak vaiue at a slightly later time given by

a2
SRR - AN

At equilibrium (i.e., steady state) we find the material functions are

BAy?
= = 3-141
n=no{1+5) (3-141)
Wi.= ?-A’i’o( 'BA?Z) -8 {3"142)
Ho
Vo= § (3'143)

Since f is apparently negative, both # and ¥, , show shear-thinning behavior. If §
is allowed to be large, both # and ¥, , become negative. This is clearly an artifact
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of the model, and it suggests that the results may only be reasonably valid for
“small™ shear rates.

The term small, in referring to the shear rate, is meaningless. It must be
interpreted relzative to some characteristic time for the fluid, such as 4, and the
appropriate restriction would be to small values of 47 (see Probs. 3-36 and 3-37).

Before we proceed, we should pause and recall our goal so that we do not lose
sight of it in the midst of the surrounding algebra. We would like to establish a few
constitutive equations that strike a compromise between complexity and utility.
Equation (3-135) is a relatively simple and relatively realistic equation. We make
that assertion based on the ease with which we can calculate some of the simple
material functions, and based on the fairly good qualitative agreement between
these predictions and our experience with polymeric fiuids, at least insofar as shear
behavior is concerned.

We can also examine the elongational response of a fluid defined by
Eq. (3-135), and find (see Prob. 3-38), for a step change in elongation rate ¢,

N _ L+ Béfng + 28y 1 — Biine [__ (1+ X&)rJ

3, (1—2a8)(1+ 248  3(1+4) A

21 +28¢n, (1 23é)
3 1-22 P i (3-134)

The steady state is approached monotonically in this fluid, and at steady state the
elongational viscosity function attains the value

e _ L+ Befno + 2884/n,
e (L —248)(1 + A¢)

(3-145)

The most significant feature of this result is the appearance of 4 finite elongation
rate, given by ¢ = 1/24, at which the elongational viscosity becomes unbounded.
The question of whether this specific feature of the model we are evaluating is
realistic is very difficuit to answer since so few reliable data for #, are available.

The data of Fig. 3-19, for a polymer melt, are not inconsistent with the tran-
sient [Eq. (3-144)] predictions but are too scanty to allow stronger confirmation.
Data which are clearly inconsistent with Eq. {3-145) are shown in Fig. 3-22 for
two different polymer solutions.

Since we are sometimes interested in processes where elongational fiow is
significant, by comparison to shear flow, we should be concerned about the use of
a constitutive equation that predicts an infinite elongational viscosity, even if we
recognize that the prediction could be an artifact of the model. The Maxwell
model with the Jaumann (corotational) time derivative modifies this particular
feature, and in the form

o
T+ 4 Yy

predicts that n, = 35,5, which is in agreement with some data (e.g., Fig. 3-164).

=1y A ' (3-146)
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Figure 3-22 Elongational viscosity of two aquecus polymer solutions. (Pearson.)

Whereas the corresponding Oldroyd-Maxwell fluid [Eq. (3-128)] gives a new-
tonign shear viscosity [# = #, from Eq. (3-132), at steady state], the Jaumann-

Maxwell fuid gives

—_ -
T T ) (3-147)
25,
and Wy e T+ ) {3-148)

While shear-thinning behavior is thus accommodated, neither prediction is
realistic quantitatively. The dependence of viscosity on 9 is not nearly so strong as

Eq. (3-147) would suggest. In fact, according to Eq. (3-147), the shear stress func- £

tion 7, ;(}) goes through a maximum at Ay = 1, and thereafter 7., is a decreasing
function of shear rate. Thus, while a finite elongational viscosity is predicted by a
Maxwell model with a Jaumann derivative, the predictions on » and ¥, , are so
poor that one would not choose Eq. (3-146) in preference to Eq. (3-128). Further-
more, the shear and normal stresses are predicted to approach steady state (under
a step change in shear rate) in an oscillatory manner, which is at variance with
observations.

What, then, does one choose for a constitutive equation? At the present time
the choice is made on the side of convenience with a modest nod toward realism.
The problem, basically, is that if one uses a quantitatively realistic constitutive
equation, and several are available, the resulting dynamic problem, consisting of
the continuity equation, the dynamic equations, and the ser of constitutive equa-
tions, forms a system of multiple, simultaneous, coupled, nonlinear partial differ-
ential equations, whose solution, except for nearly trivial flows, defies economical
solution by computer.
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The recommended compromise, at the time of writing this text, is the White-
Metzner modification of the Maxwell model, utilizing the Oldroyd derivative in
contravariant form, We write this as

T+ A(IIA)% = (L) A (3-149)

We take both A and » to be funcrions of the second invariant of the flow field, and
the usual assumption is to relate A to i through a “modulus™ G, so that

n
1=t -
5 (3-150)

with G assumed to be independent of deformation rate.
This fluid gives the material functions in steady shear flow as

n = n(ll,} (3-151)
2

= — -152

‘}’12 G (3 %5-)

¥,;=0 (3-153)

with # an unspecified function of 1I,. Thus we can select a function » from data
and guarantee realistic shear-viscosity behavior. Furthermore, the prediction that
¥, , & n? is found to be in good agreement with data for several materials. Since
¥, is observed to be small in many materials, the prediction of a zero value may
not be a major drawback. Regardiess of the functional choice of y, the elonga-
tional viscosity 5, will still become unbounded at ¢ = 1/22, so long as the Oldroyd
derivative is used.

A common choice of a functional relationship for shear viscosity is the power
law, which we may write in the form

7= KL )n 12 (3-154)

This is & two-parameter model which reflects the observation that at high shear
rates the viscosity function, when plotted on double-logarithmic coordinates (as in
Fig. 3-164, b), is nearly a straight line. If the low-shear-rate region must be accom-
modated, a simple empirical three-parameter model of the form

— o
T T Rino) G

(3-155)

may be used. It should be apparent that at large values of I, Eq. (3-155) yields the
power law as an approximation.

We end this discussion of constitutive equations by offering some remarks
relevant to the guestion ** How do we decide between using a purely viscous model
and a more complicated viscoelastic model?™ In a loose sense the answer lies in
evaluating the relative importance of elastic and viscous effects. If rheological data
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are available for the fluid of interest, then one can calculate the ratio of elastic
Stresses to_shear stresses:
T -7
Sp = 11 22

= T (3- 156)

In this particular format the ratio defines what is called the recoverable shear Se.
{The factor of 2 in the denominator is arbitrary but is usually included.) Of course,
the rheological data that aliow calculation of S, would be taken in steady simple
shear, so it is not clear that S would be a relevant parameter for any other type of
flow.

As a rough rule of thumb, we may usually conclude that if 5, is much smaller
than unity, then elastic stresses are unimportant relative to shear stresses, and a
purely viscous constitutive equation may be adequate to describe the behavior of
the fluid, if the process involves shear rates comparable to those at which Sg is
measured.

It is interesting to examine Sy, as predicted by viscoelastic models such as have
been described above. We note first that we may write S, as

Wiy
. :_217 (3-157)

For an Oldroyd-Maxwell fluid we find [Eqs. (3-141) and {3-142), with § = (]
Sp=Ap (3-158)

For a Jaumann-Maxwell fluid [Eqgs. (3-147) and (3-148)] we find the same result.
Thus, another criterion that is useful in deciding whether viscoelasticity should be
considered is in terms of the product of a relaxation time for the fiuid and a

- characteristic deformation rate for the process, If 17 is small we may expect elastic
effects to be of minor importance.

. One virtue of a criterion in terms of A, rather than in terms of S, is that the
normal stress data required to calculate S are often not available, especially at
high shear rates. On the other hand, an estimate of a relaxation time is often
available from dynamic mechanical (linear viscoelastic} studies of polymeric
materials, which are more commonly carried out than are normal stress studies.

For steady flows, in both the eulerian and lagrangian sense, the product of
relaxation time and characteristic deformation rate is often referred to as the
Weissenberg number, Ws. We shall have occasion to refer to the Weissenberg
number again. In the case of unsteady flows the growth and relaxation response of
the fluid may be of major significance, and a characteristic parameter may be
formed from the ratio of the relaxation time of the fluid to some appropriate time
scale 8, of the deformation. This is usually referred to as the Deborah number,

A

De =
eQD

(3-159)
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If 0, < A, the fluid will not have time to approach its steady response, and relaxa-
tion phenomena may dominate the process. Steady-state data may be of prac-
ticaily no relevance to the modeling of such a “ rapid deformation,” and a purely
viscous model would not likely provide a reasonable constitutive equation.

PROBLEMS

3-1 Comsider PCF generated between two infinite parallel plates, one of which moves relative to the
other in its own plane. Let x| be the direction of motien, x, the cocrdinate normal to the plates, and x;
the coordinate in the plane of the plates but normal to x,.
Assume that u= {4, 0, 0) {i.c, the flow is unidirectional), and further assume that «, is not a
function of x,. Assume the system is at steady state. Assume constant density, and neglect body forces.
Using the physical principles of conservation of momentum and mass, show that the stresses T,
are, at most, linear functions of the coordinates x, and x,.
3-2 Derive Eq. (3-38) [rom Eq. (3-36) by using Eq. (3-29). Is incompressibility assumed?
3-3 {a) Derive the continuity equation in cylindrical polar coordinates, related 1o cartesian coordin-
ates by

-
i

rcos r= (x4 )2
. ¥
y=rsinf f = arctan -
X

The appropriate control volume is shown in Fig. 3-23.
{) Reduce the continuity equation derived in part a to its appropriate form in the case of
constant density.

{r + dr) ol
rf[z
-
'
y
’
//‘l“‘dﬂ N dr/\
/, \’ ”’ W
/1 - -
) S ”“’ r/
& : Figure 3-23 Volume element for cylindrical polar

coordinates.

3-4 {a) For laminar fiow along the axial direction within a circular tube of constant cross section,
assume that u = (1, 0, 0), that is, &, = ¢ and 4, = 0, Further, assume axial symmetry, which means
that u does not depend on f. Show, using the continuity equation, that & consequence of these
assumptions is that u, is a function only of the radial coordinate r.

(f) Using the above results, write the dynamic equations for steady-state laminar flow in a
circular tube, and prove that if T, is at most only a funetion of z, then T, is a linear function of r and is
independent of z. You will need the assertion that 77 is finite at r = Q.
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3-5 (a) Consider the same flow as in Prob. 3-4. Let 7, be the value of T_at the boundary between the
fAuid and the tube ie. at r= R. Let P, and P, be the pressures at z = 0 and z = L. respectively.
Making an axial force balance on the boundaries of the fiuid, along the surface # = R and on the
surfaces - = 0, z = L, show that

MR(P()_PL)
TR——T

(b} Under what conditions is this result compatible with the result of Prob. 3-45?
3-6 A spherically symmetric air bubble is growing within a large body of fluid. The bubble growth
is characterized by the rate of growth of its radius R. Assume that the flow in the fluid outside the
bubble, ie, in the region R(¢) < r < oo, is spherically symmetric. Then, taking u = (u,, 0, 0}, show that
RR?

v 3

»?

follows strictly from kinematic considerations.

3-7 Consider the flow defined in Fig. 3-9 and discussed therein. Assuming no angular velocity,
Uy = Uz = 0, and rotational symmetry, 8/86 = 0, write the dynamic equations and the continuity
equation for both fluids, along with the appropriate boundary conditions. Assume a steady-state flow,
3-8 Derive Eq. (3-87)

3-9 Give a physical interpretation of each term in Eq. (3-88).

3-10 Consider the relative importance of the terms in Eq. (3-88). Are there conditions under which
inertial effects are much smaller than viscous effects? To answer this, assume that R/R, = k = constant,
where R is the bubble radiuvs at time r = 0, and k is the “ growth rate.”

With this assumed model for the bubble kinematics, calculate the inertial terms and the viscous
terms and compare them by examining their ratio. Show that a dimensionless combination of the
parameters that characterize this problem provides a number whose size determines whether viscous
or inertial [orces dominate the dynamics. Restrict your * investigation ™ to times small enough that the
bubble has not doubled in radius,

Make z similar comparison of the viscous terms to the surface tension terms.

3-11 For the case in Prob. 3-10 that /R = k, find the components of A ir: spherical coordinates. If we
define A as the strain rare, find the relationship of the growth rate & to the strain rate.

3-12 An air bubble of initial size Ry = 0.1 cm grows at a constant rate & such that R/R, = 2 at time
t = 0,1 s, The liquid surrounding the bubble has a viscosity y = 10 P and a surlace tension ¢ = 50
dynes/em, Take the liquid density as 1 g/em?, Take p,, =0.

Find the pressure (in psi) inside the bubble as a function of time. Plot P versustfor0 =1 £ 0.5 s

Does the pressure depend strongly on ¢ ? {If ¢ were in error by 50 percent, what change would this
cause in P?)

313 Work Prob. 3-12, but do so for the case where the liquid viscdsity is only 1 P.
3-14 Find the function F in Eq. {3-108) by selving Eq. {3-107).

(_])n-n

9 x Lo 22
Answer: F== 3 sin ——:lexp(—nn‘u)
o=

ab?

3-15 (a) Using the solution in Prob. 3-14 for F, show that a useful criterion of the time required to
(nearly) achieve steady state in PCF is t* = ¢, where ¢, = pb¥/u is a viscous relaxation time,
{#) How long a time is required to achieve steady state if b = 1 ¢m, p = 1 g/em?, and = 10 P7
(¢) What would the viscous relaxation time be if & = Q.1 ¢m, g = 1 g/em?, and x = 1000 P?
316 Show that the linear velocity profile in PCF at steady state is achieved lor nonnewtonian fluids of
the form of Eq. (3-103) so long as  is 2 function only of the components of A,
3-17 Consider a velocity field defined by w = xi — yj, where i and j are unit vectors in the x and y
directions. -
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{a) Write the components of A in cartesian coordinates.

(&) Write the three invariants of 4.

{c} Transform v to plane polar coordinates.

(d) Write the components of A in plane polar coordinates.

{#) Using the components of A [rom part d, repeat part b and verify that the results are inpariant
to coordinate system.
318 Consider a flow for which u = [u,(x,). 0, 0] and show that Egs. (3-114) te (3-116} nold. Assume
incompressibility.
3-19 Consider a flow for which v = [u,{x,). 0, u3{x.)] and calculate the invariants of A. Assume
incompressibility.
3-20 Calculate the invariants for the incompressible flow outside an expanding spherical bubble, Use
Eqgs. (3-77) and {3-78) [or the velocity field.
3-21 For a fluid defined by the power lawt = 7 A, where = K |41, |*~*¥? and K and » are constants,
find the pressure to expand a bubble at a constant rate R/R = k. Neglect surface tension and inertial
terms.

Answer: Pp, =

LD NP
n

3.22 Consider uniaxial stretching of a-cylinder, as shown in Fig. 3-24, Assume that R(r) is independent
of o

7
r -c—-—l
z Lit)
A(r) =~ }*-
7 l 3
U Figure 3-24 Uniaxijal stretching of a cylinder of viscous fluid.

{a) Using only the condition of conservation of mass, show that the velocity field is “simple
elongation,” and
Uz Ur

u:zz(—r-j u,_—z—m

(b) Give the components of A for this flow,
{c) Calculate the invariants for this flow.

() Neglecting surface tensien and inertia, ealculate the force F required to pull the cylinder for a
newtonian fluid.

(e) If F is constant in part 4, how does L change in time?

(f) How must L be programmed, ie., give L(t), such that the components of A are independent of
time? Is this result true only for newtonian fluids?

{g) Rework (d) and (e) for a power law fluid, as defined in Prob. 3-21.

323 A “blow-molding™ process requires the expansion of a “balloon™ of molten polymer, as sug-
gested in Fig. 3-25. As a model of this part of the process, consider the expansion of a spherical balloon
of inside radius R(r) and wall thickness W. Assume the fluid is newtonian, ignore inertial effects, and
neglect surface tension. Assume zlso that W < R.
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Air supply

Figure 3-25 Blow molding: The balloon of moiten pelymer is
Pressure release expanded until it fills the mold cavity,

Show that the inflation pressure is given by
RW
P=p, + 12u——
Py *ER

and further, that

Il

Bl =
=] B

3-24 Rework Prob. 3-23, but assume that instead of a spherical balloon the appropriate geometrical
model is that of a cylindrical tube which somehow remains a uniform cylinder during its expansion,
without any change in length.

A P + 4 Rw W _-R

PP = I —— —_ e
nswer Pt i

3-25 A spherical balloon of polymer is expanded under constant pressure of 115 psia against the
atmosphere (15 psia). The fluid may be considered newtonian, with a viscosity of 10% P and a density
of | g/em?. Take the initial values of the dimensions to be Ry = 2 in, and W, = § in.

Plot R versus t up to the time when R = 6 in, (Hint: Begin with the assumption that /R is some

constant, and show that this assumption is compatible with the dynamic and kinematic selutions given
in Prob. 3-23)

3-26 An estimate of the rate of deformation is desired [or the processes described in Probs, 3-23 and
3-24. For each process calculate the stretch-rate magnitude, defined as

Give the results in terms of the kinematic variables only, Le., in terms of R/R. Show that, lor SEF
[as defined by Eq. (3-96]], the definition of ¢ above is consistent with the definition of ¢ in Eq. (3-96),
3-27 What is the velue, in units of s™1, of ¢ [or the process of Prob. 3-25, as a lunction of time?
3-28 Rework Prob. 3-23 [or a power law fiuid as defined in Prob. 3-21.
329 For the foliowing flows, calculate the elongational viscosity, defined as

TII‘T::
):l('=_-----«
1A,

using the newtonian constitutive equation t = g A,
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Take the kinematics to be steady state, that is, A independent of time.

{a) Uniaxial stretehing of a cylinder (Prob, 3-22),

() Flow outside an expanding spherical bubble [use Eqs. (3-77) and (3-78]].

(e) w=2tlx,, —xy, —dx,)

{(d) Expansion of a ballocn (Prob. 3-23).

(¢) Expansien of a tube of constant length (Prob. 3-24). This problem is not one of sinple
elongation. The kinematics are called planar extension when ;

2 0 ¢
A=i|0 =2 4
0 v G

3-30 For the data shown in Fig. 3-26, which were obtained by Stevenson in uniaxial stretching of a
cylindrical sample of elastomer at constant elongation rate, calculate 5, at each stretch rate.

F=28x%x10 357
o © o Q0

d=15%10 35!
OOQOOO
oO

T, $10% dynas/em?)
S

& Figure 3-26 Data for Prob. 3-30,

3-31 Using the solution given in Prob. 3-14, caleulate #* for PCF of 2 newtonian fluid.

3-32 The Maxwell model is dispensed with in the text following Eq. (3-125) with such brevity as to
avoid any charge of cruelty. Yet it is beloved (il one judges on the basis of attention) by large groups of
ctherwise sensible polymer scientists. Comment on the difference in goals of the polymer physical
chemist and the polymer process {chemical) engineer, and justify the concern (or lack thereol) of each
with regard to the Maxwell model.

3-33 Find A? [Eq. (3-120)] for SSF and lor SEF.

3-34 Equations {3-128) and (3-127) are valid as definitions of time derivatives ol any second-order
tensor (in cartesian components). Replace © by A in those definitions, and find the components ol each
time derivative of A for two cases: SSF and SEF. Compare the results with A from Prob. 3-33.
3-35 Establish Eqgs. (3-129) to {3-131).

3-36 It is sometimes useful to rewrite algebraically complicated equations in terms of dimensioniess
variables and parameters. Rewrite Egs. (3-136) to (3-138) in terms of the lollowing:

A dimensionless time: T= 3

A dimensionless shear rate: T' = 15

A dimensionless parameter: B = —E
o
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Now, prepare a set of graphs of
na- -+
— versus T and L2
Ho 2n,
forC=01,1,2and 8= —0.1, =0.5

" 3-37 Using the same variables as in Prob. 3-36, plot the steady-state values of n/7, and W, /24n4 a8
functions of T, with B as a parameter. Use B = —0.1 and —0.5, and carry T out to the point that
e = 0.1.

3-38 Using Eq. (3-135), calculate 7., and plot n,/3n, versus E = i¢, with B = B/An, as a parameter.
Plot o7 /3n, versus T for E = 0.1 and 0.4. :

3-39 Derive Egs. {3-147) and (3-148), and find. in addition, the [unction ¥, for the Jaumann-Maxwell
fluid [Eq. (3-146)),

3-40 Find n, for the fluid defined by Eq. (3-149}, with 5 given by Eq. {3-155) and A by Eq. {3-150). Is
dy, fddt positive for all choices of material constants?

3-41 Repeat Prob. 3-40, but usc the Jaumann derivative in Eq. (3-149). Give a qualitative sketch of a
double-logarithmic plot of n, versus 7,

3-42 Find the transient shear functions n*, Wi and Wi, for the Jaumann-Maxwell fiuid
[Eq. {3-146)).

versus T
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CHAPTER

FOUR

DIMENSIONAL ANALYSIS IN DESIGN AND
INTERPRETATION OF EXPERIMENTS

A circle may be small, yet it may be mathematically as beautiful and perfecr as a _
large one.

Disraeli

In many polymer processes the geometry of the boundaries is so complex that it is
not possible to obtain analytical solutions to the dynamic equations, even for the
newtonian fluid. Numerical solutions, using the digital computer, may likewise be
impractical in terms of time and expense. (We note that the reservation on * time,”
in this case, refers principally to programming time. A complex problem, of a type
which has some novelty to it relative to the experience of those who take TeSpon-
sibility for its solution, may easily require several person-months for the develop-
ment of a working programming scheme.) In many cases, especially when the
process of interest becomes “ pathoiogical ™ while in production, some kind of
analysis is required within a refatively short time span. Often a well-designed
experiment can provide suitable answers with regard to questions of design and
operation,

Especially in the case of process equipment which is in active commercial
production, it is often impossible to do experiments with the actual system of
interest. Likewise, cost and time considerations may make it impossible to pur-
chase or build an identical system. One often turns, then, to experiments with scale
models. In this section we examine rational methods of designing and interpreting
experiments carried out on a physical scale different from that of the real system of
interest.

69
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4-1 THE PRINCIPLE OF DYNAMIC SIMILARITY

Suppose we have & fluld characterized by a viscoelastic model of the form
t+lb—=r70A - (4-1)

where we take 4 and 1, to be constants. We may write the set of dynamic equa-
tions in the vector notation [Eq. (3-42) modified slightly by introducing  for T
and using, as the body force, the gravitaticnal acceleration g].

Du
e Vp+ V- 4.2
oy p T+ pg (4-2)

and the continuity equation is, assuming incompressibility,
V-ou=10 4-3)

Our first goal is to rewrite this set of equations in terms of dimensionless
variables. This is done by first selecting a set of characteristic purameters of the
specific part of the system that is being modeled. Usually the system is charac-
terized by geometric and kinematic parameters. Some length scale L is usually
selected as a geometric parameter. Typical choices might be the diameter of a tank
where a fluid is being mixed, or the separation between the “lips " of a die through
which fluid is being pumped. For a kinematic parameter one often selects a
velocity U that characterizes the system, such as the linear velocity at the tip of an
impelier stirring a fuid, or the average velocity through a die. We shall see that so
long as L and U are well defined, the choice is not critical.

Let us assume, then, that some choice of L and U has beer made. We define
the following dimensionless variables:

All space variables are divided by L. If cartesian coordinates are used, for
example, then the new variables become

, X
X' =—
L
=7 or =X tor fi t
y == X = —1n Vector [orma
iy L L
-t z
L

All components of velocity are divided by U, so that a dimensionless velocity
becomes
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A dimensionless time is defined as

, Ut

L

All components of stress are made dimensionless by dividing by 5, U/L, while
pressure is normalized with pU2, with the result that

._ P

P ‘“‘pUz
T

[ = p——
ne U

Then & dimensionless rate-of-deformation tensor A’ takes the form

L
Al =—A
U

Vector differential operators like V, which involve terms of the form 8/8x, etc.,
become dimensionless by

V=LV
If the steps outlined above are carried out through all the terms of Egs. (4-1)

to (4-3), 2 new set of dimensionless equations may be written as

ot

CFWs oo = A 4-4
Tk Ws (4-4)

D 1 lg
—_— = — Vf + - Vf . ' —— 4~5
Dr PR T T Ee, (+3)
Vi-u=0 (4-6)

The following dimensionless groups (other than the dependent and indepen-
dent variables) now appear:

© A Weissenberg number, Ws = UJ/L, which ir a loose sense is a ratio of elastic
stresses to viscous stresses in the flow.

® A Reynolds number, Re = pUL/n,, which may be seen (again, loosely) to be a
ratio of inertial stresses {convection of momentum) pU? to viscous stresses
1o U/L. .

@ A Froude number, Fr = UZ/gL, which gives a measure of the relative impor-
tance of inertial effects to gravitational effects. In the Froude number, the
magaitude of g appears, and g/g is then a unit vector in Eq. (4-3).

No dynamic problem js completely defined solely through Eqgs. (4-1) to (4-6).
The boundary and initial conditions must also be considered, and when they are
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made dimensioniess additional groups may appear. For example, if surface ten-
sion appears in & boundary condition, a Weber number We = p U2L/o will appear
in the dimensionless boundary conditions. If a flow involves a pair of fluids, then
two sets of equations of the form of Eqgs. (4-1) to (4-6) are required. Usually one
uses the same U and L for both sets of equations and finds a pair of Reynolds
numbers and a pair of Weissenberg numbers. Depending on the boundary condi-
tions at the interface between the pair of fluids, one will usually find a ratio of the
two viscosities, and possibly a ratio of the relaxation times, appearing in the final
formulation of the problem. In addition, purely geometric dimensionless par-
ameters will occur through the boundary conditions, such as the ratio of length to
width of a die, or the ratio of length to diameter of a pipe, or the ratio of impeller
diameter to tank diameter in a mixer.

Now we make a deceptively simple, but very important, statement. The
dependent variables of the set of Egs. (4-1) to (4-6) depend only on those indepen-
dent variables, and those parameters, that appear in the equations and rhe boun-
dary conditions. Hence we can write

v = t(x, t'; Re, Fr, Ws, geometrical parameters, and any other dimensionless
groups that enter through the boundary conditions of the specific
problem) 47

and likewise for v’ and p'.

The significance of this idea is the following. Suppose we subject two fluids to
“similar processes.” The word similar is to be taken in its usual meaning but also
specifically to imply geomerric similarity of the boundaries of the system, such as
the shape of the mixing element in the two systems or the shape of the die through
which the fluid is moving. The scale, i.e, the size, may be different, but the shape
must be the same. The latter is guaranteed if dimensionless geometric parameters
are the same in both systems.

Suppose we choose corresponding characteristic parameters U and L for each
system. By corresponding we do not mean having the same magnitude but rather
that, apart from the fact that the scale of the two systems is different, the definition
of U and L is the same in the two systems.

Suppose, further, that the two fluids are describable by the same form of
constitutive equation. Again, we allow for the possibility that 5, and 4 may be
different in palue in each fluid, but the form of applicable constitutive equation
must be the same. .

Each system is then completely defined by a set of equations of the form of
Egs. (4-1) to (4-6), and each solution satisfies Eq. (4-7). Il all dimensionless par-
ameters are identical in the two systems—not just the geometric parameters but
also the dynamic parameters such as Re and Ws—then we say that the two
systems satisfy dynamic similarity.

Qur final statement, which follows directly from Eq. (4-7), is that the depen-
dent dimensionless variables are identical in dynamically similar systems.

Thus, while a solution of the appropriate equations may not be possible, we
are assured that if an experiment is performed on some system, that experiment
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gives information about dynamically similar systems. This principle of dynamic
‘similarity can then be used in the design and interpretation of experiments with
scale models of process equipment.

'4-2 SOME APPLICATIONS

Pressure Drop for Flow through a Film Die

Preparations are being made to produce film by extruding a molten polymer
through a film die 10 ft in width. The die has not yet been delivered by the
manufacturer, but to design a control system for the process it is necessary to have
a good estimate of the expected relationship between pressure drop and flow rate
through the die. The internal geometry of the die is quite complex, and it is not
likely that a mathematical model can be developed in a short period of time which
can estimate pressures with better precision than a factor of 2. The decision is
made to perform a series of experiments with a scale model of the die. We wish to
examine some problems associated with design and interpretation of suitable
experiments.
The following physical property data are available:

© The fluid may be characterized by Ea. (4-1), with n, =80 P, 1 = 0.01 5, and
p=1g/em? -

® The model die is one-tenth scale of the full-size system.

@ Expected flow rates in the full-scale system are such that the linear speed of
extruded melt at the die exit is in the range of 10 to 100 cm/s.

Boundary conditions on this flow would specify no slip oa the interior sur-
faces of the die. Only geometric dimensionless groups (shape factors) would
appear in such boundary conditions.

It is usually the case that gravitational forces play no role in the dynamics of
this kind of extrusion process. Hence ne Froude number similarity need be
considered. .

Since the model die is “ to scale,” this implies geometric similarity. To ensure
dynamic similarity, then, it is necessary to perform experiments in the model that
match the Reynolds and Weissenberg numbers characteristic of the full-scale flow.

Let us choose L to be the width of the die, 300 ¢m in full scale and 30 cm in
model scale. For the characteristic velocity U we will use the linear speed of the
extruded melt.

We can make the following calculations of the expected range of Reynolds
and Weissenberg numbers at full scale:

15 L I3 Mo i Ws Re

10 300 1 80 0.01 0.00033 313
100 300 1 80 0.01 0.0033 375
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Suppose we inquire into how we design a one-tenth scale experiment to have
the same range of Ws and Re. We require, at the lowest flow rate,

Re = ZX0 _ 375 (4-8)
Ho
Ws = %’5 = 0.00033 (4-9)

We have already fixed L at 30 cm. Hence we must pick values of U, 4, and 5 /p to
satisfy Egs. (4-8) and (4-9). (Since p for most liguids of interest has such a small
range of variability, its exact value is not a very important factor, and we simply
incorporate p into the viscosity. 1o /p Is called the kinematic viscosity.} Since we
have two equations which constrain these three variables, there is no unique
“solution,” no unique set of experimental conditions which will give dynamic
similarity.

The situation is somewhat more complicated than this latter comment would
suggest, however. If we divide one constraint by the other, we find

Re Dy

— = 1.125 x 10° -
W 3 = 125X 10 (4-10)

Since L is specified to be 30 cm, this gives
l%:%x 10-3 @11

The significance of this result is the fact that 1 and #, /p are not independent;
they are constrained to satisfy Eq. (4-11). Since both 4 and 1o /p are rheological
properties of a fluid, it is not at all obvious that one can find any fluid with
properties that satisfy Eq. (4-11}. In particular, it is obvious that the actual fluid of
interest cannot be used, since for that fluid

2Mo _001(82) =8 x 1071
I/

Let us suppose that three fluids are prepared, and a series of experiments
(pressure drop versus flow rate) are carried out in the scale model. The (hypotheti-
cal) results are tabulated in Table 4-1.

The pressure drop versus flow rate data have been normalized so that we can
plot AP/pU? versus Re, with Ws as a parameter. Figure 4-1 shows the results.

At the extremes of the full-scale process (Re, Ws = 37.5, 3.3 x 10”% and Re,
Ws =375, 33 x 107%) we can locate “operating points™ with reasonable
confidence, since we have closely matched the Re, Ws range in the model experi-
ment. We have arbitrarily chosen an operating point at an Re of 150 (correspond-
ing to U =40} for which Ws is 13.3 x 107* The closest Ws in the model
experiment was 16.5 x 107* We have located our best estimate of the expected
AP/pU? by assuming that the value would be above the “data” for
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Table 4-1 Results of experiments in scale model of die*

U W*AP 10°Ws  Re 0% AP/pUR

n=1t 1 1 0 30 1
. 2 2l 0 60 0.52
i=0t 5 48 0 150 0.19
10 9 0 300 0.09
n=l 1 0.5 33 30 0.5
2 0.96 6.6 60 024
A=001 5 2.4 165 150 0.096
10 40 33 300 0.04
# = 0.5 1 0.3 13 60 0.3
2 06 66 120 0.15
i=001 5 15 16.5 300 0.06
10 30 33 600 0.03

* All units in cgs. L = 30, p = { in all experiments,
T Newtonian.

Ws =165 x 107* but below the extrapolation that would pass through
Ws = 6.6 x 107*

From these results, then, we estimate that the pressure drops would be as
shown below:

Full-scale system—predicted results

U Re 10* Ws 10* AP/pUS? 10° AP
10 37.5 33 0.42 42
40 150 133 G.12 192
100 375 33 0.036 360
I ] I I
1
I 3.3 =
@\3.3
= 6
E_ . & \\ -
Q
2 g0 bl
T 185"
16.5
= a3 Figure 4-1 Pressure drop versus flow rate data
~&33 [rom Table 4-1, plotted in dimensionless form.
L 3 Numbers within the figure represent values of
10* Ws: the decimal point represents the particular
10-2 ] | 1 ! datum point. Large shaded circles represent the
10 102 107 extremes and oncintermediate point of the Mull-scale

Re operation,
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vl
4

[ 1 Figure 42 Geometry of a tank of fiuid draining through the
——IdL—— outlet pipe.

Draining a Large Tank

After a batch reaction a polymerization tank is to be drained. As material is
pumped out through the bottom pipe a vortex may form at the surface. When the
level H is low, the vortex may be sucked into the pipe, entraining air. This must be
avoided (see Fig. 4-2).

We wish to find the minimum liquid level H* before air entrainment as a
function of the volumetric drawoff rate Q by performing a model study. The
expected full-scale operation is characterized by

@ = 50 to 100 gal/min

p=1gml

=100 P, and the fluid may be considered newtonian
D=10ftandd =11t

Design a model experiment using a 1-P oil as the model fiuid. Take
g =1 g/ml for the oil.

In this system the vortex shape may depend on gravity, so we should expect to
have to deal with both the Reynolds number 2nd the Froude number. While there
is a free surface in this problem. we know from experience that surface tension
effects will not be important in a large-scale system. {The radius of curvature
would be too large to give rise to any significant pressure effect.)

If dynamic similarity is attained between the model and the tank, then we
expect that

H* H*
5,05
D model D ank
when Remodcl = Relnnk (4'13)
and Frmodcl = Frmnk (4-14)

We will use D as the characteristic length scale in this system. For a linear
velocity U we could use the mean velocity in the drawolf pipe.

-

v= nd?

(4-15)
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It will be simpler, however, to define U as

Q
U== -
B (4-16)
The difference between these two definitions is clearly that
.0 D4 i
U= DAL= kU (4-17)

The constant k is just 4D?/rd?, which is just some pure number dependent on the
shape of the tank. If we have geometric similarity then & will be the same in both
the tank and the model. Hence we can arbitrarily use Eq. (4-16) for the definition
of U. Furthermore, we do not have to use a consistent set of units (i.e., we can use
gallons, feet, and poise) so long as we use the same units to describe both the
model and the tank, because this will again only introduce scale factors, this time
as conversion factors.
Hence we will define Re and Fr as

-2 )
Re = Do, {4-18)
Fr= g—z (@-19)

{Note that since g is the same in both systems, we wiil drop it from the definition
of Fr.)
At 100 gal/min, we find
100(1)

ok = e = 0,10 4-20
Reunk 10(100) 0 1 ( )

(Note that because of inconsistent units the magnirude of Re is meaningless.)

(1002

P = gy

= 0.10 (4-21}

We are apparently constrained to use a model fiuid for which #, =1 P. For
convenience let us suppose that we build a scale model with D = 1 ft. To achieve
an Re of 0.10, then, we need to use a O of [see Eq. (4-18)]

_ DrgRe _ 1(1)(0.10)

¢ . 7

= 0.1 gal/min

But then

2 (0.1)?
Frmodnl = % = ((l)z =001

which is not the same as the Fr,,,,. What happened?
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We cannot arbitrarily fix both the size of the model and the viscosity of the
fluid. Since there are two constraints to be satisfied [Eqgs. (4-20) and (4-21)], we
must Jeave two variables unspecified initially, Thus, from the equations, D and Q
must satisly

2 = (4222
By =01 (4-22)
%—: = 0.1 (4-23)

If 5o /p is specified to be I, then there is a unique solution of this pair of equations
namely,

y

D=10"13 1 @ = 107*2 gal/min

Thus if we are constrained to use a fluid for which , /p = 1, then we must use a D
of 0465 ft and a Q of 0.047 gal/min to simulate the tank conditions at
100 gal/min.

At the lower flow rate of 50 gal/min we have

BQ??% = 0.05 (4-24)
% = 0.025 (4-25)

For no/p = 1 we find D = 0.465 I, as before, and Q = 0.024 gal/min to simu-
late the tank conditions at 50 gal/min. We can make similar calculations at inter-
mediate fiow rates.

Thus the experiments should be performed in 2 model of D = 0.465 ft at
drawoff rates in the range 0.024 < 9 < 0.047 gal/min. The relationship between
- the observed H¥ ., and the expected H¥,_, is then, from Eq. (4-12),

tan

D

Hiw = —ak H:odcl (4‘26)
model
10 bl ®
or Hl»:mk = e B edel = 2]"Slﬁ-j'modl:l

0465 "

A potential problem, that cne m\igh; anticipate from physical intuition but
that cannot be inferred from the mathematical analysis, is in the probability that
HE g may be quite small and hence subject to significant error in measurement.
For example, if H¥ .., is 0.5+ 0.125 in, the predicted Hit.« is approximately
11+ 3 in. In a 10-ft-diameter tank an uncertainty of 3 in in depth involves a
significant mass of fiuid, and the degree of uncertainty may be unacceptable. Such
& problem will arise any time the scale factor between the model and the real
systern is very large.
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Friction Factors

For fiow through dies and conduits the principal information requifed is often the

pressure drop as a function of flow rate. From Eq. (4-7), it follows that such

information may be cast in the form

' AP
pU? ™

F(Re, Fr, geometrical parameters, ...)

Depending upon the form of constitutive equation, additional groups such as
Ws may appear. The function F is not given through the principle of dynamic
similarity; we enly know that AP/pU? depends on several dimensionless groups.

In some relatively simple cases it may be possible to obtain further informa-
tion beyond what can be extracted from the similarity principle, even though the
dynamic equations remain too complex to yield to analytical solution. We intro-
duce a method called inspectional analysis and iliustrate it in a relatively simple
case.

Let us consider steady-state flow through a conduit of uniform cross section.
For simplicity assume the fluid is newtonian, of viscosity u. The cross section is
arbitrary in shape, but it is assumed that the cross section does not vary in shape
or scale with respect to the z axis (see Fig. 4-3).

It will be most convenient to use cylindrical coordinates, and it follows that
the axial component of the dynamic equations, for a newtonian fluid in steady
flow, and assuming no angular component of velocity u,, takes the form

Ju, du, dp 18 { dul &, 18w,
—_— — | = — = - ) —t = — 4-27
p(u,, Pl Bz) 8z+’u{rér(r 6r)+az“ T 652} (27)

If the conduit is sufficiently long the velocity field becomes fully developed,
meaning that u, is not a function of z for large z. From the continuity equation,
since

du, 10
E s (ru)=0 4-28
gz + r r e} (4-28)
it is clear that when the flow becomes fully developed the radial velocity u, must
vanish.
Equation (4-27) will be simpiified first by eliminating «, through the continu-

ity equation, which is rearranged to the form

1"  Su.
— J— S * 2
=~ Jor 7 dr {4-29)

Figure 4-3 Section of a conduit of uniform cross
section.
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The second simplification is an approximation. In the viscous terms on the
right-hand side of Eq. (4-27), 8%u_/3z* will vanish when the flow is fully developed,
and is expected to be the smaller of the two viscous terms under all conditions. As
a consequence, Eq. (4-27) is rewritten in the form

_ie_'_ [Ié’(&u:) 1@

PR Pl 'J (4-30)

du, 1 [-’ , Ou du
i

— o, + H.“‘“‘E =
drrly Bz F 82)

Since there are two unknowns w_and p, a second equation is required. Again,
an approximation will be made that is exact for fully developed flow. If the radial
component of the dynamic equations is examined and u, is assumed to be zero, it
follows that

ap
5 =0 (4-31)
Subject to the validity of these approximations, u, and p are found as solu-
tions of Egs. (4-30) and (4-31). Since the equations are too difficult to solve
analytically, we seek some information through the method of inspectional
analysis.
The method begins by normalizing the equations by defining dimensionless
variables

w2 .
u U r D
*_ =2 Y e
7D ’ pU?

In the above, we take D as some characteristic linear dimension of the cross
section, p, is the pressure (assumed known) at the conduit entrance z = 0, and U
is the average velocity defined by
Zr | R{®) d@
U =J j u_r dr— {4-32)
o] a Ar:
where A, is the cross-sectional area normal to z.
The normalized equations have the form

du* 1 (7 du* | du*
%mﬁo”@*”“w)

a1 18 {  dur 1 32u*
T @z* | Re |r* or* ( @—) * r*% 597 (4-33)
—
ap*
3 = 0 (4-34)

where Re = UDp/u is 2 Reynolds number.
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The boundary conditions are
w*=0 on r* = R*(9), the conduit perimeter

p¥=0 at z* =0, the conduit inlet

w* =1 at z* =0 (flat velocity profile at the inlet)

If one simply did dimensional analysis it would be possible to write
u* = utr*, 6, z*, Re) {4-35)

and little else of value would follow,

The method of inspectional analysis seeks to remove all parameters from the
equations. It is not aiways possible to do so, but in this case if a new axial variable
is defined as

-

PF = e 4-36

Re (4-36)
the equations become identical to Egs. (4-33) and (4-34), except that z* is replaced
by z** and Re does not appear in the equations or boundary conditions. Now one
can write

u* =y (r¥, 8, o*¥) (4-37)
p* = p*(z*¥) (4-38)

and these will be sufficient to establish more useful results than follow from the
simpler dimensional analysis.

Let us make a force balance across the conduit over an axial length L. The
pressure drop AP over a Jength L must be balanced by the action of the shear
stress at the conduit boundary:

APA, = | 4 <., ds dx (4-39)

0 s
The shear stress 7., is the stress whose action is in the axial direction z, acting on
an element of conduit surface whose normal is n. ds is the arc length along the
perimeter s.

For a newtonian fluid we can write

T = 1A, (4-40)

If the shape of the perimeter is given in the form r = R(f), then it would be
possible, in theory, to relate A_, to A, in cylindrical coordinates, It is unnecessary
to do so in this development.

Now we introduce dimensionless variables as before, and in addition we
norimalize s with D and note that 4, would be proportional to D2, After rearrang-
ing some of the algebra, Eq. (4-39) would be found to have the form

AP 1 P
W=Ejo fﬁ AX, ds* dz* (4-41)
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LiD

Figure 4-4 Qualitative sketch suggesting f{Re) with LD as a
Re parameter.

If we had stopped at Eq. {4-33) we could now state that

AP

g7~ F(Re. 1/D) (4-42)

While AP/pU? is a suitable dimensionless pressure drop, it is customary when
dealing with problems of steady flow through pipes and conduits of uniform cross
section to define a friction factor as (see Prob. 4-8)

1D AP

/=it (+43)

We still can say no more than /= f(Re, L/D) at this stage, and the functional
behavior, of course, is not given through dirmensional analysis, Still, one could
conclude that if a series of experiments were carried out in geometrically similar
systems with newtonian fluids, a compact way to present the data would be
through a family of curves as suggested in Fig. 4-4. This figure simply reflects
graphically the statement that f = f(Re, L/D). The shape of the curves cannot be
inferred from that statement, however.

Now let us rearrange Eg. (4-41) in the following way: Replace dz* by
dz** = dz*/Re. Note that the upper limit of integration must then change from

L/D to (L/D)/Re. Multiply both sides by Re (D/2L). The result is

1 R D LiRe D
=s==[ 7§ At a (4-44)
Y0 5*

fRe
where A%¥ is the rate of deformation obtained by using Eq. (4-37), so that
Anr = ARKO, 24%) = ARX(s*, 2**) (4-45)

For the special case of fully developed flow, for which A** does not depend on z**,
it follows, from Eq. (4-44), that

fRe=K (4-46)
where K=1 9§ AZ¥ ds* = constant - {4-47)

K would depend only on the shape of the cross section.
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{ Re

Figure 4-5 Sketch of / Re as inferred from inspectional
Re D/t analysis.

More generally, Eq. (4-44) may be put in the form

fRe=

Re D F(Re D) (4-48)

L L

The function F depends on the manner in which A** depends on s* and z**, but
since both integrals are definite integrals the function depends only on the par-
ameter Re D/L.

Equation (4-48) is a much stronger result, because it teils us that we can take
data and present them as a graph of the form of Fig. 4-5. A single curve suffices,
and we now know that the curve is asymptotic to some constant at low values of
Re D/L. (How do we know the asymptote is at low values?)

The advantage of proving that Fig. 4-5 is valid, in comparison to Fig. 4-4, is
that fewer experiments are required to establish the functionality of the single line
in Fig. 4-5. Thus experimental work may be guided by inspectional analysis and
made more efficient.

PROBLEMS

4-1 Insofar as dimensional analysis is concerned, will the usc of the Oldroyd time derivative alter any
of the conclusions drawn by using the Jaumann derivative?

42 If, instead of Eq. {#-1). the fluid of interest is described by Eg. (3-119), what additional dimen-
sionless parameters may appear in the formulation of the equations that deseribe a flow process?
4.3 Show that if t is made dimensionless with pU?, Egs. (4-4) and (4-5) have a different format, Would
this alter any subsequent conclusions? Suppose p had been made dimensionless with #, U/L, as was 1.
What would Egs. (4-4} and {4-5) look like?

4-4 Carry cut a dimensional analysis of the dynamics of a power law fuid by replacing Eq. (4-1) with
T = KEIL )12 A
Give the dimensionless [orms of the constitutive equation, dynamic equations, and continuity equa-

tion, and then simply list the dimensionless groups that appear in those equations.
4-5 Many “fluid ™ foods are described by a constitutive equation of the form

T=1, + KEIM)" A ifexr,

where ty is a yiefd-stress tensor. The restriction to © > 1ty is meant to imply that unless the stresses
exceed the yield stress, no deformation occurs. This is a form of plastic behavior, then: the *fluid ™ is an
elastic solid until it * yields™ to become a fluid.

What dimensionless groups characterize the dynamics of such a material?
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4-6 In a scale model of a sheeting die the following data are obtained:

AP, o,
dynes/em®  mifs

10° 2
3 % 10° 5.5
108 15

The fluid can be considered newtonian, with #, = 10° P and p = | g/ml. The die exit is rectangular, of
width W = 10 ¢m and with a lip separation of H = 1 em.

(a) Usc this information to calculate pressure drops to be expected in a sheeting die for which
W =0.1cm, H =001 cm, using the same fluid. The volume flow rate will be in the range 0.02 to
0.05 ml/s.

{b) 1 a less viscous fluid is used in the scale model, say, #, = 10* P, what range of values of {
would you study?

{¢) For part b, calculate the expected range of AP. Does this result suggest any difficulties in
performing the experiments?

47 Using Egs. (4-18) and (4-19), show that the diameter of the scale model is related to the viscosity of
the model fuid by
D = kpid

If we have a model for which D = 1 ft, what viscosity must be used?

4-8 Consider steady, {ully developed flow in a long circular pipe. Make a foree balance and show that f;
as defined in Eq. (4-43), is

Tr
fm{;pUz

where 7 is the shear stress at the pipe wall.



CHAPTER

FIVE
SIMPLE MODEL FLOWS

There are many fine ideals which are not realizable, and yet we do not refrain from
teaching them.

Smolenskin

We often use idealized models to form a basis for describing more complex
systems. In flow processes the idealization may be with respect to

o Type of fluid

& Geometry

e Boundary conditions

© Thermodynamics (usually in the assumption of isothermal flow)

One set of models that we use a great deal in pelymer-flow-process design and
analysis involves most of these factors. In this section we set out the solutions for
several flow processes and offer a few brief examples of applications. It will be seen
that these simpie models, or combinations and modifications of them, recur in the
analyses of a variety of polymer flow processes to be described subsequently.
We divide the flows into two classes. In the first, usually called Poiseuille flow,
the velocity field is generated by applying an external pressure to the fluid, and the
boundaries of the system are rigid and stationary. The classical example is flow
through a circular pipe across whose ends a pressure difference AP is maintained.
The second class of flows is that in which there is no pressure gradient imposed on
the system, but the boundaries may move in such a way as to induce a flow field;

85
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the action of viscous effects is to allow the moving boundary to drag fluid along
with it. Hence these flows are often called drag flows, but we will usually refer to
them as Couette flows.

If sufficient simplifications are made, it is possible to obtain an analytical
solution of the dynamic equations to give the velocity vector u. From the velocity
field additional information follows easily. One usually wants the volumétric flow
rate @, and in the case of pressure-driven flows the relationship between @ and AP
is desired. The relationship is often most conveniently cast into dimensionless
form as a friction factor-Reynolds number relationship.

Because we will often be dealing with nonnewtonian fluids it is important to
have a measure of the shear rate. Usually the shear rate varies throughout the flow
field, and we simply calculate a “nominal ™ shear rate, often: the maximum shear
rate in the system, which gives a useful estimate for characterizing the state of
deformation of the fluid.

5-1 POISEUILLE FLOW (PRESSURE FLOW)

Long Circular Pipe

Assume isothermal, laminar, fully developed flow down the axis of a long pipe of
circular cross section. The flow has angular symmetry, so that u, =0 and
&/88 = 0. For fully developed flow the radial velocity vanishes, u, = 0, and the
axial velocity u, is independent of axial position z. Let the pipe diameter be
D = 2R and the length be L. For a newtonian fluid, defined by

Ty = 1Ay (5-1)

the dynamic equations, subject to the assumptions above, take the form

_ _Op pd{ du
0= z  rér (r ar) (5-2)
ap
=—— -3
0- -2 (53)

p=p(z) (5-4)

Since u, is a function only of r, when Eq. (3-2) is written in the form

2k 3( d”:) (5-5)

dz rar\ dr
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it is seen that the left-hand side is not a function of r, while the right-hand side is
riot a function of z. The only way this can be true is if both sides are constant:

dp pd{ du
dz €= r dr(rﬁ) (5-6)
It follows that
p=ci+a (5-7)

The boundary conditions on p will be taken in the form p = Oat z = Land p = AP
at z = 0.
It follows that
AP o -
= —— A RS -8
o= -4 ST T )

When the second-order differential equation for v, is soived [the right-hand part
of Eq, (5-6)], one finds that (assuming no slip at r = R)

APR? r\?
= 1—[= 5-9
“T L [ (R) } 5
Once the velocity profile is obtained, several measures of interest may be

calculated.
The volumetric flow rate @ is

K APR*
g= Jo u (rVar dr = T Tl (5-10)
{This is known as the Hagen-Poiseuille law.)
The friction factor [Eq. {4-43)] f'is
16 DAP
o 5-11
S Re 2LpU? (5-11)
where the Reynolds number for this flow is defined as
Re = I2F (5-12)
U
In this definition U is the average velocity given by
49
== 5-13
v nD? (>-13)
The shear rate is given by
A s
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There is no shear along the center line (r = 0}, and the maximum shear rate, often
called the nominal shear rate, is given by - '
. _Rap 8U 515
R uL D (5-15)

For a nonnewtonian fluid the power law provides a good model, from which
it can be shown that

W) = T% (%) i (1 - (%) : W"] (5-16)

The volumetric flow rate is

nnR® R AP\YR
= — 5-17
e=1i ( ?_KL) (5-17)
and the nominal shear rate is
. 2014+ 3my U
g = —t -18
TR n D (5 )

Flow between Parallel Plates

The geometry is as shown in Fig. 3-1. Otherwise the conditions of flow are as in
the case of pipe flow. Let the velocity vector be u = [u,(y), 0, 0]. For the newtonian
fluid the dynamic equations give

ép
0=— 3y {5-19)
&p a*u
- _ Y Hx 2
0 ax U ayZ (5 "'O)
One easily finds the velocity profile to be
B? AP 272
s [1 - (E) } (s-21)
It follows that the volumetric flow rate {per unit width W in the z direction) is
Q BAP
W 12uL (5-22)

2 Figure 5-1 Geometry for low between infinite paraliel
7 plates.
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The friction factor is

24
=z (5-23)
where Re = UBp/u and the friction factor is defined as
: BAP 1
/= I LU (5-24)
The average velocity is given by U = Q/BW.
The nominal shear rate is
14
=2 2
T8 B (5-25}
For the power law fluid the corresponding results are found to be
nB B APy 2y rrim
BT+ (2KL) (1 “|F ) (5-26)
B? B APytr
Q__nB° (BAP (5-27)
W 2(1+2n)\2KL

Axial Annular Flow

In this case the fluid is confined between concentric cylinders of length L and radii
R; and R, . We assume the cylinders are stationary, and the velocity vector is

u=[0, 0, u(r)] (5-28)

so that u, = u; = 0. The dynamic equations are identical to those for the case of
the circular pipe treated in Egs. (5-2) and (5-3), and Egs. (5-4) through (5-8) are
valid for this case alse. The solution to Eq. (5-6), subject to the boundary condi-
tionsu,=0onr=R,and R,, is

APR} ry* -k, r .
L= 1—|= e I} — 5-29
= L [ (RO) TRt R (5-29)
where x = R; /Ry < 1.
The volumetric flow rate is
on APR} " (1—w?)?
T 8L In {i/x)

(5-30)
The shear rate at the outer cylinder can be used as a nominal shear rate and is
found to be

) 4U
"R = R R

G(x) (5-31)
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1.5
//
—
L //
=
<) //
/7
1.00 00 0.a 08 oA p Figure 52 Shear rate functien defined by Eq.
© (5-31).
-E ¥ T T T L ] I T T T T T 1
] n=025 -
5
R e —— A
n=
| g |
.5 i R I | L T S S
o c.10 1.C

K

Figure 5-3 Flow rate lunction defined by Eq. {5-32).

The function G(x) is plotted in Fig. 5-2. We note that the case x = 1 gives the
result for flow between parallel plates. -

For the power law fluid one can, of course, obtain the velocity profile, but the
method is somewhat tedious algebraically. We will not really need that result,
although it may be useful to present the volumetric flow rate, which is

AP

nnR Y tin
0 (RO—RI-)*“”‘(EK L) Fln, 1) (5-32)

1+2n

0=

where F(n, k) is given in Fig. 5-3.

Flow in a Rectangular Duct

Figure 5-4 shows the geometry. We consider steady, laminar, fuliy developed flow
down the z axis of a duct whose cross section in the xy plane is rectangular. From
the dynamic equations we find that the axial pressure gradient is constant:
dp AP
4z L

5| 5 .
X
F\W\-{ i ] Figure 5-4 Geometry lor flow within & rectan-

(5-33)

ular duet,
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0 oo 7 2 I ¢ 20 Figure5-5 Shape [actor for newtonian flow in a rectang-
8/ ular duct.

and the velocity profile u_(x, y) is the solution to

u, A, AP
ey uL

i (5-34)
subject to boundary conditions u, = 0 on all four walls.

The solution is given by an infinite (Fourier) series, and the most useful result
is the volumetric flow rate, found to be

WB? AP
=— 5-35
Q=" F (5-35)
F,is a shape factor, given by an infinite series as a function of the aspect ratio W/B.
The shape factor is plotted in Fig. 5-5.

For the power law fluid one must solve a nonlinear partial differential equa-
tion (the dynamic equation) to find u_. No analytical solution is possible, and

TTTTTI

WwiB =1

T

I ! ] 1 .
6.02 0.8 0.5 0.4 0.7 0 Figure 5-6 Shape factor for power law flow in a

" rectangular duct.
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numerical methods must be used. The solution can then be numerically integrated
to give @, and the result may be cast in the form

B L/n
AP) s,

KL {5-36)

Q= WBZ(
where §, is a shape factor which depends on # and W/B. Figure 5-6 gives the
function §,.

Flow in Odd-shaped Ducts

In Chap. 4 it was shown that regardless of the shape of the cross section, so longas
the shape does not vary down the axis of the duct, it is possible to express the
pressure drop—flow rate relationship in the general form, for laminar flow only,

J Re = constant (5-37)

It was stated that arbitrary choices may be made for length scales, velocity scales,
etc,, the only effect of the choice being in the magnitude of the constant. We
emphasize that the “ constant™ may be a function of geometric shape factors. Here
we show that if some simple dynamic ideas are introduced into the calculation of
the Iriction factor, there is a naturally occurring length scale, the hydraulic radius,
which may be uvsed in the definition of f and Re.

We assume fully developed flow down the axis of a duct of length L, whose
cross section is some arbitrary shape of area 4 and perimeter Y1. The axial com-
ponent of shear stress along the perimeter will be denoted simply as 1. A force
balance gives

AAP=L ¢l (5-38)

It is understood that T may be a function of position along the perimeter, and the
integration is along the closed contour of length ¥I.
Now let us define the average shear stress 7 as

f=%§rﬂ1 (5-39)

and hence rewrite the force balance as
A AP =7LII (5-40)

(Keep in mind that 4 is the cross-sectional area and LIT is the area along which
the shear stress acts.)
If we decide to always define the friction factor as

T

f= W (5-41}
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(and this is, in fact. the custom which is usually foliowed), then it follows that

APr, 1
== 42
where r, is called the hydraulic radius, and is defined by
A
= Ij[ (5"43)

We note that for a circular pipe r, is given by D/4, and Eq. (5-42) gives the usual
definition of the friction [actor, the Fanning friction factor. One occasionally finds
a friction factor defined without the factor of 4 which relates ryand D, and in using

an equation or graph which presents f as a function of Reynolds number, it is
essential to check the definition of f.

By custom, the Reynolds number for flow down a duct is defined as

_4r,Up
i

Re (5-44)

50 that in the case of the circular pipe the usual definition, with D the character-
istic length, is obtained.

With these definitions for fand Re, one can prepare simple graphical presen-
tations of the dependence of the f Re product on shape factors for a variety of
cross-sectional shapes. In some cases analytical solutions of the dynamic equa-
tions are possible; in others it is necessary to use numerical methods or variational
methods.

Figures 5-7 and 3-8 give f Re for ducts of rectangular and anaular shape.

f Re

0 0.2 0.4 0.8 0.8 1 Figure 5-7 f Re for newtonian flow in a rectan-
8w gular duer,
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| 1 ] ]

0 0.2 0.4 0.8 0.8 1.0 Figure 58 / Re for newtonian flow in an
k=R IR, annular duect.

These particular figures contain the same information given earlier in Eq. {5-30)
for an annular duct and in Eq. {3-35) {with Fig. 5-5 for F ) for a rectangular duct.

An interesting feature of the graphical display, and to some extent its advan-
tage over the analytical results, is that it is possible to see (literaliy) when flow in
these complex-shaped ducts can be approximately represented by simpler models.
In the case of the rectangular duct, for example, we see that when the width of the
duct is great compared to the depth, the value of f Re is 24, which is the exact
result for flow between infinite parallel planes [Eq. (3-23)]. Of more practical
value, we see that when B/W < (0.1 the error in using the infinite-plate model for
relating flow rate to pressure drop is less than 15 percent.

A similar examination of Fig. 5-8 shows that  Re approaches the infinite-
paraliel-plate result as x approaches unity. Some thought reveals this to be ex-

24 T

20 - -

f Re

0 0.z 0.4 06 0.8 1 Figure 5-9 / Re for newtonian flow in segments
K of an annular duct.
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pected. Of significance is the indication that the parallel plate model is a good
approximation for & > 0.5,

Figure 5-9 shows f Re for ducts which are sectors of a circle.

Short Tubes: Flow Not Fully Developed

In Chap. 4 it was shown that for laminar flow under conditions that the flow field
was not [ully developed, the f Re product was not constant but some function of
Re D/L. In a real system, of course, the flow is not fully developed because the
fluid enters the duct from some other region, and the velocity field must rearrange
itself from its configuration in the upstream region. The axial distance over which
this occurs is known as the entrance region.

Theoretical analysis of the entry problem is quite difficult because the dyna-
mic equations involve both u_ and u, as functions of ¥ and z. The 8 equation may
be ignored, but one is left with a set of three partial differential equations for the
unknowns u,, u,, and p. The two dynamic equations are nonlinear, and no analy-
tical solution is possible, However, numerical solutions can be carried out, and
several features of flow in “short™ tubes can be examined.

Perhaps the first question is * What constitutes a “short * tube?” For a circular
cross section the axial length L, required for the center-line velocity to adjust to
within 99 percent of its fully developed value is found theoretically to be

%f — 0,59 + 0,056 Re (5-45)

for the case that the upstream velocity profile {i.e., at the pipe entrance) is flat. The
corresponding result for flow between parallel plates is

% = 0.63 + 0.044 Re {5-46)

The interesting point here is that no matter how small the Reynolds number, a
finite length of the order of the diameter or width of the duct is required to
produce the fully developed flow profile.

If the flow is not fully developed the f Re product is increased, and Fig. 5-10
shows its dependence on Re D/L.

7 Re

| I S L1t
10 10 20 40 100 200 600 Figure 5-10 f Re for newionian flow in the entry
Re D/L region of a circular pipe.




96 FUNDAMENTALS OF POLYMER PROCESSING

52 COUETTE FLOW (DRAG FLOW)

We turn now to consideration of flows where the velocity field is generated by the
motion of the boundaries. No pressure gradient is imposed on the system,
although in some cases the flow field may itself establish a pressure gradient. As in
Sec. 5-1, flows where the geometry is particularly simple will be examiined to
provide models that will be useful in later considerations of polymer processes.

Plane Couette Flow

In this flow, generated between infinite parallel planes one of which moves relative
to the other in its own plane, the dynamic equations for laminar isothermal flow
reduce to

E);rx). =0 (5-47)
Figure 5-11 shows a definition sketch for the analysis,

The solution of this equation is a constant shear stress. On the assumption
that, at steady state, the shear stress is a function only of the shear rate of deforma-
tion, it follows then that the shear rate must also be constant. Ifit is assumed that
the flow field is w = [u,(y}, 0, 0], it follows then that

dus _ constant 5-48
dy - ( - )

The solution of this equation, satisfying the boundary conditions u, = 0 at
y=0anduy,=Uaty=25B,1s

_Uy
B

U

(5-49)

The velumetric flow rate, per unit width W in the z direction, may be written
in the form

1
G 550

Equation {5-50) is valid for nonnewtonian as well as newtonian fluids.

b Oy ~—— iy

Figure 5-11 Geemetry for plane Couette flow.
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Circular Annular Couette Flow

In this flow the fluid is confined in the annular space between concentric cylinders
of radii R; and R,. We assume that the inner cylinder rotates with linear velocity
R;Q, thereby generating an isothermal laminar fiow for which u = [0, u,(r), 0]. We
assume angular symmetry and no flow in the z direction.

For any fluid the dynamic equations take the form

—pui _ dp
- s
1é ,
23 T, =0 {5-52)
Thus we know that
uj
= _— d -
P J p—dr (5-53)
a
and Trg = ;*5 (5"54)
where a is some constant.
Let us illustrate the solution for a power law fluid. Then
d [u\|" a
'E,.0=K[—?'E;(“;)} —‘r—l (5—55)
Solving for the derivative one finds
dfu,\ 1{ a \* 5
St ot I Sl = pp~Zin—1 5-56
dr(r) r(Krz) br (5-56)
—2/n
or B b e (5-57)

r 2/n

Appropriate boundary conditions are u, = R;Qatr = R,and y, = Qatr = R,
from which b and ¢ may be calculated.
The final result for u, may be written in the form

u rl-— (R fr)*n

RQ R, 1—x 2 (5-58)

where, as before, ¥ = R;/R, . For the newtonian fluid one need only setn = 11in
Eq. (5-58).

As a nominal shear rate we may use the value at the inner {rotating} cylinder
and find that {see Prob. 5-16)

K
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The case where the inner cylinder rotates is useful in several applications. The
more general case where both cylinders rotate at different speeds is given in the
problems at the end of this chapter.

Axial Annular Couette Flow

In this flow, as shown in Fig. 5-12, the fluid is dragged down the axis in the
annular space between coaxial cylinders, where the inner cylinder is moving at velo-
city U in the z direction. The dynamic equations for this case reduce to

d

Z T = 0 (5-60)

[rom which it follows that
1, =2 (5-61)

¥
For a power law fluid
du\"

= K| - = -62
fre ( dr] (5-62)

and it follows that the velocity profile, subject to boundary conditions u. = U at
r=R;and u, = 0 at r = R, is given by

u, 1 r\?
e e
where g = 1 — 1/n. The volumetric fiow rate can be found and written in the form
0 1 1 —xot? 14w

20R(Ry ~ RJU g +2(1—m)(* — 1) 2(<* — 1) (5-64)
The reason for writing this in the form given above is that it is now similar to the
* solution for the case of PCF [Eq. (5-50)], since Ry — R;is analogous to B, and the
“unit width™ W is similar to 2nR, . It can be shown that the right-hand side of
Eq. {5-64) approaches the value of 4 in the limit as x — 1, as should be expected
(see Prob. 5-22). A

The newtonian model cannot be obtained from the power law solution in this

case upon setting nn = 1 {g = 0). The newtonian results are
u. In (#/R
b _ 1o biRo) (5-63)
U In »
(AP, 7 Ry
Yy Eh\ "
il
77 Figure 5-12 Geometry for axial annular Couette flow.
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and
2k lnw—k*+ 1
Q - s (5-66)
2nRy(Ry — RYU 41 — x} In x
‘Fhe nominal shear rate (arbitrarily taken at the inner surface r = R;) is given by
du_ . U gl ~wpr!?
— | == — 5-67
& =T TR SR o1 all
For the newtonian case
U 1-k
U %
el Ry~ Rk Inx (5-68)

Again, the format of Egs. (5-67) and {5-68), involving the factor U/(Ry — R,),
is dictated by the desire to have a format similar to that of the plane case, for
which $ = U/B follows directly from Eq. (5-49). Since calculations are so much
simpler for the plane geometry, it is useful to have an idea of the errors involved in
using a plane approximation for the flow rate or for the nominal shear rate, We
can illustrate this point in the case of the nominal shear rate.

For PCF the shear rate is uniform across the fiow region and is given by U/B.
For the newtonian case of axial annular flow, the shear rate varies across the
annulus. Figure 5-13 shows the behavior predicted by differentiating Eq. (5-65).

The significant point is that the shear rate is highest at the moving surface,
lowest at the fixed surface, and significantly different from the uniform value of the
case x = |, for x values less than x = 0.8. However, if one only needs a rough
estimate of the magnitude of the shear rate in the annular system, it is clear that
even for x values as small as k = (.3 the simple calculation of U/Rp—R)isa
reasonable order of magnitude estimate of the actual shear rate.

HA, — BMU

riR,

Figure 5-13 Radizl variation of shear rate across an annular duct for newtonian Couette flow.
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0.5

I I I I

a
Inh (R, — RIU

| : | | Figure 5-14 Dimensionless volumetric flow rate
0 1 for axial Couette flow of a power law fluid in an
® annuiar duet.

By similar procedures ene can examine the corresponding situation for the
power law fluid.

One may also examine the volumetric flow rate, as given in Eqgs. (5-64) or
(5-66), to determine how good an estimate the PCF model provides. Figure 5-14
shows the dimensionless volumetric flow rate Q/[2nR¢ (R, — R;)U] as a function
of x. Again it is clear that the plane model provides an order of magnitude
estimate for the annular case but is accurate only for x near unity. The more
strongly nonnewtonian the fluid is, the more the plane model deviates from the
accurate solution for the annular flow.

Flow down a Rectangular Channel

This is similar to the case of PCF except that there is a finite width W bounded by
stationary walis which retard the flow induced by the motion of the upper plane
(see Fig. 5-15). As in the pressure flow case one must solve a partial differential
equation, and it is most convenient to put the solution into a format that allows
comparison with Eq. (5-50). Thus we solve

_ 2*u, &%,
T axE 9yt

(5-69)

Figuere 515 Geometry for Couette flow in a rectangular duct.
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0 . Figure 5-16 Drag-fiow shape factor for power law flow in a rectang-

" vlar duct.

subjecttou=0ony=0,x= +4W,and u, = U on ¥ = B. The solution is found
in the form of an infinite (Fourier) series, and the volumetric flow rate follows
from

B W2
0= j J (X, y) dx dy (5-70)
0 ~Wiz
We write the solution as
Q =3UBWF, (5-71)

where F, is a drag-flow shape factor that depends only on the aspect ratio of the
duct. Figure 5-16 gives Fy, and includes as well the results for the power law case.

5-3 APPLICATIONS TO ANALYSIS OF WIRE COATING

A wire-coating operation is designed in the following manner. Molten polymer is
fed to a circular die, along whose axis a wire is continuously drawn. Figure 5-17
shows the geometry of interest. We seek the relationship between the coating
thickness & and the other parameters that characterize the problem.

The motion of the wire entrains the polymer and draws it through the die.
This is a case of axial annular drag flow. We assume steady-state isothermal flow

//WAA :
I !
7 Z
-

T

Figure 5-17 Geometry of a wire-coating die.
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of a power law fluid. Some distance downstream of the die the polymer is trans-
ported as a rigid coating and so has a velocity identical to the wire, U. The mass
flow rate of coating is simply

m = pr{(R; + 8)* — R{JU (5-72)'

where p is the downstream coating density. By continuity, m must be identical to
the mass flow rate associated with the drag flow through the die:

m=p'Q (5-73)

where p’ is the fluid density at the conditions within the die. For 0 we may use the
result given in Eq. (5-64). When m is eliminated between Eqs. (5-72) and (5-73),
one obtains a quadratic equation for & in the form

) p'2 (1
§2 426 ——— (—— I)H(;c, g)=0 (5-74)
g K\K

where & = §/R;, and H(x, q) is the right-hand side of Eq. (5-64). [Figure 5-14
gives H(x, q}.] Solving for &, on¢ finds
, @ 021 BNEE
5 —E— [14—;}-5 (E—I)H(h, q’)] -1 (5—75)

i

Figure 5-18 shows & as a function of these parameters.
One important conclusion that follows from these results is that the maxi-
mum coating thickness possible under the conditions of this model is

5mux = —li(RO - Rl) . (5'76)
which is achieved only in the limit of x — 1 (Prob. 5-28).
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P27, 8
AP
S R A N -
/‘/,f; Figure 5-19 Wire coating with 2n imposed pressure.

Another interesting feature, which follows from Eq. (5-75), is the indepen-
dence of § from the velocity U. Indeed, it would appear that the only way in which
0 may be varied is through changes in the geometry of the die for a given fluid.

But suppose one designed a die and then found that the observed coating
thickness was not exactiy at the desired Jevel. Alternatively, suppose that a change
in the end-use conditions dictated a change in coating thickness. The system as
described by Eq, {5-75) is too inflexible to allow contro! over § without a die
change.

There is, however, a means of introducing the desired feature of control over
the coating thickness in the same die. This is achjeved by imposing a pressure on
the fluid upstream of the die. We illustrate some features of this problem by using
a newtonian model, which will simplify the algebra and make it possible to investi-
-gate several aspects of the solution. The power law case is most conveniently done
numerically. ‘

The flow may be defined as shown in Fig. 5-19. A pressure drop AP is
imposed on the fiuid, and the net flow is the sum of that induced by the drag of the
wire and that imposed by the pressure itsell. For a newtonian fluid these two
contributions are independent and additive. Hence we may begin by adding the
for the pressure flow [Eq. (5-30)] to the drag flow contribution [Eq. (5-66)], with
the result written as
ARV {1 — & 2\ mAPR} 4 (1—w%? i
Q=—- ( ~2 )+———8“L [1-;\ YO (5-77)
If Eq. (5-72) for the mass flow rate is equated to p'Q, as in the pure drag flow case
above, one may solve for the (dimensionless) coating thickness and find

In {I/x)

é
5'=3€=(1 + 1 +fp)”2— 1 (5-78)
where

pl 1 _ KZ pf 1 . (I _ ’CZ)Z
=—|————1 =—@Q— [l —g*—
Je o (2ch2 In (1/x) ) 2 P Bx? F In {1/x)

APRZ

O =
and UL

Figure 5-20 shows & as a function of x, with ®asa parameter. For a given die
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{x) and at a given pressure drop {®) one may find §' from the graph. Alternatively
one may rearrange Eq. (5-78) to solve for the pressure term as

82

¢ = i ;’, (52 + 28 ~ ) (5-79)

Figure 5-21 shows @ as a function of & with k as a parameter; this format is
more useful if one specifies the coating thickness {6') and seeks the pressure
required to achieve this coating.

One feature of design significance that can be seen on inspection of Fig. 5-21
relates to the sensitivity of the coating thickness to pressure and velocity fluctua-
tions, The nearly vertical character of the ®(0') curves implies a small slope for
dé'/d®, that is, a relative insensitivity of coating thickness to the parameter @,
which (from its definition above) is seen to involve three parameters that may vary
{perhaps unintentionally) in a process: AP, #, and U. Thus the system is fairly
insensitive to inadvertent process fluctuations, but by the same token, if one
wishes to change ¢’ for a fixed die, it is necessary to make a large (order of
magnitude) change in ®.

It would appear then that imposing a pressure onto the drag flow gives the
desired capability of making small changes in the coating thickness {a sort of “fine
tuning "), but if large changes are desired one must either change the die or have
the capability of varying operating conditions (particularly U and AP}over a wide
range.

Let us finish this aspect of the wire-coating example with a numerical calcula-
tion. Suppose we have a die whose dimensions are R, = 0.1 cm, R; = 0.07 cm,
L =1 em. The fluid viscosity at die conditions is 10 P. We wish to coat the wire so
that § = 0.021 cm, and the production rate is such that the wire speed is 100 fi/s.

We may calculate §" and find 8 = §/R, = 0.021/0.07 = 0.30. For this die we
have x = 0.7.

Quick inspection of Fig. 5-20 shows that a finite value of @ is required,
somewhere between 10 and 50. From Fig. 5-21 we find that

Solving for AP (remember to convert U to centimeters per second} one can
find AP = 90 x 10° dynes/cm? = 1300 psi. Suppose it is necessary to have a coat-
ing uniformity of better than + 1 percent. Fluctuations in the wire speed U will
lead to coating nonuniformities through a variation in ®. What is the maximum
tolerable variation in U under these operating conditions?

We can begin by deriving a useful general result. We go back to Eq. (5-78) and
find

4

A (5-80)
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We need d6'/d®, which follows from
de’  ds'df, % f,

A0 40 & +10
The relative {or fractional) change in & with respect to some fractional change in
@ {which corresponds to a change in U) is
dlny_0d5 1.
dln®  §d® 27751+ 5)

(5-81)

(5-82)

In this example the operating conditions are such that f, = 0.23 and §' = 0.3,
Thus we find that

dn&
dln®

or the fractional change in &, due to a change in @, is only 29 percent of the
fractional change in ®©. Hence, if &' must be held to +1 percent, we can tolerate
speed variations in the wire travel of as much as 3.4 percent.

Now suppose a process change is ordered, requiring an increased output of
coated wire, which will be achieved by increasing U to 300 fi/s. If J is to be
unchanged, and the same die is used, what AP is required? What effect does this
have on sensitivity of 6 to U7

Since & and x are unchanged we still require ® = 30. Since U is increased by a
factor of 3, the pressure wiil have to be increased by the same factor. Thus a
pressure increase, to 4000 psi, is required. Since no change in &' or f, occurs it is
seen, from Eq. (5-82), that there is no change in sensitivity of §” to U/

=029

Some Failures of This Model

_ In dealing with models such as this one, there is always the danger of getting so
involved in the details of the maodel that one loses sight of the fact that the model
represents an idealization—an approximation—of reality. One particular feature
that should be mentioned here is the role that surface tension may play in this
coating problem. In the limit of k — 0 one is dealing with the problem of with-
drawal coating, which will be considered later. In that problem a sheet or wire {or
fiber) is withdrawn (usually vertically) from a free surface of the coating bath.
Here surface tension plays a strong role in establishing the dynamic meniscus
from which the wire is withdrawn.

The case of combined pressure and drag flow was solved above only for the
newtonian fluid. The power law case is much more complicated and has to be
worked out numerically. We note here, and discuss the point in detail later, that
one cannot superimpose power law solutions [Eqgs. (5-64) and (5-32)] for drag
flow and pressure flow, as was done with the newtonian fluid. A different type of
combined flow fhelical flow) is considered in Sec. 5-5, and in that case a useful
approximate analytical solution is possible.
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Figure 5-22 End-fed sheeting die.

5-4 ANALYSIS OF UNIFORMITY OF FLOW FROM
AN END-FED SHEETING DIE

This example considers the behavior of an end-fed sheeting die, shown schema-
tically in Fig. 3-22. Fluid is supplied to one end of a manifold which may be
considered to be a circular pipe of radius R and length L,,, closed at one end
{z = L,}. A slit runs along the manifoid, providing the inlet to a sheeting die of
length L,. The separation between the parallel die surfaces is B.

Fluid enters the manifold and moves toward the closed end under the action
of an axial pressure gradient. There is a *leakage™ flow into the slit. Because of the
axial gradient in the manifold the pressure drop across the slit is not uniform. As a
result the flow rate through the slit may be a function of z, with the resultant
production of nonuniformities in the flow leaving the sheeting die. We wish to
examine the magnitude of such nonuniform flow and how the nonuniformity
depends upon geometric and rheological parameters.

The model begins with a mass balance on an element of volume shown in
Fig. 5-23. The difference between the volumetric flow rates at any pair of surfaces
normal to the manifold axis, separated by an axial distance dz, is

Q: - Q:+d: = Qx (5-83)

where Q, is the volumetric flow rate down the die axis x, across a width d-.
For small dz, we may write this in the form

~%eo, (5-84)

ox

a ) Figure 5-23 Mass balance on a volume element of the
end-led die.
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Now we assume that, apart from the material balance above, Q. and Q, are
independent, and each is given by the simple model for pipe flow (for Q.) or for
flow between parallel planes (for Q). Thus we have, for 0.,
nmR*> TR(—dP/dz)]4

2K

0.=

T 1+ 3n (>-85)

where we have used Eq. (5-17), assuming power law flow, and replaced AP/L with
the local pressure gradient, of magnitude —dP/dz.
For Q. we write, using Eq. (5-27),

nB®  [B(—dP,/dx)]}"
{1+ 2n) 2K J

where the width W in this case is dz, and where AP/L is replaced by the gradient in
the x direction of the pressure P,.

Now it is necessary to connect the pressures P and P.. This is done by
neglecting any entrance effects associated with the flow from the manifold into the
die, from which it follows that

Q. =d:3 (5-36)

Pz}=Plz) atx=0 (5-87)
Consistent with this assumption we also take
—dP,  P(z)
& L (3-88)

Putting these ideas together we have
—dQ. rB:  [BP(z)]'m
dz  2(1 +2n)|2KL,
B TtR3 R 1/n _dP 1,'n~1d2P
T 14+3n12K dz dz?
dZP - Pl,fn

or F - Tlm_«—l =0 (5—89)
%)
where
- ?’1(1 + 3?’!) BEL,}H;"+I E i/n
F= 2n(t +2n) RA*MAL, (3-50)
and z' = z/L_.

Equation (5-89} is a nonlinear ordinary differential equation whose solution is
subject to the boundary conditions P = P, at =’ = 0 and dP/dz’ =Qatz" = 1. The
second boundary condition follows from the assertion that the pipe is closed at
z=L,. Hence there is no flow, and no pressure gradient, at that point. An
interesting point is that §, and so P, is independent of K. Thus the level of viscosity
is not important, but the power law index is.
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The solution of Eq. (5-89) must be obtained numerically. It is useful to exa-
mine the newtonian limit, which can be treated analytically, and to use that
solution for consideration of factors that affect uniformity. For n = 1 we find

LI E_ﬂsinh Bz
P, cosh
A suitable measure of uniformity would be the ratio of the minimum and
maximum flow rates across the width of the die. Since, for the newtonian fluid, Q,
is proportional to P{z'), we only need to examine
P(L,)

E= P0) = (cosh f)~! (5-92)

We see that E is near unity for small f, so an appropriate design strategy is to
select dimensions such that

(5-91)

2B°L2

2
F= 3nR*L,

<1 (5-93)

5-5 COMBINED FLOW (HELICAL FLOW) OF A
POWER LAW FLUID

In subsequent chapters we will examine some processes which involve axial annu-
lar pressure flow in combination with circular annular drag flow. Figure 5-24
shows the geometry of interest. For the newtonian fluid the two components of
velocity u, and u_ are independent and may be written down by inspection of
results already presented in earlier sections of this chapter. For a nonnewtonian
fluid the two components are not independent, and the analysis of the flow be-
comes mathematically complex.

Physically the situation is straightforward. Suppose we think of the axial flow
as the primary flow. The solution for the axial flow alone is easily found, and
Eq. (5-32) gives the Q(AP) relationship. Now suppose that the outer cylinder is set
in rotation while the axial pressure gradient is maintained. With a newtonian fiuid
there is no interaction between the two components of flow. This can be seen in
the independence of the # and z components of the equations of motion for a
newtonian fluid subject to this flow. For a nonnewtonian fluid, however, for which

Figure 5-24 Geometry for helical flow in an
annulus,
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Figure 5-25 Plane approximation for the helical flow problem.

the viscosity is a function of the second invariant of A, say, n = n(ll,), the rotation
of the outer cylinder increases the magnitude of II, and thereby alters the viscosity
of the fluid. Since most of the polymeric fluids of interest are shear thinning
(dn/d 11, < 0}, we can expect increased axial flow as a consegquence of the angular
drag flow induced by the rotating cylinder.

We introduce here a very simple model of the dynamics of this system, but one
which should prove to be quite useful in some subsequent applications. The first
simplification is geometric. We consider only ratios R; /Ry = Kk close enough to
unity that the plane approximation may be used. The new geometry is shown in
Fig. 5-25.

As a constitutive equation we choose the power law, written in the form [note
Eq. (3-154)]

T = K31, ) 1i2A (3-94)
where, for this flow,
du\*  [du\?
h& = | = = "
(3 (4
Thke dynamic equations reduce to
n. AP 4. =132 AUz
0= KL+ N [(Jla) . {5-96)
I N
0=3 { (+11,) i (5-97)

and the boundary conditions are
u, =U u. =0 ony=H
u,=u, =0 ony=90
The following dimensionless variables simplify the problem:
LRI e LA N
CD—U C—H IIA—(H) IIQ’

_ AP Hn+1
T KLU
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The diménsionless equations now become

d de, :
0= — 2o iy ym— 12 492 -~
d ryn— 2 d(ﬁr
0 =% {(%IIA)‘ v m;d (5-99)
o =1 @, =0 onf{=1
Py =@ = 0 on C =0

Because of symmetry of ¢, about { =4, and to avoid fractional roots of
negative numbers, we consider the solution for ¢, in the region 4 < { < 1, where
do_/dl > 0. (Note that the coordinate system of Fig. 5-25 shows flow in the -~z
direction.)

Equation (5-99) may be integrated once to give
ryn= 12 4P
(I, )2 & =0 {5-100)
whereas integration of Eq. (5-98) gives
t "H—- 3 d =
(UL = ol — ) (s-101)
[The symmetry condition at { = 4 has been used to evaluate the integration con-

stant in Eq. (5-101).]
It follows that

fifﬂi - ! dqo:
. all~3) dl

which may be used to uncouple the two velocity gradients, with the result that

(5-102)

e = e 7+ e (5-103)

and

deo,
dg

By integration, using the boundary condition that ¢_ = ¢, =0at { = 0, we
find

= y[@H(f ~ 4 + 3] (5-104)

5
pom | (- EE— 1P+ AP e (5-10)
0

and

8
Go=0 L [e(f — )% + 3~ g (5-106)
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The constant ¢; may be evaluated from @, = 1 at # = 1, which leads to
1
L=y [ [2@ =3P + el g (5-107)
0

For a fixed choice of n and &, ¢; may be found by numerical integration of
Eq. (5-107). Then numerical integration of Egs. (5-105) and (5-106) gives ¢, and
P -

Of particular interest will be the axial volumetric flow rate per unit width in
the —z direction:

Q 12
== -2UH 2 d 5-108
7 f, o« (5-108)

and the shear stress at the moving surface:

du
=K L (m—1)/2 77x
=x (ZII&) dy

Txy

UL
en = K(E) Cy (5‘109)

[Use has been made of Eq. (5-100).] Figure 5-26 shows the results of these compu-
tations, which are consistent with our expectations.

10

=
S|
3
&
0.1 a1
0.02 0.02

0.3

Figure 5-26 Dimensionless flow rate and shear stress functions for helical power law fow: plane
approximation.
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This problem is of interest from a secondary point of view, that of the philo-
sophy of mathematical modeling. While Eqgs. (5-103) and (5-104) cannot be in-
tegrated analytically, there are two asymptotic cases (@ —0and o — 20) which can
be handled exactly. For small « (x < ¢,) Egs. (5-103) and (5-104} simplify to

do,
ZTE — pll=nyn
7 = "afl —3) (5-110)
dCPx 1{n
and —EE-=c1f (5-111)
The solution to Eq. (5-111), satisfying the boundary conditions on ¢, is
' .= (5-112)

and ¢, is found to be ¢, = 1 for any ».
The solution to Eg. {5-110) is then

o .
0.=3 -0 (5-113)
From Eq. (5-108) we find
g
UHW 12
fora—0 (5-114)
¢, =1

In a similar manner, for the case « » ¢;, we can find (see Prob, 5-32)

g n(e/2)""

UHW  2(1 +2n)

12 (Iim—=1
-if)

for x — = (5-115)

R

Figure 5-26 shows these asymptotic limits. It should be apparent, from the
way the asymptotic lines intersect, that there is actually a fairly narrow region,
where o is neither large nor small {say, 1 < « < 3}, where it is necessary to obtain
the numerical solution to the general equations [Egs. (5-103) and (5-104)]. The
identification of asymptotic cases often can save considerable time in planning
numerical solutions to complex probiems.

Example 5-1 A melt is being pumped through a tubing die which has a
rotating inner mandrel. The stationary outer cylindrical surface of the die has
a 3-in diameter. The mandrel is a cylinder of 2.90-in diameter. The “land " of
the die (the axial length of the annulus) is 3 in.

A pressure drop of 250 psiis imposed across the die land. Find the output
under the conditions

n=% K=11Ibs'%in>  Q=10rpm
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What would the output be with no rotation?

In this problem Ry /R, = 1.5/1.45 = 1.03. Thus x = 0.97 and we expect the
plane approximation to be accurate.

We find U = (220R,)/60 = 1.57 in/s (note we converted Q to radians per
second). We caleulate o and find

_AP(Ry — R)*?

S =074

From Fig. 5-26 we find G/UHW = 0.062 or (noting W = 2zR,)
0 = 0.062(1.57)(0.05)(27)(1.5} = 0.046 in%/s

If there were no rotation (¢ = co) then we have axial annular Poiscuille
fiow. For large o we see from Eq. (5-115) that the asymptotic solution gives

Q e AP (R, — R)
UHW = 32 32K?[iy
or ¢ = (10128 in%/s.

Hence, the output is increased by a factor of 3.6 through rotation of the
mandrel.

Example 5-2 For Example 5-1 calculate the increased power expenditure due
to rotation of the mandrel. The power associated with the axial (pressure)
flow is just the product of pressure drop and flow rate;

32in-lb/s=48 % 10"*hp  {(no rotation)

QAP = L5 in-Tojs = 17.5 x 10-* hp  (at 10 rpm)

In the case of rotation it is also necessary to expend power to drive the
mandrel. This power requirement is just the product of the rotational speed
and the force in the direction of rotation {which is a shearing force), and so we
find [noting Eq. (5-109)]

T

xy

(7R L)U = K( )"cl(ZnRILU)

u

»=Ri RO - R:’

For o =0.74 we find ¢, = 1 from Fig. 5-26. Hence the mandrel power is
found to be 240 in - Ib/s or 0.036 hp. The increase in power requirement is a
factor of 79, which is hardly an efficient way to obtain an increase in flow rate
of 3.6 times. We note, for example, that in the absence of rotation, forn =4, 0
is proportional to APZ Thus we could increase Q by a factor of 3.6 by
mncreasing AP by a factor of 1.9. This would require an increased power
expenditure of a factor of 6.8. We shall see subsequently that there might be
other reasons, than increasing output, for creating this type of flow field.
Problem 5-33 presents a situation where rotation is used to reduce the pres-
sure drop required to achieve a specified flow rate.
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5-6 COMBINED FLOW (PARALLEL FLOW) OF A
POWER LAW FLUID

In Sec. 5-3 a wire-coating situation was modeled by combining the pressure and
drag flow solutions for a newtonian fiuid. Tt was pointed out that this simple
combination or superposition of flows is not valid for nonnewtonian fluids. The
reason for this is clear if we examine the dynamic equations for this flow. For a
power law fluid in laminar steady flow between infinite parallel surfaces, the
velocity must satisfy

AP d [ [{du 2]t gy
0= g+ i l(5) [ (&-116)

subject to boundary conditions

— 0 ony= 0]
U ony=B
If pressure flow alone oceurred the velocity would satisfy
AP d [[{dup\2]-tyz g
N s aup (5-117)
KL dyl||\dy dy
{0 ony=0
up =
0 ony=B58
If drag flow alone occurred the velocity would satisfy
d dup\ 2|2 dup
O=—1||== —= -11
dy”(dy) J dy} (-118)
0 ony=0
Up =
U ony=B8

Ifu_in Eq. (3-116) is to be simply the sum of u, and up, then it would have to
be true that the function u, + u, would satisfy Eq. (5-116). But if up + uy, is
substituted for u. in Eq. (5-116} and if Egs. (5-117) and (5-118) are accounted for,
it can be seen that the right-hand side of Eq. (5-116) does not vanish, and so
up + up Is not a solution.

Having stated what up + u, is nor, we now wish to investigate what it is. In
particular, we wish to know how good an approximation ttp + 1 might be to the
solution of Eq. (5-117), even though we admit it is not exact,

At first glance it would appear that one could simply integrate Eq. (5-116)and
produce an analytical solution. In part this is true, but 2 complicating feature
enters the problem which, ultimately, leads to the necessity for some numerical
computation in the problem. We can see this qualitatively by considering the
shape of the expected velocity profiles.

Figure 5-27 shows several possible velocity profiles. To the left- and right-
hand extremes, respectively, are the pure drag and pure pressure velocity profiles.
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Figure 5-27 Velocity profiles in parailel Aow.

Profile b would occur if a relatively small pressure were imposed on the system in
the direction of flow. Profile ¢ would occur if a larger pressure drop were imposed.
The relevant peoint is that under some conditions the profile has a maximum
between the surfaces. Hence the velocity gradient du_/dy changes sign at some
point y*. Since a fractional root oceurs in Eq. {5-116), it is necessary to know a
priori the sign of the terms in the equation. The complication arises because the
point y* is not known a priori; it is a function of the pressure drop {in a dimen-
sionless parameter) and a function of a.

Solution of Eq. (5-116) has been carried out, and two references are cited at
the end of this chapter. Here we only present the solution in a format suitable for
examining the error that would arise if superposition of the solutions to
Eqgs. (5-117) and {5-118)} were used.

Instead of examining the velocity profiles themselves let us work in terms of
the volume flow rate Q. Assuming superposition is valid, we write

nWhB? (B rﬁ}.P)1 "

- = LUBW + 2=
Q= 0o+ 0 =2UBW 3755

10 T T 7T TTT T T, T T 1T

7T 0T
I 111

n =020

-
Uiy

fF 0

C gxact /
//E:(;;;

0.3 ! T I T I A I SO O I O

Fipure 5-28 Pressure drop-flow rate relationship for parallel flow of a power law fluid.
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which is just the sum of Egs. (5-27) and (5-50). It is convenient to nondimensional-
ize Eq. {5-119) to the form

Q — E n 1in b}
UBW 2 (I ¥ 2npiii® (5-120)

.where ox= *%—APBZ 12
= K(U/By~UL (3-121)

Figure 5-28 shows Eq. (5-120) for the case n = 0.2 and compares it to the exact
solution of Eq. (5-116). As expected, the approximate solution is accurate at the

asymptotes corresponding to & — 0 and « - co. Significant errors occur in the
intermediate range of a.

PROBLEMS

5-1 Solve Eq. (5-6) to obtzin Eg. (5-9). Indicate clearly the rwo boundary conditions on u, as a function
ol r.

5-2 The Hagen-Poiseuille law [Eq. (5-10}] shows a very strong dependence of volumetric flow rate on
the tube radius. If the measured value of radius were in etror by 10 percent. what would the expected
error in ) be?

5-3 Beginning with the dynamic equations, derive Eq. {5-16).

5-4 Show that the dependence ol volumetric flow rate on tube radius is stronger for a power law fluid
than for a newtonian fluid in the usual case # < 1. I the measured value of radius were in error by 10
percent, what would the expected error in Q be for n = 0,27

5.5 Two circular tubes of identical length are connected to the same liquid reservoir in which a power
law fluid is held. The tubes differ in radii by a factor of 2, When a pressure drop AP is imposed, the
volumetric flow rates [rom the two tubes differ by a factor of 40. What is the value of n? How different
are the nominal shear rates in this case?

5-6 Derive Eq. {5-26). Why is it necessary to use the absolute value signs on 2y B in this equation?
5-7 Derive Eq. (5-29).
5-8 Derive Eq. {5-31} and show that

59 A power law fluid has a value ol n = 4. Give the egs units of K. In those units. K has a value of 10%.
This fiuid is to be pumped through a rectangular pipe of length 10 em for which B = (.1 cm and
W = 0.4 cm. Give the expected pressure drop in pounds per square inch. Calculate the nominal shear
rate, using Eq. {5-25}, The volumetric flow rate is | mls.

5.10 Derive an expression for the nominal shear rate for power law flow between parallel plates,
beginning with Eq. (5-26). What error was made using Eq. {5-25) in Prob. 5-97 What is the significance
of the error?

511 Some relerences give the friction factor for laminar pipe flow as /= 64 Re. Assuming Re is still
defined as UDp u. how is their fdefined?

512 A viscous newtonian fiuid is being pumped through a circular pipe which has a solid separator
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Figure 5-29 Cross section of straight pipe with divider down the axis.

running down the axis, as shown in Fig. 5-29. Thus the flow is really that corresponding to a pair of
semicircular pipes. Use Fig, 5-9 1o ealculate a K factor, defined by

AP(divided pipe)

R= :
AP(open pipe)

at constant  and D

5-13 Using Eq. (5-17), show that the [riction factor can be writien in the form f= 16/Re,, where a
modified Reynolds number is defined thereby. Show that the Reynolds number may be considered to
be of the form

ub
Re, = kit
n
where n = 1, /35 and 9, is given in Eq. (5-18).
5-14 Take the lorm of G(x). given in Prob. 5-8, and show that for very small x a good approximation is
(~Inx)—4

G~ g =1

How small must & be for the value of the nominal shear rate to be within 10 percent of the value
for an empty pipe?
5-15 Show that a wire along the z axis of a circular pipe exerts a major effect on the flow rate out of
apparent proportion to its size. Begin by showing that the reduction in flow rate, relative to the case
x = 0 (an open pipe), is

. 1
K=1+— for w1l
In k

Find how small ¥ must be so that K = 0.99. Do the case of pressure flow, where the wire is
stationary.

516 Derive Eq. (5-59). What error would be made i, instead of this result, one used
., RO 0
VR, R k-1

to estimate the shear rate? Answer for the case that k = 0.5, and n=1and n =1
5-17 Show that the shear rate given in Prob. 5-16 is obtained as the limit of Eq. (5-59) when k — 1.
5-18 Give the general solution for circular annular Couette flow of a power law fiuid when both
cylinders are rotating at frequencies Q, and Q,.
519 In Eq. (5-62) is it necessary to be concerned about the sign of du /dr? Why? Why was the
negative sign inserted in that specific case?
520 Derive Eqs. (5-63) and (5-65).
521 What happens to Eq. (5-64) when n = 4? Derive the correct result for that case.
5-22 Show that the right-hand side of Eq. (5-64) approaches § as x — 1. Do the same for Eq. (5-66).
523 Consider flow ol a newtonian fluid in a rectangular duct of aspect ratio W/B. How large must the
aspect ratio be so that the volumetric flow rate is within 10 percent of tHe value predicted by the
assumption of W/B = co (infinite plates)? Answer for both drag flow and pressure flow,

Are the answers much different if the fluid is power law with n =4?
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S-;d Using Eq. (5-68), find the tension (defined as force per cross-sectional area) required to draw a
wire through a coating die under the following conditions:
Ry =01cm R, = 0.07 cm L=1cm
p=10P U =100 ft/s

- Is this tensicn comparable to the yield stress of steel? Nylon?
5-25 Suppose a wire-coating die were designed as shown in Fig. 5-30. Let the dimensions be

T

Melt frem extruder Figure 5-30 Wire-coating die.

R,=002cm, Ry, =004 cm, Ry, = 0022 cm, L, =03 cm, L, = 1 cm. Let I/ be 100 ft/s, and take the
fluid to be newtonian, with u = 100 P.

If we want § = 0.02 cm, what must AP be {in pounds per square inch)?

Under these conditions, will there be a significant leakage Alow out the rear of the die, where the
wire enters?
5-26 For the problem as stated in Prob. 5-25, give the sensitivity of the coating thickness to variations
in U and AP. If U can be held to 2 percent but AP might vary by £ 20 percent, what might be the
expected percentage variability in the coating thickness 87
527 Referring to the wire-coating analysis, we ¢an see that in the limit of k > 1, d =% (R, — R} at
AP = (. For the geometry given in Prob. 5-25:

{a) What would § be at AP =07

{b) What AP would give § =% (Ry — R)?
5-28 Prove the assertion of Eq. (5-76).
5-29 It is desired to achieve a coating thickness of § = 0.02 em onto 2 wire ol radius R, = 0.2 ¢m by
using an annular die of outer radius Ry = 0.23 cm and length L = 0.5 cm. The coating may be con-
sidered newtonian with a viscosity of 200 P. Find the pressure AP at a wire speed U = 50 It/s.
530 A PVC coating resin is nonnewionian, as the data in Fig. 5-31 indicate. It is coated onto a wire of

10% g

. q

& q
2 q
[=
102
q
100 2 5 107

36 1) Figure 5-31 Data for Prob. 5-30.
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diameter 0.04 in moving at 1000 ft/min throtgh a die of diameter 0.06 in. Find the coating thickness in
the absence of an applied pressure. Caleulate the nominal shear rate, and compare it to the range of
shear rate over which the rheological data were obtained. Work the problem two ways, and compare
the answers, by assuming:

(a) The fiuid is power law

{b) The fluid is newtonian, with a viscosity given by the nonnewtonian viscosity observed at the
nominal shear rate.
5-31 Calculate the uniformity index £ of Eq. (3-92) for an end-fed die for which R = 0.5 in. L, =40in,
B =001 in, and L, = 0.5 in.
532 Derive Egs. {5-114) and (5-115).
533 In a tubular extrusion system it is necessary to achieve an output of 3 1b/k [rom the tubing die
deseribed in Example 5-1. The polymer melt, at the extrusion conditions, has power law parameters
n=4% K =10 Ib-5"%/in?, From mechanical design constraints it is necessary that the imposed pres-
sure drop be less than 2500 psi. Find the mandrel speed necessary to reduce the pressure drop to this
level at the specified flow rate. What horsepower is expended in rotating the mandrel?
534 A wire is coated in an annular die operating under the conditions of Prob, 5-29, but the coating
fluid obeys the power law, with K = 1 1bl-s°%/in® and r = 0.2. If we want § = 0.02 cm, what must AP
be {in pounds per square inch)? Use Fig. 5-28, and compare the exact and approximate solutions.
5-35 Rework Prob. 5-34 but usc the newtonian analysis with u evaluated at the nominal shear rate.
Compare the pressure with that from the more exact model.
5-36 Modify Eq. (5-120} for the case where the pressure gradient opposes the drag flow, and plot
Q/UBW versus . (This analysis comes up in the theory of extrusion. Figure 6-11 gives the exact
solutiens for this case.) Compare the simpie solution to the exact solution for n = 0.2 and r = 0.5.
5-37 The cquation below is derived by Parnaby and Worth+ [or steady isothermal flow through a die
whose boundaries are cones with a common apex, as shown in Fig. 5-32. Give the derivation in detail.

_(ey . K .
AP_(QN:) 3ntanﬁR§"(l Y

N
Qfs. k)= | B =P ad (5= 1n)

t Proc. Inst. Mech. Eng.,188: 357 (1974).

——p

=

Yo

7 Figure 5-32 Conica! die.
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A is found [rom

s A.l s I3 12 x
. (G- -] (-5«
“x 4 “i 4
For k > 0.6 good app'roximations to 2 and £2 are found from
2=0501+ x)
o {14+ &)1 — xp*?
2(s + 2}

5-38 The following data have been obtained on a low-density polyethylene at 190°C flowing through a
die whose boundaries are cones {the geometry is given in Fig, 5-32).

‘ aP, _
gmB/s N a = 0.086 rad
§ =0.117 rad
UE— =06
084 25x10° ST alm
5 =
15 34x10 R

20 4,0 x 10°

The melt is power law, with n =4 and K = 162,000 N-s"?/m?.

(a) Do the cones have a common apex?

(&) Use the theory given in Prob. 5-37 to predict §(AP) and compare to the data.

(¢) Use a mean annular gap and the theory for annular flow and repeat part b. Define clearly
what kind of mean vou use (arithmetic, geometric, hydraulic, etc.).
539 Melr index (M1) is often used as a measure of the viscosity of olefins such as polyethylene. It is
measured as the number of grams of polymer extruded in 10 min from a cylindrical die of diameter
0.0825 in and length 0.315 in under a pressure of 43.25 psi at 190°C.

{a) Is MI directly related to viscosity, or might it depend on flow propertics related to unsteady
viscous and/or elastic flow?

{b) Assume that MI is related to viscosity, free of any experimental artifact. Plot viscosity, in
poise, versus MI, for 0.1 < MI < 10,

(¢) Could two fluids with the same MI have different n{}) curves?

(d) What is the magnitude of the shear rate in the MI experiment?

(¢} The MIof 2 particular low-density polyethylene is given as MI = 1.4. The zero shear viscosity
was measured in a cone-and-plate instrument at 190°C and found to be no = 1.4 x 10° P. Is this
consistent with part b7
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CHAPTER

SEX
EXTRUSION

Failures are made only by those who fail to dare, not by these who dare to fail.

Binstock

An extruder is a pump. It is a versatile machine, capable of performing other
operations in concert with its pumping function. Figure 6-1 shows details of a
typical screw extruder. If the extruder is fed with solid polymer chips or beads, a
melting operation is normally achieved within a few diameters downstream of the
feed inlet. This operation is often referred to as plasticaring, and such an extruder
is a plasticating extruder. If the feed is a fluid, usually a molten polymer, the
extruder is called a melr extruder. If dissimilar polymers, or polymer pius another
fluid, or polymer plus pigment or fiiler is fed to the extruder, the machine serves
the additional function of a mixer.

In any of these operations the goal of the extruder is to produce a homogen-
eous molten material at a flow rate, pressure, and temperature suitable for the next
operation in the process line. The next stage is usually the formation of a solid
polymeric article.

The formation process may be continuous, such as when the polymeric fluid is
forced through a wire-coating die. The process may zalso be discontinuous when
the fluid is intermittently forced into a mold, as in the production of bottles,
combs, or automobile bumpers.

123
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Feed hopper

Gear reducer

Drive-shaft input  Barrel

Figure 6-1 Cutaway view of a typical single-screw extruder.

Constant-pitch metering screw

FUUTILRRRARY >

\ Feod section 1 Transition section ! Metering section ‘

Varying-piteh flighted mixing head

thht Lead A Barrel 2 /k/ M

X\\g X

Figure 6-2 Extruder screw geometry.
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. Part of the versatility of the extruder lies in the design of screws which may be
specialized with respect to the function to be served, such as mixing, metering, or
removal of volatile solvent. The design of the screw may also vary with the type of
plastic resin to be handled. Figure 6-2 shows some typical screw geometries and
details which define screw parameters.

In this chapter the analysis of the fluid dynamics of extrusion will be con-
sidered. The melting process is not treated here,

6-1 NEWTONIAN ISOTHERMAL ANALYSIS

Under practical circumstances extrusion usually involves a moiten polymer
flowing under nonisothermal conditions. In developing models of melt extrusion
it is useful to begin with the simplest case, namely, isothermal newtonian extru-
sion. A geometric simplification makes it possible to treat this case analytically,
and the resulting “simplified theory™ then serves as a basis for comparison of
subsequent modifications to the theory.

The geometric simplification begins upon “unwinding” the helical screw
channel, as shown in Fig. 6-3. The relative motion of the screw and the barrel
becomes equivalent to the steady motion of a plane at an angle 6 to the helical axis
z. Thus a drag flow is generated with components in the x and = directions.

The dynamic equations in the x and z directions will be written with the
assumption that the inertial terms are unimportant, a reasonable assumption in
highly viscous fiuids. For the steady state we write

ép %, &%

0= —é}+“(5x;+ E‘_;‘) (6-1)
ép &u,  Dfu,

0= - Tl E 5] (¢-2)

Figure 6-3 Geometry of the "unwound™ heli-
cal screw channel. The upper surface, repre-
senting the barrel, moves at an angle 8 to the
helical axis and causes flow down the channel
(L7,) as well as transverse to it {L',).
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We assume that the screw geometry is uniform in the z direction and that u. is not
a function of z. The pressure gradient dp/dz is replaced by the constant value

dp AP
%= (6-3)
where AP is the pressure rise down the extruder, and Z is the helical length.

Equation (6-2) is identical to that treated earlier for the flow in a rectangular
duct. The boundary conditions include u, = U cos & at y = B. Thus we have a
case of combined pressure and drag flow in the z direction, and since the fluid is
newtonian we may simply superimpose the solutions given in Chap. 5 [Egs. (5-33)
and (5-71)] and write

(6-4)

where U, == U cos 6. Note that the pressure flow i3 a “backflow ™ opposed to the
drag flow. In most extruders the screw has a large aspect ratio (W/B), as a
consequence of which Fj and F, are nearly unity.

Because the barrel velocity has a component U, = U sin §, there is a trans-
verse flow u.(x, y). For a large aspect ratio we would expect u, to show only &
weak dependence on x, except in the neighborhood of the walls (the screw flights).
As an approximation, then, we replace Eq. (6-1) with

dp 2,
ax T H ay*

(6-5)
subject to conditions

U, =

x| =U, ony=2B8

The solution is found upon integrating twice with respect to y and is

op

dx (6-6)

y 1
Uy = “ng_ﬂy(B_y)

In this integration the pressure gradient 8p/0x has been taken to be independent of
the v coordinate. This is equivalent to assuming that the velocity u, is parallel to
the surfaces at y = 0 and B. Again, of course, this cannot be true in the neighbor-
hood of the screw flights, but it might be a good approximation over most of the
channel if the aspect ratio is large. This type of approximation, where parallel flow
is assumed, is usually referred to as a lubrication approximation because of its
utility in the modeling of lubrication systems. We shall see other lubrication
approximations in subsequent chapters on calendering and coating.

Even though this solution ignores the presence of walls at x = £1W, the walls
exert one effect that must be accounted for, even at values of x far removed from
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the walls: There can be no net flow of material in the x direction. Thus a constraint
on u, Is
B

I u, dy=0 {6-7)
1]
This constraint requires that the pressure gradient take the form
dp 6ul,
a = B2 (6"8)
with which the velocity may be written as
y 3y
=U 2|2 .
w=v.5(2-3) (69)

Equation (6-9) is an approximation that is valid, at best, over the middle portion
of the screw away from the walls. The x component of velocity makes no contribu-
tion to the extruder output @, and so the approximation is of no relevance to that
aspect of the model. The velocity components are necessary, however, in the
calculation of the power requirement for the extruder, which we next consider.

In general, if a force F is required to move an object at a velocity U, the force
does work at a rate

and % is the power expended by that process. In the case of extrusion, the motion
of the barrel relative to the screw requires a power input

Z w
~/ij j (fx,. Uy + 1, U:) dx dz (6-11)
4] 0 B 8
The shear stresses are given by
du,  du,
Y e .12
= “(ay+¢) (612

N L
Txy_lu ay Ha_x

In Eq. {6-12) the underlined term vanishes by the assumption of uniform flow
down the z axis. In Eg. (6-13) the underlined term is neglected as being small,
which is true except possibly near the channe] boundaries at x == + 4. Equation
(6-9) is useful in allowing an approximate calculation of that part of the power
asgociated with u,, the transverse flow.

In Eq. (6-12) we need w.(y). Here it is most useful to again approximate the
flow as il W/B were very large. In that case the veloeity u_ is easily found to be of
the same form as wu,, namely,

(6-13)

oy 1 AP
U, = U:gwﬂ}'('B—}’)? (6-14)
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y=8
l v, iy} :*:_ ] )
u ly

Axial flow Transverse flow

Figure 6-4 Velocity profiles in axial and transverse components, The axial low can have a region
of negative velocity near the root of the screw, as shown, if the back pressure is high enough. The
transverse flow is a closed ¢irculation and so always has both positive and negative components.

Figure 6-4 shows the velocity components u, and wu,.
It follows that the power, according to this simplified theory, is giver by
4uU? pU?  U,BAP
HUx + 'u_~ 4+ —E .
B B 2 Z

wfz( )ZW’ (6-15)
Thus Egs. (6-4) and (6-15) relate the basic performance variables that characterize
extruder performance: output @, the pressure buildup AP, and the power #.
Since these are three variables, a third equation is required to provide a urique
solution.

If the extruder simply discharged the fluid at its downstream end from an
unrestricted outlet, there would be no mechanism by which a pressure gradient
would develop. This would be the case of free discharge: AP = 0. Normally there
is a die of some kind at the downstream end of the extruder, and the flow restric-
tion imposed by the die is what actually establishes the pressure rise down the
extruder axis. Thus the additional relationship among the variables is the pressure
drop across the die associated with the extruder output. It is assumed that all the
output passes through the die.

For newtonian fluids most dies would behave in such a way that

Q=EAP (6-16)

where k is related to the die geometry. Equation (6-16) is called the die
characteristic.
It is most convenient to rewrite Eq. (6-4) in the form

AP
Q=AN— C— (6-17)
H
where the screw speed N (rpm) has been introduced through the relationship
U
N=-— -
nh . (6-18)

Equation (6-17) is called the screw characteristic. The parameters 4 and C are
strictly geometric and may be found on comparison of Egs. (6-17} and {6-4).
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One may easily solve for @ and AP from Egs. (6-16) and (6-17) and find

Ak
Q o mN (6—19)
. A
d = —M— -
an AP ey N (6-20)

(The interesting result, unexpected at first glance but easily rationalized, is the
independence of output from the viscosity of the fluid.)
Finally, the power may be written in the form

W = EuNZ + AN AP {6-21)
Ind o
where E= QTBSEI—-—Q (1 +3sin®6) (6-22)

In this fast expression it has been assumed that the screw is single-flighted, which
means that one channel is wrapped helically down the extruder axis. In that case
W and D are dependent, and

W = =D sin {6-23)

if the thickness of the screw flights is ignored in comparison to W.

Two extreme conditions provide useful measures of extruder performance, If
there is no die resistance (k — o0), we have the case of open discharge, at which the
maximum output of the extruder is achieved. From Eqg. (6-19) it is clear that

Qmax = AN (6-24)

At the other extreme, if the die resistance is very large (k — 0), the extruder
develops its maximum pressure but produces no output. We see that in this case

A
AP, = EEE‘ N (6-25)

Variable Channel Depth

Most screws do not have uniform geometry down the helical axis. Most
commonly the depth B varies in some way according to the purpose of the
extruder and the type of material it handles. We iflustrate here a simple case,
where B is a linear function of z.

if the channel depth is a function of z, it follows that u_ (and u,}is a function of
z, and Eq. (6-2) is not exactly correct. However, if the z dependence of B is not teo
great, we might expect that Eq. (6-2) and its solution would be a good approxima-
tion, with the modifications that B should be left as a variable B{z) and the
pressure gradient 8p/8z should be retained as a function of z.
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Thus the simplest approximation would be to go back to Eq. (6-14) and write

¥y 1 ap
.= U == — —y[Bz) — y] = 6-26
“=U.gm~ 5, MB@) — ¥l o (6-26)
The volumetric flow rate across any plane normal to the helical axis z would
still be constant, and '

WB3(z) ép

=3U.WB(z) ~ — -2
Solving for the pressure gradient, one finds

d 6ul, 12 1

op_SuU. 1249 | (6-28)

dz Bz} W Bz)
Now, as a specific example, let us assume that B(z) is a linear function:

B.~B
B(z) = By + —— e (6-29)

Then Eq. (6-28) may be integrated over the helical axis, from z=0to z = Z, to

give (after some algebraic rearrangement) 2
BB, W (BB AP

HBo+B.) 12u3(B,+B.) Z

This still has the form of Egq. {6-17), and if the appropriate coefficients are
redefined then Eqs. (6-19) and (6-20) still hold.

Q=iu.w

(6-30)

Comparison to Experiment

A 2-in Brabender Extruder is available, having the following dimensions (all linear
dimensions in inches)
D=2075 Z =453 By =0.150 i ati
W=0596  6=17.7° B.=0066] "Cor varauon
A newtonian fluid of viscosity g =20 P and density p = 1.4 g/ml is extruded
through a cylindrical die of diameter ¢ = 75 in and length L = & in.
In order to predict Q and AP we must first calculate

3 8
A—inDW(B>cosf ¢ =SB0 nd

122 T128L

where (B, = B, B, /[3(B, + B.)] and (B*> = (B, B,)*/[4(B; + B.)]-
The results are 4 =6.1 x 1072 in®, C=9.15x 1077 in®, and k =2.38 x
1077 in®, from which we find

Q g/min = 0.289N rpm
AP psi = 0.264N rpm
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Figure 6-5 compares these predictions to experimental data. The predicted linear-
ity of both @ and AP as functions of N is observed in the data. However, both sets
of data fall below the predictions by almost exactly the same factor, 1.51, The
source of this error is not evident, but it is likely to be due to several factors.
Inaccuracy in the channel depth B is amplified in calculation of the parameter C,
which varies with B® It is not known how accurate the manufacturer’s
specifications on B are.

6-2 NEWTONIAN ADIABATIC ANALYSIS

In a highly viscous fluid one often observes a significant temperature rise due to
the dissipative action of the shearing forces acting on the fiuid. The extent of the
temperature rise can be controlled to some degree by using the surfaces which
confine the flow as a medium for heat transfer. Commercial extruders normally
allow for heat transfer at the barrel surface, and some screws are designed with a
facility for heat exchange as well. Thus the ultimate temperature rise in a fluid
undergoing extrusion depends on the mode of thermal operation of the system, as
well as on the fluid dynamics itself.
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The question of how one attempts to control the temperature of a fluid
undergoing extrusion depends in part on the effect of the flow field on the temper-
ature. Temperature rises could be so high that one might have to cool the barrel of
the extruder under some operating conditions. The basis for beginning such a
thermal analysis is the calculation of the adiabatic temperature rise, which assumes
no heat transfer across the fluid boundaries. This is the maximum temperature rise
in the absence of external heat exchange.

The major effect that must be accounted for in the nonisothermal analysis is
the strong dependence of viscosity on temperature. As a consequence the assump-
tion that the flow field is independent of the z coordinate is not strictly correct. As
in the case of variable B{z), we will again assume that a good approximation is
that the velocity u, satisfies, at any value of z,

Y (B~ y) %

w=U:g 75, 8z

z :B 2# (6-'31)

with the understanding that p = p(z).
If this expression is integrated across the channel cross section to give ¢, we
find, upon introducing the geometric parameters A and C, that

1
Q= AN — CZ;% (6-32)

I this expression is integrated with respect to z, we find

_AN-Q*

AP = ““""az_ . ].t(Z) dz (6-33)

Now it is necessary to introduce the temperature rise into the analysis. We begin
with the assumption that an input of power d%" gives rise to an increase in the
thermal energy of the fluid, such that

dw

dT
= = pC,0Q e (6-34)

[Equation (6-34} neglects the relatively small amount of work being done on the
fluid at the rate Q dP.]

1f we modify Eq. {6-21) slightly for this case, we can also write the power input
as

dw
dz

where, again, the small contribution of a flow-work term AN dP/dz is dropped for
simplicity. From these last two equations we may write

p;zf}? T (6-36)

=EN*u (6-35)

}J.dz.=
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This makes it possible to write the pressure drop as

AN —QpC,Q (T
AP=C_ 2l
CZ ~ EN? Lu aT
ECZN? AP
pC, QAT
Equation (6-37) is an adiabatic screw characteristic. It is really a quadratic equa-
tion for Q(AP, AT).

Since the viscosity enters the analysis at least implicity, we must introduce a
model for (7). The simplest realistic model is of the form

or 0= AN —

(6-37)

p=ae tT (6-38)
This lets us write an equation for T(z) from Eq. (6-36), with the result that
’f};? dT = ae™*7 dz (6-39)

After we multiply both sides by €7, this equation may be integrated to give
eb AT _ b#o Esz
pC,Q

where u, = ae™"7° is the viscosity at the entrance to the extruder {(z =0) where
T = T,. It will be useful to define a variable ¥(AT) as

x =27 (6-41)

and to consider y (instead of AT) as the primary temperature-tise variable, Equa-
tion (6-40} is most conveniently rearranged to the form explicit in Q:

0= UobEN2Z
Pcp(x - 1)

If the die sees fluid of viscosity u(T.) = u,, then the die characteristic may be
written as

+1 (6-40)

(6-42)

0= Iﬂ _ ky AP
Hz o
In the screw characteristic [Eq. (6-37)), if we replace AP using the die character-
istic and if AT is replaced by x(AT), we find
ECZN%yu, 1
pC.k  ylny

(6-43)

Q= AN — (6-44)
If Q is eliminated by using Eq. (6-42), the result is an equation for y:

1
¥ In ;((N2 - X——l) =N, (6-43)
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Figure 6-6 7 as a [unction of N, and N,.

where N, = C/k, and N, = ApC,/NZuybE. For any value of N, and N, a solu-
tion for ¥ may be obtained. The most convenient format for presentation of
solutions is that of Fig. 6-6.

Once ¥ is obtained one may calculate AT from Eq. (6-41). Q follows from
Eq. (6-42), which may be written more concisely as

AN
AN 6-46
¢ Na{x— 1} ( )
-and %" may be calculated from the integrated form of Eq. (6-34),
W = pC,0Q AT (6-47)

Example 6-1 In Sec. 6-1 an example was worked involving extrusion of a
fairly low-viscosity fluid. It was found that the simple isothermal theory was
in error to some extent. Could that error be associated with viscous heating?
To answer the question let us calculate the expected adiabatic tempera-
ture rise for that case.
We need the following additional information:

b=0025K™*  pC,=300in-Ibffin> K
E [from Eq. (6-22)] = 55.5in*  (using B, for B)

We find N, = 3.8, and N, > 10® at N = 200 rpm. This N, value is so large
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t_hat Fig. 6-6 cannot be used. However, it is possible to show that for very
large N, (compared to I + N,)

x—1= N {6-48)

2

The resulting ¥ is sc close to unity that we conclnde that there is no percep-
tible temperature rise for this example.

Example 6-2 A single-flighted screw extruder hag the following dimensions:
D=2in  B=02in
L=15in 8 =29°

It pumps a molten newtonian fluid of viscosity u = 0.2 Ibf-s/in?, evaluated at
the inlet temperature. Take the fluid specific gravity as 0.95 and the heat
capacity as pC, = 300 in-Ibf/in® K. The temperature dependence of visco-
sity is exponential, with b = 0.025 I~ L.

For screw speeds up to 120 rpm, plot the adiabatic temperature rise {in
degrees Celsius), the output {in pounds per hour), and the horsepower as
functions of N. Assume open discharge.

We begin by calculating the parameters 4 and E.

For 8 =29° sin 8 = 0.49 and cos & = 0.88. For free discharge, k = oo.

From the definitions presented earljer,

A =3mDWB cos 8 = §z2D*B sin 6 cos § = 1.6 in®
7°D* sin 8(1 + 3 sin? §)

= = 1025 in?
E B 1
The helical length is Z = L/sin § = 31 in. Since k = oo, N, =0.
ApC, 2.9

No=—F __ 7
* T NZughE N

with N in revolutions per second. For N, = 0 we have x=1+1/N,; by in-
spection of Eq. {6-45). Once y is found we may calculate the desired quantities
from

1
AT =7 In 7 =40 In (1 +035N)

_MbEZ N* 4 N
- .OCp Z_I_Nzx_'l
56N 2 70N2
_ 03607 in®/s = —. Ib/h
r—1 r=1

. 300
W =pCOAT =300Q0 AT inlbf = ———
pC0 Q AT in 12(550)QAThp

Figure 6-7 shows these results.
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1.0
Q
= b/ AT,
2000 55 c
hp/100
0 ¢
A (rps) Figure 6-7 Results calculated for Example 6-2.

Example 6-3 A tubing die is designed as shown in Fig. 6-8. At N = 120 rpm
find the output, pounds per hour, and the temperature of the extrudate. The
feed temperature is 275°F. Assume that the extruder and the fluid are those of
Example 6-2. The tubing die has dimensions

R; =0250in Ry =0.300in L=3in

Assume that the die is insulated and there is no temperature change from the
end of the screw to the die outlet. Assume the screw operates adiabatically.

First we must find the constant k in the die equation @ = k AP/u. Since
the die is annular we use Eg. (5-30), from which we find

_ 175540_ a_ (1 -«
~ 8L la (1/x)

The parameters A and E were calculated in Example 6-2. The constant C is
found to be

k I—x =61 x 107% in3

_ WB? “ 7DB3 sin 0
T 12z 127
Then N, = C/k = 109,

We found in Example 6-2 that N, = 2.9/N (with N in revolutions per
second). At 120 rpm = 2 rps, N, = 1.45.

C =0.66 x 107% in?

\
2722

_

S\

r

_f_

L

4

Figure 6-8 Geometry ol a tubing die for
Example 6-3.

ﬁ
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From Fig. 6-6 we find ¥ = 4.7. This gives
AT =401n 4.7 = 62°C

70
= *NZ =
Q 37 76 1b/h

The temperature of the extrudate is 275 + 1.8(62) = 387°F.

We may also find the pressure drop across the die using the die character-
istic in the form

—bAT
ap=toe Q0
k
with the result that AP = 4241 psi.

'6-3 OPTIMAL DESIGN

Even in the simplest model of extrusion, the isothermal case with uniform screw
geometry, the output depends on a large number of variables, Equation (6-19)

~may be written as
7*D2NB sin 6 cos §

@ =3 mhE s 6/6kL

(6-49)

It is not difficult to see that the dependence of Q on B shows a maximum; there is
some channel depth B° which maximizes the output, all other parameters being
held constant. Similarly, there is a helix angle 6° which maximizes Q.

We may talk about optimal design here in a limited sense. Let us suppose that
D and L are fixed, as well as the die characteristic parameter k. Then B® may be
found as the solution to (#Q/&B), = 0, from which it is found that B° depends on

and is
- kL |3
o . -
B = (nD sin® 9) (6-50)
In a similar manner we can consider (3Q/36), = 0 and find #° from
in? g = (2 + T2E) 6-51
sin* @ —(2+ I2kL) (6-51}

A pair of values of B and € that maximizes Q must satisfy both Egs. (6-50) and
(6-51), and one finds that

g% = 30°

1/3
o _ (zm) 652)

D
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The output at this maximum is
3
0% = %RZDZB*N (6-53)

Thus we find that a 30° helix angle optimizes the output of the extruder, for
isothermal newtonian flow. )

But output is not the only performance variable of interest. The economics of
extrusion also involves the power required to pump the fluid. In the isothermal
case the power input creates two effects: the axial flow which produces the output
and the transverse flow which simply circulates and mixes the fluid but does not
create any output.

That part of the power requirement associated with the output is given by the
term Q AP. We may then consider the ratio

AP
= 28P

— (6-54)

as a measure of the efficiency of the extruder. If ¢ is near unity then nearly all the
power produces output.

If it is assumed that the optimum B is used, then it can be shown that ¢
depends on @ according to

cos? 0
€7 3{ + sin? 0) (6-55)
The maximum value of ¢ is only 4 and occurs when 8 = 0. A zero helix angle is a
trivial case, giving no output, as Eq. (6-49) shows. The efficiency ¢ falls off mono-
tonically as @ increases. At 30°, for example, ¢ is two-thirds its maximum value.

Since there are different criteria of optimality, it is not clear how ong chooses
the “best™ helix angle. Under some conditions, for example, one might wish to
enhance the homogeneity of the melt by allowing for more transverse mixing, The
~usual practices result in helix angles that are typically in the range of 10 to 25°

Under some circumstances one may wish to maximize the pressure developed
by the extruder or, at least, to know what that maximum pressure may be. If
conditions are isothermal the problem is trivial, since the pressure increases with
N monotonically according to Eg. (6-20).

For adiabatic flow, however, the pressure may go through a maximum as
screw speed increases, if the heating effect is sufficient to reduce the viscosity by a
significant amount. It is possible to determine the operating conditions at which
the maximum pressure occurs.

We begin with the adiabatic screw characteristic, Eq. (6-37), and divide
through both sides by AN. The ratio g = Q/AN normalizes @ to its maximum
value, which would be achieved at open discharge. The adiabatic screw character-
istic takes the form

ECZb AP

Ty (629
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Figure 69 Solution of Eq. (6-59).

We eliminate y through the adiabatic energy balance, Eq. (6-40), whick may be
written in the form ;
1
= 1l=— 6-57
g, ( )
where N, was defined through Eq. (6-45). Equation (6-56) may be written in the
form
AP 1
——=g1-—gln(i+%-ﬂ) 6-58
s =oll—g)n (14 (6-55)
where a, = pC, A*/ECZb. On differentiating AP with respect to g to find the
maximum pressure, it may be seen that the value of g at which the maximum
pressure occurs must satisfy

1 I —g* 1
Inll = 6-
“( +9*N:) T 20" 14 g, (€-59)

Figure 6-9 gives g*(N,). The maximum pressure then follows upon substituting g*
for g in Eq. (6-58).

6-4 NONNEWTONIAN ISOTHERMAL ANALYSIS

For nonnewtonian fluids, even with geometric simplifications and the assumption
of isothermal flow, it is not possible to find simple analytical expressions for
output and pressure, such as are given in Egs. (6-19) and (6-20). Graphical
procedures provide the most convenient means of treating such problems.
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In the isothermal case for the newtonian fluid, the outpur variables O and AP
are the simultaneous solutions of the die characteristic and the screw character-
istic equations (6-16) and (6-17). It is most convenient to rewrite these equations
m dimensionless form and then itlustrate the graphical procedure. Following that,
the nonnewtonian case will be presented in a paralle] treatment of a graphical
solution method. Then the nonisothermal case may be treated. ’

We begin by defining a dimensionless cutput and a dimensionless pressure
drop:

Q

I, = —_“"U:BW (6-60)
AP RB?
Iy = -61
P {6-61)
For convenience we recall here that
U.=xDN cos & (6-62)
W=nDsind {6-63)
L
Z = pra (6-54)
The screw characteristic [Eq. (6-17)] is easily seen to have the form
HQ = ‘é - JJEI-IP (6-65)
The die characteristic then takes the form
I,
=N, (6-66)

where N, was defined earlier [below Eq. (6-45)]. Then the operating conditions, at
the selected value of N, are the coordinates of the point of intersection of
Egs. (6-65} and (6-66), as sketched in Fig. 6-10.

0.5
&
G
%
o

S \6'6
= e

W

50%
o 6 Figure6-10 Plot of dimensionless screw and die charac-

M, teristics for isothermal newtonian extrusion,
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For the nonnewtonian fluid both the screw and die characteristics are nonlin-
car. The die characteristic comes from the appropriate model for pressure flow. If
‘we assume that the power law is a suitable model, then we may write the die
characteristic in the form

kAP
By

0 (6-67)

where 7, is the “apparent™ viscosity of the fiuid at the conditions in the die. In
general we can calculate fi, if we have an estimate for the nominal shear rate in the
die, using

Ha= Kyt (6-68)

For a given die geometry one can estimate %, at a given flow rate. For exam-
ple, if the die is a circular tube, then from Egs. (5-17) and (5-18) we can show that

nnR*
T3+ ) (6-69)
and
_ |1+ 3n)Q "'1_ QR 1

Since ) may be unknown a priori, we must estimate Q to find ;. Trial and error
may be necessary in some cases. While Eq. (6-67) has a linear format, we note that
since 7, depends upon @, the die characteristic will be nonlinear.

Now we turn to calculation of the serew characteristic. For a power law fluid
under combined pressure and drag flow in a rectangular channel, the dynamic
equations take the form (neglecting inertial terms)

0= — < e K —— (- tr2l0x 6-71
&x E:l’ [(2 A) 6_1' ] ( )

tp € Lriry yin- 112 CU:
0= ~—=+ K< [(3I —= 6-72
cz + &y {(2 y E}.J ( )

where
Cu\? cu\?

i1, = fif) " ( ) 3
o (3_\' &y (6-73)

In writing these equations we have assumed that there is a transverse flow u, but
that the aspect ratio is large enough that u, and u. are independent of x and are
functions only of y. We note that since the viscosity depends on II,, which
depends on both u, and u_, Eqs. (6-71) and (6-72) are coupled, i.e., both variables
appear in ecach. Analytical solution is impossible in this case, and numerical
methods must be used.
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Figure 6-11 Dimensionless serew characteristics for isothermal power law extrusion. Transverse
flow neglected.

It is possible to uncouple the equations with the approximation that the
transverse fiow is unimportant, in which case we must solve

0= -2 ygll (Ei) T (6-74)
£z vlliéy &y

In this one-dimensional model, if we assume that the screw channel is uniform
down the helical axis z, we have a nonlinear ordinary differential equation to
solve, which we may write as

AP d ( (675)

. du. "™t du,
o--F-x7(lF T

The absolute value sign replaces the operation of squaring and taking the
{n — 1)/2 root. (The point here is that one carnot take the fractional root of a
negative number without getting imaginary numbers, and the veiocity gradient
du_fdy will, in general, change sign in the region 0 < y < B.)

The solution of Eq. (6-75) has been carried out, and the most important resuit
is the presentation of the screw characteristics given in Fig. 6-11. T, and I, are
defined as in the newtonian case, except that in Tl one uses fi, at the nominal
shear rate in the screw, given by

. UL
I F (6_76)

U n—1
so that L, = K(TB:) (6-77)
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The graphical method of solution then requires plotting IT, versus IT, for
both the screw and the die, with the intersection giving the operating point. The
die characteristic [Eq. (6-67)] may be converted to II form as in Eg. (6-66) for the
newtonian case. However, we must note that now we have twe viscosities, 7i, at
the screw shear rate and i, at the die shear rate. If we agree to define IT, based on
the screw viscosity F,, then the die characteristic takes the form
1 Iy H

Hy = —— I, =2
712N, TR,

(6-78)

Example 6-4 An extruder of dimensions D =2 in, B = 0.2 in, L = 40 in, and
f = 29° is used to produce plastic rod from a die of diameter d = 1k in and
length L, =% m. Assume the melt is at uniform temperature, and at that
temperature the melt obeys the power law, with n = 4 and K = 1 Ibf-s*/%/in’.
These power law parameters were obtained for shear rates in the range 10° to
10% 57

Find the output and the die pressure at 30 rpm.

In this case it is simplest to calculate the die characteristic directly as
Q{AP) and then convert the screw characteristic to a Q(AP) curve.

nwR3 (R AP\
T 1(7KL) [Eq. (>-17)]

Qin%/s=75x 107% AP? psi
For the screw: Q@ = WBU_Il, = n*D*BN sin 6 cos 6 I,
Q in?/s = L7,

For the die: 0

Zn. U, Zu, DN cos 8
AP = 22, = - I,
A—1
I, = K(&N;ﬁj) = 027 Ibf-s/in?

AP psi = 173011,

From Fig. 6-11, for n = 4, we can pick off pairs of I1,, I1, values for plotting
the screw characteristic. Representative values are given as follows:

AP, Q.
n, I psi in’s

0.32 1730 0.53
0.23 3460 0.38
012 3180 0.20

[PV P

From Fig. 6-12 one finds the intersection to be @ = 0.48 in%/s = 62 Ib/h, and
AP = 2700 psi.
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1

Q {in3fs)
A

01
10 104
AP {psi} Figure 6-12 Graphical solution of Example 6-4,

One should always check the shear rates in the die and extruder against
the shear rates over which the rheological data were obtained to ensure that
they are in the same range of values. For the die,

143n Q
Y= — =23 0* 5!
Va - x 10% s
For the screw,
jo= Lz TN cosh_
B B

This latter calculation suggests a potential problem, since the rheological data
begin at shear rates 2 orders of magnitude above the screw shear rate. The
effect of this feature is illustrated in Prob. 6-9.

6-5 NONNEWTONIAN ADIABATIC ANALYSIS

When nonisothermal effects are introduced to the nonnewtonian analysis, the
problem becomes quite complex. It is not possible to work with an analytical form
for the screw characteristic, and so the analysis carried out in Sec. 6-2 cannot be
paralleled for the power law fluid.

It is possible to solve the nonnewtonian adiabatic case numerically, but the
introduction of additional (thermal) parameters makes it impossible to present
the results concisely, as in the newtonian case, with a few equations and a single
graph. It is possible, however, to present a concise approximate method by mod-
ifying the simpler analyses presented in Secs. 6-2 and 6-4.

We begin by noting that Eqs. (6-43) and (6-44), for the newtonjan adiabatic
case, may be put in dimensionless form, with the results

Screw: : My =4 — Al 2— {6-79)
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. ' 1
D;e. ’ HQ = ﬁ}: xl'.[_,, ) (6—80)
From the definition of y [Eq. (6-41)] we can see that
Ko
== 6-81
P (6-81)

that is, y is the ratio of the viscosities at the temperatures of the extruder inlet and
the die, respectively. This indicates that the die characteristic, when plotted as Q
versus AP, should involve the viscosity at the die conditions. This is logical and in
fact is exactly consistent with Eq. {6-43). '

The interpretation of the screw characteristic [Eq. (6-79)] is a little more
complicated in the adiabatic case. The factor involving ¥, which multiplies 11,
can be expressed as

r—1 1=l pm

= = M 6-82
Iny In(u/me) i (6-82)
where u;y is the log mean viscosity defined by
U — Ho
g = e 6-83
A T () (&-83)

It is not difficult to show that i,  approaches the arithmetic average of u_ and u,
when g, and u, are not too different. Otherwise, y; \, lies between gy, and .. The
pressure term, then, may be written in the form

T, —1) APBYU,Z  APB®

= = 6-84
Iny Mot/ UZ (6-84)
where we define an adiabatic average viscosity as
Cuy = Eoke (6-85)

If Eq. (6-84) is compared to the definition of II, [Eq. (6-61}], we see that
Eq. (6-79) may be written as

e (6-56)

where the brackets { > on I, remind us that we use {u)> in Eq. (6-61).

Then we may use the same screw characteristic as in the isothermal case but
with a modification of the viscosity according to Eq. (6-85). Thus the newtonian
adiabatic case could be solved through a graphical procedure as follows:

1. Calculate N; and N,, and from Fig. 6-6 find AT.
2. Plot Q versus AP from the die characteristic, using u. at the die temperature
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Q (indfs)

] N B S e

1 { ] ] |

APII0® {psi) Figure 6-13 Graphical solution of Example 6-5.

. Plot @ versus AP from the screw characteristic, using (u> as defined in

Eq. (6-85).

- The intersection gives the operating point (Q, AP),

Example 6-5 Rework Example 6-3 by using the graphical procedure just
described. The necessary parameters were calculated in Example 6-3,

For N =2 rps, we found N; = 109, N, = 1.45. From Fig. 6-6 we found
7 =47 or AT = 62°

The die characteristic obeys

0= K AP =14x1079 AP psi
which is plotted in Fig. 6-13.

The screw characteristic [Eq. (6-79)] is most easily plotted by calculating
Tp=%o0r 0 = AN at AP =0 ard

or AP=6?‘-— atQ=0

The end points of the screw characteristic are found to be (AP, Q) =
(4280 psi, 0) and (0, 3.2 in®/s). This line is plotted in F ig. 6-13, and the result-
ing intersection is found to be

AP = 3600 psi
Q=05 in%s = 65 Ib/k

in good agreement with the results given in Example 6-3.
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The extension of this method to the nonnewtonian case will be made in the

following way. We assume a power law model, with K given as a function of
temperature according to

K _ oo
Ko~ 2 {6-87)
while » is assumed independent of T, at a fixed shear rate. These assumptions are
in reasonable agreement with experience.

A further assurnption is that Fig. 6-6 holds for power law fluids if 4o, which
appears in N,, is calculated at the nominal screw shear rate and at the inlet
temperature, so that

T = 1r<0(9;§=~)”_1 (6-88)

Then the procedure is as follows:
1. Calculate N, and N,, and from Fig. 6-6 find AT.

2. Plot Q versus AP from the die characteristic, using i, at the die temperature
T. =Ty + AT and at the die shear rate, so that

oot Koo,
.= Koe 2473 1=—xg“/d ! (6-89)

3. Determine the appropriate value of », and plot @ versus AP from the corre-
sponding power law screw characteristic, using {u> evaluated at the screw
shear rate, with an adiabaric average {K) defined so that

Gy =< Z)

_KOKz(Uz 1
 Km \ B

In y U.. nt
= L et 6-90
Kox_l(B) (6-90)

4. The intersection gives the operating point (Q, AP).

Example 6-6 Dow Styron 666 {a general-purpose polystyrene) is to be
extruded using the extruder of Example 6-2. Find the fiow rate and tempera-
ture rise ar open discharge for a screw speed of 12 rpm. The melt enters the
extruder at 170°C.

Take pC, as 300 in-Ibf/in* - K. Viscosity data are given in Fig. 6-14.

As before, 4 = 1.6 in®, £ = 1025 in”,and Z = 31 in. Since k = co at open
discharge, N, = 0.
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20 100 103 Figure 6-14 Viscosity-shear-rate-temperature
3 {5=1) data for a polystyrene melt.

it

il

From the rheological data presented we can find
1

n=sj
Ko =4 x 10° dyne-s'?/em? = 5.8 Ibf-51/3/in?
b=10.066°C"!
We now carry out the steps outlined above,
ApC
N,=-tp
© NZObE

We must caleulate 7, .

_ Uyt nDN cos 6,722
iy = KO(_é:) = 5.8(—~B_)

=-1.86 Ibf-s/in?
N, = 0.62
For N, =0,

1
r=1+-—=26
4 +N2

In =096 AT:%lnz=I4:C,

This completes step 1.
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For the ¢ase of open discharge AP = 0, and so II, =0,

From Fig. 6-11, for n=1, we find [T =% or (taking a density of
60 Ib/ft3y -~

Q = AN = 40 Ib/h

At open discharge, Q is unaffected by fiuid properties and is independent of
temperature rise or the degree of nonnewtonian character of the fiuid. This is
& consequence of the one-dimensional drag flow assumptions.

Example 6-7 Repeat Example 6-3 for the fluid described in Example 6-6.
Give AP and AT at an output of 20 Ib/h, and specify the screw speed N
required to produce this output,

In this formulation of the problem the screw speed is unknown. Trial and
error is required to find the value of N which produces the specified output.
We found in Example 6-6 that an output of 401lb/h is achieved at
N =12 rpm. The die resistance will reduce the'output from this level. We will
proceed by calculating the output at several values of N and then interpolate
from these results to the specified output.

Let N =12 rpm = 0.2 rps. As in Example 6-6, N, = 0.62. Since N, is a
purely geometric parameter, we may use the value found in Example 6-2,
N, =109 From Fig. 6-6 we find 7y = 9.5. Then In y = 2.25 and AT = 34°C.
This completes step 1.

The die characteristic is

k ky
= AP =Ll
Q ﬁz K:OH:r AP

Since we have the equivalent result for the power law fluid in Eq. (5-32), it is
easier to use that directly in the form

nrR,
1+2n

Fin, x)
[2(Kq /)L

From Fig. 3-3 we find F(§, 0.833) = 0.93. The dic characteristic becomes

Q:

)Z’.+I,’n

(Ro — R, AP

0 =11x10"% AP?
{Note: Qisin cubic inches per second and AP in pounds per square inch.) This
P

is plotted on Fig. 6-15.
From Fig. 6-11, for nn = §. some representative values of I1, and IT, are

m, 04 03 02 oI

1, 0.4¢ G.75 13 25
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T T T T
: 12 rpm ]
— B Die B
= - -
T L N
@ Screw
0.1 ! IR AN
10? 107
AP {psi) Figure 6-15 Graphical selution of Example 6-7.

To convert this to a screw characteristic in terms of AP and Q it is necessary to

calculate (o>
Iny {U\"7?
<I~5>—Kox_ 1(F)

3
- 5.3(%‘?) (5.53)7 %% = 0.49 1b-s/in?

ap = U2y

== P = 42011,

0 = U,BWTI, = 1.1(0.2)(3.05)[1, = 0.67IT,

With the II,, I1,; values given above we can plot the screw characteristic.
Figure 6-15 shows the screw and die characteristics for N = 12 rpm. The
intersection of the curves gives @ = 0.16 in%/s, or 20 Ib/h (at a density of
60 Ib/ft*). The choice of 12 rpm for this caleulation was convenient since it
allowed use of several numbers from Example 6-6. Normally it would be
necessary to repeat the procedure and find Q at several values of N, and then,
by interpolation, pick the N that produces the specified output. In this case it
is accidental that the first choice of N gives the right output. We find, then,
that at N = 12 rpm we have a pressure drop of 520 psi and a temperature rise
{adiabatic) of 34°C.

6-6 EVALUATION OF SOME OF THE PREVIOUS KINEMATIC
AND GEOMETRIC SIMPLIFICATIONS

In the previous sections we have examined extrusion models based on
simplifications of the kinematics of the flow field as well as onidealizations of the
geometry of the extruder. Here we examine the relaxation of some of these ideali-
zations and thereby attempt to evaluate their importance. Some of the geometric
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simplifications can be relaxed, and more realistic models presented, with only a
minor increment of effort. The justification for having made the simplifications at
all, in such cases, was somewhat weak but lay in the desire to use the simplest
possible geometry for evaluation of the more important rheological and thermal
features of the extruder modet.

The principal kinematic assumption used in earlier sections, the neglect of the
transverse flow in all but the newtonian isothermal case, can be relaxed only at
great computational expense, and it is important to evaluate the role of the
transverse flow under realistic operating conditions. We begin, then, with a con-
sideration of transverse flow. We will consider subsequently several of the geome-
tric simplifications which can be relaxed, and assess their importance.

Transverse Flow

For isothermal power law extrusion the appropriate equations were given earlier:
Eqgs. {6-71) to (6-73). Kinematic boundary conditions specify no motion at the

stationary surfaces. At the moving surface the appropriate boundary conditions
are

u,=nDNcos @ tveB {6-91)
t,= —nDN sin 8 ay= (6-92)

It is not too difficult to see that when the equations of motion and these boundary
conditions are nondimensionalized the screw characteristics have the functional
form

T, = T,(TL, , 1, 6) (6-93)

where I1, and I, have been previously defined. We see immediately that 8 enters
the screw characteristic as an independent variable when transverse flow is
included.

Numerical solutions of this problem have been carried out, and Fig. 6-16
shows screw characteristics for § = 15°. When transverse flow is considered it is
common to recdefine the IT's as

H, =11, cos 8 (6-94)

Hj == I1p{cos &) (6-95)
which corresponds to using U = nDN as the characteristic velocity, instead of
U. = nDN cos 0, in nondimensionalizing the equations.

For the newtonian fluid, for which the transverse flow has no effect on the
screw characteristic, we observe the expected result at open discharge:

Iy =4 cos B (6-96)

For n < 1 we find that the screw characteristics are qualitatively similar to those
for one-dimensional fiow, given earlier in Fig. 6-11. A guantitative comparison is
given in Fig. 6-17 (in terms of IT rather than IT') and it is seen that the effect of




152 FUNDAMENTALS OF POLYMER PROCESSING

05

M

3

n=02 04 08 08 n=1
| \I\l\\\
1 2 3 1 5

I

Figure 6-16 Dimensionless screw characteristics for isothermal power law extrusion. Transverse
flow included. # = 15°

0.5

Mg

! | Figure 6-17 Comparison of one- and two-dimen-
6 sionalisothermal screw characteristics for a power
law fluid. 8 = L7.7°.

transverse flow is to reduce the output. The extent of reduction is small, however,
and not of sufficient magnitude to justify the additional numerical work required
for its calculation. If we were concerned only with extruder output, we would not
be motivated to include transverse flow in the model.

With regard to the power requirement we can return to Eq. (6-15), which
includes the contribution of transverse fiow. If we define a dimensionless power
parameter as

#'B
WZUzu
we may rearrange Eq. (6-15) (after using the screw characteristic to eliminate AP)
and find

My = (697)

O, =4 — 60, + 4 tan? § (6-98)



EXTRUSION 153

Figure 6-18 Dimensionless power parameter as a [unction of
fiow rate, including the effect of transverse flow for § = 17.7°,

The underlined term gives the contribution of the transverse flow to the power
requirement. It is clear that the relative importance of transverse flow depends
upor Iy, but unless 6 is quite small the neglect of the transverse flow contribution
gives a significant error.

Numerical solutions which include the transverse flow have been carried out
for typical values of n and 6, and it is found that the power is underestimated by a
lesser amount than in the case n = 1 if the one-dimensional power-law velocity
field is used instead of the two-dimensional (transverse flow included) solution. In
either case, whether transverse flow is included or not, the power law solution
must be carried out numerically.

Fenner has solved the dynamic equations, including the transverse flow, and
presents several examples of results in his comprehensive monograph on modeling
of melt extrusion. Figure 6-18 shows IT; for the newtonian and two power law
cases, for 6 = 17.7°. I1,; is defined, for the power law fluid, by

AW B"

e = gzroie

(6-99)

This definition of T, corresponds to Eq. (6-97), with an apparent viscosity eva-
luated at the nominal shear rate in the screw channel.
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From Fig. 6-18 it is clear that if one attempted to use the newtonian power
formula [Eq. {6-98)] with an apparent viscosity based on the nominal shear rate,
very significant errors would be made except near open discharge (1, ~ 04 to
0.5). This is true whether transverse flow is included or not. This is an important
point, because one is often tempted to compound models, i.e., to use several isolated
modeling ideas together in a manner which may then lead to significant ‘error
because, in a sense, the “whole™ of the subsequent model turns out to be Very
different from *the sum of its parts.”

An important conclusion to be drawn from the results above is that it is more
important to have an accurate rheological characterization of the melt being
extruded than to have an exact kinematic model that includes the transverse flow,
This places some emphasis on having rheological data over the appropriate range
of shear rates experienced within the extruder. It is still a reasonably good rule of
thumb to use the nominal shear rate U. /B to characterize the deformation rates
experienced by the fiuid. Since the transverse flow increases the magnitude of the
deformation rate (that is, II,) over the value U, /B, one should consider U_/B to
be a lower estimate, and if possible require data at shear rates in excess of this
value.

To review briefly, we conclude that transverse fiow has a small effect on
output, not great enough to justify its inclusion in modeling. Transverse flow may
have a significant effect on power, especially away from open discharge
(significant die resistance) and the more nearly newtonian the melt is. Even 30,
these transverse flow effects are secondary to the nonnewtonian nature of the melt.
An imaccurate rheological characterization will cause much greater modeling
errors, in general, than the use of the one-dimensional flow model. Is there any
reason, then, to consider transverse flow at all? The answer (yes) lies in the
important role of transverse flow as a mechanism of mixing fluid within the screw
channel. Figure 6-19 shows a qualitative picture of the helical path followed byan
element of fluid as it progresses down the axis of the screw channel. It is the
transverse flow which causes the circulatory motion, and this circulation enhances
the extent of mixing that occurs within the extruder, We leave the word mixing
undefined here and consider the process of mixing in some detail in Chap. 12. We
will find that a realistic mathematical model of mixing in a melt extruder is quite
difficult to carry out, and only a few features of this problem have been adequately
handled at the present time.

/7 Figere 619 Circulatory flow pattern
N N caused by transverse flow.
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Figure 6-20 Cross section of channel, normal to the flights,
b W ————+] showing the clearance 4.

Clearance Flow

In previous models it has been assumed that the screw flights are actually in
contact with the barrel, thus forming a closed rectangular channel. The true
geometry is more like that shown in Fig. 6-20, and we wish to evaluate the
importance of flow in the clearance between the *land™ of the flight and the
barrel. As in the consideration of transverse flow, we examine the role of this
geometric simplification with respect to both output and power. As in that case,
we find that the power model is much more dependent on the simplifications
made than is the output medel.

In Fig. 6-21 we show the geometry of a single-flighted screw, with one turn of
the screw * unwound,” i.e., laid out flat. Consider two potnts, g and b, on opposite
sides of a flight. If a finite clearance under the barrel is allowed for, then we must
expect that flow can occur directly between points a and b. There can be both a
drag flow and a pressure flow.

Figure6-21 Detail of screw geometry: (a) shows
asingle-flighted screw; (b) shows the same screw
unwound and flattened.
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Since §/e is normally quite small compared to unity, we might approximate
the clearance region as a pair of parailel plates. This allows us to use the parallel-
plate flow equations already developed in Chap. 3, and in the simplest possible
way determine whether clearance effects might be large enough to justify more
aceurate (and, of course, more tedious) modeling.

With regard to drag flow we know that, at least approximately, Qp = $U_ 4,
where A, is the appropriate cross-sectional area normal to the flow. Drag flow in
the clearance is generated by the same U, as drag flow in the screw channel, and
we conclude that the ratio of drag flows in the clearance and channel is given
approximately by the area ratio e§/BW. We can expect this ratio to be quite small,
and so drag flow in the clearance cannot be much more than a few percent of the
channel drag flow.

The pressure flow is somewhat more difficult to calculate, and we begin with
Eq. (5-22) ir the form suitable for the clearance geometry:

=D& (ap
" 12pcos \ax/,

0r (6-100)

We see that the “width” of the clearance region is zD/cos @ in this case, which is
actually the helical length of one turn {3607 of the flight. The channel height, of
course, is §, and we denote the appropriate pressure gradient as (dp/dx),, which we
must now calculate.

For a screw of constant channel geometry we know that the pressure gradient
dp/éz is constant, and we write

ép AP AP

AL 101

We wish to calculate the pressure difference p, — Py (see Fig. 6-21) across a flight.
We need to calculate the helical distance a particle of fluid would travel in order to
‘move from point aq to point b along the z axis. We ignore any effect of the
transverse flow.

With reference to Fig. 6-21 we note that the points a” and &’ are identical, (We
would recover the serew if the unwound sheet were rejoined at points a'a”.) In
traveling along the helix a particle moving from a to g” {or @) would travel a
distance zD/cos 0. But if we project point a’ across to the opposite flight (point &),
which would have the same pressure if transverse flow effects are ignored (that is,
Par = py.), We see that the particle would have actually moved beyond point b by an
amount given by ) tan @ sin 6. Hence the helical distance from a to b is just
nDjcos 8 — nD tan 6 sin 6.

Then p, — p, is just the product of 0p/dz and the distance, along the kelix, from
atob:

AP D
—p =[S s b i 102
Pa— Dy ( 7 sin 9) (cos 7 7D tan @ sin 9) {6-102)
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For the pressure gradient (3p/dx), we use

ap\ _ p.—p, AP nDcos@sin b
(a)c == = ol (6-103)
From Eq, (6-100), then, we find
#2D3> AP sin #
Qp="— =7 (6-104)

12uel

By comparison [Eq. (6-4), with Fp = 1, W = =D sin 6,and Z = L/sin 6] the pres-
sure flow in the channel is

_ nDB® AP sin® 8
h 12uL

from which we see that the ratio of the pressure flow across the flights (which we
refer to as 2 leakage flow) to the channel pressure flow s just

8\3D =n
(B) e sin 0
While D/e and n/sin 6 are both greater than unity, the cube of the small factor 3/B
ordinarily results in reducing the ratio above to a value considerably less than
unity. Under normal circumstances leakage flow is of minor consequence.

The simple analyses above assume isothermal newtonian behavior. The shear
rate in the clearance exceeds that in the channel by a factor of the order of B/S,
which is normally in the range of 10 to 20. Viscous heating will be greater in the
clearance than in the channel. This factor, along with the usual nonnewtonian
viscosity behavior, implies that the viscosity of the fluid in the clearance might be
quite a bit less than that in the channel. If this were so, the leakage fiow could be
considerably in excess of that estimated by the simple analysis just presented.

At this point one might be tempted to account for these factors in a more
detailed analysis of flow in the clearance. This may not be justified, however. Fluid
moving through the clearance resides in that region for a very short time and
spends most of its residence time in the extruder circulating within the channel. It
is not at all clear that a steady-state analysis of viscous heating in the clearance
region would be realistic. Furthermore, the rheological response of a polymeric
melt which rapidly passes into and out of the high-shear clearance region might be
expected to show significant transient viscoelastic phenomena. It may be quite
misleading to use a power law model (or any purely viscous model) to characterize
the viscosity reduction due to the high shear rates in the clearance region. For
these reasons we avoid the temptation to produce more complicated (but not
necessarily more realistic) models of flow in the clearance.

We should, however, examine the role of the clearance flow in affecting the
power requirement of the extruder. In the simplest approximation. we neglect any
pressure flow in the clearance and just consider the power associated with the drag
flow. We assume isothermal newtonian behavior, again.

o (6-105)
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N

Figure 6-22 Definition sketch for analysis of power
777 7 7 expended in the clearance region.

The power associated with the clearance flow is given by

#.=F-U (6-106)
or, in terms of the shear stresses, noting Fig. 6-22,
. el
—_ U " U_ —_ -
We=(toUs 15U 5= (6-107)
If any pressure flow in the clearance is ignored, the power simplifies to
peln?DEN?
= —————— 6-108
£ d sin 0 { )

We may compare the contribution of the clearance to the total power require-
ment most easily by examining the dimensionless power parameter I1,;, which
now takes the form

Be 1

—_— 2 e e —
II; =4 — 6ll; + 4 tan 6+5 W oos7 B

(6-109)
The last term is not ordinarily going to be small compared to unity, in con-
sequence of which we must conclude that the clearance makes a substantial con-

" tribution to the power requirement for the extruder. Again, however, we must note
‘that nonnewtonian behavior and nonisothermal conditions would substantially
change the contribution of the clearance to the power. In this case we would
expect that a more realistic model would show a much smaller contribution of the
clearance to the power requirement.

The reservations noted above, regarding the difficulty of producing a realistic
model of the rheological and thermal behavior of fluid in the clearance, still hold
of course. Other than for its value as an exercise in modeling, it is probably not
worthwhile to pursue small medifications (such as the inclusion of power law
behavior} of the analyses just presented. Either a complete model should be
carried out (which would require a better understanding of the thermal and
rheological phenomena than is currently available), or one should conclude from
the simple models presented above that the flow in the tlearance can be of
significance, particularly with regard to power, and keep in mind the sense of the
errors that will be made in using these models for design.
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6-7 EXTRUSION WITH IMPOSED HEAT TRANSFER

The isothermal and adiabatic cases outlined in previous sections provide limiting
models which lead to relatively simple analyses of extruder performance. In the
adiabatic case the energy balance is particularly simple: The power input to the
fluid appears as an increase in sensible heat [Eq. (6-34)].

Real extruder performance usually lies between these extremes, principally
because heat is usuvally transferred between the fluid and the extruder screw and
barrel surfaces. As scon as the adiabatic assumption is lifted, one may no longer
write the simple energy balance of Eq. (6-34). Instead, a conduction-convection
equation must be introduced. The resultant model contains a large number of
parameters, so many that no compact presentation of results is possible. It is most
instructive if we first examine the problem through dimensional analysis and then
look at some typical, though not general, results of a numerical analysis of the
model. The reader with no previous background in heat transfer may find it better
to skip this section now and come back to it after completing Chap. 13.

The conduction-convection equation has the vector form

pC,u-VT =k V2T + @, (6-110)

where k = thermal conductivity of the melt
&, = volumetric rate of conversion of mechanical energy into heat

It is possible to write @ in terms of stress 7 and the velocity gradient tensor Vu as
D, =1:Vn (6-111)

If inertial forces are neglected we can write the dynamic equations in the vector
form

O0=—-Vp+V-1 {6-112)
The continuity equation is simply
Vou=0 (6-113)

if we continue to neglect possible density variations due to temperature and
pressure variations.

We require a constitutive equation, and the power law will be used here in the
form

T = KGI,)0- 02 A (6-114)

Since we wish to consider temperature effects on viscosity we introduce an equa-
tion of state for K(T):

K = K,e 8T~ (6-115)

where T, is some reference temperature at which K = K,,.
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Boundary conditions on u state

__ [=DN cos 6 aty= B (6-116)
7o aty=0 (6-117)
_|—=DNsin® aty=5B (6-118)
*7lo aty=0 (6-119)

If we neglect the effects of a finite aspect ratio, we can take u, = Q in the
dynamic equations.

Boundary conditions on T might commonly specify a fixed temperature at the
barrel surface:

T=T, aty=B (6-120)

At the root of the screw we might assume either of two simple possibilities:

T=T7 aty=40 {6-121)
ar
or Fr 0 aty=0 : (6-122)

Equation (6-121) specifies the temperature at the screw and asserts that it is the
same as that at the barrel. Equation (6-122) specifies that no heat is transferred
across the screw boundary. Other cases are possible, but they will not alter the
general conclusions to be reached.

Now we will nondimensionalize Eqs. (6-110) to (6-122) in the following way
(primes will denote dimensionless variables):

(v, v, )= 22

v=— where U, = DN cos #

' p BR g T: B"
=71 =%l
K, \U, K\U,

—_ n+1
-1 where Br = K, U:

T = b
T, Br KT, B" !

Then the mathematical model takes the form

Pew - VT'=V3T 41 :Vy (6-123)
0= —Vp +V -1 (6-124)
Veow=0 ' (6-125)

)

7 = e T B T (ATL Yo 2 g (6-126
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'ljhe boundary conditions state that

On y =1+ u, =1 U, == —tan =0
r + ’ T :
On y =0: u. =0 u, =0 Frie 0 [using Eq. (6-122)]

Equations {6-123) to {6-126) and the boundary conditions following are
sufficient to determine the variables v, T, ¢/, and 7/, and by inspection we can see

that four dimensionless parameters appear: n, 8, Pe, and (b7, Br). Pe is the Péclet
number, '

_pC,BU,
k

Br is the Brinkman number, but in this formulation it appears only in combina-

tion with the parameter b, so that the relevant dimensionless group is 2 modified
Brinkman number defined as

Pe (6-127)

bK, Un™!

B=05bT, Br= LET

(6-128)

From this inspection it is an easy matter to show that the screw characteristic will
have the functional form

g = My(IT,; #, 8, Pe, B) (6-129)

The model, as formulated above, has been solved by Zamodits and Pearson and
by Griffith in papers noted at the end of this chapter.

Figure 6-23 shows the effect of a finite modified Brinkman number, § = 1. On
comparison it can be seen that, at fixed pressure, the effect of heat generation is to
increase the output at low pressure (near open discharge) but to decrease the
cutput at high pressure. The break-even point is roughly in the neighborhood of
I, = 1. For II}, < 1 the effect of heating is to increase the output; it is otherwise
for IT, > 1, and this fsature is roughly true over a range of values of n and f.

The strong effect of f, especially on the maximum pressure which may be
developed, 1s shown in Fig. 6-24.

The Péclet number does not appear in the analyses of Griffith or Zamedits
and Pearson. They drop the convective terms of Eq. (6-123) (Pe = 0) right from

0.5

1,

Figure 6-23 Noaisothermal-nenadiabatic
screw characteristics for power law fluids for
the case f = L.
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0.6

Na

4 &  Figure 6-24 Eflect of § on screw characteristics
fern=14.

the start. This is in seeming contradiction to the observation that, in fact, the
Péclet number is typicallyt of the order of 10°. However, both models assume a
form of thermal equilibrium, for which T is assumed to be independent of x and z.
Thus the only nonzero convective term invoives u, §T/8y. Since u, is neglected in
these models it follows that the convective terms disappear identically because of
the neglect of u, and the assumption of thermal equilibrium in the x and z
directions.

We should emphasize here the specific nature of this model, both in taking
Pe = 0 (which neglects thermal convection) and in assuming [through boundary
condition (6-122)] that the screw surface is adiabatic. Transverse flow will give rise
to significant thermal convection and alter the screw characteristics shown here.
Since the metal screw is a considerably better conductor of heat than the polymer
melt, it is not very likely to behave in an adiabatic manner, and it is quite likely
that there is a temperature distribution along the screw surface down the extruder
axis. A rigorous thermal model of extrusion is really beyond our aspirations, and
the best that one can do in this regard is carry out a few analyses based on specific
assumptions in order to get an idea of the effect of gross changes on extruder
performance.

6-8 PLASTICATING EXTRUSION

In all cases, so far, the extrusion models have assumed that the screw conveys only
a melt. In reality, most commercial extruders are fed with solid polymer, in the
form of small beads or chips, or in powdered form. The process of melting the
polymer is usually referred to as plastication. The energy required to plasticate or
melt the polymer is initially supplied externally across the barrel of the extruder.
As melting occurs the mixture of solid and molten polymer is subject to mechani-
cal forces that give rise to significant viscous dissipation of mechanical energy,
which further promotes the melting process.

Melting models of the plasticating region of the extruder are fairly complex
and are based on experimental observations that are not as_yet completely ac-
cepted. The lack of acceptance is sometimes with regard to the generality of the

+ See R, T. Fenner and J. G, Williams, J. Mecil. Erg. Sci., 13:65 (1971).
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observation and sometimes with regard to the implication of the observation. For
this reason we will make only the briefest comments on the models currently
available and provide in the Bibliography an opportunity for further study of this
topic.

Figure 6-25 shows a cross-sectional view of a screw somewhere between the
solid-feed and melt-conveying sections of the screw. The general picture, based on
observations, is that melting begins with a thin layer of fluid formed at the barrel
and, perhaps, along the screw surfaces as well. A melt pool forms in which a
circulating fiow of material exists. The melt pool grows at the expense of the solid
bed until eventually all the solid is melted. One of the goals of a plasticating model
is the estimation of the distance down the screw axis required to achieve complete
melting,

I the solid bed vccupies most of the channel cross section over an axial length
that is a significant fraction of the screw length, then the melt extruder analysis
presented up to this point is inapplicable to the calculation of the output variables
of the extruder. Several attempts at developing a model for the plasticating ex-
truder are now available (see the references listed under Sec. 6-8 in the Biblio-
graphy) based on a variety of thermal, mechanical, and rheclogical assumptions.
The reader is referred to this literature for further study.

Ay

PROBLEMS

6-1 Consider a screw designed with a variable channel depth as in Eq. (6-29). The ratio By/B, is
referred to as the compression ratio A. Let @, be the maximum output (which corresponds to open
discharge) for A = {, and let Q;,, be the same thing for arbitrary A. Show that

Qo _ 2

Qmux 1 + ;'

AP 1
and - AP

max

where AP, is the maximum pressure developed by the screw (which occurs at no output) for A = 1,
and AP, is the same at any 4

Thus we see that a finite compression ratio improves the maximum output but reduces the
maximum possible pressure.
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62 Prove that Eq. {6-48) is valid for the case N, » | + N by examining the limit of the right-hand
side of

r—1
xlny

x— 1N, —1=N, asx—1

6-3 Consider Example 6-3 involving the tubing die shown in Fig. 6-8. Suppose L is reduced to Lin. 1t
the maximum permissible pressure is 5000 psi, find the corresponding output Q. What is AT at that
output? What is the screw spesd N?

6-4 In writing Eq. (6-35) it was assumed that the contribution of a term AN AP to the power input s
was unimportant. For Example 6-3 compare the neglected term to the caiculated power.

6-5 In Example 6-3 what error would have been made by calculating the output from the isothermal
analysis, Eq. (6-19)7 Do the same for Example 6-2.

66 For the extruder and Auid of Example 6-2 calculate and plot the output (pounds per hour) and the
pressure at the dic (pounds per square inch) for the case of (a} isothermal flow, (b) adiabatic flow,
Assume the die is equivalent to a cylindrical pipe of diameter 4 in and length & in. The screw speed N
will be in the range 20 to 200 rpm.

67 In “Modern Plastics Encyclopedia 1970-19717+ one finds a graph like that in Fig. 6-26. The
graph is clearly intended as a *rule of thumb,” sinee the extruder output will depend on the resin, the
screw design, screw speed, and die design. As an exercise, lot us apply the simple isothermal analysis
and determine conditions under which the figure gives reasonable results.

2000 —
1000 —~
. L

=z B LID = 20:1
100 —

10 TR S S T

1 10

D {in} Figure 6-26 Graph for Prob. 6-7.

Assume open discharge in all cases. Assume geometrical factors are held constant and that
=177, D{B = 10, and L/D = 20.

(a) Show that Q & D® under these assumptions, at fixed N. Is that prediction consistent with the
graph shown?

{b) What value of N makes the simple isothermal analysis quantitatively consistent with the
graph? Is it the same N for any diameter D?

6-8 The data below {see Edwards et al.} were obtained for extrusion of a polyethylene terephthalate
melt: ’

t McGraw-Hill, p. 481,



N, AP, M

rpm psi - 1b/h

32 490 473
32 0 49.1
426 20 64.7
524 500 78.1
524 0 80.3

Extruder dimensions:
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g=177 D=25in
L~=246in B = (1085 in
W=21{7in 4 = 0.0055 in
e=0211in

At the operating temperature of 530°F the melt is nearly newtonian and g = 3500 P. The melt density

is p = 0.042 Ib/in*,

Compare the data with (a) an isothermal theory, (b) an adiabatic theory.

6-9 Rework Example 6-4, using the rheological data given in Fig. 6-27, and compare the results with
those given in the example.

] T T \ T

b sl \ —
£

5

= 2 —_
=

10-2 | | ! | 1 ;
10 107 2 5102 10°
¥ {5~}

Figure 6-27 Data for Prob, 6-9.

6-10 Zamodits and Pearson present data shown in Fig. 6-28 for extrusion of a natural rubber
compound, plotied in terms of I, and IT,. The relevant geometric and rheological parameters are

B=02in  T,=100°C
D=25mn b=42x 1073 *C™!
W=215in n=1026
Z=825in K = 2.7 Ibl-5%%%/in?

=177

(2} Compare their results with the one-dimensionzl isothermal theory (Fig. 6-11).
(b} Do the same using the isothermal two-dimensional theory (Fig. 6-16).
() Estimate the adiabatic temperature rise in order to evaluate the isothermal assumption of

parts « and b.
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0.5

v
A% ox
Xy xx)( —

Hy

N lrpm)
5 ¥
L 21 x
273 &
40 @
| | |

lip Figure 6-28 Data for Prob. 6-10.

6-11 An extruder is designed with & “thretiling die™ which imposes a back pressure on the system.
Suppose 400 lb/h of a molten acrylic is o be extruded. Find the required die pressure, assuming
(a) Isothermal behavior,

(b) Adiabatic behavier, giving also the temperature rise.
{c) Barrel temperature is 7, = 375°F, and adiabatic screw. (Assume Fig. 6-24 is applicable.)

For the extruder: D=35in L=201in
=177 N =120 rpm
B =1041in
For the aerylic: K == 4 1bf-s¥/in? oC, = 160 1bffin2-°F
n=1 T,=375°F
b= 0025F" k = 0.025 Iblfs-°*F
p=L12gml
0.15
o
- O
. o}
£
| | |
a 0.18

1, Figure 6-29 Data for Prob. 6-12.
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6-12 Datat on power in a single-flighted extruder are shown in Fig. 6-29, All data were taken at a
screw speed of 100 rpm with a varizble die resistance. The fluid, a dimethylsilicone polymer, is a liquid

at “room” temperature, and is slightly nonnewtonian, with 2 = 0.81 and K = 0.017 bl s%84/in?, The
extruder dimensions are

8 = 36.6* D=15in L=121in
0.036 d 0.053
— =003 — =
B

Compare the data to the predictions of the isothermal and adiabatic analyses,

6-13 Bigg obtained the following data fora polymer solution using the extruder described on page 130
and various dies which allowed control of the pressure. Plot the data in the format 11, versus I, and
compare to the predictions of the appropriate isothermal analysis. The rheological data are given at
the temperature of the experiment (Fig, 6-30), and viscous hezting was assumed to be negligible,

100

a0 -
& 20 \ ]
=

4 1 2 4 10 20 40 100
51y Figure 6-30 Data for Prob. 6-13.
N, Q. AP,
rpm em®min dynes-cm?
20 24 0
60 74 0
109 113 0
20 32 125,500
60 7.0 188,000
100 8.8 227,500
20 11 66,100
60 24 127,000
100 35 171,000
20 23 2.650
60 58 34,100
100 86 56,500

6-14 For the extruder of Prob. 6-8. operating at 61.5 rpm, the pressure across the die is 1230 psi, and
the observed cutput is 86,8 Ib h. The melt density is g = 0.042 Ib in°. and the apparent viscosity at the

t Data are from R. T. Fenner and J. G, Williams, J, Mech. Eng. Sei., 13:65 (1971).
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channel shear rate and temperature is 3440 P. An estimate for the viscosity at the clearance shear rate
is 2060 P. Assume isothermal newtonian behavior and estimate the required power. Evaluate the
isothermal assumption. The observed result is 2.7 hp.t

BIBLIOGRAPHY

6-1 Isothcrmal newtonian extrusion
The basic development of the simplified extrusion models is in

McKelvey, J. M.; * Polymer Processing,” John Wiley & Sons, Inc., New York, 1962,

Arnother useful source is a collection of papers published as an Industrial and
Engineering Chemistry Symposium entitled

Theory of Extrusion, Ind. Eng. Chem., 45: §70 (1953).

Extension of these ideas to the case of a multisection screw, along with some
experimental data, is it

Edwards, R. B., J. E. Fogg, R. R. Kraybill, and J. T. Regan: Flow Rate and Pressure Drop Relation-
ships for Multi-Section Screw Extruders, Soc. Plast. Eng. J., p. 234, March 1964.

6-4 Nonnewtonian isothermal analysis

In dealing with nonnewtonian models one often finds the suggestion to use
the simple newtonian theory, with the viscosity replaced by the “apparent” visco-
sity evalnated at some apprepriate shear rate. The basic failure of this idea, and
illustration of its inaccuracy, is to be found in

Kroesser, F. W., and §. Middleman: The Calculation of Serew Characteristics lor the Extrusion of
Non-Newtonian Melts, Polym. Eng. Sci., 5: 1 (1965).

6-7 Extrosion with imposed heat transfer

The first attempt at a * complete” extrusion model which would incorporate
nonnewtonian behavior, transverse flow, viscous heat generation, and tempera-
ture dependence of viscosity, all within the framework of the basic conservation
equations, was given in

Griffith, R. M.: Fully Developed Flow in Screw Extruders, [nd. Eng. Chem. Fundam., 1: 180 (1962).

A more recent study, which offers some assessment of the assumptions regard-
ing thermal boundary conditions, is

Zamodits, H. J. and J. R. A. Pearson: Flow of Polymer Melts in Extruders. Part I. The Effect of
Transverse Flow and of a Superposed Steady Temperature Profile, Trans. Soc. Rheol., 13: 357
(1969). :

+ The data, and a model for power that is more complicated than the one deseribed here, are
presented by R. R, Kraybill, Power for Multi-Section Melt Screw Extruders, Polym. Eng. Sei., 15: 725
(1975).



EXTRUSION 169

. Finally we note the comprehensive study of modeling of melt extrusion writ-
ten by Fenner:

Fenner, R. T.: * Extruder Screw Design,” Iliffe Books, London, 1970.
6-8 Plasticating extrusion
A comprehensive book covering a variety of topics is

Tadmor, Z., and 1. Klein: “Engineering Principles of Plasticating Extrusion,” Van Nostrand Rein-
hold Company, New York, 1970.

The following papers represent the most significant modeling efforts.

Donovan, R. C.: A Theoretical Melting Madel for Plasticating Extruders, Poiym. Eng. Sci., 11: 247
(1971),

: Pressure Profiles in Plasticating Extruders, Polym. Eng. Sei, 11: 484 (1971).

Shapire, J., and I. R. A, Pearson: A Dynamic Model for Melting in Plasticating Extruders, Imp. Coll.
Palym. Sci. Eng. Group Rept. 5, London, April 1974,

Edmondsen, L R, and R. T. Fenner: Melting of Thermoplastics in Single Screw Extruders, Poltymer,
16: 49 {1975).

Lindt, J. T.: A Dynamic Melting Model for a Single-Serew Extruder, Poiym. Eng, Sci.. 16: 284 (1976).




CHAPTER

SEVEN
CALENDERING

Do nor rely on If and Perhaps.
Bahya

Calendering is a process in which molten material is “ dragged ” through the narrow
region between two corotating rolls in such a way as to produce a sheet. Figure
7-1 shows a sketch of the process. In an analysis of the calendering process one
seeks the relationships among performance variables, such as sheet thickness, and
design and operating variables, such as roll diameters and roll speed. Of course
the effect of rheological parameters on these relationships is also sought.
Calenders may also be used to produce a certain surface finish, either a degree
of smoothness or * gloss ™ which may be required or perhaps an intentional degree
of roughness or pattern. Finish is a result of interaction between the fluid and the
roll surface in the region of separation of the two materials. While there is cer-
tainly a hydrodynamic aspect to that feature of calendering, the relationship of
finish to the usual process variables that are controlled is not understood. We will

ignore the surface finish aspeet of calendering and treat only the broader hydrody-
namic features.

Calendered

Melt reservoir . . .
Figure 7-1 Sketch showing calendering between
two rells.

176
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Figare 7-2 Definition sketch for calender flow analysis,

7-1 THE NEWTONIAN MODEL OF CALENDERING

Details of the geometry and the flow field are shown in Fig. 7-2. Assuming that the
flow is strictly two-dimensional, so that u = [u.(x, y), u,(x, ¥}, 0], the appropriate
gquations in the steady state for an isothermal newtonian fluid arg

o, B O (S B, 7-1
P\t o ”}‘a_y)“ ox “(EFJ’W) (1)

du, du, ap Pu, &u,
L I s ) 7.2
? ( & a,v) ay“‘(éxi e,vz) 72)
fu,  Cu,
wta - 0 (7-3)

The inertial terms, of course, make the problem nonlinear, but even if the inertial
terms are dropped (with the assumption that viscous forces dominate the process)
we still have to deal with a set of parrial differential equations for which there is no
simple analytical solution. Our method will be to treat this problem by making
some approximations that lead to a formulation involving only a single ordinary
dilferential equation which can be easily solved. It is found that the approximate
solution has most of the important features of the full model, and is uselul for
examination of the relationships among the various parameters that affect the
process.

We begin with the plausible argument that the most important dynamic
events occur in the region of the minimal roll separation—the nip region. In that
region, and extending to either side (Le., in the £ x direction) by a distance of the
order of x, (see Fig. 7-2), the roll surfaces are nearly parallel if, as is usually the
case, Hy, <€ R. Then it is reasonable to assume that the flow is nearly parallel, so
that

Ly <€ Uy {(7-4)
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8 9

and 5; < "a; (7-5)

If, further, we neglect inertial effects, Eqs. (7-1) and (7-2) become

From Eq. (7-7) it follows that p = p(x) only, so that u_ satisfies

&*u, ldp
8y pdx

(7-8)

Equation (7-8) is identical to the Reynolds lubrication equation, and the
process of transforming this problem from Eqs. (7-1) and (7-2) to Eq. (7-8) is often
referred to as making the usual lubrication approximations. [The reference to lubri-
cation comes from the fact that lubrication problems themselves typically involve
a geometry such that Egs. (7-4) and (7-5) are valid.] Equation (7-8) is easily
integrated to give

Uy =—— + ay + b (7-9)
where a and b are constants of integration.

If we assume that the two rolls are identical and rotate with the same linear
speed U, then appropriate boundary conditions are

u,=U  ony=hx) (7-10)
du,
a—y—O ony=0 (7-11)

e (7-12)
We note that Eq. (7-12) gives u, explicitly as a function of y and implicitly as a
function of x, through h(x) and through p(x). We note also that since p(x) is
unknown at this stage in the analysis, the solution for u, is really incomplete.

First let us examine h(x), the y distance from the center line to the roll surface.
It is easy to verify that

h=Hy+ R — (R* —x)1? ' (7-13)
Introducing Eq, (7-13) into Eq. (7-12) complicates the algebra. Since it is likely
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that we will confine the analysis to values of x such that x < R, a good approxima-
tion to A(x) is

x2
hx)=H,l1 + 2 — -
9 = Ho{ 1+ 55— (7-14)
It is convenient now to define dimensionless variables
r x ’ ux
X = Mx = —
2RH, U
, ¥ . _PH,
y = — _ ——
H, P I
Then Eq. (7-12) may be written as
{Hg ap’
o 1 20ryz f232T T -
ul, + SR[y (1+x )}a‘x’ (7-15)

We may find an expression for the pressure gradient by using a mass balance
in the form

Q=2 j:u,, dy = 2h(x)[U - ?ﬁ‘)%} (7-16)

We may solve for dp/dx and find, in dimensionless form,

ap’ 18R x* — }2
& Ho [+ %77 (-17)

where a dimensionless flow rate A has been introduced, defined as

0
A= -
2UH,

1 (7-18)

Thus we have replaced the unknown pressure gradient with the (still unknown)
flow rate L.

From the physical point of view the events which occur at the point of
separation of the sheet from the roll, i.e., at y = H and x = x,, will exert a strong
influence on the overall character of the process. We could expect, then, that the
assumptions we introduce about the separation point will make themselves felt in
the character of the model. With reference to Fig. 7-3 we will introduce two simple
assumptions.

- Figure 7-3 Idealization of the separation region.
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Downstream of separation, for x > x,, we expect 2 flat velocity profile, corre-
sponding to rigid motion of the sheet. Upstream, for x < x, but near the separa-
tion point, the velocity will be a function of y according to Eg. (7-15). We will
assume that right ar separation, at x = x,, the profile is flat. Since the flat profile
corresponds to fu, /8y = 0 and ¢*u, /dy* = 0, then from Eq. (7-8) we can see that

dp _dp
—=—=10 at x" = xy 7-19
dx  dx’ ¢ ( )
Furthermore, if we ignore the forces acting at the scparation boundary (due, e.g.,
to surface tension), then we expect the stress just inside the fluid to be the same as
the ambient pressure. Since the velocity field is assumed fat, the viscous stresses
vanish at x’ = x;, and so we can assert that

F=0 atx =xj {7-20)
From Egs. (7-19) and (7-17) it follows that
Xh =2 (7-21)

If we assume that the sheet comes off the roll with the speed U, then a2 mass
balance on the sheet gives

Q =2UH (7-22)
from which it follows that
H
P=lae1 7-2
H, (7-23)

Thus, if H is measured, 1 may be found and x;, follows from Eq. (7-21).
Equation (7-17) may be integrated with respect to x’, and if the boundary
condition of Eq. (7-20) is imposed the solution for p'(x’} is found to be

. OR [x?(1—31%)—1- 522
F={m,

X+ (1 —34%(tan™! x" ~ tan~ ! A}

(14 x%)?
14322
7 i)
1+ 22 ;LJ (7-24)
Figure 7-4 shows the shape of the pressure distribution. The maximum pressure
oceurs just upstream of the nip at x’ = — 1 and has the value
. _3€CHA) /R
pmnx - 2 2H0 (7-25)
where
14347
=" " 1—(1—337 ~t ‘ -2
(4) T 1 Jtan™t 4 (7-26)

From Eq. (7-17), and as suggested in Fig. 7-4, the pressure gradient has three
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Figure 7-4 Shape of the pressure distribution
between the rolls.

extrema: At x" = A the vanishing gradient occurs at p = 0; at x' = —J the maxi-
mum pressure occurs. The third value of x’ at which the gradient vanishes is seen
{from Eq. (7-17)] to be at x = — 0. The pressure at this “ point ™ is obtained upen
setting X' = ~ oo in Eq. (7-24). One finds that

" / 9R [1+ 322 L _
p(x —P—OO)= m{wi—(l—l\i“)(i'*-tan ll):l (7—27)

If an external pressure were imposed far upstream of the nip, then one could
obtain A in terms of that pressure from Eq. (7-27). One does not normally impose
such a pressure on a calender. The most reasonable assumption would be that

pix——w)=0 (7-28)
from which it follows that 2 has a specific value, namely,
Ay = 0475 (7-29)
Subject to the assertion of Eq. {7-28), then, we see that
gg =1+ A%=1226 (7-30)

and that the sheet thickness depends only on Hy.

The problem is essentially solved at this point; we have the velocity distribu-
tion and the pressure distribution, and with an assumption on upstream pressure,
or a measurement of H, A may be determined. It is worthwhile to examine the
velocity distribution u,{x, y), which may be written simply as

v 243031 — 7% — X1 = 39%)
T 2(1 + x'%)

where v is now normalized to h(x) instead of to Hy: nr = y/h{x).

Figure 7-5 shows the velocity distribution along the path through the calen-
der. Because of the pressure distribution there is a backflow component for
x' < — 2 which is superimposed onto the drag flow component. For x’ < — 1.64
there is a negative flow along the axis, and a circulation pattern develops.

It is clear from Fig. 7-4 that a positive pressure develops in the region between
the rolls. Now we must examine the consequences of this pressure field. The most

(7-31)
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s T

Y x'=0 A Figure 7-5 Flow pattern in the nip region.

Immediate is that “ro]] bowing” occurs, as shown in F ig. 7-6. The rolls are con-
strained at their ends by bearings. If the rolls are long enough {a 20-ft width is
found in some operations), then the reactive pressure developed by the flow field
can separate the rolls and cause a nonuniform gap. Obviously this will affect the
uniformity of the sheet thickness.

The roll-separating force can be calculated from \
F X0 = '
w=] (-T,)dx (7-32)

o
Within the lubrication approximations already made we Imay ignore the viscous

contribution (2 du, /3y) that appearsin ~T, = p — T,y and simply equate — T,
1o p. Then we calculate the force from

F xo 2R * ¢ ’
h—/_:j_ﬂgp(x) dx = pU /Efmp dx (7-33)
with the result
HUR
— = G{A -
WS, {4) (7-34)

where G(1) is a complicated function (see Prob. 7-6) whose value, for the expected
case of 1, = 0.475, is G{0.475) = 1.22. Thus we have

F LUR

— =122 7-35
W ! H, (7-35)
The power transmitted to the fluid by both rolls is calculated from
. *0
W = 2Wj Tay U dx (7-36)
-] y=kix)

Figure 76 An exaggerated view
of the bowing caused by the pres-
sure distribution between the
rolls. Xt is assumed that forces to
maintain the feometry are im-
posed only at the bearings, ag
shown,
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Upon introducing Newton’s law for the shear stress, one finds

. 2R
W =3WU [ 2 M) (7-37)
H,
where M{A)y=(1 - 12)(tan‘1 A+ g) -2 (7-38)
For 1y = 0.475, M(2) is 1.08 and
W = 458WUy R (7-39)
H,

This power input has the potential to raise the temperature of the fluid by an
amount which is, at most, given by an adigbatic energy balance:

W
pRC,

(7-40)

Example 7-1 A calender having dimensions R = 6 in, W=61ft, Hy=%41in
opcrates on a material of viscosity u = 10° P. The rolt speed is U = 20 ft/min,
Calculate (a) the sheet thickness, (b) maximum pressure, (c) roll-separating
force, (d) horsepower delivered to both rolls, and {e) adiabatic temperature
rise,

(a) Assuming zero pressure far upstream, we can use Eg. (7-30):
H=1226H,=0311in

(the sheet thickness is twice this).
(6) Using Eg. (7-25), we find

uU | R .
=0535— [ — =61
Proax = 0.5 SHO ", 61 psi

(¢) From Eq. (7-35) we find

F KUR
=122
W H,

= 171 Ibffin

One often sees the roll-separating force reported as force per roll width (F/W)
with the units of 1bf/in reported as “ pounds per linear inch ™ (pli).
(d} The power input is given by Eq. {7-39):

W o= 458WU? | Hﬁ = 3.35 hp = 960 cal/s
0

(e) For the adiabatic temperature rise assume C ,=05cal/g°Cand p=1g/

cm®. The volumetric flow rate is

Q =2UHW = 2,893 cm?/s
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and we find
AT <0.1°C

7-2 THE POWER LAW MODEL OF CALENDERING

Upon introducing the lubrication approximations, one begins the nonnewtonian
analysis with

dp @
= e bl -41
0 Fo P Ty (7-41)
For a power law fluid
Bu, "~ Bu
. X x 47
‘ny ay ay (7 4—)

where the absolute value sign on the velocity gradient term (which is really /411,
in the lubrication approximation) avoids the problem of taking a fractional root
of a negative number.

From the newtonian solution we can see that we should expect two flow
regions, one where the velocity gradient is positive {x" < 4 in the newtonian case)
and one where the gradient is negative {x' > —21). We shall have to integrate
Eq. (7-41) separately in each region, The results are

L{1dp\

u, =U+ &(—K— E}) [y —h (XJ] (7-43(1)
1 Ldp\tm =,

w=U-2(- %3] D= Hix] (7-43b)

where g = »n/(1 + n), and where Eq. (7-43a) is for the region of negative velocity
gradient and positive pressure gradient and Eq. (7-435) is the opposite.

Either of Egs. (7-43) may then be integrated to give the volumetric flow rate,
and as in the newtonian case one may then solve for the pressure gradient. The
results may be written as

dp’ (2n + 1)"\/ 2R (A%~ x2)|A2 — x2 2

"& - n H, (1 + xr2)2n+1 (7'44)
and this equation incorporates both cases: For —oc < x' < — 4 the pressure gra-
dient is positive, and for —1 < x" < 4 the pressure gradient is negative. As in the
newtonian case the extrema of the pressure distribution occur at x' = —oeo, +.4.
All dimensionless variables are defined as in the newtonian case except that p’ is
defined as

il

r=% (%) (7-43)
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The pressure distribution is obtained by integration of Eq. (7-44), with the result

, (2“+ 1)"\/2R = Mlmx’ﬂ"‘l(x'l_,q})

p= ” -H_o-_x T+ X)L

The integration must be performed numerically. In Eq. (7-46) the boundary con-
dition p'(x"— — o0) = 0 has been used.

It is somewhat simpler, computationally, to integrate Eq. (7-44) from A (where
p = 0} to x', with the result

dx’ (7-46)

p 2n+ \" [2R o4 I)Lz_xflln—l(lz_x,g) ’
r= ( h ) \/I—'I; Jx, 1+ xf2)2n+1 dx {7-47)
The maximum pressure occurs at x’ = — A, so we may write
+ 2n+ 1\ ﬁ e (Az _ fo)n .
Frox ™ ( n ) \/H_‘ T e (7-48)

The dimensionless flow rate paramster A may be lound from Eq. (7-47), since we
have assumed that p’ vanishes as x' — —o0. Thus 4, is found from

on | Bz
L (1 +x!2}2n+1

Note that we again use the notation X, to refer to that value of 4 corresponding to
the inlet condition p'{—c0) = 0. The dependence of 4, on n is shown in Fig. 7-7,
where it is apparent that the effect of nonnewtonian behavior is to increase the
sheet thickness.

Once Ag{n) is known the maximum pressure may be found in the form

dx’ (7-49)

- 2n 4+ 1\ ¢ ® A2 —x3)
Penax - ( ) ( 0 - 12” dxr — .@(H) (7__50)
2R{Hq n o, (T+xEPT
Figure 7-8 shows 2(n).
0.53 T — T 1 T
0.52 Ao —1.30
051 —1.28
H
Mo 0.50 - 12 4
0.49 b HiHo 4124
C —1.22
0.48 o 1.2
0.47 l | 1 1 1 | | | L 1.20
1 0.8 c.8 0.4 0.2 Q0

Figure 7-7 Calendered thickness. in terms of Ag or H/Hq. as 2 function of power law index n.
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As in the newtonian case the roll-separating force is obtained by integrating
p'(x"). Tt is not too difficult to see that one may write F/W in the form
F Uy
— = K|—| R&F 7-51
5= Kl 70 (7-51)
F{n) is shown in Fig. 7-8.

The power transmitted to the fluid may be expressed in the format

# = wuzx(ﬂ)"_lng(ya) (7-52)

where &(n) is given in Fig. 7-8.

According to the mode! presented here the calendered thickness depends
strictly upon the geometry of the system. This follows from the assumption that
Hy is controlled and held fixed. In some systems the roll separation is controlled
by “loading™ the rolls, i.e., fixing the force acting between the rolls. Then the roll
separation adjusts itself so that the reactive force of the calendered fiuid just
balances the roll loading. If the fluid obeys the power law the separation H o Ay
be found from Eg. (7-51}:

(7-53)

F/W
From the point of view of operation of the system the loaded-roll case requires

more control than the case of fixed geometry. As Eq. (7-53) shows, the separation
Hgy, and hence the calendered thickness, depends upon roll speed U and the
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rheological parameters K and r. Fluctuations in U will produce fluctuations in A,
in direct proportion. Since n < 1 is the usual case, fluctuations in K, due, e.g., to
temperature fluctuations, will cause more than proportional changes in H,.
Hence it is more difficult to control calendered thickness in this case.

We can develop a simple model of the sensitivity of calendered thickness to
‘temperature fluctuations. Suppose

K = Ko T-7o (7-54)
We write Eq. (7-33) as
Ho = AKY" = H} g tm(r=To (7-55)

where HY is the (hall) separation at temperature T,. Then

dH, b

dT o °

dH, bdT
or —ﬁ;‘ = - ” (7‘56)
For small changes we may write this as

AHg b AT

e = 7-57

HQ n { )

Suppose we consider a material for which b = 0.025°F~!, and n = 4, subject to
temperature fluctuations of magnitude AT = +3°F. Then we find that the frac-
tional change in H, (which will be the same as the fractional change in calendered
thickness) will be AH,/H, = £0.225. A 3° variation in temperature will cause
more than a 20 percent variation in calendered thickness!

7-3 CALENDER FED WITH A FINITE SHEET

In the models considered above it was assumed that the calender was fed with a
mass of fluid so large that an infinite reservoir of Auid existed upstream from the
nip. It is possible, of course, to {eed the calender with a sheer of fluid, as suggested
in Fig. 7-9. In this case a new boundary condition, p’ = 0 at x’ = —x/, must be
introduced, and Eq. (7-46} is replaced by

, (2;1 + 1)”\/@ R VR ] (e P LS

p o= n H—O‘ e (1 +x'2)2n+1

dx’ (7-58)

and Eq. (7-49) becomes
B A I;'Z_erln—l(/‘bl_xll

) 4o
(1 + xr2)2n+1 dx (7 59)
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A

e

Figure 7-9 Calender fed with a finite sheet.

The thickness of the feedstock enters through the definition
1/2
Xy = (Ei - 1) (7-60)

Equation (7-59) may be solved for 1 as a function of n and H,/H,,and the results
are shown in Fig. 7-10. Several points are of interest.

First, we see that the calendered thickness is reduced somewhat if r/Hg is
finite, for all values of n. Next, we see that while H ;/H, = 20 is large enough that
is practically equal to A, for the case of the newtonian fluid, a much larger value,
say, H,/H, = 200, is required for a fluid with n = 0.25 to be at nearly its A, value.

More interesting, perhaps, is the observation that if finite H r/Hy s accounted
for, it is no longer correct to say, without qualification, that the effect of nonnew-
tonian behavior is to increase the sheet thickness.

Overall, it is apparent that as far as sheet thickness is concerned, there is
simply not that much variability in A with changes in n, or with reasonable
variations in H ;/H, . One could simply state that H/H, = 1.25 for an expected set
of operating conditions and be correct to within a few percent. If precision
calendering must be done, however, then this few percent uncertainty may be
important.

It is important to recognize that the comments of the preceding paragraph
hold under the assumption that the system operates at fixed H,, and refer to 4. If
‘the system operates at fixed roll loading (F/W), as shown at the end of Sec. 7-2,

0.5 - / =

04 -

n = 0.25

1 10 107 107
HyiH,

0.3

Figure 7-10 Calendered thickness, in terms of A, as a function of H /H, for various n. (Results
are from Brazinsky et al.)
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then H, may be subject to significant variation if operating conditions change.
While one may still state a priori that H/H, = 1.25 + 0.03, the actual value of
calendered thickness will vary with the fluctuations in Hy itself, which may be
significant. '

7-4 NORMAL STRESSES AND VISCOELASTICITY
IN CALENDERING

Let us go back to the dynamic equations for steady two-dimensional flow with

negligible inertial effects and examine the way in which normal stresses appear,

and subsequently disappear, from the calendering problem. We begin with
01, Ot ép

xy __

Ox gy  Ox

(7-61)

Instead of nondimensionalizing x and y as before, let us use the characteristic
linear dimensions appropriate to the x and y directions and define

s_X oY o
=R Y=g (7-62)
Then Eq. (7-61) becomes
dt., R ot, ©dp
— = e 7-63
&% H, oy &% (7-63)
If §z,,/0% is subtracted from both sides we find
M+£§Eﬂ= 0Ty (7-64)

0% Hy 0y ox

Now let us speculate on the relative magnitudes of the terms in Eq. (7-64).
The magnitude of the ratio of the primary normal stress difference to the shear
stress is just twice the recoverable shear Sg:

28, =2F ¥ {7-65)
xy

The recoverable shear is a measure of the elasticity of the fluid. For typical
polymer melts one may find 1 < §p < 10, but quite commonly S; < 1.

The geometric factor R/H, will normally be in the range 100 < R/H, < 1000,
which means that the flow region is nearly parallel. This leads to the lubrication
approximation that 3/3x < &/8y in a nearly parallel flow field. When x and y are
“scaled,” i.e., nondimensionalized according to Eqgs. (7-62), then at best we might
expect that 3/9% is comparable to 6/87. This leads us to conclude that the magni-
tudes of the two terms on the left-hand side of Eq. (7-64) are given roughly by

a(Txx - T}'r)

2 S|t (7-66)
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R 6’ny R
1-67
T2 g (67
where | 7| is some approximate measure of the viscous (shear) stresses in the flow,

such as [7| = K(U/H,)"

We see then that the ratio of the normal stress term to the shear stress term is
of the order of §5/(R/H,). Using the numbers suggested above, we would con-
clude that the normal stress terms may be dropped from the lubrication approxi-
mation for this flow.

Equation (7-64} then becomes

R 8,  @T,
R Ty 7-6
H, 9y 3% (7-68)

Except for notation, this differs from Eq. (7-41) in only one respect: The isotropic
pressure p has been replaced by the total y-directed stress: —~T,, =p—1

Having just removed the normal stress terms from the analysis in favor of the
viscous stresses, one is tempted to introduce a purely viscous constitutive equation
at this point, such as the power law model of Sec. 7-2. However, the strong
lagrangian acceleration associated with this flow suggests the possibility that
viscoelastic effects may make an important contribution to the stresses, since fluid
is carried from a state of near rest into the high-deformation-rate nip region in a
time which may be quite small compared to some appropriate relaxation time for
the fluid,

One is faced then with the need to select some appropriate constitutive equa-
tion which might be suitable to describe the response of a fiuid to a rapidly
imposed deformation. A further complication lies in the fact that this particular
flow field has an elongational character to it. Indeed, along the line of symmetry
for this flow (along y = 0) the shear components of A vanish but elongational
components of significant magnitude exist (see Prob. 7-1).

As noted eariier, there is an insufficient experimental base on which to select
‘or recommend a specific constitutive equation suitable to the description of this
type of flow. We shall drop this point here but return to it in the next chapter in
the context of a closely related flow field which occurs in coating systems.

PROBLEMS

7-1 Combine Egs. (7-15) and (7-17) to give an expression for «(x, y). The maximum shear rate (at
fixed x) occurs along v = A(x). Find du, /8y in the form
Su,
ay

J —g(x’)

y = hix) HO

Where does the maximum value of this function occur along x', and what is its value?
Caleulate a stretching rate from
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and give the position of maximum stretching. Is the maximum stretching rate comparable in magni-
tude to the maximum shearing rate?

7-2 With u{x, y) known, it is possible to evaluate u,(x, y) from integration of the continnity equation
(7-3). Do so, and discuss the approximation u, < u,. (Is it valid everywhere? How does it depend on
RIH Y

7-3 Give the value of x' beyond which Eq. (7-14) is a poor approximation to Eq. (7-13). State clearly
your definition of “ poor.”

7-4 Give a practical definition of x' = —co by finding the value of x < 0 at which g'/pl, . = 0.01.

7-5 Suppose a finite pressure p, were imposed upstream so that Eq. (7-27) had to be replaced by
F(x'~ —c0) = p,. Caleulate p;, if we wish to increase A to 1.11,.

Give the magnitude of p, i # = 10* P, U = 100 {t/min, R = 6 in, and H, = § in, and compare p,
10 P

7-6 Show that G(4) in Eq, (7-34) is given by

4G | ;143
e

A
* 1442

— lim
o= —-n/2

tan (b[{l —3A%)¢ —tan™? 1) + A Lt 321”

1+4%
Show that the indicated limit gives a finite value only if 1 = 0.475, and verify that G(0.475) = 1.22.

7-7 A calender having dimensions R = 6 in and W = 6 ft has a net weight of 1000 Ib and * ficats” on

the material being calendered. The roll speed is 20 fi/min, and the material may be considered newton-
ian with a viscosity of 10* P.

Calculate the sheet thickness.
7-8 Derive Eq. {7-44).
7-9 Extend Fig. 7-7 to dilatant fluids, defined as power law fluids for which n > 1.

7-10 Extend the newtonian theory of calendering to account for (g} two rolls with different linear
velocities; (b) two rolls of different radit but at the same linear speed.

7-11 Suggest a parameter which gives an indication of the length of time that a fluid is subjected to a
significant stress during calendering.

7-12 Does a power law fluid exhibit a higher or lower maximum pressure than the corresponding
newteonian fluid when calendered according to the models of Secs. 7-1 and 7-27 Hine: The answer
depends upon vour definition of “ corresponding newtonian fluid.™

7-13 Show that for a newtonian fiuid which enters a calender as a finite sheet, the final calendered
thickness is given by the solution to
z — 1) H . JH — 1142 H uz
21 +4 )(H,-,"Hi ) (1~ 31;){( rHo—3) Han_,(_;_ 1) ]
(H/Ho) H [Hy
24
1+4?%

a

A
- 31— -1
+{t~34 )(] yrEhs tan A)

7-14 (g} Find the pressure distribution for the case of calendering a finite sheet of a newtonian fluid.
(5) Find the maximum pressure for part a, define an appropriate dimensionless pressure, and
plot B, as a function of H,/H,.
(c) Is H,/H, a significant parameter with respect to p,,,,?
(¢} Find the roll-separating force as a function of H,/H,.

7-15 Chong presents data, shown in Fig 7-11, for calendering a high molecular weight cellulose-
acetate derivative. Fit Eq. (7-51) to the data and estimate values for K and n at each temperature.
Chong gives data on viscosity, at § = 1 s~ *, as a function of temperature. Sec if your K, n values givea
viscosity that is compatible with his data at that shear rate.
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Figure 7-11 Data for Prob. 7-15. (From Chong.)

7-16 A calender having the dimensions R = 4 in, W = 40 in, H, = 4 mil, operating at a peripheral roll
speed of 78.8 ft/min on a material having a viscosity 10* P, produces a sheet of thickness 8.6 mil.
Calculate the maximum pressure developed in the material, the power required to operate the calen-
der, the roll-separating force, and the average temperature risc of the material, assuming that there is
no heat transfer between the material and the rolls,

7-17 The data shown in Fig. 7-12 were obtained by Bergen and Scott, who calendered a plasticized

4000 ; T ,
U=5in/s
B 10 _
g | 20 B
[
B Ho =0.025in 7
o) I ! ]
-0.5 0 0.5 1 15
* Figure7-12 Data for Prob. 7-17. (From Bergen and Scott.)

thermoplastic resin. The roll diameter was given as 10 in. The only viscosity data were obtained in an
instrument which operated at low shear stresses {z < 10 psi) and which indicated newtonian flow with
p=32 x 10% P at 95°F.

(2} Give the upper limit on shear rare for the viscosity data.

(b} What is the range of nominal shear rates under which calendering was carried out?

{c) Can the data be explzined by the models presented here? Point out any major discrepancies.

{d) Could viscous heating be significant in these experiments? Support your answer with quarnti-
tative arguments.
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CHAPTER

EIGHT
COATING

I'll give you a definite maybe.
Goldwyn

Coating is a process in which a liquid is applied continuously to a moving sheet in
order to produce a uniform application of the fluid onto and/or within the sheet.
The term web is often used to denote the sheet to be coated, and webs may be of a
variety of materials, including:

@ Paper and paperboard (to which an adhesive might be coated)

o Cellulosic films (as in photographic emulsion coating)

@ Plastic films (as in magnetic surface coating for recording tape)

@ Textile fibers and fabrics (1o which finishes or backings might be applied)

© Metal foils (to which a polymer might be coated to produce a laminated capaci-
tor foil)

Because of the great variety of coating purposes there is a corresponding variety of
coating methods. Several of the more important will be mentioned here in an
introductory way. Then analyses of several coating systems will be considered.
Figure 8-1 shows, schematically, a roll coater. The lower roll picks up liquid
from a bath and delivers it to a second roll, or directly to the moving web. The web
is “ squeezed ” between two rolls, and the amount of coating applied depends upon
fluid properties and the spacing between the rolls in the region through which the

188
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Figure 8-1 Roll coater,

web moves. In some applications the nip separation is controlled ; in others the nip
pressure is controlled.

Similar to the roll coater is the “kiss™ coater, shown in Fig. 8-2, in which the
web is run over the roll without any backup roll on the other side. The amount of
wrap around the roll, the tension in the web, and fluid properties control the
amount of coating applied to the web. This type of system often has a metering or
smoothing device downstream to provide more control over the coating thickness.

Figure 8-3 shows the reverse-roll configuration in which the metering roll, the
roll that makes the final delivery of fluid to the web, moves in the opposite
direction to the web motion. The geometry of roll coating is very similar to that of
calendering, and we shall see similarities in the analyses of the two systems.

Figure 8-4 shows blade coating, which can follow a kiss-coating application
or which can directly meter fluid to the moving web from 2 “ pond ™ of the coating
fluid. The blade is usually flexible and acts as a spring. Pressure developed in the
flow under the blade determines the precise position of the blade relative to the
backup roll and so determines the coating thickness.

Withdrawal coating is shown in Fig. 8-5. Such a system is normally used
when it is undesirable to contact the coating with another surface such as a blade
or roll. The coating thickness is largely controlled by the dynamics of the region
where the web leaves the pond surface,

Sometimes a coating is applied directly to the web from an extruder, as in
Fig. 8-6. Rolls may be used, in which case this is simply 2 modified form of roll

Figure 82 Kiss coater.
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Figure 8-3 Reverse-roll coater.

Flexible

blade Figure 8-4 Blade coater.

Figure 8-5 Withdrawal coater.

Coated web

Uncoated
web Water-cooled .
chlli rolt Figure 8-6 Extrusion coater.

Web Fluid curtain

L 1

Figure 87 Curtain coater,
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coating, or a “curtain " coating method (Fig. 8-7) may be used. The fluid mus be
High enough in viscosity that a stable curtain or sheet is produced. Thickness is
controlled by precise delivery from the extruder and by control of the web speed.
The web is normally moving faster than the curtain, causing the curtain to stretch
between the die lips and the web. Some unusual phenomena may occur when
viscoelastic fluids are stretched, and the dynamics of the curtain coater are quite
complex,

8-1 ROLL COATING

A roll-coating process is similar to calendering in some respects but quite different
in others. Figure 8-8 shows a definition sketch for the analyses to follow. Like the
calendering flow, there is a converging-diverging character to the kinematics, and
we can expect the dynamics to be similar to that described in Chap. 7 for calender-
ing. The major difference is in the character of the separation region, where the
fluid splits and adheres to both moving surfaces. In the analysis of calendering it is
assumed that the fluid separates cleaniy from the roll; in the analysis of coating it is
assumed that the fluid evenly wets both the roll and the sheet. The question of
whether one or the other of these extremes of behavior occurs must be answered in
terms of the rheological characteristics of the fluid, as well as in terms of the
fluid-solid and fluid-air surface tensions. In a very loose way we may characterize
the calender type of separation region as typical of softened plastics, materials
which are of such high viscosity and elasticity that while they are capable of
viscous deformation they also have a strong tendency to retain their shape, The
coating type of separation region is more typical of relatively low-viscosity
materials.

An analysis of roll coating attempts to provide a model which relates coating
thickness to the geometric, rheological, and operating variables that characterize a
particular system. There are many combinations of the variables. We illustrate the
analysis by examining the system whose geometry is as shown in Fig. 8-8. We
consider the case where the sheet has the same velocity as the peripheral roll speed
and moves in the same direction. Differential speeds, or reverse coating (where the
roll motion 1s opposite that of the sheet), are other commonly encountered cases

/

R

C
T, 17 p0 '

'.'l._ u

Figure 8-8 Definition sketch for analysis of roll
coating.
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that can be modeled by similar analyses to the one we will present here. The
newtonian fluid will be treated first, in some detail. Nonnewtonian effects are
considered subsequently.

Newtonian Coating

Tt is assurned that a newtonian fluid is being coated in an isothermal steady-state
operation. We also assume that viscous forces dominate inertial forces and that
the lubrication approximations introduced in Chap. 7 are valid in this flow field.
The dynamic equations then reduce to

0= ———tp— (8-1)

It is convenient to introduce the following dimensionless variables:

HB,’Z
x y Y p_ PHb

CwREE TTH, “Tu o TTame

In terms of these variables Eq. (8-1) becomes

u 8P

o = 68 ®2)

Consistent with the lubrication approximations we take P to be independent of 7.
This allows integration of Eq. (8-2) twice with the result

1{dP
2(&;)’7 +en e (8-3)

Appropriate boundary conditions include u =1 at # = 0, from which we find
ey =1
As in the calender model, assuming H, /R < 1, we take

——=RE) =144 (8-4)

The second boundary condition on u then takes the form u = 1at 5 = h(£). Upon
evaluating ¢,, we may write the velocity field as

u"1+1—(11 — hn) (8-5)

which gives u explicitly as a function of # and implicitly as a funcuon of £ through
the functions (&) and P(Z).

The pressure functicn is unknown at this point, but its functional form can be
determined after introducing the principle of conservation of mass. If we let W be
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the width of the roll and assume no flow normal to the xy plane, the volumetric
flow rate is just

hix)
Q=wﬁ u, dy
. 0
. 0 I
[¢] = = -
r A G, J;) u dn (8-6)
The integration may be carried out by using Eq. (8-5), with the result
~ 1 /dP
A=k =R -
e .

While 4 is unknown, at this point in the analysis, it is some constant, and so
one may solve for the pressure gradient and find

4P ETA

Upon integration we find
. S h-i
PE) =12 —g=az (8-9)
_y R
As a boundary condition on pressure we have stated that P = 0 at some value of £,

called —¢&,.

If it is assumed that the liquid splits evenly to coat both the roll and the sheet,
then the volumetric flow rate, the coating thickness, and 4 are related by

0 =2UH (8-10)
2H
and A= HTO (8-1 1)

Note that, as in the analysis of calendering, we use a parameter A which is related
to the coating thickness. The two U's are quite different however. In the coating
analysis A is defined in such a way that it is directly proportional to H/H, . But in
the calendering analysis the different definition of A leads to a nonlinear relation-
ship [Eq. (7-23)} between 4 and H/H,.

At this point the analysis is incomplete because A remains unknown. In order
to determine 1 it is necessary to consider the geometry and dynamics of the
separation region. Figure 8- shows a detail of this region. The figure includes the
assumption that the film splits evenly, so that the separation point is (¢, 34).

At the separation point the velocity vanishes,

from which it follows that
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M U

—

—k— % F,

7 U Figure 8-9 Derail of the separation region.

The pressure at the separation point may be found by first integrating
Eq. (8-9) (using the condition — &, = —o0), with the result that

w7 e B

(8-14)

The simplest dynamic model of the separation region is based on the assertion
that the film splits at the point where u =0 and P = 0. If, in Eq. (8-14), &
replaced by &,{1) from Eq. (8-13), and if P(£,) is equated to zero, then Eq. (8- 14)
becomes a transcendental equation In 4 whose solution may be found by numeri-
cal methods. The result is

P(g) =

Jo = 1.30 (8-15)

A more detailed (but still very crude) model of the separation region has been
carried out by Greener and Middleman (1975), which accounts for the effects of
viscosity and surface tension on the dynamics of the separation region. Their
analysis introduces a dimensionless parameter N,, defined as

a Ho 12
N, = L—U(?) (8-16)

It is found that Adg = 1.30 is an asymptotic value to be expected in the limit of
vanishing N,. I[ N, is significantly larger than unity, 1 exceeds the value 1.30, I
most industrial coating systems N, will not exceed unity, and Eq. (8-15) might be
expected to provide a useful estimate of 4.

Once 2 is known, the pressure distribution follows from Eq. (8-14}. The velo-
city field is then calculated from Eq. (8-5). From this information the stresses in
the system may be calculated, from which one may find the roll/sheet-separating
force and the forces (and hence the power) required to turn the roll and pull the
sheet. The roll/sheet-separating force, for example, is given by

x| URW Va1 .
F=w[ p(x)dx= s — | P (8-17)
- 0 -]
and for 4, = 1.3 we find
FHo _ 56 (3-18)

uURW
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Calculation of the force required to pull the sheet through the coating nip is
left as an exercise (Prob. 8-5). Once the pulling force is known it is possible to
calculate the tensile stress exerted on the sheet. If this stress is high enough, it is
possible that the sheet may undergo tensile deformation during coating with a
consequent change in thickness. If a coating is laid down on such a deformed
sheet, and if strain relaxation occurs subsequently, it is quite possible that the
coating may “buckle” and become uneven. Thus 2 model for the tensile forces in
the sheet itself could be a significant part of a complete coating analysis.

Coating a Power Law Fluid

The power law case is treated in a manner that parallels the newtonian model
developed above, and similar complications arise here as do in the power law
model of calendering. Consistent with the lubrication approximation the power
law is written as

tn—1y2
du, Ju,

_ K[(E;)z} 5 (8-19)

Other terms that would normally appear in the second jnvariant I, have been
neglected. To avoid taking the fractional root of a negative quantity the velocity
gradient is squared before the indicated fractional power is taken.

When nondimensionalized the dynamic equations take the form

a 2 n=1)/2 ;]
0=-2%,2 (-ff = (8-20)
é¢  anl|\én on
where the dimensionless variables are defined as in the newtonian case, except that
Ho\"(Ho\ " p
= (=2 (=) = 8.21
=3[R % 62

The solution proceeds as in the newtonian case, but several integrals cannot
be explicitly evaluated. The key result, the pressure distribution, is given by

G i Uy

h"}. +2n

P=4|

-+

1 n
where A= ( + 2”) 24 +n

dé (8-22)

h

As In the newtonian case 4 is obtained by asserting that the pressure vanishes at
the separation point, at which u also vanishes. Setting u(¢,, 17) = 0 gives

P e

Then the condition P(,) = 0 gives [setting the upper limit at £, in Eq. {8-22)] an
integral equation for 1 which must be solved by trial and error. The calculations
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0.2 0.4 0.6 0.8

1.0

Figure 8-10 Nondimensional coating
thickness 4 as a function of n.

1.0

Figure 812 Nondimensional roll-sep-
arating force as z function of n.
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indicate that 4 is increased by nonnewtonian shear behavior but that the effect is
modest. Figure 8-10 shows 1(n).

The effect of n on the pressure distribution is significant, and Fig. 8-11 com-
bares pressure profiles for several n values, including the newtonian case n = 1. It
is apparent that P is increased by n < 1, in comparison to the newtonian case. In
making the comparison, however, it is important to keep in mind that it is the
nondimensional pressure P being examined. It does not necessarily follow that the
actual pressure p, for a nonnewtonian fiuid, is always more than that for a newton-
ian fluid without considering the basis for comparison. Problem 8-7 suggests an
investigation of this point.

The roll-separating force F may be calculated from the pressure distribution
and written in the form

= K(HEO) "RF (n) (8-24)

Figure 8-12 shows .#{n).

Viscoelastic Effects

If a real viscoelastic fiuid is subjected to the fiow under consideration here, we
might expect three phenomena to occur which would have to be accounted for in
any realistic model:

& Nonnewtonian shear behavior

@ Normal stress development

® Stress growth and relaxation due to the lagrangian unsteady nature of the
kinematics

It is useful to comment here on the problems that arise when one attempts to
incorporate these phenomena into a2 model of roll coating.

We confine our remarks to models based on the lubrication approximations.
Otherwise we are discussing the more general and more difficult problem of
two-dimensional viscoelastic flow which must be described by simultaneous,
coupled, nonlinear partial differential equations. In Chap. 7 it was argued that
normal stresses might be expected to enter the lubrication equations only in the
total stress term T,,. Thus the equation of motion takes the form

d a7y, .
e (p—1,)= By (8-25)

We can anticipate that in some highly elastic fluids the elastic normal stress
7,, might be comparable to the viscous shear stress T,,. If these stresses are
comparable, then we might argue that the magnitude of dz,, /dx is considerably
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less than that of ft,,/dy, since the lubrication assumption itself asserts that for
almost parallel fiows 8/0x < 8/@y. Thus we would seek a sotution of

dp _ 0Oty
dx 8y

(8-26)

But this is the same equation as would be solved for the case of a purely viscous
nonnewtonian fluid. Within the context of the lubrication approximations, then,
we find that viscoelasticity does not explicitly appear in the equation of motion.

Viscoelasticity may appear explicitly, however, when we write a constitutive
equation for the fiuid of interest. Thus if we couple Eq. (8-26) with a model of the
form

,
T+ eﬂm@—; =1 A (8-27)

where 0g is a characteristic relaxation time of the fluid, we have incorporated

viscoelasticity into the formulation of the problem through the time derivative

@/@t. [The remarks to follow hold equally well, though not in exactly the same

format, if we use the Oldroyd derivative b/dz instead of the Jaumann derivative

991, You may need to review the definitions given in Eqs. (3-126) and (3-127}.]
For the shear stress 7,, we have, then,

JT,y Ot,, 1{8u, du, N
T+ Be [%E +u, 2y 2( - x (Tye — Tud | = Mo 3 + -é-;)
(8-28)

Now, if the lubrication approximations, namely, u, > u, and 8/dx < §/6y, are
applied to the terms of Eq. (8-28), we find that

1 du, du,
Ty + GR [55'; (Txx - Tyy)] =N E (8”29)

If, in a similar manner, we write Eq. (8-27) for 7, and 1,, and then impose the
lubrication approximations, we find

Ju,
Tax = aﬁrxy_a-; (8_30)
Ty = —Tyy {8-31)
It follows then that
. = o Ou, /8y (8-32)

1 4 0z(0u./oy)

and

_ (Bu/2y)
o= O T G T

(8-33)
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But Egs. (8-32) and (8-33) are identical to what one obtains for steady simple
shear flow, Hence the lubrication approximations remove those terms of the
constitutive equation associated with the lagrangian unsteady character of the
flow.

One must ask the question, then, * Is there such a thing as a Iubrication theory
for a viscoelastic fluid?” The answer is yes, but in a very limited sense.

From Eq. (8-26) we see that any nonlinear shear behavior can be accom-
modated within the theory. However, the nonlinear acceleration phenomena asso-
ciated with the converging-diverging character of the kinematics are lost in the
lubrication approximation. The normal stresses enter the model only in the calcu-
lation of the roll-separating force, using

F . XL xi
wo J [= Tdymiim dx = J [P — tp)y=nin dx (8-34)

Of course, if the nip separation is not fixed but the force F is held constant,
then the normal stress will affect the nip separation which will, in turn, affect the
coating thickness. We note that if Eq. (8-33) is even qualitatively valid, with
respect to the sign of the stress 7,,, we can conclude that the roll-separating force
tends to be increased by the appearance of normal stresses. However, we would
have to examine the effect of nonnewtonian shear behavior on p before concluding

anything about the change in total stress T,,,, which governs F.

8-2 BLADE COATING

An analytical model of biade coating may be carried out if we assume the blade
angle is sufficiently small that the lubrication approximations hold. This is not
often the case, since typical operations involve 2 blade angle in the neighborhood
of 45° to the sheet. Nevertheless, the model is of some utility as a first approxima-
tion to expected behavior, and we shall therefore illustrate the development of a
model for coating thickness and pressure distribution.

Figure 8-13 shows the geometry of the analysis. The blade is flat and set at an
angle such that

H, —H
tan § = ———2 (8-35)
L
‘ L =
g 4 T
HI
Hy hix) x l
u H 1 | Figure 8-13 Definition sketch for analysis of blade
f X =L x=0 coating.
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The volumetric flow rate Q is related to the final coating thickness H by

v% - UH (8-36)

where U is the speed of the web, and W is its width.

Newtonian Coating

We begin with a newtonian analysis. If inertial terms are neglected, the lubrication
approximations lead us to dynarmic equations in the form

dp *u,

0= — E + ayz (8-37)
ap

0=— 5—y (8-38)

Thus we find p = p(x) only, and Eq. {8-37) may be integrated twice with respect to

y to give
_ y\ hdpfy ¥
= U(l h) T (8-39)

We have used boundary conditions on u, in the form

_Ju ony=0
““=lo on y = h{x)

to evaluate the constants of integration.
The volumetric flow rate is found from

% = Jo u, dy (8-40)

When Eq. (8-39) is integrated an expression is obtained which may be solved for
dp/dx with the result
dp h—2H

i

(§-41)

To integrate for the pressure distribution it is now necessary to introduce an
expression for h(x). For a flat blade,

H, —
hix)=H; — —‘—Ifﬂx (8-42)
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The mtegration of Eq. (8-41) may be carried out analytically, and the result
for p(x) contains two unknown parameters: an integration constant and the coat-
ing thickness H. We shall introduce two boundary conditions on p:

p=0 atx=0
p=0 atx =1L

These boundary conditions reflect the notion that the regions x < Oand x > Lare
exposed to the atmosphere at ambient pressure p =0 and that no significant
entrance or exit phenomena occur to alter the pressure from its ambient value.
Inertial effects, neglected here, would probably cause an “entrance ™ Joss similar to
that at the entrance to a pipe attached to a large reservoir. One might expect exit
effects to be associated with surface tension and the dynamic meniscus that is
formed in the region near x = L. We will carry out the analysis using the boun-
dary conditions given above.
With these conditions, p(x) may be written as

_ SuUx[h(x) — Ho]

= e = 8-43
P =, + 7o) &4
and H is found, in the course of applying the boundary conditions, to be
H = mHli (8-44)
H, +H,
The maximum in the pressure distribution occurs at a point x* where
h(x*) = 2H (8-45)
It foliows easily that
3uUL H, —H, 3uUL k-1
= = 8-46
Pma = H Ho H, + Hy  2H ’le + 1) (8-46)
where x = H, /H,. In terms of x, H and x* may be written as
K . K
= = 8-47
H=H, T+ x and x*=1L TTr (8-47)
Since x > 1, we see that H < H, and in fact lies in the range
1 H
5<m-<1l forl<x<a (8-48)

Hy

We also note that the dependence of p,,.. on x is such as to vield a maximum value
of the maximum pressure. This maximum occurs at a value of x of

K% = 2414 (8-49)
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Figure 814 Pressure distribution under the biade. {a) Normalized to P, . (b} P, as a function of x.

at which the maximum pressure is

pUL
H3

Figure 8-14 shows the pressure distribution under the blade with x as a parameter.
We see that the maximum occurs downstream of the center of the blade, and as
increases the peak approaches the blade tip. The pressure profile is quite sharp for
large values of x. It is not clear a priori how accurate the lubrication model is for
values of x much removed from unity. To answer this question it would be
necessary to solve the dynamic equations numerically and compare the results to
the simple analytical model given above. (But see Sec. 8-4.)

We note at this point that the coating thickness is predicted to depend only on
geometric parameters according to Eq. (8-47). Within the context of this model
this prediction is true only if H, and H, are constrained, independent of operating
conditions. In fact, however, most blades are flexible, and H, is established by the
pressure distribution under the blade.

pE_ = 0258 (8-50)
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Figore 8-15 Definition sketch for analysis of flexible
blade.

The effect of the pressure distribution is to load the blade and cause it to

deflect. If the blade were rigid, as assumed above, the blade loading & would be
calculated as

L éull K—1
= dx = Inx— :

Lp(x) * tanza( " 2rc+1) (8-51)
The flexible blade case is quite complex, but we may mode! it through the use of
some fairly simple approximations.

Figure 8-15 shows a blade under load. Equation (8-31) is no longer strictly
valid since @ is not a constant and h(x) is no longer a linear function of x. The
format of this simple model will be maintained by taking the angle 6 to be defined
as the angle to the web made by the chord of length I connecting y = H, and
y = Hy. Then we find that

H —H
f=sin"? L2 8-52
sin T (8-52)
and we take I to be the undeflected blade length.
The equation for loading is then rewritten in the form

& = 6uUf {x, B) (8-53)
where = %
and
1 (=17 |x*Inx 2x?
fle B)= [F TS J ((h‘, — 17 - (c— D)< + 1) (8-54)

We will consider the blade to deflect as if it were a cantilever beam loaded at a
point x, by a force W (where W is the blade width). Figure 8-16 shows the static
force diagram. Any elementary text on statics or mechanics will develop the

Figure 8-16 Loading on a flexible blade.
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solution of this problem. The result of interest is the deflection &, which is found to
be

_ FWxp [1 K104 ; xL)} (8-55)

&= 3ES 2

e,

where E is Young's modulus for the blade, and I is the moment of inertia of the
cross section, given by

25
=0

I

(8-56)

where B is the blade thickness.

We will identify x, with x*, the point at which the pressure is 2 maximum.
They are not equal, but related by the angle 6, and as an approximation we take
Xx* [1 ,B:'(K— I)ZJU:

—=cos f = =
X K

{8-57)

If the value of H, (call it Hoo) is known in the unloaded case (one might fix H,
before starting the system), then one would calculate the loaded H, from

Hy=Hyy+ 6 cos 8 (8-38)
_ Hy {1 Hy,
or b=t (; H, ) (8-59)

A scheme for calculating H may be put together as follows:

1. We assume that Eq. {8-47) still holds, but we write it in the form

H= A, and x* ==
1+x 14x

cos 0 (8-60)

2. We assume the blade geometry is known (L, B, W, B) and that an unloaded
setting of the blade is specified, giving H, and H,,.
3. We assume H; does not change under deflection.
- We pick values of x and plot & versus  using Eq. {8-53).
+ For each x we can calculate § and x, [from Egs. (8-57) and (8-60)] and & [from
Eq. (8-39)].
6. We rewrite Eq. (8-55) in the form

_ 3HLEI {1 Hgy 3E = x)]*
g_Wxi cos 9(x H, T 2xp (8-61)

b

Everything on the right-hand side may be calculated from the equations above
for any value of x. Hence we may plot . versus x from this equation,

7. The intersection of the .% versus x curves of steps 4 and 6 gives the value of
consistent with the approximations. H follows from Eq. (8-60) in step 1 above.
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L, [Eq. (8-61)]
01+
L =6pUfi, §)
c ) | | )
50 60 70 g  Figure 817 Graphical solution of Example
81,

Example 8-1 Find the coating thickness developed by a flexible blade coater
designed and operated as noted:
L=0251in B =10.005in U = 100 cm/s

E=10"psi pu=I10P

Before the coating operation begins, the blade is set so that it just touches the
sheet (Hy, = 0) at an angle of 45°. Assume the blade holder is rigid so that H,

does not change during coating.
We find H, = 0.177 in,and 8 = H, /[, = 0.707. We have enough informa-
tion to calculate £ versus x using the procedure outlined above. The results

are shown in Fig. 8-17, and we find
x =358

Hy = 0.0031 in
H =0.003 in

In this case the blade deflection is quite small, about 3 mil, approximately the
same as the blade thickness itself. The maximum pressure developed under

the blade is only about 2.6 psi.

Example 8-2 In a paper-coating operaticn a clay suspension containing 50
percent solids (by weight) is deposited in such a way that the observed coat-
ing, on a dry-weight basis, is § Ib/ream. (A ream is 3300 £t2.) The paper speed
is 2400 ft/min, the suspension viscosity is 1 P, and its density is 1.52 g/fem®.
The blade is flat, and £ = 0.3 mm. The blade angle is 4°.

Find the blade loading and the maximum pressure,
‘The coating weight per unit area is related to the thickness by

w=pH

and the dry weight is haif this (for 50 percent solids loading):
wy = 3pH
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From the information presented above we find

2w, _ 2(0.5)(5#)(30.5)°

H== 152

=097 ym

We can find H, and H, from the pair of equations

K

1+x

H, —Ho_Ho(K_ 1)
L T003

H=H, =097 x 107 cm

sin 8 = 0.07 =

The results are
Hy=10"*cem=1pm H,=245um
Doy = 1186 psi ¥ =9 pli

Note that the value of H; is extremely small. If the solids are not submicromet-
ric in size, the application of this mode! would be very tenuous.

The Effect of Viscoelasticity

Since many coatings are nonnewtonian, we are motivated to examine the blade-
coating problem once again but with a constitutive equation suitable for more
complex fluids. If we paralleled our treatment of earlier problems, we would
probably carry out the analysis for the power law fluid next. Let us depart from
that approach, now, in order to illustrate another method of obtaining analytical
solutions of complex problems.

We continue to work within the lubrication approximations. Our goal is to
gain some insight into the effects of nonlinear viscosity and elastic stresses on the
dynamics of blade coating. We begin by recalling the comments on lubrication
models of viscoelastic flows, made with respect to the roli-coating analysis, pre-
sented in the subsection “Viscoelastic Effects™ in Sec. 8-1. Those comments are
equally valid for the blade-coating problem. In particular, we recall that the shear
stress and normal stress effects are separated in the analysis and so may be
considered independently.

We begin with the selection of a constitutive equation which allows for non-
newtonian viscosity and elastic stresses. We choose the Maxwell model with the
Jaumann derivative: ,

g
T -i—BRa:nO A {8-62)

where 0 is a relaxation time of the fluid. As in the roll-coating case this gives,
because of the lubrication approximations,

Mo Gu /by

1T (8, du/dy) (8-63)
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Ju,
Ty = —0g Fy” Ty (8-64)

The virtues and failures of this constitutive model were discussed in Chap. 3. We
note here only that we do not expect the model to be valid for large deformation
rates.

With the lubrication approximations the dynamic equations reduce to the
form

dp  dr,,
i a_y“ (8-65)

Upon integration with respect to y we find

dp
Ty = 5 +c (8-66)
where ¢ is an integration constant.

When Eq. {8-63) is introduced for 7., we have a nonlinear differential equa-
tion of the form

du, f8y 1 dp
— =y~ 867
L+ (8 du/3yF  n4 Vit c) (8-67)
It is convenient to introduce the following dimensionless variables:
U, y x Hip
. —= L= =P
voY ®m T 1T UL
0 U = Ws = Weissenberg number
Hq
With these definitions, Eq. {(8-67) becomes
Bo/on
———— =P+ C -
T+ e(@gram? - ™+ (8-68)

where we replace {Ws)® by the parameter ¢, and where P’ = dP/df and C is a
dimensionless integration constant, Equation (8-68) will be solved by a perturba-
tion method, which is based on the following ideas:

[y

. We should restrict the solution to small values of ¢, since we know that
Eq. (8-63) has restricted validity.

. In the limit of € = 0 we expect to obtain the newtonian solution.

. For small ¢ we might expect that the functions ¢(¢&, #; ¢} and P(#, €) depart
from their limiting (newtonian) behavior in a way that depends “smoothly ” on

w9
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¢. An example of “smooth ™ dependence on ¢ would be a polynomial in ¢, such
as

¢ =@+ Z o, (8-69)
k=1

where ¢, is the newtonian solution.

To carry out the perturbation solution, then, we write

@ = Qo + €@y + @+ (8-70)
P=Py+eP,+ Py + - (8-71}
C=Cy+eC,+e2Cy+ - (8-72)

We then substitute these expressions for @, F, and C in Eq. (8-68), clear the
denorninator on the left-hand side by bringing it across to the right-hand sideas a
factor, and then we group terms by factering like powers of e. Thus we find

F 8 8 2
S0 | 001 L 2002 |y 2P0 001
on én on an an

*

NPy + enPy + Py + Co -+ eCy + €2C, + ] (8-73)

Now we equate terms with common factors of e:

d
Zeroth power: ai; =3Py + Cq (8-74)
. d depg 2
First power: —;’;—11—= nPy+C + (ai;) (nPs + Co) (8-75)

0 onnz%ﬁ=x+(1-—x)é=ﬁ(§)

A
I

1 ony=0
Since these conditions must hold for all values of ¢, it follows that

0 ony =+ (1 —x)

Po= onn=1_0

and all ¢, = 0 on both boundaries for k > 0. Now we can solve Eqgs. (8-74) and
(8-75) in turn.
From Eqg. (8-74) we find

@0 =Py +1Cy + Coy (8-76)
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Using the given boundary conditions on Po, we find
@0 =%(" — )P, + 1 - % (8-77)

To find the pressure gradient we must impose a condition of mass conserva-
tion in the form

Q «Hx) H AD
== d oeEA= 4 -
W=l Wy o go=is] e man (8-78)

[We have used Eg. (8-36) to relate A to coating thickness.] Consistent with
Eq. (8-70} we see that A itself should be written in the form

Amdo+ e + 2, + (8-79)
and it follows that
i
xk=j o dy  k=0,1,.. (8-80)
0
Imposing Eq. (8-80) on the zeroth-order (newtonian) solution (8-77) gives P
as
.6 1
Po=35—55° (8-81)

When this is substituted into Eq. (8-77), we have ¢, as a function of 5 and of &
through A{¢) = x + (1 — x)Z, and as a function of the {still unspecified) parameter
Ao . To find 1, we must integrate Eq. (8-81) with respect to ¢ in order to obtain
Py{Z). On imposing the boundary conditions Py(0) = Py(1) = 0 {ambient pressure
at the entrance and exit of the blade), we find A, to be

K

g =
° T 1+x

(8-82)

These results can be seen to be consistent with the solutions presented in the
subsection * Newtonian Coating™ in this section.

Once the zeroth-order solution is completed we may go back to Eq. (8-75)
and solve for ¢, and P, (and 4,). This process can be repeated to the exhaustion of
the investigator. Algebraic exhaustion sets in at about 2 hours, which is sufficient
time to find the correct forms for ¢,, Py, and i,. (Incorrect forms are obtained
much more quickly. The 2 hours noted above is required to find and correct the
inevitable algebraic errors that occur in five to six pages of hand calculations of
this type.)

Equation (8-75) may be written [with the aid of Eq. (8-74)] in the form

g deo\?
ainl = 4P|+ Cy + (Uiﬂ”) (8-83)
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The solution procedure follows that for the zeroth-order solution:

1. Integrate with respect to n to find ¢, making use of boundary conditions
@, =0onbothy=0and n=h

2. Impose mass conservation [§ @ dn = 4,, which gives P{(&, 4,). _

3. Integrate P with respect to £. The conditions P, = 0at{ = 0and I give 4, (k).

The results are as follows:
(1 —x)Py = 64, (A2 — k7 2) — 43243(h° ~ k%) + 77.7623(h ™% ~ x7%)
— 576A(h™* — k™*) + 16.8(h7 % — k™ 3) (8-84)
[Keep in mind that i =x + {1~ )¢}
(1= k™4, = 7.2(1 — k™%)A3 — 1296(1 — 1 3)A3 + 9.6(1 — k™ *)y
—28(1—x"%) (8-35)

We can show that P, < 0, thus indicating that the effect of nonnewtonian viscosity
is a reduction in pressure under the blade. We can also show that 0 <4, < 1,
which indicates that the effect of nonnewtonian viscosity is to increase the coating
thickness.

The roll-separating force requires calculation of the total stress — T, exerted
on the blade, and we begin with

T, =p— Ty (8-86)
The constitutive assumption regarding normal stress [Eq. (8-64)] can be in-
troduced, and we may write the total stress exerted normal to the blade in dimen-
sionless form, and up to linear terms in ¢ we find

27 H L 2
= o (R ser, 57
0

The interesting result is that while the viscous effect on stress (pressure) is of first
order in ¢, the elastic effect comes in more strongly, being half order in ¢. The
relative magnitude of the two terms beyond P, depends on the geometry (Ho /L),
but it is conceivable, according ro this model, that the positive elastic term could
outweigh the negative viscous term (the eP; term). Hence we cannot generalize
and assert that the effect of viscoelasticity is to increase {or decrease) the blade
loading. We can show, for example, that in a fluid which is newtonian in shear but
which exhibits finite normal stresses, the blade loading is increased relative to the
corresponding newtonian fluid. In a fluid which is purely viscous, the loading is
decreased.

One must avoid the temptation to investigate the consequences of this model
in detail. Because of the restriction of the first-order solution to very small values
of ¢ = Ws?, the model is probably not applicable to realistic viscoelastic fiuid-
coating operations. Since the constitutive equation has limited validity, there is no
justification for going beyond the first-order analysis. It is worthwhile, however, to
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examine some data obtained in a laboratory coater to determine if the foregoing
modeis, including the newtonian model, have any capability to predict reality.

Figure 8-18 shows data obtained with two newtonian fluids. Over the full
range of x studied, the data agree well with the theory.

Figure §-19 shows data obtained with three viscoelastic solutions at a fixed
value of k. The fluids are characterized by their values of recoverable shear Sp
measared at 50 s~ *. We see, first of all, that A lies above the newtonian value, as
predicted by the theory. However, if Sz and Ws are taken as roughly comparable
(sce Chap. 3, page 61} we find that the theory cutlined above grossly overesti-
mates the expected value of i. Since the fluids studied have larger values of Ws
than those for which the perturbation theory is expected to be valid, the quantita-
tive failure of the data to agree with theory is not unexpected.

8-3 FREE COATING

In the free-coating process the surface to be coated is initially immersed in the
coating fluid and then withdrawn. A layer of liquid remains on the surface of the
chject, the amount depending on the viscosity and surface tension of the coating
fluid and on the speed of withdrawal. Gravity, of course, will cause the fluid to
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tend to drain off the object. Normally some type of postwithdrawal operation,
such as drying or freezing of the coated layer, is required to stabilize the coating.

Two of the simplest free-coating problems arise when the object to be coated
is either a continuous web or beft of material (such as in film coating) or a
cylindrical filament (such as in fiber coating). Geometric simplifications, and the
continuous steady-state nature of the process, make it feasible to carry out some
meodels of the process thiat show some degree of resemblance to experience.

The principal complicating feature of these problems is the strong role played
by the free surface in controlling the coating dynamics in the region where the
object leaves the surface of the fluid. In previous coating problems (the wire-
coating die of Chap. 5 and the roll- and blade~coating problems of this chapter),
the coating flow is basically a bounded flow where the free surface enters the
problem, if at all, only by (possibly} perturbing the flow near the exit of the system.
To a first, and useful, approximation one could ignore surface tension. In
the free-coating problem the role of surface tension is central to the dynamics.

The method of analysis is somewhat complicated, and the chain of logic seems
more convoluted than in previous models. Assumptions will be made which
appear to be, and are, quite arbitrary. But the analyses are interesting and provide
a good demonstration of the adage * Nothing ventured, nothing gained.” We will
be able to compare some of the models discussed with experimental data to assess
how much has been gained, and how much is left to do.

We will illustrate the method of analysis with the simplest problem of free
coating: the vertical withdrawal of a flat, continuous, wide film from a stationary
bath of newtonian fluid.

Figure 8-20 shows the geometry of the model which we will develop for this
system. A flat sheet is withdrawn vertically at a speed U from a liquid bath whose
free surface is at x = 0. Somewhere above the free surface (region 1} a dynamic
equilibrium between the effect of gravity and the drag of the sheet leads to a
constant coating thickness H . In region 3, nearest the free surface, we assume
that the effects of surface tension are dominant, in comparison to viscous and

‘gravitational forces. In region 2 the free surface is the result of the interaction
among viscous, gravitational, and interfacial forces. In all regions inertial effects
are neglected.

Region 1

Figure 8-20 Definition sketch for model of [ree coating onto
a flat sheet.




COATING 213

Region 1
The dynamic equations for a newtonian liquid reduce to
4*u
Hap—pa= ¢ (8-88)

and the appropriate boundary conditions are

u=U ony=0 (noslip)

,ua; = on y=H, (no shear exerted by the air)
We find u(y) to be

4
- L P i
u—U-l-#(z Hwy) _ (8-89)

Since H, is unknown a priori the solution is not complete. It will be necessary
to find u{y) for region 2, and in “ matching ” the solutions so that they are contin-
uous between the two regions, an additional condition on H,, will appear.

We note at this stage that the liquid film is not in plug flow; there is a
distribution of velocity. Near the web the fluid is moving upward with velocity U.
At the surface the fluid has a lower velocity due to the effect of gravity.

Region 2

Here the dynamic equations include pressure and take the form

g — 2 =0 8-90
R R s (8-90)
_a_y, (8-91)
ay
subiect to boundary conditions
On y =0 u=U  (noslip)
On y=H: t-s=0 (no shear)
g o
Ony=H: potn=g {continuity of normal stress)

The two stress boundary conditions are written as shown because the free surface
H(x) is not a coordinate surface of the cartesian system with respect to which o
and 7 are measured. s and n are unit vectors tangential and normal to the free
surface, respectively, and © - s and © - » are the shear and normal components of
stress.

We are, in effect, introducing the lubrication approximations here, with the
thought that the upward component of velocity dominates the flow and that
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derivatives of ¥ in the y direction are more important than those in the x direction.
Thus we take the flow in this region to be almost parallel to the sheet.

The free surface can be described by the (unknown) function H(x}, and the
radius of curvature of the free surface is given by

I —d*Hjdx?
R(x) [l + (dH/dx)?]*2
In region 2 we will take the curvature to be sufficiently small that |dH/dx| < 1,in

which case the following approximations may be used in the boundary
conditions:

(8-92)

Trs=1,=0 (i)
Trn=1,= T, (ii)
i &PH
R dx?

The boundary conditions reflect the following ideas:

(i) For small |dH/dx| the free surface is nearly vertical, and the shear stress is
well approximated by .

(ii) By the same token 7 - nis approximated by z, . Since we appear to neglecta y
compornent of velocity, there is a temptation to set 7, = 0. However, we must
note that for a newtonian fluid in a two-dimensional flow, 7, = -1, s a
consequence of the continuity equation alone.

Thus we must consider a finite normal stress, which may be calculated from

du 5
Ty = g = — T (8-93)
~The second boundary condition then takes the form
du H :
QU = —g —= D= .
P+ 2o 0o at y = H(x) (8-94)

Equation {8-90) may be integrated twice with respect to y to give the velocity
profile as '

‘= U+M(£_HJ.)

I, 2
which satisfies the no-slip condition at y = 0 and the no-shear stress condition at
¥y = H{x).

At this peint it is useful to introduce the enrrainment g (per unit width),
defined as

(8-95)

H

g=| wuady (8-96}

v0
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If Eq. (8-95) is integrated and we solve for the pressure gradient we find

dp  3u pgH?
= F(UH -5 ) (8-97)

Note that since H(x) is unknown we cannot integrate to find p(x), nor do we need
to.
We are now in a position to derive a differential equation for H(x). Equation

(8-94) is differentiated with respect to x. Equation (8-97) is substituted for dp/dx.
Equation (8-95) is used to eliminate d*u/dx?. The result is

&*H d{1dH\  3u pgH®
O=6———-3ug—\V =3 —| +=|UH~g— 3-98
e “qu(Hde)+H3( 1= 73 ) (8-98)
Before dealing further with this equation we note two points: It is nonlinear in H,
and it contains the unknown constant g. As a matter of convenience we now
introduce the following dimensionless variables and parameters:

L= " (8-99)
x {3ulUNs3
o | 2E -100
f=g ( - ) (8-100)
the capillary number
Ca= wv (8-101)
G

and 4 dimensionless equilibrium coating thickness

1/2
T, = Hx{p—f]) (8-102)
U

Equation (8-98) then takes the form

aL T;) d(la‘L

el 2/3 |-z
(3Ce) (1 3 |2\ Bz

1
s |+ i~ 1+im20- B =0

(8-103)

The unknown parameter g has been replaced by H.. by making use of the solution
in region 1, Eq. {8-89), from which it follows that
{8-104)

B 3ulU

Thus Eq. (8-103) contains an unknown parameter T, [see Eq. (8-102}],and soitis
necessary to have four conditions imposed on the solution to Eq. (8-103): three
boundary conditions for the third-order equation and a fourth cendition that will
give T, .
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The four conditions are “matching™ conditions. We require the region 2
solution to approach the region 1 solution as & gets large, In terms of L, region 1 is
characterized by

L=1 : (8-105)
dL :
== (8-106)
d2L
=0 (8-107)

Equation (8-105) follows directly from the definitions of L and H_,. Equations
(8-106) and (8-107) reflect the fact that the film thickness is uniform and the
interface is flat.

The fourth condition must match the curvature of region 2 with region 3. We
must inquire first whether Eq. {8-103) will allow imposition of these boundary
conditions: Are they compatible with the form of the equation? To answer this we
set L =1in Eq. (8-103) and observe that the vanishing of all derivatives is compa-
tible with the equation. Hence Eq. (8-103) has a solution which asympoticaily
approaches the limiting value of L = 1.

The more difficult question is whether we can match the solution in regions 2
and 3 somewhere. First we examine region 3,

Region 3

In region 3 we assume that the fluid motion has a negligible effect on the shape of
the meniscus, so that H{x} is determined by the static balance between gravita-
tional and interfacial forces:

o d*H/dx?
[+ (a7~ P2 .
It is possible to integrate this equation and find the slope in the form
2
dH/dx _Pex (8-109)

1+ @H/dx)* 112 26

{(The boundary condition dH/dx — — oo at x = 0 has been used.)
We see that in the static case the slope dH/dx vanishes at a height x_ above

the surface, with x,, given by
2 12
Xy = (—a) (8-110)

Pa

At that point the curvature is given by

42H 209 1/2
P (—) (8-111)




COATING 217

- -
“ ]

Region 1

=1 ~ Region 2
ol ___ Ve
2 2

“ Eq. (8103} ,
-——x.,

7 Region 3
A ?

Eq. {8-108)

Figore 8-21 Mathematical behavior of the [ree surface in each region.

In terms of dimensionless variables this is

4L V2

E = '3“573(:3._ 1,'6-1—;0 (8-1 12)

At this point, then, we have the following situation, which may be visualized
with reference to Fig. 8-21.

4

Region 1. The “solution™ is trivial: L = 1.
Region 2. The solution has proper behavior for x — co.
Region 3. The solution has proper behavior for x — 0, but *“ turns around " at x, .

The key to the problem of matching solutions in regions 2 and 3 lies in the
behavior of Eq. {8-103) for small x (iarge L). Since we cannot integrate the differ-
ential equation analytically, the behavior of L(£) is not obvious. It is useful to
rewrite the equation in the following way. We multiply through Eqg. (8-103) by
S = 42L/dE? and note that

L dLdPL _1d (d’L\* 1d§*
ded  dER dE® T 24E\dE*] 2 d¢
Equation (8-103) then takes the form

14s®  (S* 2SdL\ S ,
( )-i—E[L—l—l—JgT;,(l—E)]:O (8-114)

(8-113)

24 T\ pPd
where C = (3 Ca)*?(1 — T2 /3). For small C and large L this takes the form
1ds2 S,T2
s =0 (8-115)
which has the selution
d*L
Se=4T%¢= s (8-116)

{We use the notation S, to remind us that this approximation is valid only for
C =0, L— o0, £ — 0.} Although Eq. (8-116) shows that the curvature 5, is getting
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small as £—0, that the film is becoming flat, it also shows, upon solving
Eq. (8-116) for L(Z), that L is not becoming large in this limit as & — 0. Hence we
conclude that Eq. (8-103) does not have the desired behavior for small £ This
should not be surprising since the development of the model for region 2 implies
almost parallel flow. (It is a lubrication approximation.) We should not expect a
good model toward the bottom of the film where L gets large.

Suppose we introduce the idea that L is near unity, say, L = 1 + ¢ where ¢ is
small. Then the third term of Eq. (8-114) becomes approximated, after some
modest algebra, by

Sterinn-geap=a-mIEl @)
Now we examine

1452 52 284Ly  (1— T2)S(L— 1)

238 (E_Ed_g) o (8-118)

While the third term is valid only near L = 1, we nevertheless examine the
behavior of Eq. (8-118) for large L. If C = 0 we have
45?
—— = ) asL»1 8-119
T sL> (8-119)

or § = constant as ¢ — 0. Hence the curvature becomes constant. The film does
not become horizontal necessarily, even if the curvature vanishes, since

L=ly—af Ly»1 (8-120)

is compatible with both Egs. (8-119) and (8-118). For finite C the same conelu-
sions hold, though not so clearly as when C = 0. Now it is possible to devise a
matching procedure to complete the analysis of the problem.

“The Method of Landau and Levich

Their model (see Levich) neglects the effect of gravity in the entrainment region
and leads to

d&>L L -1
a’f"‘ J

Equation (8-121) is solved subject to
L=1

dL

dg

oL

ag?

=0 (8-121)

=0 at{— oo

=0
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Upon numerical solution of Eq. (8-121) it is found that the curvature at E=0isa
finite value,

d*L
e ony = 122

Landau and Levich match the region 2 and 3 sclutions by requiring {see
Eq. (8-112)]

NG
SU = _“'_""'Ca_uﬁ T

3779 . (8-123)
As a consequence they find
32[3
T, = -\/—3—50 Ca'/® = 0.944 Cal/s (8-124)

The numerical coefficient follows upon introducing the value of S, found by
Landzu and Levich. We note that the curvature match is somewhat disjointed, in
that Eq. (8-112) hoids at £, # 0 whereas Eq. (8-122} uses S, at £ = 0. No direct
examination of the effect of this aspect of the matching procedure has been given.
Since other elements of the mode! involve various approximations, it is more
sensible to examine the comparison of experimental data with Eq. (8-124). We
shall do this after examining some other matching methods.

Gravity-corrected Theory

White and Tallmadge (1963) give a gravity-corrected theory which is identical to
the development above, except that in the normal stress boundary condition
[Eq. (8-94)] the viscous term was neglected. The result is that they solve

L L-1

4+ {1l =T:) == =0 8-12
and using the Landau-Levich matching procedure they find
T,
e 0944 Cal® 8-126
=17 944 Ca { )

For small Ca this is a good approximation to Eq. {8-124); for large Ca one
predicts that T, - 1.

The Method of Wilkinson

‘Wilkinson et al. (see Spiers et al., 1974) correct the normal stress boundary condi-
tion to the form given above as Eq. (8-94), and *linearize” the third term of
Eq. (8-103) [as in working witk Eq. (8-117)]. Thus they solve

&L Ti)d(ldL -1

as 2031 Bl ettt 1—-T2)——=0 8-127
5 (3 Ca) ( 7z L2d§)+( =) (8-127)
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Inspection of Eq. (8-118) shows that d*L/dé* = S approaches a constant value at
small & (large L). However, we note that § will be found to be a function of Ca and
T, - By contrast, if Eq. (8-121) is used, S is a pure number.

Wilkinson, then, solves for T, as a function of Ca by solving Eq. (8-127) fora
pair of values of (Ca, T, ), and then requiring that the pair also satisfy

32,’3
7

A trial-and-error procedure yields 7, (Ca).

T, = ==S(T,, , Ca) Cal/s (8-128)

Comparison to Experimental Data

Figure 8-22 shows the results of an experimental program carried out by Wilkin-
son and coworkers. Over a range of 34 orders of magritude in Ca (0.004 <
Ca < 10) the model of Wilkinson seems superior to, and intermediate between,
those of Landau-Levich and White-Tallmadge. The principal failure of the model
is its inability to predict 2 limiting value of T, at high capillary numbers. The
region of high capillary number, of course, is one where viscous shear effects are
large (large u and U} and surface tension effects are small (small ¢). Hence we
would expect the assumption that region 3 can be described as a static meniscus to
be very pootr. One may also look at high Ca as corresponding to high-speed
coating (since Ca ~ L/}, and this raises the question of the importance of inertial
effects on the coating dynamics. In this regard one should take note of a numerical
solution of the two-dimensional dynamic equations for this flow, including inertial
terms, carried out by Esmail and Hummel. They find that T, is no longer a vnique
function of Ca but that a parameter y enters the problem, where

p 1/3
= g|—— 8-129
’ (#49) ( )

Since y arises because of inclusion of the mertial terms, then in some sense it must
be interpretable as an inertial parameter.

Wilkinson
Landau-Levich ©000g
White-Tallmadge

IT\'{]]I]I
o]

~ 0.5
af
O 1 ] F 1
10-3 1072 10! 1 10 10?
c e Figure 8-22 Data of Spiers et al. (1974)
P

p compared with several coating models.
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) Normally ‘we think of a Reynolds number as an appropriate inertial par-
ameter and define it as

_Uap
u

where a is some appropriate length scale for the flow. Of course H,, would be 2
natural choice for a, but since H is unknown a priori we prefer to use a different
measure. We choose the capillary length

o= (é) " (8-131)

which provides a length scale appropriate to surface tension problems. Then a
Reynolds number may be defined as

Re (8-130)

U 1/2
Re=— (@) (8-132)
uy\g
Now it is possible to show the interrelationship among Re, Ca, and 7, because
Re = Ca 7 {8-133)

Thus, at fixed y, large Ca leads to high Reynolds numbers and inertial effects,
whereas at fixed Ca, large y corresponds to high Reynolds numbers,

Figure 8-23 shows the theory of Esmail and Humme)l, including a comparison
with high Ca data of Sorcka and Tallmadge. It would appear that the two-
dimensiona! theory with included inertial terms is essential to the accurate
description of high Ca data.

Several attempts at purely viscous nonnewtonian models have been made.
Agreement with experiment has been poor, and there is evidence of significant
viscoelastic effects. For these reasons we will not discuss nonnewtonian modeling
of this particular problem, but the Bibliography at the end of this chapter notes
several references to recent papers.

Figure 8-23 Two-dimensional model of
102 10 2 10 ° 1 10 10? Esmail and Hummel, Data of Soroka
Ca and Tallmadge correspond to y = 0.06.
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We turn, instead, to comment or: the wire-coating problem corresponding to
continuous withdrawal of 2 cylinder from a free surface. Except for the change in
geometry of the moving solid surface, the general approach to this problem foi-
lows that for the flat film. We anticipate immediately that a new dimensionless
group will enter the problem, since we would expect the cylinder radius to be of
importance. The usual choice is in terms of the Goucher number,

R
= 8-134
° = Gelo™ 139
At the time of writing, the best available theory is the gravity-corrected theory
of White and Tallmadge (1966, 1967), shown plotted in Fig. 8-24. Instead of T,
[Eq. (8-102)] we use another dimensionless coating thickness D, defined by

%
[

142
D, = Hm( ) =T, Ca'’ (8-135)

We find D_, somewhat more convenient to work with because it does not include
the viscosity of the fluid. Thus, in dealing with nonnewtonian fluids we do not
have to modify the definition of D, . (The capillary number, of course, would have
to be redefined for nonnewtonian fluids.)

The gravity-corrected theory is limited to capillary numbers below unity.
With most viscous materials we would expect to encounter significantly higher
capillary numbers. Shown on Fig. 8-24 are data obtained with several newtonian
and viscoelastic fluids, mostly at large capillary numbers. The newtonian data
{which cover a viscosity range of 0.5 to 10 P} correlate reasonably well and
extrapoiate smoothly from the theory. The data show the tendency (noted in the
flat sheet data of Fig, §8-22) to level off at high Ca.

The interesting observation is with respect to the viscoelastic polymer solu-
tions studied. The polyacrylamide solutions, whick are quite elastic, depart
markedly from the newtonian theory and show an asymptotic value of coating
" thickness that is an order of magnitude below that of the newtonian fluids studied.
Clearly the coating dynamics of viscoelastic fluids are much more complex than
that allowed for by the simple models offered to date.

Rheological data are available for the polymer solutions studied, but a
straightforward assessment of viscoelastic effects is difficuit to offer. One might
like, for example, to calculate a Weissenberg or Deborah number for this flow, but
we have no simple estimate for an appropriate deformation rate or “process
time.” Let us make an estimate, anyway, just to see what sort of numbers we might
be talking about.

The polyacrylamide solutions all have relaxation times of the order of 10 s,
whereas the polyethylene oxide solutions have values of the order of unity. Let us
estimate a Deborah number {refer back to Chap. 3) in the following way. As a
process time we calculate the time required for fluid to accelerate from the rela-
tively quiescent bath through the dynamic meniscus region. The distance
traversed, roughly the height of the meniscus, is of the order of (6/pg)*/?. The time
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A A A

Go=01 .4 4> 0000
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e ¢ d at BfROVER T
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Go = 0.03 °
0.01
0.10 1 10 100
Ca

Figure 8-24 Wire-coating data for newtonian and viscoelastic fluids. For ail experiments, R =
00262 ¢m.

@ Paraffin oil p=046P Go=0.1

¥ Glycerol 10 0.08
& Glycerol 8.6 0.08
80% slycerol 0.61 0.08
(O 0.i0% polyacrylamide n,=10PF 0.07
A 0.25% polyacrylamide 48 0.07
O 0.50% polyacrylamide 160 0.07
¥ 0.75% polyacrylamide 350 0.07
B 0.50% polyethylene oxide 11 0.07
O 0.75% polyethylene oxide 6.6 0.07

Solid lines show the gravity-corrected theory of White and Tallmadge (1966, 1967) for three Goucher
numbers. For the viscoelastic fluids the zero shear viscosity is used in the capillary number,

to move this distance would be in the neighborhood of (¢/pg)'/*/U. We define a
Deborah number as

AU

De ra)” (8-136)
For the data of Fig. 8-24 typical values of U were in the range 10 to 50 cm/s, and ¢
was roughly 60 dynes/cm for all fiuids. Thus we find De = 400 to 2000 for the
polyacrylamides, and 40 to 200 for the polyethylene oxides. As crude as this
estimate is, it does suggest that we are looking at a large Deborah number flow (at
least for the data shown). The data are consistent with this suggestion in several
respects:

@ The 0.5% polyethylene oxide solution has small but measurable normal
stresses, and Deborah numbers much smaller than those for the polycrylamide
solutions. It shows coating behavior intermediate between the newtonian fiuids
and the very elastic polyacrylamide fluids.

© The Deborah numbers must be guite high for the polyacrylamide solutions.
High Deborah number flows are dominated by elastic effects; ie, the fluid
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responds more like an elastic solid than a viscous fluid. This suggests that little
viscous entrainment of Hquid occurs, and indeed the elastic response would
tend to draw entrained fluid back to the meniscus. While speculative, these
comments are consistent with the observed reduction in coating thickness of an
order of magnitude.

Thus we conclude that this particular type of coating process, when carried
out with polymeric fluids, may well be dominated by strong elastic effects that are
outside the scope of the models presented earlier. The development of an adequate
viscoelastic theory is lelt as a 3-year exercise for the reader.

84 SOME COMMENTS ON THE
LUBRICATION APPROXIMATIONS

The lubrication approximations have played a central role in analytical solu-
tions to problems in calendering (Chap. 7) and coating. In some problems
we have no alternative if we seek an analytical solution, and the use of
the lubrication approximations is justified on the grounds that we are unwilling to
attempt a numerical solution to the problem at hand. It is possible, however, 1o
offer some evaluation of the errors associated with these approximations, and
to develop thereby a sense of when we might hope to take advantage of these
simplifications without throwing away too much accuracy.

Let us consider the problem of pressure-driven flow through a two-
dimensional duct with nonparallel walls, as shown in Fig. 8-25. If the usual lubri-
cation approximations are imposed we solve

dp &u
T P {8-137)
subject to
u(x, +h) =0
2 = aty =20
&y
¥

Y
___\
5

o

Figure 8-25 Definition sketch for model of pres-
sure flow between nonparallel planes.



COATING 225

We take the pressure to be p=AP at x =L, and p = 0 at x = x,. We consider
here the case of converging flow,
The boundaries are described by

h=hy + {x — xq} tan o {8-138)
The solution of this problem may be easily found in the form (see Prob. 8-27)

2 _
AP 3uQ  x 1

T Ak tan e &2 (8-139)
hy

where K=o (8-140)
0

An analytical solution to this problem may be found without recourse to the
lubrication approximations. We set up & polar coordinate system where the velo-
city field is assumed to be strictly radial:

u = [u(r, 6}, 0, 0] {8-141)
The continuity equation, in polar cocrdinates, then gives
= I—(-@ (8.142)

¥

Tte radial and angular components of the dynamic equations for a newtonian
fluid become (neglecting inertia)

dp  wdtu "
— == = -143
dr o 2 (8-143)
1ép 2uéu 2y,
rad  r2af 1 Y (8-144)
where ' = d/40.
It is not difficult to find the solutions to be (Prob. §-28)
_ g 1 cos 26
u(r, 6) = 2o — tan 2¢ 7 (1 cos Za) (8-145)
2uQ cos 28 [tan a\?
= - 8-146
plr 8) (22 — tan 2¢) cos 2u , r? ( ko ) J ( )
If we take
hy
p=AP atr_x°+L_tana
and =0
we may eventually find
] 2 Y
ap -tz L& (8-147)

hé cos 2u(2x — tan 2u) ®




226 FUNDAMENTALS OF POLYMER PROCESSING

We may evaluate the error in the lubrication approximation by considering
the ratio of flow rates at fixed AP, as given by Eqs. (8-139) and (8-147):

8§ tan? «
£ =
3 cos 2aftan 2o — 2«)

(8-148)
We find that the error does not exceed 10 percent until the half-angle o exceeds
15¢. Crudely speaking, then, we can conclude that the lubrication approximations
are quite reasonable even when the nonparallelism is about 30°,

PROBLEMS

8-1 Carry out an analysis, parallel to that of Sec. 8-1, for a rell-coating system operating as shown in
Fig. 8-26. Assume the pressure at the separation point is zero, that is, N, = 0.

P~  Figure 826 Two-roll coating system.

82 Analyze the reverse-roll coater, as shown in Fig. 8-27. Assume /| is fixed by a blade, as shown.
Assume that the pressure at the separation peint is zero.

Hy

Uy ¢ i

Figure 827 Reverse-roll coating,

8-3 A roll coater operates as suggested in Sec. 8-1. Find the coating thickness for the following
conditions:

R=6in g = 10 mil U = 100 ft/min

The fluid is newtonian, with 4 = 1 P and surflace tension = 60 dynes/cm.

8-4 The fluid whose viscosity is given in Prob. -9 is to be coated onto a sheet moving at 200 {t/min by
using a roll coater for which R = 6 in. The desired coating thickness is 5 mil. Find H, and the
maximum pressure (pounds per square inch).

85 In a sheet/roll-coating system such as discussed and modeled in Sec. 8-1, find the shear stress
acting on the sheet and the tensile force required to pull it through the system.

U
Answer: Tensile lorce = 5.4u 7% /RH, per unit width.
0
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86 A film 4 mil thick and 2 in wide is roll coated with a newtonizan fluid under the conditions listed
kelow. Find the tensile stress in the film.

R=4in Hy =001 in U=461is #=2000P

87 Consider the observation of Fig, 8-11 that | P(¢, m)| > | P(£, 1)]. Does this necessarily imply that
[P )| > [p(. 1)
' (e} Show that if the comparison is on the basis of equal apparent viscosities evaluated at a shear
rate U/H,, the answer is yes.

(6) Ts the same answer given if the basis is equal apparent viscosities evaluated at a shear rate
QUG
8-8 For the case of newtonian roll coating give an analytical expression for du /2y, Is U/H, a reason-
able value to use as a nominal shear rate?

89 The data shown in Fig. 8-28 were extracted from Pitts and Greiller and from Hintermaier and

2
N o o e
b, =}
a ° e g o
3 o O—0— [}
=] o
) : Figure 8-28 Data obtained in a two-roll
1 10 100 coating system. (From Pius and Greifler
oluls and from Hintermaier and White.)

White. The experiments were performed in a two-roll system which was similar to the design sugpested
in Prob. §-1 but without the sheet. The analysis of Prob. 8-1 should be valid, Compare the data with
the theory.

8-10 For Example 8-2 calculate an appropriate measure of the nominal shear rate under the blade.
Define a Reynolds number for this fiow, and give its numerical value. Do you think inertial cffects are
negligible for this example?
8-11 Derive Egs. (8-84) and (8-85).
812 Plot 4, versus « from Eg. (8-85).
813 If Ws = 0.1, find 4/A, according to the first-order theory, using Egs. (8-79) and (3-85).
8-14 Find limiting values of 4, for x— 1 and x — .
8-15 One of the data points in Fig. 8-18 corresponds te the following conditions:
k=13 L=8cm Hy=015¢cm
n=931P U =96 cm/s
{a) Evaluate inertial eflects by calculating a Reynoids number for this flow.
{6) Using Eqs. {8-77) and (8-81), evaluate the assumption that u, €U,

(¢) Assuming adiabatic conditions, estimate the temperature rise of the fluid passing under the
blade,

816 A photographic film is withdrawn Irom a coating bath at a speed of 15 infs. The coating fiuid is
newtonian, with a viscosity of 25 ¢P, a density of 60 1b/it?, and a surface tension of 35 dynes/em. Find
the coating thickness A, and the entrainment rate g. Give the latter in units of pounds per hour per
inch width of film.

817 Show that at the surface in a film-coating system, as in Fig. 8-20,
T-8 =41, —1,) sin 26 + 1, cos 20
Ten=1, sin® 6+ 1, cos? 8+ 1, sin 29

where 6 is the angle between n and the y axis.
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8-18 A parameter with units of length that is often useful in considering problems of [ree surfaces
subject to surface tension is (o/pg)"'*. What form does Eq. (8-98) take i
. H . x
et T e
H,

Da= {a/pg)"*

8-19 From Eq. {8-109) solve explicitly for dff/dx and plot dH/dx versus ¢ (as defined in Prob. 8-18).
8-20 Solve for L(f) from the result of Prob. 8-19 as an indefinite integral Give 2 numerical solutiox,
Use L and ¢ as defined in Prob. 8-18,

8-21 Integrate Eq. (§-121) numerically, and find the value of S, Compare your 5, with the value given
by Levich, obtainable by inspection of Eq. (8-123}.

8.22 Show that if the Landau-Levich solution is known, the gravity-corrected theory [Eq, (8-126}]
follows by imspection, with no need for further computation. {Hint: Define a new variable
%= (i~ T2)%¢]

8-23 Consider the problem of sensitivity of coating thickness in a withdrawal-coating system {lor a fiat

web) to variations in web speed. To maintain + 1 percent tolerance in f_, what is the aliowable
variation in U?

and

$-24 For withdrawal coating onto a flat web, give the sensitivity of H, to variations in ¢ and p.
825 White and Tallmadge (1966, 1967) give the coating thickness, for Go < 1 (the small-wire theory)
in the form
1.33 Ca??
® T 1133 Ca®®

A fiber of diameter 0.018 in is withdrawn [rom a bath of * finish ” solution at a speed of 10 ft/s. The
finish has a viscosity of 2 ¢P and a surface tension of 30 dynes/em. Find the coating thickness using the
small-wire theory, and compare it to the value obtained using Fig. 8-23.

826 For large cylinders (Go » 1) the flat-film theory may be used to describe coating by withdrawal.
Find the coating thickness and the volumetric entrainment rate for a J5-in wire withdrawn at 1 ft/s
from a I-P fluid with ¢ = 60 dynes/cm. Rework [or the case U = 10 [t/s.

827 Derive Eq. (8-139) -

828 Derives Egs. (8-145) to (8-147).

829 Plot ¢ versus « [rom Eq, (8-148).

.30 Derive the analog of Eq. (8-148) for a power law fluid. Is the lubrication approximation more, ot
less, accurate for nonnewtonian fuids?

831 The data tabulated below were obtained in a roll-coating system which operates in the manner
described in See. 8-1.

{a) Compare the data to the theory.

{b) 1t was observed that the fluid which was fed 10 the roll sometimes dammed up behind the roll
to a height of the order of the roli radius, Could the hydrostatic pressure due to this “dam™ exert
significant influence on the coating thickness?

For all data, R = 3.64 ¢m, U = 9.3 cmy/s.

N ¢, Hy. H,
Fluid P dynes/cm mil mil
A 10 64 56 41+ 3
B 5 65 55 94+3
C 30 75 94 64£3
D 10 61 94 918
E 16 66 56 70+38
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832 Rework the models given in Secs. 8-1 and 8-2 for roll coating and blade coating, and account for
the cffect on coating thickness of a finite pressure at the entrance to the coater (x = — o for roll
coating, and x = 0 for blade coating).
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CHAPTER

NINE
FIBER SPINNING

An experr is a person who avoids the small errors as he sweeps on to the grand
Jallacy.

Stolberg

Fiber spinning is a process in which fluid is continuously extruded through an
orifice to form an extrudate of, usuvally, circular cross section. Somewhere down-
stream of the orifice the extrudate is contacted in such a way that the filament can
be pulied and conveyed to further processing steps. Figure 9-1 shows the basic
features of a spinning system.

Between the spinneret and the first take-up roll, various events occur which
transform the extruded liguid into a fiber. These events may be physical and/or
chemical. For example, molten nylon may be extruded and cooled (quenched)
before the take-up point to form a filament. If the linear speed at the take-up point
exceeds the speed of the filament at the extrusion point, the filament is said to be
drawn. If the speeds are different, then conservation of mass requires a change in
cross-sectional area. Thus a drawn fiber is of smaller diameter than the orifice
from which it is extruded. A further consequence of drawing, in many polymers, is
the development of morphological features which may depend on the extent and
rate of drawing and which may significantly alter the mechanical properties of the
fiber. Events occurring in the drawing region are generally the most significant in
determining the ultimate properties of the fiber.

If fiber is spun from a polymeric sofuzion, then it will be necessary to remove
solvent from the fluid before a mechanically coherent fiber structure is attained.
This mass transfer process occurs in the drawing zone and interacts with the
drawing process in a most complex manner. Some solutions do not form fibers

231
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Figure 9-1 Schematic of elements of a fiber-spinning system.

simply by removal of solvent. Often a coagulation step is required which involves
contact of the extruded filament with a coagulating bath. Again a very complex
mass transfer process occurs in the postextrusion region.

Determination that a fluid is potentially fiber-forming is a necessary, but not
sufficient, condition for development of a spinning process. It is often the case that
the rheological properties of the extrudate in the postextrusion region are such
that a coherent filament cannot be drawn into the quenching or coagulating
region. Usually there is an upper limit to the speed of extrusion or a lower limit to
the length of the drawing region beyond which the filament “ breaks.” The word
break is used loosely here: The liquid stream may be unstable and simply “ break ™
up into a stream of droplets. A principal probler, as yet incompletely solved, is
the establishment of criteria which define conditions under which a fiber may be
SPUIL.

Fiber spinning is an odd process to analyze in the sense that if'a stable process
is possible, its mechanical description is refatively simple. The principal modeling
effort is devoted to the question of stability of the process. In this section we will
consider some problems of stable isothermal melt spinning. In Chap. 13 the prob-
lems in which heat and mass transfer interact with the spinning process will be
considered. Stability is discussed in Chap. 15.

We will define melt spinning as that where the extrudate is a molten polymer
or other liquid which does not exchange mass with its surroundings. By contrast,
wet spinning will be that where the extruded filament enters a liquid bath with
which it exchanges material, as in a coagulation process. Solution dry spinning will
refer to the case where solvent must be removed by evaporation to a surrounding
gas phase.

9-1 ISOTHERMAL MELT SPINNING—NEWTONIAN FLUID

Figure 9-2 shows the extrudate in the postextrusion region. A typical observation
is the die swell just after extrusion. Die swell is associated with the relaxation of
(elastic) normai stresses developed within the fluid by its deformation history
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Figure9-2 Filament in the postextrusion
region,

prior to extrusion. The dependence of die swell on rheological properties and on
the die inlet geometry is quite complex, and no precise methods exist for accurate
a priori prediction of the degree of die swell to be expected under given conditions.
This topic is discussed in more detail in Chap. 14, where some methods of estimat-
ing die swell are described.

It should suffice here for the reader to recognize that as a consequence of die
swell the diameter of the filament near the spinneret is not accurately predictable.
The situation is further complicated by the fact that drawing of the filament affects
the degree of swelling. Experience suggests that this region of uncertainty ljes
within a few spinneret diameters of the exit, and that over most of the spinning
length the fiuid responds to postextrusion, rather than preextrusion, conditions.
Analyses of fiber spinning usually take as the initial filament radius the maximum
observed value and assume that this value is attained right at the spinneret exit.

The simplest analysis neglects any interaction between the filament and the
surrounding medium. Thus it is assumed that the filament is isothermal and that
no shear or normal stresses act on the filament boundary. Figure 9-3 shows the
filament boundary, defined by the local radius Ri{x) and the unit outward normal
vector n. The velocity vector is u, and the total stress tensor is T,

At the free surface no fluid crosses the boundary, and we may express this in
vector form as

u-n=0 atr=R(x) (9-1)
The normal vector n has components which are easily found to be

ne=—R(1+ R?~172 {9-2)

m,= (14 R*)~42 (9-3)

Figure 9-3 Definition sketch for analysis of melt spinning.
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where R’ = dR/dx. At the [ree surface, then,

un, + ugn, =0

or u,=Ru,  atr=R(x) (9-4)
The stress boundary condition is slightly more complicated. The stress vector
normal to the free boundary is T - n with components

(T-n), = T.n + Tn (9-3)
(T ' n)r =T,nm+ Trxnx (9'6)

1f the effect of the ambient fluid is neglected, and if surface tension is ignored, then
there is no mechanism for imposing a finite stress on the free boundary, and the
appropriate stress boundary condition is

0= T:—x n, + Txxnx (9'7)
0 =T,n, + T,n, (9-8)

Since the filament of fluid is being drawn in the axial direction, we have reason to
expect the existence of a finite axial stress T, . According to Eq. (9-7), then, there
is also a finite shear stress at the free boundary, given by

Too= — 2T = R, (9-9)

r

This result seems surprising at first, for it states that there is a finite shear
stress at the free boundary, even though it appears that above we claimed there is
1no mechanism for imposing a finite stress at the boundary. The resolution of this
point is through a clearer understanding of the geometry of the free boundary. The
vector T - n is normal to the free surface. Referring back to Fig. 9-3 we see that the
component T,, is not normal to the free surface, and T, is not in the plane of
the free surface. Thus, while T, is a shear stress, it is not a shear stress In the free
surface; it is a shear stress in the cylindrical coordinate surface. For a free surface
which is a cylindrical coordinate surface, ie., if R' = 0, the expected result T;, = 0
is obtained.

We are now in position to examine the momentum equations for the filament.
In the axial direction we have

3 fu 18 F
p( ey “)mM(rz:xHJi’f. (9-10)

“ar T ax) T rar &%

We can show a posteriori that a good approximation is u, = u(x), and with this



FIRER SPINNING 235

assertion we may integrate each term of Eq. (9-10} across the filament cross
section:

R Bu, .

f i r dr =0 by assertion that u, # u.(r)
-0

R

du du
we—=—r dr = tpu u', R* where ), = —=
JO PheBx 0 T dx

LIS
I z {~ (J’Trx)]r dr=RT, =RRT, using Eq. (9-9)

do rior R
ROAT, d R
JO —é?'rdrza;JD T,.r dr — T .RR = LT _R?

Thus the momentum equation may be written as

1]

R
puxu;=2E];x+ T;cx (9'11)

This equation provides the starting point for subsequent analyses.

In addition to the momentum balance we must also write a mass balance. For
an incompressible fluid the mass balance simply states that the volumetric fiow
rate across any section of the filament normal to the axis is constant:

nR*(x)uy(x) = Qo (9-12)
To proceed it is necessary to introduce a constitutive equation. We begin with
a newtonian fluid, for which

d

This introduces the isotropic pressure p into the problem and necessitates a more
detailed look at the dynamic equations. An alternative is to introduce an approxi-
mation based on the notion that R’ <€ 1, as is typical in real spinning systems
beyond the maximum in the die swell region.

From Egs. (3-7) and (9-8) it follows that

T,.,=R*T, atr=R(x) (9-14)

Since there is no significant radial flow we might expect no strong radial variation
of stress. Hence Eq. (9-14) can be expected to hold over the filament radius, and if
R’ is small, a reasonable approximation would be

T,=0 (9-15)
Further, since no angular flow exists, we can expect that

Too = 0 (9-16)
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For a newtonian fluid we can easily show that the isotropic pressure is the mean
normal stress (see Prob. 9-2):

D= —%'(Txx + T;r + T‘;ﬁ) (9'17)
It follows then that
du
T, =3u—3 9-18
o = 3 (9-18)

Equation (9-18), along with Eq. {9-12), may be used to convert Eq. (9-11) to
an equation containing only 4, as an unknown:

6# u) ]
2y — 20 X -
(uz)y = ) ux(ux) (9-19)
The solution of this equation is
c p\7?
U, =Cy (Cze = P ) (9-20)

If the inertial term [{uZ) in Eq. (9-19)] is neglected the solution is found to be
U, = Cyet+ (9-21)

The constants C; appearing in either solution must be established through boun-
dary conditions. We note that Eq. (9-20) suggests that a newtonian fluid is “ spin-
nable” only over a finite length. The length increases as p/u becomes small.

For subsequent discussions we will work with Eq. (9-21). We must first deal
with an appropriate set of boundary conditions. Since die swell is not accounted
for in the model, we will have to define an arbitrary origin x == Q0 as the point
where the maximum R(x) occurs. In most cases the distance from the die exit to
the point of attainment of maximum R(x) is quite small in comparison to the total
spinning length L between the origin and the take-up point. One simple boundary
condition, then, is

u.= Uy atx=0 {9-22)
where U, is related to the maximum radius Ry by
RV = @y (9-23)

The second boundary condition is usually specified in terms of the velocity at
take-up:

.= U, atx =1L (9-24)
It is convenient to introduce as a parameter the drawdown ratio
Up

D, =
R UO

(9-25)
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With the boundary conditions above the solutions for u, and R(x) become

= Uq exp n D (9-26)
1xin D
R(x) = Ry exp (— ix- ’L ") (9-27)

With these results it is possible to calculate various features which characterize a
spinning system, assuming the fluid is newtonian.

Example 9-1 A polyamide of viscosity 5000 P is extruded into air under
isothermal conditions where it is drawn in such a way that D, = 100 and
L =300 cm. The velocity at the take-up point is U, = 10° cm/min. The
radius at take-up is R, = 1072 cm.
{a) Calculate the maximum stretching rate imposed on the melt.
{b) Calculate the maximum tensile stress in the melt.
{¢) What force is required to draw the melt?
(d) Estimate the relative importance of inertial effects.

From Eq. (9-26) we may find the maximum siretching rate is
U

Uy
=—D . InDy=-"InD
. L R R=F R

For the parameters specified, we find

‘

Uy

]

u| =256s"1

x= L

The maximum tensile stress is

T,

XX

= 1.152 x 10® dynes/em?
x= L

= Juu,
x=L

The force at take-up is

F=nR!T,.  =3.62dynes

x= L

The relative importance of inertial effects may be estimated with a par-
ameter discussed in Prob. 9-5, which is found to be

pU L

— =723
3uln Dy

Since this is greater than unity the calculation suggests that inertial effects are
of importance. However, the value given is the maximum, which occurs at
x = L. At the midpoint of the spinning path, where x/L = 4, we find (see
Prob. 9-3) that this parameter is 10 times smaller, or just under unity. Thus
inertial effects are unimportant only over the first half of the spinning path.
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Figure 9-4 Data of Acierne et al. on isothermal spinning of polyethylene compared to new-
tenian model.

Example 9-2 Acierno et al. present measurements of filament diameter and
axial tensile stress along a polyethylene filament extruded at 1606°C into an
isothermal chamber. Figure 9-4 shows these measurements, The zero shear
viscosity of the melt is § x 10* P, and the melt is practically newtonian in
shear for shear rates up to 1 s~ L.

Evaluate the applicability of the newtonian model to the data.

The filament diameter measurements show clearly the die swell phen-
omenon mentioned earlier. The ratio of maximum to initial diameter is ap-
proximately 1.5. This degree of die swell indicates significant elasticity for this
fluid, at least at the shear rates associated with the die fiow (see Prob. 9-7).

From the measured R(x) and the given @, we can find the velocity u,(x)
and graphically or numerically differentiate to find u {x}. Equation (9-18) then
gives T, along the filament. To avoid the problems of applying the simple
model in the die swell region, we take the minimum velocity [at maximum
R(x)] as Uy, and the value of x at which this occurs as x = 0. Figure 9-4 shows
some computed results.

The theoretical velocity curve follows from Eq. (9-26) by picking U, and
D, so that the curve goes through the observed end points. It is apparent that
the velocity is more nearly a linear function of x than is predicted by the
newtonian theory.

The tensile stress model gives very poor results in comparison to the
measurements. The tension is observed to rise to values much greater than
can be explained on the basis of this newtonian model. Clearly the newtonian
madel is inadequate to explain these data.
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9-2 ISOTHERMAL SPINNING OF A POWER LAW FLUID

We begin with the general definition of a power law fluid in the form

T=—p+ KGI )" 172 A (9-28)
We can show (see Prob. 9-8) that the second invariant of this spinning flow is
I, = 6(u)? (9-29)

from which it follows that
T = —p +2K3)" D2 (9-30)

On going back to the momentum balance [Eq. (9-11)] and ignoring inertial
effects, one finds that (assuming again that T, = Ty = 0)

Mx [1_5_(1)‘;{_1)_}”‘] {5-31)

where g = 1 — 1/n. It is interesting to see what effect n has on the shape of the u,
versus x curves. Figure 9-5 shows this.

The range 0 < n< 1 is that usuvally observed for shear viscosity data on
pelymeric fluids. Whether Eq. (9-28) is applicable to elongational flow, and if so,
whether n lies only in the range (0, 1), are two unanswered questions at the time of
writing. Values of n greater than unity imply an increasing viscosity as deforma-
tion rate increases. Until reliable elongational viscosity data are available, it is not
possible to decide if Egs. (9-28) and (9-31) are useful.

Available isothermal spinning data are clearly at variance with Fig. 9-5, at
least for n < 1. Figure 9-5 shows the data of Spearot and Metzner for spinning of a
polyethylene melt. The velocity profile is nearly linear, and Eq. (9-31) does not
allow for such behavior except in the case n & 1, for which there is no current
experimental justification. This suggests that a purely viscous nonnewtonian
model is inadequate to describe spinning dynamics, and we turn then to consider-
ation of a viscoelastic model.

Figure 9-3 Filament velocity accord-
ing to power law model compared
to polyethylene data of Spearot and
*/t Metzner.
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9-3 ISOTHERMAL VISCOELASTIC SPINNING

Since the clongation rate varies along the axis, spinning is a flow in which the
kinematics are unsteady in a lagrangian sense. Hence it is necessary to raise the
question as to the importance of viscoelastic phenomena in spinning. A measure
of the unsteady nature of the flow is the time rate of change of elongation rate
experienced by a “ particle” moving with the fluid. This is just

Du;_u du,
Dr Tdx

TRT (9-32)

If we consider the relative rate of change of 1), and use the newtonian model as an
approximation, we find

Uy u; — UD
L L (9-33)
Thus an appropriate Deborah number for this flow would be given by
Uyl
De = -2~ -
e=— (9-34)

where A is a fluid relaxation time. We should note here that the question has been
raised as to whether the relaxation time of a fluid subject to elongation is the same
as the {commonly measured) relaxation time in shear. No definitive answer has
been given, and the uncertainty adds one more complication to the already
difficutt study of elongational flows.

Denn and coworkers have solved the problem of isothermal spinning of &
fluid which is described by a constitutive equation of the form

bt
A—=uA 9-35
THA = (9-35)
where the contravariant Oldroyd codeformational time derivative is given, for this
particular flow, by

du,,

Drx: dtxx

oiEx o, xR = =36

b % Tdx o dx (5-36)
b, dz,, du,, :

R ™ (8-37)

in cylindrical coordinates.

The viscosity function u will be taken to obey a power law, consistent with
Egs. (9-28) to (9-30). The relaxation time is taken to be proportional to the
viscosity function, so that

A= - (9-38)

where G is a constant elastic modulus.
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The momentum balance is Eq. (9-11), which, neglecting inertia, may be con-
veniently written in the format

d
0=—1-(R'T,) (9-39)
It follows that
2 T
nR*T,, == constant = =X (9-40)

Uy

the latter part of this equation being a consequence of conservation of mass:
nR*u, = constant.

It is convenient to introduce the force F exerted at the take-up point, which is
given by

F=nR:T,, (9-41)

L

The volumetric flow rate may also be introduced as

0 =naR}u, (9-42)

The constant in Eq. (9-40) may then be evaluated, and the axial stress becomes
T.= — (9'43)

If we again assume that T,, is small [Egs. (9-14) and (9-15)] then we may put
Eq. (9-43) in the form given by Denn and coworkers:

_ Fu,
rr Q

Equations (9-35) [with (9-36) and (9-37)] and (9-44) involve the three un-
known functions u,,, 7, , and 7,,. The simplest formulation climinates the stresses
and yields a single equation for u,, which Denn gives in the form

T T =T — 1

(9-44)

XX

(E;%i;_u—: + 2w P — (W) Yo — 3¢) — % =0 (9-45)
where the following dimensioniess variables have been introduced:
u, K3e=1i2 (17 - V2R O (U
=T “=“G—(T) “T(T)

The prime denotes differentiation with respect to £ = x/L. For finite « the equation
is nonlinear and must be solved numerically. More to the point, however, is the
fact that for finite « the equation is of one higher order than in the newtonian
case. This necessitates introduction of an additional boundary condition.
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Regardless of the specific constitutive equation used it still is reasonable to
specify the kinematic boundary conditions used in the newtonian case {Eqs. (9-22)
and {9-24)], which, in terms of dimensionless variables, take the form

. 1 até=10 (9-46)

Dy atd=1 {9-47)

The third boundary condition specifies the axial stress in the fluidat x = 0.1t
arises physically from the viscoelastic nature of the fluid, which has some degree of

“memory " of the stress developed by the flow field just upstream of x = 0. We will
specify

Tex = Tg atx=10 N {9-43)
or, in dimensionless terms,
TXXQ r
—— T = = 0 _4
U.F T at & (9-49)

From Eq. (9-44) we see that if 7, is known, then z,, may be found if Fu /Q is
specified.

From a mathematical point of view we note, in the course of deriving
Eq. (9-45), that we find (see Prob. $-10)

€ u
T=%u——+—p 9-50
3 o 3(2{“:)" ( )
Thus the specification of initial conditions on T and v amounts to specification of
an initial condition on u'’;

2 ey i
= |3y T, — = 4+ = £ -
u [a(o 3%” atE=0 (9-51)
Since u’ must be positive (we can only “pull™ the fiber), we see that the initial
-stress must satisfy

2 €

Before the mathematics proceeds to the point of obscuring the physics of this
problem, we note that the need for three boundary conditions for Eq. {9-45) (or
the need for two conditions in the newtonian limit) arises not directly from the
order of the equation, as written, but from the explicit presence of the force at
x = L, which is contained in the parameter ¢. This force is not known a priori as
part of the specification of the problem. In fact, the force may be considered as an
integration constant arising on going from Eq. (9-39) to Eq. (9-40).

Since it is easiest to solve Eq. (9-45) numerically as an initial value problem,
the simplest procedure is to carry out the solution using’'uw =1 at £ =0 and
caleulating v at ¢ = 0 from Eq. (9-51), for a specified value of T . The integration
is carried out to ¢ = 1, at which peint the value of u(1) = D, is calculated. If this
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value of Dy does not match the specified value of Eq. (9-47), the value of ¢ (and
kence F) is changed and the integration is repeated. By trial and error the value of
¢(F) compatible with the specified draw ratio is found.

The “only” problem to be dealt with is that we have no good basis for picking
or calculating T, . Prior to leaving the spinneret the fluid is subject to a deforma-
tion field which generates stresses in the fivid. Just beyond the exit of the spinneret
these stresses are free to relax, and this relaxation produces the tendency toward
die swell. If the fluid filament were not drawn, then the stress at the maximum R,
would be zero. The effect of drawing is to shift the position of maximum Rytoa
point where the stresses are not completely relaxed. We do not have enough
information about the stress level developed within the spinneret, or the relaxa-
tion process, to make good estimates of T -

Denn shows that this is not 2 major problem. The influence of Ty, is restricted
to & region near the spinneret, and the velocity profile down the spinning path is
oniy weakly dependent on the specification of T,. Figure 9-6 shows theoretical
results of Denn and Fisher for the velocity profile, with the viscoelastic parameter
% taking on small but finite values. We sce that as the degree of viscoelasticity
increases a linear velocity variation is achieved. Denn uses T, = 1 for the curves
shown in the figure, except that for the newtonian case {« = 0) T, cannot be
independently fixed (and need not, since the order of the differential equation is
reduced by one), and the solution itself fixes Ty to have the value 3.

The particular values of # and Dy illustrated in Fig. 9-6 correspond to a set of

x/i

U,/Uc

Figure 9-6 Theoretical velecity profiles according to viscoelastic theery of Denn and Fisher for the
case Ty = 1, n =4, Dy = 5.85. Data shown are for isothermal spinning of polystyrene.
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~

Figure 9-7 Theoretical stretching force, in terms
0 0.2 0.4 0.6 of ¢, according to viscoelastic theery of Denn and
@ Fisher for Ty = |.n =4, D, = 5.85.

experimental data obtained in isothermal spinning of polystyrene. From rheologi-
cal data the value of the parameter « may be established as somewhere in the
range 0.2 < ¢ < 0.3. Correspondence between these data, which are shown on
Fig. 9-6, and the theory would require a larger value of «, in the range
04 << 0.5

From the solution of the equations outlined above it is possible to relate the
stretching force, through the parameter ¢, to the viscoelastic parameter «, using
Eq. (9-50). Figure 9-7 shows the theoretical curve for ¢(¢) for the same conditions
as in Fig. 9-6. The polystyrene data referred to above give a stretching force that is
not in good agreement with theory. It is again necessary for « to be about 0.5 for
the data and theory to be in agreement. (See Prob. 9-14.)

In spite of the discrepancies noted above, it would appear that the viscoelastic
model used by Denn and coworkers (which is the White-Metzner generalization
of the Oldroyd-Maxwell model) provides the basis for a model of isothermal
spinning of viscoelastic fiuids that is capable of providing a reasonably good
description of observed steady-state behavior. We shall find, in Chap. 15, that this
same model provides a basis for description of some significant trransient observa-

" tions, as well.

An interesting result of the mathematical analysis is the prediction that, for a
given value of the viscoelastic parameter ¢, there is @ maximum draw ratio that can
be imposed on the filament. It is given approximately by

(DRYmax = L+ a7 (9-53)

The theory does not indicate what would happen if D exceeded (Dg) o it simply
implies that an unbounded {and, therefore, physically unattainable} stretching
force would be required at draw ratios beyond this limit. As this limit is ap-
proached the velocity profile becomes linear.

Figure 9-7 reflects this same result, since we see that ¢ -0 (which means
F — o) at a finite value of « which satisfies Eq. (9-53). If we examine the definition
of «, and think of fixing all the operating conditions except for the spinning length
L, we may interpret this result in the following way. As we decrease L, the drawing
force increases (Fig. 9-7) and the velocity profile becomes nearly linear. Thereisa
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minimum value of L over which we can draw down the filament without requiring
imposition, of an infinite force at the take-up point.

Finally, we note that the limiting linear velocity profile corresponds to a
constant stretch rate, given by

=T (De — 1) (9-54)

Using the definition of a and 4, and imposing Eq. (9-53) as a constraint on Dy, we
may show, after some algebraic manipulation, that

du,
A TS 1 (9-55)

Thus the maximum stretch rate, as defined by Eq. (9-54), is such that the draw
down is accomplished in one relaxation time.

We end this chapter by noting that commercial fiber spinning is not carried
out under isothermal conditions. Thus the models and results presented here
cannot be used with any confidence to calculate the forces accompanying non-
isothermal spinning, or the velocity profile (and hence the diameter profile) along
the spinning path. But the isothermal theory does give considerable physical
insight into the process and serves to make clear the essential role of viscoelasti-
city in the dynamics of fiber spinning. Thus a firm theoretical basis is provided for
going on to the problem of nonisothermal modeling, some aspects of which are
discussed in Chap. 13.

PROBLEMS

9-1 Derive Eqs. {9-2) and (9-3) by consideration of the geometry of the free boundary as shown in
Fig. 9-3.

9-2 Begin with the definition of ¥ as T = —p & + t and show that for any incompressible purely
viscous fluid the pressure p is the mean normal stress [Eq. (9-17)).

9-3 Using Eq. (9-20) find the maximum spinning length as a relationship among appropriate dimen-
sionless groups.

9-4 Show that the axial stress at the take-up point in an isothermal newtenian spinning system is

3ulU
T = #Lo

D, In D,

9-5 Inertial terms are usually neglected in the spinning analysis. If we consider the ratio pu?/T, tobe a
measure of the relative importance of inertial effects to viscous effects, show that the maximum value of
this measure is pU, Lf3u In Dy and that its value at arbitrary x may be written in the form

pU LD
3uln Dy
9-6 Show that Eq. (9-26) may be written in the form

.Ef_g DJJ;FL
Vo
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9.7 For Example 9-2 calculate the shear rate in the die, assuming the die is a capillary of diameter
0.128 cm. Are the deformation rates (in terms of the second invariants IT,) higher in the die or along
the filament?

9.8 Derive Eq. (9-29).

9-9 Give the derivation of Eq. (9-31).

9-10 Derive Egs. (9-45) and (9-50).

9.11 Show that the result of Prob. 9-10 behaves properly in the limit of vanishing viscoclasticity:
lm T =2u
-0

and that this result is derivable from the newtonian analysis of See. 9-1.

9.12 Verify Eqgs. (9-36) and (9-37).

9-13 A dimensionless drawing foree is defined a3

6:3(:1—1)115( ﬁ n—lQ
FL L

Show that for & purely viscous power law fluid

1
T 3WaoE - r

where ¢ = 1 — I/n. Show that the newtonian result may be cbtained from

9-14 For an isothermal spinning experiment with polystyrene the following results are available:
n=1 F = 11,700 dynes
K=47x10P-573* U, =029cm/s
Q = 0.0328 cm?¥/s L=20cm
= 585

Using Fig. 9-7, estimate a value [or o,

9-15 Is Eq. {9-11) valid for nonisothermal spinning? Answer for two cases: (a) temperature = f{r, x);
(b) temperature = f(x).
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CHAPTER

TEN
TUBULAR FILM BLOWING

Experience is a good school, but the fees are high.

Heine

Flat film may be produced by extruding a polymeric melt from a flat die (a
“sheeting” die). The resultant film may be drawn or calendered to the desired
thickness. Another method may be used to produce flat film, which involves
extrusion of the melt from an annular die. Figure 10-1 shows a schematic diagram
of the process.

Molten polymer is extruded through an annular die as a thin-walled tube. Air,
supplied through the inner mandrel of the die, keeps the tubing inflated, and
indeed “blows” the tubing to a larger diameter. Somewhere upstream the
“bubble” is cooled, after which the solidified film may be laid flat between rollers
which “draw ” the tubing between the die and take-up region.

This so-called blown film process is quite complex but provides considerable
fiexibility in producing films of various physical and mechanical properties. In
many respects the blown film process is similar to fiber spinning. The kinematics
are basically elongational rather than shear, and of course we have in this process,
as in fiber spinning, a free boundary flow. The principal distinction, kinematically,
to be made in comparing film blowing to fiber spinning lies in the fact that fiber
spinning provides a means of uniaxial orientation of the filament, whereas film
blowing achieves bigxial orientation. The two directions of orientation corre-
spond, of course, to axial drawing of the tube and to the circumferential drawing
that accompanies the “blow-up™ of the tube diameter. Since orientation pro-
foundly affects mechanical properties of film, this particular feature of the blown

249
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Figure 10-1 Sketch of the film-blowing process,

film process is central to its utility and explains why one might make fat film by
this more complex route. The rubular film is, of course, of commercial utility for
such products as sandwich bags or sausage casings.

The two characteristic parameters of the final tubular film are the blowup
ratio, which is the ratio of the final film diameter to the die diameter, and the
thickness reduction, calculated as the ratio of thickness as extruded to final film
thickness. Alternatively we could use the machine-direction draw ratio, defined as
the ratio of take-up speed to extrudate speed at the die. For incompressible
materials these three ratios are connected through the expression for conservation
of mass; the relationship is given in Eq. (10-32). The principal goal of an analysis
of this process is development of the relationships among these geometric charac-
teristics and operating conditions such as the bubble pressure, the film speed or
tension at take-up, the thermal conditions which “ freeze ™ the film, and the rheolo-
gical properties of the polymer.

The major complication in developing a model of this system arises from the
strong interaction of the heat transfer process between the film and the surround-
ing air with the temperature-dependent rheological properties of the melt. In
addition, crystallization often occurs to an extent, and at a rate, strongly affected
by temperature and the degree of orientation of the cooling polymer. Thus the
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AL
L

Figure 10-2 Detail for development of the mechanical equations. The £ are coordinates moving with
the film,

nonisothermal nature of film blowing cannot be neglected in any analysis that
purports to be quantitatively reliable.

Despite this reservation we outline here the simplest rewtonian isothermal
model of film blowing to show the interaction of the geometric and dynamic
parameters and to get an idea of the order of magnitude of some of these interac-
tive phenomena. Extension of the model to the more realistic nonisothermal
viscoelastic case is conceptually simple, but computationally quite difficult and
tedious.

Figure 10-2 shows a definition sketch for the analysis. Cylindrical polar coor-
dinates are most convenient, and symmetry about the z axis is assumed. The
principal geometric assumption is that of a thin film: #/R < 1. From the kinematic
point of view we note that the velocity vector u has three nonvanishing compon-
ents and that, for a thin film, the deformation field is elongational—there are no
shear components in this approximation. Such a deformation field gives rise to
stresses in the circumferential direction, in the direction of flow (which is at an
angle 8 to the z axis) and in the direction normal to the film surface.

To calculate the stresses it is most convenient to set up a coordinate system
which moves with the fluid. A cartesian system embedded in 2n element of fluid is
shown in Fig. 10-2. While the film thickness will be taken as a small quantity, it is
useful to think of the E coordinates as embedded in the inner surface of the bubble.
We let v be the velocity vector in the moving coordinate system, and e is the rate of
deformation tensor in that system. e has components

v,y
— 0
é&,
v,
e=2| 0 — 0 10-1
%, (10-1)
0 0 8U3
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The velocity v, is normal to the bubble surface; it reflects the rate of thinning
of the film. At £, = 0 {the inner surface, by definition) we take v; = 0. At &, = hwe
havet

_dh
T dt

Dy {10-2)

and since h is a function of &,,

dh de, dh

i) Wil 3
P2 d T g (10-3)

where v, = d¢, /dt has been defined.

The gradient of velocity in the &, direction, to a good approximation in a thin
film, is just the difference in velocity ¢, across the film divided by the local film
thickness. Thus we take

v, 2dh
€3y = -TZ = }_ld_él vy (10_4)
The circumferential velocity v, is just the local rate of expansion of the bubble in
the circumferential direction:
dR 4R

= —_— _— ‘5
vy = 2% % 2nv1d€,1 {10-5)

Since we have symmetry about the z axis, the velecity v; is uniform about the
circumference of the bubble. The stretching rate of deformation, then, is simply the
rate of increase of the circumference divided by the local value of the circumfer-
énce, or

2w, dR

€33 = *ﬁ“dél (10'6)

Since the first invariant of the rate-of-deformation tensor vanishes for an incom-
pressible fluid, we may write

(10-7)

14 14dR
ey1 = —{es; +e33) = ‘“21?1( )

——
hdg,  Rdi,

It is convenient at this point to replace £, and v; by corresponding quantities
in the laboratory coordinate system, using

g, = dz (10-8)

+ We are considering a steady-state problem, but in the § coordinates & and R appear to be
functions of time. & is a moving coordinate system.
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(which follows from the geometry) and

Q
1= 2Rk (10-9)

which is just the overall continuity equation, in terms of the volumetric Bow rate
Q. Consequently we find

1dh 14dR
“haz Raz ° 0 °
_Qcosd 1dh
=~ Rh 0 e 0 {10-10)
1dR
¢ 0 o —
R dz

Now we are in position to calculate the viscous stresses associated with this
deformation. For the newtonian fluid we will have

Pij = -*p+,u€,-j (10‘11)

We continue to use the § coordinates, so p is the stress tensor in that coordinate
system and not in the laboratory system.

The stress normal to the free boundary is p,,. As a boundary condition we
will assume that no external forces act on the bubble and that surface tension
forces are insignificant with respect to viscous forces. Then it follows that

P2z =0 (10-12)
and, from Eq. (10-11), we find the isotropic pressure in the fluid to be
Qu cos Bdn
P=Hez ="z T2 (10-13)

We may then write the stresses py, and p;, as

uQcos 8{2dr 1dR
__ ofzat 14k 10-14
Pus ARk (hdz+Rdz (10-14)
uQceos8{1dR 1dh
_ 1ax _lan 10-1
P3s =" Rn (R iz hiz (10-13)

At this stage we have calculated the deformation field e and the stress field p.
What we desire is 2 set of equations from which R(z) and h(z) may be determined.
These equations follow from simple force balances on the bubble. Referring to
Fig. 10-2 we may calculate the forces in the circumferential and longitudinal
directions, and we find, for an element of film of dimensions 2xR by h by d¢,, that

F, = 2zRhp,, {(10-16)
and dF, = hd p;, (10-17)
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The shape of the bubble is determined by the local balance of forces, The
analysis is identical to that carried out for the interface subjected to surface
tension which led to Eq. (3-75). Instead of the surface tension we introduce the
forces per unit length in the two orthogonal directions in the surface, which are

Fy
TR hpyy (10-18)

dFy
d — =4k 10-19
an ; F P33 ( )

Then Eq. (3-75) would be modified to give the pressure difference across the
bubble surface as

_pfp P )
AP = h(RL + RH) (10-20)

where R, and Ry are the principal radii of curvature in the £ coordinate system. In
terms of laboratory (cylindrical polar} coordinates we have

x=Rsecd (10-21)
sec® 0

- 9

Re= = g (10-22)

We will define the “freeze line™ of the bubble, at z = Z, to be the point above
which (that is, z > Z) the bubble shape does not change. One boundary condition
at the freeze line will specify the draw force F. . Between some arbitrary position z,
where the local geometric parameters are R and 8, and the freeze line Z, an axial
force balance takes the form

2nR cos B hpyy + n(R} — R} AP =F, {10-23)
where R, = radius at the freeze line
AP = uniform pressure maintained inside the bubble
When Egs. (10-20) and (10-23) are manipulated by using Eqs. (10-14), (10-15),
* (10-21), and (10-22), it is possible to obtain two differential equations: One gives
R(z} and the other gives h(z). The equations, in dimensionless form, are

2r3(T + r*B)" = 6r' + r(l + r*)(T — 3rB) (10-24)
w r. (147 T +r*B)
O ; (10-25)

where the dependent variables are r = R/R, and w = h/R, and the prime ()
denotes differentiation with respect to x = z/Ry; that s, ( ) = d( )/dx. The angle §
is removed from the problem by noting that ' = tan @.

Two dimensionless parameters appear in the two differential equations. They
are dimensionless pressure

_ mRy AP
uQ

B (10-26)
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and a dimensionless stress

R, F,
T =—->2=— B(BUR)? 10-27
&=~ B(BUR) (1027)
The blowup ratio BUR is simply
' BUR = R,/R, (10-28)
It is convenient to define a dimensionless take-up force as
RO F. '
T,="0¢ 10-29
#Q (10-29)

The general procedure requires solution of Eq. (10-24) for r(x), followed by
solution of Eq. (10-23) for wix). Since Eq. (10-24} is second-order we must specify
two boundary conditions. These are

roe=1 atx =40
r=20 atx=X=£
Q

The second boundary condition on r involves specification of the freeze-line posi-
tion. The boundary condition on w is simply

H,
W= Wy = ﬁ: atx =10
As in fiber spinning, a die sweli phenomenon may cause H, to differ from the die
lip separation.
If T, B, and X are specified a priori, then solution of the problem gives the
thickness reduction at X since, from Eq. (10-23),

x 2 2
cin Yo Hooy /ETR +] U+"T+78) 4 (10-30)

Wg H o 4
We note that T depends upon BUR. Thus it is necessary to specify BUR, solve for
r(x} and check the value of BUR = r{X), and iterate if necessary to find the
solution compatible with the choice of BUR. The simplest procedure is to inte-
grate Eq. (10-24) (numerically) from x = X, taking r = BUR, r' =0 as initial
conditions and checking the calculated value of r at x = 0. The initial guess on
BUR is modified iteratively until a solution produces r=1 at x =0. Then
Eq. (10-25) may be integrated to give w(x).

Pearson and Petrie have carried out solutions of this problem using various
realistic values of blow ratio, thickness reduction, and freeze-line height. If ore of
the parameters X, B, or T, is fixed arbitrarily, then sclutions of the problem will
be curves in the (BUR, Hy/H) plane, along which the other two parameters are
constrained. This can be seen in Fig. 10-3, which shows a set of solutions for fixed
freeze-line distance X = 20. Any point in the (BUR, H, /H) plane, which of course
corresponds to specific values of blow ratio and thickness reduction, is the inter-
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BUR

Figure 10-3 Computed results for isothermal
newtonian film blowing lor the case X =20,
(From Pearson and Petrie, 1970a.)

section of two curves, one of constant B and the other of constant T,,. The entire
graph is for a specified value of X. Hence all the operating corditions are found
from the figure.

If, for example, the pressure parameter is arbitrarily specified, then a graph
such as Fig. 10-4 is obtained, and one can see the effect, for example, of increasing
the freeze-line position at constani T.. Because of the large number of parameters
that appear in this mode] there is no compact graphical presentation of results.
Pearson and Petrie present several sets of curves similar to Figs. 10-3 and 10-4.

The axial force balance [Eq. {10-23)], of necessity, specifies the take-up force
F_ as a given operating parameter. It is possible to operate the take-up region in
such a way as to control the take-up force. It is also possible to specify and control
the take-up speed, or the dimensionless draw ratio

Dp=— {10-31)
Ug
However, Dy and T.(F_) cannot be independently specified, since conservation of
mass requires that
v
BUR —= Ho =BUR Dg (10-32)
ve H
If BUR and H,/H are independently fixed one finds, as part of the solution, a
value for T,. However, specification of BUR and H,/H also fixes Dy, through
Eq. (10-32). In this sense D, and T, are dependent.

Example 10-1 Tubular polyethylene film will be extruded in the following
manner: The geometric specifications require a thickness of 2 mils and a
“lay-flat” width? of 8 in. The extrusion die has Ry, =2 in and H, = 0.05 in.
The production rate is 30 Ib/h, and the viscosity is 4.35 1b-s/in®. Assume
newtonian isothermal flow right up to the freeze line. Take the melt density as
p = 56 Tbm/it*. Determine an acceptable set of operating conditions.

T The lay-fiat width is half the perimeter.
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Figure 10-4 Computed results for isothermal
newtonian film blowing lor the case B = 0.1.
HolH . {From Pearson and Petrie, 1970a.}

To solve this problem we will specify values for one of the parameters X,
T., and B and determine the required values for the other two. Let us specify
Z =40 in, or X = 20. From the geometric specifications we find

{1,,9 005
H 0002
8
and BUR =—= 127
R,

From Fig. 10-3 we find
B=0.15 T, =0.70
Inverting the definitions of B and T, we find
AP = 000675 psi  F,=041bf
The draw ratio is
— Hy
H BUR

Either D, or F_ must be controlled at the given values.

We note that the required AP is quite small, and investigate the response
of the system to a change in AP at fixed X and T.. Suppose AP changed to
AP = 0.0056 psi so that B = 0.125. Then we find from Fig. 10-3 that {assum-
ing T is held at 0.7)

" Dy =197

H,
7=

The major change is the reduction in thickness ratio, which would produce a
film of thickness H = 2.9 mils, almost 50 percent larger than the desired value.
The blow ratio is increased somewhat, with a corresponding increase in
lay-flat width from 8§ to nearly 9.5 in. Obviously the system cannot tolerate
such a large reduction in bubble pressure (—17 percent).

BUR =15 17
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Suppose the draw ratio were controlied {at 19.7) instead of holding F_(T.)
constant. Then we would find, for B =0.125, X =20, D, = 19.7,

% = 60 (extrapolating off the figure)
BUR =3

These would be intolerably large changes away from the specifications. This
latter result is general and was pointed out by Pearson and Petrie. If possible,
it is far better to control take-up force than take-up speed.

The model presented here is limited in several respects, the most significant of
which are the neglect of cooling between the die and the freeze line and the
restriction to newtonian flow. Introduction of either of these {eatures complicates
the problem but does not introduce any major change in general development of
the model. The major difficulty is not so much the extension of the theory as its
application.

The nonisothermal analysis would require some model relating the tempera-
ture of the bubble to the rate of loss of heat to the surrounding air. This would
introduce at least one dimensionless thermal parameter into the problem.
Methods of estimating such parameters are presently quite unreliable, and they
would have to be established experimentally. This in itself would be a difficult
task.

The flow ficld in this problem is one of biaxial elongation. To introduce
nonnewtonian behavior it is necessary to¢ have a constitutive equation which is
realistic in its predictions for elongational flows. This too is an area where no large
body of retiable work has been done. (Recall the comments in Chap. 3 on elonga-
tional flows.)

Thus we must consider the model outlined here to be very poor, quantita-
tively, but to provide a basis for developing more realistic models, especially with

.regard to thermal and rheological phenomena. The Bibliography provides several
opportunities for extended reading in these two directions.

PROBLEMS

10-1 Equation (10-13) gives a pressurc p which is assumed unilorm across the film thickness 2. In
eflect, the pressure AP on the inside of the bubble has been neglected.
{a) For the conditions cited in Example 10-1 give the ratio AP/p. Show clearly how you estimate
dhfdz,
(b) What difficulties ensue if Eg. {10-12) is replaced by
e at &y, = h
P2} AP atg, =0

10-2 Give the detailed derivation of Eq. (10-20).

10-3 One boundary condition on r is ¥ = 0 at x = X. Show, using Eq. (10-23), that w’ is not zero at
x =X, and give its value.
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10-4 Show that'r = BUR = 1 is a possible solution of Eg, (10-24} for certain values of T and B. Give

those values. Find w{x) for this case and plot H, /H versus B for this case, with X as 2 parameter.

10-5 Rework Example 10-1 but specify AP = 0.0045 psi and solve for Z and F.. Find the response of

the system to + 10 percent changes in Z, keeping (2} F, constant or (&) Dy constant,

10-6 In the tubular film-blowing process the film is oriented biaxially. The circum(erential orientation

.Es given roughly by the blow ratio BUR, whereas the axial orientation is given by the draw ratio Dj.
Suppose we want to design a process for which BUR = Dy. Specify the operating conditions to

achieve BUR = 3 when X = 20 for the fluid of Example 10-1. Use the same die geometry and produc-

tion rate as in that example.

10-7 Find suitable operating conditions for production of nylon hollow-fiber membrancs. The dic has

dimensions R, = 30 um and H, = 15 gm. The blow ratio is BUR = 1, and taks H,/H = 3. The reeze

line is at X = 20 when the production rate is 1 lb/h total from a biock of 100 identical dies. Take nylon

to be newtonian with u = 0.5 Ibf + s/in?, p = 0.036 lb/in®,

10-8 Examine the assumption AP < p for the operating conditions of Prob, 10-7,

10-9 Calculate a nominal shear rate for the fow in the die of Prob. 10-7. Would you anticipate any

problems in operating at this shear rate? Discuss them.
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CHAPTER

ELEVEN a
INJECTION MOLDING

The poet is in command of his fantasy, while it is ... the mark of the neurotic that
he is possessed by his fantasy.

Trilling

Injection molding is one of the most commeon operations of the plastics industries.
It is used to create finished articles which range from paper clips to automobile
front-end assemblies. Because of its versatility, and the significant fraction of the
total industrial output of plastics that is injection molded, it is one of the most
important of the polymer flow processes.

In terms of basic steps or stages, the injection-molding process may be looked
upon as indicated in Fig. 11-1. The solid plastic is melted, and the melt is
conveyed to the mold and injected into the mold under high pressure. The mold is
cooled to solidify the article, and then the mold is opened and the article is ejected.
The mold closes and the cycle repeats.

The simplest molding machine is of the plunger type, illustrated in Fig. 11-2.
The plastic is simply pushed forward by a plunger through a heated region.

Melting of Injection of the Cooling of Remow?l of
the plastic melt into the maold the mold the article

Figure 11-1 Stages in the injection-molding process.

260
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, Hydraulic injection
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Torpedo Injection plunger

Figure 11-2 A plunger-type injection-molding machine.

Because the high viscosity of melt prevents any significant convective heat trans-
fer, it is necessary to spread the molten material in a thin layer to contact the
heated surfaces. One of the more common spreaders is the “ torpedo ” shown in
this example, which simply diverts the material so that it moves through a thin
annular region. After melting, the material converges and flows through a nozzle
which delivers it to the mold.

In more common use currently is the reciprocating-screw injection-meolding
machine, shown schematically in Fig. 11-3. In this system the screw function is
principally to melt and mix the feed material. For injection the entire screw moves
forward as a plunger. A special valve prevents backflow.

The injection-molding machine is quite complex. The mechanical design of
the systems which clamp the mold together and then release and ¢ject the
solidified article is a major topic in itself. Here we consider only the flow process
associated with the filling of the mold. A good general reference to the full range of
problems that must be considered in designing an integrated injection-molding
process is the book by Rubin.

Before considering some isolated aspects of the molding process, let us follow
an element of fluid as it moves from the nozzle toward the mold, and outline some
of the flow problems of interest. Transfer of the melt to the mold is simply a
problem in creative plumbing. Figure 11-4 shows the typical elements of the

Feed hopper

Heating bands Hydraulic system

1 1
SRR )
>
N A

\ / Figure 11-3 A reciprocating-screw
Screw Screw gear system injection-molding machine.

L
™
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Gate
Sprue
% Sprue Runner
Nozzle v
. Gate
Rurner N Cavity

Cavity

Figure 11-4 Schematic of a threg-cavity mold.

transler system. Material is transferred from the injection-molding machine to the
mold block through the nozzle, which is directly coupled to the block with a sprue
bushing. In a multicavity mold the hot melt is conveyed to each individual mold by
a runner. Each runner connects to the cavity it feeds by a gate, which is simply a
restriction in the flow path.

The runners and cavities are normally empty at the beginning of each fill
cycle. Hence there is a transient element to the flow while the lines are filling. If the
injection rate of material is constant (this is normally the case) then the pressure at
the nozzle gradually rises as filling proceeds. We shall find that the transient
associated with runner filling is of minor importance in comparisen to that asso-
ciated with the filling of the cavity itself.

A significant complicating feature is the nonisothermal character of mold
filling, There are three thermal phenomena which contribute to and complicate
the flow analysis. In the first place the mold surfaces, which are the flow boun-
daries, are not usually at the same temperature as the melt. This follows prin-

cipally from the difficulty of uniform control of temperature throughout the mold

block. In addition to spatial variations of temperature, the cyclic nature of the
process involves time-varying temperatures within the mold block. Thus the dyna-
mics of heat transfer in the mold block contributes an unsteady nonisothermal
character to the mold-filling process.

A consequence of the nonisothermal boundaries is the freezing of the polymer
at the flow boundaries if they are sufficiently cold. The principal effect of boundary
solidification is the constriction of the flow path, which leads to large pressure
increases. Of course, if the problem is not properly accounted for, it is possible to
“freeze off ” a runner and prevent complete filling of a cavity. Incomplete filling is
referred to as a shorr shot.

A third (potential) nonisothermal feature is due to viscous heating. Under
some conditions the combination of high viscosity and small flow channels can
lead to significant temperature rises of the melt as it proceeds toward the cavity.
With some polymers this creates the possibility of thermal degradation. In any
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P Packing

Cooling
Filling

Time Figure 11-5 Pressure during the molding cycle.

event significant temperature rises will strongly affect the pressure drop—flow rate
relationship. Because injection molding can involve pressures as high as several
thousand atmospheres, it is necessary to keep in mind that the viscosity of molten
polymiers is known to depend on pressure. As is the case with viscous heat genera-
tion, the pressure-dependent viscosity effect is often ignored in the first stage of
process modeling, without justification. We will examine some aspects of this
problem briefly in this chapter.

That part of the molding cycle associated with filling is usually short by
comparison to the total cycle time. After the cavity is filled the cooling cycle
begins. As the polymer solidifies, its density increases slightly, and if the mass of
material in the cavity were constant, the volume would decrease. This would
correspond to shrinkage of the article and subsequent loss of the geometry of the
piece relative to the mold. If the shrinkage were uniform this factor could be casily
accommodated by designing the mold a little oversize so as to compensate for
shrinkage. Unfortunately there is usually some temperature distribution within
the material in the cavity, as well as a distribution of cavity surface temperature. In
addition, except with the simplest of moldings, regions of different thickness in the
molded material will cool at different rates, leading to different degrees of shrink-
age, and this can lead to warpage of the article. To minimize dimensional changes
(shrinkage) and shape changes (warpage) a very high pressure is maintained on
the cavity during the cooling cycle. As the density of the cooling pelymer in-
creases, more melt flows into the cavity to maintain constant volume. This can
continue until the gate {reezes solid.

The molding cycle is usually visualized graphically as shown in Fig. 11-5. The
three basic stages are filling, packing, and cooling. The pressure rises at 2 relatively
slow rate during the filling cycle. The packing stage is the one in which the
shrinkage is offset by maintenance of very high pressure. Relatively little flow
occurs at this point. Finally, during the cooling stage, the pressure in the mold
relaxes.

The cooling stage generally controls the total cycle time and so depends
principally on the thickness of the molded picce, since heat transfer through the
low-conductivity polymer is the ultimate resistance to cooling. Cycle times are
typically in the range of 10 to 100 s (except for unusually small or large pieces).

After the melt has filled each cavity, and the cooling cycle solidifies the plastic,
the mold is opened and the solid plastic plece is gjected. The individual molded
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Figure 11-6 () A symmetrical 16-Chupchik mold. (b) An unsymmetrical 18-Chupchik moid.

pieces are usvally still connected to each other by the solidified runner material,
since the parting line of the mold is usually in the plane of the runners. The desired
piece is subsequently separated from the runner at the gate. The gate size and
placement is designed to simplify separation and minimize the difficulty of
smoothing off the defect that results at the break-oll point. The separated runner
pleces constitute waste which may, in many cases, be recycled to the feed.

Runner design represents a compromise of many factors. The runner must be
large enough to facilitate rapid filling of the cavity but not so large as to
significantly increase the time required to {reeze the material in the runner. The
ideal shape would be circular in cross section, but this is the most difficult to
machine, and so trapezoidal runners are often used. One of the most important
features of runner designs is balancing to ensure that each cavity fills at the same
rate. If the runner system is symmetrical, as suggested in Fig. 11-6q, then balanc-
ing depends principally on the precision of the machining of the mold. Some
molds cannot be laid out symmetrically, as in Fig. 11-6b, in which case the cross-
sectional areas of each runner section must be adjusted to balance the pressure
drops from the sprue to each cavity.

We shall outline in this chapter some simple {mostly isothermal) analyses of
the mold-filling process. Nonisothermal phenomena cannot generally be neg-
lected, and we shall subsequently have to modify or reformulate the isothermal
models, By beginning with the simpler isothermal problems we will find it easier
to examine and interpret the role of nonisothermal effects when they are in-
troduced subsequently.

11-1 ISOTHERMAL NEWTONIAN FLOW INTO A CAVITY

The geometry of a simple disk mold is shown in Fig. 11.7. We consider the
transient filling of such a mold with a newtonian melt under isothermal condi-
tions. There are two possible cases: constant flow rate (the more likely production
case) and constant pressure at the nozzle, In either case we assume that the runner
has a small volume by comparison to that of the cavity itself. This allows the
assumption that the runner is always filled and that the transient is associated
only with the filling of the cavity.
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[l
-l P—?H Figure 11-7 A center-gated disk mold.

Figure 11-8 shows a definition sketch for the flow analysis. It is assumed that
the velocity vector is given by

u=[ulrzr),0,0] (11-1)
for D, <r<R -H<z<H
The continuity equation takes the form

18
—ry = 11-
S5 0 {11-2)
in the same region.
The position of the interface R* will be defined in terms of the volumetric flow

rate as

R*
0 = xR X (11-3)

dt

The radial component of the dynamic equation is
u, du ép @ 10 Top
et = L oy, — 8 1i-4
p(a.: T Eir) or Tt e r (11-4)
and for the newtonian fluid the only nonzero stresses are
du u du

=y =2y = 2yt 11-5
Trz H 8z Tog H r Ter H ar ( )

The terms involving 7,, and 7y vanish collectively, for this flow, by virtue of the
continuity equation (see Prob. 11-1). As 2 consequence we must solve

du, du, dp %,
_—tu— = —— 4 y— 11-6
p( ot " or ER P (11-6)
rs %D,
T
- A"t}
T — )
\_- - p Figure 11-8 Definition sketch for anzlysis of Row into
£=" a disk-shaped cavity.
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This is a nonlinear partial differential equation whose solution would require a
fairly tedious numerical method. We shall solve it analytically by neglecting the
inertial terms [the left-hand side of Eq. (11-6)] and justifying the approximation a
posteriori.

Let us begin by noting that the continuity equation is satisfled by a velocity u,
of the form '

.= —cl(z, 1) (11-7)

where ¢ is not a function of r but may depend on z and t. On neglecting the inertial
terms and introducing Eq. (11-7) inte Eq. (11-6), we find

-— 11-8
ér  rozt (11-8)
Consistent with the assumpztions already made, we take p to be independent of z.
This requires that the functions p and ¢ satisfy

rdp &%
E = At (11-9)
since p £ plz) and ¢ # cfr).
It follows then that
AH? zh?
c=— [1—(5) ] (11-10)
2r
and p—Po=Auln o (11-11)

~

The following boundary conditions have been used in obtaining these results:

u, =10 at z= +H
%:0 at z=0 (11-12)

p=F, at r=14D

r

The function A(z) may be determined in terms of the volumetric flow rate Q
from

H
Q=dn | ru dz (11-13)
0
The result is
3Q
A== : (11-14)

We note that A is independent of time only if Q is constant.
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Before examining some of the features of this solution let us evaluate the

dssumption by which the inertial terms were neglected. The viscous term is given
by

2%, 3uQ 1 -
KoE = iy (11-15)
The unsteady-state term is
éu, 3pQ01 z\?
PE‘@E?[I_(?{‘) ] (11-16)
where ¢ is dQ/dr. The convective (radial) acceleration is
du, 9007 1 z\2]*
P = T G | (E) J (t-17)

To evaluate the neglect of the latter two terms we estimate the magnitude of each
relative to the viscous term.

1t is easily seen that the neglect of the transient term depends on the magni-
tude of a dimensionless group given by

_pH*0
i ‘u Q

Of course for the case of constant injection rate, 0 = 0 and the unsteady term
vanishes identically. The term pH?%/u may be considered to be a viscous relaxation
time, while Q/Q is a process time scale. A typical vatue of the viscous relaxation
time would be (taking p = 1, x = 10%, and H = 1, all in cgs units) of the order of
10™* 5. The process time scale would be reasonably approximated by the fill time,
which would certainly be no less than 1 s. Thus we would always expect I, to be
less than 10~% and conclude that unsteady effects are unimportant.

The neglect of the inertial term may be seen to be expressible in the form ofa
parameter

(11-18)

3 Hy?
I, = = Re (7) (11-19)
where Re = ﬁ—g (11-20)

is a Reynolds number of this process. Any reasonable set of values for @, u, and H
will give a value for II;, that is considerably less than unity. Thus the convective
term is safely neglected, and the solution presented is quite reasonable, subject to
the assumption of isothermal newtonian flow and the neglect of entrance effects in
the neighborhood of r = 1D, .

Let us consider, now, the two cases of interest: constant pressure or constant
flow rate.



268 FUNDAMENTALS OF POLYMER PROCESSING

Constant pressure By constant pressure we imply that P, is held constant. The
flow rate would be expecied to decrease as the cavity fills. An additional boundary
condition on pressure equates the pressure at the advancing interface to atmo-
spheric pressure, or [setting atmospheric pressure at zero in Eq. (11-11)]

2R*

r

From the relationship of 4 to Q [Eg. {11-14)] and the definition of R*
[Eq. (11-3)] we find, after a simple integration, that the solution for R*(z) may be
written implicitly as

—Py=A4Auln

(11:21)

2B

o' ln g~ — 1) = (11-22)
where a= f—};
PR
and = 2;*
35 |
30 I / |
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Figore 11-9 Position of the advancing front as 4 function of time [Eq. (11-22)] and volume flow rate
as a function of time [Eq. (11-24]]. Newtonian isothermal filling of a disk.
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o : Figure F1-10 Fill time as a function of
0.01 ‘ 0.1 1 applied pressure: newtonian isother-
mal filling of a disk.

The fill time occurs when R* = R or ¢ = 1/g, so that, if 1* denotes the fill time, we
find

1
r* =ﬁ[~in a—3t—a?)] (11-23)
Figure 11-9 shows the position of the advancing front as a function of time, and
Fig. 11-10 gives the fill time as a function of applied pressure.

The volumetric flow rate as a function of time follows most easily from the
relationship of 4 to Q [Eq. (11-14)] and inversion of Eq. (11-21), with the result

that
w7 5@

= e— = 24
4nHP, e a* (11-24)

This result is also shown on Fig. 11-9.

Equation (11-24) shows an artifact at zero time, when g is unity, by predicting
an infinite value for Q. The maximum Q would be that in the runner itself This
model neglects the runner dynamics on the grounds that, as soon as the cavity
begins to fill to a significant extent, the dynamics of the flow in the cavity domin-
ate the process. When R* is nearly 4D,, entrance effects probably weaken the
validity of the model, which assumes only a u, component to velocity. It dees not
seem worthwhile to attempt to remove the artifact at short time. Instead we
recognize the problem and do not apply the analysis for R* < 3D,, an arbitrary
but reasonable precaution.

Constant flow rate If the fiow rate is constant then the fill time is given simply as
the ratio of cavity volume to volumetric flow rate:

2rH D?
* 2 __r -
*== (R ) (11-25)

The pressure P is no longer 2 constant but is still giver by Eq. (11-21). From the
definition of R* we have, for constant Q@ [Eq. {11-3)},

2

Ly L - -
RHR* = = (11-26)
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Figure 11-11 Pressure rise: new-
tonian isothermal filling of 2 disk
at constant flow rate.

(11-27)

The pressure P, follows from Eq. (11-21) and increases with time according to

Py

_ 30k
8nH?

29
n (1 + <HD? r)

Figure 11-11 shows the pressure rise for this case.

(11-28)

Example 11-1 We will analyze the behavior of a simple disk mold, as il-
lustrated in Fig. 11-8, choosing the following parameters:

L =1cm
D, =1cm
u=10°P

Two cases will be considered:

R=9c¢cm
2H =0316 cm
p=1gjem?

{a) Constant @, with a fill time specified to be I s.
{b) Constant P,, with a fill time specified to be 1 s.

Case (a): Constant Q. From Eq. (11-25),

From Eq. (11-28),

Q

mH{ _, Dr?
-2
30u 20
82H’ (1 T D
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2104
3
— 10% Q.o
50 et RS R S S SR 5 Figure 11-12 Solutions of Ex-
0 0.5 1 ample 11-1: (a} P,{r) at constant
£ s} 0; (6) @(t) at constant P,,.

With the parameters given we find the pressure buildup illustrated in
Fig. 11-12a.

Let us examine the pressure drop to be expected in the runner under these
conditions. From Poiseuille’s law we find '

128uL,Q
%

which gives a pressure drop of about 5000 psi. This constant pressure must be
added to P, in order to overcome the resistance of the runner. It is not
difficult to see that a runner of muach smaller diameter than 1 cm will give a
pressure drop quite a bit larger than that associated with the cavity flow itself,
for this particular cavity.

AP,

Case (b): Constant P,. Here we use Fig. 11-10. For a = 0.055 we find
Br* = 1.2, Since we want t* = 1 s, this gives
_HPP,
T 3uRF
from which it follows that Py = 17,200 psi. Figure 11-12b shows Q{t) for this
case, using Fig. 11-9.

1.2

11-2 AN EVALUATION OF VISCOUS HEATING
IN A RUNNER

We shall find that the flow in the runner is often at such high shear rates that
significant viscous heating is generated. Since the temperature dependence of
viscosity is so strong, this factor must normally be accounted for. The simplest
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model of viscous heating assurnes an adiabatic flow, for which the first law of
thermodynamics leads to an expression for the temperature rise in the form

pOCpdT =@ dp (11-29)

Equation (11-29) simply equates the rate of increase of thermal energy to the rate
at which pressure is doing work in moving the fluid through the runner at the rate
Q. The temperature that appears in this equation is the flow average, or cup-mixing
temperature.
We will assume that the pressure gradient in the runner is given by a local
form of Poisenille’s law:
dp 128uQ

dz~ aD*

(11-30)

where the viscosity ¢ may be a function of z. We will take the viscosity to depend
on temperature according to

£ o prer-to (11-31)
Ho
In the subsequent analysis we take T, to be the melt temperature at the entrance
to the runner, and pg to be the viscosity at that temperature.
If the pressure gradient is replaced by the corresponding function of tempera-

ture, using the last two equations, we obtain a differential equation for T(z) of the
form

dT _ AP,

oL e~ HT=To) (11-32)

where AP, is the pressure drop that would exist under isothermal conditions at
T = To:

2
APy = ——r™ -
0= (11-33)

b APz
=1+ pCPI, (11-34)
where y =TT (11-35)

{Recall the appearance of y in Chap. 6 in the analysis of adiabatic extrusion.) The
temperature rise over the length L is given by

b AP,
pCp
Figure 11-13 shows this result in a simple dimensionless format.

=1+ (11-36)
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Figure 11-13 Effect of viscous heat generation, in adiabatic capillary flow, on temperature rise and
pressure drop.

To find the actual pressure drop we must go back to Eq. (11-30), substitute
#[T(z)]. and integrate. The resalt is easily found and is conveniently expressed in
the form

AP Iny,

AP, -1

(11-37)
Figure 11-13 shows this result.

Example 11-2 An ABS melt is being injection molded and enters a circular
cross-sectional runner of diameter 0.4 in and length 4 in at an inlet melt
temperature of 415°F. Estimate the pressure drop and the outlet temperature
as a function of injection rate in the range 0.5 < @ < 20 in%/s.

Physical properties for the ABS polymer, at the inlet temperature, are

p = 1.12 g/em? n=1%
C,=04cal/g-K K = 2.6 x 10° dyne - s cm?
b=0.026 K~*

We will solve the problem using the newtomian adiabatic analysis with a
viscosity appropriate to each injection rate.
We will need the following results established earlier in Chap. 5:

8(1+3
Nominal shear rate: y = g—:ﬁ
nreD
o 128QL 3n + 1
Poisenille’s law: APy = D dn

Power law: n=Kjy!
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Q {ind/s) Figure 11-14 Solutions of Example 11-2.

At 0 =05in%s
y=119s"4
y = 1.06 x 10* P at 415°F
APy =744 psi

%L =1+ (b AP, /pC,) = 1.1 (remember to convert the thermal units of
C, to mechanical units: 1 cal = 4.2 x 107 dyne-cm = 37 in-Ibf)

AT =5°F

From Eq. (11-37) we find AP = 695 psi.

Continuing this procedure for flow rates up to 20 in?/s, we obtain results
which are presented in Fig. 11-14. For comparison, the pressure drop to be
expected in the absence of viscous heating is shown, using the exact power law
solution. It is apparent that viscous heating is responsible for significant
reductions in the pressure requirement at the higher injection rates.

We will subsequently consider viscous heating effects in the cavity. In some
systems the runner flow controls the filling process, and viscous heating in the
cavity is of no consequence. When this is not the case, of course, the specific
geometry of the cavity and the thermal conditions at its walls control the tempera-
ture of the melt during the filling process. We will consider one of the simplest
cases when we do examine the cavity problem: adiabatic flow into a disk-shaped
cavity.
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11_-3 EFFECT OF PRESSURE-DEPENDENT VISCOSITY

Because of the very high pressures encountered in high-speed injection molding, it
is necessary to consider the fact that the viscosity is 2 function of pressure and to
give a simple model for rough evaluation of this effect. Figure 11-13 shows data for
a low-density polyethylene. The viscosity is seen to increase by about an order of
magnitude as the pressure varies from atmospheric to 15,000 psi. It should be
apparent that viscosity data obtained at atmospheric pressure can be quite mis-
leading if applied to a high-pressure process.

Let us begin with one of the simplest problems: fully developed Poiseuille
flow. We may begin with Eq. (5-2), but note that this assumes the viscosity u is
independent of r. We will assume that p = p{p), and if Eq. (5-3) holds, we then
expect that Eq. (5-2) is valid as well. Thus we begin with
ép 14 fu,

- =P 11-38
6z+“rarr or ( )

Over some range of pressure we can take the viscosity to have the form
# = po(1 + &'p) (11-39)

The variables p and u, may be separated in Eq. (11-38), and we must solve [see
(Eq. 5-6)]

0=

1 dp 1d{ du
dr

T+bpdz Ho o rw) = constant (11-40)

The solution for p(z) is found to be

L

In (1+bp)= (1—1) In (1 + b AP) (11-41)

where AP is the pressure drop across the length L of the tube. We assume p = O at
z=L

107 B N A O 0
180°C
10 = o) ;—-— e
—_ [ Flstm | —
- o™ -
x o -~
s [ s00 / P
- 300 ] 7/ -
A / - Figure 11-15 Shear stress-shear rate data
- 10?/ - at various pressures for low-density poly-
L P B S B | 1 I S I N N | cthylene. Data abstracted [rom K. Ito et al,,
1077 1 10 107 108 J. Appl. Polym. Sci., Appl. Polym. Symp.,

F s} 20: 109 (1973).
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The velocity profile is unchanged in shape by the pressure dependence of

and is given by
20 ry?

where @, the volumetric flow rate, is now found to be related to pressure drop AP
by [see Eg. (5-10)]
_#R*APIn (1 + b AP)
T 8ulL b AP

We may regard Eq. (11-43) as a modified Hagen-Poiseuilie law, and we may easily
note that Q is reduced relative to its value for & = Q.

(11-43)

Example 11-3 For a high-molecular-weight polystyrene a value of
b’ =29 x 107 bar™! is given by Penwell et al. Would a significant effect on
flow rate be expected for flow through a tube at AP = 1500 psi? At
AP = 15,000 psi?

We may regard Eq. (11-43) to have the form

Q= Qo F(b' AP)

where J, is the flow rate in the absence of a pressure effect on viscosity. For
AP = 1500 psi = 100 bars, we find " AP = 0.2% and Q/Q, = 0.88. Hence the
flow is expected to be reduced by about 12 percent. At 15,000 psi the flow is
found to be reduced by about 50 percent.

Now let us examine the problem of flow in a disk-shaped cavity and consider
4 to be a function of pressure. Equations (11-1) through (11-5) are still valid, but
Eq. (11-6) is not. The normal stress terms do not vanish identically as they do for
constant viscosity flow. Instead, a set of terms involving du/dr appears, and if
p = p(r) and u = u(p), then additional terms appear in Eq. (11-6). We still antici-
- pate that Eq. (11-7) holds (see Prob. 11-18), and we find now that

or  razt P or (11-44)
The variables are no longer separable, and so no simple analytical solution for p(r)
and ¢(z) may be obtained.

Thus, for complex cavity shapes, we are not able to provide a simple model of
the effect of pressure-dependent viscosity. This is an unsatisfactory situation, and
faced with it, one might be willing to try a model based on removing the offensive
term from Eq. (11-44). This allows the separation of the variables p(r) and c(z),
and we again have Eq. (11-9) but this time with u = u{r). Let us again use
Eq. (11-39) as a model for ufp). Then we may solve for p(r} and find

1+bp 2p\buad
T5op, (‘5) (11-43)

¥,
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The solution for e(z) [Eq. (11-10)] is still valid, as is the relationship of 4 to 0
[Eq. (11-14)]
Upon introducing the condition p =0 at r = R*, we may write

2R\ 28
L+ bPy = ( ) (11-46)
3Que b’
where B = e (11-47)

R* is still given by Eq. (11-26), which is simply a material balance.
Now let us consider the constant flow rate case. The pressure will rise with
tirme according to

20, \f
VP,=—1 — -
o +(1+:rcHth) {11-48)
At the fill time [still given by Eq. (11-25)] the pressure is
2R\??
FPE= -1+ (%) (11-49)
D,
If we define a dimensionless pressure so that
BEY = b'P¥
3px
or Br = 8nH P}
30010
then we may rewrite Eq. (11-49) as
~ I 1{2R\2
Pr=w_s |2 1-50

In the absence of a pressure effect {f = 0) Eq. (11-28} holds, and at the fill time
pr. 308 2R

O qnEs D,
- R
or Ff=2In % (11-51)

r

One measure of the effect of pressure-dependent viscosity is the ratio

P5() _(2R/D)¥ —1
P5(f=0) 28In (2R/D))

If we return to Example 11-1 and take ' =4 x 1073 bar~?, we may calculate the
effect on pressure for that case. We assume p, = 10° P.

We find f=1 and P¥(B) = 56F¥ =0). Thus the effect of a pressure-
dependent viscosity, to the extent corresponding to the given value of ¥, is to
increase the expected maximum pressure by a substantiai factor. If design were

(11-52)
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based on a viscosity measured at atmospheric pressure, the design could be
inadequate with regard to the pressures imposed on the mold.

Let us now examine, a posteriori, the magnitude of the term neglected in
Eq. (11-44), relative to the main viscous term. Thus we wish an estimate of

_ 2¢fr* dyjdr

We may show that
Ze(z) du
€= o (11-54)

If we use ¢{0) as the maximum value for ¢(z) and r = D, /2 as the minimum value
for r, we find

4| A|H? dy
Using Eq. (11-39) for g, we find
H 2

as an upper limit on ¢. The minimum value of ¢ (aside from the fact that ¢ vanishes
along z = + H) would be obtained by using ¢(z) = ¢(0) and r = R, and we find

€min = 2)8(%)2 (11"57)

As expected, small e will correspond to small 5. However, even when § is large
it is possible for ¢, to be quite small if H <€ R, as is often the case. This means
only that the approximation to Eq. (11-44} will be valid over the region of the
cavity away from the entrance. The analysis will still be incorrect near r = D,
(unless 8 is very small}, ard the predicted maximum pressure rise could still be in
. error. Hence one must exercise caution in using the foregoing analysis.

11-4 RUNNER AND CAVITY COMBINATION

In deriving a simple model for isothermal newtonian flow into a disk-shaped
cavity, we considered the pressure P, at the cavity entrance (r=1D,) to be a
primary variable (either specified or desired from the solution). If we consider the
pressure P, to be the pressure at the end of a runner which leads to the cavity, then
the flow through the runner will affect the value of P,. We outline here a simple
model for a runner and cavity in series.

Actually, the development of the earlier model is still valid down to
Eq. (11-11) except that we do not know P,. If we let P'; be the pressure at the
entrance to the runner, then the pressure drop across the runner is just

APy =Py — P, (11-58)
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. The pressure drop across the cavity is still Py, and Eq. {11-21) is still valid.
We write it.in the form [note Eq. (11-14)]

_ 3Qu 2R*
Py = e In D, (11-39)
For AP, we take Poiseuille’s law:
128ulQp
APp=—-"—2F— -
= (11-60)

where Qp is the flow rate through the runner, Thus we find that the pressure P,
{(which we take as the sum of the pressure drops APy and Py} is given by

P _128ulQy  30p " 2R*
R nb* 43 D

(11-61)

r

If we take the simple case where the runner leads only to a single cavity, so that
0. = @, then we find

_ (128uL 3u 2R*
PR_( 2D T i D,)Q

(11-62)

Again we may consider two special cases. If Q is given as a known constant,
then Eq. {11-27) holds and Py is given directly as an explicit function of @. The
more complicated case is that of constant pressure Pr. We may use Eq. (11-26),

with which Eq. (11-62) becomes a nonlinear differential equation for R*:

128ul  3u ZR™\ o
- = 11-
47:H( % +47rH3 In D, )R R¥* =Py {11-63)

The solution follows by integration, with the result
G—He* =N +e’mep=x (11-64)

_ S12LH? _2R*

=70 "D
and a dimensionless time is defined as

_SH?Py
* T 3uD7

As expected, Eq. (11-22) is recovered if g < L.

where

r

11-5 POWER LAW FLOW INTO A CAVITY

For a power law fluid (indeed, for any nonnewtonian viscosity model) the normal
stress terms do not varish from Eq. (11-4), and, as in the case of pressure-
dependent viscosity, we are again faced with an inseparable partial differential
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equation. We will proceed by assuming that the shear stress term dominates the
flow, and then from the resulting model we will evaluate the neglected terms.
We begin, then, with

dp 01,
Pl (11-65)
and the power law model, written in the form
7. = K(— 93'5) (11-66)
dz
Introducing Eq. (11-7), we may separate the variables and write
r dp -
—— = (=) = 11-67
Kndr (meyier=4 ( )
Proceeding as in the newtonian case we find the following:
D - PO = ;th:I Erl_" _ ('Iz'Dr)l_"] (11-68)
(—An)i
=X 7 (HUntl L plietl 11-69
) =Ty | 21) (11-69)
1{ 1+4+2n n
= — | —mr 17
A ?‘1(47'EHH2+””Q) (1 O)
K I+ 2n " *1l=—n 1 1—nn
PO = T:—;(4EHHZ+”") {R (ZDr) ]Q (11'71)

If Q is constant, for which case Eq. (11-27) gives R*(t}, Eq. {11-71} gives Py(t)
directly. The constant-pressure case is more difficult but still tractable. We use
Eq. (11-26) to eliminate Q in favor of R*, with the result

d
[R¥!77 — (3D,)* ~]tin o {R*)? = constant (11-72)

Equation (11-72) may be integrated numerically to give R*(t). The details are too
tedious to lay out here and are left as an exercise (Prob. 11-24). Instead, we
consider the nature of the approximatior made here.

First, in writing the power law, we have used du, /0z in place of the more exact
deformation rate, (311,}*/%. Thus we have implied that (see Prob. 11-25)

% 2< 6”, 2
or oz
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With the solution giver above we can evaluate the magnitudes of these terms, and
in doing so we find that the square of the stretch rate is smaller than the square of
the shear rate by a factor which is, at most, of the order of

_f H/r 2
€= (1/n+ 1) (11-73)

Since r will normally be larger than H for most cavities, we see that ¢ < 1isa good
estimate.

Next, we have ignored the normal stress terms, implying that

Ei rT, <€ aT"
ror 7T 8z
If we write
c\"
T, = K(.r.) {11-74)
c\""le
and T, =2K = = (11-75)

we find that the normal stress term is smaller than the shear stress term by a factor
which is just (1 + rje. Thus it would appear that the simple model offered here is
valid and that the clongational character of radial fiow in a disk is of little
importance.

These comments are consistent with observations on two other types of radial
flow problems that have been studied experimentally. One is a “squeezing flow”
created when two parallel disks separated by a fluid are suddenly and steadily set
in motion toward each other along their axis. The fluid between the disks is
squeezed out, and a radial flow exists which is similar to that in the disk-filling
problem under discussion here. Experiments indicate that the neglect of normal
stresses in the dynamic egquations is valid, and purely viscous nonnewtonian
models are adequate to describe the general aspects of this flow under typical
operating conditions.

The expected exception to success in modeling this flow with a purely viscous
comstitutive equation occurs when the rate of squeezing is so high as to create a
high Deborzh number flow. In this case the Deborah number may be defined as
the ratio of the fluid relaxation time to the half-time required for the plates to
come together. By analogy, for the disk-filling flow, which is also an unsteady
radial fiow, one might use the half-time for filling the cavity in defining a Deborah
number. One might expect, then, to see significant viscoelastic effects, associated
with the transient nature of the flow rather than with elastic stresses per se, under
conditions of very high injection rates with highly elastic fluids. No data on cavity
filling are available with which one may assess the importance of transient
viscoelastic effects. One may, however, gain some insight into this problem by
reading the available literature on squeezing flows cited in the Bibliography.
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The second radial flow problem of interest here, which has been studied
experimentally, is that of steady radial flow in (and out of) the region between
fixed paralle! disks. Williams and coworkers have examined this problem and find
that purely viscous models again are adequate to describe the major features of
this steady flow. Since the flow is steady, the appropriate criterion for anticipated
viscoelastic effects is in terms of a Weissenberg number, which crudely may be
taken as the product of the shear rate for the flow and the relaxation time of the
fluid. For Weissenberg numbers in excess of unity there is experimental evidence
of failure of the theory, with the implication that elastic phenomena become
important.

Now let us put some of these results together in a model for filling of a
runner-cavity system with a power law fluid. If we add the pressure drops across 2
circular cross-sectional runner which feeds a circular disk cavity, then we begin
with

1+3n\"4K'L . ( 2n+1 \" K __ .
= n " _(ip nnn
PO (8 n’ﬂ.’Df’ ) Dr Q + (4J'ITEH2+”") 1 — HI(R ) (.. r) ]Q
(11-76)

Note that in the term for the runner we use »’ and K’ to remind us that if the shear
rate in the runner is very different from that in the disk, then different #» and K
values may be appropriate to each region. In the following development we
assume that a single set of values of mand K suffices. The pressure P, is now taken
to be that at the entrance to the runner.

If Q is constant, R* is given by Eq. (11-27), and Eq. (11-76) gives P(t) ex-
plicitly. We examine the more complex problem of constant pressure filling. To do
s0 we convert Eq. (11-76) to a differential equation for R*(¢) by introducing
Eq. (11-3) for Q. The solution may be put in the form

P(l)fﬁr @

~HDE = L (1" + c20)"" dop (11-77)
where
_2R*
0=

K (21 \yDNi
27 1 = n\dprHIt1m) 1 2
{1+ 3m\"4KL

G = neD? ] D

r

_CZ

The integration may be performed analytically only if n is an inverse integer. The
fill time is obtained upon setting the upper limit in the integral at ¢ = 2R/D,.
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] Exampie 11-4 Find the fill time for a disk-runner systern for which the follow-
ing data are available:

D, =048 cm H =015 ¢m

L=254¢cm R=9%9c¢m
Melt properties at 202°C (PVC):

n=%  K=4x10° dyne s'?jcm?
Constant pressure of 15,000 psi at the runner entrance. For the case n =3
Eq. {11-77) may be integrated to give ¢{t) in the form
e nHD?
P3

[Fei(o? — 1) + feaes(0® — 1) + 4c{o® — 1] (11-78)

Using the specified values of the parameters we find a fill time of 1.25 s.

11-6 VISCOUS HEATING IN A CAVITY FLOW—
ADIABATIC ANALYSIS

We can calculate the maximum possible effect of viscous heat generation from an
adiabatic analysis, which begins with Eq. (11-29). For a newtonian melt Eq. (11-8)
is stiil valid, and we write it in the form

dp = A‘i & pC,dT (11-79)
If we use Eq. (11-31) as a model for p(T), we find
Apodr _ _ pC, =T g (11-80)
-

Integration, with the condition T == T; at r = 1D, gives
2 C
== fﬁ) (MT=To) _ 1) (11-81)

In effect, we use Eq. (11-81) to give T{r), and thus we find uf T(r)]. When this is
substituted in Eq. (11-79) (the left-hand half of the two equations), we obtain 2
differential equation for p(r). After a simple integration and some algebra we find

pCp Augh . 2r
— P, = — Py + In=>- 11-82
P ¢ . (1 pC, D, ( )

b

The solution for A is unchanged from the isothermal case (Eq. (11-14)}. Upon
setting p = 0 at r = R*, we find

_0C, (. 3Queb 2R*) ]
Po="* ln(l 4———7[H3pcp1n 5. (11-83)
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For constant @, R*(z) is given by Eq. (11-27), and so Py(¢) follows explicitly from
Eq. (11-83) {see Prob. 11-33).

For constant pressure, Eq. (11-83) becomes a differential equation for R*(r).
The solution takes the form

e -3~ =uwu (11-84)
where
2R* SHZpCp bP,

We may easily show that Eq. (11-84) reduces to the corresponding isothermal
case, Bq. (11-22), in the limit as b vanishes. We may also see that the effect of
viscous heating on the fill time is to decrease the fill time by a factor

It is important to keep in mind that the adiabatic analysis gives the maximum
possible temperature rise. Adiabatic filling is more nearly achieved with rapid
injection rates and with cavity surfaces which are not cooled unti! after injection.
At slower injection rates and with cooled surfaces, there is time for any generated
heat to be conducted to the cavity boundaries.

The analysis of the adiabatic temperature rise for flow of a power law fluid
into a disk-shaped mold follows the same lines as that just given for the newtonian
fluid. We take

K = Kye bT=T0 (11-87)

Though more tedious algebraically, the power law case may be carried through
with little difficulty to give

Dr i—=n ,2R'/D, dx
Po = "AKo(z) [y gy v (11-88)
where
AKgnb(D, 2} "

= 11-89
(1= n)ec, (1-89)

and A is still given by Eq. (11-70).

For the case n = 4, for example, we find
C 2R* 12

Po=£E£1n —m(D ) +(1+m)] {11-90)

We keep in mind that m depends upon Q. If we consider the constant-pressure
case, then Eq. (11-90) may be written as a differential equation for R*(t), and
integrated to give

Ho? — 1) —He® = 1) + ¥(@® — 1) = ay o1 (11-91)
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where

[ 1—exp (bPy/pC}]?
Eyjz = 4K0 b(Dr/z):i_fz (11-92)
pcp H3/2
It may be shown that when b = 0 Eq. (11-91) is identical to Eq. (11-78). The
effect of viscous heating on the fill time is given by the factor
uyp2{b) _ 1—exp (bPo/PCp) 2
a3,2(0) bPy/pC,
If this is compared to the corresponding newtonian result, Eq. (11-86), it is seen

that the effect of viscous heating is much stronger for nonnewtonian fluids than for
newtoniarn, at constant pressure.

(11-93)

11-7 THE EFFECT OF HEAT TRANSFER TO THE
CAVITY WALLS—QUALITATIVE COMMENTS

The models presented above all ignore one of the major phenomena occurring in
mold filling: heat transfer to the (usually) cold cavity surfaces. In Chap. 13 we
establish a basis for quantitative consideration of the effect of heat transfer. Here
we offer some brief qualitative remarks.

Figure 11-16 suggests the situation observed in the filling of a rectangular
cavity. Heat transfer to the cold walls may cause solidification of the melt before
the cavity is filled. In effect this reduces the cross-sectional area available for flow,
which would cause a significant increase in pressure buildup if constant flow rate
is imposed on the system. (If constant pressure is imposed, then the flow rate will
decay as the cavity freezes off.) The thermal “ design ™ of the process must be such
as 10 ensure that the solid polymer does not occlude the cavity (or the runner, as
well) before filling is completed. If premature freezing occurs the cavity does not
fill completely, giving a short shot.

It should be apparent that a very complex model would be required to
describe the more realistic filling problem suggested in Fig. 11-16. Numerical
methods involving digital computation are used, and the Bibliography suggests
several relevant articles. In general these techniques are fairly successful, and while

Figure 11-16 Filling of a rectangular cavity with cold walls.
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they represent modifications of the simple analyses presented in this text, we will
not dwell on the details here. In Chap. 13 we will develop enough information
regarding heat transfer that we can assess the range of applicability of the simple
models of this chapter.

With reference to Fig. 11-16, we see that the flow field is distorted by strong
nonisothermal effects. A form of “ channeling ™ occurs because of the stagnation of
the much more viscous cold fluid (or even solid) that forms at the cavity surfaces.
The shape of the velocity profile, and to some extent the shape of the advancing
front, depends strongly on thermal properties of the meit, such as the temperature
coefficient for viscosity. Flow visualization studies referred to in the Bibliography
zive direct evidence of this strong nonisothermal effect.

We may end our treatment of simple models of the cavity-filling process by
examining some data obtajned by molding an ABS disk on a 375-ton Cincinnati
Milacron reciprocating-screw injection-molding machine with a 32-oz shot size.
Figure 11-17 shows the pressure measured as a function of fill rate under various
operating conditions. We would like to test the applicability of the simple models
outlined here to the description of these data. We need the following information..

The polymer is Monsanto's Lustran ABS Q 714 for which the following phy-
sical property data are available:

p=102g/em® C,=243 x 107 ergs/g-K

Power law parameters: n = 029(10% < § < 10* s7%)

460
K =302 exp B—T— dyne-s?-2%jcm?
K

Figure 11-17 Pressure versus flow rate
(at the fili time) for a disk cavity with an
ABS melt.

a H,cm T K
5

g v 0.127 516
N & 0.127 538
E v 0203 516
o7 N 0.203 538

Cavity surface temperature is 311 K. The

. curve Is the adiabatic theory for H =

| - 0.127cm, T = 516 K. (Data are from J. F.

Stevenson, A. Galskoy, and K. K. Wang,

“Injection Molding of Thermoplastics.

0 100 200 300 400 Part I:. Disk Filling Experiments,”
0 {em3/s) personal communication.)
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The mold geometry is that of a disk for which H = 0.127 ¢m or H = 0.203 cm.
The inlet pressure P, is measured at a radial position 1D, = 1.9 cm. (This is not
the actual radius of the inlet runner, but we must use, for 1D,, the actual radial
position of pressure measurement.) The pressures plotted are not quite at the fill
time but at a time such that R* is at » = 10.5 cm. Thus we use R = 10.5 ¢m in the
model.

The inlet temperatures may be varied somewhat, and the mold is cooled by
water at 38°C.

We make a caiculation, using the adiabatic theory, for the case H = 0,127 em
and T = 243°C = 516 K. We will use Eq. (11-88), with R* = 10.5 cm and other
parameters as noted here. It is first necessary to calculate m [Eq. (11-89)], which
requires a value for b. It is not difficult to see that (note Prob. 11-8)

AE 3460
:RTI"C,z?TTo:O'OB K-t (at T =T, = 516 K)
We then find that m = —0.0060°2° (Q in cm3/s) whick gives values of m much
less than unity. Thus we really have the isothermal model to deal with, since
viscous heating is apparently negligible in the cavity. From Eq. (11-71) we find

P, =26 x 1070%?° (Py in dynes/cm?® and Q in cm?/s)

This curve is plotted on Fig, 11-17. The results are not very good, although at the
expenditure of about 10 min we certainly have a rough estimate of the data. At
low Q considerable heat transfer to the cavity surfaces occurs, and the observed
pressure refiects the strong temperature dependence of viscosity and, possibly,
some freezing within the mold. At high Q adiabatic behavior is more nearly
achieved, but the model and datz are still in poor agreement. Viscous heating in
the cavity is still not significant, but it may be in the nozzle-sprue system (see
Prob. 11-42}. This would tend to lower the model prediction, if accounted for, and
increase the deviation between model and reality. However, a compensating effect
is the effect of pressure on viscosity which, if accounted for, would raise the
theoretical curve. No data are available with which to make a corrected calcula-
tion, although estimates could certainly be made (see Prob. 11-43). Thus we con-
clude that the simeple analytical models are useful but must be used with some
caution.

11-8 BALANCING OF RUNNERS

Figure 11-18 shows a sprue and runner system from a standard six-cavity
telephone-handle melding die. The cavities fed by this system do not fill at equal
rates because the system is hydrodynamically unbalanced. Figure 11-19 shows the
results of a series of short shors, which are injections that are stopped before the
entire cavity system is filled. Short shots enable one to see certain features of
the filling patterns that cannot be seen from examination of a completed shot. It is
obvious, from Fig. 11-19, that the three pairs of cavities do not fill at equal rates,
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Figure 11-18 Sprue-runner system for a six-cavity telephone-handie molding die.

which reflects the inbalance in the runner system. Quantitative data illustrating
the unbalanced-fill situation are showr in Fig. 11-20. A thorough analysis of this
specific system is given in the interesting paper of Williams and Lord.
Hydrodynamic balancing of runners is quite a complex problem, although at
first glance it appears deceptively simple. With reference to Fig. 11-18, path AB s
the common sprue for all six cavities. It is assumed that each pair of cavities is
balanced, since cach is symmetrically placed about the sprue axis. It is necessary

Figure 11-19 Short shots in a telephone-handle molding die. Note the asymmetry, due to unbalanced
runners. (Photo courtesy of G. Williams and H. A. Lord.)
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WHT of pairs.{g}

Total WHT (g) Figure 11-20 Weights corresponding to short shots as
B handles in Fig. 11-19.

to balance the runner paths BE, BF, and BG. This requires that the pressure drops
across each of these paths be equal so that the pressure at the entrance of each
cavity (points E, F, G) will be the same.

For a power law fluid we can always write the pressure drop-flow rate rela-
tionship in the form [Eq. (5-17)]

AP — (1 + Sn) 2KL

ity 1 94
nR? R @ (11-94)

Let us look at isothermal power law flow and “design” runner CF so that the
pressure drop over the path from A to E is the same as that over the path AF.
Since 4B is a common path to the cavities at E and F, we require

AP gy = AP pep (11-95)

If we let O be the total flow rate through the sprue 4B, then we want the flow rates
through all six runners to be one-sixth of Q. Thus we have

Que = '<1§Q = Qcr (11'96)
However, a simple material balance shows us that
Q=30 (11:97)
This lets us write the pressure drops as
14+ 3m\"2KL O\
= | — = 11-
AP g (mtRab,E) Rz (6 (11-98)

AP yop = AP o + APy
B (1 + 3n)"2KLm(gg)" . (1 + Bn)”?_KLCF (g) (11.99)

neRye] Rpe \ 3 nmRE) Re \6
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If we now equate the pressure drops in these last two equations, we obtain a
relationship among the geometric parameters:

Ly Ly | Ler
=4 + 11-100
RET T RETTRET (11-100)

If we take Ry and R g as the only free parameters, and otherwise use the values
shown in Fig. 11-18, we find that there is no unique sclution to this problem. We
must introduce some arbirrary constraint, such as choosing R to have a specific
value, whereupon a solution for R g follows.

For example, using the values shown in Fig 11-18, and choosing
Rer = 0.1 in, we find (assuming n = % as an example} that R 5z = 0.087 in. These
values are reasonably close to each other, which means that the runners will be
fairty well balanced thermally as well. (By thermal balancing we imply that heat
transfer from the runners occurs at nearly equal rates, so that, for example, the
melt entering the two cavities is nearly at the same temperature.)

The fact that » enters the calculations creates a problem, since the runners
may no longer be in balance if a different polymer is used, having a different »n. For
example, if the calculation above is repeated for the case n =1, we find (2gain
choosing R = 0.1 in) that R g = 0.095 in. Some aspects of this point are picked
up in Prob. 11-44,

Other factors which would affect balancing include viscous heating and a
pressure-dependent viscosity. If any significant heating occurs over path BC, for
example, then the melt would have a different viscosity in runners BE and CF, and
an isothermally balanced system would no longer be balanced. Similar comments
can be made with regard to a pressure~-dependent viscosity. It should be apparent
that while the concept of balancing is quite simple, its execution in practice is
likely to be difficult.

PROBLEMS

11-1 In deriving Eq. (11-6) it is found that the terms involving the normal stresses collectively vanish.
Carry out the derivation in detail.

11-2 For any purely viscous fluid, for which t = 5(II,) A, do the normal stress terms drop out of
Eq. (11-4)?

11-3 For the purely viscous fluid, Bq. (11-7) still holds for the kinematies of radiat flow in 2 disk. Give
the second invariant of A for this flow in terms of the [unction c.

11-4 Derive Eq. (11-22).

11-5 For the runner-cavity system of Example 11-1 plot fill time versus pressure at the nozzle. The fill
times ol interest would be in the range 0.5 to 3 s. Include the runner pressure drop in your analysis.
Assume isothermal flow.

11-6 Rework Prob. 11-5 to account for viscous heating in the runner. Treat the cavity flow as isother-
mal. Take the thermal properties to be those given in Example 11-2.

11-7 The energy equation for laminar steady tube flow has the form

aT I&(@T)

pC ,=k-— r—tpT, AL

e rar\ &ér
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Derive Eq. (11-29) by integrating each term above over the cross section of the tube. In doing so,
point oul where the assumption of adiabatic flow enters. Is it necessary to make any assumption about
heat conduction in order to arrive at Eq. (11-29)? Show clearly how the average temperature is
defined.

11-8 The temperature dependence of viscosity is olten expressed in terms of an activation energy AE:

i AE[1 i

—=exp —|=——

Ho RAT T
where R is the gas constant and 7" is an absolute tetperature.

(a) Show that the constant b of Eq. (11-31) is telated to AE by b = AE/RTT,.
(b) Convert the AE values of the following table to & values:

AE, 2, Cp,

keal/g-mol gfec  calfg-K
Polyethylene Marlex 50 5.8 0.86 0.65
Polystyrene Styron 700 10 1.15 0.44
Nylon Zytel 101 NC 21 1.07 0.56
PVC BF Goodrich 28 13 0.45
ABS Marbon 12 112 0.38

Souree: This table is abstracted from P. C. Wy, C. F. Huang,
and C. G. Gogos, Polym. Eng. Sci,, 14: 223 (1974).

Comment on the manner in which b depends on temperature,
11-9 The temperature dependence of viscosity appears to be an important parameter in the noniso-
thermal flow analysis. Show, however, that for small temperature rises, T — T, is independent of b
and is given by

AP,

T-T,=
07 pCp

Give a eriterion for application of this result in terms of the value of b(T — T,).

11-10 Can viscous heating create 2 maximum in the dependence of AP on @ for newtonian tube flow?
Investigate the mathematical character of Eq, (11-37) to answer this. Keep in mind that APy is a
function of Q through Eq. (11-33). .
11-11 A particular PVC melding compound is found to degrade (and give an off-color product) if i1s
temperature rises above 495°F. Suppose this melt is injected into a sprue-runner system which can be
modeled as a circular tube of diameter 2 in and length 4 in. I the injection temperature is 375°F, what
is the maximum tolerable injection rate? (The desired injection rate is in the neighborhood of 5 in%/s.)
Take the thermal properties as given in Prob, 11-8, and assume the PVC is a power law fluid with
K =4 x 10* dyne+s"*/cm? at 200°C, and n = }.
11-12 Repeat Example 11-2 for a PVC melt. See Prob. 11-11 for thermal and rheological properties.

11-13 Consider adiabatic newtonian flow through a circular runner, Viscous heating may raise the
temperature at the end of the runner above some critical value at which degradation occurs. Is it
possible to reduce the outlet temperature by increasing the injection temperature? Give a general
formulation of this problem and obtain the solution,

11-14 Plot the data of Fig. 11-15 and give the best estimate of 2 parameter & if the viscosity is taken to
vary with pressure according to 1 + &P or ¥,
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11-15 Find the velocity profile for steady isothermal fully developed Poiseville flow in a tube of
circular ¢cross section, for a newtonian fluid whose viscosity is a function of pressure according to
B pe e
Show that if the pressure depcndence of viscosity were ignored and Poiseuille’s law [Eq. (5-10)]

used to calculate viscosity, the error in viscosity would be given by the factor

| — g~ar

b AP
where AP is the imposed pressure drop across the tube.

11-16 Repeat Prob. 11-15 but for a power law fluid. Take n = constant, but let £ depend on prcssurc
according to

K = Koe*"

Give an expression for evaluating the error made in using the case b = 0 to calculatc AP fora given Q.
11-17 An article is being injection molded of polyethylene. The most important, and rate-determining,
part of the filling process involves flow into a capillary ol length 1 in and diameter 75 in. If a pressure of
15,000 psi is imposed at the entrance to this captllary. what is the fill time? Use Flg, 1 i-15 and the table
in Prob. 11-8 for physical property data. Include viscous heating and pressure-dependent viscosity.
11-18 In writing Eq. {11-44) it was implied that Eq. (11-7) holds when p = p(p). Examine the z
compoenent of the dynamic equations for this flow, and the continuity equation, Discuss the nature of
the approximation that leads to Eg. {11-44).

1119 Solve Eq. (11-44) for flow into a2 disk-shaped mold, but assume p=p, "%, Show that
Eq. (11-45) is replaced by

2R*
etPe=1—-281n

r

Show that there is an upper limit to R*. Is this physically realistic? Why does this happen?
11-20 From the solution of Prob. 11-19, find the analog of Egs. (11-50) and (11-52).

11-21 From the solution of Prob. 11-19, find the analog of Eq. (11-56). Is this relevant to the questions
raised in Prob, 11-197

11-22 Verify Eq. (11-54).

11-23 Derive Egs. (11-68} through (11-71).

11-24 Derive Eq. {11-72). Show that for I/nan integer Eq. {11-72) may be integrated analytically. Give
the solution for R*{t) for the case n=1.

11-25 Give 11, for disk flow, assuming u, = ¢/r and u, = 0.

11-26 Verily Eq. (11-73).

11-27 Derive Eq. (11-77).

11-28 For the system described in Example 11-4, plot filling time versus P, for 5000 < py < 15,000 psi.
11-29 For the system described in Example 11-4, estimate the temperature rise at the end of the runner
due to viscous heat generation. Assume the meit enters the runner at 202°C, and take the thermal
properties given for PVC in the table in Prob. 11-8.

11-30 Work Prob. 11-28 but account for the effect of viscous heating. Begin by evaluating the
significance of the effect, and let that guide the complexity of the modeling procedure you choose.
11-31 Verify Eq. (11-78).

11-32 For the system described in Example 11-4, how different are the shear rates in the runner and
the cavity? Does your answer depend on flow rate?

11-33 Show, from Eq. (11-83), that if Q = constant is specified, the pressure P, becomes infinite at 2
finite value of R* Interpret this result physically.

11-34 Show that Eq. (11-84) reduces to Eq. (11-22) for the case b = 0.
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11-35 Prove the assertion of Eq. {11-86).

I1-36 A melt is being injection molded into a disk-shaped cavity at a pressure of 10,000 psi. Take
pC, = 300 in"Ibi/in*- K and b = 0.025 K. Is the fill time significantly reduced by viscous heating?
11-37 Show that Eq. (11-88) may be integrated to give

IRE
P°=p%ln {—m("g

) )m+-(1 +m)J

11-38 Derive Eqgs. (11-91) and (11-92).
11-39 Use the simple model for adiabatic filling of a disk mold to predict P, versus Q at fill
(R = 10.5 ¢m) for the case H = 0.203 ¢m, shown in Fig. 11-17. Would you expect the model to be more
appropriate for the thinner disk, or for the larger disk?
11-40 Show that P, H~'~2" in the absence of viscous heating or any other thermal effects for a
disk-shaped cavity. Show that il adiabatic heating is the dominant thermal effect, P, becomes indepen-
dent of H, as the heating effect increases in magnitude {|m| » 1).
11-41 Compare the dependence of Py on H,,, as exhibited by the data of Fig. 11-17, to the results of
Prob. 1140 and infer from that alone whether viscous heating is significant in these data. Is the
inference consistent with the calculated value of m?
11-42 The temperature given with the data of Fig. 11-17 is bascd on a measurement at the end of the
extruder. Between the extruder and the dic is a nozzle-sprue system equivalent to a pipe of length of
3.5 cm and diameter 1.27 cm, followed by a tube of length 3.81 cm and diameter 0.63 em. Could
viscous heating cause a significant temperature rise before the cavity?
11-43 Could a pressure-dependent viscosity account [or the failure of the adiabatic model to fit the
data of Fig. 11-1727 No value of ¥ [in K = K41 + &'P)] is available for the ABS polymer. Use the
models in this chapter to estimate the probability that this point is worth pursuing. Take & = 0.001
atm™ " If you feel the cffert is justified, correct the model and predict the data. If not, justily your
reluctance to do the calculation on technical grounds.
11-44 The sprue-runner system of Fig. 11-18 is balanced for a power law fluid (» = 1). Dimensions are
as shown on the figure, and R =0.11in and Ry = 0.087 in. Suppose the pressure at point B is
10,000 psi. Ignoring cavity resistance, caleviate the flow rates at points E and F, and verify the
balancing. Take K = 10° in cgs units.

Suppose the same system were uscd for a newtonian fluid. To what extent would the system be
out of balance?

11-45 Continuc the example of Sec. 11-8 and balance the runner DG for a power law fluid {= = 3}
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11-§ Balancing of runncrs

This material is drawn from the experiments described in Williams and Lord
above.



: CHAPTER
TWELVE
MIXING

He who learns by Finding Out
has sevenfold

The Skill of him who learned by
Being Told.

Guiterman

Hardly any polymer process occurs without mixing playing an important, and
often controlling, role. Yet of all the processes which make up an integrated
operation, mixing is probably the least understood, and the least amenable to
analysis. Why should this be so?

One reason is that the term mixing refers to so many different operations
having many apparently different ultimate goals. Let us mention some typical
mixing processes:

1. 1t is found that when polystyrene and polybutadiene are intimately mixed in
the molten state, the resulting solidified material has superior mechanical
properties (relative to either component) when molded into an article. We wish
to mix and melt the two solid components just prior to an injection-molding
operation.

2. Polystyrene can be foamed by mixing the molten polymer with a “blowing
agent,” a low molecular weight volatile solvent which, if intimately mixed
within the polymer, will form small bubbles when the operating pressure falls
below the vapor pressure of the solvent dissolved within the polymer. We wish
to perform this mixing operation at some stage upstream of the foaming step.
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3. Prior to injection molding an automobile tire, the synthetic (polymer) rubber
must be mixed with carbon black particles which impart needed mechanical
and thermal properties to the rubber.

4. A commercial PVC coating resin must be compounded with an antioxidant
prior to the extrusion-coating operation.

5. Short lengths of synthetic fibers are to be added to a polymer to provide
mechanical reinforcement of the final formed article. The fibers must be uni-
formly distributed.

6. To improve the processibility of polystyrene in a particular operation, zinc
stearate is added as a “lubricant” and must be intimately mixed within the
polymer melt.

7. Polystyrene is being polymerized in a batch reacter. The reaction is highly
exothermic, and if “hot spots™ develop in the reactor an undesirable distribu-
tion of molecular weights will occur. It is necessary to mix the reactor contents
thoroughly so as to maintain a very uniform temperature distribution within
the reactor.

8. In a suspension or emulsion polymerization, monomer is charged to a stirred
reactor containing an inert liquid in which the monomer Is insoluble. An
agitator must break the monomer phase into small droplets, each of which is
then a miniature batch reactor, These small droplets have a refatively high ratio
of interfacial area to volume, and as a consequence the heat of reaction is easily
carried off by the suspending phase, giving good control over the course of the
reaction. -

We could continue like this for several more pages. The appropriate question at
this point is: What common elements do these processes have? The answer is that
in all cases the operative goal is to create and maintain intimate and uniform
contact between two or more materials or among the elements of a single material.
If the materials are immiscible, as in the case of carbon black and polymer, then a
uniform spatial distribution of particles throughout the polymeric matrix is the
goal. If the materials are miscible then dissolution must be promoted, followed by
promotion of uniform concentration within the solution.

Discussions of mixing must focus on two aspects: There must be some objec-
tive measures of the “goodness™ of mixing, and there must be some means of
evaluating the “efficiency™ of mixing in terms of the power required to achieve 2
certain degree of goodness in a specified time.

12-1 GOODNESS MEASURES

It will be sufficient to introeduce mixing concepts for the case of a binary, ie.,
two-component, system. Usually one phase or component can be considered the
major component or continuous phase, while the minor component or dispersed
phase may be thought of as the material being mixed into the continuous phase.
These terms are merely semantic crutches in some cases when two streams of
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Figure 12-1 A model of a mixing process. Sixteen elements of indivisible height, initially clumped
together as in distribution S1, are successively subdivided and uniformly redistributed in subsequent
mixtures, The intensity of each distribution is shown under [, and the scale under S.

nearly equal proportions are mixed together. Nevertheless one could arbitrarily
define one of the streams as the minor phase, to be mixed “into™ the other.

To establish some concepts of goodness of mixing we begin with a simple
model of a process invelving a one-dimensional space, a line, along which certain
elements may be placed. Figure 12-1 shows successive stages in the mixing of this
two-component system.

Sixteen elements, each having a unit mass, may be placed on any of 100 spaces
that the line is divided into. The overall concentration of this system is ¢ = 0.16.
We may define the concentration “at a point ™ by arbitrarily deciding on a sample
space and measuring the fraction of that space occupied by the unit elements. It
should be obvious that the measured concentration depends upon where the
measuring points are located, since the distribution of mass is not spatially uni-
form. The concentration will also depend upon the sample size but presumably
will approach ¢ as the sample size increases toward the size of the entire system.
(In the following it is to be understood that all concentrations are normalized;
they represent the fraction of space occupied by elements.)

If we randomly sample the space, and make, say, N measurements of concen-
tration C;, then the average concentration may be calculated from

= 1
C=—
N ;

1=

o (12-1)

1

H

In general, C will differ from the true concentration ¢ because only a finite
number N of samples is averaged.
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One measure of the homogeneity of a mixture is the extent to which the
concentrations in various regions of the space differ from the mean concentration.
The variance of the measurements provides such an indication and is defined as

1 N
2 2
§t=— ¢ -C 12-2

=1 G- 0) (12-2)
A small variance implies that most of the samples yield a concentration C; that is
close to the mean € of all samples, thus suggesting a2 homogeneous system.
The maximum variance occurs if the elements are completely segregated, and it
can be shown that the maximum variance is given by

st=C(1 - C) (12-3)

If 5% is normalized to its maximum value the resulting parameter is called the
intensity, defined then as

]

I:

La (%]
Sl

{12-4)

The intensity I ranges from unity (segregation) to zero (homogeneity) and pro-
vides one useful measure of the goodness of a distribution. For the mixing process
illustrated in Fig. 12-1 the intensity, values of which are given in the figure, con-
tinually falls as mixing proceeds, as expected.

A second measure of mixing gives a length scale that is characteristic of the
mixture. It is based on the idea of correlation. Suppose we measure the concentra-
tion “at a point™ C(x) by sampling a volume in the neighberhood of x. At the
same time let us measure the concentration C{x’) at a nearby point X' = X + r. We
ask whether there is any relationship between C(x) and C(x’).

We might expect that if r is small then C(x) and C(x’) would be nearly equal.
However, as r increases, in a well-mixed system, the probability of observinga C
greater than the overall € would be about the same as that for observing a C less
than €. Another way of saying this is that as r increases there is less “ correlation”
between C{x) and C(x'). ‘

One may define a correlation coefficient as

N
L S [cdx) = CIICx + 1) - O] (12:5)

Rr) ===
) s*N S

For sufficiently large N [taking note of Eq. (12-2)] we see that R(0) =1, as in-
tended. Once R(r) is calculated it is possible to determine a length scale S, defined
ast

S == j R{r) dr (12-6)

+ B is & measure of the size of the system and is best defined as § = dr. Il dr refers to a length then S
is a linear scale: if dr is a volume, say, r* dr, then § is a volumetric scale of mixing.
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_ When § is compared to some characteristic length scale of the system itself {such
as f), it is possible to give an idea of whether the mixing is “fine” or “ gross.”
The scale of mixing is not very useful if and when a system can approach
uniform concentration, such that C(x)— C, as in the case of dissolution, as
. opposed to dispersion, of particulates. In that case R approaches unity for any r,
and § approaches f, the size of the system. Thus § might go through a minimum
as mixing proceeds, and two different states of mixedness might have the same S
value.
’ It is probably useful at this point to illustrate the concepts of scale and
intensity with the mixing process of Fig. 12-1. We begin by noting two specific
features of this process. The minor component is made up of elements of unit
mass. What we mean to illustrate specifically is that in some mixing processes
there is a limit to the degree of subdivision possible. Dispersion of particulates
provides one such example. Specifically, the elements do not “ dissolve ”; they can
only be dispersed spatially through the space available to them.

The second feature to note is that in Fig. 12-1 we have defined a specific
mixing process which successively halves the size of the minor component and
uniformly distributes the halves spatially. Thus there is a degree of spatial struc-
ture to this mixing process.

Figure 12-2 shows the correlation function. All calculations have been made
with a sample * volume” of 10 units, and all averages are based on 20 samples at
randomly selected points along the line. The spatial structure of the dispersion
shows clearly here, the oscillations arising from the periodicity of the dispersion.
The scale decreases as the dispersion process goes on.

By way of contrast, Fig. 12-3 shows a system dispersed to the level of 54 but
randomly distributed along the line, The intensity and scale can be compared and

Rir)

!
0 20  Figure 12-2 Correlation function for the
- distributions S1 and 54 of Fig. 12-1, The
calculated scales are labeled on Fig, 12-1.
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R O

Figure 12-3 Mixture which is dispersed to the same degree as 54 but which is randomly
distributed along the line. Calculated intensity and scale are labeled.

contrasted for these two cases, and it is interesting to note that the intensity is
significantly greater, consistent with our visual observation that S§4 is better
mixed. The calculated scales do not reflect as great a difference.

We might think of the distributions S1 through 54, and R4, as a model of
convective mixing, where elements of the minor component are separated and
redistributed spatially. The distributions S1 to $4 are the result of an “ ordered ”
convection process, whereas R4 could be the result of 2 random convection
process such as occurs in turbulent mixing.

In some systems a “ diffusive ” mixing may also occur as the minor component
dissolves and diffuses through the major component. Figure 12-4 suggests two
steps of diffusion, subsequent to convective mixing to the level of R4 in Fig. 12-3.
The mixtures DI and D2 result from R4 by permitting the minor component to
“diffuse,” with the result that the concentration of each element decreases from
the unit value previously assigned, and the element is allowed to “spread” in
width. The intensity continues to fall, but now we observe the scale going through
a minimum and increasing as the system diffuses toward uniformity.

This simplified picture of mixing has been introduced principally to illustrate
the concepts of intensity and scale as goodness measures. Because a small volume
was “sampled” and only 20 “samples” were taken, the specific values given for
intensity and scale will depend on the sampling points selected. Nevertheless, the
values cited illustrate the general features expected of a mixing process, To
conclude, we state that we can define objective statistical measures of the goodness
of a mixing process, the intensity and the scale of mixing. However, it is generally
not practicable to make these measurements, and so they are seldom used.

ﬂ [—| [—“—“_l I—I H I—I “1 0097 586

 — ) G — a2 0.075 9.2

Figure 12-4 Two stages of successive “diffusion” from the distribution R4 of Fig, 12-3.
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The concept of mixedness developed above involves the notion of homogeneity
and was discussed in terms of the mixing of two materials, a major and a minor

. component. In this section we introduce another concept of mixing which is valid

in single-component, homogeneous systems. It involves the uniformity of the
“history™ of the elements of the system, as described by the residence time
distribution.

Let us begin by comsidering laminar flow of a newtonian finid in a long
circular pipe: Poiseuille flow. With reference to Fig. 12-5 we consider an element
of fluid at radial position r. The element moves at velocity u(r) and requires a time
to traverse an axial distance L given by

L
u(r)

=

(12-7)

Fluid elements which all enter the pipe at the same instant of time will leave at
different times, in accordance with their radial position, as governed by Eq. (12-7).

Hence we speak of a distribution of residence times for this flow.

To make this idea quantitative, let us define a function f (t) such that f'(z) dt is
the fraction of the output of the flow which had been in the pipe for a time in the
range  to ¢ <+ dt. Then, letting Q be the volumetric flow rate, we may write

_dQ  ulr)2zrdr
fle)de = 0 xR

where the average velocity U is defined by

From

2r dr t

R? 2:’1'1I
w0 _F
U ¢

flow.

(12-8)

(12-9)

(12-10)

(12-12)

(12-12)

Figure 12-5 Definition sketch for considera-
tion of residence time distribution in Poiseuille
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. ' 1 )
We have defined the mean residence time as A )e : :ﬁ Z
_ mR:L L
:=”Q == (12-13)
With these relationships we may write f(¢} in the form .
- 1/t -3 T ‘,“,‘ .
(o) = 5l TR (12-14)

It is more common to describe the residence time distribution through the
function F(t) defined by

t
ng=j 1) dr (12-15)
1121
The lower lmit is the first appearance time, the shortest time any element of fiuid
resides in the pipe, which of course corresponds to the fluid moving along the pipe
axis (r = 0) where the velocity is greatest. For Poiseuille flow we find

1{r\? [
Figure 12-6 shows F(t), which is called the cumulative residence-time-distribution
Jfunction, or the F function, for short.

The interpretation of F(t) is simple: Its value at any time ¢ gives the fraction of
fiuid with residence times which are less than . For t = 5z, for example, we find
from Egq. (12-16) that F = 0.99. Thus only 1 percent of the fluid has a residence
time in excess of 51. We note, however, that for ¢ = r we calculate F = 0.75. While
we refer to 1 as the residence time, in fact 25 percent of the flow has residence times
in excess of L.

The ideal residence time distribution is a unit step function, also shown in
Fig. 12-6. It would correspond to “ plug flow,” for which every element of fluid has
exactly the same residence time in the pipe. Because of the no-slip condition at the
pipe wall the plug flow condition cannot be approached very closely. However,
nonnewtonian behavior of the usual type does give an F function that is closer to
plug flow than that for the newtonian fluid.

Flt
[

/ Plug flow

Figure 12-6 Cumulative residence-time-distri-
0 1 2 3 4 bution function [Eq. (12-16)] for Poiseuille
eF flow.




MIXING 303

1
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T flow.

4 Figare 12-7 F curves for power law Poiscuille

It is not too difficult to show that for a power law fluid the fenction f(z) is

given by
_ NG n4 1 f| e ety
ff(f)—z,nH@ (1_3n+1i) (12-17)

Figure 12-7 shows the F function for several values of n. The expected approach to
plug flow as the fiuid becomes more nonnewtonian is observed.

The F curve is characteristic, to some extent, of the geometry of the flow
region. For plane Poiseuiile flow, i.e., pressure flow between infinite parallel plates
{see Chap. 5), it may be shown that

Fle) = (1 —;)”2(1 +%D (12-18)

This F curve is closer to plug flow than that for a circular pipe.

It is interesting to examine the F curve for flow through a * perfect mixer.”
With reference to Fig. 12-8 let us consider a flow through a volume V which may
be thought of as a stirred tank. A stream of volumetric flow rate ¢ and volume
fraction (concentration) C, of some component enters the tank. Cg is held
constant, and the volume flow rate of effluent is 0. Hence the system is at steady
state, the contents of the tank are uniform, and the component of interest enters
and leaves the system at a rate Cy Q.

[
oy ol a
€y c
v Figure 12-8 Flow through a stirred-tank mixer.
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Imagine that at some instant of time t = 0 all the incoming component is
tagged or marked in some way, so that the tagged material can be distinguished
from the untagged material already in the tank. The total concentration C, of
the component of interest entering, residing in, and leaving the system is unchanged.
However, the fraction of tagged material in the effuent will not be C,, since the
effluent includes some material which was in the tank prior to the time t =0.

The tagged material leaving the tank at some time ¢ has been in the tank for a
time less than ¢. Since F{t) is the fraction of material leaving the system which has
residence times less than ¢, it follows that F{t)C, Q is the rate of efflux of tagged
material. If we measure the concentration C(t) of tagged material, then a material
balance gives

QC(t) = F(1)CoQ

_c0

or F(t) C
)

{12-19)
We conclude that the function F(z) may be obtained as the effiuent response to a
uniform “step change” in infiuent concentration of some marker. This provides
the simplest measurement of F curves for a flow system.

If the flow field is well defined we may calculate F(t), as was illustrated above
for the case of Poiseuille flow. For the case of a perfect mixer, we assume that the
contents of the tank are perfectly homogeneous and that the effluent is identical in
composition to the contents. A material balance on the tagged component in the
tank then takes the differential form

dac
VE =Q0C, - 0C (12-20)
C=0 atr<0

The initial condition states that no tagged material is in the tank jor t=<0 In
Eq. (12-20) C represents the concentration of tagged material in the tank and in
the effluent, since perfect mixing is assumed. The solution of Eq. (12-20) is

Cl)

T 1—e @ = F(r) (12-21)
if we define the mean residence time as
f= g (12-22)
then we have found that the F curve for a perfect mixer is
F=1—¢™ (12-23)

Figure 12-9 shows this F curve and compares it to piug flow and Poiseuille fow.
One feature to note is that the perfect mixer does not give an F curve with a
finite time lag, as in the case of Poiseuille flow (no response before ¢/f = Horplug

—
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r~ Perfect mixing

Paiseuilie flow

Plug flow

-

| W B Figure 12-9 F curvefora* perfect mixer” compared
0 1 2 3 4 1o those for plug flow and newtonian Poiscuille
13 flow,

flow (no response before r = 7). The principal distinction of the perfect mixer is the
very broad residence time distribution. Since a broad F curve implies heterogen-
eity with respect to the “history™ of material appearing in the output, some
caution is necessary in using F curves as a measure of mixing.

Residence time distribution is related to the degree of backmixing in a system,
which is the mixing that occurs in the primary flow direction. However, homogen-
eity across a cross section of the output is the normally desired mode of mixing,
and this is related more to transverse mixing, which is the mixing that occurs in the
direction normal to the primary flow.

A simple example of this idea is given in Fig. 12-10, which shows a minor
component being introduced into the inlet flow of two mixers. One mixer is a long
pipe, with the flow being such that a very low Reynolds number is attained. Thus
we have laminar flow. Let us suppose, however, that the velocity profile is very
flat, so that nearly plug flow is attained. This might be approximated by using a

L

Laminar flow

i

i% Ef\——.- . 0 - . .
Figure 12-10 Comparison of radial mixing in two

Turbutent flow systems which would show the same F curves.




306 FUNDAMENTALS OF POLYMER PROCESSING

power law fluid with small n or by having a thin lubricating annular layer of a
second fluid surrounding the main fluid component. In any event we assume
laminar flow with a very flat velocity profile, leading to a {nearly) plug dow F
curve. The second mixer is the same as the first, except that the flow conditions are
turbulent. Again a fairly flat velocity profile is attained, and a nearly piug flow F
curve is observed. '

Mixing in these two systems is distinctly different. Under laminar flow the
minor phase simply travels along the pipe axis at the same radial position, and the
distribution of minor component across the cross section is essentially unchanged
down the length of the pipe. On the other hand, the turbulent flow causes good
radial mixing, and the minor phase is dispersed across the radius, Hence the outlet
flow is radially homogeneous, and we would declare the minor phase to be well
mixed at the outlet. Because the F curve is more strongly affected by backmixing
than by radial mixing, the two flows show similar residence time distributions.
Because the final state of mixing is more strongly affected by radial mixing,
the two flows show very dissimilar degrees of mixing.

12-3 LAMINAR SHEAR MIXING

The discussions in the previous section should suggest that transverse mixing
plays a greater role in developing good mixedness than does backmixing. In
turbulent flows both types of mixing occur as a natural consequence of the dyna-
mics of the fiow. In laminar flow the geometry of the flow boundaries plays the
major role in determining the extent, if any, of transverse mixing. In fact, the
illustration of Fig. 12-10 suggests that no mixing oceurs in laminar Poiseuille flow,
This is not true, and this point again suggests the pitfalls of trying to discuss
mixing in general terms. In this section we discuss the type of mixing possible in
laminar shear flows and some means of evaluating this type of mixing.

We begin by again referring to a simple shear flow, such as plane Couette
" flow. Suppose, as illustrated in Fig. 12-11, two streaks of tracer exist at some
instant of time, one aligned in the flow direction and the other one aligned trans-
verse to it, in the direction of shear. The streak aligned in the flow direction

Y= M 1%
LT
Initizl configuration Configuration
of streaks [ afteratime ¢
i .
E
¥
u=Ug
y=0

Figure 12-11 “Mixing” of two streaks in a laminar shear flow.
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remains so aligned, with only slight changes in the geometry of the ends. If the
initial width W were small in comparison to L, then no substantial change in
shape would be discernable,

The other streak, initially aligned transverse to the flow direction, is rotated
through an angle 6. More important, however, is the fact that the streak is
elongated and made thinner. It is easy to calculate the characteristics of the streak
after a time ¢

Since the velocity field is linear (for this simple example) the upper and lower
ends of the streak are displaced, relative to each other, by an amount given by

their velocity difference times the duration of motion. In terms of the angle  we
find

f=tan™? iz (12-24)
where 3 = U/H. The relative increase in length of the streak is
L
T = (cos 6)7 =1+ ()" (12-25)

while the thickness of the streak decreases according to
= cos =1+ ()]~ 42 (12-26)
-

The thickness W is referred to as the striation thickness.

Within the context of the general goals of mixing the increase of length and
decrease in striation thickness both represent an increase of mixedness. The length-
ening of the streak increases the interfacial area (or length, in this two-
dimensional example) between the two phases or components. Thus there is
greater contact, per unit amount of minor component, between the two compon-
ents. While the decreasing striation thickness is not independent of the increasing
length, it can have an independent effect. If diffusion of some component is to be
promoted from the minor phase, then the rate of diffusion will be enhanced by
creating thinner streaks.

Thus we see that striation thickness can provide a guantitative measure of
mixedness in laminar flow systems for which the concept of a striation is meaning-
ful. We see further that we can promote this mixing by introducing the minor
compenent into a shear flow as a streak aligned transverse to the flow direction
but in the direction of the velocity gradient.

Let us examine another example of this type of laminar shear mixing. Figure
12-12Z shows a cylindrical Couette flow generated by rotation of the inner cylinder.

Figure 12-12 Mixing in laminar rotational
Couette flow.
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-/

Figure12-13 Definition sketch for analysis of mixing in & rotational

flow.
\

Suppose that at some initial time an element of fluid is tagged along a radius. After
one rotation the element has been drawn into a spiral. With reference to
Fig. 12-13 the length of the streak can be calcuiated.

We assume steady laminar newtonian flow, for which the velocity u, is given
by [see Eq. {5-58)]

1— (Ro/r)?

Uy = rQ Al (12-27)

1—x
{Q is in radians per time). The angular displacement 6{r) undergone by a “ parti-
cle” at a radius r, in: a time ¢, is given by

_ 1— (Rofr)2

6= Lo (12-28)

11—
{The minus sign arises from our arbitrary choice that clockwise is the direction of
positive 8.)
After a single revolution of the inner cylinder, which requires a time ¢ = 27/€Q,
two “particles,” separated by a radial distance dr, will have different angular
positions defined by

2 R

x~2—1r*

2
[+ dr)? — r?] = —°Ro_dr (12-29)

x"2— 17

df =

The differential length along the direction of the spiral is then

5 16K2R4
(dl’)z o (d]")z + T’(de)z = (dr)l {1 -+ m} (12-30)
After one revolution, then, the total spiral fength is
Ro 167‘[2R4 142
I=|dl= kol 2
J ! ‘[R; [1 + (%~ l)zr"’} dr
or
l 1 1 16752 172
Ro—R; T1-x L [1 + (7% — 1)21"4'] - {12-31)

where ¢ = r/R; .
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1 10 102 10°  Figare 12-14 Reduction in striation thickness
Number of revolutions () achieved in annular rotational Couette flow,

After n revolutions the relative extension of the streak is

! 1 ! 16n2n? |12
y = u = [ ¢ .10
W22} Rk~ 1% L [1 + T dr (12-32)
and the relative decrease in striation thickness will be
Wﬁ
57 =[] (12-33)

Figure 12-14 shows the reduction in striation thickness as a function of n. Two
points are of interest. The first is that the striation thickness decreases inversely as
the first power of the number of revolutions. The second is that very significant
reductions can be achieved by a small number of revolutions.

Now suppose that we consider an axial annular Poiseuilie flow upon which is
superimposed the circular annular Couette flow just described. If a single streak of
tracer is continuously fed across the radius, it will travel down the axis of the
system in a helical path. The analysis of striation thickness given above is valid,
since (for a newtonian fluid) the axial and angular flows are independent. It will,
however, be necessary to account for the residence time distribution associated
with the radial dependence of the axial velocity.

The velocity profile for axial annular Poiseuille flow is [see Eqs. (5-29) and
(5-30)]

1—r?~ —
20 In

RRE | .. (=)
In 2

In #

{12-34)
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1
rddlor

WW = sin 8 Figure 12-15 Definition sketch for consideration of
striztion thickness in combined axial and rotational

annular fow.

o

Over an axial length L an element of fluid will be deformed for a time

L
=
Hence the reduction in striation thickness must account for the fact that each
deforming element of the streak is deformed for a time that depends upon its
radial position.

With reference to Fig 12-15 we can easily calculate the desired striation
thickness. We see that from purely geometric considerations

(12-35)

i

W sin 8 (12-36)
and f is defined in terms of the angle § as
1
From Eq. (12-28) we find
do 200,
T;i—r = z—_z*“i—l r (12-38)

It follows then that

w (™% — Lr2j2en
W - L4 (:«:'2 _ 1)2r'4‘ 1/2 (12"39)
40%2
gives the reduction in striation thickness of an element of the'streak which is at the

radial position # and which has been deforming for a time . To complete the
calculation we merely have to introduce the residence time associated with each
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radial positioﬁ ¥, using Eqs. (12-35) and (12-34). The result, after introduction of
the dimensignless parameter
nL{R3 — RH)Q

E= 12-40
o (12-40)

gives the reduction in striation thickness at the tube exit as

1— 52
?/2 a4 2 ’
W’_Ewl(l—xz)2 T nx o (12:41)
W 2 1 — 24)2 =
* P Gk
In x

In Eq. (12-41) the approximation E > 10 has been made, It is not difficult to see
that E is just
E=0Qf (12-42)

where I is the mean residence time in the annulus. Under any conditions of
practical interest the condition E > 10 would be met. _

From Eq. (12-41) it can be seen that the striations become exceedingly thin
very near the cylindrical boundaries. The maximum striation thickness occurs at a
radial position: defined by the solution to (see Prob. 12-12)

PP bl

(nr+4)=0 (12-43)

nx

When this value of r(x) is introduced into Eq. (12-41), one finds
WI
—} =EYp 12-44
() =& (1244

where f () is the term multiplying E™! in Eq. (12-41), evaluated using a numerical
solution to Eq. (12-43). Figure 12-16 shows the results of this calculation.

107!

10—2 k
\\~

MANNS
N N k=07
AN

10—* AN

xmo.ss-v\\\\
10-% ' \ Figure 12-16 Maximum reduction in

19 102 10? 104 10° striation thickness in combined axial and
E rotational annular flow.

(H‘)
W max
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Effluent distribution

Rotating pipe Figure 12-17 Sketch of a system

for mixing in Poiscuille flow
Stationary feed distributer through a rotating tube.

Thus we have a model with which striation thickness may be estimated as a
function of design and operating parameters. Now it is appropriate to address the
question: Does this flow provide a viable (i.e., practical) method of mixing, and is
the model useful in the calculation of striation thickness?

Alfrey and his coworkers have answered both questions affirmatively and
have investigated several rotational mixer configurations both theoretically and
experimentally. One of the simplest such mixers is the rotating tube system shown
schematicaily in Fig. 12-17. The feed materials are distributed as alternate circular
sectors of each material which then pass in helical Poiseuille flow down the tube
axis. The rotation of the tube wall creates sets of spiral striations, and Alfrey shows
that the maximurmn striation thickness is

(%) -y (12-45)

Figure 12-18 Mixing achieved in Poiseuille flow through a rotating tube. (From Schrenk, Chisholm,
and Alfrey.)
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10~ ‘ \\

R
10-2)
Figure 12-19 Comparison of theory and experi-
10-3 ment for mixing in Poiseuille flow through a
1 10 102 10° 10% rotating tube. (From Schrenk, Chisholm, and
£ Alfrey.)

where E is again just Qt, and W, is defined, for this feed distribution, ast

_ 273R0
N

where N is the number of feedports for the minor component.

Experiments were performed by pumping two polystyrene melts to the feed
distributor. One was premixed with 2% carbon black; the other was pigmented
with 29 TiQ,. Figure 12-18 shows the mixture at the feed and at values of E
approximately 100 and 1500. It is apparent that good mixing can be achieved.
Measurements of the maximum striation thickness were carried out, and the
results are shown in Fig. 12-19. Agreement with the theory is quite good.

Alfrey gives a very simple design equation relating the length and rotational
speed of a mixer required to reduce the striations below a specified level at a given
volumetric throughput. It takes the form

W, (12-46)

a— 270

2-
IN*WZ, (12-47)

and is valid specifically for the feed geometry illustrated here.

It is interesting to note that the rotating anoular tube mixer [note Eq. (12-44)]
causes the striation thickness to decrease inversely with E to the first power. The
rotating circular tube system, however, shows an inverse dependence on the
square root of E. Since E Is a product of Q and ¢, it may be considered a rough
measure of the angular strain imposed on the fluid. Thus these two mixers differ
significantly in how effectively the shear strain can reduce the striation thickness.

The series of papers by Alfrey and his coworkers is a marvelous example of
the interaction of fundamental flow modeling with practical process design. The
reader should make the effort to examine this particular series of papers, which are
cited in the Bibliography.

1 Alfrey defines W, as the distance between successive “like” interfaces rather than as the actual
striation thickness. This is 2 more generally useful definition for this type of process.
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a?

Area element at time ¢ Distorted element after time interval ot

Figure 12-20 Definition sketch for consideration of distortion of an element of area.

Increased Area as a Measure of Mixing

We have seen above that one measure of mixing is the decrease in striation
thickness ofa streak of * contaminant.” In this section we consider a related aspect
of mixing: the increase in area of an element of contaminant. We find that while
striation thickness can be calculated only for fairly simple, well-defined flow fields,
consideration of area leads to a more general formulation of “ mixing rate,” from
which several useful generalizations may be drawn.

Figure 12-20 shows a differential element of area defined by two vectors I and
}2. The reader may recall that the area of the triangular element can be obtained as
half the magnitude of the cross product I* x 12;

& =41t x| (1248)

Now, suppose that a velocity field u distorts the area, in a time dt, to one
defined by vectors L* and L% Then the new area is}

A = 4Lt x 12| (12-49)

The vector I' has end points given by position vectors p* and g?. After a time dr
the element of material at p* moves to a new position P! given by

Pl=p' + v dt (12-50)
Similarly
Q' =q' +u'dt (12-31)

By u” and u? we mean the velocity vectors at (i.e,, in the neighborhood of ) points p
and ¢. The new vector L', then, may be written as

L'=Q' —P' =1+ (u? — w) &t (12-52)

t The superscripts are not exponents; they only indicate which vectors we are considering The
area a® may be considered a vector whose magnitude is given by Eq. (12-48) and whose direction is
normal te the plane defined by 1* and 12 This is consistent with our earlier treatment of surface
elements whose orjentation was defined by the unit outward normal,
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If the area element is of differential dimensions {and if dr is small as well), then

2 good approximation to the velocity difference above is found (after thinking and
sketching) to be

w—uf =1 Vu (12-53)

where Vu is the deformation gradient tensor with cartesian components

Ou, &u, Ou,

Bx dy 3z
du, du, du
Vu= | S8 9 oY -
u % 3 B (12-54)
Ou,  Bu,  Ju,
x gy oz

The product of the vector 1* and the tensor Vu is a vector with components

du. ;
+ 1 Sk o i=x,yz (12-55)

Ju;
' va), =1
( u) =1 dy T oz

* Px

The rate of change of 1*, then, is just

1
% =1'-Vu (12-56)

and the rate of change of area a” is, from Eq. {12-48),

3 ll dlz
%2% %x12+11 x S| =0 Vu) x P41 x (2 Vo) (12:57)

Equation (12-57) provides a general formulation of area increase due to defor-
mation. It shows several features that we have already alluded to in specific
examples treated earlier:

1. The rate of change of area clearly depends on the deformation gradients, the
components of Vu.

2. The dependence on the orientation of a streak relative to the deformation
appears explicitly since (I* - Va) x I* will vanish if 1! - Vu is parailel to 12
bxec=0ifb | c).

We can illustrate the application of Eq. (12-57) in two simple flow fields.
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w
g

u
L
it
12 L3
L2

Simple shear flow Let us calculate the change in area of the streaks shown in
Fig, 12-11. For the streak aligned transverse to the flow direction,

Figure 12-21 Shearing of a parallelepiped.

010
L=1"={0L0) Vu=g(o 0 0)
000

W =12 = (W, 0, 0)

H
I' Vo) x1?=0

Hence we find that da®/dt = 0. How can this be? Using the criterion of striation
thickness reduction, we would say that mixing occurs, since the streak is getting
long and thin. The answer is best seen with reference to Fig. 12-21.

It is not the area defined by I' x 12 that changes but the one defined by P x 13,
Define I° by

l‘-Vu=(£,0,0) I Vu=0

B=1P=(0,0 B)
Then
2
L4 T P 1 )| = P
and
1da® 1U
T I i -
2d 2H Y (12-58)

The total area of the streak, initially, is just

ar =2(WB + LB + LW)
The relative rate of change of rotal area is

2 da® LB

— — e 5 9.
ap dt  WB+ LB+ LW’ (12-59)
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L2
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Figure 12-22 Stretching of a parallelepiped.

When total area change is considered this result illustrates another feature of
laminar mixing that we have already noted. If the streak is initially distributed so
that the area that will change is one of the smaller surfaces, then the ratio LB/a,
will be quite small, and the relative change of area will be small. Conversely if the
area that does not change is the dominant one, no significant area increase occurs.

This latter point is relevant to the deformation of the streak aligned with its long
direction in the direction of flow in Fig. 12-11.

Simple elongational flow We consider a uniaxial elongation defined by
u=é{x, =y, —%z) (12-60)

and a streak of material initially aligned as in Fig. 12.22. We may calculate the

area changes in a simple manner by using the results given above, We will need the
following quantities:

Vo=¢
_1
2
L=1P=(00 B=P=(0B0 W=0P=(00 W)
P Vu=¢L,00) 1> Vu=—30.B0) 1B Vo= —%(0,0, W)
da' 1] dP a3

OO
|

O o O
o Q@

T T3 T XY x| m e
2 1 3
‘%=é %xlf’—}-l‘x% = HLWé — 4LWe) = LW
da® 1] at a1
%=§ = X P+l x = = $(BLé ~ $BLE) = 4BL

In this deformation all three surfaces change. The total area change is

d
T?}Z = {(BW + SLW + 4BL)
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and the relative change s
BW +4LW + 4BL

day
| 1 2.6
ap di ¥ BW + LW + BL (12-61)

The point of these two examples, in addition to illustrating the application of
the analysis given above, is to emphasize the strong role played by the initial
distribution of the minor phase which is to be mixed by the main flow. One should
also note that elongational flows can produce mixing; the relevant parameters are
the directions of the I vectors relative to the deformation gradient tensor Vu.

In complex fiow fields neither the 1 vectors nor the Vu tensor may be known,
One can conclude, however, that the rate of mixing will depend on the magnitude
of Vu, and in fact will be linearly proportional to it. Since Vu is related in a simple
way to the rate-of-deformation tensor A, it follows that the rate of mixing, defined
as the relative rate of increase of area, is linearly proportional to IT}/?, where I1, is
the second invariant of A.

If we define a mixing parameter M as the ratio of the area between the major
and minor phases to its initial value, say,

M= (12-62)

GTO
then we conclude that in laminar mixing

%‘% — 1 (12-63)
where the parameter k is related to the geometry of the mixer and the orientation
of the minor phase relative to the flow field.

We end this section by raising a false counterexample of the generalizations
developed above. In rationalizing the error of the example we shall again empha-
size the care with which it is necessary to examine even simple mixing problems.
In the analysis of the rotating tube mixer we find [using Eq. (12-45)]

W
— = (2Q) 12 D
(7)., e (1264)
Since striation thickness is inversely proportional to the area separating two
components, we may introduce M, defined earlier [Eq. {12-62}], and write
M = 201)4? (12-65)

The mixing parameter increases as the residence time increases, consistent with
our expectation.

Can we define a mixing rate for this system? One interpretation would be the
rate of change of M with respect to residence time, which leads to

dM o2
il (Z_I_) . (12-66)

Is this result consistent with the previous idea that dM/dr =~ I13/%?
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Figure 12-23 Lagrangian distortion of a volume
element in a combined rotational-axial flow.

To answer this we note that for this fow

2 81
G2 = -7-5-50;- =7 (12-67)
Hence it follows that
aM
= = EITL (12-68)

which clearly is at variance with the general result established earlier. One would
conclude that there is something unusual about this particular flow field.

Let us follow a small volume element being deformed by this flow field. Recall
that in the rotating rube, as opposed to the rotating annulus, the angular velocity is
g = {2, which is simply a rigid rotation about the axis. Hence the element does
not deform in the 8 direction. Indeed, if an “ observer™ were fixed to a “point™ in
the volume element he could not distinguish the kinematics of this flow from that
of ordinary Poiseuille flow, il he confined his observation to the kinematics of the
volume element.

The deformation, then, is as illustrated n Fig. 12-23, and only the surface
originaily normal to the z axis deforms. The relative rate of increase of area of that
face is just ¥j(r), where ¥(r} is du,/dr. We note, in particular, that Q does not
appear in this analysis of mixing, although it does appear in the previous treat-
ment of this flow. How does one resolve the two analyses?

The resolution lies in the fact that two different “views™ of the flow field have
been used. If one follows an element of fiuid as it moves through the tube the
so-called lagrangian view is used. Figure 12-23 corresponds to a lagrangian
anzalysis of deformation. On the other hand, if one examines 2 specific point or
plane in space, this is referred to as a eulerian view. Figure 12-13 {(although for
the annular case) or Fig. 12-17 shows the distribution of a streak at a specific
cross-sectional plane of the flow. This is a eulerian view. The fluid elements of
one of these spirals were not in the same feed segment at the same earlier time.

The eulerian view is the more appropriate if our concern is actually with the
cross-sectional distribution of the minor phase, as in the example of tubular
extrusion. The lagrangian view leads to the general analysis presented in this
section. It is more relevant, in a practical sense, to the calculation of mixedness
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when the minor phase is introduced as discrete elements. The latter case often
occurs when two materials in solid particulate form are brought together to be
melted and mixed.

Total Strain as a Measure of Mixedness

An element of material undergoing deformation is mixed at a rate that may be
characterized by dM/dt, as calculated in the previous section. In addition to the
rate of mixing, we are also interested in the amount of mixing that a system
achieves. Consider the example of Poiseuille flow in a long circular pipe. The shear
rate varies across the pipe radius and is easily seen to be expressible as

) 320 r
The mixing rate in this simple fiow is then
dM . 160 r
PRt (12-70)

which, obviously, depends upon radial position. An element of material which
moves down the axis along the radial position r attains a degree of mixing M(r)
given by
160 r
M=14—"-—t 12-71

+ zD? R ( )
where ¢ is the time of exposure to deformation,and M = i at: = (. We can define
the shear strain as §t =y, and write

M=1+%() {12-72)

Ifwe take this strain and weight it by the fraction of the fiow leaving the pipe
_ which experiences this strain, and sum (integrate} over the pipe cross section, we
can define a weighted average total strain (WATS) as

® 320 r

WATS =7 = | —Spdd (12-73)

o

In this integral we keep in mind that r and ¢ are dependent variables in the
sense described by Eq. (12-10), and /' (r) is the residence time distribution function,
given for Poiseuille flow by Eq. {12-14). Using these equations we easily find that

_16L 640 -
"3 "D (12-74)

where r is the mean residence time [Eq. (12-13)]. The interesting result is that the
WATS depends only on the geometric parameter L/D; increasing the flow rate
does not increase the strain, although it does increase the rate of strain or the rate
of mixing.
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The value of WATS as a measure of mixing lies in the following idea. In a
mixing system for which the geometry of the minor phase (the I vectors of the
previous section) is not known but for which the flow field is well defined, 7
provides a quantitative measure of mixedness, since it depends only on the flow
field. In terms of our understanding of mixing the concept of 7 provides a useful
connection back to the concept of residence time distribution. We shall return to
this point shortly in discussing mixing in the extruder.

Effect of Viscosity Ratio on Laminar Shear Mixing

In all the models treated to this point it has been assumed that the minor phase is
a fluid with a viscosity identical to that of the major phase. This is not likely to be
the case in the mixing of polymers, and would certainly not be the case in the
mixing of oils, blowing agents, etc., into molten polymers. In this section we
examine a simple model of the effect of viscosity on the mixing of two phases.

We consider 2 simple shear flow as illustrated in Fig. 12-24. The minor phase,
of viscosity ', is interlayered along the flow direction as shown. For each layer the
dynamic equations lead to

dr,,
e 0 (12-75)
or Ty = C; (12-76)

Furthermore, at the boundary between any two layers, the shear stress must be
continuous. Hence all the C; are equal to the same constant C. Thus in each layer
the velocity profile is linear, and
C
= o vy +a) {(12-77)

where g, is an integration constant.

’/”/ yw =H

/ F' ys

Y2
/ "‘:: T k
b Figure 12-24 Simple shear flow of layers
7A2NAY s of alternating viscosity,
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I we can calculate the constant C we can evaluate the shear strain imposed on
the minor phase by the continuous phase. To do so we must evaluate the con-
stants g;, using the no-slip conditions

=1 aty=y (12-78)
We know that
u=U  aty=y,=H (12-79}
from which it follows that
ul
C = 12-80
H+ay., ( )

(We imply here that the continuous phase, of viscosity u, wets borh rigid
boundaries. )
From Egs. (12-78) and (12-77) it follows that

Q; = ( a - 1),14»4“1‘3’—01_1 (12-81)

i—1 i—1

The no-slip condition at y = 0 = y, gives
a, =0 (12-82)

and the recursion relation of Eq. (12-81) gives

and, generally,

It follows that
ulU

wele i)z )

In the dispersed phase the shear rate is just

C= (12-84)

. C_uU N R
ek Gl e



MIXING 323

For the simple geometry assumed here we note that the volume fraction of
-dispersed phase, ¢,, is just

N hy
| b, = (5 - l)ﬁ (12-86)
and so we may write the shear rate as
. wU i -1
=214 £ -87
o= b1+ (B 1)e] (12:87
For u = u' the expected result ):zd = U/H is recovered.
Ifp/ > 1,
U U
T 2-
b= HTE (12-88)

Thus if the dispersed phase is very low in viscosity relative to the main phase, then

the shear rate in the dispersed phase is greater than the nominal shear rate U/H

and is independent of the viscosities, and depends only on the volume fraction ¢, .
If wu < 1,

i U U

=i <E (12-89)

Thus if the dispersed phase is refatively high in viscosity, it receives a smaller shear
rate than U/H, the factor being proportional to u/u'.

These results suggest that a high-viscosity dispersed phase is much more
difficult to strain (mix) than one of viscosity lower than that of the continuous
phase. One must be careful in generalizing this model to real mixing situations
since the geometric parameters (orientation of the streaks) may be important.

12-4 THE EXTRUDER AS A MIXER

The extruder is often called upon to perform more than a simple pumping func-
tion. Extruders are often fed with a mixture of pellets of two or more polymers, or
with a polymer and a second phase (filler, pigment, lubricating agent, etc.), with
the expectation that the output of the extruder will be homogeneous, This expec-
tation, of course, is met to varying degrees depending upon design and operating
variables.

. The ideas developed in this chapter can be used to evaluate the extruder as a
mixing device. We make use of the simple parallel plate model of the melt extruder
developed earlier in Chap. 6. The details of analysis are quite tedious, and the
reader is referred to McKelvey (see Chap. 6 Bibliography) and to Tadmor and
Klein for a more complete discussion.
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Figure 12-25 Residence-time-distribution functions () and F(¢) for the simple extruder model. CSTR
is the “perfect” mixer of Fig. 12-8.

The residence-time-distribution functions f(t) and F(t) are shown in

Fig. 12-25, In both cases, normalization to the mean residence time ¢ removes the

- dependence of these curves on helix angle and on the ratio of pressure flow to drag
flow. The mean residence time is given by

2L
U. sin 8(1 + @)
where the parameters are as defined in Chap. 6. A new parameter @ is introduced

here, as the ratio of the pressure flow component to the drag flow. For the
newtorjan fluid this can be shown to be

‘f‘:

(12-90)

I
b= — mgf (12-91)
where IT, was defined in Chap. 6 as
_APB?

I

=07 (12-92)
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Open discharge corresponds to @ = 0. Closed discharge occurs at @ = —1, Of
tourse the limiting case of closed discharge gives a value of ¢ which approaches
infinity.

The F curve for the extruder is more nearly plug flow than that for Poiseuille
flow. Thus the extruder should produce an output with a more homogeneous
“history " than that of pipe flow, and in this sense might be a good mixer.

Because of the transverse flow there are two components of A:

. du, . fu,
Yo == Y: = 5
dy dy

‘The magnitude of the strain rate is simply (311,)!/?, which is given by
=) = (3 + 3912 (12:93)

The weighted average total strain may be defined as

WATS =5 = j i (t) de (12-94)
o
where ¢, is the minimum residence time, and ¥ may be calculated by numerical
integration. The results of Pinto and Tadmor are shown in Fig. 12-26. It is appar-
ent that in the usual range of helix angles (say, 10° < # < 30°) it is necessary to
approach closed discharge in order to raise 7 to high levels.

It is interesting to compare the strain achieved in an extruder to that in a pipe
flow. From Fig. 12-26 a typical value of strain would be = 20L/B. Writing L/B as
(L/D)(D/B) and noting that typical values of these geometric parameters would be
L/D =25 and D/B = 10, we find an expected value of strain to be 7 = 5000. To
achieve the same leve! of strain in a pipe flow we find [from Eq. (12-74)] that an
L/D of approximately 1000 would be required. Such a large value would prove
impractical.

This model of the extruder as a laminar shear mixer is obviously crude. It does
help to suggest the manner in which the relevant parameters enter the process. We
see, for example, that the mixing is unaffected by the output, so long as the ratio of
pressure flow to drag flow, or @, is constant. Thus in scale-up of an extruder from
laboratory experiments, ¢ would have to be held constant in order to maintain
the same degree of mixing, and this would have significant implications with
respect to operating conditions.

The extension of Pinto and Tadmor’s work to power law fluids has been
carried out by Bigg and Middleman with interesting results. Figure 12-27 shows F
curves for the case that n= 0.2, with II, (as defined for a power law fluid) as a
parameter. As closed discharge is approached the F curve is nearly that for plug
flow.

The strain ¥ is shown in Fig. 12-2§ as a functien of I1,, which is related in a
nonlinear way to @ [except for n = 1, where IT, = }(1 + ®)]. We note that the
strain axis is logarithmic, and for small TI, the nonnewtonian fiuid receives
significantly less strain than the newtonian fluid, at the same value of IT,.
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Figure 12-26 Weighted average total sirain for the simple extruder model, according to Pinte and
Tadmor.
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Figure 12-27 F curves for a power law fluid (n = 0.2} and for 8 = 17.7°
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12-5 MOTIONLESS MIXERS

A class of mixer can be defined that has no moving parts and that achieves mixing
by its internal geometric design, which channels finid being pumped through it in
such a way as to cause mixing. Chemical engineers are already familiar with such a
motionless mixer: the packed bed. One does not normally encounter packed beds
in polymer processes because of the extremely high pressure drops that would be
required to achieve a reasonable flow rate through the packing. Nevertheless, the
concept of motionless mixing is easily introduced by using the packed bed as an
example.

Figure 12-29 shows a section of a packed bed consisting of a tube filled with
solid particles. An element of fluid moving through the void spaces of the packing
can undergo two events which cause mixing. The deformation field will strain the
element, and increase its area, as already discussed in Sec. 12-3, In addition to this
action, the packing can also cause “stream splitting™ in the neighborhood of
stagnation points of the packing. This splitting further reduces striation thickness.

Figure 12-29 A packed bed of particles,
viewed as a mixer. The detail shows an
element of fluid whick is strained and

which “splits™ in two near a stagnation
point in the flow,
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Figure 12-30 Helical elements of 2 Kenics Static Mixer.

In addition, stream splitting mixes material from one region with that from an
adjacent region, thereby providing a degree of radial mixing.

All motionless mixers create strain and cause mixing by that mechanism. The
distinguishing feature of commercial motionless mixers is the method whereby
stream splitting is achieved. Figure 12-30 shows the design of one popular com-
mercial motionless mixer: the Kenics Static Mixer. This mixer consists of a circu-
lar pipe within which are fixed a series of short helical elements of alternating left-
and right-hand pitch. The elements are fixed to the pipe wall, and the trailing edge
of one element is attached to, and forms a right angle with, the leading edge of the
next element.

The helical design of the central element causes a transverse flow to arise in
the plane normal to the pipe axis. As a consequence, fluid near the center of the
pipe is rotated out toward the circular boundary, and vice versa., Radial mixing is
achieved in this manner.

Figure 12-31 suggests what happens to a pair of fluids, initially segregated as
they enter a Static Mixer element. To a good approximation the stream is halved
cach time it passes into a new mixer element. Thus one would anticipate that
striation thickness would be reduced by a factor of 2%, where N is the number of
elements in series.

Element no.

Figure 12-31 Idealization of stream
No. of striations splitting in a Static Mixer.
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1078 — —

10-7 i i ] | Figure 12-32 Striation thickness reduction
a 12 24 based on the idealization of Fig. 12-31 and
N Eq. (12-96).

A common design provides that the ratio of axial length of a single element to
the pipe diameter is about 1.6/1. In terms of the L/D of a pipe containing N
elements, then, we find, for

L
5= 16N (12-95)
that
WWVE =2~iaep (12-96)
(!

Figure 12-32 shows the reduction in striation thickness according to Eq. (12-96).

This simple model of flow division is not exactly achieved in practice. Figure
12-33 shows the effect on the helical flow that might be anticipated due to viscous
effects, particularly the no-slip conditions which must be met at the solid surfaces.
Figure 12-34 shows the results of a mixing experiment in which an epoxy resin,
half of which is colored, is fed to a Kenics Static Mixer. After the resin flowed
through and filled the mixer, the flow was stopped and the resin polymerized.
Sections taken down the length of the mixer show similar striation reductions to
those anticipated in the sketch of Fig. 12-33,

The helical element of the mixer effectively reduces the size of the conduit
from the diameter of the empty pipe to something like half that diameter. Since
pressure drop is such a strong function of the “diameter” (or some appropriate
length scale normal to the flow direction), we would expect considerably increased
pressure requirements for flow through a Kenics Static Mixer. This turns out to be
the case.

Other motionless mixers are on the market, but their geometry is more com-
plex than that of the Kenics device. We choose to examine some features of the
Kenics Static Mixer in detail because that system is too complex to yield to the
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Entering 2 Leaving 2 Entering 3

Figure 12-33 Actual cross-sectional patterns in a Static Mixer arising from the transverse flow set
up by the helical element.

simplest modeling technigues discussed in earlier chapters but is still amenable to
somewhat more sophisticated modeling techniques. Thus the example provides a
vehicle for evaluating simple models and illustrates the process of introducing
successively more complex models.

We can begin by considering the pressure drop-flow rate relationship for
laminar newtonian flow. One of the simplest models would assume that the flow
field is identical to that for flow through a long pipe of semicircular cross section.

Figure 12-34 Progressive mixing in a Kenics Static Mixer. The two fluids are initia]ly'segregated.
Compare with Fig. 12-33. (Photo courtesy of Kenics Corporation.)
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Figure 12-35  Observed R factor for newtonian fow in a Kenics Static Mixer.

Problem 35-12 addresses itself to this flow, and with Fig. 5-9 one can find that

[ AP for Static Mixer 06
b AP for empty pipe of same diameter

(12-97)

Figure 12-35 shows experimental data for laminar newtonian flow. It is apparent
that this model for K underestimates the actual pressure requirement and fails to
predict the observed dependence of K on flow rate. (Note that the Reynolds
number for this flow is based on the diameter of the empty pipe, rather than on the
hydraulic radius, as discussed in Chap. 5.}

This simple model fails, particularly at higher Re, for several reasons. Pri-
marily it neglects the fact that since each element is only of the order of one
diameter in length, the velocity profile is continually developing and rearranging
as fluid passes down the pipe axis. This leads to an underestimate of the pressure
drop since a developing flow is much more dissipative than the corresponding
fully developed Hlow. Furthermore, the degree of the error due to this aspect of the
flow increases with increasing flow rate, since the length required to rearrange the
entering profile increases as the flow rate increases.

A second failure of this simple model lies in the fact that the transverse flow 1s
not accounted for, since it does not arise in the straight semicircular duct. It seems
essential, then, to account for the fact that the velocity vector of this helical flow is
a function of all three coordinate positions, and that the components u_ and u,
both contribute to the friction loss. This leads necessarily to a fairly complex
mathematical problem. Before turning to that problem, however, let us examine
some simple modifications of the simple model of the straight semicircular duct.

The “ path length ™ in the helical flow is longer than that of the straight flow by
a factor

2.2y 172
R, = (1 + 71—2) (12-98)
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where L, is the axial length of a single element, and where r is the radial coordinate
of a cylindrical coordinate system whose axis coincides with the pipe axis. A
particle traveling along the axis of the ceatral element moves an axial length
L(K, = 1), while a particle moving along the outer wall {r = R) travels a helical
length L = (L? + =*R?)*2, corresponding to K, = (1 + z2R¥/L3)"%. Let us
define an average K, the arithmetic mean of the extreme values of K, given by

- 7{2D2 1/2

KL‘—“;‘-E"%(I +TL?) (12-99)
We will refer to this as a path length correction. For an L, /D of 1.6 we find £ = 1.2.

A second factor that must be accounted for is the finite area of the helical

element in the cross section normal to the axis. If the element is of thickness ¢, its
area is approximately ¢D, and the presence of the element reduces the area avail-
able for flow by a factor

- 4t

Riy=1-— (12-100)
As a consequence the average velocity in the mixer, at a given volumetric flow
rate, is increased by a factor 1/K , relative to the average velocity in an empty pipe.
For lamiar flow we expect the pressure drop to be proportional to average
velocity, and so we might expect a larger pressure drop, by a factor 1/K 4, relative
to the empty pipe, at the same volumetric flow rate. For typical Static Mixers one
finds ¢/D = 0.1, for which case 1/K , = 1.15.

On the basis of these two factors we might expect a K factor for this simple

semicircle model to be
5 26K,
=%, {12-101)
For L,/D = 1.6 and /D = 0.1 we find K = 3.6. From Fig. 12-35 the observed
value for K, in the limit of very small Reynolds numbers, is 5.2. We conclude that
these modifications to the straight semicircle model fail to produce a reasonably
accurate estimate of K, even in the limit of vanishing Reynolds number.

The next level of sophistication examines the effect of the helical flow in
producing a transverse flow component. Tung has solved this problem by writing
the dynamic equations in a helical coordinate system. In the limit of very low
Reynolds numbers, for which the inertial terms may be neglected, and assuming
that L. /D is long enough that the flow is fully developed, Tung finds an analytical
solution from which the velocity components may be examined, Figure 12-36
shows the velocity field for the case L,/D = 1.6. In Tung's model L./D is the
“pitch” of the helix, defined as the axial distance required for the element to twist
180°. His model assumes that the element continues to twist in the same sense;
there is no periodic splitting of the flow as in the real system.

A particularly interesting feature of the velocity field is the strength of the
transverse flow. From Fig. 12-36 it can be seen that the magnitude of the trans-
verse flow is comparable to that of the axial flow. It is this feature of the Kenics
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180°

180°

o°

Figure 12-36 Compurted velocity components for low Reynolds number flow in a semicircular pipe
whose diameter is 2 continuous helix of pitch L /D = 1.6

Static Mixer which produces its strong mixing action, even in the limit of very
small Reynolds numbers.

For the case L,/D = 1.6 Tung finds that the predicted value of X is 4.7. This is
only 10 percent below the observed value. One concludes that, at “vanishingly
small” Reynolds numbers, the effect of stream splitting, the periodic redevelop-
ment of the velocity field, is a minor feature of the pressure loss. Of course, the
neglect of inertial terms in the helical solution produces a constant K. The exten-
sion of Tung's formulation of this problem to finite Reynolds numbers would
require numerical solution of coupled, nonlinear partial differential equations (the
full dynamic equations) ir a three-dimensional space. The expense of carrying out
such a solution would be difficult to justify.

One argument against extension of the solution is the observation that K is
constant at Reynolds numbers as high as 10. In most systems involving highly
viscous fluids it is not likely that one would exceed that Reynolds number. F igure
12-37 shows data obtained with four molten polymers at shear rates well into the
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Figure 12-37 Observed K [lactors for flow of polymer melts in a Kenics Static Mixer.

region of nonnewtonian behavior. The range of Reynolds numbers (based on
apparent viscosity) is approximately 1077 to 10™*. As can be seen, there is some
variation from one melt to another, but a constant vatue of K in the neighborhood
of 3 to 5 gives an adequate fit of the data.

It should be noted that the K value is observed to depend strongly on both
L./D and t/D. The data illustrated here, as well as Tung's theoretical work,
examined only a limited set of these parameters. Kenics Corporation provides
design data for its commercially available systems.

Once the velocity field is calculated other features of interest may be

Poiseuilte flow

F 05—

ntal

Figure12-38 Fcurve for a Kenics

! ! L i 1 I Static Mixer, Experimental values

0.5 1 1.6 were determined with newtonian
tff finids.
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Figure 12-39 The Ross ISG Mixer.

computed. Figure 12-38 shows the observed residence-time-distribution function
F{t}. The F curve is relatively close to that for plug flow behavior, indicating that
such a mixer would be quite good in terms of producing a homogeneous “ hist-
ory” of the elements of fluid leaving the pipe. The F curve resulting from theory is
a very poor approximation of the observed data. It is interesting to note that the F
curve predicted by the straight semicircular model is practicaliy identical to that
derived frot: the helical model. This suggests that the residence time distribution
is strongly affected by the stream-splitting feature of this flow. Tung examines
some aspects of this problem, but we will not deal further with it here.

Another motionless mixer that lends itselfl to some degree of analysis is the
ISG Mixer manufactured by Ross. Each element, as shown in Fig. 12-39, consists
of a pipe housing through which four cylindrical holes are drilled. At the inlet side
the four circular entrances lie along a diameter. At the outlet, the four exits are
along a diameter at a right angle to the entrance alignment. The four holes are at
oblique angles to the housing axis, with the result that the two holes which enter
nearest the pipe wall will exit near the center, and vice versa. This provides a
degree of radial mixing. The ends of each element are shaped so that a tetrahedral
chamber separates the exit of one element from the entrance of the next.

If two separated streams enter the Ross ISG Mixer in such a way that half of
each stream enters each of the four channels, then eight layers will emerge into the
first tetrahedral chamber. Figure 12-40 shows laminar mixing of a pair of poly-
ester resins. In general, the number of layers will increase by a factor of 4V, where

Figure 12-40 Progressive mixing in a Ross ISG Mixer. (Photo supplied by Ross Corporation.)
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N is the number of elements. Thus the striation thickness can be reduced accord-
ing to

w -N

W 4 (12-102)
which is considerably better than that achieved with the Kenics Static Mixer.
However, this degree of mixing is obtained at a considerable pressure require-
ment, relative to the Kenics device. The diameter of a single circular channel is
about one-fifth the diameter of the pipe into which the element is inserted. For
laminar newtonian flow a diameter reduction by this factor would require an
increased pressure drop by a factor of 5% = 625. However, each channel carries
one-fourth the totzl flow, so that the pressure increment would be about 160. Ross
supplies curves with which the expected pressure drop may be calculated.

Example 12-1 Compare the Ross ISG and the Kenics Static Mixer on the
basis of equal reduction of striation thickness at the same throughput and
pipe diameter. For the sake of the calculation take D = 1 in and @ = 10 gal/h,
and require that W/W, = 2.5 x 1074,

To achieve this reduction in striation thickness one would require 12
¢lements of the Kenics Static Mixer and 6 ¢lements of the Ross ISG Mixer.
The Kenics Mixer would have a length of about 19 in (taking L./D = 1.6)
while the Ross Mixer would be 6% in long. Let us assume a viscosity of 100 P.

As a basis, we first calculate the pressure drop through an open pipe 1 in
in diameter, 19 in long. From Poiseuille’s law,

128ulQ .
AP = —W = (0.73 pst
The Reynolds number is
40p
Re=—- =1,
e 2Di 0.05

for which a K factor of K = § to 6 would apply to the Kenics Mixer. Thus the
expected pressure drop in the Kenics Mixer would be approximately

AP(Kenics) = 4 psi

For the Ross Mixer, Fig. 12-41 is recommended by Ross, and we calculate
the pressure drop per element as 8.5 psi, and, for six elements,

AP(Ross) = 51 psi

At these low pressures the advantage of the Kenics Mixer would probably
be unimportant and could be offset by the more compact size of the Ross
Mixer. For application to very high-viscosity fluids, for which the same ratio
of AP{Ross) to AP(Kenics) would hold, the lower pressure drop of the Kenics
Mixer would be a definite advantage.
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0.1 1 10 102 10* Figure 12-41 Pressure drop in a Ross ISG
AP {psi per element) Mixer,

We had previously made a rough estimate that the Ross ISG Mixer
would have a pressure drop approximately 160 times that of an empty pipe of
the same length and diameter at the same throughput. The estimated AP for
the empty pipe in this example was 0.73 psi, and was for a length of 19 in. The
Ross ISG Mixer indicated a pressure drop of 51 psi for a length of 6% in.
Adjusting these numbers to an equal-length basis we find

AP(Ross) 51 19
AP(Poiseuille)  6.50.73
which is of the order of the expected result. The geometry of the tetrahedral

chamber that separates successive ¢lements, and the different lengths of indivi-
dual channels, makes a more accurate estimate difficult to achieve.

= 200

While no theoretical treatment of nonnewtonian flow through motionless
mixers is available, and very few experimental observations have been reported, it
is possible to anticipate the effect of nonnewtonian behavior on the pressure
requirements of the Kerics and Ross mixers. In either case the main factor is the
increased shear rate (at a fixed throughput) due to the reduction of “diameter” of
the flow channel. The Ross ISG Mixer is the easier to analyze, and we consider it
first. '

We begin with the power law analog to Poiseuille’s law, Eq. (5-17):

3 n H
AP = 2KL(1 = ”) % (12-103)

Suppose we put the same ¢ through a Ross ISG Mixer of the same outer radius R.
Then through each channel we have one-fourth the flow rate. Let us again take the
radius of each chanrel to be reduced by a factor of 5 relative to the empty pipe.
Then the pressure ratio would be

APlSG -

p = @) (12-104)
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Recall that for n = 1 this factor is about 160. For small i, say, n = 0.2, we find that
the pressure factor is only 10, relative to the same length of empty pipe. For
n = 0.5 the factor is 28.

For the Kenics Static Mixer it is more difficult to use a similar model since the
geometry is more complex. In particular the transverse flow is a complicating
feature. If we take the newtonian K factor as a basis, we can make an approximare
correction by considering the viscosity reduction in a Kenics Static Mixer relative
to an open pipe at the same flow rate, due to the increased shear rate.

The effective diameter of the Static Mixer is smaller than the corresponding
open-pipe diameter by roughly a factor of 2. A suitable number to use would be
the ratio of hydraulic diameter [Eq. (5-43)] to pipe diameter:

2
2 7D o6 (12-105)
D DzD+2D
The shear rate is increased by the inverse of this factor, and so the viscosity is
reduced by a factor of (0.61) " This leads us to estimate that the newtonian &
factors should be reduced to

K,=K({061)" (12-106)

If we take K = S in the limit of low Reynolds numbers (note Fig. 12-35), then we
estimate

R, =35(061)" (12-107)

For n = 0.2 we find K, = 3.4, while for n = 0.5, K, = 4. These numbers are in the
range of observed values for molten polymers (as shown in Fig. 12-37), which
lends some support to this crude analysis.

If we repeat the comparison of pressure requirements as carried out in
Example 12-1 for the case ol a highly nonnewtonian fluid, n = 0.2, we find that the
enormous increase in shear rate in the Ross ISG Mixer is able to offset its pressure
disadvantage relative to the Kenics Static Mixer.

If one wishes to mix two lquids under conditions of highly viscous flow, it is
not at all clear that the concept of stream splitting that characterizes motionless
mixers is truly applicable. The results of Fig. 12-34 certainly suggest the validity of
the concept, tut this may not be true under a!l possible operating conditions. For
example, if the minor component is introduced at a very low volume fraction, it is
conceivable that it could travel through a moticenless mixer along a tortuous but
coherent streamline which does not split anywhere. Further, if the viscosities of the
two fluids are different by several orders of magnitude, there is a tendency for the
low-viscosity fluid to migrate to the solid surfaces where the deformation rates are
highest in order to produce a flow with minimum energy dissipation. Thus the
low-viscosity fluid “ lubricates ™ the solid boundaries and does not fully participate
in the “mixing™ character of the flow field. This possibility exists in other “shear™
mixing devices such as the extruder and is not restricted to motionless mixers. In
general, some preliminary experirnental testing is needed to establish feasibility of
a specific mixing process.
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Many considerations enter into the selection of a mixing process, and many of
these considerations involve factors which are not amenable to modeling. (Indeed,
many factors are not purely technical.) In a very loose way one must be concerned
with the “efficiency " of a mixing process, but this term is very ili defined. Breoadly
speaking, we would like to get the most mixing for the least energy expenditure, if
the energy expenditure is significant. In the mixing of highly viscous materials at
high throughputs, energy input is often an important consideration.

We can examine one aspect of this problem here, because it is possible to
caleulate the power requirements for simple mixers, and it is also possible to
calculate some quantitative measure of the extent of mixing achieved by a simple
mixer. We illustrate this by comparing a melt extruder to a Kenics Static Mixer.

Let us begin by choosing weighted average total strain (WATS) as the meas-
ure of mixing, which we may calculate from Eq. (12-94) if the velocity feld is
known. The power requirement is also known from the velocity field.

For the simplest model of the melt extruder we may write the power in the
dimensionless form [Eq. (6-97)]

wB
m=4—6ﬂg+4tan2 a
Figure 12-26 gives WATS (in the form $B/L) as a function of § and ® = 211, — 1.
For the Kenics Static Mixer we use Tung’s theoretical velocity field for helical
flow in a semicircular pipe. This theory ignores the effect of the alternating left-
and right-hand pitch of the individual elements and so must be considered
approximate. As we noted earlier, Tung's theory gives good results for the pres-
sure drop and poor results for the residence-time-distribution function. Since
WATS depends upon f(1) through Eq. (12-94), it is likely that the calculation of
WATS through Tung's model is in error. Still, it is the best theory available {it is
also the only theory available), so we pursue the calculation.
Figure 12-42 shows WATS {as ¥D/L) as a function of the pitch (L,/D) of the
helix,

DIt
o
]

r Semicircular duct E

1 2 3 4 5 6 Fipure12-42 WATS fora Kenics Static
L,/D Mixer.
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We compare the systems on the following basis:
Flow rate = 100 Ib/h

Viscosity = 10° P

No die resistance

Extruder Kenics Static Mixer

DP=2in D=15in
LD=25  L/D=350
BD=01 L/D=16
9=17.7°

For the extruder, the isothermal power calculation gives # = 8.5 hp, and
Fig. 12-28 lets us find ¥ = 1750.

For the Kenics Mixer we find, from Fig. 12-42, a value of 7 = 640, We may
estimate the pressure drop in the Kenics Mixer (using a K factor of 5} to be about
3500 psi, and using Q AP as the power requirement, we find % = 0.4 hp.

Thus the Kenics Static Mixer achieves only a third of the mixing (using 7 as
the measure), but it appears to do so at an expenditure of only 5 percent of the
required power for the extruder. At this point one should question whether heat
effects in the extruder can reduce the viscosity sufficiently to bring these calcula-
tions closer together. This is left for 2 homework problem (Prob. 12-26).

12-6 MIXING IN STIRRED TANKS

The most common industrial mixing system is the stirred tank. Although there is
. some limitation to the level of viscosity beyond which good mixing cannot be
accomplished in a stirred tank, this level is sufficiently high that a consideration of
mixing of polymeric fluids in stirred tanks is in order.

The flow field in a stirred tank defies analytical description. If not turbulent,
the flow pattern is at best a complex three-dimensional time-varying laminar flow.
On top of this inherent complexity is the fact that an enormous variety of impeller
shapes are in use. Consequently one must go from consideration of very general,
qualitative features of mixing to very specific observations relevant to (and per-
haps only to) a particular piece of equipment. Most “design” of stirred-tank
mixing processes is based on experience, with only the broadest application of
basic principles.

We begin with some general considerations of stirred-tank mixing and then
review some experimental results of interest and relevance in consideration of

polymeric mixing processes. A useful general reference is the book by Uhl and
Gray.
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Figure 12-43 Turbine designs.

Mixer Configurations

The mixing vessel itself is generally of cylindrical shape. The shape of the rotating
clement provides the usual means of classification of stirred-tank systems. While
the classification is somewhat arbitrary the most common impellers are usually
grouped as propellers, turbines, or paddles.

The propeller is usually similar in design to the marine propeller. It produces
a strong axial flow and relies on entrainment of the serrounding fluid to give good
mixing throughout the vessel. Because entrainment is strongly suppressed by high
viscosity, propellers are of little value for mixing fluids whose viscosity exceeds a
few thousand centipoise. Hence they are of little interest for polymer processing.

Turbines are usually distinguished by having blades which are at a right angle,
or nearly 50, to the angular direction of rotation. Figure 12-43 shows some typical
turbine designs. In distinction to the propeller, the turbine produces a strong
radial flow which impacts on the vessel wall, is then directed up or down the wall,
and then enters the induced axial flow toward the impeller. The resulting circula-
tion produces good mixing in fluids of viscosities up to the neighborhood of 10* to
10% ¢P.

In both the propelier and turbine impellers the maximum velocities are in the
central portion of the tank because the moving blades are generally located near
the axis of rotation. The flow induced by such impellers relies on strong inertial
effects to produce uniform circulation through the vessel At sufficiently high
viscosity inertial fiow is suppressed in a relatively short distance from the moving
element. As a consequence fluid near the vessel walls, especially at the top and
bottom of the vessel, is practically stagnant,

The solution to this problem is to move the main surface of the impeller out
toward the periphery of the vessel, thus giving the class of impeller described as a
paddle. Figure 12-44 shows several types of paddle impellers. Paddle designs such
as the “anchor” and the “helical ribbon ™ provide adequate mixing at viscosities
as high as 10° cP. Beyond this viscosity stirred tanks are not very useful, and one
turns to extruders, motionless mixers, or other high-shear devices,

Another option available regarding the geometric configuration of & stirred
tank is the use of baffies, which are usually vertical surfaces rigidly attached to or
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Figure 12-44 Paddle designs.

near the vessel wall. Baffles act to “break up™ the flow pattern near the wali. In
effect they divert a portion of the slow wall flow radially inward toward the higher
shear region of the impeller.

Dimensional Analysis of Stirred-tank Behavior

We may characterize any stirred tank by specifying some appropriate (but arbi-
trary) linear dimension D and by giving the rotational frequency N as a measure
of its operating condition. A set of dimensionless geometric {shape) factors would
specify the shape of the mixing system.

‘ Relevant fluid properties would be density p and viscosity u (for a newtonian
fluid) or some alternate set of rheological parameters, such as K and n for a power
law fluid. Even though most stirred tanks have a free surface, the scale of the
system is so large that surface tension effects would be unimportant. The presence
of the free surface, however, often leads to vortex formation which affects the flow
field. The vortex shape represents a balance between pressure and gravitational
forces, and so the gravitational acceleration constant enters the analysis.

There are two main characteristics of a mixing tank for which we desire
information. One is related to the power #” required to operate under a given set
of conditions. The other is the time t,, required to achieve a desired degree of
mixing.

The power ¥ is most easily made dimensionless in the form
W

n
oD*N?

(12-108)
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[Units, of course, must be consistent. If the units of power include pounds force,

while density is in pounds mass, then the conversion factor g, = 32.2 (Ibm/1bf) x

(ft-s~ 2} must be introduced.] One usually refers to #°* as the power number.
A dimensionless mixing time may be defined as

= Nt, (12-109)

The mixing time is not as precisely defined as the power input. It is a subjective
measure based on the approach of the contents of the vessel to some {arbitrarily)
defined standard of mixedness. So long as one consistently uses an agreed-upon
definition of mixedness, then r,, provides a useful relative measure of the time
required to mix the contents of the vessel to uniformity.

We may think of #* and t* as dependent variables, 2nd we wish to relate
them to the independent variables appropriate to the description of stirred-tank
design and operation. We already know what these variables are. While the flow
field is too complex to yield to theory, we can state that the velocity uand pressure
p are related through the dynamic equations, along with appropriate boundary
conditions. In Chap. 4 we carried out a general dimensional analysis of these
equations. We concluded that, for 2 newtorian fluid, the important dependent
variables are the Reynolds number and the Froude number.

Appropriate definitions of these two groups, for a stirred tank, would be

DN
Re = —F (12-110)
I
DN?
and Fr= {12-111)
g
Thus, for newtonian fluids, we expect that
#"* = 4/ *(Re, Fr, shape factors) (12-112)
t* = t*{Re, Fr, shape factors) (12-113)
For nonnewtonian fluids we would expect 2 modified Reynolds number, such
as
DZNZ _"P
=2 P 12-114
Re' == — (12-114)

for a power law fluid, or we might introduce a Weissenberg number if elastic
effects were significant, in the form

Ws = AN (12-115)

where A is some appropriate relaxation time for the fluid.

Let us turn, at this point, to an examination of some typical experimental data
and successful methods of correlation of those data. We begin with results for
newtonian finids and then consider correlations of nonnewtonian observations.
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Figure 12-45 Power correlation for turbines. (After Rushion et al.)

Correlation of Data

We make no attempt to be comprehensive here or to include the great range of
impeller styles and shapes. The Bibliography provides access to a more complete
view of this area. Instead we present some data that are generally considered to be
reliable and representative of the class of impeller used.

Figure 12-45 shows the curves used to correlate the extensive data of Rushton
et al. who used baffled turbine-agitated mixing tanks with newtonian fluids. At
high Reynolds numbers the curves flatten out to give nearly constant %°*, This is
typical of many [orms of impellers but is of minor interest for polymer processing
since such high Reynolds numbers are not normally achieved. Instead, we would
more likely find ourselves operating in the low Reynolds number region where a
slope (on log-log coordinates) of —1 is the usual observation, Another point of
general interest is that in baffled systems the formation of a significant vortex is
suppressed, and as a consequence the Froude number does not enter the correla-
tion of the data.

Six dilferent styles of impeller (all turbines, however) are represented in
Fig. 12-45. In the viscous (low Re) region it can be seen that the width W of the
blade, relative to the impeller diameter D, is a more significant parameter than the
detailed shape of the impeller.

Figure 12-46 shows data obtained by Calderbank and Moo-Young, who
studied several nonnewtonian solutions in baffled stirred tanks. Their solutions
were representable by the power law, and the level of viscosity, at the level of shear
rate in the mixer, was in the range of 10 to 200 P. The most significant observation
was that, at least for the systems (fluids and impellers) studied, nonnewtonian data
could be superimposed on newtonian data if the right choice of apparent viscosity
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Figure 12-46 Power correlation for four-blade turbines: nonnewtonian fluids. (4fter Calderbank and
Moo-Young.)
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were made, [t was found, in agreement with similar studies by Metzner and Otto,
that one could define an “equivalent shear rate” for a stirred tank as

y= 10N (12-116)

where N is in units of revolutions per time. The coefficient 10 in Eq. (12-116) takes
on different values in different studies, depending, apparently, on the style of
impeller, but it serves as a useful estimate and we will not belabor its exact value.
The implication of this equivalent shear rate is that one may calculate § with
Eq. (12-116), find the apparent viscosity of the fiuid of interest from rheological
data in the appropriate shear rate range, and then use 2 newtonian power correla-
tion. While the approach appears to be reasonably successful, there are some
potential problems associated with this view.

In effect, the use of a single apparent viscosity implies that all regions of the
tank experience the same viscosity. This is clearly not true since the high-shear-
rate region is confined to the neighborhood of the impeller. Fluid near the tank
walls, or its bottom, is slowly moving, unless the specific impeller design promotes
agitation in those regions. Since, for most of the fluids of interest, the low-shear-
rate regions will have significantly greater viscosity than the rest of the system,
substantially stagnant regions may develop in the tank. One consequence of such
behavior may be the development of a “ two-compartment ” character to a stirred
tank.
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Figure 12-47 Sketch suggesting the development of nearly
stagnant regions in mixing of a highly nonnewtonian fluid.

Figure 12-47 suggests a stirred tank in which relatively well-mixed, low-
viscosity fluid is surrounded by slowly moving poorly mixed fluid of much greater
effective viscosity. As a consequence the system has the appearance of an efficient
mixer which occupies only 2 portion of the total vessel volume. The rest of the fluid
may exchange very slowly with the well-mixed region. In addition to being a poor
mixer, such a system would be quite disadvantageous if thermal effects were
important. .

Suppose, for example, that the system of Fig. 12-47 were a polymerization
reactor, and heat was transferred across the vessel walls in order to maintain a
suitable and uniform reaction temperature within the fluid. The stagnant regions
would have a different temperature from the well-mixed region since the rate of
heat transfer across the vessel wall would be significantly reduced by the adher-
ence of a viscous stagnant layer. Consequently the reaction rate would be highly
nonuniform throughout the vessel, and a nonuniform product would result, Other
implications of such behavior are equally obvious.

One would, of course, attempt to minimize such problems by using a well-
designed impeller, such as a paddle which promotes good peripheral mixing. It is
likely, however, that there would stili be some degree of segregation. The point is
that this kind of problem is aggravated by nonnewtonian behavior, and the use of
an effective newtonian viscosity in a power correlation tends to obscure our
awareness of other nonnewtonian phenomena.

Mixing-time studies have been carried out by introducing a “ contaminant ™
or “tracer” into a stirred system and measuring, at some point or points within
the tank, the concentration of the tracer as a function of time. As mixing proceeds,
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1 102 10* 10%  Figure 12-48 Correlation of mixing times
D2Np for turbines in bafiled vessels. (Data of

" Norwood and Merzner.,}
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the tracer concentration fluctuates but eventually approaches a steady value. One
defines a mixing time as the time required to reach the steady value, to within
some arbitrary standard of deviation. Thus the mixing time is based on an arbi-
trary definition of mixedness.

Data of Norwood and Metzner are shown in Fig. 12-48 for newtonian fluids
in baffled turbine-agitated systems. Reynoids numbers as low as unity were
achieved, but extrapolation beyond this point would be dangerous. We note that
the ordinate is not simply £* but includes geometric factors D/T (ratio of impeller
diameter to tank diameter) and Z, /T (ratio of height of liquid in tank to tank
diameter). In addition a weak (one-sixth power) dependence on Froude number is
noted.

Low Reynolds number mixing studies bave been carried out by Chavan et al,,
and some data are shown in Fig. 12-49. We note that for Re < 10 the dimen-
sionless mixing time flattens out. We also note that the mixing times for highly
elastic polyacrylamide solutions are considerably in excess of those for newtonian,
cor inelastic nonnewtonian, fluids. Ulbrecht and his coworkers have studied flow
patterns in the mixing of elastic fluids and suggest that the elasticity significantly
alters the kinematics of the circulation patterns within the vessel.

e®
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Figure 12-50 Correlation of blending times for a
10 1 | | helical-screw impeiler within 2 draft tube,
0.1 1 10 100 ® 2% PAA; O 1% PAA: ¥V 2% CMC;

Re 119 CMC.
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These “mixing ™ studies refer to a single fluid within which a tracer or conta-
minant is mixed. A related study is that of “blending” of two dissimilar (ie.,
different viscosity) fluids. Figure 12-50 shows some data of Ford and Ulbrecht on
blending of polymer solutions with water. For comparison the corresponding
single-fluid mixing-time curve is shown. It is apparent that biending requires more
time than mixing. The results are highly dependent on the geometry of the system,
the viscosity ratio and volume ratio of the two fluids, and on the elasticity of the
fluids. The original references should be consulted.

PROBLEMS

12-1 Determine the scale and intensity of the “mixture™ shown in Fig. 12-51. Let the side of the
smallest squarc be the unit of length, so that the total arez is 6400 square units. Use a sampling area of
100 square units. State clearly how many samples you take to establish average concentration. For the
scale determination calculate the correlation function by sampling at arbitrary points along a diagonal.
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Figure 12-51 “Mixture™ for Prob. 12-1.
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12-2 Find §-for mixtures $2 and §3 of Fig. 12-1.

12-3 Derive Eq. (12-17).

12-4 Find the F curve for combined pressure and drag flow between infinite parallel plates, for which
the velocity profile is .

¥y AP
wy)= U= - —y(H —
M=vg 2#LJ‘( ¥
Present the result in terms of the parameter I1, = APHEuUL.
12-5 Show that the area between the plug flow and perfect-mixer F curves is 0.736.

12-6 A quantitative measure of how close 2 flow system is to the plug flow or perfect-mixer limit is the
parameter §, defined as

where 4 is the area between the F curve of the system and the F curve for the perfect mixer.
Give the value of 8 for Poiseuille flow.

12-7 The theoretical F curve for a Kenics Static Mixer is shown in Fig. 12-38, Calculate F f(sce
Prob. 12-6).

12-8 Ruthvent calculates the F curve for laminar flow in a cireular tube whose axis describes a helix as
1/ry~38 ¢
Fa=| ’—*"(:) for —> 0613
4 t

Calculate § {sec Prob. 12-6),

12-% Evaluate the F curve for Jaminar Poiseuille flow with a lubricating wall layer. The sketch
(Fig. 12-52) defines this flow as one in which a thin annular layer of low-viscosity fluid surrounds the
main phase. Assume the lubricating wall layer is stable and itsell is in laminar flow. Define the
distribution lenction for fluid 1 only, ie., let/'(¢) be defined such that f(t) dt = 40, /Q,. Present graphs
for x = 0.8 and 095, and for g, /u, = 10 and 1000 at cach .

U

r=kh

# Figure 12-52 Laminar Poiseuille flow witha

r=0Q — — lubricating layer.

12-10 The F curve may be used to calculate conditions needed to “purge™ a system of old material,
Suppose a circular pipe has been used to deliver a colored polyethylene to a process. A change in color
of the processed material is to be made, and it is planned to simply displace the first material by
pumping in the second. The value of 1 — F gives the fraction of old material remaining in the pipe at
any time after the beginning of the purge,

Suppose we do not wish to start the process using the new color until $9 percent of the old color is
purged {rom the pipe. How much material is wasted in the purging process?
12-11 Derive Eq. (12-41).
12-12 Derive Eq. (12-43),
12-13 Derive Eq. (12-45).
12-34 Derive an equation similar to (12-47) for the annular rotational mixer.

+ Chem. Eng. Sei., 26: 1113 {1971).
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12-15 Molten polyvinyl chloride (PYC) containing 6.25% carbon black is fed to an annular pipe
through which an unpigmented PVC flows at a rate of 25 1b/h. The molten polymers are to pass
through a tubing die of 1-in ID and 14-in OD. The mandrel (the 1-in ID cylinder) is rotated at 60 rpm
and is 6 in long. The final carbon black concentration {volume [raction) is to be 0.5%. The annular
feedport system (shown in Fig. 12-53) is to be designed so that the black and ¢lear polymers have
approximately the same linear velocities at their point ol initial contact. The maximum allowable
striation thickness is 1 gm.

it

Black Figure 12-53 Annular (eed system.

How many feedports are required for the black melt? What is the angular opening of a feedport
segment? What is its width?

12-16 Assuming the pipe produced according to Prob. 12-15 has the same dimensions as the annular
die, caleulate

(a) How many feet per hour of pipe are produced.

{b) The pressure drop required to pump the melt through the 6-in annular rotating scetion of the
die.

(c} The encrgy required to rotate the die compared to the pumping energy required.

Assume the melt may be modeled as a power law fluid with n =% and K = 1 Ib[-5'"*fin.
12-17 Derive an expression {or the number of striations between any twe radial positions in an annular
mixer (inner tube rotating). Find the limiting value for the number of striations between the inner and
outer radii {the total number of striations} and explain the result. Assume 2 newtonian Ruid.

12-18 For Prob. 12-15 find the number of striations in the pipe cross section that le in the region
0.505 in < r < 0,620 in.

12-19 Using Eq. (12-41), predict the reduction in striation thickness as a function of axial length at the
midpoint between the inner and outer surfaces of an annular tube extruded under the following
conditions:

Dy=4in Q = 40 ib/h polystyrene at 450°F
D;=33in Q=117 rpm

Compare your predictions with the data of Schrenk, Cleereman, and Alfrey shown in Fig. 12-54.
Alse shown are data obtained with the outer cylinder rotating and the inner mandrel stationary.
Should the data be independent of which cylinder rotates, or is this only approximately true?
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12-20 Show that the residence time distribution for plane Poiscuille low of a newtonian fluid is

f(s)mf(l h)'”z

EYEl )

12-21 Calculaie the WATS for combined pressure and drag Aow between infinite parallel planes. Take
the drag flow component to be transverse to the dircction of the pressure flow. Present the results as
7B/L versus some appropriate dimensionless parameter. Consider both positive and negative pressure
gradients. You will need the result of Prob. 12-20.

12-22 Repeat the caleulation of Prob. 12-21 for the case that the deag and pressure flows are parallel,
You will need the results of Prob. 12-4.

12-23 Intuition suggests that the fractional reduction in striation thickness, ¥/ W, , should be related
in some simple way to the strain imposed on an element of fluid, Calculate WATS for the annular
mixer with rotating inner cylinder, and compare WATS to (W'/W,),,... with regard to the dependence
of each on operating and design variables.

12-24 Find f{x), as defined in Eq. (12-44), in the limit of 2 — 1.

12-25 Develop a model for the newtonian kinematics of the combined torsional-radial fow shown in
Fig. 12-55.

. Stationary disc

Input from reservolir at pressure P Figure 12-55 Combined torsional-radial flow.
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{a) Give the compoenents of u and A.
(b) Caleulate 1T, .
{c) Find the relationship between pressure drop and flow rate.
(d) Find f(z).
{e) Find WATS.
12-26 Rework the example at the end of Sec. 12-5 and account {or the effect of heat generatlon ineach
system, Use the adiabatic analysis for the estimate.
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12-4 The extruder as a mixer
- The concept of weighted average total strain is introduced in

Finto, G., and Z. Tadmor: Mixing and Residence Time Distribution in Melt Screw Extruders, Polym,
Eng. Sci., 10: 279 (1970).

See also

Tadmot, Z., and I Klein: Mixing in Extruders, chap. 7 in “Engincering Principles of Plasticating
Extrusion,” Van Nostrand Reinhold Company, New York, 1970.

Application to extrusion of power law fluids, and experimental verification of
the theory, is given in

Bigg, D., and 8. Middleman: Mixing in a Screw Extruder. A Model for Residence Time Distribution
and Strain, Ind. Eng. Chem, Fund., 13: 66 (1974).

An important mixing topic which we have had to leave out here is that of
twin-screw extrusion. An introduction to simple models of these extruder mixers
can be gained through the following papers:
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Kaplan, A., and Z. Tadmor: Theoretical Model for Non-Intermeshing Twin Screw Extruders, Polym,
Eng. Sci., 14: 58 (1974).

Janssen, L., L. Mulders, and J. Smith: A Model for the Output from the Pump Zene of the Double-
Serew Processor or Extruder, Plast. Polym., 43: 93 (1975).

Wyman, C. E.: Theoretical Model for Intermeshing Twin Screw Extruders: Axial Velocity Profile for
Shallow Channels, Polym. Eng. Sci., 15: 606 (1975).

Todd, D. B.: Residence Time Distribution in Twin Screw Extruders, Polym. Eng. Sci., 15: 437 (1975).

12-5 Motionless mixers

The theoretical analysis of flow in a Kenics Static Mixer is given in the Ph.D.
thesis by Tung:

Tung, T.: “Low Re Entrance Flows: A Study of a Motionless Mixer,” Ph.D. thesis, University of
Massachusetts, Amherst, 1976.

Chen, 3. J, and A. R. MacDonald: Motionless Mixers for Viscous Polymers, Chem. Eng., March 18,
1973, p. 105.

12-6 Mixing in stirred tanks

In addition to the Uhl and Gray reference above, a good general reference is

Holland, F. A, and F. 8. Chapman: “Liquid Mixing and Processing in Stirred Tanks,” Reinhold
Publishing Corperation, New York, 1966,

Unusual agitator designs are discussed in
Ho, F. C, and A. Kwang: A Guide to Designing Speciai Agitators, Chem. Eng., July 23, 1973, p. 94.
Figure 12-45 is based on the data in

Rushton, J. H., E. W. Costich, and H. J. Everett: Power Characteristics of Mixing Impellers, Cherm.
Eng. Prog., 461 467 (1950).

Figure 12-46 shows a small fraction of the data given in

Calderbank, P. H., and M. Moo-Young: The Prediction of Power Consumption in the Agitation of
Non-Newtonian Fluids, Trans, [nst, Chem. Eng. (London), 37: 26 (1959).

Other power studies in nonnewtonian fiuids include
Metzner, A. B, and R. E. Otto: Agitation of Non-Newtonian Fluids, AIChE J, 3: 3 (1957).

Mixing rates are studied in

Norwood, K. W, and A, B. Metzner: Flow Patterns and Mixing Rates in Agitated Vessels, AIChE J.,
62 432 {1960).

Chavan, V. V_, D. E. Ford, and M. Arumugam: Influence of Fiuid Rheclogy on Circulation, Mixing
and Blending, Can. J. Chem. Eng., 53: 628 (1975},

Ford, D, E., and J. Ulbrecht: Blending of Polymer Solutions with Dilferent Rheological Properties,
AICHE J., 21: 1230 (1975).

Some practical aspects of design of agitated polymerization reactors are dis-
cussed in

Beckmann, G.: Design of Large Polymerization Reactors, chap. 3 in Ade. Chem. Ser. 128, 37 (1973).




CHAPTER

THIRTEEN
HEAT AND MASS TRANSFER

He who, for the sake of learning, lowers himself by exposing his ignorance, will
ultimarely be elevated.

Ben Azzai

In many polymer processes heat and mass transfer occur within a fiuid while it is
undergoing some flow process. Most of the problems treated so far have ignored
this possibility while isolating and focusing on the fluid dynamics. Exceptions
have been those preblems where viscous heat generation was included through
introduction of a very simple energy balance: the first law of thermodynamics for
‘an adiabatic system.

Now we turn to consideration of flow processes in which heat and mass
transfer play a significant role, and for which a more general theoretical founda-
tion must first be established before we can attempt to model such processes. We
begin by deriving a generalized transport equation which will describe either heat
or mass transfer. Then, through a series of exampies, we will illustrate the model-
ing of a variety of important polymer processes in which heat and/or mass transfer
either alters the flow process or is itsell the dominant process of interest.

13-1 A GENERALIZED TRANSPORT EQUATION

We consider a continuous medium characterized by a velocity vector u(x, ), a
stress tensor T(x, £), and a mass density p. For the problems of interest, it will
suffice to consider the mass density to be a constant. We wish to allow for the
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possibility that within the fluid there is a nonuniform temperature distribution
‘T(x, r) and a composition distribution ci{x, t). The subscript { on ¢ refers to each
distinct chemical species in the fluid.

The first question to consider is whether the derivation of the continuity
equation and the dynamic equations in Chap. 3 must be modified for a noniso-
‘thermal multicomponent fluid. The immediate answer is no. So long as we under-
stand that the quantities represented by u, T, and p are defired at a point in the
fluid which is locally homogeneous, in which composition varies continuousty,
then the results of Chap. 3 are stll valid.

We require here, as well, that the temperature and composition fields T'(x, ¢)
and ¢,(x, t) be well defined and continuous. In particular, we want to introduce the
concept of a densiry of internal energy X - and a density of chemical species X, We
do this in the following way:

dX;=pC, dT  or X,= j pC, dT (13-1)

Xi=¢ (13'2)

Equation {13-1) embodies the notion that internal energy is measured relative to
some reference state. Thus we can talk about the change in internal energy, in
differential form, or uvse the integral form with the internal energy measured
relative to a standard state at the temperature of the lower limit of the integral.

In Eq. (13-1) C, is the heat capacity (.., in units of Btu/lbm-°F). This gives
X7 the units of Btu/ft* (taking p as Ibm/ft?), 2 “density” of internal (thermal)
energy. In Eq. (13-2) we choose molar corcentration units for ¢;, that is, moles of
species i per unit volume.

We note that the mass density p and the individual molar densities ¢; are not
independent but are related by

b= My (13:3)

i=1

where M; is the molecular weight of species i, and the summation extends over all
n separate species in the mixture.

Now let us set up a fixed cartesiar coordinate system and consider an element
of volume through which fluid passes, as in Fig. 13-1. In a manner similar to that
used in Chap. 3 in the derivation of the continuity equation, we can derive an
equation for conservation of each chemical species and for conservation of ther-
mal-energy. We note that the word conservation is something of a misnomer here.
While mass is conserved, chemical species may interconvert through reactions.
Thermal energy may be “created™ through viscous dissipation (mechanical
conversion) or through chemical reaction (exothermic or endothermic processes)
or phase change.

>
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%, X1
dxy

axy
Figure 13-1 Differential control volume for derivation of
X5 the transport equation.

Within the volume element the internai energy content, or the amount of any
chemical species, changes at a rate which we may write as

d
— dx, d
aIX dxl Xq AX4

where X may be either Xy or X;.

Tf fluid crosses a surface of the volume element, then that flow carries internal
energy and chemical species in and out of the volume. Any “parcel” of fluid
crossing a surface of the control volume has a “ density ” X (we will not distinguish
between heat and chemical species, since the comments and calculations are iden-
tical) and crosses the surface with velocity u.

As in the derivation of the momentum equation (Chap. 3) we simply multiply
the appropriate density by the velocity component normal to each face to find the
convective flux across each face. Thus we find

Flow into face dx; dx; = Xu, dx, dx,
Flow into face dx, dxy = Xu, dx; dx;

Flow into face dx; dx, = Xu, dx; dx,

Note that in each case it is the “density” times the velocity u; normal to the
surface of interest. Since both thermal energy and chemical species concentrations
are scalar quantities, X has no direction associated with it. The area factor con-
verts the flux Xu; to a rate.

The sum of the three terms above gives the flow rate across the three ortho-
gonal surfaces in the coordinate planes. The other three surfaces experience simi-
lar flows, but we must account for the possibility that X varies spatially, Across
the parallel surfaces, then, we have, by Taylor’s theorem, flow rates given by

d (Xu; dx; dx) dx; -

Xuy dx; dx;, + o,
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Consequently the ner flow, the convective flow, across all six faces, is given by [see
‘Eq. (3-33)]

8

‘ Fs]
CX= (EXUQ +ax2

Xu, + a—aﬁX%) dx; dx, dx, {13-4)
X3

In addition to convection, both heat and chemical species may cross the
control-volume surfaces by a molecular, diffusive, mechanism. In the case of heat
transfer we usually refer to this as conduction. In speaking generally of X, rather
than specifically of X or X, we will simply use the term diffusion. We will definea
diffusive flux J so that the rate of transfer of X across each face, by diffusive
transport, is

Jiodx; dx, fori=1,2,3

Note that J is a vector quantity, and we multiply the component of the flux vector
in each i direction by the area normal to the i axis. Similar terms are expressible
for the parallel control surfaces, and again the net flow is given, after application
of Taylor's theorem, by

d é

D=|-—J -—
dx, 1+6x2

3
Js +53—C;J3) dx, dx, dx, (13-5)

In considering a balance on thermal energy or chemical species we must
account, as noted before, for the possibility of generation of heat or species by
various physical mechanisms. For the moment, let us simply define a generation
term, per unit volume, such that G dx, dx, dx, is the rate of change of energy or
amount of a chemical species due to some mechanism of conversion.

If all these inputs are added we find, after noting that the differential volume
terms cancel, an eguation of the form

X 3] d
e (Xu) — — T, i -6
Py o) (Xu,) T J;+G  (sum over i) (13-6)

{Our signs arise from the convention that the so-called net fiows are differences of
inputs and outputs: A positive net flow means a greater inflow than outfiow. G is
defined to be positive if X increases.)

The convective terms may be rewritten in the form

] X aui R
o (Xu;) = g Xa—xl. (sum over i) (13-7)

The sccond term on the right-hand side vanishes by virtue of the continuity
equation since we assume the fiuid is incompressible. As 2 consequence we find

DX 00X 9X é
—_ — f— e — { 13"8
¥ +u,a ; 3 J.+ G {sum over i) { )

i




358 FUNDAMENTALS OF POLYMER PROCESSING

The diffusive term may be written in vector notation as

0
—-J = - =di -
) V-J=divlJ (13-9)

We may then write Eq. (13-8) in the general format

734
-y -
Di J+ G {13-10)
In cylindrical polar and spherical coordinate systems Eq. (13-10) has the form
Cylindrical:

X X wdX X 1@ 164, &J,
Srw Rt = e = = 2E G (1341)

Spherical:
oxX 0X | updX u, 0X

¢

5% T, 50 rein00g

18, 1 8 . 1 a7
= ng——— e -
J Jp st rsin 6 30 +G (13-12)

- _r_zarr * T Y sin 606

We will refer to Eq. (13-10) as a generalized transport equation. To solve the
equation it is first necessary to relate the diffusive flux J and the generation term G
to the dependent variables X and u. This situation is quite similar to what we
faced with the dynamic equations: It was necessary to introduce constitutive
equations relating T to u. In the same sense we must now introduce constitutive
equations for J and G.

In the case of internal energy, the variable X 1 is usually replaced by tempera-
ture, using Eq. (13-1). As a consequence the transport equation for internal energy
_becomes an equation with T as the dependent variable. We will continue to carry
X as the general variable when we do not wish to distinguish between heat or
mass transfer, since this will let us economize on space in several subsequent
developments. However, we note here that in terms of temperature Eq. {13-10)
takes the form

DX, 8X.DT DT

i =1 bt == TV I G (£5-102)

13-2 CONSTITUTIVE EQUATIONS FOR DIFFUSION

Nature has been kind to us! We find that for a great variety ‘of materials having a
wide range of properties, the relationship between diffusive fiux and density may
be expressed in a linear form. In the case of heat conduction Fourier's law is found
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to hold, which we write in the form
Jr=—kVT (13-13)

This equation defines the thermal conductivity .
For molecular diffusion we normally observe Fick’s law to hold, expressed in

" the form

J; = —95 VC‘- (13-14)

This equation defines the species diffusion coefficient %, in the fluid. Equation
{13-14} is actually an approximation, in the sense that in a multicomponent mix-
ture the flux J; depends on the gradients of all species. However, virtually no data
are available for multicomponent diffusivities of interest to us here, and so
Eq. (13-14) is used as a definition of 2,. This point is discussed more fully in
chap. 18 of Bird et al. who note that if species i is in dilute concentration one may
use the diffusivity of species i in the material which makes up the bulk of the
system. This is not always valid in polymer-solvent systems, and several references
are suggested which amplify this point.

Since our interest is in incompressible materials we may define a generalized
diffusivity which again allows us to write the transport equations for heat and
species as a single equation. We begin by writing Eq. (13-14) in the format

Ji= - VX, (13-15)

where, obviously, «; = 9;, and X, is as defined in Eq. (13-2). We rewrite Fourier's
law in the same format, namely,

I = —ay VX, (13-16)
by defining a thermal diffusivity as
k k
- - 13-17
T 0C, T oC, (13-17)

The latter part of Eq. (13-17) is consistent with the assumption of incompressible
fluids, for which C, = C,.
Thus we may write Eq. (13-10) for either heat or mass transfer as

DX
—=V-a«V 13-18
T aVX + G { )
It is interesting to note the resemblance of Eq. (13-15) to the model of the
purely viscous fluid, written as

=1 A =n(Vu+ V') (13-19)

Here we have used the vector format (in order to display the resemblance) Vu for
the tensor whose cartesian components are du; /éx;. V7u is the “ transpose ™ of Vu
and has components obtained by interchanging the indices on Vu; that is,
VTu = 8u;/dx;. If we note that pu is the momentum density (it was treated as such
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in the derivation of the dynamic equations in Chap. 3), then we may write
Eq. (13-19) as

== v(Vpu + V' pu) (13-20)

where v = #/p is the so-called kinematic viscosity. In this form, by analogy to
Eq. (13-15), we speak of t as the momentum flux tensor, and v is the momentum
diffusivity. Note that v, 2;, and k/pC, all have the same units: (length)® per time.

While #, and hence v, is a function of the invariants of A for most polymeric
fluids, there is no strong evidence for a parallel situation with regard to « for heat
or mass transfer. Indeed, the amount of data available for the «'s of polymers is
quite sparse by comparison with that for nonnewtonian viscosity. It does appear
that 9, is quite a strong function of temperature and composition (Le, of ¢;),
whereas the thermal conductivity k is a relatively weak function of temperature
and composition.

Thermal Transport Coefficients

The thermal diffusivity of polymer melts appears to be a weak function of temper-
ature, independent of molecular weight, and indeed does not vary greatly from
polymer to polymer. Excellent data are presented by Shoulberg, a selection of
which is presented here. The method of measurement gives the thermal diffusivity
directly; individuval values of k, p, and C, were not determined. Figure 13-2 shows
data for commercial-grade polymers, and includes polymethyl methacrylates,
polystyrenes, vinyl copolymers, polyethylene, and polyvinyl chloride. The com-
ments of the paragraph above are obvious and need not be enlarged upon.

Figure 13-3 shows data for polypropylene giving k, p, and C,, as functions of
temperature, The calculated value of o is also shown. We note the cusp in the C,
data, associated with melting of the polymer, for which the heat of fusion is
reported as AH,, = 41 cal/g.

Figure 13-4 shows C, data of Nylon 66. Again the apparent increase in C,
associated with melting, which involves a heat of fusion of AH,, = 56 Btu/lb, is
seen, suggesting a melting temperature of 262°C. It is noted, however, that when a
polymer is heated or cooled at a relatively high rate, as in most processing opera-
tions, the phase change does not occur at equilibrium. As a consequence, the
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melting and freezing points can differ considerably and indeed depend on the rate
of heat transfer. In making calculations for the freezing of injection-molded nylon

parts, one usually takes the freezing point to be about 20°C below the melting
point.

Species Diffusion Coefficients

In contrast to observations on rhermal diffusion, the species diffusion coefficient
depends strongly on the chemical identity and thermodynamic state of the poly-
mer and the solvent or penetrant. Indeed there is such a wide range of possible
behavior that it is useful to begin with a discussion of two limiting situations: the
dilute solution, where the polymer concentration is quite small, and the bulk
polymer, where the diffusing species is present at a very small concentration. The
dilute solution region is of somewhat less interest than that of the bulk polymer,
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since relatively little processing is carried out on dilute solutions. The higher
polymer concentration fluid occurs more commonly, as in devolatilization of a
monomer-polymer reactant mixture, or casting of film from concentrated
solution.

We will present here some indication of typical behavior so that we can
proceed with the presentation of suitable models of processes in which diffusion
plays a significant role. More complete discussions of both theoretical and exper-
imental aspects of diffusion in polymers are available in the Bibliography. We also
note a general reference, the book “ Diffusion in Polymers,” edited by Crank and
Park.

One of the simplest models of diffusion in l1qu1ds is the Stokes-Einstein equa-
tion, which predicts

xT
6ru R,

(13-21)

AB =

for the diffusivity of solute 4, of “molecular radius™ R, through a liquid B of
viscosity u,. The absolute temperature is used, and » is the Boltzmann constant,
which is just the gas constant per molecule, R/N, where N is Avogadro s number
(6.02 x 10%* molecules/g mol). The Stokes-Einstein equation is found to be a
good model for the diffusivity of relatively large spherical molecules through a
solvent of smaller molecules in dilute solution where no interaction among diffus-
ing species occurs.

The Stokes-Einstein equation is based on a “ hydrodynamic theory ”; it treats
the diffusing solute molecule as a particle moving through a continuum, subjected
to a viscous drag according to Stokes’ law. A different approach is the Eyring rate
theory, which is based on the “hole theory” of the liquid state. Diffusion, accord-
ing to this theory, occurs when a molecule shifts its position from one “hole™ in
the liquid to another. An energy barrier must be overcome to bring about the shift,
and absolute rate theory is used to predict the frequency of rearrangement. The
result of the rate theory is
(13-22)

B\ RT

»T { N2 E,;—E
( ) exp uB A8
where ¢ = parameter related to the number of nearest neighbors of the diffusing
species
V = molar volume of the solvent
E’s = activation energies for viscosity and diffusion

At the other extreme from the dilute solution we must consider the diffusion
of 2 solute molecule through nearly pure polymer. This is the case approached as
nearly complete devolatilization is achieved in the removal of solvents from a
polymeric solution. It also corresponds to the case of diffusion’ of solutes through
solid polymer, as in plastic films used for packaging to reduce the entry of conta-
minating species.



HEAT AND MASS TRANSFER 363

104
z o)
£
3
=)
106
‘ | ' ‘ Figure 13-5 Diffusivity of benzene in polyisobutylene-
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A theory useful for the concentrated region is that due to Doolittle and Fujita,
This is basically a “hole theory™ written in terms of the “free volume” in a
polymer. The free volume is expected to depend strongly on polymer concentra-
tion when the fluid is nearly pure polymer. The Fujita-Doolittle theory takes the

form

g _ oy
90 - A + BU]_
where v; = volume fraction of diluent (1 ~ v, is volume fraction of polymer)

A, B = functions of temperature
P, = diffusion coefficient in the limit of vanishing v, (pure polymer)

log {13-23)

With the medels above as background, let us examine some examples of
experimental data on diffusion coefficients in polymers. We begin with a study, by
Ferry and coworkers, of the diffusion of benzene in polyisobutylene-benzene solu-
tions. Figure 13-5 shows diffusion coefficients at 70.4°C, for concentrations in the
range 0.385 < v; < 1. (The point at v, = 1 is the self-diffusion coefficient of ben-
zene.) The polymer has a viscosity average molecular weight of about 1.5 % 105, A
sharply fractionated sample, with a molecular weight of 0.5 x 10%, was examined
(the triangle symbol on the figure) and no effect of molecular weight was observed.

A test of theory is shown in Fig. 13-6. The form of plotting should yield a
straight line if the Fujita-Doolittle theory provides a good model; it apparently
does for almost all the concentration range studied. If the dilute solution region
(v1 nearly unity) is examined more closely, we find, in Fig. 13-7, that the Fujita-
Doolittle theory holds up to about 929 benzene (by volume). For comparison the
dilute solution models, which predict an inverse relationship between diffusion
coelficient and viscosity, are tested in the form

2 5 1

= 13-24
Dy 1 Mg ( )
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Here 5, is the relative viscosity, defined as the ratio of solution to solvent (ben-
zene) viscosity, and 2, is the self-diffusion coefficient of benzene. We see that,
except in very dilute solution {v; > 0.98), the hydrodynamic theories are not very
good.

Ferry's study is basically a solution study at relatively low temperature. Tt is
interesting to look at data obtained at the other extreme, namely, dissolution
followed by diffusion of solvent vapor into a polymeric melt. Such data are pre-
sented by Duda and Vrentas, who studied the systemn n-pentane—polystyrene. The
results are shown in Fig. 13-8, where the diffusivity of n-pentane at infinite dilu-
tion is shown as a function of temperature. Typical Arrhenius behavior is shown,
of the form

9 = Dye FIRT (13-25)

Note that while D, has units of diffusivity, it is not the diffusivity at any physically
realizable temperature, and should simply be considered an empirical constant.

The unusual feature of the observed behavior is the pair of activation energies,
which suggests that a transition of some type may occur in polystyrene around
150°C, which is well above the glass transition temperaturet of 100°C. Duda and
Vrentas discuss this feature, and we will not pause to consider it here. It does raise
an important point, however, regardless of its interpretation, and that is with
regard to extrapolation of data outside the range of variables covered. Clearly if
one had the data of only one branch of Fig. 13-8, and extrapolated to tempera-
tures 20°C past the transition, errors of an order of magnitude could be suffered in
the process.

One should also note the order of magnitude of the diffusion coefficient in the
limit of pure polymer, ranging from 1072 to 10~7 cm?/s, which is considerably
below the solution values Ferry shows, which are of the order of 1075 cm?/s. We
shall return to some implications of this point subsequently.

+ If a molten polymer is cooled continuously and if crystallization does not oceur, it solidifies to a
glassy solid over a narrow range of temperature. The temperature about which this transition takes
place is called the glass temperature T,. The heat capacity and the specific volume exhibit abrupt
changes in slope at T, and this provides the usual means of measurement.
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Duda and Vrentas present data only for a-pentane in polystyrene. However,
they cite data of Zhurkov and Ryskin for other penetrants into polystyrene and
suggest that a simple empirical correlation with which the constants £ and D, in the
temperature range between the glass transition and the second apparent transition
at 150°C may be obtained from knowledge of the molar volume of the penetrant.

Figure 13-9 shows a correlation between E and ¥, and between D, and E
whereby one can obtain the constants for the Arrhenius model. Too few data are
available for other polymers to allow any suggestion of the generality of such a
correlation, but the idea does provide a starting point with which diffusivities may
be predicted with minimal information.

The studies cited above have not indicated the role of molecular weight of the
polymer in affecting the diffusion coefficient. Diffusion measurements in a series of
polystyrenes over a wide range of molecular weights have been carried out by
Paul and coworkers. Figure 13-10 shows results for cyclohexanone, with the
diffusivity corresponding to concentrated solutions of approximately 309 solvent.
The result of interest is the plateaw, for M > 10°, where the diffusion coefficient is
independent of molecular weight. Paul points out that the plateau occurs in the
neighborhood of the critical molecular weight M, for a 309 solution of polysty-
rene. M, is defined as the molecular weight above whick an individual polymer
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224 2.32 2.40 Figure 13-8 Diffusion coefficient versus temperature for

1000/7 (K-} n-pentang-polystyrene. (Data from Duda and Vrentas.)
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Figure 13-9 (a) Correlation of activation energy with molar volume for various penetrants in
polystyrene. [Date of S. N. Zhurkov and G. Ya. Ryskin, J. Tech. Phys. (USSR), 24: 797 (1954))
(b} Corrclation of D, with activation enetgy.

chain becomes so entangled among neighboring chains that some of the * indivi-
duality” of the chain is lost. It is plausible to suggest that in such an entangled
polymer a penetrant diffuses among chain segments of molecules, and the “ struc-
ture” of this “segment space™ no longer depends on molecular weight. In any
event, regardless of the interpretation, the observation of Fig. 13-10 seems clear
enough.

The experimental technique used by Paul and coworkers allows a determina-
tion of the concentration dependence of the diffusion coefficient. Some questions
regarding the guantitative reliability of the data are raised and discussed in the
paper, but one result emerges that warrants comment. Figure £3-11 shows that the
diffusion coefficient may increase, decrease, or be independent as concentration of
polymer increases, with molecular weight apparently being the controlling
variable. It is the increase of diffusion coefficient which seems to be the strange
observation. The result appears to be contrary to the usual models of diffusion, as
well as contrary to most observations, although Secor makes the same observa-
tion in the system dimethylformamide-polyacrylonitrile.

The interesting point to note, apart from the observation itself, is that one can
rationalize the result by invoking thermodynamic arguments. Indeed Paul and
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Figure 13-10 Diffusion coefficient of
cyclchexanone in various molecular
Ll gl « v weight polystyrenes at 25°C. Concen-
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M 307% polymer. (From Paul et al)
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M = 180,000

107 D {em2/s}

M = 402,000

! l | L Figure 13-11 Diffusion coefficient of cyclo-
0 0.1 0.2 0.3 0.4 hexanone in polystyrene as a [lunction of
Palymer concentration (g/em3} polymer concentration. (From Paul et al)

coworkers invoke a very simple model of diffusion that introduces a factor which
is a difference between a hydrodynamic term and a thermodynamic term, each of
which has a different expected dependence on molecular weight. Depending on
the molecular weight it may be possible for this factor to change sign. Since the
slope of diffusivity versus concentration is proportional to this factor, the conclu-
sion is drawn that for some polymer-solvent pairs it is possible to find a range of
molecular weights over which the observation of Fig. 13-11 would be expected.

Gainer has carried out a theoretical development of diffusion in polymer
solutions that allows one to specify necessary conditions under which the diffusion
coefficient might increase as polymer concentration increases. The conditions
relate to activation energies for diffusion, and Gainer asserts that few systems
would satisfy the required conditions. This conclusion would suggest that the
results of Paul, shown above, may not be indicative of the usual behavior in some
Systems.

13-3 CONSTITUTIVE EQUATIONS FOR GENERATION

In order to solve the generalized transport equation (13-18), it is necessary to
relate the generation terms to the dependent variables X and u. We will consider
the following forms of generation:
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—

. Heat generation through viscous dissipation.

2. Heat generation through chemical reaction. We use the term generation even if
the reaction is endorhermic, although this will not normally be the case in
polymerization reactions.

3. Heat generation through phase change. This may include solidification and
crystallization of molten polymers or solvent evaporation from solutions.

4. Species generation through chemical reaction.

Viscous Dissipation

It can be shown that the rate (per unit volume} of conversion of mechanical energy
into heat (viscous dissipation) is given by a sum of terms involving products of
stress components and velocity gradients:

G,=1:Vu (13-26)

Bird, Stewart, and Lightfoot give the derivation, which will not be repeated here.
We use the compact tensor notation, as above, only when it is necessary to display
the format of the transport equations. Fer calculations we need G, in the appro-
priate coordinate system. Table 13-1 gives the required terms.

Since t will normally have mechanical units, it will be necessary to remember
to convert the dissipation terms to thermal units when numerical calculations are
required:

Multiply By To get

ft-1bl 1.285 x 107? Btu
grem®-3™% 239 % 107° cal
grem?-s™% 948 x 10711 Btu
ft-1bl 3.24 x 1071 cal

Heats of Reaction
We define a molar reaction rate as
de;
n="2 (13-27)

where, in this definition, we understand the time derivative to refer only to
changes due to chemical reaction. Associated with each reaction we define an
enthalpy, or heat of reaction, AH, such that the term

G, = —AH, r, (13-28)

gives the rate of change of energy, per unit volume, due to chemical reaction. We
adopt the convention that r, is positive for preduction, rather than disappearance,
of species i, and the heat of reaction is negative for exothermic (heat-evolving)
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Table 13-1 The dissipation function G,

Cartesian coordinates (x, v, z):
du du du, du, Ou Bu, Bu_ du, bu
G, =1, —=+1,—2+ P A i g =+ = ==+ =
e T e 3y Ty T y(@y + ax) +T"‘(6‘z + ﬁy) +T"(6x * 8::)
Cylindrical coordinates (r, 8, z):

ou, 18u, u, u.
G, =TPVF;+ Tao ;5‘5‘ +? + T::E‘

be ri i 16u, ‘e 1du, du, du, du,
“|"a\7) Tram | Trelra T T aﬁé’?)
Spherical coordinates (r, 8, @):

oy, 18u, u 1 fu, u, ucotd
G, =1 —+ P A i 4 —_— i
v =t T”(r ag r) +T"‘°(r sin 6 3o S )

e é‘ua+16u, “\ Buw_i_ 1 du u,
AL Bl e, T
o T ro0 r “\d rsinfdp »

1du, 1 &u, cotf )
— u,

”w(;ﬁ*rsinea; r

Table 13-2 Heats of reaction—pelymerization

—AH, —AH,
Monomer keal/mol Monomer kcal/mol
Acrylonitrile 173 Vinyl chioride 26.0
Methyl acrylate 18.7 Vinylidene chloride 14.4
Methyl methacrylate 13.0 Tetrafluoroethylene 33.0
Styrene 16.4 Iscbutene 12.6
o~Methylstyrene 84 Acenaphthylene 24.0
Vinyl acetate 213 Ethylene 220

reactions. G,, as given by Eq. (13-28), is the appropriate generation term for the
thermal energy equation when heats of reaction must be inctuded. If several
reactions occur simultaneously, it is necessary to have a term like G,, above, for
each reaction that produces significant heat,

Polymerization reactions constitute the main type of chemical reaction of
interest to us here. Table 13-2 gives some heats of reaction for cases of importance.

13-4 BOUNDARY CONDITIONS

To solve the transport equations for a specific situation it will be necessary to have
appropriate boundary conditions. As in the earlier discussion in Chap. 3 of boun-
dary conditions on u and T, most of the required boundary conditions are just
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mathematical forms of the physical requirement of continuity of the dependent
variables.

The continuity of temperature at fiuid boundaries is required by simple physi-
cal considerations. By the same token the flux of heat must be continuous across &
fluid boundary, unless a phase change is occurring at the boundary. In that case,
the fiuxes differ by an amount due to the heat effect of the phase change, suchasa
latent heat of fusion. We will see this point more clearly in a subsequent example.
In some problem formulations a temperature can be specified at a boundary. For
example, the wall of a pipe may be maintained at a known temperature. In other
problems it is the heat flux which is constrained, as in the case of heaters on the
barrel of an extruder which control the rate of heat transfer.

Boundary conditions on concentration are not quite as simple as those on
temperature. We can see this most clearly in a trivial example. Suppose a liquid is
in contact, across a free surface, with a gas, and suppose further that the two
phases are in thermal and chemical equilibrium. By equilibrium we mean
specifically that no net transport of heat or mass occurs across the interface. What
can we say about the concentration of some particular species which is in both the
gas and liquid phases?

We cannot simply equate the concentrations ¢; in the two phases, because this
takes no account of the solubility of the species in the liquid phase. The appro-
priate condition takes the form

c=a,ef {13-29)

where o, is a solubility coefficient, defined in fact by Eq. (13-29) as the ratio, at
equilibrium, of the liquid to gas concentrations. (The same comments hold for two
immiscible liquid phases, and we would refer to «, in that case as a partition
coefficient.)

When the species of interest is a soluble gas, it is common to write Eq. (13-29)
in & form involving partial pressure as the unit of concentration in the gas phase. If
. the species is dilute in the liguid, for example, one might assume that Henry's law
1 valid:

p; = Hc! {13-30)

Solubility coefficients, partition coefficients, or Henry's law constants are
defined enly for systems in equilibrium. If mass transfer is occurring, the system is
not in equilibrium, by definition. Nevertheless, it is common to assume, even in
systems which depart from equilibrium, that the boundary between two phases
obeys equilibrium relationships among the concentrations of the diffusing species.
The justification of the assumption is twofold: Its use does not appear to produce
models which are at variance with observation, and (in some ways a more compel-
ling but less comforting justification) we have no viable alternative.

In summary, then, we will use boundary conditions on concentration which
are not strictly continuity statements but which account properly for different
solubilities across the boundary.
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When mass is being transferred across a boundary, and no chemical reaction
o¢curs at the boundary, we expect the mass flux of each species to be continuous.
If reaction does occur at the boundary, and is isolated to the boundary, as in the
case of a catalytic surface reaction, then the fluxes simply differ by an amount
related to the reaction rate.

Let us examine some simple transport problems at this point which illustrate
the application of the boundary conditions described above. We will not carry
through the solutions here since our goal is to illustrate the process of specifying
suitable boundary conditions. Since the problems we select will be quite simple,
we will also be illustrating the process of simplifying the general transport
equations.

Capillary Flow with Viscous Dissipation

A melt at uniform temperature T, enters a long capillary of radins R whose walls
are maintained at constant temperature T . The fluid obeys the power law. Find
the temperature distribution T(r, z), at steady state.

We begin by deciding to use cylindrical coordinates for this problem, and
hence we examine Eq. (13-11). For J we use Fourier’s law, Eq. (13-13). The gener-
ation term will be the viscous dissipation function G,; we assume no chemical
reactions occur which may produce or remove heat.

We will assume that the velocity vector is strictly axial, u = {0, 0, u.), and that
there is symmetry about the axis. Then Eq. (13-11) becomes

ar 1 aT g, aT du,
puza=;g&(kl’“é;') ”’I'E(kg) +’E,=a—r. (13-31)
For a power law fluid we may write

Bu,) " fu,

Trz:K(_"é;* ""é;'

pC

(13-32)

for this flow.

It is usually reasonable to take the axial transport of heat in such a flow to be
due mainly to convection, and to neglect the axial conduction term by
comparison.

Finally, we can often assume that the thermal conductivity k is nearly con-
stant and bring it cutside the differentiation. As a result, the thermal energy
equation takes the form

oT léf eT du " fau\? -

Since u, appears in this equation we must also write the appropriate dynamic
equation, which takes the form

AP 138 du\"" 1 du
oM 4 (Y B 3.34
0 L + ror [rK( 6r) ﬁrj (1 )
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If we take K to be independent of temperature then we have already solved this
problem in Chap. 5, and the solution for w.(r) may be substituted immediately
into Eg. (13-33). Otherwise we must write a model for K(T), such as

K = K e #T-T9 (13-35)

In that case Egs. {13-33) and (13-34) are “coupled,” since T and u, appear in both
as unknowns. .

Turning to consideration of boundary conditions, we impose the following,
based on the statement of the problem:

u. =0 at r = R (ro slip at the sofid surface)
du,
% =0 at r =0 (symmetry)
T at z =0 for 0 < r < R [an entrance conditiomn,
T= required since Eq. (13-33) is first order in z]
Ta at r = R (wall temperature specified}
%% =0 at r =0 (symmetry)

The latter two conditions hold for all z > 0, and provide the required two boun-
dary conditions with respect to r, since Eq. (13-33) is second order in ». The
solution of these coupled nonlinear partial differential equations would have to be
carried out numerically.

Temperature in a Tubular Blown Film

Consider the process of blowing tubular film, discussed in Chap. 10. Suppose the
film is cooled on its outer surface by directing a ¢old airstream against the film.
We make the following assumptions:

Steady state

Axial symmetry

No significant heat loss to the air inside the bubble

Air temperature remains constant along the cooling path

Heat transfer from the ower surface of the bubble to the air is governed by
Newton's law of cooling:

T, =h{T, - T) (13-36)

where h, = convective heat transfer coefficient
T, = air temperature
T, = film temperature at the outer surface

The mechanical equations derived in Chap. 10 are still valid as written there,
the only modification being that the viscosity must now be considered a function
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of position since there will be a temperature variation along the direction of
motion. Thus we again introduce an equation for u(T), such as

u=pge M- (13-37)
Paralle! to the flow analysis, it is convenient to formulate the thermal energy
equation in the moving coordinate system £ used in Chap. 10:

aT 8T
Covy = =k —r
P pvl Bé; "" aé%

Note that we have assumed that k is constant arfd that conduction in the &,

direction is negligible in comparison to convection in that direction. Viscous dissi-

pation is not likely to be important in such a process and has been reglected.
Two simple boundary conditions on T are

(13-38)

T=T, at; =0(an “initial” condition)

T
—=0 at £, = 0 (no heat transfer from the inner surface)

&

At the outer surface, which is £, = h(£,), we impos¢ a boundary condition on
continuity of the heat flux. The conductive heat flux fo the surface is just
—k &T/8¢, . The convective heat flux from the surface will be taken to be given by
Eq. (13-36). Thus, equating the fluxes, we write the third boundary condition as

k- =h(T~T) at &, = h(¢,) (13-39)

The complication here is that the flm thickness k is a dependent variable itsell.

The Newton’s law of cooling boundary condition is a very common one to
impose because In many processes we do not know the temperature or the flux at a
boundary. Equation (13-39) specifies neither: Tt is simply a constraint between the
two. We must note, however, that our use of that condition implies that we know
the heat transfer cocfficient A, .

The heat transfer coefficient, which is really defined by Eq. (13-36), depends
principally on the hydrodynamics at the boundary. If the motion of the bubble
does not disturb the air which surrounds it, and if no external flow of air is
induced, then the convection process is nearly the same as conduction into still air.
Because air has such a low conductivity this will be a very inefficient mode of heat
transfer, which will be reflected in a small heat transfer coefficient. This is the basis
of the approximation of no heat flux across the inside surface of the bubble.

By contrast, if the surrounding air is well mixed, either through external
means or as induced by the boundary motion itself, then a relatively large value of
i, will reflect the more efficient convective heat transfer process. In any event, the
use of the Newton's law of cooling boundary condition implies knowledge of the
heat transfer coefficient. We shall return to this point subsequently and examine
some theoretical and experimental bases for estimating these coefficients.
The major point to make here is that if there is no information from which either
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the temperature or the temperature gradient may be specified, then Newton’s law
of cooling is the appropriate boundary condition, and the problem is to find a
reasonable estimate for k.

Let us continue, then, with examples of formulation of the equatlons and
boundary conditions for heat and mass transfer problems.

Transient Cooling of Runners in a Mold

At the end of injection the runners of a mold are filled with a melt whose tempera-
ture is approximately uniform. The cooling cycle brings the mold surfaces very
quickly to a lower temperature, and the runners cool and freeze. We wish to find
the time required to bring the runners to the freezing temperature.

We make the following assumptions in formulating this problem: At the
beginning of the cooling cycle the runner material is 2t temperature T, . The mold
surfaces are maintained at a uniform temperature T,,. The runner cross sectionis a
semicircie of constant diameter, and the length of the runner is much greater than
its diameter. The melt is stationary during this process, so there is no convection
within the fluid.

Heat is transferred strictly by conduction, then, and the transport equation
reduces to the (vector) form

or

= =a V°T (13-40)

Note that there is no generation term with which to account for the heat effect
associated with the freezing process. Is this a dilemma, or have we formulated the
problem improperly?

Let us begin by examining the goal of the analysis. Above we stated that the
goal was “to find the time required to bring the runners to the freezing tempera-
ture.” In mathematical analysis of physical problems one must develop the habit
of examining goals. Here we have stated a false goal. Assuming that T, is below
the melting termnperature of the polymer, we see that the runners are brought to the
melting (freezing) temperature immediately at the mold surface. As the system
cools the amount of solidified polymer increases. Hence there is a melt front, as
shown in Fig. 13-12. The hatched region is solidified. The boundary separating
solid from melt is the melt front and is defined by the closed curve f, (r, 8) = 0. The
appropriate goal, then, is to determine the progress of the melt front so that a

Figure 13-12 Sketch for analysis of freezing of materia! in a
runoer.
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Solid side
Figure 13-13 Detail of the freezing boundary between solid and molten
ir.81=0 polymer.

decision can be made as to when the polymer is sufficiently frozen that the mold
can be opened.

Heat is conducted through the melt according to Eg. {13-40). There is no
gencration term in the melt because the molten polymer, by definition, is not
undergoing a phase transition. Heat conduction in the solid polymer also obeys
the same transport equation, although the thermal diffusivity may differ for a solid
and jts melt. (In fact, they are not much different, and it would be reasonable to
use a single thermal diffusivity if no detailed values of «{T) are available on both
sides of the melting temperature.) Again, the solid phase does not involve a heat of
fusion term.

The heat of fusion enters as a boundary condition connecting the solid and
the melt phases, since it is only at this boundary that solidification occurs. Let us
examine, then, the formulation of this boundary condition with the aid of
Fig. 13-13. The rate at which heat is conducted to the melt front is simply
(J-n)rdf dz. Let us imagine that the solidifying polymer occupies an
infinitesimal volume dV = r d8 dz dr. Then the rate of heat absorption due to
solidification is just AH , p dV/dz, where AH , is the heat of fusion (per unit mass)
of the pelymer. The rate at which heat is conducted away from the melt froat,
toward the mold surface, is also given by a term (J - n}r d6 dz.

We must distinguish between J in the melt and J in the solid by subscripting,
for example, but we must keep in mind that both fluxes are evaluated at the same
value of r, defined by f,,(r, 8) = 0.

Now, the appropriate physical statement regarding the phase change is that
the rate of heat absorption must appear as a difference in the rates of conduction
to and from the phase boundary. Consequently we find that the appropriate
mathematical statement regarding the solidification enters not in the transport
equation per se but in the boundary condition of the form

.—.Apraﬁ (13-41)

{(J - n) 2

[ (J - n)’m+

where r,, is defined as the solution to f,(r, 8) = 0, r,,.. refers to the solid (+) or
melt (—) side of the melt front, and n is the unit normal vector to the curve

Jalr,8)=0.
The melt front would be defined as the locus of points along the isothermal
T = T,poning - Once the relationship r,(0) is found from the solution to f,{r, 8) = 0,




376 FUNDAMENTALS OF POLYMER PROCESSING

it 1s a simple matter (in principle) to caleulate dr,, /6t and

1/dr\?]~42
", = [1 + F(E) J (13-42)
1dr
fig = (; %) n, (13-43)
Assuming that Fourier's law of conduction holds, we find
aT 13T
J-n= wk(n,a-i-ng;éﬁ—) (13-44)

The procedure, then, requires the solution of two conduction equations, one in the
melt and one in the solid. The solutions are connected by the heat balance along
the melt front, just described above, along with the continuity condition
Tretting = Tmen = Tioiia 2long the curve r,(6). Thus the solution procedure must
keep track of the melt-front contour as a function of time.

The other (trivial) boundary conditions, based on the original assumptions
above, are

1% at t = 0 everywhere within the polymer
T at the mold surface

m

T

For all but the simplest geometries numerical solution would be required.

Solvent Remeval from a Solution-cast Film

A polymer solution is cast onto a rotating roll, as shown in Fig. 13-14. A plenum
chamber covers a portion of the roll, and air blows across and removes solvent
from the “wet” film. The “dry™ film is stripped from the roll and passes on to
further processing. It is necessary to determine how much solvent is left in the film
- at the point where the film is taken off the roll.

The following assumptions will be made:

The system is isothermal and at a steady state.

The system is binary, consisting of polymer and a single solvent.

The concentration of solvent in the airstream is practically zero, even at the outlet
of the plenum.

Air and
solvent out
Aici
Solution in \ p— Y /‘r " D
~ ry
— film
-~ < out
ﬂ -
Figure 13-14 Solvent removal froma

Knife polymer film cast onte a rotating roll.
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The film thickness is unaffected by the loss of solvent and is very small in compari-
son to the radias R of the roll.

The viscosity is so high that the film is transported as a rigid body at velocity U.
Fick’s Law holds, with £ a function of solvent concentration ¢.

With these assumptions the diffusion equation takes the form

dc [ ¢
U= 5;(_@ a_y) (13-45)

We have neglected the diffusion flux in the z direction in comparison to the
convection term. We also assume that no appreciable transfer occurs in the direc-
tion of the roll axis. This is likely to be true for a film which is wide compared to its
thickness.

Boundary conditions on ¢ are

c=¢ at z = 0 (uniform initial solvent concentration)

dc .
o 0 at y = 0 (no solvent transfer into the roll)
c=0 at y = H (a high convective mass transfer rate at the

free surface is assumed, which reduces the
concentration to that of the air)

An additional requirement is a model for 2(c), which we take to be
Bc) = Dy et (13-46)

These equations are sufficient to produce a solution for cfz, y}. The formula-
tion involves one particularly weak assumption, that of isothermal behavior. In
most systems of interest there is a significant heat of vaporization of the solvent, as
a result of which there is a significant cooling at, and near, the film surface. This
cooling can lead to very large reductions in the diffusion coefficient which will
retard the rate of loss of solvent. Hence, in that case, there is a complex interaction
between the mass transport and the thermal transport phenomena. If nonisother-
mal behavior is accounted for, the equations written above are still valid, with the
modification

Dle, T) = Dy T ToIHe o) (13-47)

to account for the temperature dependence of diffusivity. In addition, the heat
conduction equation must be introduced, in the form
aT 2T
U—=dtr—
2z Tay

Suitable boundary conditions on temperature include

(13-48)

T at z =0 (an initial condition)

T= Tx at y = 0 (constant roll temperature)
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At the free surface, from which evaporative mass transfer is occurring, the appro-
priate boundary condition equates the rate at which heat is conducted to the
surface to the rate at which heat is lost from the surface. The heat loss includes
both convection and evaporation. The balance gives (taking AH, as the heat of
vaporization)

k-1 +AH,,(—92§—;) (13-49)

where 7, is the ambient temperature. All terms are evaluated at the position y = H
in this boundary condition.

A finite heat transfer coefficient is assumed, but if (consistent with the assump-
tion earlier that the mass transfer coefficient is large so that ¢ = 0 at y = H) we
take T = T, as the appropriate boundary condition on temperature, Eq. (13-49)
still holds [with the term 4(T — T,) vanishing, however], and the problem appears
overconstrained since two boundary conditions on y= H have then been
specified on T.

Another dilemma appears then, and again it must be resolved by clear physi-
cal reasoning. We know from physical observation that evaporative cooling
accompanies mass transfer if there is a significant heat of vaporization. Any math-
ematical model must accommodate this effect. Equation (13-49) relates the surface
temperature to the mass flux, and solution of the complete problem as formulated
above would lead to a surface temperature variation in the direction of sheet
travel.

If a high heat transfer coefficient exists, then the film surface and the ambient
medium are at the same temperature. But what is that temperature? We can no
fonger take T, as known a priori, to be fixed by the inlet conditions on the
airstream. Instead, the evaporation process cools the air, and the assumption of a
high heat transfer coefficient implies that T, is the surface temperature. Thus the
relevant boundary condition for large k. is

aT dc
Y el —G = = -
k % AH,,( 17 ay) aty=H (13-50)

which fixes the surface temperature T{H, z) to take on certain values.

In the case of a large throughput of the ambient medium, and for finite k,, we
may specify T, independently of the rest of the problem formulation because a
large quantity of the surrounding medium can pick up a finite amount of heat
without undergoing a significant temperature change itself, However, if the
throughput of the surrounding medium is small, then T, will vary with z, and an
additional energy balaace is required. This will take the form of a balance on the
ambient fluid:

a7, ar de
nC ), —= = | —k=~ =h{T—T)+AH, -9 — 13-51
(nC,) dz [ 6yL,=H ( ) { 8yL=H ( )



HEAT AND MASS TRANSFER 379

Thus if the physical conditions of the problem prevent a priori specification of T,
then T, is coupled with the rest of the problem as an unknown, and Eq. {13-51)
provides the additional constraint with which it may be obtained.

Coagulation of Wet-spun Fiber

A polymer solution is spun into an acidic bath, and the diffusion of acid into the
fiber causes coagulation of the polymer. We wish to find the concentration of

coagulated polymer c., along the spinning path. We make the following
assumptions:

The pelymer does not diffuse in either its native or coagulated state.

The diffusivity of acid is a function of the degree of coagulation.

The coagulation reaction may be written schematically as polymer + acid —
coagulated polymer with rate given by

de, d

2 Ccp
—_——= = ) -
7 I C, (13-52)
The acid bath is stirred, with the result that the concentration of acid at the

polymer-bath interface may be taken as a constant.

The acid concentration within the fiber obeys a diffusion equation, in cylindri-
cal coordinates, of the form

dc, 18 de, . .
U= [r_@(cw) a—r} — ke, (acid) (13-53)

The concentration of coagulated polymer simply follows the kinetic expression
given above, which may be converted to yield
d;;" =u, 65:,, =k'c, (coagulated polymer) (13-54)
Since ¢, is a function of both r and z, this implicitly gives ¢, &s a function of r,
A model for the diffusivity is required, such as

G = Goe V" (13-55)

Finally the mechanical analysis from which u, follows must be carried out, as in
Chap. 9. It would probably be necessary to modify that simple analysis to include
the variation of rheological parameters with c,,. This would couple the momen-
tum equation with the diffusion equation.

Boundary conditions on ¢, would be

=0 at z =0 (no acid initially present)
% =0 at r = 0 (symmetry)
,

€, =Cn &t r= R(z) (uniform concentration at the fiber interface)
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An initial condition on ¢,, would be required, such as

Cop=10 at z = 0 (no initial coagulated polymer}

The Tubular Flow Reactor

Suppose two fluids, one containing a species A and the other a species B, are
mixed just before the entrance of a long tube through which the mixture then
flows. A chemical reaction of the form A + B — C takes place. The product Cis
soluble in the mixture and causes a significant increase in the solution viscosity.
The reaction is exothermic, and heat must be removed across the tube wall to
control the extent of reaction.

The slowest-moving fluid is near the tube wall. Hence it has a longer residence
time, which promotes the extent of reaction. This effect is accelerated by the
increase in viscosity associated with the increased concentration of product C.

Acting to counter this is the heat transfer which cools the fluid nearest the
wall, thereby reducing the reaction rate. In this problem the residence time distri-
bution depends on both the heat transfer and kinetic processes, and a detailed
analysis is required to determine the mean concentration of product leaving the
tube.

We let a, b, ¢ be the molar concentrations of the corresponding species and
assume that the kinetics of the reactions are given by rates

Fa=r,= —r,= —kab (13-56)

The following conservation equations are required to determine the depen-
dent variables T, u,, a, b, and ¢:

M : 0= AP 10/ % 13-57
omentum: = -7 tI7\*% {13-57)
' oT ko aT Bu\? .
Energy: pC,,qu = ;E(r 5;) 4 “(Ta“;f) — AH k'ab (13-58)
. da 19 da ,
Species A: Um = (92 5;) —Kab (13-39)
ab
Species B: oo = —kab {13-60)
. dc
Species C: Uz = kab (13-61)

In writing these equations we have assumed:

@ Laminar axial flow
@ Negligible axial conduction of heat
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® Only species A diffuses—B and C have such low diffusivities that convection is
‘the major mode of transport
® Symmetry about the axis

~ In addition to the conservation equations we will specify the parameters that
appear in them as functions of ¢ and T, writing

B _ gmbr-Ta e (13-62)
Ho
2
—==2 13-63
Nl (13-63)
. AE
k' =ky exp (— RgT) (13-64)

Now we must write boundary conditions for this set of coupled equations.
On velocity we take the usual conditions

u, =0 atr=R
o _
ar

On temperature we need an initial condition, say,

0 atr=290

T=1T, atz=0 for0<r<R
and two conditions with respect to r:
T=T, atr=R
8Tjor =0 atr=290
On the concentrations we need initial conditions
a=a, b=b, =g atz=0
and, for a4, two conditions with respect to r:

0  atr=R (A does not cross the tube wall)

Da/or = 0 at r = 0 (symmetry)

Numerical methods would be required to solve this problem.

13-5 DIMENSIONAL ANALYSIS

Under realistic assumptions the transport equations are normally nonlinear, and
numerical solution techniques are required. Even linearized models often involve
a boundary geometry of such complexity that an analytical solution is impossible.
More typically, however, it is the dependence of the transport coefficients on
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temperature and concentration that introduces mathematical difficulties. In the
next section we will consider a variety of very simple models which lead to
analytical solutions that are useful for estimating system behavior. In this section
we consider the extent to which dimensional analysis provides useful information.

It will be useful to use the more compact vector notation for the purpose of
dimensional analysis. We begin, then, with the general transport equation in the
form (assuming « is constant)

%{:: =aViIX+G (13-65)

We assume that the dynamic equations have already been nondimension-

alized as in Chap. 4. (The reader should review that material if it is not clearly in

mind.) We again introduce a characteristic length Land velocity U and reduce the

space and time variables as before. As a consequence the general transport equa-
tion takes the form

DX o« _, L
W_i—av X—E—aG {13-66)
We see immediately that a dimensionless diffusivity enters the equation. We call
LU
Pe = 7 (13-—67)

a Peclet number, in general, whether « is the thermal diffusivity or the species
diffusion coefficient [see Eq. (6-127)].

Since a great variety of forms for G are possible there is a whole set of
potential dimensionless groups based on specific choices of G. We will examine
some of these subsequently. We turn, instead, to examination of groups which
may arise from boundary conditions.

Boundary conditions at an interface often equate the diffusive flux to the
interface to the convective flux from the interface, and take the general form

— VX =WX-X,) {13-68)
where I’ = appropriate interfacial (convective) transport coefficient
X, = ambient value of X

When nondimensionalized this equation becomes

—V'X = %I: (X —X.) (13-69)
This introduces a generalized Sherwood number, defined as
Sh= % (13-70)
When X is chemical species we have
sn = i (13-71)

2
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where h, is the interfacial mass transfer coefficient, but when heat transfer is
considered it is more common to redefine the heat transfer coefficient so that the
Sherwood number for heat transfer becomes

hL
Sh = v (13-72)

In this form Sh is more commonly called the Nusselr number Nu.,

Heat and mass transfer coefficients depend strongly on the fluid dynamics in
the neighborhood of the transfer surface. Since the dynamic equations, when
nondimensionalized, yield dependent variables which depend upon 2 Reynolds
number, the expected and observed result is that the dimensionless transport
coefficients (Sherwood numbers) depend upon the Reynolds number too. We shall
sec that this is the case when we examine some experimental data.

Boundary conditions other than those of the form of Eq. (13-68) usually
specify the values of dependent variables, or possibly their gradients. Normally
these types of conditions provide natural choices whereby the dependent variables
are made dimensionless. We can clarify this point most easily by considering some
examples. In the course of this we can also examine several types of generation
terms and the dimensionless groups that their presence gives rise to.

Example 13-1: Quenching of a melt-spun fiber A melt is spun and drawn
through still air. The initial melt temperature is T;, and the air temperature 7,
is constant along the spinning path. We seck the temperature distribution
T{r, z) in the fiber. Ignore any effect of the latent heat of fusion on the process.

The thermal energy equation, assuming symmetry about the z axis and
neglecting axial conduction, is

ar 1afar
el il 13-73
PCyi: fz krar(rar) ( )
and a set of appropriate boundary conditions is
T= To atz=20
w'iz=h(]"—i‘;) at r = R(z)
ar
aﬂ—T =0 atr=10
ér
The dynamic equation takes the form (refer to Chap. 9)
Rf
pu:u’:=2E1‘:‘z+ T.::: (9_11)

where it was assumed that w and T are functions only of z, and ' = d/dz. If
newtonian behavior is assumed we may write

T.. = 3, (9-18)
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and Eq. (9-11) becomes (dropping subseripts on u,)

L

R
puil = 6 —Ri 2+ 30 + ) (13-74)

Note that for the nonisothermal case g is a function of z so that a term g’
appears.

The mass balance takes the form nR?u = @, so that ¥ may be eliminated
m terms of R to give

R’ — o — ey o B = 0 (13-75)
As a modet for u(T) we use

& mbr-To (13-76)
Ho
Equations (13-73), (13-75), and (13-76) constitute three equations in the
three unknowns: T(r, z), R(z), and p(z}. It would be reasonable to assume that
for a thin fiber the radial temperature gradient is very small. Thus the viscos-
ity may be evaluated at the radially averaged temperature defined by

T (& T2nr dr

—y (13-77)

Since u is assumed independent of », this definition of T is identical with the
cup-mixing average defined by

{8 uT2nr dr
& w2nr dr

Having introduced the average temperature and the assumption that the
radial gradient is small, so that T{r, z) = T(z), it is useful to rewrite
Eg. (13-73) in terms of T. This is easily done by multiplying both sides of the
equation by r and then integrating from r = 0 to r = R. Using the two boun-
dary conditions on the radial gradients, it is easily found that the average
temperature obeys

. 2R 2k T—1T, o
T+RT+pCPu 7 =0 T=T, atz=0 (13-79)
where we have dropped the overbar on T for simplicity.

Now let us make this set of equations dimensionless, using as the indepen-
dent variable z/R, = . We have three dependent variables, and we may non-
dimensionalize two of them in an obvious way:

(T = (13-78)

M - .

Lal 13-80
o (13-80)
R .

2R (13-81)
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There is a very simple way to nondimensionalize T so as to simplify the
format of the problem:

= T-—T,
T= £ -
=T (13-82)
Introducing these definitions we find
. 2R 2 \T 2R T
T +—=T+ e -
R (PC,,M) R RT,-T, (13-83)
, R? P L H g,
- (3rruoRo) T K= (13-84)
fi = g hTo-~TaT-1) (13-85)
T=p=1 atz=0
E=
L
pouz2 3o
at z R,

where Dy is the draw ratio and L is the length of the drawing region. Here we
use ' = d/dE.

The choice of definition of T simplifies the problem in the result that
T=1at%=0 and T approaches zcro as thermal equilibrium is achieved.
The following dimensionless parameters have now entered the problem:

® The draw ratio Dy and the spinning length L/R,

© A viscosity-temperature parameter b(T, — T;)

@ A Reynolds number p@, /3nu, Ry = Re

@ A temperature factor T,/(T, — T.) = 8,

® A heat'transfer parameter 2h/pC,u, which is just the ratio of the Nusselt
and Peclet numbers (ignoring the factor of 2), known as the Stanton number
St.

Thus, we expect to find

T =T(% Dy, R£ b(T, — T,), Re, 8, , St {13-86)
0

This muitiparameter character is typical of coupled heat transfer-fluid dyna-

mics problems. Simplifications may result, of course, if some of these par-

ameters play a minor role. For example the Reynolds number may be so small

that the term it multiplies in Eq. (13-84) has no effect on the solution. The

other parameters are more likely to play a significant role in this particular

problem.

Example 13-2: Tubular flow polymerization reactor We examine here the free-
radical polymerization of polystyrene in a tubular flow reactor. Styrene mon-
omer is pumped into the inlet of a circular pipe where it is immediately mixed
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with a second inlet stream of azobisisobutyronitrile (AIBN). AIBN is an
“initiator™; it decomposes into free radicals which react with monomer to
propagate the growth of the polymer. The simplest view of the reaction
scheme is the following:

Initiation:
I K 2R;
Ri+M & Rr]
Propagation:
R.+M “ R
Termination:

kT

R;— + R; - Pr+s

Chain transfer:

R+M 2 P oM

where I = initiator
M = monomer
R; = growing radical (polymer) of chain length n
R; = radical formed by initiator
P, = polymer (incapable of further growth) of chain length n
M’ = monomer radical capable of growth by propagation

Styrene may polymerize without initiator; this is known as thermal polymeri-
zation, and its effect is assumed negligible in this simple example.

The reaction proceeds, then, as the mixture fiows down the tube. The
polymerization is exothermic, with a heat of reaction of —16.7 kcal/g mol.
Under most conditions a temperature gradient will be established across the
reactor radius. Hence there will be a radial distribution of reaction rates, since
the various rate constants are Arrhenius-type functions of temperature. Con-
sequently, at a given axial position, there will be a radial distribution of
molecular weights, and the material leaving the reactoer will have a broad
molecular weight distribution. Good product guality requires some control
over the molecular weight distribution.

This can be achieved, in part, by removing heat at the reactor wall so as to
flatten the temperature profile across the radius. A uniform temperature
profile is promoted by the use of small-diameter tubes, but this strategy
requires large numbers of parallel tubes to achieve significant output rates.
Hence some compromise must be reached with regard to reactor size.

We outline here a formulation of a2 model for this process, with the goal of
examining the number and type of dimensionless groups that characterize the
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behavior of the system. We follow the analysis of Wallis et al. The thermal
energy equation takes the form

ar kéf aT
Pcpuz“a—z-—- —AH,RP'F;"a—r(TE) (13"87)
“The rate of polymerization for this reaction is usually taken to have the form
Rp = kmcm(fcf)uz (13'88)

where ¢, and ¢; are concentrations of monomer and initiator. [is an initiator
efficiency, with a value of 0.62 cited by Wallis et al. k,, is a rate constant which
depends on temperature according to

kp = 1.7 x 1010~ 21-6/8;T (13-89)

(kn bas units of s7*. R, is the gas constant = 1.99 x 103 keal/g mol- K).
Because of the exponential temperature dependence of k,, (and hence R ),
Eq. (13-87) is nonlinear in temperature. ‘
Appropriate boundary conditions on temperature are
T=T, atz=0
eT
ar

T=T; atr=R

atr=20

The concentrations of initiator and monomer will vary across the tube
radius principally because of the thermal profile but also because of diffusion
of these species. As the extent of conversion to polymer increases the fluid will
become sufficiently viscous to suppress diffusion. In the early stages of conver-
sior diffusion could be significant. Diffusion equations for each species
become

5’(:; _ 91 a 56}

uzgw —k_,CI-f'TE(T-é';" (13‘90)
dc,, Dy & Oc,

u:-a;— —RP‘FTE;(TE) (13—91)

We note that the generation terms for initiator and monomer have been
written directly into the species equations. For R, Eq. (13-88) is used, which
couples the two species equations. The conversion of initiator is taken as first
order, with a rate constant given by

Jop = 1.6 x 105 30-8/R,T {13-92)

with &, in 71,
Because of the lack of data, the diffusion coefficient of initiator will be
taken to be the same as that of styrene monomer. Wallis et al. find that the
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diffusion terms make a minor contribution to the resuits. Appropriate boun-
dary conditions on the concentrations are

¢ =Crg Cm = Cmo atz=10
and

gf =0 atr=0,r=R
or
for both ¢, and ¢,,.

These equations are sufficient to allow solutions for T{r, z), g(r, z), and
ety 2). It can be shown, by methods that are beyond the intended scope of
this example, that the chain lengths of the polymer, and various measures of
the breadth of the molecular weight distribution, can be determined from
knowledge of T, ¢;, and ¢,. We proceed, then, with a dimensional analysis
of the transport equations for this system.

The space variables are made dimensionless by defining r/R = ¥ and
z/R = %. The dependent variables are normalized to their initial (inlet) values:
Z = T & & Em g,

Ty €ro Cmo
The velocity is normalized with its mean value: u/U = @i
Upon intreducing these definitions the transport equations take the form

8T 114 8T - a2
e |F 3-93
T PcT?BF(r a;) N8 (13-93)
_ 8¢, 1 18{.éc, .
s =PeM;c”ﬁ‘(r——57‘ ~ N, &, (13-94)
N/ 1 18{._8c -
= =§E;¥E(’_:) —N:& (13-95)

RU RUpC
PeM = *""'gzr“ PCT = X £

N, N,, and N, are dimensionless functions of temperature:

_kR_ AR

N
v U

e~ EilRgT

where Eq. (13-92) has been written in the general Arrhenius form in terms of
A; and E,;. On introducing the dimensionless temperature this becomes

AR ( E; 1)
Ny= exp f— = 13-96
T U RT,T (13-96)
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In the same manner we find

— A”"R 12 r142 Em 1
N, = Tcmocjo S exp| - RgTo? (13-97)
.and
AH,
N, =—="LN -
1= o (13-98)
The boundary conditions take the form
&=¢,=1 atz=0
T=:{T
R ¥y =
T, atvr=1
de, e, N
_é'? = ??- =0 at¥=90,1
aT N
5}; =0 at F=0
_ By inspection the dependent variables must have the functional form
T
&y | = some function of
Cm
T AH AR AR E E
~~;_’P ,P s r , s m 1/2 r142 I’ "
(rs Z TE) Cr Cu PC,,TE) U U CmoCro f ] RgT-O Rg To)
{13-99)

This is quite 2 collection of dimensionless groups; enough perhaps to discour-
age a systematic study of the interactions of all these parameters in affecting
the behavior of the reactor. Some progress can be made, however, if we
constrain somewhat the class of problems we wish to examine.

First, we note that in most cases of interest the Peclet number for mass
transfer will be quite large compared to umity. Consequently the diffusion
terms in Eqgs. (13-94) and (13-95), which are of the order of Pe™*, will be quite
small in comparison to the other terms and may be neglected. This gives us
mass balances in the form

u% = —N,&, 8l (13-100)
a%‘i{ = — N, (13-101)

The Peclet number for heat transfer is also quite large, and we might be
tempted to throw out the radial conduction term in Eq. (13-93). This would
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be incorrect, however, since this would leave us with no term to account for
the heat transfer to the wall of the tube. This can be seer more clearly if
Eq. (13-93) is multiplied by ¥ and integrated across the radius of the tube. The

result is
&Iy 28T L s
- v 13-102
5 Be, 5 a=1+2-[o N8, &*F dr ( )
where
1
<T>=2J uTF dF
0

is the dimensionless cup-mixing temperature. Since N, is an exponential func-
tion of temperature the integration involving N, cannot be performed with-
out further assumptions. We might, for example, assume a flat temperature
profile right up to the tube wali:

T=(Ty for0<¥<ti {13-103)
but allow for a finite gradient of temperature at # = 1. Then we would find

ar 2 oT :
Eo e, N, &, &l (13-104)
with N, evaluated at T. The temperature gradient would have to be ac-
counted for by introducing some model for heat transfer at the wall in laminar
tube fiow.

While such an approach is reasonable, and indeed was examined as a
special case in the paper of Wallis et al. and found to give fairly good results,
the removal of the radial heat transfer term succeeds in *throwing out the
baby with the bath,” in one respect. A major problem in designing tubular
reactors in which there is a significant exotherm is the development ofa “hot
spot.” If heat is generated more rapidly than it can be removed by transfer to
the wall, a strong radial gradient of temperature will develop, As a con-
sequence of this uneven temperature distribution, and of the strong depen-
dence of the rate of polymerization on temperature, uneven polymerization
rates occur across the tube radius. The result is production of a polymer with
a broad moelecular weight distribution, which may not have the same product
qualities as a polymer with the same degree of conversion (of monomer to
polymer) but with a different molecular weight distribution.

If the radial temperature gradient term is removed from the heat condue-
tion equation, then this aspect of the problem carnot be modeled completely.
Wallis et al, compare predictions of polydispersity, based on the model
outlined above, both with and without inclusion of the radial conduction
term. The reader should refer to this paper for details that we will not dwell on
here. Another paper of related interest is that of Cintron-Cordero et al.
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Let us proceed and see what information our dimensional analysis pro-
< duces if we work with a model based on Egs. (13-93), (13-100), and (13-101).
We havé now removed one parameter from the problem by neglecting the
diffusion terms. Thus Pey, no longer appears. We can remove a second par-
. ameter by redefining a dimensionless axjal variable as

AR, A

t=frr=Tls (13-105)
After writing out the N functions in full, we find
u?= —& exp (— Rf;}, i'i") {13-106)
i % =— (-35:— Fie c}éz) ZnEH? exp (— Rf}o ~1.:) (13-107)
uzj = Ri:l, V2T + (p%f}o) (u ‘;&) (13-108)

where the writing has been simplified by introducing the thermal diffusivity
%y, the vector notation V?, and noting that the right-hand side of Eq. (13-107)
appears in Eq. (13-108). The boundary conditions are unchanged. We note
that Z,, and &, are implicit functions of 7 because T is a function of 7.

Now we may write the list of dimensionless groups that appear in this
model:

@ The independent variables 7 and 3

® The dependent variables &, T, &,,, and &,

© Kinetic parameters E; /R, Ty, E,./R, Ty, and (A4,,/A,)e,.o cH2f112
© An exothermic group —AH /pC, T,

© A temperature ratio T, /Tg

@ The only parameter related to the size of the reactor «,/R24,

This is still a large number of parameters, but they are in such a form that we
can try to deal rationally with them. First we note that three of the par-
ameters, the first two kinetic parameters and the exothermic group, are not
subject to much variation for a particular polymerization reaction. Only 7 is
subject to control in these groups, and since absolute temperatures are used
these groups will not vary much over the usual range of operating
temperatures.

One is tempted to make the same deduction regarding the temperature
ratio T, /T,. However, both Cintron-Cordero et al. and Wallis et al. find the
temperature profiles down the reactor to be extremely sensitive to this ratio.
Hence this is one of the significant variables that must be singled out for
study. It is important to understand that this sensitivity cannor be anticipated on
the basis of dimensional analysis.
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The third kinetic parameter contains initial concentrations of initiator
and monomer. Significant variations in this parameter are possible, and they
are found to exert strong effects on reactor performance. The last parameter
listed depends on the reactor radius and on two physical properties which
would be nearly constant for a given polymer. The size of the reactor is clearly
important from the point of view of heat transfer. One expects that if R is
small enough it would not be difficult to transfer all the reaction-generated
heat out to the cooled walls and thereby maintain a flat radial profile.

We note that the flow rate (in terms of U) appears only in the axial
variable Z, which is essentially a ratio of a reaction time scale to an average
residence time up to the point z. However, if & is other than that for fully
developed flow in a conduit of constant cross section, it is likely that & will
depend on a Reynolds number, and so T will show a Reynolds number
dependence as well. Such might be the case if the reaction were carried out in
a Kenics Static Mixer {see Chap. 12)at Reynolds numbers greater than about
10.

On the basis of the comments made above we suggest that the most
important dimensionless groups, for a specific polymerization reaction, are

® The temperature ratio Ty /T,
® The size parameter «r /R*A4,
o The inlet concentrations, in the form (4,, /4, }e o ci2 2

Mathematical modeling studies, or experimental investigations, should em-
phasize the behavior of the system with respect to these groups.

To close this example, then, let us suppose that we are interested in the
maximum temperature rise that occurs across the tube radius, AT,,,. We
expect, at a given reactor length 3 that

AT, .. . T, o
Tomat . function of { =8, —=1—, ¢, o c}{® 13-109
To TO RZAI m0 ~I10 ( )
(Note that since 4, f'/%/A; is a constant for a given reaction, we need not
consider it here.) If the maximum permissible temperature rise is specified a
priori, then one may essentially invert this function to the form

) Ty AT, .
RZ—ZI, = function of (?’:, T 5, cmcc}é") (13-110)
or, ignoring physical properties which are constant,
. T, AT,
R = function of (F:’ Tol , cmoc}",z) (13-111)

If AT, is specified a priori, Eq. {13-111) gives a constraint on the maximum
permissible reactor radius R. ‘

‘Wallis et al. present just such a result, based on numerical solution of the
model outlined here. Figure 13-15 shows their results, calculated for fixed
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Figure 13-15 Results of Wallis et al, for
critical reactor radius which holds the
maximum tolerable temperature rise be-
low the specified values (10 or 20°C) as
a function of reactor wall temperature
Tr. The effect of initial initiator con-
Tg °C) centration is shown by the parameter C;y.

values of Ty, = 80°C, a reactor leagth of 610 cm, and a fixed but unspecified
monormer inlet concentration ¢, The results, consistent with the dimen-
sional analysis, show the relationships among R, Ty, and ¢ as functions of
the maximum permissible temperature rise.

13-6 CONVECTIVE TRANSPORT COEFFICIENTS

In discussing boundary conditions we saw that a very general format expressing
continuity of the flux across an interface was

—a VX =K(X — X,) (13-112)

In the case of heat transfer this led to the definition of a convective heat transfer
coefficient h and a Nusselt number Nu defined so that

—kVT =hWT-T) {13-113)
Nu =% (13-114)

where L is a characteristic length and & is the thermal conductivity of the medium
from which convection is occurring. Corresponding equations for mass transfer
are

—DVe=hc—c,) (13-115)

Sh = h. L

(13-116)

which define the mass transfer coefficient i, and the Sherwood number.

In this section we examine models with which one may estimate the Nusselt
or Sherwood numbers appropriate to a particular process. Specifically, we apply
these models to the calculation of transport coefficients for film or fiber extruded
into a fluid (often air). We focus our attention on the dynamics of the external fluid,
assuming that the transport process in the polymeric fluid (the fiber or film) is well
defined and may be analyzed by methods to be presented in Sec. 13-7.
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: u, ly,z)

y=0
o -
e Eﬂ v Film Figure 13-16 Definition sketch for the preblem

z=0 of exterior convective transport from a moving
film or sheet.

Transport Coefficients for a Moving Film

We consider the following problem, for which Fig. 13-16 provides a definition
sketch. A sheet or film issues from a die at position z =0 and translates at
constant speed U through an external fluid. The external fluid is at rest far from
the moving sheet, but the motion of the sheet entrains the external fiuid and
establishes a velocity field u(y, z).

The dynamics of the external flow are constrained to satisfy the continuity
and momentum equations:

du,  du,
i s 13-117
-+ P 0 (13-117)
du, du, Ju,
HZE-FHYE}}—— VRW (13-118)

The temperature or concentration distributions in: the external fluid must satisfy
an equation of the form

=g (13-119)

We are assuming here that steady state is attained and that the film is wide so
that no variations in the x direction occur. We also assume that the effect of the
moving film is confined to a thin laminar layer (a boundary layer) normal to the
film and that changes in the y direction are much greater than changes along
the direction of motion.

If X =T then a, = ay = (k/pC,),; if X = ¢; then a, = &,,. Note that the
diffusivities refer to the external fluid: @,, is the diffusion coefficient of some
species i in the ambient medium, not in the medium of the film. The thermal
diffusivity refers to the ambient medium. Likewise, the kinematic viscosity v, in
Eq. (13-118) refers to that of the ambient medium.

It is important that this change of focus be recognized and kept in mind
through the analysis. In previous problems we have written the transport equa-
tions for the process occurring within the polymeric fluid. The ambient medium
entered only in a boundary condition, such as Eq. (13-112), with the presumption
that the convective cocfficient ¥ was known. Now we focus on the problem of
obtaining the coefficient A, which naturally requires a detailed analysis of the
dynamic and transport equations of the ambienr mediurm.



HEAT AND MASS TRANSFER 385

We begin the analysis by eliminating u,, using the continuity equation. We

" integrate, Eq. (13-117) to find

¥ du,
u, = — L =2 dy (13-120)

We have imposed the boundary condition u, = 0 at the sheet surface, y = 0. This
is a no-slip conditien, but it is valid only in the absence of a significant mass flux at
the sheet surface. If there were a transfer of mass across the surface y = 0, then
there would be a velocity component u, proportional to that flux. Models which
account for the presence of a high mass flux are discussed by Bird et al. and by
Shih and Middleman.

The following boundary conditions will be used:

At y=0: w,=U T=T, c=¢
Atz=0,y— o0 u, =0 T=T, c=c,

a

Again we emphasize the fact that the dependent variables refer to the ambient
medium, not to the sheet. However, at y = 0 continuity of temperature, for exam-
ple, requires that the surface of the sheet be at T = Ty, for all z > 0. Hence the
results of the model (the transport coefficients £') may not be directly applicable to
the more realistic situation in which U, T, and ¢, may change along the z axis.
Nevertheless the model will serve the intended purpose: to provide analytical
estimates of the appropriate transport coefficients.

The similarity of format of Eqgs. (13-118) and (13-119) allows them to be
written as a single equation [recall that Eq. (13-119) already stands for two equa-
tions] of the form of Eq. (13-119), where X may now refer tou_, T, or ¢;, and a,
may be v,, ar, or @, respectively. The boundary conditions are such that a
combination of independent variables of the form

U

v,z

(13-121)

%

n= B
reduces the transport equation(s) from partial to ordinary differential equations.
Using Eq. (13-120} to eliminate u,, and after quite a bit of exercise with the chain
rule for differentiation, the three transport equations may all be written in the
form

"+ AfII'=0 {13-122)
subject to boundary conditions
0 = (1 atn==0
0 atn— o

The prime refers to differentiation with respect to #. f'is defined as

L
f=2 jo I, dy (13-123)
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The dependent variable IT stands for any of the dimensioniess profiles
U, T-T, c—c
II== ;= = I, = 2 13-124
T Tb _ T‘; 4 Co— €, ( )

The parameter A stands for any of the dimensionless transport numbers

v
Ar=—==P A==—L=8 A,="2=1
T Ay ’ © 9, ¢ oy,

Pr and Sc are the Prandt]l and Schmidt numbers.
Equation (13-122) may be sclved by integration, and the general solution may
be written

§8 [exp (—f8 Afdn)] dn

To find II,{#) we set A =1 in Eq. (13-125). The solution is implicit since IT,
appears in the integrals through f [Eq. (13-123)]. Numerical solution is required to
give I1,. Once II, is found f may be calculated (by numerical integration) as a
function of , and then Eq. (13-125) may be solved explicitly for IT, and IT, upon
setting A = A, and A_, respectively.

Our main mterest is not in the profiles IT but in the transport coefficients. The
local heat transfer coefficient is defined as

(13-125)

aT
—k || =WT-T, 13-126
[O.V:Lco ( 0 ) ( )

and another exercise in algebra and chain rule differentiation confirms that we
may define a local Nusselt aumber as

h
Nu, = L—Z = —1 Rel? I, 0) (13-127)
Here we have introduced a local Reynolds number
Uz
Re, = — (13-128)

a

We use the word local in describing the Nusselt and Reynolds numbers because
the characteristic length used in their definitions is the local axial variable z. By a
similar procedure the Sherwood number is given by

Sh, = ’;2 ~ —1 Re® IT(0) (13-129)
It is not difficult to find, from Eq. (13-125), that
=] n -1
I(0) = —U exp (—f Aqu)J d}y} (13-130)
0 0

Hence, once I1,(x) is found the results of interest may be computed.
The most compact format for presentation of these resulis is Fig. 13-17, based
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T

57 11 /l_
; Eq. (13.133) |
P A

1 /

Aa-wo}
0.2 i

06 1 10 100 Figure 13-17 Results of model for trans-
A port coefficients to a moving sheet or film.

T7TT]
Liditll

on a numerical solution of the equations presented by Shih and Middleman. The
figure may be used for either heat or mass transfer by taking A to be the Prandtl or
Schmidt number, respectively. In addition, at A = 1, YI"{0) gives the dimensionless
velocity gradient at the sheet surface, from which the viscous drag exerted by the
ambient medium on the sheet may be calculated.

If the ambient medium is a gas (the most common situation) then the Prandtl
and Schmidt numbers are both close to unity. If the ambient medium is a liquid
the Prandtl and Schmidt numbers are usually larger than unity. In a typical
wet-spinning or wet-extrusion process the liquid bath has a viscosity comparable
to water, say, v, = 0.01 em?/s. Typical thermal diffusivities of such liquids are of
the order of 107% to 107 % em?/s, giving Pr = 10 to 100. Typical species diffusion
coefficients are in the range 1077 to 10™* em?/s for simple solutes in water, giving
S¢ = 100 to 1000

For large A an approximate method leads to an analytical solution for IT'(0).
First, we recognize that large A means that the transport coefficient for momen-
tum (v,) is much greater than the coefficient for heat or mass diffusion. This means
that the thermal or species diffusion is confined to a distance from the surface that
is small compared to the distance over which the velocity profile falls from unity
to (nearly) zero, This, in turn, suggests that the velocity profile IT, (1) is nearly flat
in the region where Iy and T, fall from unity to zere. As an approximation, then,
we write

Imm=1 (13-131)

For large A, then, we may write
”

fmj 200, dn =2 (13-132)
0

The expression for II'(0) then becomes

—IT{0) = [j: exp (—An?) d’?J_I
- B(%)mr(-;)]_l = 113422 (13-133)

where I'( ) is the gamma function.
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Thus we obtain the simple analytical results

Sh, = 0.56 Rel/? §¢1/? (13-134)
12 oa1/2 forAs 1
Nu, = 0.56 Rel/ prt/ (13-133)
We find, then, that we may estimate the convective transport coefficients appro-
priate to a sheet or film moving in its own plane by using Fig. 13-17 or, for large A,
Eqgs. {13-134) and (13-135).

No data are available with which this model of convective transport may be
evaluated. It is instructive, however, to examine an example in which the model is
used in order to assess the sensitivity of the final results to the function used for the
convective transport coefficient.

Example 13-3: Cooling of a moving film A thin film of polyethylene is
extruded into and drawn through still air. Find the film temperature as a
function of distance from the die exit. Use the following parameters:

Film speed U =1 ft/s k

assumed constant
Film thickness W =2 mils |
Exit temperature T, = 175°C
Ambient air temperature T, = 30°C
Conductivity k = 8.0 x 10™* cal/s-cm-°C |

+ polymer

Diffusivity « =13 x 107 cm?/s
Kinematic viscosity v, =0.17 cm?/s
Conductivity k, =6.5x 107% cal/s-cm-°C ; air
Prandtl number Pr =07 {

Because the film is thin (2 mils = 0.005 cm) we will assume that the
temperature within the polymer is uniform in the direction normal to its
surface, Then, with reference to Fig. 13-18, we may derive a simple energy
equation from which the temperature may be found. The assumption of a flat
temperature profile across the film can be evaluated as an exercise.

Rate at which heat (per unit width) enters the control volume through the
plane at z: pC, UWT,.

Rate at which heat leaves across z + dz: pC, UWT, ..

Ta
2 2+dz
| i
t v
w T 7y —_—y Figure 13-18 Definition sketch for deriva-
4 Pai tion of energy equation for a cooling film.
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Rate of convective loss from both exposed surfaces:
2h dz{T — T} per unit width
Dividing by 4z, and taking the limit as dz — 0, we find
dT 2h (T—T
&z pC,uw\ T~ J (13-136)
Normalizing the temperature we may write this as
dé 2h d
8 pC,UW

where 8 = (T — T,}/(T, ~ T,). An appropriate initial condition is # =1 at
z=0

Il b were constant the solution would be

6 = o= 2hipC,UW (13-137)
For variable h we have
-7 2h
8 = - —_— iz .
exp ( JO pCpUWd ) (13-138)

We will use Fig. 13-17 for caleuiation of h{z). Since & ~ z7 /2 the integra-
tion above ¢an be done easily, and the result takes the form

gwe—lz.SXID'J:HZ (13_139)

Figure 13-19 shows h and T as functions of z. It is apparent that the rate
of cooling is quite slow, especially in view of the smalil thickness of the film.
The speed of the film is insufficient to generate a large convective coefficient,
as a consequence of which the air behaves as a fairly effective insulator in this
problem.

With regard to the sensitivity of the cooling rate to the convective
coefficient, it should be evident that the dependence is quite strong, since h
appears in an expenential function. Hence there is considerable premium to
be gained by having an accurate model for h.

10-3 176
[
D‘
NE —
s 107 158 <
o ~
g
=

105 140

1 10 100 1000 Figure 13-1% Calculated results for

z icm) Example 13-3.
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It would appear that the cooling of extruded film in air through the
convection associated with the motion of the film alone is very inefficient. In
general, it would be necessary to promote heat (or mass) transfer by external
biowing of air either parallel or normal to the film surface.

Transport Ceefficients for a Moving Cylinder

In order to calculate transport coefficients appropriate to fiber-spinning or wire-
coating operations, we may formulate the transport equations for the fluid region
exterior to a cylindrical surface of radius R, translating axially at constant speed
u, = U.

The mathematical model parallels the treatment of the previous problem,
proper account being taken of the cylindrical symmetry in this case. The continu-
ity equation is

du;  1d{ru,)

% i e

=0 (13-140)

and the transport equations all take the form

u&X ué‘X_oca axX 13-141]
" or oz ror\ or (13-141)
If u, is taken to vanish at r == R, equivalent to the assumption of low mass flux
at the cylindrical surface, then we may write u, in terms of u, as
1,7 Ou.
=—=jr—d -142
i, - JRr 5 O (13-142)
The equation to be solved may be written as

_l-r .@i’id @—}-u @—lli oIl 13-143
( rJRFré‘z " or :53_Ar5r(r§; (13-143)

where [T may be any of the dimensionless profiles defined in Eq. (13-124)and A is
a dimensiorless transport number. The boundary conditions are

1 atr=R

H:
{0 atr—coand z=0

If 2 new independent variable

U r

n =:1;;? (13-144)

is introduced, Eq. (13-143) may be written in the form
Il Aol
— L= =0

ol (13-145)
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- | | ag o UREL
with = T T
l 0 aty =
The function f'is defined as
1 7
=10 +—+j IT, dy (13-146)
A no

It is important to note that 7, is a varigble: It is a function of axial coordinate
z. Since 1, appears in the first boundary condition, as well as in the function f we
conclude that IT = IT{y, z), and Eq. (13-145) is still a partial differential equation.
Thus the variable # does not transform Eq. (13-143) to an ordinary differential
equation; % is not a similarity transform.f

If g is fixed at a specific value, then in effect we fix the position z at which
Eq. (13-145) and its boundary conditions hold. Since #, appears only in the
coefficient f and in the first boundary condition, we develop an approximate
solution to Eq. {13-145) in the following way. For a fixed value of 7, Eq. {13-145)
is solved as an ordinary differential equation for Xl(y), with 5, as a constant
parameter. The solution may be written formally as

] A
J exp (—I —fdn) dn
M=1-21m0 no 11

Jm exp (—J” i‘\ia‘n) dn
"o o )

As in the problem of film transport, I, is found by setting A = 1 and solving
iteratively. Once I, is found, Eq. (13-147) is an explicit solution for IT, and II,
(using Ay = Prand A, = Sc, respectively). The gradients at the cylindrical surface
are found from

(13-147)

= T A -1
IT'(0) = U éxp (— J —fdn) dn] (13-148)
1o ne M
The dimensionless transport coefficients may be found from
Sh = 4, T1'(0) (13-149)

where for mass transfer we have Sh = 2k, R/2, and for heat transfer the Nusselt
number is Nu = 2hR/k,.

Figure 13-20 shows Sh as a function of 5, with A as a parameter. Keep in
mind that since 1, ~ 1/z, Fig. 13-20 gives the Sherwood number as a function of
position. Near the origin of the cylinder (the die exit) #, approaches infinity, and
the -Sherwood number becomes unbounded. It might be appropriate, then, to
examine reasonable ranges of 5, for problems of interest to us here.

1 # was incorrectly treated as a similarity ttansform in 2 paper by Vasudevan and Middieman. The
error was pointed out subsequently in a cornmunication from Fox and Hagin.
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3
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N

¢ et .
..-"/—“/’{ e -
— Fipure13-20 Results of model for transport coefficients
-4 -2 0 3 to a moving cylinder. The curve labeled B-E is the
log 70 solution of Bourne and Elliston for A = 0.72.
Recall that
UR?
= 13-150
Mo 4v,z ( )

For fiber spinning {ignoring drawing)t typical values for U and R are of the order
of 300c¢m/s and 002cm, respectively. For dry spinning we may take
v, = 0.15 cm?/s; for wet spinning the kinematic viscosity would be of the order of
0.01 em?/s.

This gives #, = 0.2/z (dry) or no = 3/z (wet). The axial length of interest might
extend approximately from I to 100 cm. Except very close to the die exit, we see
that the values of 5, of interest are quite small compared to unity.

If #, were identically zero, then Eq. (13-145) would be independent of z, and 4
- would be a true similarity transform for the problem. Eqgs. {13-147) and (13-148}
become more nearly exact, then, for small #,. In the absence of an “exact”
solution of Eq. (13-145) it is difficult to assess the accuracy of the approximate
solution offered here. We can, however, compare the model to other approximate
solutions of this problem and to some experimental data on heat transfer from
fibers.

Another method of solution of this problem is based on the classical Karman-
Pohlhausen treatment of the laminar boundary layer. The initial application of
the technique to the problem of the moving sheet or fiber was by Sakiadis. Sub-
sequently Bourne and coworkers solved the corresponding heat transfer problem
and made some comparisons of the predicted results with data on the cooling of
fibers.

Figure 13-20 shows a comparison of the solution of Bourne and Elliston, for

+ Even under conditions of drawing, the product UR? would be nearly constant.
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Pr=0.72, with the solutions presented earlier. The solutions differ by about 25
percent at , = 107* and become more nearly equal as #, decreases. In the
absence of an exact numerical solution to the problem it is not possible to argue
which solution is the more accurate. We turn, then, to evaluation of experimental
data.

We need a model for the temperature of a fiber as a function of distance from
the spinneret. Using the same procedure as in the derivation of the corresponding
case for 2 film [Eq. (13-138]}], we find

2 7 hdz
6—exp(—;E;J0 RU) (13-151)

For the cylindrical fiber the quantity pR2U must be constant to satisfy mass
conservation. It is convenient, then, to write the exponent so that

2 z
A = exp (_mpRzUCpJORh d;)

=exp (— pL Nu dz) {13-152)

where Nu = 2hR/k, has been introduced. On examining the application of this
model in the example that follows it will be seen that Eq. {13-152) is in a conven-
jent format for computation.

Example 13-4: Cooling of a pelyester fiber Hill and Cuculo present data on
meit-spun polyethylene terephthalate (PET). Figure 13-21 gives the velocity
along the spinning path {from measured diameters) and the temperature at
the fiber surface.

300

200 400
B £
g2 =
- =
100 200
Figure 13-21 Filament velocity and
temperature profiles measured by
0 Hill and Cuculo. The model in
0 120 Example 13-4 gives the values

indicated by O.
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We need the following information, taken from the paper by Hill and
Cuculo unless otherwise noted.

nR?pU =63 x 1073 gfs

T, = 2590°C T, =22°C

2R, =0.0031 cm
p =12 g/em® (approx. average over the temperature range)

pC, = 0.5 cal/em?-°C (assumed)
k,= 6.3 x 107% calfem'°C-s
v,=017cm?*s Pr=0.72

From Fig. 13-21 we represent U by

413z
7T+ —
= 15

420 z> 15

<15

For z in the range 2<:z<100cm we find #, in the range 1.2 x
1073 >, > 2.4 x 1075, We will use Fig. 13-20 for determination of Nu,
extrapolating where necessary to 7o < 107 % The integration in Eq. (13-152) is
performed numerically ‘orn a hand calculator. The results are shown in
Fig. 13-21.

We see that the theory underestimates the rate of heat transfer, since the
predicted temperatures are everywhere higher than those observed. The
agreement is not bad, however, giving some confidence in the use of the model
for cooling of fibers. We note that since the model of Bourne and Elliston
predicts smalier values of Nu, it wiil give an even poorer representation of
the data, in this case, Other data can be examined (see Prob. 13-11), and it
would appear that Fig. 13-20 can be used with some confidence for
1o < 1072

13-7 SIMPLE TRANSPCORT MODELS

In this section we consider transport models that are relevant to polymer
processes and that, by virtue of their simple geometry and the assumed indepen-
dence of the diffusivity with respect to temperature and concentration, lead to
linear equations for which analytical selutions may be found. As in the case of the
simple flow modeis treated in Chap. 5, these transport models provide a basis for
extension to more complex cases, and they provide a means of generating quick
order-of-magnitude estimates for the behavior of related systems. In all cases we
are dealing with the general transport equation. ’
DX

—_— 2 =
—=aVX+G (13-153)
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under assumptions that guarantee linearity. This requires only that G be, at most,
‘a linear function of X, that « be constant, and that the velocity field u, which
appears implicitly in the derivative DX/Dt, be uncoupled from the transport
equation. The boundary conditions must, of course, be linear as well.

Transient Diffusion in Solids

In a stationary solid, for which u = 0, we examine solutions of

éx
il ¥ .
—=aViX (13-154)
or, intreducing 2 characteristic linear scale L,
ax
== Vix (13-155)

where { = gt/I? and the space variables are normalized to L. As boundary condi-
tions we take

X=X, atr=0
—VX =Sh (X —-X,) atthe boundaries
In the boundary conditions, Sh is the generalized Sherwood number introduced
earlier in this chapter. For heat transfer Sh = Nu = hL/k. For mass transfer

Sh = k L/9. (See Probs. 13-15 and 13-16.)
We define a dimensionless dependent variable as

- X-—-X
Ela——— 1 -
X X - X, {13-156)
Then the equations become
axX o
—==VX 13-157
5 ( )
X=1 att=0

~VX=Sh X atthe boundaries
Solutions of Eq. (13-157) are easily found by the method of separation of
variables for three simple geometries:

1. The slab of thickness 2L and infinite area
2. The cylinder of radius L and infinite length
3. The sphere of radius L

In each case we have one-dimensional transport (i.¢., there is only one dependent
space variable of which X is a function), and, by inspection, we know that
X = X{# 1, Sh) (13-158)

{¥ is any of the space variables for the three geometries.)
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Table 13-3 Solutions of Eq. (13-157)

Slab:

= 4sin 4
. _ A
,,iv“: 24, + sin 24,

exp {—A20) cos (4,7} {13-158a)
where A, are the roots of Atan 1= §h
Cylinder:

Jo(4.F)
(A3 + Sh7)J4(4,)
AT A —Sh T () =0

X=23n ﬁ exp {—A21)

r=1

{13-1585)

Sphere:

12 [Al+(Sh—1)]sin A,
=2 8h 2
Xe2shz Y s o)

AcotA+8h—1=0

exp (—42f) sin (4,7 (13-158¢)

The solutions for each case are presented in Table 13-3. Because the solutions
are algebraically cumbersome, it is convenient to have them in a graphical format.
Two types of graphs are usually presented. One type corresponds to the case
Sh = co, equivalent to the boundary condition X = X at the exposed boundaries.
The plots are in the form X versus 7 with 7 as a parameter. For finite Sh one
usually finds plots of X versus , with 7 and Sh as parameters. Figures 13-22 to
13-30 show the solutions in graphical form.

We note that for small Sherwood numbers Figs. 13-25 to 13-30 become
inadequate to the task. It turns out that an alternative model, valid in that limit,

t

A
T L)

B aN=Z/
BE=wa7ddl|

N ———— '05,//// //{/l |
- ] //;D{.s// /1]
. ’/ 0,08 / /
—r /‘-/ / ‘[2:02 ,/ /
SEAP AP oL
M___},.:/ e // 0.0015

0 0.5 1

Figure 1322 X profiles with [ as a
x/L parameter: slab.
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N

0.6

L P /
—T | )
4l

= §
% os sl /0'1;5/ il
T )
0.08
_..--'/ // D,qﬁ I/ // /f
0.04
:,4/'-///, ///“,OJ
.l 0.005
c 0.5 1 Figure 13-23 X profiles with f as a para-
r/R meter: cylinder.

gives a particularly simple analytical solution for our use. We derive the model in
cartesian coordinates for the case of the slab. The extension to the other two cases
is straightforward.

We begin with

oxX X
=5z (13-159)
and integrate both sides of the equation over the space 0 < F < 1:
taX ' PRX
jo —r dF= jo Y= T (13-160)
1 =TT
or = Lt
o LA L
L~ f
a7/
w T YT
g 0.1’/,/ / /
- / 0ca | / /
—— /’ 0,02
P4V
L] 0.005
0 0.5 1 Figure 13-24 X profiles with [ as a

riR parameter: sphere.
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We define the average concentration X as

- o1
X=| Xa (13-161)
‘0
and find
ax _ox
e &

1

= —Sh ¥, (13-162)

0

[The boundary conditions have been used in obtaining the right-hand term of
Eq. (13-162}.]
Now, let us consider what is meant by “small” Sherwood number. Since

Sh =k, L/a, we see that the limit of small Sherwood number implies that the
internal diffusion process Is much more rapid than the external transport process
(/L » k,).1f this is the case, then we might expect a uniform X profile across 7. We
introduce that assumption, now, by equating X to X (and using the symbol X}, so
that we find, from Eq. (13-162), that

dx -

Fra —Sh X (13-163)

The solution of this first-order equation is simply
X =exp{-Sh1) (13-164)

where the initial condition X(0) = 1 has been used.
For the cylinder or sphere similar results are found. In fact, all three solutions
may be written as

X =exp(-nShi) (13-165)

with # = 1, 2, and 3 for the slab, cylinder, and sphere, respectively. We must keep
in mind that this solution is valid only for small Sherwood number. By comparing
the approximate solution to the more accurate model {(which does not neglect the
internal concentration gradients), we can see that the qualifier “small” implies
Sh < 0.05 if Eq. (13-165) is to be a good approximation.

Example 13-3: Cooling a mold runner Give the temperature distribution and
the position of the solid front in a £-in diameter runner of an Injection-molded
nylon piece. Make the following assumptions:

e Melt temperature is initially 564°F

@ Runner surface is lowered to 186°F and held at that value

@ Solidification of the Nylon does not affect the heat transfer Process

® Thermal properties are constant over the temperature range and are
k=6 x 107 cal/em-s-°C, p = 1.1 g/em®, and C, = 0.8 cal/g
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0 0.125
rlin} Figure 13-31 Solution to Example 13-5.

Choose t = 6 s, for which we find «/R* = 0.04. From Fig. 13-23 we can
pick off values of X versus 7. Noting that T = 378X + 186 we can prepare
Fig. 13-31. 1f the freezing temperature is taken as 467°F we see that the solid
boundary is nearly halfway across the runner, after 6 s.

Example 13-6: Cooling of a polymer coating Polyethylene is blade coated
onto a web of cellular plastic which moves under the blade at 20 em/s. The
coating temperature is 400°F, and cooling is achieved by blowing air, at 80°F,
across the film, From earlier heat transfer studies it is known that, for the
systern of air cooling that is used, h = 0.08 cal/em®s°C. The coating
thickness is 0.1 cm. How far downstream {rom the blade must the web travel
before the surface temperature of the coating falls below 144°F?

If we assume that the coating moves as a rigid body with the web, then we
may treat this as a transient solid-cooling problem, with time replaced by
exposure time x/U. Assuming constant physical properties we might expect to
use Fig. 13-26. Note, however, that the boundary conditions on the slab
problem include the notion (implicit in the formulation} that both surfaces
experience identical thermal conditions. In this coating problem the exposed
surface may be taken to satisfy a Newton’s law of cooling boundary condition,
but the interface with the web certainly does not satisfy the same condition.
Since foamed plastic is such a good insulator it is likely that the appropriate
boundary condition is one of no flux at the web surface. Figure 13-32 shows
the expected situation.
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Figure 13-31 Sketch for Example 13-6.

In problems involving the plane slab geometry there is a very simple
relationship connecting the solutions of the problem with symmetrical boun-
dary conditions (for which the solutions presented above are valid) and the
problem in which one surface is insulated (the problem at hand). In both cases
there is a zero-gradient boundary condition along one surface. In the symmet-
rical problem this is the mathematical statement of symmetry. In the
insulated-surface problem this is the no-flux statement,

The difference in the two problems lies in the fact that the distance from
the exposed surface to the no-flux surface is L (by definition of L) in the
problem with symmetry, and it is 2L in the problem with one surface in-
sulated. This means that we can use the solutions already presented, except
that everywhere that L appears we replace it with 2L.

Thus, in the problem at hand, we set L = 0.1 cm and use Fig. 13-26. For
polycthylene we take k = 3.3 x 10* g-em/s® °C = 7.9 x 107* cal/s-cm-°C
and a=1.3 x 1073 cm?/s. The Nusselt number is AL/k = 0.08(0.1)/7.9 x
1074 = 10.

The desired value of X is

- 144 — 80
=30 "80
From Fig. 13-26 we find at/I* = 0.08, or

_0.08I2U _ 0.08(0.1)220
T T T 13 % 100

0.2

=12 cm

We note that in Example 13-6 the reduced “ time” is almost too small to allow
use of Fig. 13-26. We could, of course, use the infinite-series solution in Table 13-3,
and calculate X for any desired value of 7. However, the series converges slowly for
small £, and machine computation would be required. Because of these two factors
one seeks a model, valid for “short times,” which has computational and/or
graphical advantages over the solutions already presented.

Let us begin by considering the physics of short-time transport processes
before plunging into a mathematical model. Figure 13-33 shows the expected
concentration profiles shortly after £ = 0. The salient feature is that there is some
period of time (up to that corresponding to curve 3) before the center of the solid
“feels ™ the effect of the concentration change at the boundary ¥ = 1. Up to that
time, if the solid were larger, the transport process would be no different because
in the region where X = 1 it is also true that VX = 0. Hence no flux occurs in the
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xi
[

Figure 13-33 X profiles in a slab at short times. The boundary
7=0  conditien X(1, ) = 0 (Sh = ca) is shown.

central region at short times, and the extent of the central region does not affect
the transport process in the boundary region.

This suggests that the finite solid may be replaced by a geometric model
known as the semi-infinite solid, which has a boundary at, say, z=10, and is
unbounded in the direction z > 0. The transport equation still has the form

8X ,
= VX (13-166)

(neglecting generation for simplicity), but now the boundary conditions aref

X=Xo at t=0
aVX=HK(X-X,) at z=0
X=X, for z—

The only change from the previous (bounded-solid) formulation is the shift in
space coordinate, so that z =0 is in the free surface, and in the third boundary
condition which reflects the physical idea that if the extent of the solid is great
enough, the change at the boundary z =0 is never felt. (See Prob. 13-15 for
discussion of the use of the notation k' in the second boundary condition above.)

Now we must demonstrate that this change in mathematical formulation,
reflecting a change in the physical model, is advantageous with respect to the
problem of “short-time solutions.” We begin by making the problem dimen-
sionless. X is defined as before. We no longer have a characteristic length scale
with which to make z dimensionless because the “slab ™ is semi-infinite. However,
we note that the boundary condition at z =0 may be made dimensionless il

% = h'zfo. This definition of # puts the transport equation in the form
ox RroX
ubalal il 13-167
ot o 8% (13-167)

+ The convection boundary condition has a different sign than in Eq. {13-155), because the space
coordinate now originates at the surface,
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Now it should be apparent that a suitable definition of 7 is

~ W%
t= —OT— (13-168)
with the result that the equation and boundary conditions take the form
ox 2% '
i {13-169)
X=1 att=0,2—-
X .
—=X tZ=20
oz @

Through these definitions, all parameters are removed from the problem and
X =X@10.

The solution of Eq. (13-169) is most easily found by the use of Laplace trans-
forms, and the result may be written in the form

_ Z " z
X =t oop +exp (2 + 41) erfc (5—2:‘72- + 2?"2) (13-170)
where the complementary error function is defined by
A
effcgp=1— —f e dx=1—erf ¢ (13-171)
Vi

Figure 13-34 shows X as a function of , with # as a parameter in the form
%/21*2, The choice of form for the 3-dependent parameter follows from the fact

-2 - 0 L 2 3 Figure 13-34 X(7) in a slab according to

fog £172 the “short-time™ model (13-170).
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that for large Sh the solution becomes a unique function of /2¢%/? and does not
depend eon Z and r separately. The Sherwood number is easily forced into the
definition of the ordinate by noting that

i (h'L) 2q

~ t
P=— = Sh? % (13-172)

+4

Recall that this model imposes no linear scale L on the geometry, and note that 1
does not depend on L. Real systems do, of course, have a finite value of L, and so it
is useful to see where L comes into {(and out of) the definition of 7. With the same
idea in mind, we see that z/2:*? may be written as

Z z/L

N )

Now let us examine some implications and applications of this form of the

solution, First we examine the surface concentration as a function of time for finite
Sherwood numbers. It can be shown that Eq. (13-170) takes the form

(13-173)

X(0, £) = exp 4t erfc 2612 (13-174)

Figure 13-35 shows this result. Note that the ordinate is £/, which compresses the
time scale for convenience.

It is instructive to use Eq. (13-174) to solve Example 13-6 and compare the
result with the more exact model. Figure 13-36 shows the surface temperature of
the coating as a function of distan:ce from the blade. We note that T = 144°F at
z =12 cm, exactly the same as found with the more exact model upon which
Fig. 13-26 was based. From this it would appear that up to 12 cm, which corre-
sponds to an exposure time of about 0.5 s, the process corresponds to short times.

It would be worthwhile to establish some criterion for application of
Eq. (13-174), the semi-infinite model—a definition of short time. We do so by

_“\\ i

X0, 0
|

/
|

i N

0 Rl LI i1 iUl Figore 13-35 X(0, f) on the surface of 2
0.01 0.1 1 10 slabaccording to the “short-time ™ model
T2 (13-174).
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] | T

250 —
_ 200 -
w L 4
< I ]
1801 —
N ]

100L : l L ] Figure 13-36 Solution to Example 13-6. Surface

0 8 16 temperature of the coating as a function of distance

x (em) downstream of the coating blade.

defining a position z, g at which X has changed slightly toward the ambient value,
say, X = 0.9. Figure 13-37 shows z, 9 /2./at = (20,4 /L)/2./at/I? as a function of
}? = 8h . /ut/I7. For a conservative estimate we note that, for large 7,

I
Zg.9 Zg.9 e24
=12 or e DA 13-175
2./ at L N ( )

The idea of the semi-infinite model is that the temperature change does not extend
to the center of the slab. To ensure that z, o /L be less than unity we require
24, /ut/I* < 1 or wt/I? < 0.17. Thus our definition of “ short time ™ is t < 0.17I%/ax.
In Example 13-6 the value of at/I* = 0.08, so we should expect that the short-time
solution would be valid.

Figure 13-37 also defines what we might think of as a penerration thickness. At
a given time we may calculate a value of z, 5 /L, which we may interpret as the
degree to which the external “ concentration” field has “ penetrated ” the slab. If
9.9 /L is small with respect to unity ther the process is still in its short-time stage.

This semi-infinite model has been presented for the plane-slab geometry.
However, in the case of a cylinder or sphere, if the penetration thickness is quite

f
|

T
N
!

_/ -

0.1 1 10 100
V2 =8hy/ar/L?

Figure 13-37 Position z, 4, within a slab, at which X has changed from its initial valuc of 1 to a
value X = 0.9, based on Fig. 13-34.
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i o
1
(o]
L 4 -
N | Figure 13-38 Comparison of “exact”™ (Fig. 13-28) and
00 4 “short-time™ (Fig. 13-34) solutions {shown as Q) to
rR Example 13-5.

small with respect to the radius, then the curvature of the solid is of no con-
sequence and the system behaves, at short times, as if its surface is plane. We may
illustrate this point by calculating the temperature distribution for Example 13-5
from the semi-infinite model. At the desired time of 6 5 we found at/R? = 0.04,
small enough to expect the short-time mode! to hold. We use Fig. 13-34, noting
that the assumption that the runner surface is maintained at a fixed value corre-
sponds to large Sherwood number. Hence we use the right-hand asymptotes of the
figure, and we obtain Fig. 13-38. The agreement between the exact and short-time
solutions is adeguate for most purposes.

Simple Convection-diffusion Models

In the previous section we considered transport problems in which there was no
internal flow to provide convection; at most, rigid motion cccurred. Here we
examing diffusion in the presence of very simple kinematics.

There are several systems of industrial interest in which transfer of heat or
mass takes place from a thin layer of fluid flowing down an inclined surface. A
simple model of such a process can be developed with reference to Fig. 13-39. We
assume the existence of a region over which 2 film of constant thickness H exists.
{If this assumption were false we would find that no solution of the dynamic equa-
tions could be found compatible with conservation of mass.)

Assuming laminar steady unidirectional flow we can reduce the dynamic
equations to the form

é
O=at:y + pg (13-176)
or, integrating once,
Ty = pg(H — ¥) (13-177)

{We have used the boundary condition that no shear stress is exerted on the free
surface at y = H.)
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7 Figure 13-39 Definition sketch for analysis of diffusion from {or to) a falling film
y=0 y=H along a vertical surflace,

As a constitutive equation we will take the power law model, which leads to
an equation for velocity in the form

du, _ [pg(H —y)]*"

ot 13-178

- [ (13-178)
With the boundary condition u, = 0 at y = 0 we may solve formally for u_(y}and
find

¥ 1/n .
_ 1" [pglH = y) ,
, = L [ < } dy (13-179)

If a transport process is occurring then K will be a function of y, and the
velocity field is coupled thereby with the transport equation. If K is taken to be
constant the integration can be performed immediately to give

Hllﬁ 1/fn+1
u:=H(B%M) ﬁ[p(wﬁ) } (13-180)

We will use this simple form of the velocity profile in modeling heat and mass
transfer from a falling film.
The transport equation takes the form
aX &*x
O Pl (13-181)
under the assumptions that « is constant and that no generation occurs. The
solution, with u(y) given by Eq. (13-180), can be obtained in the form of an
infinite series, but it is rather cumbersome for calculational purposes. Instead, we
examine some approximate models which are easier to evaluate. The approxima-
tions are based in part on a simplification of the vejocity profile.
Consider first the problem generated by Eq. {13-181) subject to boundary
conditions .
X atz=10

X =
X, aty=0,z>0
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A second boundary condition with respect to y is required, dictated by physical
-conditions at the free surface. We consider first the case that the transfer from (or

to) the falling film is principally across the solid-fluid boundary (y = 0) rather

than across the fluid-air interface (y = H). We will examine a solution valid for

short contact time, much in the sense of the short-time model of the previous
- section. We take as the appropriate boundary condition

X=X, aty—,z>0

As described in the previous section, the short-time model corresponds to the idea
that the change in X penetrates only a small distance into the fluid layer. As a
simplification to the convective term we assume that the velocity in the region
close to the wall is linear, with the slope given by the value ar the wall. From
Eq. (13-178) we obtain du. /dy at y = 0, and we write the velocity profile as

1 1/n s
u,(y):("’g?) y for%«l (13-182)

The equation to be solved, then, is

pgH ) i ax X
— y— == {13-183)
( K oz dy*
We may define a dimensionless dependent variable as
S X —X,
= =0 13-184
X=¥_x, ( )

Equation (13-183) may be solved by Laplace transform methods or by introduc-
ing a similarity transform. The solution is

S T
X:F@jj e~ dy (13-185)
2/ 0

where ' } is the gamma function and # is defined as

¥
n= W (13-186)
The parameter f is given by
ijn
B= a(ﬁ;{—) (13-187)

The integral in Eq. (13-185) must be evaluated numerically. Figure 13-40 shows ¥
as a function of #.

" To calculate the amount of heat or mass picked up by the fluid we need the
cup-mixing average of X, defined by

u, X dy
o/w

(X = j: (13-188)
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where Q/W is the volumetric flow rate per unit width of film. The result is most
conveniently put in the format

1420\ 9g 2|2
h ”) ( 2 ) (13-189)

where the average velocity U = Q/WH has been introduced. We see that (X
depends upon a Peclet number UH/e, the power law index r, and the normalized
vertical distance z/H.

What is the expected region of applicability of this model 7 In the first place we
have assumed that the velocity is Hnear or, equivalently, that the gradient is
constant. We may write the velocity gradient as

dufdy "
(pgH/K Y~ )

H
For regions near the wall {small y/H) we may write the right-hand side as
1 — v/nH, We will restrict the solution to 3/H < 0.1n in order to stay in the nearly
linear region.

It is necessary, then, that the region of penetration of the wall value of X not
exceed the region of linear velocity, Hence we require X < 0.1 within y/H < 0.1
From Fig 13-40 we see that X < 0.1 requires » > 1. Putting these constraints
together we find the requirement that

Ly 103
(%l) < 0.1n

(13-190)

fua

pd
/

I

N

]
1

0.1

Xt
T YTTTT
I I

.01
Q
" Figure 13-49 X{y) according to Eq. {13-183).
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" z _ B
or 7 < 10 3
The dependence on n® is quite significant here; there is an order-of-magnitude
difference in the region of application of this mode! between the newtonian fluid
-and a power law fluid of n = 0.46 for the same apparent viscosity evaluated at the
wall shear rate. The nonnewtonian model is valid over a much smaller region
than the newtonian model.

We note that § may also be expressed as

(13-191)

«H?* n
B= oW1 (13-192)
from which Eq. (13-191) may be written as
% < 1074 Ql;Wnl(Zn +1) (13-193)

If we make the comparison at constant Q/W we see that the region of applicability
is still strongly dependent on n, though slightly less so than on the basis of
constant apparent viscosity.

Example 13-7: Falling-film heat exchanger Let us examine a simplified appli-
cation of these ideas so that we can see the magnitude of the effects that this
model can accommodate. We consider a “falling-film™ heat exchanger
designed as shown in Fig. 13-41. A heated cylindrical tank, 2 ft in inside
diameter, receives fluid through a header at its top in such a way that a film of
the fluid flows along the wall under the action of gravity. A steam-jacketed

<

Figure 13-41 Schematic of a falling-film heat exchanger.
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shell on the outside of the pipe maintains the inside wall surface at a tempera-
ture of 250°F. The fluid enters the system at 80°F. A series of scrapers is fixed
to a rotating shaft and effectively mix the fluid film every 6 in along the tank
axis. Hence we may think of the process as periodic: Film falls a distance of
6 in, during which time it picks up heat {from the wall. The fluid is mixed, and,
at a slightly elevated average temperature, falis to the next scraper level. We
wish to determine whether such a system can bring the fluid to 200°F over a
reasorable axial distance.
Assume the following operating conditions and physical properties:

Q=15001b/h  p=60 b/
p = 6700e™0-023(7~89) P (newtonian)
a="7x 107* cm?/s (independent of temperature)

We will take the fluid to be isothermal over each 6-in section for the purpose
of calculating fluid properties.

The film thickness may be shown to be related to the flow rate by
(Prob. 13-22)

Q 3u\1?
He- (WEE) (13-194)
Over the first section this gives (taking u = 6700 P)
H,=28cm
U =037 cm/s
B =18 x 107* ¢cm?
(X = 0028

The average temperature entering the second section will be
(X> = (X, — X XX> + X, = 84.8°F.

The process requires a temperature change of 120°F total, and we esti-
mate about a 5°F rise over a 6-in section. Thus we would require more than 24
such sections, with a total length, excluding headers, of about 12 ft. The

_question of whether this is a practical length is outside the scope of the
problem. The point is that one can readily produce a rough estimate for
the purpose of determining feasibility of a design. We only need to comment,
then, on some weaknesses of the model in order to determine if the model is at
all reasonable for such use.

First, we note that, at z = 6 in, we have z/H = 5.4, while the right-hand
side of the inequality of Eq. (13-193) has the value 0.44. Thus the model is in
error to some degree, and it would be necessary to have the more exact model
(taking account of the actual velocity profile and, possibly, the finite nature of
the film) in order to evaluate the error and provide a more accurate estimate
of the required length of the heater. Since the estimated size of the system
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might be on the border of feasibility one would probably seek a more accurate
solution to the problem in this case, and investigate alternate designs as well.

We turn, next, to 2 mass transfer example based on the falling-film model,
_ Exposed liquid-film systems are often used for devolatilization of polymers,
especially as a last stage or “finishing” step of a polymerization reaction. In that
case the primary transport process occurs at the free surface rather than at the
polymer-solid boundary. The transport equation
u X aaZX 13-181

Tz T 9yt (13-181)
still holds, but different boundary conditions would be used. We illustrate this
with the falling-film case.

If the extent of penetration is small then a useful approximation would come
from recognition that the velocity u, would be quite flat in the neighborhood of
the exposed surface. It would be most convenient to set up the origin of the ¥

coordinate in the free surface. The velocity at the free surface is [from
Eq. (13-180)]

_ n ng 1in
Uo=17 nH( = ) (13-195)
Equation (13-181) then takes the form
ax X
0"52—— Ota—yz (13-196)

Since U, is constant we may define a dimensionless exposure time

t = az/Uy H? and write Eq. {13-196) in the form

X X .

e i 197

3: 65)2 (13 )
where ¥ = y/H. The probiem is thus reduced to a form similar to that considered
previcusly. This is not surprising, since the assumption of constant »,_ transforms
the problem to one of rigid motion. Let us select a new set of boundary conditions
which produce a model with physical features different from those of earlier
problems, even though there are some basic mathematical similarities.

Example 13-8: Devolatilization of a falling film Polymeric fluid containing
some residual volatile monomer is transferred from the reactor and must
undergo devolatilization in order to reduce the concentration of residual

- monomer. In practice the interaction of heat and mass transfer renders the
modeling of this problem quite complex. We will simplify the medel to be able
to examine some features of the solution which would be obscured in a more
exact analysis. In effect, we uncouple the heat and mass transfer phenomena
to the point that analytical solutions are possible.
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The monomer concentration will obey a diffusion equation of the form

& 9%
= aTyz (13-198)
.1 at =0,
““lo aty=0
We have defined the reduced concentration & as
¢
e=— (13-199)
Co

where ¢, is the initial monomer concentration. We assume that the ambient
medium is effectively at zero monomer concentration and that the free surface
is brought to zero concentration by efficient convective transfer. We use a
short-time assumption so that a semi-infinite geometry is relevant.

We assume that the falling film enters the devolatilizer at the desired
temperature Ty, and that the only means of heat transfer frem the film is
through the effect of vaporization of the monomer at the free surface. The heat
conduction equation takes the form

oT_u?T
i 2
T=1 att=0y=~cw

(13-200)

where T' = T/T; is the reduced temperature. Note that we will define £ using
o = 9, as a consequence of which the energy equation will have the ratio of
thermal to mass diffusivities appearing explicitly.

The third boundary condition on T couples the energy and species diffu-
sion equations by equating the conductive heat flux to the surface to the
evaporative heat flux from the surface:

aT dc

k2 e _gZ(AH ty=10 -201
kay @ay( ) aty (13-201)

Ir terms of the dimensionless variables already defined this takes the form

. ]
oT  Zeo AHLOE 5 (13-202)

We will let

G, AH,

I, = T

(13-203)
be a heat of vaporization parameter for this problem.

If all transport coefficients are assumed constant we can obtain an analyt-
ical solution to Eq. (13-198) for &. Thus we can explicitly write the boundary
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\lolatiles aut

I

S

Figure 13-42 Schematic of a twin-screw devolatilizer,

condition on T [Eq. (13-202)] as a function of { and obtain the solution to
Eq. (13-200) for T. The particular feature we wish to examine is the magni-
tude of the cooling effect of monomer vaporization: Is it large enough that it
must be accounted for in designing a devolatilization system?

The solution for T is particularly simple for the uncoupled model for-
mulated here. In fact, T is constant along the surface and is given by

. o 1z

T =1— (-Ei) 11, (13-204)
7]

For a choice of parameters typical of devolatilization of solutions at room

temperature one can predict a cooling of the film surface of the order of 25°C.,

Such 2 large temperature drop would have a significant retarding effect on the

rate of loss of volatiles.

Let us consider one more mass transfer exampie which uses the simple models

developed above. Again the goal is development of simple estimates without
recourse to complicated numerical procedures.

a

in

Example 13-9: Design equation for a twin-screw devolatilizer A vented twin-
screw extruder operated partially filled can be used as a devolatilizer. Figure
13.42 shows an idealization of the geometry. In the region where fluid crosses
from one screw to the other a free surface exists which allows evaporation of
residual volatiles. We may model this system as a stagewise process in which
surface evaporation is followed by mixing and conveying to the next evapora-
tion stage. Figure 13-43 shows a stagewise model of the process. A single stage
consists of the screw root and flights rotated through one tum.

s

VORI (R IR S _}%mn—‘i.— I _...n+1_}}_ N Qo

Figure 13-43 Schematic for stagewise analysis of a twin-screw devolatilizer.
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In the simplest model we assume that each stage operates in an identical
manner to all the others. We will define an exposure time ¢, during which
evaporation occurs from each stage. The toral time spent in each stage is just
the overall residence time divided by the number of stages: ¢, = 1,/N. The
exposure time can be expected to be some fraction of z, that depends on the
geometry of the screws and the degree of fill. The residence time ¢, is just
the ratio of the total volume to the volumetric flow rate.

To model the evaporation process we will calculate the loss of velatile
material in time ¢,, using the semi-infinite transport model for diffusion. If we
assume effective volatiles removal at the exposed surface so that the surface
concentration is reduced to zero, then the sofution for the concentration field,
at time ¢, is (for the nth stage)

c ¥ 2 pINE s
e . = erf :/-4_»—@_C= ﬁ[a e™? d¢’ (13-205)

for 0 <t < t,. (It should be apparent that we have solved éc/0t = & re/dy?
subject to conditions ¢ =0 at y=0and ¢=c¢,_, at t=0and y—co.) In
Eq. (13-205) we use ¢ to denote c(y, t), and ¢,_, is the average concentration
(mixed) entering the nth stage.

The solvent flux at the free surface is just

dc
_gga_y

@
=Cpy | = (13-206)
y=0 Tt

and the total loss of volatiles, dm,, in time ¢, is just the integrai of the flux over
the exposure time multiplied by the area of exposed surface (per stage) a,. The
result is

4%,

i

S, = a,Cpmy (13-207)
We see that the loss from each stage depends upon the average concentra-
tion at the end of the previous stage. A simple material balance gives

Naoc,_ /39
N om, = No:Cam1y/ 420/ (13-208)

Cn—l-_cn=_6mn'— v
h h

where ¥, is the hold-up volume, the total volume of solution in the system. We
take V, /N to be the volume per stage and assume it is the same for each stage.

Thus we find that the concentration at each stage is given by a difference
equation of the form

¢y = Cosfl = F) (13-209)

where F combines all the geometric and physical parameters introduced
earlier. The solution is easily seen to be

¢, = coll — F° (13-210)
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We note that the solution is meaningful only if F < 1, corresponding to the
idea, that this solution is valid for short time.
It is convenient to write F in the form

49)2(2‘”2 (13-211)

" F=g g, | 2
'
where v, = V,/N and q, are geometric parameters, 1. is defined by ¢, = f,z_,
and Q is the volumetric flow rate of material through the system. Thus F is
separated into geometric factors independent of the size of the system and

factors related to the diffusivity and the volumetric flow rate 0.

The model may also be used to assess the effect of a change in throughput 0
on the behavior of the system. Suppose, for the sake of a numerical llustration,
that a twin-screw devolatilizer conveys 10,000 Ib/h of polymer, containing 4%
volatiles, and is able to reduce the volatiles content to 0.5 % We desire to
estimate the impact on the volatiles content of an increase in throughput to
15,000 1b/h, with no other change in design.

Let usassume that inspection of the screw design suggests that the number
of stages is N = 20. From Eq. (13-210) we find F = 0.1. The projected change
in throughput reduces the residence time, changing F to 0.08. The volatiles
content is found to be 0.75% under these conditions.

Heat Transfer in Confined Laminar Flows

In several previous chapters we have encountered flow problems in which the fluid
and the confining boundaries might be at different temperatures. A knowledge of
the heat transfer process between the fluid and the boundary is necessary to
evaluate the temperature change within the fluid and the effect of that change on
the flow process. In addition to such problems, which may arise in dic flows or in
mold filling (to name just two examples), we may also purposefully pump fluid
through heated or cooled conduits to change the fluid temperature. Of course in
this latter case we are really talking about the conduit as a heat exchanger.
Some relatively simple analyses are possible with which one may estimate
thermal behavior in confined laminar filows. We shall outline the formulation of
several problems of interest and examine the use of the solutions in some example
problems. One of the simplest problems to begin with is that of flow between
parallel plates, both of which are maintained at uniform temperature T,,. We take
the fluid to obey a power law, with temperature-independent properties. Hence
the velocity profile is already given in Chap. 5, and we rewrite it in the format

2 2 L+1fn
w="U 111:[1 - (wéf) } (13-212)

where U == average velocity
B = separation between plates (—4B < y < 4B)
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The conduction-convection equation may be written in the dimensionless
form (see Prob. 13-26)

oT &*T
(l—jz””")a—l;:%-%Br i (13-213)
by defining § = 2/B, T = (T — T,)/(T; — T.), and
4kz  14+n

3= (13-214)

pC,B*Ul +2n

The viscous heat generation term is included, and this introduces a nonnewtonian
Brinkman number

1+2YI 1+n KU1+nBl-n
Br = =
n kT, — T, 21"

The boundary conditions are those for uniform inlet temperature, followed by
contact with an isothermal boundary for all 2 > 0.

(13-215)

- 1 atz=0
T_=0 atj=+1

Of principal interest is the cup-mixing temperature { T, which can be seen to
depend on the following parameters:

(T> =<T>E, n, Br) (13-216)

Analytical solutions are possible, but the format is cumbersome and it is most
convenient to have the results in graphical form. Figure 13-44 shows the cup-
mixing termperature as a function of axial distance from the entry plane. The effect
of nonnewtonian behavior, at least for 1 <n < 1, is not very significant. The
results shown are for the case Br = 0 (no viscous heat generation) and are taken

A
i
n=1
=
0.1 &
Figure 13-44 Average tempera-
0.05 L 1 11111 | L 1 e1rl ture for power law fiow between
0.02 0.1 1

parallel plates at uniferm temp-
erafure,

N
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from a numerical solution of Viachopoulos and Keung. Their results show that for
Br < 1 the temperature {7 is not significantly affected over the range 0 < 3 < 1
by viscous heating.

In terms of the heat transfer characteristics of such a flow it is of interest to
calculate the heat flux at the solid boundary. This may be obtained most simply
from the temperature gradient at the duct wall, and it is convenient to write this in
the form (see Prob. 13-27)

—%leu<f) atj=1 (13-217)
Equation (13-217) thereby defines the local Nusselt number, and this definition is
consistent with our earlier introduction of the Nusselt number as a dimension]less
heat transfer coefficient. Figure 13-45 shows Nu versus Z for the case Br = 0.

If we have a solution for the temperature distribution along the duct then the
Nusselt number provides no independent information, since it is derivable from
T(, 2} through Eq. (13-217). However, in some models of convective heat transfer
we cannot solve easily for the detailed temperature field, and the format of the
model may involve a heat transfer coefficient which must be estabiished from
independent assumptions. We have already seen an example of this: Example
13-2, where Eq. (13-104) provides a possible model for the mean temperature
change down the axis of a tubular reactor and requires knowledge of the tempera-
ture gradient at the wall As an approximation, then, one could introduce
the Nusselt number from a simpler related model and thereby solve the more
complex model. (In the case of Example 13-2 we would use the Nusselt number for
tubular-flow heat transfer, to be presented below.)

Before considering the tubular geometry we illustrate the application of the
parallel plate model just developed.

Example 13-10: Heat transfer in axial annular flow A commercial polyethy-
lene resin is extruded through an annular die of 2-in radius, the separation
between the concentric cylindrical surfaces being 0.02 in. The output rate is
100 1b/h. The melt enters the die at a uniform temperature of 375°F, but we
wish to extrude at 300°F. Can the melt be brought to the desired extrusion
temperature by cooling the die surfaces to a uniform temperature of 270°F?
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We will need the following physical property data:
Density p = 57 Ib/R?
Thermal diffusivity e = 1.3 »x 1072 cm?/s
Thermal conductivity k = 3.3 x 10* g-em/s*-°C

Viscosity-shear rate data are shown in Fig. 13-46

First we estimate the nominal shear rate in the die. The average velocity is
U=0Q/2nRB=34infs, and the nominal shear rate [Eq. (5-25)] is
9 =6U/B = 1020 s"". At this shear rate, and at 375°F, we estimate n =3,
K =345 x 10* dyne-s*3/cm?

The desired vaiue of (T is

. 300270
=375 076 =%

and from Fig. 13-44 we estimate a required value of  of approximately 0.4.
From Eq. (13-214} this indicates a required die length of z = 6 cm.

The solution assumes ne significant viscous heating occurs in the die flow.
To evaluate this we calculate the Brinkman number from Eq. {13-215) and
find Br = 1.57. Judging from the results of Viachopoulos and Keung it would
appear that measurable viscous heating effects occur, which would increase
the required cooling length by 10 to 15 percent.

Very few data are available for evaluating the solution presented above; none
are known to us for the case of heat transfer to polymeric fluids in conduits that
approximate parallel plates. The more common geometry is that for Poiseuille
flow in circular tubes oz pipes, so we turn to consideration of that problem now.

As in the case of the plane Poiseuille flow, the simplest model assumes that the
isothermatl velocity profile is still valid in the nonisothermal case. (The alternative,
of course, requires solving the conduction-convection equation coupled with the
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_appropriate momentum equation.) The mathematical mode! takes the form, for a
power law fluid,

aT 1o oT
1 —Flimey&d 2001 sl/n+ 1 -
(1—pmn ;a?(raF)JrBrr (13-218)
where 7 = /R and T = (T — T,)/(T, — T, ). The reduced axial variable is
kz 14+ n
= 77 )
¢ pC,R*U 1+ 3n (13-219)
and the Brinkman number for this geometry is defined by
14 3n\ i KU RN
Br = =22
=57 )
Appropriate boundary conditions for the problems of interest would be
- (1 at¢=0
T =
0 at¥=1
aT
—={ tF=
5 at ¥ =0

corresponding to the case of flow into a tube whose wall is maintained iso-
thermaily at a different temperature from the inlet condition.

In the case of no viscous heating, Br = 0, the solution to Eg. (13-218) is
associated with the name of Graetz, who first solved this problem for the newton-
tan fluid. The Graetz solution may be written in the form of an infinite series, and
the cup-mixing temperature is given by

(T = 5 Aeat (13-221)

=1
For { > 0.01 orly the first few terms of the series are required. Table 13-4 gives
values of 4; and g, for the first three terms. The values for the power law case can

be obtained from a paper by Lyche and Bird. Figure 13-47 shows (T as a
function of { for several values of the power law index n.

Table 13-4 Coefficients for use in Eq. (13-221)

a; A
i
n=1 0.5 033 0 1 0.5 0.33 ¢
7.31 6.58 6.26 578 0.82 0.81 081 0.6
2 446 39.1 364 30.5 0.10 0.11 Q.11 0.13
3 114 99.5 923 749 0.032 0.039 0.046 0.048
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The temperature distribution T'(F, £} is not presented here but of course is
required for the calculation of the average {T({}>. The paper by Lyche and Bird
gives sufficient detail if one desires the radial profiles. In addition, one needs
- T(% {) to calculate the local Nusselt number, defined as Nu = hD/k, where
D = 2R. As in the case of parallel plates, the local heat transfer coefficient is given
by

aT
ke T BTy - T.)
or, in dimensionless form,
2 i
= g | e e -222
u <T>[ 8FJ,=1 (13-222)

Figure 13-48 shows Nu as a function of axial position for several n values.

For small ¢, say, { < 0.01, the series solution for T requires evaluation of
many terms, and an alternate solution is more convenient. It is based on the
notion, already introduced in several previous analyses, that for short contact
times {in this case for small {) the region of penetration of heat conduction is quite
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Figure 13-48 Nusselt number for power law flow through a pipe with uniform wall temperature.

small and is confined to the wall region. The name of Leveque is usually attached
to the short-contact-time solution.

We begin with the conduction-convection equation in the usual form, namely,

aT 18/ 8T
[ S 3-
pCou, 55 I‘rarlr r) {13-223)
For a power law fluid the velocity profile is
r Lin+1
P S b ey 224
U Um[l (R) ] (13-224)
where
In+1
Upax = —— 13-225
max n + 1 ( )
In the wall region we linearize the velocity profile, using
du,
= = ’=R(R —7) (13-226)
from which we obtain
Upax 1
L. (13-227)
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We now introduce the following dimensionless variables:

z . T-T,

=1 == T e o F= w

¥ R R T, — T,
3 R

Pe = nt 19—=a Peclet number
n o

Equation (13-223} takes the form

oot T o))
Pes 92 8 1—s50s (13-228)
We would like to redefine one of the independent variables in such a way as to
remove the Peclet number from the format of the problem. This could be done by
incorporating Pe into the definition of Z, in which case the independent variable {
[Eq. (13-219)] is (nearly) obtained. (The difference lies in a factor involving n.)
However, this leaves an awkward set of terms on the right-hand side of
Eq. {13-228). An alternative is to change the s variable to

§ = Pell3s (13-229)
If this is done, Eq. (13-228) becomes
_oT 8T 1 eT
I S (13-230)

Now, the notion of short penetration “time” may be thought of in terms of
the Peclet number, since a very large Peclet number, corresponding to rapid flow
(large U) or poor conductivity (small ar), would lead to a small degree of “ pene-
tration™ of heat from the wall into the fluid interior. Thus it is appropriate to
make the restriction Pe 3 1, which reduces Eq. (13-230) to the form

8T &°T
= =—F {13-231)
&
Boundary conditions are

‘1 atk =10
T=<0 ati=9Q
‘1 ats—+

The latter boundary condition reflects the idea that if the extent of heat penetra-
tion is small we may consider the variable I to range from zero to infinity. The
advantage of the semi-infinite boundary condition lies in the fact that it allows a
solution of Eq. (13-231) in “closed,” i.e., nonseries, form. The solution is found to
be

o 1 ®

¥E L e " dy (13-232)
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where

3
n = CHE (13-233})

This integral appeared in an earlier problem, and it is presented graphicaliy in
Fig. 13-40.

Since the solution is valid only for large Peclet number we may evaluate T
from Eq. (13-232) only at large 5. Consequently the solution only covers the range
ol T values near T = 1. Clearly one could extrapolate Fig. 13-47 into that region
with reasonable accuracy. The utility of this solution lies in the accurate calcula-
tion of the Nusselt number for small =.

With Eq. (13-222) we find

Ny < 2P {a'f]

==51%w| (13-234)

For the region of small heat penetration a good approximation is (T) = 1. We
find, then, that

2 3n+ 1URR\Y?
NU =~ =2 32
= S e ) 1359
or, in terms of {,
2 1+n1y13
Nu = 973.1:_@(73) (13-236)

Figure 13-48 shows Nu as a function of axial position for several values of n.
Equation {13-236) was used for { < 0.01. For { > 0.01 the infinite series solution
for T, given by Lyche and Bird, was used, as indicated in Eq. (13-222).

As noted before, the principal utility of the local Nusselt number, which we
can now estimate from Fig. 13-48, is in supplying a convective heat transfer
coefficient for use in formulating a particular boundary condition for the energy
equation. Such a need arises in problem formulations quite often; Example 13-2is
a case in point. One does not normally measure the local average temperature of
the fluid, { T, and consequently the local Nusselt number is not usually measured
for comparison to theory. The usual experimental study of heat transfer in a
confined flow, such as is under discussion here, involves measurement of the
average temperature {T) at the outler of the heated pipe or duct, say, at z =

From a theoretical solution for T(F, {) it is, of course, possible to calculate
{T({)> and evaluate the theory at a specific axial position corresponding to the
pipe exit. While a direct check on the temperature is thus possible, one normally
casts the theory and the data into a format involving an average Nusselt number.
The analysis is quite simple, and its exposition helps to make clear what we mean
by an “average” Nusselt number.
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An energy balance on an element of fluid moving down the axis of a circular
pipe, assuming that only thermal energy need be considered, is simplyt

dg= —wC, d(T) = W{T> — T,)2nR dz (13-237)

where w = pUnR? is the mass flow rate. This is a deceptive equation and is
sometimes presented as if h were defined only by this equation. While it is true that
one may define h by Eq. (13-237), it is also true that the h that appears here is the
same h introduced earlier in Eq. {13-222). This follows upon taking Eq. {13-223)
and integrating it across the cross-sectional arez of the pipe and making use of
Eq. (13-222) as the appropriate boundary condition at r = R. The details are left
as an exercise.
To integrate Eq. (13-237) we first separate the variables, obtaining
ATy h

_ st 13-23
T wcpan d (13-238)

After introducing the dimensionless parameters used earlier we may write this as

-~ % =Nu (%) d(i) (13-239)
Integration gives
5 wp (LR 5
(T, = - 7% Jo Nu d(E) (13-240)

To proceed further one could introduce a model {or Nu(z) and perform the
integration. A useful alternative is to define an average Nusselt number as

__ R L& z
Nu=2 zZ .
u=7 jo Nu d(R) (13-241)
in which case we find
- opLl —
In (T, = — —D%Nu (13-242)

Since (T, is easily measured (by collection of the output of the pipe at
z = L), Eq. (13-242) provides a means of calculating experimental values of an
average Nusselt number. We note that the dimensionless group UnR%/u L =
wC, fkL is usually referred to as the Graetz number Gz. It is, of course, a form of
Peclet number,

The overall heat transfer rate g is given by

g=—wC,(T> — T,) (13-243)

+ Note that we take the heat exchange dg to be negative if heat is transferred to the fluid and posirive
if heat flows from the fluid.



HEAT AND MASS TRANSFER 437

With Eq. (13-242), this allows one to express the Nusselt number as

S -~ (KD = TG — 1,)]

- ST, (13-244)
The more familiar, dimensional, form of this equation is
g = R(2nRL) AT, (13-245)
where the log-mean temperature difference is defined as
AT, = % (13-246)
T —T,

The main reason for writing these expressions in alternate forms is to point
out that the definition of average Nusselt number, Eq. (13-241}, is not unjversally
followed. For example, one can find an average Nusselt number defined as

Nuazi 1
mkL T, — T,

w

{(13-247)
where

T, =3(T> + T) (13-248)

When (T and T are not very different, corresponding to a small extent of heat
transfer, it is not difficult to show that

lim AT, =T,-T, (13-249)
(TS~ To)=0
and consequently
lim Nu= Ny, (13-250)
(«T>=To)=0

However, for significant temperature changes the two Nusselt numbers are quite
different, and one must be aware of this difference when using published correla-
tions for MNusselt numbers. The point is not that Nu, is wrong, but that it is
different from Nu (se¢ Prob. 13-30).

Example 13-11: Comparison of measured and predicted Nusselt nombers
Griskey and Wiehe present data for heat transfer to molten polyethylene
pumped through a 3-in heated pipe. They present the data in terms of an
“arithmetic average Nusselt number,” shown plotted in Figure 13-49. Com-
pare the data with theory.

We begin by constructing the theoretical curve in terms of the average
Nusselt number Nu,. For very small values of UnR*/a; L =wC,/kL the
Leveque solution holds, and since the extent of heat transfer is not great, we
expect that Nu, = Nu. If Eq. (13-235) is used for the local Nusselt number,




438 FUNDAMENTALS OF POLYMER PROCESSING

10 =
: Eq.(13.2;51/
N =
z 2wCy
% kL
1.0 =
=/
/
031111l I 1| L b atll
0.5 1 10 B0
wC, ki

Figure 13-49 Data of Griskey and Wiehe compared to theory [Eq. {13-251) using r = 0.7).

and if the integration indicated in Eq. (13-241) is carried out, the result is
found to be

- i3 FA LS
Nu, = Nu = 1.61(3n i I) (4UR )

4n oL
3 1 143 C 173
- 1.75(%) (1‘;1—") (13-251)

It is much more tedious to carry out the same procedure using the Graetz
infinite series solution, and instead we examine the limiting behavior at the
extreme where the fluid is almost completely heated to the wall temperature.
Under theose conditions Eq. (13-243) gives

g= ~wC, (T = Ty} = —wC,{T, = T)
and, from Egs. (13-247) and (13-248), we find

_2wC,

Nu, =
Ye n kL

(13-252)

Figure 13-49 shows this asymptotic relation, as well as the Leveque limit [Eq.
(13-251)] for n = 0.7 {(the value noted by Griskey and Wiehe). It is not very
difficult to interpolate a smooth curve between the two asymptotic limits.

The data of this example are seen to be in reasonably good agreement with the
theory. Other sets of experimental data, obtained with polymer solutions, also
bear out the general validity of the models presented "above. We must recall,
however, that the models are subject to certain assumptions which are not always
met. In particular we have assumed:
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{a} (b} {c}

Figure 13-50 Distortion of the velocity profile due to a temperature-dependent viscosity: (a} isothermal
profile, (b) cooling at the wall, (c) heating at the wall.

1. The viscosity is independent of temperature.
2. The pipe wall is isothermal.
3. No viscous heat generation occurs.

Let us examine, then, some models which relax each of these assumptions.

The effect of temperature-dependent viscosity Because of the strong temperature
dependence of viscosity we might expect that heat transfer models that ignore this
effect could be subject to error. The physical phenomenon that arises from the
temperature-dependent viscosity is the distortion of the velocity profile, with its
subsequent effect on the convection of heat down the pipe axis. Figure 13-50
suggests the distortion to be expected and peints out the fact that the change in
profile is different for cooling than for heating,

In the case of cooling, the fluid near the wall is more viscous than the bulk of
the fluid, as a consequence of which the fiuid moves more slowly near the wall
relative to the isothermal profile. In the case of heating, the fluid near the wall is of
relatively low viscosity and so moves faster than that of the isothermal case.

It is possible then to speculate on the effect of heating or cooling on the
convection of heat. The cup-mixing temperature, defined as

RT(r, 2)u(r2mr dr
(T = .[0 aRAU

will be greater if the velocity is reduced by cooling in the wall region because this

is the region of maximum temperature reduction. Hence {7 is increased some-

what by the effect of cooling, and this would give the appearance of less effective
heat transfer. The opposite holds for the effect of heating.

Christiansen and coworkers carried out numerical solutions of the equations

of motion and energy for laminar flow of power law fluids in circular pipes of

constant wall temperature. They write the temperature dependence of viscosity in
such a way that the power law becomes

v = [K(JHIY"" A] exp (r AE/R,T) (13-254)

Note this is slightly different than the models introduced in previous discussions
of temperature-dependent viscosity. The inclusion of r in the term with AE simply
changes the meaning of AE. In the end one obtains parameters such as AE from
viscosity-temperature data, and the theoretical or physical significance of the
parameter is often of no concern.

(13-253)
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Figure 13-51 Theoretical calculation of the effect of a temperature-dependent viscosity on the
average Nusselt number for power law flow (n = 1) in a pipe with isothermal wall. (After Christiansen
et al.)

Figure 13-51 shows a set of curves for the arithmetic average Nusselt number
as calculated from the numerical solutions of Christiansen et al. The case n = 0.5
is shown; the original paper also gives such curves for n = 0.1, 0.3, and 1.0. The
parameter ¥ is defined as

AE T,— T,

\'P =
R,T, T

(13-255)

We note that ¥ is positive for heating and negative for cooling. For AE/R, T, in
the neighborhood of 10 (which is a typical value) the curves for Nu, depend only
on P, so long as ¥ itself is not toc large (say, ¥ < 3). As expected from our earlier
qualitative interpretation of Fig. 13-50, Nu, is reduced by cooling.

Figure 13-52 shows data obtained for cooling of a Carbopol solution
(n = 0.46, AE = 4720 cal/mol). The data fail between the appropriate isothermal
model, Eq. (13-251), and the numerical solution for ¥ = —1 and are well
described by the ¥ = — 1 curve. Ny, was calculated from Eq. (13-247).

Other boundary conditions All the solutions presented above are based on a boun-
dary condition which assumes that the conduit wall is held at some fixed and
uniform temperature. We call this the isothermal-wall boundary condition. It is
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Figure 13-52 Data for cooling of a Carbopol solution. (From Christiansen et al) Upper curve is
Eq. {13-251); lower curve is from Fig. 13-51.

possible to operate a heat exchanger in such a way that the heat flux at the wall is
fixed, as in the case of electrical heating with controlled power input. This changes
the boundary condition at the conduit surface and alters the solutions somewhat.

For example, the Leveque solution for flow in a tube with constant heat fiux
at the wall gives a local Nusselt number in the form

3n+ I\ {wC\ 1P
4n k=

Nu = 1.41( (13-256)

which may be compared to Eq. {13-235). If Eq. (13-235) is put in the same format
as Eq. (13-256), we see (Prob. 13-34) that the Nusselt number is higher for the case
of prescribed heat flux than for the case of prescribed temperature. This is true of
the Graetz solutions, as well.

We will not dwell on this point further here, even though there is a significant
difference between the solutions based on these two boundary conditions.
Sufficient references are cited for further study if desired.

Viscous heat generation If viscous heat generation occurs while a fluid is exchang-
ing heat across the conduit walls, the average temperature (T will be increased
somewhat, whether the fluid is being heated or cooled, relative to the value (T
would have in the absence of dissipation. If one were to calculate a Nusselt
number from data subject to a dissipation effect, the Nusselt number would be too
high in the case of heating and too low in the case of cooling. This point must be
kept in mind in evaluating heat transfer data or in carrying out heat transfer
calculations.

The viscous heat generation problem s imnportant in its own right, outside the
context of the calculation of heat transfer coefficients. For this reason we drop the
point here, with the simple qualitative comments offered just above, and treat
the viscous dissipation problem more fully in the next section.
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13-8 HEAT GENERATION IN NONADIABATIC FLOWS

In several places throughout the text we have introduced the notion of viscous
heat generation. In all cases we considered the simplest possible model: adiabatic
flow. For flow through a conduit (such as a pipe or annulus) with stationary walls
the adiabatic analysis just equates, through the first law of thermodynamics, the
power input to the heat rise, and one finds

_ AP
pC,

AT (13-257)

Equation (13-257} is of value because it provides a rapid estimate of viscous
heating effects. However, it can give a very misleading estimate in some respects.
In the first place, it assumes adiabatic flow—no heat exchange across the boun-
daries of the conduit. If the conduit is tnsulated, or if the residence time is very
short, then the adiabatic assumption may be reasonable. Under many conditions
it is not a good approximation, as we shall see subsequently.

The second misleading feature is that AT given above is an aperage tempera-
ture. It is possible for the maximum temperature to be considerably in excess of
this average value, even in adiabatic flow. This latter point is important if thermal
degradation must be considered, since some of the fluid may be subjected to very
high temperatures while the average temperature could be relatively small.

In this section we consider some features of viscous heat generation in more
detail than earlier models. We illustrate only the case of laminar flow in a tube of
uniform circular cross section. We begin, then, with the energy equation in the
form [Eq. (13-33)] for a power law fluid:

e P g =T\ B

Equation (13-258) assumes that the thermal conductivity & is independent of
temperature (note Fig. 13-2).
If K is taken as a function of temperature,

n+1
K(— %‘r-’) (13-258)

K = Kge™bT-To (13-259)
then the velocity field, assuming steady fully developed Poiseuille flow, must
satisfy

AP 1d | rorgf  du:\"
XIL=ra [re - (13-260)

Equations (13-238) and (13-260) are coupled and not amenable to simple analyti-
cal solution. Several special cases have been worked out, however, which can
provide useful information.
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Fully developéd temperature profile with K independent of temperature By fully
developed we imply that the temperature profile becomes independent of z, so that

T =T(r) only. If K is independent of temperature the velocity field is already
known from Chap. 5:

1+3n ryt+im
. = U - | — -
o= [1 (R) J (13-261)
Under these assumptions Eq. (13-258) takes the form (after a lot of algebra)
_lafdny oL,
=% (s ds) +3s (13-262)

where s = r/R and T may be defined in such a way as to remove all parameters
from the problem:

. T-T,

T = T Br (13-263)
The Brinkman number is defined here as
KR (1 4+ 3n U\ 7
Bre=r ( - ”E) (13-264)

We need two boundary conditions on T(r). One simply expresses symmetry
about the axis:

iF

ds
For the other boundary condition we assume the tube wall is isothermal, at
temperature Ty, so that

0 ats =20

T=0 ats=1
Equation (13-262) is easily solved to give

. (13-265)

where ¢ =3 + 1/n. Figure 13-53 shows T(s) for ¢ = 5 {n = 4). The temperature
profile is quite flat over the central core of the pipe, but falls off sharply as the
isothermal wall is approached.

The cup-mixing (average) temperature may be calculated from

~  [§ Tusds
™ == 13-266
(=it (13-266)
with the result
. 14+4nf{ n \?
= 13-267
L 1—1—511(1 +3n) ( )

Figure 13-53 compares T for n = % with the corresponding profile.
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Figure 13-53 Temperature profile for [fully
) ] | developed conditions in power law flow through
0 0.5 1 an isothermal pipe (n = %). The corresponding

H average (T is shown as well.

Fully developed temperature profile with K = K, e "7 ™% Now we wish to esti-
mate the effect of a temperature-dependent viscosity on the dissipation. Although
Eqs. (13-258) and (13-260) are nonlinear and coupled, an analytical solution is
possible, as shown by Sukanek. However, the analytical solution is in a format
which requires numerical calculations on the computer. Instead of showing the
development of the equations, then, we cite Sukanek’s paper as reference and show
some calculations based on his work. (But see Prob. 13-41.)

Figure 13-54 shows {7 as a function of a parameter 4, related to the Brink-
man number by

% = bT, Br (13-268)

0.05 P

0.03 " ; : \ _
paN

.02
/

<T>

T S
Q.01
Q
0.1 1 10 100 500
. .

Figure 13-54 (T as a function of #, showing the effect of a temperature-dependent viscosity on the
dissipation, Power law flow under fully developed conditions in an isothermal pipe.
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We see that % — 0 for small Brinkman number or small values of bT;,. Thus we
expect that the effect of temperature-dependent viscosity will vanish for small &,
and this is what is observed in Fig. 13-54. The left-hand asymptotes are identical
with the values calculated from Eq. (13- 267). Significant deviations from
Eq. (13-267) do not occur until & exceeds unity, especially for the more strongly
nonnewtonian fluids.

While Fig. 13-54 gives an indication of the effect of a temperature-dependent
viscosity on viscous heat generation, it should be kept in mind that the model
assumes a fully developed temperature profile. As in the case of development of
the velocity profile, discussed in Chaps. 4 and 5, some finite axial length is
required for such development to occur. In the case of the velocity field, with
viscous fluids, the entry length was seen to be quite short, perhaps of the order of a
few tube diameters at most. In the next section we see that the development of the
thermal fleld requires a long entry length, which may in fact require thousands of
tube diameters. In many practical systems the fully developed temperature field is
never achieved.

Axial development of the temperature profile with K independent of temperature
The two previous models share the same assumption of fully developed temper-
ature profiles. We know, however, that some finite axial length must be required
for this to occur, and the analysis of this problem was given by Bird for the power
law fluid. We go back to Eq. (13-258) and introduce the dimensionless radial
variable s and again define T by Eq. (13-263) with Brinkman number given by
Eq. (13-264). To remove all parameters from the differential equation it is neces-
sary to define an axial variable { as

k(1 + n)
e e Bt Sl 13'
¢ R%pC,U(1 + 3n) (13-269)
Equation {13-258) then takes the form
oT 16 ( 8T

1- 8 =20 v 13-270

( )5C s@s(sas)+s ( )
1
where =1+~
n

For the isothermal wall case the boundary conditions are, again,

=3 &’i 3.'

=0 ats=90

=90 ats=1
Now an inlet condition on Tat { =01is required, and we choose

T=0 at{=0
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which states that the fluid enters the pipe at the temperature of the pipe wall. Since
Eq. (13-270) is linear an analytical solution is possible, which Bird obtained as an
infinite series.

The format of the'solution is cumbersome to work with, and we present some
relevant results in graphical form first. Figure 13-55 shows temperature profiles
(for the case n = §) for several values of the axial position {. We see that before the
profile is fully developed the temperature has a maximum value somewhere be-
tween the axis and the wall.

Figure 13-56 shows the cup-mixing average temperature as a function of axial
position {. We can infer immediately from this figure that the models given earlier
for fully developed temperature profiles cannot be valid unless { is larger than
about 0.5. Thus we may define a thermal entry length z* such that {* = 0.5, or
{using Eq. (13-269)]

2 0.5(1 +3n) UR

13271
R 1+r ar ( )

where the thermal diffusivity o has been introduced.

It is not difficult to see that under most conditions the thermal entry length is
not exceeded. Since a, for polymer melis is of the order of 10™% cm?/s, we may
write Eq. {13-271), approximately, as

= _ ol 10+ 2 Q. o2 i
Emo(lo R) (Rmcm/s) (13-272)

Since in many processing systems R is normally of the order of 1 cm orless and
is not normally much less than 10™* cm?®/s in magnitude, it is apparent that the
thermal entry length is several orders of magnitude greater than the tube radius.
Thus the fully developed solutions [such as Eq. (13-267)], while providing an
easily calculated upper limit, may be very misleading, and Fig, 13-56 provides the
more relevant information.
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Figure 13-56 {7 as a function of axial pesition £, with n as a parameter, for poewer law flow in a
pipe with isothermal wall.

Since the small { region is of interest, it may be useful to give the analytical
solutions for the temperature profiles. A detailed development of the viscous
heating problem, including the effects of both a temperature- and pressure-
dependent viscosity, for a power law fiuid is given in two papers by Takserman-
Krozer and her coworkers {(see Galili et al.). The details are too lengthy to present
here, and even the simplest results occupy a fair amount of space. Unfortunately
no caleulations are made of the average temperature rise even under simplifying
assumptions. We present here the solution for the temperature profile, ignoring, as
a first approximation, the effect of viscosity variation. Calculations based on the
analytical solutions are suggested in several problems at the end of this chapter.

For the case of the isothermal wall the solution is given as

1 —352 w oo
Biso)(s &) = G( 7 > + Y B ey b,-ks“) (13-273)
i=1 k=0

where 5 and ¢ are defined as before (s = /R, g = 3 *+ 1/n). A dimensionless tem-
perature 8 is defined as
_T-T
" AP/pC,
Note that this normalizes the temperature rise to the adiabatic value
(Eq. (13-257)].

(13-274)
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The parameter G is similar to a Brinkman number in some respects and is
defired as

pC,0 "
=tz 27
G Skl {(13-275)
The axial variable £ is simply

&= T (13-276)

The coefficients B, a;, and b, depend upon n, and are given for the cases n = 1
and n =4 in Table 13-5.
In all cases the b, are given by the recursion formula

2
i b,
{q_z)k;:_ (bi.k—z bm.k—q)

by = —
b =1 for all ¢
b;=0 ifj<0
Y b, =1 (isothermal case} Y kb, = 0 (adiabatic case)
k=0 k=0

For the adiabatic boundary the sclution is

1 q o <
Ouaiy = € + G{m—% (« 5% - s“) + 3, Biem ™Y by st (13-277)
g—2\2 i=1 K=0

Table 13-5 Coefficients for use in Egs.
(13-273) and (13-277)

Isothermal wall Adiabatic wall

i a B, a B,
w1

1 1.828 —-Q.338 0 —0.250

2 1115 (.126 6.42 0.320

3 2848 —{.0580 2087 -0.102

4 53.81 0.0331 43.54 0.0498

5 87.14 ~0.0210 74.13 —0.0296
n=1%

1 1.974 —0.279 4] —0.25

2 11.73 0.117 6.73 0.325

3 29.85 —0.0584 2193 —-Q,109

4 56.34 0.0339 45.53 0.0537

5 91,19 —0.0222 77.52 —0.0320
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From these basic solutions it is possible to calculate cup-mixing temperatures,
and the results for the isothermal case should give Fig. 13-56 when the dimen-
sionless variables are converted. In the entrance region the analytical solutions
can be used to generate numerical results with more accuracy than can be ob-
tained from Fig. 13-56. However, for small ¢/G, which is the situation of principal
interest here, the series converges slowly, and for accuracy the summations in-
dicated in the solutions must be carried out beyond the first few terms. It is best to
simply program a computer to perform the requisite calculations, including those

needed to caleulate the b, coefficients. [The surmmation Y by s* will ordinarily
k=0
have to be taken out to 20 or 30 terms when s is near unity (the wall region).]
For adiabatic boundaries the cup-mixing value of 8,qiy should agree with the
first law of thermodynamics {see Probs. 13-47 and 13-48). It is of some interest to
see how the maximum temperature behaves in the adiabatic case, and this may be
found upon setting s = 1 in Eq. (13-277) (see Probs. 13-49 and 13-50).
A problem associated with the convenience of using Eq. (13-273) can be il-
lustrated in the following example.

Example 13-12 A melt for which K = 10* dyne-s*/%/cm? and » = 1 is injec-
tion moided through a runner of diameter 0.3 cm and lergth 7.5 cm at a rate
of 20 cm?/s. If the melt enters the runner at 250°C and the runner surface is at
250°C, estimate the average melt temperature leaving the runner. Take the
thermal properties to be those of polypropylene (Fig. 13-3),

From Fig. 13-3 we find

k=26 x10"%cal/s-cm-°C
o =525 x 107% cm?¥/s
Since K is in mechanical units we convert k and find
k=26x107*418 x 107) = 1.1 x 10* g-em/s®-°C
The Brinkman number is needed since
(Ty = Ty="To Br (T
We find [Eq. {13-264)]

T, Br=

KR*{1+3nU
n R

I+n
_ =1_ 4 o
T ) 9 x 10% °C

An accurate solution would have to come from Eq. (13-273) [and the
corresponding expression for {6}, (Prob. 13-44)]. It is interesting to see what
problems this raises. We begin by noting that

¢ 2{l+3n)
ek WC {13-278)
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so that £/G = 1.2 x 1073, We can see, then, that the exponential terms in
Eq. (13-273) are nearly unity at this small value of /G, which means that the
series converges very slowly.

From Fig. 13-56 we note that if the tube were long enough that the fully
developed temperature field could be attained, the temperature rise would be
predicted to be

T — T, = 0.034T, Br = 646°C

This is a ridiculously high temperature rise, and the theory, which neglects the
effect of temperature on viscosity, would be invalid.
But the tube is very short (thermally) dince
wr(l + n)z -
mm et = 37 x 107
C= U x 10
From Fig. 13-56 it is apparent that {T)> would be very small, probably less
than 1073 Thus we might anticipate that the temperature rise would be less
than
T—T,=1073(19 x 10%) = 19°C

However, this estimate of {T> from the figure is very crude (it could be twice
as large or 10 times smaller, since the figure is virtually unreadable in the
“small-{ comer.”)

For very small { we may examine the limiting behavior of the series
solution [Eq. (13-273)] and find, approximately, that the average temperature
is given by

(T>=04{ [ <005 (13-279)
e 1
- 2
This allows us to estimate, for this specific example, that
(T = 1.5 x 1074
or T—T,=28C

1t is important to take note of the enormous error that would have been made
if the fully developed solution had been used {given above as 646°C).

For this example, the adiabatic assumption, using Egq. (13-257), gives
T — T, = 4.5°C. As expected, the actual value is less than this.

A simple approximate solution for {7 If we examine Fig. 13-55 we make an
observation that suggests an approximate solution in the entrance region. The
observation is that as { gets small the maximum temperature moves toward the
tube wall, and the profile becomes flat, except in the region of the maximum.
The cup-mixing temperature is an average in which the temperature profile is
weighted by the velocity profile, as in Eq. (13-266). For very small { we might
suppose that the maximum temperature contributes relatively little to {7, since
the velocity falls to zero as the tube wall is approached.
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Let us develop a model based on the following idea: that in the central region
- of the tupe the energy balance is primarily between the generation of heat and its
axial convection. Except near the tube wall, where the radial temperature gra-
dients are large, the conduction of heat is neglected. Then Eq. (13-270) becomes

1—+5) %? = (13-280)

T=0 atr=0

If we multiply both sides by 5 ds and integrate over 0 < s < 1, we find [noting
Eq. (13-266)]
ATy _

.

eIMN

or T =§c (ocz 1 +%) (13-281)

We may evaluate this solution using the exact solution (Prob. 13-45) for ¢ T%.
For the cases n =1 and 4 we find

P = 06 n=1,{<005 (13-282)
S04l m=147<005 (13-283)
Equation (13-281) gives
- T n=1 (13-284)
<> = (0.675 n=1% (13-285)

Considering the simplicity of its derivation, we must regard Eq. (13281} as a
useful model. Thus, for arbitrary values of », for which the coefficients of
Table 13-5 have not been evaluated, we may use Eq. (13-281) as an approximate
solution for (7.

Combined viscous heating and convective heating In previous models we have
considered the effect of viscous heating separately from the effect of heating (or
cooling) caused by the presence of a tube-wall temperature that might be different
than the inlet temperature of the fluid. The * combined ™ problem could be for-
mulated in the following way. The energy equation is

OT 18 { 8T\ [ du)\**

but now the boundary conditions are

T atz= 0

T={Tw atr=R
?-—T:=O atr=20
or
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We may easily show that the solution of this problem is a linear combination of

solutions already presented.
Let us define a dimensionless temperature as

. T-T
- 7
T _Tw s (13-287)
and a Brinkman number as
, KR? 1+3nU\*"
Br' = KT, = To)( " E) (13-288)

The independent variables { and sare defined as before [Eq. (13-269) and s = r/R].
As a result we find (assuming a fully developed power law velocity profile)

8T 18 oT -
(1 _Sz}a_l— EE(SK) +Br s (13-289)

The boundary conditions are

. {0 at{= 90

T =

1 ats=1
aT
= ats=0
ds

For the case of negligible viscous heat generation in flow through a tube at

constant wall temperature we have to solve

ar, 18 aT
_ 0 at{=10
T ll ats=1
%{—1=0 at 5= 0

This differs from Eq. (13-218) in the definition of T used there, as a result of which
the boundary conditions are different. However, Fig. 13-47 may be used, since
- =~ . =

T T T,=1-T (13-291)
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] The viscous heating problem with the isothermal-wall boundary condition
has been solved above, but we reformulate it here in slightly different format:

(1- s"‘)aa—lr:,2 = é%(s a—;}) + Br' s (13-292)
ot
?aisl =0 ats=0
using
Ty = ;i - ;: (13-293)

It is not difficult to see that T,/Br’ is the solution of Eq. (13-270), for which
Fig. 13-56 provides a graphical solution for {7;)/Br’. (For small { the analytical
solutions discussed above must be used.)

Now, the relevant observation is that if we consider the sum 7, + T, = T,

we may easily verify that T, satisfies Eq. (13-289) and its boundary conditions.
Hence

T’ = T-'z’ = TI + Tz (13—294)
Thus we may evaluate (") from
- . T
(T =Ty +Br G2 (13-295)

using the previously obtained solutions for (T,» and {T,)/Br'.

Example 13-13 We repeat Example 13-12 except that the runner surface is
taken to be 50°C.

For the viscous heating contribution we have found (T = 1.5 x 1074,
which is equivalent to (in the present notation)

(T
Br'
In this example we find the Brinkman number defined by Eq. (13-288) is
Br' = —96. Note that the Br’ may be positive or negative, depending on the

sign of T, — Ty. For the contribution due to the cold wall we may use
- Fig. 13-47. Since { is so small we may approximate Eq. (13-221} by

(THy=1-14 (<1073 (13-296)

=15x10"%

Hence

{TH=1~(Ty=14
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and we find (T,> = 5.2 x 1073, Putting these solutions together, we find

Py = (T + Br T2
Ty =<Ty +Br g2

=52 % 107% — 96(1.5)10"*
=52%x1073-14x 1072
=—92x 1073
Thus
T—Ty=(T,— ToT> = —200(—92}1073 = 1.8°C

As expected, the cold tube wall offsets the effect of viscous heating, thereby
reducing the mean terperature rise.

13-9 FREEZING AND MELTING OF POLYMERS

In many problems of interest the polymeric material undergoes a phase change. In
igjection molding, for example, the melt solidifies in the cavity after the filling
stage. Filament solidification occurs during metlt spinning. Often a simple model
which ignores the effect of the heat of solidification can be used to estimate the
behavior of such systems. We have already offered some exampiles of this in
previous sections.

A more difficult problem is that of freezing during the filling process in injec-
tion molding. A solid layer grows in toward the center of runners and cavity, and
the problem normally becomes one in at least two space variables as well as in
tirne. Mathematically, then, such problems are quite complex, and simple models
are not readily achieved. Several references to convective transport problems in
the presence of solidification are given in the Biblography.

An even more difficult problem is that which arises in the melting of granular
polymeric solids. The development of a model for this type of process is central to
the development of a model for the plasticating extruder. We will again have to be
content with some references for further study, and the Bibliography contains
several.

PROBLEMS

13-1 Show that for a simple shear flow the viscous dissipation G, is proportional to II, for parely
viscous fluids.

13-2 For simple elongational flow of a purely viscous fluid, find G,,. Is G, related to T1, in the same way
as found in Prob. 13-17
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13-3 Formulate the equations and boundary conditions for the problem of solidification of a station-

" ary melt confined to a cylindrical tube whose wall is at a constant temperature below the [reezing
temperature of the polymer. Do not attempt to solve the problem, but state how you would find the
thickness of the frozen layer as a function of time, i, how the equations would be manipulated,
13-4 Give a derivation of Eq. (13-51).

- 13-5 Derive Eq. (13-122).

13-6 Derive Eq. (13-130).

13-7 With reference to Example 13-3, argue intuitively whether T(z) (Fig. 13-18) will fall faster if U is

increased. Then do the analysis and compare the conclusion with your intuition.

13-8 A theoretical paper by Rotte and Beek presents solutions [or heat transfer coelficients to moving

continuous surfaces, such as cylinders {fiber} or flat sheets (film). For their ¢ase 5 (flat plate of infinite
heat capacity in z fluid of finite Prandtl number) they give

m =fs(Pr)  where Pe, = Ox
VPe, o
From their fig. 2, at a Prandtl number of 0.72 (for air), one finds J5(0.72) = 0.745.
Compare this prediction with that given from the use of Fig.'13-17, bascd on the theory of Shih
and Middileman, Take note of differences in notation.
13-9 Derive Eq. (13-145) and its boundary conditions.
13-1¢ Derive Eq. (13-151).
13-11 Wanger gives the data, shown in Fig. 13-57, for melt spinning of polypropylenc fibers. In both
cases the initial melt temperature is 260°C, and the ambient air temperature is 25°C, Assess the ability
of the simple models presented in Sec. 13-6 to predict temperature along the filament.
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Figure 13-57 Data for Prob. 13-11. (From Wanger.)) O Surface temperature: @ filament diamster.
(@) nR?pU = 2 g/min; U, = 200 m/min. (§) nR2pU = 4 g/min; U, = 100 m/min.

13-12 The data shown in Fig. 13-58 were obtained by Wilhelm and replotted by Morrison. Force
Eq. (13-152) to fit the data, and estimate thereby the value of the heat transfer coefficient. Is this heat
transfer coefficient predictable on the basis of the model presented in Sec. 13-67
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The data correspond to the following conditions:
nR3*plU =2 g/min T, = 290°C
U, = 800 m/min T, = 30°C
Dy = 0.75 mm

Use thermal properties of polyethylens terephthalate.

13-13 Verify Eq. {13-165) and the comment regarding n.

13-14 Continue Example 13-5 and plot the thickness of the solid polymer as a function of time. Define
and give the value of the time at which the runner is frozen.

1315 The boundary condition on Eq. (13-155) is written in a gencral notation so that a single
equation may be written to stand for both heat and mass transport phenomena:

—Ux=Sa(x-X)

This creates some problems, and a source of confusion, in the notation uscd for the heat or mass
transfer coefficient. For heat transfer

kL
Sh=Nu=—

whereas for mass transfer

k. L
§h =~
g
(4) Give the units of the convective heat transfer coelficient k and the conveetive mass transfer
coefficient k.
(b} If the Sherwood number is written in a generalized form as
nL
§h s omm
rd

what are the units of the generalized convective coefficient '?
{¢) For the case of heat transfer, how is k" related to i?



HEAT AND MASS TRANSFER 457

13-16 Show that the single boundary condition

. ~VX = Sh(X - x,)
inclydes the special cases of
{a) The adiabatic or inpenetrable boundary.
(b) The boundary maintained at the ambient condition X = X,.
Give the values of Sh for cases (a) and (b)

13-17 Polystyrene is injection molded in 2 center-gated disk mold. The runner is 4rin in diameter: the
disk is $-in thick and 6 in in diameter. Assume that at some instant of time the melt is 170°C and the

mold and runner surfaces are suddenly brought to 2 temperature of 50°C. Find the time required for
the runner to freeze. Do the same for the disk.

13-18 Derive Eq. (13-165) by starting with Eqs. {13-1584) to (13-158¢) (see Table 13-3) and taking the
limit as Sh — 0. In doing so, establish 2 eriterion for use of Eq. (13-165) in terms of 8h.

13-19 A strand of molten polyethylene is extruded into a water bath where it solidifics. In designing
the bath it is necessary to have an estimate of a sufficient contact time for the process. Assume the
polymer enters the bath at 170°C and that the bath is at 30°C. Estimate a contact time for strands of
two diameters: § in and 3 in.

13-20 Begin with Eq. (13-186) as a transformation of variables, and show that an ordinary differential
equation results from Eq. (13-183), Soive the equation to derive Eq. (13-185)
13-21 Derive Eq. (13-189).

13-22 DPerive Eq. (13-194), and give the general result for a power law fluid.

13-23 Go back to Example 13-7 and carry through the calculztions needed to determine the required
length of the heat exchanger.

13-24 Suppose, in Prob. 13-23, the stream was split in two, and 750 Ib/h of fluid was put through
each of two parallel heat exchangers. What would be the required length? Is the short-time solution
more or less applicable to this case than to that of the original example?

13-25 Repeat Prob. 13-23, but assume that the serapers are not operating, so that no periodic mixing
occurs, In what way do the scrapers enhance the efficiency of the system?

13-26 Beginning with the general transport equation, derive Egs, {13-2 13) and (13-218).

13-27 Derive Eq. {13-217), and in doing so give the definition of Nu that appears in it.

13-28 Why does the model that leads to Eq. (13-236) fail to give 2 meaningfu! result in the limit of
n—+07

13-29 For heat transfer in tube flow we have given the Graetz solution [Eq. (13-221)], useful for
“large” z, and the Leveque solution, useful for “small” .

(a) Give the criteria for accurate and convenient use of the two solutions,

{b) Molten Nylon 66 at 550°F is injected through a --in-diameter runner offength 4 in. The flow
rate is 4 in%/s. The runner surface is held at 125°F. Would the Graetz or Leveque model be more
appropriate to this flow?

(¢) Estimate the temperature change of the melt leaving the runner.

13-30 For newtonian flow in a pipe with uniformly heated surface, plot the local Nusselt number, as
well as Nu [Eq. (13-241)] and Nu, [Eq. {13-247)] as a function of distznce [rom the entrance to the
pipe.

13-31 Develop a criterion for adiabatic flow in a pipe in terms of a ratio of the rate of heat transferred
across the wall to the rate of flow of heat past any cross section. Use the Graetz solution given in
Eq. (13-221).

13-32 Polypropylene is injection molded into a 32-0z cavity at a fill time of § 5. The sprue-runner
system may be considered to be a capillary of length 2 in and diameter § in. Can the flow be considered
adiabatic prior to the cavity?

13-33 Bassett and Welty give the data shown in Fig. 13-59 for heat transfer to polymer solutions
flowing through a uniformly heated (constant fux) pipe. For the solutions used, n ranged from about
0.33 to 0.67. Compare the data to the simple model given by the Leveque solution (13-256),




458 FUNDAMENTALS OF POLYMER PROCESSING

70
— [«%
[e]

40 |- o -
=) I~ © e j —
=4 00

20 - . —

=11
oo ©
1o_¢°
100 1000 10,00G Figure 13-59 Data for Prob. 13-33. {From Basseu and
Gz = wC, [kz Welty.)

13-34 Rearrange Eq. (13-235) so that it may be compared to Eq. {13-256).

13-35 Find Nu, for the ¢asc of pipe flow with prescribed flux [Eq. (13-256)] and compare it 1o
Eg. {13-251).

13-36 Show that in the case of flow through a conduit with constant heat flux, the cup-mixing average
temperature in the fuid changes linearly with distance down the axis.

13-37 Carry out a rough first design of a heat exchanger for molien polyethylene, Use Fig, 13-46 lor
the viscometric data. Design under the following constraints:

We wish to lower the temperature of the melt from 400°F to 300°F,

The melt will be pumped through an exchanger consisting ol parallel pipes connected to a common
header at the inlet and outlet.

The pressure drop across the exchanger must be less than 300 psi.

The exchanger pipes are immersed in a very efficient heat exchange fluid maintained at 100°F.

The total flow rate is to be 1000 ib/h of polymer.

Specily the number of parailel pipes, their diameter, and their length.
Someone suggests that, instead of using a refrigeration unit to keep the cooling fluid at 100°F, ice

be added periodically to the cooling fluid. At what rate must ice be supplied? (It is unfair to ask a
sophomore chemical engineering student for help on this part.)
13-38 Give a careful derivation of Eq. (13-260) so that all assumptions can be stated.

_13-39 Derive Eq. (13-262) and give the solutions for isothermal wall: Eq. (13-265) for T and
Eq. (13-267) for {T.
13-40 Give the solution of Eq. (13-262) for the case of adiabatic wall, for which the boundary condi-

tion at s = 1is 87/8s = 0. Explain the result, or lack thereol. (This is another example of " throwing out
the baby with the bathwater.”}

13-41 Consider the case of fully developed temperature profile [T # T{z)] with X a function of
temperature according to Eq. (13-259). Make Eqs. (13-258) and (13-259) (and the appropriate boun-
dary conditions for an isothermal wall) dimensionless and show that with an appropriate choice of
dimensionless temperature the parameter & [Eq. {13-268}] enters the problem in a natural way.
13-42 Polyethylene is injection molded through a tunner of length 6 in and diameter % in at a rate of
5 ozfs. Take the temperature of the melt at the entrance to the runner to be 400°F, and assume the
runner wall 1s at the same temperature. Estimate the extent of viscous heating through the runner. Use
Fig. 13-46 for rheological data. Compare your estimate with the adiabatic temperature rise
[Eq. (13-257)).

13-43 Give the relationship of 8 [defined by Eq. {13-274)] to T [Eq. (13-263)]. How are Brand G
related?

13-44 Using the isothermal velocity profile (13-261), give the analytical form for the sup-mixing value
of 8,,,, using Eq. (13-273},
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13-45 Using the result of Prob. 13-44 and the coefficients in Table 13-5, caleulate {f,,.» as a function
- of & for n = 1 and 4. Convert to <7 versus {, and compare with Fig. 13-56.

13-46 Using the isothermal velocity profile (13-261), give the analytical form for the cup-mixing value
of 8,4, using Eq. (13-277).

13-47 Show that (8., as obtained in Prob. 13-46, reduces to the expected value for the limit of
z—+ o0,

13-48 Should {8,,,;,> differ from unity at finite values of z? Verify your answer by examining the result
of Prob. 13-46, and comment on the result,

13-49 Prove that the maximum value of 8,4, [Eq. {13-277)] occurs at the tube wall.

13-50 For adiabatic flow in a tube, to what degree does the maximum temperature rise due te viscous
heating, the wall value, exceed the value predicted from Eq. {13-257)?

13-51 Cousider the possibility of a Leveque-type of solution to Eq. (13-270). What boundary cendi-
tion is used for the core region (far from the tube wall)?

13-52 Repeat part ¢ of Prob. 13-29, and include the eflect of viscous heating.
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CHAPTER

FOURTEEN
ELASTIC PHENOMENA

If not now, when?

Hillel

In previous chapters we found that modeling of many processing flows was
adequately carried out using purely viscous constitutive equations. This is equiva-
lent to the notion that viscous effects, particularly shear viscosity, dominate the
response of polymeric fiuids in typical processes. Thus one did not need to intro-
duce elasticity in developing models for these flows.

One does not always get away with this degree of simplification, for elastic
phenomena do indeed occur in most processes and can sometimes play the domin-
ant role in determining process operation. In this chapter we consider some
aspects of polymer processing in which elasticity plays a major role.

We have already considered some examples where elastic effects are
significant. These include

@ Coating flows {Chap. 8)
@ Fiber spinning (Chap. 9)
@ Stirred-tank mixing (Chap. 12)

In this chapter we confine our attention to two elastic phenomena which
affect the extrudate from a die.
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14-1 DIE SWELL

It is well known that if a viscoelastic fluid is extruded from a die into air without
subsequent drawing, the cross-sectional area of the extrudate will exceed that
of the die exit, under most conditions of any interest. This phenomenon is usually
called die swell. In the most common case, that of the circular die, diameter ratios
(extrudate to die) in the range of 2 to 3 are often observed.

There seems to be general agreement that die swell is an elastic stress relaxa-
tion phenomenon. However, no single theory of die swell seems to be generally
accepted, each theory being based on some assumption regarding the effect of
stress relaxation on the dynamics of the extruded jet. A complication lies in the
appearance, in several die swell theories, of the recoverable shear Sy, which we
have defined as {see Eq. (3-156)]

Ty — 7T
Sp=-—t 22 14-1
R 2112 ( )

This ratio of the primary normal stress difference to the shear stress, the stresses
being calculated at the same shear rate in a steady simple shear flow, is not always
available to accompany die swell data. Consequently the comparison of a die swell
theory to experimental data often involves an uncertainty in the value of § & itself.
Finally, we note that melt extrusion is usually into a cooler ambient medium, and
1t is possible that cooling of the extrudate can retard die swell. Unless the extru-
date is collected and subsequently annealed? to complete the refaxation process,
incorrect values of the true die swell are obtained. We comment further on this
particular point below, ,

For the sake of providing some perspective we should note that newtonian
fluids can exhibit die swell, with a maximum value observed to be about D /Dy =
x = 1.12. Figure 14-1 shows experimental data which indicate that y may take on
values between 1.12 and 0.87, depending on the magnitude of the Reynolds

" number.

T Annealing is achieved by returning the sample to its original melt temperature for some time,

M M—o—o@ B
)

L 4
0.8~ —
L -  Figure 14-1 Data on die swell for several

L1 1 1 L1y L newtonian fluids extruded from a long

2 10 100 capillary into air. (From Middleman and
Re Gavis.)
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The lower value of y = 0.87 can be predicted by theory, using a very simple
'combinat@on of mass and momentum balances. The mass balance takes the form
Ry 2
nD

J pu(r2mr dr = pUj—41— (14-2)

[}
‘We are simply equating the mass flow out of the capillary to the mass fiow
downstream, at a point where the velocity field has flattened out to the constant

value ;. If the veloeity profile in the capiliary is taken to be parabolic, so that

2
u.(r) =2U[1 - (f-) ] (14-3)
Rg
then we find, assuming constant density,
Uij? = D} (14-4)

[In fact, Eq. (14-4) holds for any velocity field so long as U is understood to be the
average velocity.)

The momentum balance assumes that no external forces of any kind act on -
the jet between the capillary exit and some downstream position. Among the
potential forces that could act, but are assumed not to do so to any significant
extent, are surface tension, gravity, and ambient air resistance. The only momen-

tum terms, then, arise from the flow itself, and conservation of momentum equates -

the two rates of flow of momentum in the form

27D} _ 1*
U= Jo
If Eq. (14-3) is again used we find .

UiD? =4U2D3 (14-6) -

Using Eg. (14-4) to eliminate the velocities we obtain the observed result, .
namely,

Q
puZ(r)2nr dr (14-5)

%= JEVERYS (147) .

2

Sl

If the fluid is assumed to follow the power law one can carry through an identical

analysis and find

D; (2n+4 1\V? |
e 14-8) -
% Dy (3n + 1) (14-8)

This approach to the “die swell ™ problem (the quotes reflecting the fact that -
the “swelling ” is really a contraction) is one which emphasizes the role of convec-
tion, there being no other mechanism for momentum transfer allowed in this
model. For large Reynolds numbers (but still small enough that the flow is
laminar) inertial, ie. convective, effects dominate, and the theory is in complete
agreement with experience.
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At the other extreme, in the limit of very small Reynolds numbers, viscous
effects become significant and must be accounted for in the momentum balance.
Physically, the role of viscous effects is to cause the velocity field at, and near, the
capillary exit to deviate from the fully developed profile. Tanner has solved the
dynamic and continuity equations for a newtonian fluid in the neighborhood of
the capillary exit by a numerical technique, and, in the limit of low Réynolds
numbers, predicts a die swell of y = 1.13, in good agreement with data on newton-
jan fluids. Thus the newtonian flow problem is well understood, and the theory is
in good agreement with data at both low and high Reynolds numbers.

Polymer solutions are observed to show a die swell which can exceed the
upper newtonian limit of y == 1.13. This result is presumed to arise from the
normal stresses generated by the shear flow within the capillary. The analysis can
proceed along the lines of the momentum balance method, and the result, as given
by Metzner et al, may be put in the form

Ty — Taz 1{t+nt+3n 1 dlog y
= (-2 S DT T e 149
Sx ( 21 )L‘Ro f[ R Tx o mE\ T T dteg ) | M)
where f is the friction factor for the (assumed) fuliy developed flow within the
capillary,

T12
F=v== 14-10
_j{_p Uz ( )
Ty, is the shear stress at the capillary wall, and }, is the nominal wall shear rate,
sU
N = —— 14-11
v Do ( )

In the derivation of Eq. (14-9) it is assumed that the velocity profile right at
the capillary exit is that for fully developed power law flow. It is also assumed that
the secondary normal stress difference (ty, — 743) is small in magnitude relative to

the primary normal stress difference. Finally, an assumption is made that the
" pressure within the fluid, on the axis at 7 = 0, right at the capillary exit, is equal to
the external (ambient) pressure just outside the capiliary.

Experiments with polymer solutions give fairly good agreement between
normal stresses calculated from die swell, using Eq. (14-9), and normal stresses
measured with conventional rheological instrumentation. A problem in making
such a comparison lies in the fact that capillary flows of solutions which produce a
Jjet, rather than a series of drips, are at shear rates of the order of 10% to 10° s~ * or
higher, while standard instrumentation such as the cone-and-plate or torsional
flow devices do not give reliable normal stress data in solutions at such high shear
rates. Hence a “ comparison ” such as suggested above usually involves extrapola-
tion over an interval of shear rate of more than one decade. Still, it would appear
that order-of-magnitude agreement is achieved, indicating that the theory leading
to Eq. (14-9) is basically correct, when applied to solutions.

Difficulty arises when omne tries to use Eq. (14-9) for polymer melts. Graessley
et al. show, for a polystyrene melt, that Eq. (14-9) underestimates the normal
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stresses by factors of as much as 107. This is such an intolerable error that one
must conclude that the momentum balance method is not applicable to melts. Of
course, the momentum balance must hold in principle; the assumptions made in
deriving the specific form used [Eq. (14-9)] must be incorrect.

. It seems likely that the incorrect assumption is with respect to conditions just
within the capillary, near the exit. As in the case of the viscous newtonian problem,
for which Tanner’s theoretical analysis shows that the behavior of the free jet can
perturb the flow and stress fields within the capillary near the exit, we expect also
that the elasric flnid jet will perturb the dynamics of the exit region. On the
grounds that the exit effects will complicate any momentum analysis to the point
of gross inaccuracy, a completely different approach to the die swell problem has
been presented by several investigators of this phenomenon.

The basic idea is to think of die swell as a problem in elastic recavery. The
flow field within the capillary gives rise to stresses which strain the fluid with
respect to some reference state. On leaving the capillary the fluid is supposed to
“recover” and return to its reference state. A cylindrical element of fiuid of
diameter Dy and length L, swells to a diameter D; and a shorter length L;. The
several models of die swell which have been proposed all attempt to calculate the
stress required to take the swollen cylinder of diameter D}, as if it were an elastic
solid, and “ stretch ™ it axially so that it has the smaller capillary diameter D, . This
stress must then be related in some way to the elastic stresses developed within
the fluid just prior to its gjection from the capillary.

We will illustrate here the theory due to Tanner, which may be written in the
form

x= (1 +4S53)¢ (14-12)

We make no attempt to use Eq. {(14-12) for values of y below y = 1.2, since this
approaches the region where purely viscous effects might be expected to give rise
to a die swell of nearly this magritude. In this regard we note that Tanner suggests
replacing ¥ by (¢ -- 0.1}, in using Eq. (14-12), as a means of compensating for the
viscous contribution to die swell.

An important point to notice is the sensitivity of y to Sg. Small changes in §p
cause even smaller changes in y while, inversely, small changes in y give rise to
relatively large changes in S,. For large values of y a good approximation is
¥ = SK*. Thus we have

dlogy 1

dlogS; 3 (14-13)
from which we see that the relative change in y is one-third that in S,. Actually,
for moderate values of y, say, 1.2 < y < 1.6, the relative error is even smaller.

A consequence of this observation Is that if S, values are available, subject to
some error, the resulting error in the predicted value of y will be relatively small.
Thus one might expect to be able to make at least rough predictions of y if the
basic rheological information is available. The inverse problem is more difficult to
deal with: While in principle one could calculate S; from measured values of ,
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1.2 ] | |

L Figure 14-2 Data of Mori and Funatsu for die swell
D of polypropylene at 219°C and y = 700 s %,

the error would be relatively large, and the uncertainty as to whether the theory is
realistic gives rise to a great uncertainty in the correct value of S

Thus we must emphasize that the relationship of die swell to basic rheological
properties is imperfectly known. With this in mind, however, let us examine some
of the available data on this pkenomenon. Figure 14-2 shows data of Mori and
Funatsu for a polypropylene meit. The important point to note is the dependence
of x on capillary length. For a very long capillary the normal stress at the exit is in
equilibrium with the fully developed shear flow within the capillary. For very
short tubes, however, the large normal stresses that accompany the acceleration of
the fiuid through the entrance region of the capillary do not have sufficient res-
idence time to relax, and the normal stress at the exit is considerably higher than
that which would be expected simply on the basis of the steady shear flow. This
particular set of data suggests that an L/D of 20 to 30 is required to give the
equilibrium die swell, at shear rates of nearly 1000 s~ Equation (14-12) refers to
equilibrium conditions since it is implied that S; has been determined under
steady shearing flow.

A second problem that complicates the attempt to relate y to Sp lies in the
methods used to obtain the measured values of y. Typically the extrudate leaves
the capillary as a molten polymer and is ejected into air at ambient temperatures
far below its melting point. It is possible that the extrudate solidifies faster than
the elastic stresses can relax, thus “freezing ™ the stresses into the solidified strand.
If this occurs then stress relaxation 1s incomplete, and the extrudate does not
achieve its equilibrium degree of expansien.

Data illustrating this problem are presented by White and Roman, and
Fig. 14-3 shows some of their results obtained for a high-density polyethylene.
The “isothermal ™ data refer to the case where the ambient medium was a silicone
oil at the melt temperature. Photographs of the extrudate were taken 5 to 10 min
after extrusion. It could be presumed that these data correspond to complete
relaxation of stress. The “frozen™ data represent the other extreme, where the
extrusion was into cold air and the diameter of the frozen extrudate was measured
with a micrometer. The “annealed ™ data correspond to taking the frozen extru-
dates and annealing them in a silicone bath at a temperature above the melting
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2.2
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1.8
X - /‘l 3
145
- Figure 14-3 Effect of method of measurement on die
1.0 ! ] 1 swell. From the data of White and Roman on a high-
0.1 1 . 10 100 1000  density polyethylene extruded at 180°C. 1—isothermal,
Yo 57 2—anncaled, 3—frozen. §, is the wall shear rate.

temperature for about 15 min. It is clear that there can be significant variations in
¥ due to the method of measurement. This point must be kept in mind when
comparing data from several sources to a theory, such as Tanner’s above.

Several such comparative studies have been made in an attempt to determine
the “best™ theory available for relating ¥ to §,,. Tanner’s theory often comes out
well in such tests, doing a better job than other available theories. Rather than
illustrate some of the apparent successes of any theory, let us examine other data
of White and Roman shown in Fig. 14-4,

We see that Tanner's theory does not do a good job of correlating the data.
More to the point is the observation that the observed values of y clearly depend
on something other than S;. We will not belabor this topic further here, impor-
tant as it is. Several references are cited which present experimental data for a
variety of materials. We must conclude that at the present time there is no
adequate theory with which successful a priori predictions of die swell can be
made from rheological data. This is notwithstanding the fact that some theories
can be used to predict some data some of the time.

Instead, let us examine some observations, independent of theory, that allow
useful generalizations to be drawn regarding die swell and from which some useful
correlations may be found. Figure 14-5a shows data on a commercial polystyrene
at three temperatures. As expected, the melt becomes more elastic at lower
temperature, and y is observed to increase (at fixed shear rate) to refiect that fact.

One of the most useful observations regarding die swell is that, for a given
polymer sample, y appears to be a unique function of shear stress. Figure 14-5b

24
x| gl 0 ]
L -} -
R _0O
- BA‘m o -
- p @8 ® | Figure 14-4 Data of White and Roman on die swell of
1 | | various melts extruded iscthermally into a silicone oll
0.1 1 10 100  bath. B, {] High-density polyethylenes; @ polystyrene:

25 O low-density pelyethylenes; A polypropylene.




470 FUNDAMENTALS OF POLYMER PROCESSING

2.0 2.0
1680°C
180°C
X X
- 200°C
=}
- g
. { 1 | | 1 | |
1071 i 10 102 104 108 106
g s 75 {dynes/cm?)
(a) {b)

Figore 14-5 Data of Graessley et al. on die swell of 2 commercial polystyrene melt. (a) As a function
of shear rate, at three melt temperatures. (b) Same data, replotted as a function of shear stress,

shows the data of Fig. 14-5a replotted to illustrate this point. Thus, if data are
available on y as a function of flow rate, at some temperature and for a given
capillary of sufficient length that the equilibrium value of y is attained, then one
may predict the expected value of y at another temperature, flow rate, and/or
capillary diameter, so long as viscosity—shzar rate-temperature data are available
for that polymer sample.
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Figure 14-6 Data of Vlachopoules et al. on die swell of various polystyrene melts.

M: M: +1
107361, M2 T,°C
o] 212 56 170
(] 4.98 1.25 210

Pa¥ i8 1.25 230




ELASTIC PHENOMENA 471

. The observed correlation with t, does not hold if different molecular weight
samples of the same polymer are studied. Figure 14-6 illustrates two aspects of this
point. The two lowest sets of data are from narrow molecular weight distribution
polystyrenes of dilferent average molecular weight. The higher molecular weight
material is the more elastic. The more striking result is seen for the lowest moleci-
lar weight material, which is a physical blend of narrow distribution samples. This
blend shows markedly higher elasticity, even though it is a blend of materials of
molecular weight no higher than the M, = 498,000 material which gives the
lowest y in the figure. Can these results be rationalized?

To clarify this point we must turn to some results of Graessley regarding the
role of molecular weight in affecting elastic properties of polymers. First, we note
that most commercial polymers have a distribution of molecular weights, the
breadth of the distribution depending in part on the design and operation of
the polymerization reactor. As with any distributed quantity, we must character-
ize “ the molecular weight” in terms of some average, and in terms of moments of
the distribution. If we define /(M) to be a normalized molecular weight distribu-
tion function,T so that

1=Jmf(M) aM (14-14)

then we find that the number average and weight average molecular weights are
given by

M,= j: Mf(M) dM (14-15)
M, = j: Eﬁ"ffﬂ (14-16)
One also defines the z average and z + 1 average molecular weights as
M, =j: w (14-17)
M., =j: W (14-18)

It should be clear that the higher averages are very sensitive to the presence of
small fractions of high molecular weight material in the distribution.
One may define the so-called steady-state shear compliance J, as

Sg=JyT12 (14-19)

+f(M) dM is the number fraction of polymer chains with molecular weight in the range M to
M+ dM.
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A molecular theory due to Rouse relates J; to the polymer properties through

2 Mw M:M:+1

TR R=SoRT T ME

(14-20)

where Jp is the Rouse compliance. Extensive experimental studies of Graessley
show that J is better calculated as

N 220,
T 1+21x1075M,

Jo polystyrene (14-21)

[Equation (14-21) holds for solutions of polystyrene if p is replaced by concentra-
tion ¢, g/ml]

From Eq. {14-21) we can see that if M, exceeds several hundred thousand (as
in the data being considered above) then the additive factor of 1 in the denomina-
tor may be neglected, and we find

l M:Mz+2

Jom§x10° gem =2

(14-22)

This remarkable result indicates that above some level of molecular weight, J,,
and hence Sp, becomes independent of M and depends only on the distribution of
molecular weight. As the caption of Fig. 14-6 shows, the factor M. M_,, /M2 is
considerably higher for the low molecular weight sample, and the data on die
swell are seen to be in agreement with these ideas. .

This argument, of course, relates to die swell only through Eq. (14-19) which
conrnects J, to Si. Since we have already seen some data which show y is not
always a function only of S, (Fig. 14-4) we must be careful in relying too heavily
on a chain of logic which goes from Eq. (14-22) [or (14-21)] through Eq. (14-19)
back to any theory of the form y = x(Sg).

In fact, this point arises, perhaps, in Fig. 14-6, for the two sets of data on
narrow distribution samples. Equation {14-22) holds approximately for both sets
of data, and if y = {S,) then we should not observe the differences that are seen,
since the distributions of molecular weight are the same, This may reflect the idea
that y depends on factors other than S (consistent with observations on other
materials, as in Fig. 14-4}. In part, this may also reflect inaccuracy in the molecu-
lar weight distribution data. Small variations in the high moelecular weight end of
the distribution could significantly affect the higher moments of the distribution.

We may summarize some of the difficuities associated with developing a
rational basis for understanding the die swell phenomenon.

1. Die swell appears to be an elastic phenomenon. However, data do not clearly
indicate what elastic parameter(s) is (are) relevant. Recoverable shear Sy is not
sufficient to completely define y.

. Experimental measurements of y are subject to uncertainties due to incomplete
relaxation of stresses. It is difficult to make guantitative comparisens among
the results of several workers.

b2
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Figure 147 Definition sketch showing the two die swells
that occur in tubular extrusion.

3. Die swell appears to be a strong function of molecular weight distribution.
While the dependence of elastic parameters such as J, [Eqgs. (14-20} and
(14-21)] on molecular weight distribution is fairly well understood, the relation-
ship of x to J, (through Sg, for example) is not unequivocal.

And all this uncertainty attends the simplest possible die swell problem: steady
extrusion from a long circular capillary or die.

If one is extruding odd-shaped profiles, and if die swell ocours, it becomes an
exceedingly difficult task to design a die shape that, after stress relaxation of the
extrudate, produces the desired profile shape. Some brief comments and results
relevant to this point may be found in a paper by Han.

A particularly difficult problem arises in consideration of tubular extrusion.
Figure 14-7 shows the geometry of the die and extrudate in a typical system used
in blow molding. Two independent die swells can be defined. The diameter swell is
given by the ratic R,/R,. In addition, the so-called weight swell is given by the
thickness ratio /1, /R, . Again, too little is known theoretically, and too few experi-
ments have been performed, to provide any basis for prediction of the magnitude
of these two die swells under a given set of operating conditions. The last three
references in the Bibliography under Sec. 14-1 consider some aspects of this prob-
lem. We leave the discussion of die swell hanging, then, with the statement that we
are not yet near a rational and comprehensive understanding of this important
phenomenon.

14-2 MELT FRACTURE
In the previous section we have seen that if a polymeric fluid is extruded from a

capillary into air, die swell will usually occur and cause the extrudate to have a
larger diameter thar that of the capillary, While no single theory appears to
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Figure 14-8 Examples of extrudate distortions.

describe the phenomencn adequately, the notion that die swell is an elastic phen-
omenon (at least for those sitnations in which y > 1.1) seems to be accepted.
Another extrudate phenomenon of considerable importance, also believed to be
an clastic “event” of some kind, is melt fracrure or, more generally, extrudate
distortion.

If an extrudate is observed as its throughput from a circular die is contin-
uously increased, there is often a critical flow rate at which the extrudate surface is
no longer smooth. Figure 14-8 shows sketches of several types of extrudates that
have been observed with various polymers, or under different conditions on the
same polymer. Tte first three distortions are fairly regular, and are often referred
to as ripple, bamboo, and screw or helix, respectively. Case d represents a severe
random surface roughness, for which the term melt fracture is most appropriate,

While it is somewhat of a misnomer, we will retain the tradition of using the
term melt fracture to refer to the sudden onset of gross extrudate distortion. One
sometimes observes a fine-scale surface roughness to appear at outputs con-
siderably below that for the onset of melt fracture. This is probably a phenomenon
distinet from melt fracture, and it is often called matre or sharkskin.

If the melt is extruded at constant output by a piston moving at constant
speed, extrudate distortion is often accompanied by a fiuctuation in pressure in
the reservoir. If the extrudate has a varying cross-sectional area (as in cases a and
b of Fig. 14-8) and is extruded at constant volumetric flow rate, then it must be
true that the linear speed of extrusion is varying. Vinogradov et al. present
evidence of a “stick-slip " phenomenon in the extrusion of rubbery polymers and
associate this with melt fracture. The term spurt has also been introduced to reflect
the idea that the average velocity may vary in a nearly discontinuous way uader
some conditions of melt fracture.

Melt fracture often appears to involve distinct mechanisms in different mater-
ials. Figure 14-9 shows flow rate-pressure drop data (in the form j, versus 1) for
(2} a high-density polyethylene and (b) a low-density polyethylene. The arrow
indicates, in each figure, the onset of melt fracture. For the low-density polyethy-
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Figure 14-9 Qutput versus pressure drop for two polyethylenes, (2) High-density PE, 150°C, L/D = 16,
(b) Low-density PE, 150°C, L/D = 16. The nominal shear rate is y, = 8U/D-

lene (a branched polymer) the j, — 1 data are continuous (although there is a
suggestion of a change in slope). The high-density material (a linear polymer), on
the other hand, shows a discontinuity in output at a critical stress, and a hysteresis
loop. Clearly there must be something different about these two flows.

Figure 14-10 shows the flow patterns typical of either linear or branched
polymers. With branched polymers fluid enters the die through a conical region
bounded by an annular region of recirculating fluid in the corner. This pattern
exists whether the extrudate is smooth or not. However, when the flow rate gets
high enough to produce melt fracture of the extrudate, it is observed that fluid

3 g

{2} )]

Figure 14-10 Flow patterns in the region just upstream of a capillary (a} typical of low-density PE
and (b} typical of high-density PE.
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Figure 14-11 Critical stress dependence on molecular weight.

M, MM,
A Polypropylene . 287,000-660,000
B High-density PE 60,00C6-150,000 4-7
@ Broad-distribution polystyrene 200,060-1,350,060 2.4-19
¢ Narrow-distribution polystyrene 97,000-1,800,000 11-1.2
0O Low-density PE 50,000-50,000 3-6

from the vortices is periodically drawn into the die, and the streamlines waver
from side to side.

Another interesting and important difference between linear and branched
polymers is the dependence of the severity of melt fracture on die length. In
branched polymers the severity decreases as the die is lengthened; in linear poly-
mers the opposite occurs. These differences between linear and branched materials
are subject to some exceptions: linear polypropylene, for example, does not show
the flow discontinuity of Fig. 14-9a when exhibiting melt fracture. The Tordella,
White, and Petrie and Denn references give more complete reviews and extensive
bibliographies on the various melt fracture phenomena, We turn instead to some
examples of specific results that are of interest.

Vlachopoulis and Alam present data on a series of polymers of well-defined
molecular weight distribution. The critical shear stress at which melt fracture
occurred was measured. Figure 14-11 shows their data, plotted in the form 1., /T,
versus 1/M,,. Two distinct lines fit the data, corresponding to linear or branched
polymers. If these results have some general validity then it should be possible to
use Fig. 14-11 to estimate critical conditions for the onset of melt fracture. At least
for the polymers studied, one should hope to be able to use Fig. 14-11 for predic-
tions with reasonable success, in view of the fairly wide range of molecular weights
of the samples used. The equations for the two lines of Fig. 14-11 are

27 %108

";::"1: = 1717 + —]};{Q“ linear polymers {14-23)
108

Ter _ 1317 + — branched PE (14-24)

Tz;bs Mw
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By measuring die swell at the onset of melt fracture and using Tanner's theory
TEq. (14—12)], Vlachopoulis and Alam calculate a critical value of recoverable
shear for melt fracture and give this as

2.65
Sp=—r— -
R MM for polystyrene {14-253)

The result is given only for polystyrene because that is the only polymer for which
the requisite measurements of M, and M :+1 Were available,

Since Eq. (14-25) begs the validity of Eq. (14-12), which we have already
stated to be of limited value, one should avoid using Eq. (14-25) for prediction of
critical conditions of melt fracture. Equation (14-23) is more likely to have general
validity and requires only viscosity-shear rate information for its use. The result
[Eq. (14-25)] is of interest principally because some stability theories (see
Chap. 15} which attempt to “explain”™ melt fracture predict that capillary flow
becomes unsteady at values of Sy in the neighborhood of 2.6, This result is in
agreement with Eq. {14-25) for a monodisperse polymer. However, the stability
theory does not really distinguish between monodisperse and polydisperse mater-
ials. Hence the result may be fortuitous.

A careful reading of a recent, comprehensive, and critical review of the melt
fracture phenomenon, such as that of Petrie and Denn, shows that melt fracture is
still poorly understood. Results are often contradictory, and generalizations of a
quantitative and predictive nature are rare. Petrie and Denn suggest that two
different phenomena occur, both of which are of the nature of elastic instabilities,
In linear polymers the instability probably occurs in the shear flow of the die. In
branched polymers the converging entry flow is probably unstable and leads to
unsteady flow and melt fracture. A good understanding of the nature of these
instabilities does not yet exist.

Example 14-1: Prediction of extrudate behavior from steady-shear data In
both sections of this chapter we have emphasized the lack of a strong theoreti-
cal base for prediction, or even correlation, of die swell and melt fracture. In
this example we consider some rheological data available for a low-density
polyethylene, show how to manipulate the data in order to predict die swell
and melt fracture, and then compare the predictions to experience.

Figure 14-12 shows viscosity and normal stress data for a commercial
low-density polyethylene. The viscosity data were obtained at 150°C using
several instruments over a very wide range of shear rate. Normal stress data
were obtained at low shear rates and at a temperature of 130°C. The corre-
sponding shear stress data at that temperature are plotted with the normal
stress data.

We may begin by caloulating the recoverable shear at 130°C, and
Fig. 14-13 shows the results. We note that the §, values are given at shear
rates in the range 1072 to 1 s™*. This range is considerably below that of
interest for extrusion through a die. We will have to extrapolate S, to higher
values of }.
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Figure 14-12 Steady shear data for a low-density polyethylene. @ Viscosity data at 150°C; O 7, and
A7 —T,, at 130°C,

There does not seem to be a better choice than to extrapolate the data on
Fig. 14-13 in a linear fashion. It is necessary to extrapolate to an order-of-
magaitude higher shear stress to get into the range of interest for die flows.
The extrapolated values of S are certainly suspect.

Once S is available, die swell can be predicted using Eq. {14-12). Figure
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104 108 105 FigureI4-13 Recoverableshear caleulated from

74 idynes/em?} data of Fig. 14-12 at 130°C.
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10 108 107 Figure 14-14 Dicswell data O and prediction
77 ldynes/em?) from Eq. (1412},

14-14 shows the predicted and observed values. The agreement is not bad, but
it is no great triumph if we consider the fact that we could predict almost any
set of data within +25 percent by “predicting ™ ¥ = 16.

Molecular weight measurements on this material give M, = 2 x 10% and
M, is “approximately ™ 10%, If we use this value in Eq. {14-24) we may predict
the critical shear stress for the onset of melt fracture. We see that the result is
insensitive to the uncertainty in M w» and we find, at 150°C, ¢, = 5.9 x 10°
dynes/cm?, Using the viscosity data of Fig. 14-12 we may calculate a critical
shear rate of 30 s™1. The observed value, from a capillary of L/D = 25, at
150°C, was 29 s~ 1, This is considerably better agreement than one could have
hoped for and must be regarded as a stroke of luck.

All the above comments are based on available observations of melt fracture from
circular dies. Little in the way of quantitative data is available regarding melt
fracture of odd-shaped extrusions, although the phenomenon clearly occurs in
such cases. Data on melt fracture of polystyrene extruded from tubes of noncircu-
lar cross section are available and suggest that the critical shear stress at fracture is
independent of shape (sec Ramsteiner).

PROBLEMS

14-1 Carry through the derivation of Eq. (14-7) for the case that the densities within the capillary and
cutside it are different.

14-2 Evaluate the importance of the forces due to surface tension and [rictional drag of air on the jet,
for the simple case of a newtonian fluid. Take the following conditions:

¥ =087 p=1g/em?®
U, = 400 em/s a = 65 dynes/cm
Dy = 0.1 cm Ambient fluid is air at 25°C and 1 atm

14-3 Derive Eq. (14-8).
14-4 The data shown in Fig. 14-15 were obtained under the following conditions:

n=1/3  K=10dyne-s"?/cm* D, =008 cm
Caleulate and plot S versus 9, by using Eq. {14-9). Do the same, using Eq. (14-12),
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14-5 In discussing the data of Fig. 14-5a, it was asserted that * the melt becomes more clastic at lower
temperatures.” If we take §, as the measure of elasticity and assume the validity of Eqs. (14-19)and
{14-20), we may evaluate the effect of T on S, at fixed J-

Argue that the dominant effect is actually through the temperature dependence of viscosity rather
than through the temperature dependence of the compliance.
14-6 A process has been designed for 2 polystyrene having a fairly narrow molecular weight distribu-
tion, such that

10-3 2x 08 < M<3 %108

£(M) :! 0 all other M

The supplicr of the polymer sends through a batch of material containing some high molecular
weight polymer, such that

jo.gxm-’ 2% 10°<M <3 x10°
fe(M)y=<10"% 10° < M < 1.01 x 108
0 all other M

For each batch of material caleulate (a) M,,; (b) M, /M, (¢) M. M, /M2,

The process invelves continuous extrusion of the melt through a cylindrical die. Estimate the
change in S, expericnced by the new polymer, assuming that the process is controlled at fixed pressure
at the die. Is the result different if the process is centrelled at fixed output?

14-7 Using data from Fig. 14-5 predict die swell as a function ol flow rate from a dic of length 2 inand
diameter 0.1 in, at T = 155°C, for Q in the range 107* to 107 % in%/s. Notc that y, of Fig. 14-5a is
[(3n + 1)/4n](320/xD3).

14-8 Estimate the maximum output for a distortion-free extrudate of polystyrene under the following
conditions:

T

#

200°C D=20]cm
n=1/3 L=15cm
M., = 580,000 K = 10° dyng-s'Pfem?
Repeat the caloulation at T = 215°C, using K = K, exp % (I/T — 1/T,) with AE = 10 keal/g
mol.

14-9 Consider a polymer whose (discrete) molecular weight distribution is characterized in terms of
the weight fraction w, of chains of molecular weight M,. Then the various averages are defined by

Mo
! ZWI/MI'
M =EW1M1

w v
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M __EWIMI?

- M ] Z_ZW,{M.:
v ZwM

z+lmZWIM‘2

and § w; =1,
Suppoese 1 percent by weight of polymer whose molecular weight is 10 is added to a narrow-
distribution polymer for which M, =5 x 10% Find the change in M_M_, /ML I the material is

polystyrene, find the change in §;. Would this have a significant effect on die swell? On the critical
stress for melt fracture?

14-10 The White-Metzner viscoelastic fluid [Bq. (3-149)] leads to the prediction that (assuming
G = constant)

2n*
o=l (B (-152]

Show that this, in turn, leads to the prediction that

T
5§ o i2
)

Do the data of Fig, 14-13 agree with this?

14-11 Suppose no normal stress data were available for use in Example 14-1. Show, first, that
Eq. (3-152) is consistent with

Fia_ (i)2

Pla o

and W9, = 21,9, where 1, is the relaxation time at low shear rate, A method sometimes used for
estimating A, from viscosity data involves extrapolating the power law region of n{}) toward low . The
reciprocal of the shear rate 3, at which this extrapolated line crosses the line 77 = #, is often used as the
relaxation time of the fiuid. Use this method, with the data of Fig. 14-12, and plot §, versus 1 and
versus t,. Compare to the data of Figs. 14-12 and 14-14.
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CHAPTER

FIFTEEN
STABILITY OF FLOWS

Everything subject to time is liable to change.
Albo

In many of the models which have been presented throughout this text the
assumption is made that the system is in a steady state, by which we mean that the
dependent variables are independent of time. The assumption is based on
the appealing intuitive idea that steady causes produce steady effects. Examples of
the failure of this premise are well known, however. The most common such
observation is that of turbulent pipe flow: Under a steady driving pressure the
velocity and pressure distributions within the fluid are observed to be randomly
fluctuating functions of time if some critical value of a Reynolds number is
exceeded.

Unstable flows occur in polymer processes on occasion, and it is important
that the parameters that control stability be identified and that the critical values
of these parameters be known. In this chapter we describe some processing insta-
bilities and outline the methods of stability analysis. The mathematical treatment is
more complex, in some respects, than that of most of the problems considered
elsewhere in the book, and some new ideas must be introduced. An outstanding
review of instabilities in polymer processing, with special attention to fiber spin-
ning and melt fracture, is presented by Petrie and Denn. It should be read along
with this chapter.

We begin with a simple definition of stability. Let us suppose that thereis a
steady-state solution (u’, p¥) of the dynamic equations and the continuity equa-
tion, subject to some set of boundary conditions, for 2 fluid satisfying a particular
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constitutive equation. Suppose that at some time ¢, the flow is disturbed so that
new values of u and p, say, v and p', are observed. In a free boundary flow the
disturbance may also be to the position of the boundary. The flow is said to be
stable with respect to the imposed disturbances if

Iimu =u°
r—ig—ca

15-1
lim p" = p* ( )
t—tg—r oo

It is important to keep in mind at the outset that the phrase " with respect to the
imposed disturbances” is significant. A flow may be stable to one type of distur-
bance but unstable to another, or the stability may depend on the magnitude of
the imposed disturbance.

We turn, then, to a series of examples which will introduce the methods of
stability analysis, in the context of some flows of interest in polymer process
analysis,

151 STABILITY OF A VISCOUS CAPILLARY JET

Figure 15-1 shows a jet of fluid issuing from a capillary into air. It is observed that
the jet surface, initially cylindrical, develops a varicose swelling which grows in
amplitude until the jet is disrupted into a series of droplets. This instability arises
from the surface tension of the jet interface. A stability analysis may be carried out
which relates the growth rate of a disturbance to the fluid physical propertics.

We begin by considering a cylindrical jet of constant radius R, translating
along its axis at constant velocity U. We assume that exit effects associated with
the ejection of the fluid from the capillary (a change in radius of the jet and a
flattening of the velocity profile) are completed within a few diameters of the exit,
.and we confine our attention to the region of constant R and uniform velocity field
uw=(U,00)

It is convenient to carry out the analysis of this flow in a coordinate system
translating at the velocity U. In that coordinate system the steady velocity field
vanishes identically. There is, in addition, a uniform pressure ¢/R due to the
curvature of the free surface. We now assume that the flow is disturbed in some
manner, as a consequence of which the velocity field (in the translating system) is
(1, ,) and the pressure is p. Our two major assumptions are:

1. The disturbances are of smali amplitude.
2. The disturbances are (somehow) axisymmetric, i.e., independent of 6.

Figure 15-1 Capillary jet, show-

W O ing the growth of unstable vari-

cose disturbances.
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The disturbed flow field will either damp out toward the undisturbed flow
{stability) or else the disturbances will grow until the Jet is disrupted (instability).
In any event, the dynamics of the flow are governed by the continuity equation
and the dynamic equations. We introduce a third assumption by selecting a
specific constitutive equation, that of a newtonian fluid, so that the dynamic
equations are {for axisymmetric flow)

8u=__l@+v16 r&u: +32u: 152
a poz rar\’ or az* (152)
du, 18p 9418 2u,
E_—EE+V[5(;§}’H’)+E-Z?:| (15—-3)
where v is the kinematic viscosity u/p, and the continuity equation is
10 éu,
;5 (J‘U,) + Ez— =0 (15-4)

Note that the inertial terms have been dropped in view of assumption 1 above. We
now seek a general solution of these equations.

There is some convenience to be gained if we first obtain the solution in the
absence of viscous effects. Thus we are solving the two dynamic equations with
v =0, along with the continuity equation. The dynamic equations become

dul 18p°
- = — = 15-5
ot p oz (15-5)
duy 13p°
L= — 15-6
ot p or ( )
We use a superscript » to denote the inviscid solution.
We may define a velocity potential ¢ by
g o
P = i== 15-7
YT %7 (57
in consequence of which the continuity equation gives
12 o\ 8%
P 4 2 =0 15-8
rﬁr(r 61’) + az* (15-8)
If 9 is introduced into either dynamic equation the pressure is found to be
do o
= —p—t= 15-9
F - N R (15-9)

Consistent with observations we seek solutions which are spatially periodic
and which either grow or decay in time, A useful trial function is

@ = O(r)ei et (15-10)
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Assuming for the moment that such a function is indeed a solution, we see that k is
a wave number of the disturbance and « is a growth rate. If & < 0 then the distur-
bances vanish, the system is stable, and « is a damping rate. The main goal of a
stability analysis is to determine the combination of parameters, if any, that yield
positive values of « so that conditions of instability may be defined.

If ¢ is substituted into Eq. (15-8) the result is

1d{ db 2
the solution of which is
D = C, I{kr) {15-12)

where I, is the “hyperbolic” Bessel function, defined so that Iy(x} = Jo{ix). In
solving the second-order Eq. {15-11) we have imposed the boundary condition
that @ be finite along the axis, r = 0.

With Eq. (15-12) the pressure and velogities may be written as

p° = —C, palo(kr)E +% (15-13)
ue = C kI, {kr)E (15-14)
u? = C, kI (kr)E (15-15)

where E = eik: +al.
The surface disturbance has been assumed to be symmetric about the axis. We
write this in the form

R°=R+{(z1) (15-16)
and take {° to be given by the kinematic condition
Gf =ul atr=R {15-17)
ot
This gives {° as
r =, EIL(kR)E (15-18)

We may eliminate the constant C, by imposing a boundary condition on
pressure, namely, that [see Eq. (3-75)]
° LI, atr=R (15-19)
= = O‘ —_— r— = -
p pd R1 R;

This gives p, as

Po=—— *ﬂ(& + R? ag) (15-20)
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and, using Eq. (15-18), we find

& . k
g (1- k*Rz)Ell(kR) = poufy(kR) (15-21)

We may solve for «? to obtain

., ok 2z J1(kR)
=—u(l—-k =t -2
o R ( R )IU(kR) (15-22)

It is apparent that « is a function of the wave number of the imposed disturbance.
So long as kR < 1 we find a positive a. (The ratio I, /I, is always positive.) Hence
this flow is unstable to any disturbance for which kR < 1, so long as the assump-
tions of the analysis—small disturbances, axisymmetry—are valid. For kR > 1 we
find « to be imaginary, corresponding to periodic disturbances which do not damp
out (capillary waves).

The function «{k) has 2 maximum in the range [0 < kR < 1], given by

o 1/2
Knax = 0‘34('@) (15"23)
which occurs for 2 wave number
(kR)p o = 0.69 (15-24)

Thus, while all disturbances satisfying kR < 1 will disrupt the jet, one disturbance
grows more rapidly than the others. The presumption (borne out by observation)
is that a jet subject to a spectrum of disturbances of various wave numbers will
ultimately be disrupted by the fastest-growing disturbance.
If (o is the initial magnitude of the disturbance of wave number k.., then at
some time ¢ the disturbance will have grown to magnitude
E _ o (15-25)
{o
(We have shifted now to-the laboratory coordinate system. The initial disturbance
was at z =0, and the time variable is now understood to be just z/U.) We may
take the time of disruption of the jet to be defined as the point where ¢° = R.
Solving for the time from Eg. (15-25), we find
E_ 1R .
== — in Z (15-26)
L* is the distance from the exit to the point at which the jet breaks into droplets.
The value of {, is unknown, but experiments suggest that for an apparently
stationary capillary, subject to no obvious macroscopic disturbance, a suitable
value is such that

In (:E= 13 or {;=22x107%R (15-27)
0
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If we wish to estimate how far downstream a jet will travel before a distur-
bance of magnitude {°/R = f will appear, we find

U . fR
L* = In —
s Hmax (o
Ly 112 —
or 5= WelZ(In f + 13) {15-28)

where We = pU?D/o is the Weber number, and D is the jet diameter. If we take
f=10"? we find I*/D = 8.4 We'/2. Because of the exponential character of the
growth the distance to reach f= 107* is 65 percent of the distance required to
disrupt the jet completely. This result says that the jet is disrupted not far beyond
the point of first measurable appearance of the disturbance.

The analysis outlined here is valid for an inviscid fluid, and so 1s of little
interest except that it facilitates the solution for the stability of a newtonian jet. We
return to Egs. (15-2) and (15-3) now and anticipate that the velocity components
may be written as

0= 2+ 1l (15-29)
u,=ul +ul {15-30)

and the pressure as p = p° + p*, where u°, p° is the inviscid solution just given.
We solve for the “viscous™ part of the velocity by introducing a stream

Sfunction r, defined such that

Ll dy

U= — =

r dz = rér (15-31)

It is easy to verify that, with this definition of i, the continuity equation is satisfied
identically.

If Egs. (15-29) and (15-30) [along with (15-31}] are substituted into Egs. (15-2)
and (15-3}, and the resulting equations are stared at and thought about, one
discovers that p* = 0 {the pressure is uninfluenced by viscosity). The stream func-
tion is found to obey the following equation:

Py _1ay Py 1y

F S P 7 (15-32)
If we again anticipate a functionality for y as
Y = F(r)eere (15-33)
we find ¥(r) as the solution to
%—%%— (k2+%)‘i’=0 (15-34)

This is seen to be a Bessel equation whose solution is

Y= C,rl(k'r) (15-33)
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where
k2?4 2 (15-36)
v

(We have imposed the boundary condition requiring that ¥ be finite along the jet
axis, r = 0.)

If we go back to Egs. (15-13) through (15-15) for the inviscid solution, we may
write the newtonian solution as

w, = —ik[iC, Iy(kr) + Co 1 {(k'M]E (15-37)

1  f ’
u, = k{iC, Io(kr) + C, [—L]Ei;—") + %I; (k'r)”E (15-38)
p= ~Cypaly(kr)E (15-39)

where E = &% 7% ag before.

In the viscous case a new boundary condition must be introduced that does
not apply to an mviscid fluid: The shear stress in the liquid must vanish at the jet
boundary (we neglect the viscosity of the surrounding air). Thus we have

. du, 4 du,
G I ML
This gives us a relationship between C, and C,:
L (KR)(? + %)
2ik21,(kR)

=0 (15-40)

r=R

C,=C, (15-41)
To eliminate €, we again impose a boundary condition on the radial normal
stress, which now takes the form [see Eq. (15-19)]

—T,+p°=p, atr=R (15-42)

where 1,, = 21t 8u, /dr. p, is calculated as in the inviscid case.
When the algebraic dust has settled the result is a transcendental equation for
o of the form

20k 2K L(R)
’ —_ If '
1R [ R~ i 7wy R

a? o+

ok o LUR)K? — k2
PO A Ty

Since &’ depends upon « the quadratic format of this equation is deceptive. Since k
appears in the argument of the Bessel functions, as does o {through k%), it is
necessary to find e, numerically.

A useful approximation is possible, however, which takes account of the fact
that kR is small compared to unity and is smaller the larger the viscosity. For
small kR the Bessel functions may be approximated by I,(kR) = 1, I, (kR) = kR/2,

(15-43)
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and I, (kR) = . Since, for large viscosity, k' is comparable to k, similar approxima-
tions hold for the Bessel functions of argument k'R. As a consequence, a quadratic
equation for « is obtained of the form

ok?
a? + 3kPvo = R (1 - k*R?) (15-44)
One may easily verify that
o 172 2,0 1/271-1
- - Y lall
Cmax = 0.34(pR3) [1 + 2v(Rg) ] (15-45)
and the breakup length is given by
L (ln —) Wet2(1 + 3Z) (15-46)
D Lo

where Z = Wel/Re = u/(pDe)*/? is called the Ohnesorge number.

The analysis outlined here is a good example of a successful stability theory.
Data obtained with low-speed jets of newtonian fluids ¢jected into air are in good
agreement with the result given in Eq. (15-46). Closer examination of the data
suggests that In (R/f,)} is a function of Z, and Sterling and Sleicher suggest an
explanation of this observation, associated with the effect of the relaxation of the
parabolic profile upon ejection of the jet.

Since the presentation of this analysis is for the purpose of illustrating the
main ideas of a hydrodynamic stability analysis, we turn to consideration of some
of the assumptions made in simplifying the model. The neglect of the inertial terms
in the dynamic equations is valid so long as the amplitude of the disturbance
velocities is small. This gives the so-called linearized stability analysis. It is much
more difficult to carry out the nonlinear analysis, but this has been done most
successfully by Lafrance. One interesting result is that the nonlinear analysis
shows that the a(k) relationship is not greatly altered. Of greater interest, however,

“is the ability of the nonlinear theory to predict a phenomenon which does not
appear in the linear stability analysis but which does in fact appear in the
laboratory.

Figure 15-2 shows the appearance of “satellite” drops, small drops that occur
between the large * primary” drops of the disrupted jet. The nonlinear analysis of
Lafrance not only predicts the existence of these drops, but it is also quite success-
ful in predicting their size. This is an important point, for it is often the case that
the linearized stability analysis fails to account, even qualitatively, for certain
observed features of an unstable flow. Hence one must view the results of a linear
analysis with some caution.

—— O 00 0 O 6 ©

Figure 15-2 Satellite drops in an unstable capillary jet. (From Getden et al.}
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A second restrictive feature of the analysis outlined above is the assumption of
axisymmetric disturbances. If that assumption is to be relaxed then it is necessary

to include a term in Eq. (15-10} which depends upon the angular coordinate 4.
The usual form is taken to be

Q= (D(r)eikzﬁno +ar (15_47)

where n is an integer. The case n = 0, already considered, corresponds to axisym-
metry (varicose disturbances). For n =1 the disturbances correspond to a jet
whose cross section remains of constant radius but whose axis is now sinusoidal
instead of straight. This is the so-called sinuous disturbance. For n = 2 the axis is
straight and the cross section is elliptical, the major axis “rotating” in the cross-
sectional plane with a wave number k. The sinuous disturbance can be imposed in
the laboratory by oscillating the capillary tip normal to the axis. The elliptical
disturbance can be imposed by ejecting the jet from a capillary whose cross
section Is elliptical.

If Eq. (15-47) is used the analysis proceeds as before, and one may obtain an
equation for the growth rate o in the form

2 2, Ok apa
a® + 3k va—sz(l r’ — k*R?) (15-48)

which is only slightly different from Eq. (15-44). Inspection shows, however, that
for n> 1 there is no real positive root of the quadratic, for any wave number
disturbance. This means that the jet is stable to sinuous, or eliiptic, or more
complex disturbances. Conversely we may say that the jet is unstable only to
varicose disturbances (n = 0), although we must keep in mind that the statement
is established from Eq. (15-48), which holds for small disturbances only. Experi-
ments are reported which support this result.

A comment is in order regarding the form assumed for the disturbed var-
iables, Eq. (15-47). The dynamic equations are linear (by the assumption of small
disturbances) and first order in time. This guarantees that any solution will have
the form ¢. The term ¢*° implies that the disturbance is spatially periodic at the
time t = ( of imposition of the disturbance. (Keep in mind that a moving coordi-
nate system is in use here.) There is, of course, no reason why the fiuid must be
subjected to such a uniform disturbance. However, we could express a more
complicated initial perturbation as an infinite series of Fourier components, of
which @,(r)e*” would be one term, of amplitude ®,(r) and wave number k;. Since
the equations are linear (again, in the small disturbance case) the net result would
be that every Fourier component would satisfy Eq. (15-48). Hence the value of
kjma could be regarded as that wave number, out of the entire spectrum
of Fourier components, which grows most rapidly. Again the assumption is
impiied that the jet ultimately breaks down under the most rapidly growing mode.

Experimental evidence suggests that if the system forming the jet (fluid reser-
voir, capillary, etc.) is isolated from macroscopic laboratory disturbances (e.g.,
pump vibrations, or fluctuations in reservoir pressure) the jet is observed to break
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down according to theory. We note that Eq. {15-27) suggests that the initial
disturbances are of exceedingly small amplitude.

It is possible to impose macroscopic varicose disturbances of any wave
number on the jet as it leaves the capillary. Such disturbances will be so large in
amplitude that they will lead to breakdown of the jet before the infinitesimal
disturbance of wave number k,_, can become macroscopic. If these macroscopic
disturbances are, nevertheless, small compared to the jet radius, the breakdown
occurs according to the linearized theory. It is possible, then, to measure the
amplitude { of the varicose disturbance as a function of distance from its point of
imposition and to plot In ¢ versus t. The slope gives the growth rate ¢. Lafrance
shows such experimental data, which adequately confirm the linearized stability
analysis. .

In summary, then, we have illustrated the general features of a stability
analysis. The primary (undisturbed) flow must be known, after which it is assumed
that some perturbation or disturbance is added to the primary flow. With the
assumption of small disturbances a linearized stability analysis follows, in which a
growth rate of a disturbance is determined as a function of material and operating
parameters and as a function of the wave number of the imposed disturbance. A
“most unstable” disturbance may be determined from the maximum (if one
exists) in the (k) solution. The linearization may remove certain features from the
problem, as in the fajlure to predict “satellite” drops, noted above. Indeed, a
linear stability analysis may lead falsely to the conclusion that a dynamic system is
stable to all disturbances, although that is not the case in the example chosen.

If we return to Eq. (15-10) for a moment we may recall that the question of
stability is determined by the growth rate o, since the disturbances, at least in the
linear stability analysis, behave as &% If & < 0 the disturbances decay and the
system is stable; if « > O the opposite case is found. Actually, & may be a complex
number, as Eq. (15-22) shows for the case kR > 1. In that specific case (the inviscid
jet) & is purely imaginary for kR > 1, corresponding to sustained oscillations of
the disturbance with neither damping nor growth. For the newtonian jet, « [from
Eq. (15-44)] is a complex number with the real part negative so long as kR < I,
leading to damped oscillations of the disturbance.

In general,  depends upon system parameters. Thus there is usually some set
of conditions which determines whether the real part of « is positive (instability)
or negative (stability). There is also, usually, 2 set of conditions under which the
real part of o vanishes. This is referred to as neutral stability, and the functional
relationship among the parameters defines the neutral stability curve. The word
curve may refer to something other than a two-dimensional curve in a plane if
more than two parameters determine neutral stability.

The capillary jet problem is very simple with regard to neutral stability. In the
newtonian case, for example, Eq. (15-44) may be written as

R3 1/2
oz(,o }w) =F(kR, Z) {15-49)
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where Z is the Ohnesorge number defined previously. Thus the condition of
‘neutral stability is given by the solution to

F(kR, Z) =0 ' (15-50)

. The neutral stability curve, in this case, is a two-dimensional curve in the
(kR, Z) space. However, since o = 0 for kR = 1 for all Z, the “curve” is simply a
straight line, kR = 1, and there is no value to plotting the neutral stability curve.
In some subsequent analyses we will have occasion to refer to the neutral stability
curve, and we will find that its dependence on parameters is more complex than in
the case of the capillary jet,

15-2 STABILITY OF WIRE COATING

In Chap. 5 the process of coating a uniform annular layer of fluid onto a solid
cylindrical core, as in wire coating, was described. In that section attention was
confined to the die flow, which determines the thickness of coating deposited on
the moving core. In this section we consider the stability of that coating. The
physical problem and its mathematical analysis are similar to the problem of the .
liquid jet treated in Sec. 13-1. The algebraic detail is considerably more tedious.

The dynamic equations and the continuity equation are identical to those for
the jet problem [Egs. (15-2) to (15-4)]. Two new boundary conditions appear,
expressing the no-slip condition at the solid core:

uy=u=0 atr=R, (15-51)

At the outer {free) surface the boundary conditions are with respect to the stresses,
as in the case of the jet:

%, =0 (15-52)

1 1 atr=R,
4

— 15-53
xR, (15-53)

—p + Ty = _6(

For the newtonian fluid the general solution, in terms of the stream function,
may be written as

¥ = (@) + @)t (15-54)
where '
@y = Ayrl(kr) + B rK, (kr) (15-33)
0o = Ayrl (k') + ByrK, (k) (15-56)
K2 = k2 + % (15-57)

I, and K, are the modified (hyperbolic) Bessel functions of the first and second
kind, :
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Figure 15-3 Maximum growth rate (non-
104 dimensionalized as g) as a function of
0.1 1 10 100 and s for an annular layer of newtonian
s liquid on a ¢ylinder. (From Roe.)

If this solution is substituted into the four boundary conditions, one may
obtain a transcendental equation for a(k) of the form [see Eq. (15-44)]

2y
w? + R_gP — Q,)k*Ria = R3 Q. K*R3(1 ~ k*R3) — —I—{—‘;k“R"'( %ﬁ)
(15-58)
where @; and Q; are complicated functions of kR and k'R, and of the geometri-
cal parameter R;/R;. As in the case of the jet, the quadratic format in ¢ is
deceptive since Q, depends upon k'(x).
Numerical differentiation of Eq. (15-58) allows evaluation of «,_,, as a func-
tion of fluid and geometric parameters. Such calculations were carried out by Roe
and are shown in Fig. 15-3, in terms of the following dimensionless variables:

RPp\ "
Rq
S—E— (15-60)
n= poR (o= = V22 (15-61)

As expected, the growth rate is reduced by viscous effects. The more inter-
esting prediction is with respect to the maximum in g, for a given fluid, at a
value of s in the range of about 1 to 3. Very thin or very thick coatings are
relatively stable in comparison to coatings for which s is of the order of unity.

As in the case of the jet, the growth of a varicose disturbance may be written
as

L oo {15-62)

o]
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If we are interested in the point at which the disturbance is some fraction of the
coating radius, say, { = fR,, then

Ly = (ln f %-00-) aU (15-63)

The magnitude of {, is unknown, and no experiments are available with which its
value may be determined. While it is tempting to suggest that the disturbances to
the coating might be quite similar to those imposed onto the jet (for which
In R/{, = 13), there is no basis for this assumption. Indeed, the presence of the
wire, subject to fluctuations in speed, probably controls the magnitude of the
initial disturbances.

Let us put together some earlier modeling of the wire-coating process
(Chap. 5) with the results of this stability analysis and examine the implications
that can be extracted from the models.

Example 15-1: Stability of the coating on a wire We consider a wire-coating
system operating under conditions similar to those described in Sec. 5-3:

Ri=007cm p=1g/m?
U =10 ft/s ¢ = 50 dynes/cm
u=1P
Take the coating thickness to be 0.021 c¢m, so that s = 0.3.
Suppose the wire speed U is subject to fluctuations of the form
U= Uy(l + 4 sin er), where we take 4 = 0.045 and o = 2 x 10° 571
It can be established, as earlier, that such an amplitude would lead to
variations in coating thickness of about 1 percent of the wire radius:

{o = 0.01R;. A frequency w wiil produce a spatial periodicity of the coating on
the wire of wave number

wz
Z = = e 15"64
kz = oot o ( )

or k=ea/U =2 x10%3 x 10> = 6.7 cm™*. This gives a value of kR, of
kR, = k(s + DR, = 6.7(1.3)(0.07) = 0.63

Since kR, < I the coating is unstable to this disturbance. Further, this value
of kR, gives nearly the maximum growth rate g,,,. For s=03 and
7= 1/(50 x 0.07)% = 0.53 we find

R3p\ M2
G = 15 X 1072 = oam(-_‘—’i)
a
or

50
(©.07)°

1/2
O = 1.5 % 10‘3[ J =057s"!
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“Bead”

Dry wire ) . .
_________ Figure 15-4 Beading of an annuiar coating on a
wire.

From Eq. (15-63), then, and choosing /= 0.05 as an acceptable degree of
varicosity, we find

13— [m 0.05(0.091)] 300

001(007) | 057 ~ >0 om

This is quite a long distance and suggests that one need not worry about this
form of instability for the conditions of the problem. Indeed, for nearly any
reasonable set of conditions under which a moderately viscous fluid is coated
onto a wire or fiber, varicose disturbances would not be expected to grow to a
significant degree.

Of what value, then, is the stability theory? In the first place, there may be
processes in which low-viscosity lubricants or finishes are applied to a fiber prior
to subsequent processing. If the calculations of the example above are reworked
for a coating of viscosity 1cP, the length L* is found to be about 10 cm. If a
condition of “beading ™ is defined (as in Fig. 15-4) to occur when f = s, the above
calculations give LY = 20 ¢cm. With low-viscosity coatings it is quite possible that
nonuniform wetting occurs as a result of this type of instability.

A second application of the stability analysis is with respect to the notion of
“leveling.” One expects, on the basis of intuition, that a wave imposed on a free
surface will level out—that distortions on a coated surface wiil somehow smooth
out by themselves. The stability analysis indicates the possible failure of this
intuitive notion. According to Eq. (15-62), a disturbance will “level,” ie., damp
“out, only if o < Q.

15-3 MELT FRACTURE

In Chap. 14 we discussed observations on melt fracture which, we should now see,
might properly be interpreted as an instability of the primary flow. It would
appear that melt fracture is an * elastic instability,” associated in some way with
the development and relaxation of normal stresses in the fiow. The observations
are not unequivocal on this point, since one can in fact correlate most data crudely
with the assertion that melt fracture occurs at a critical shear stress (not normal
stress) of 10° dynes/cm®. Since there are so many complicating features of melt
fracture which are subject to variation from one study to the next {e.z., inlet angle
and channel length of the die, molecular weight distribution, chain branching in
the polymer, the general lack of complere theological characterization of the fuids
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studied), it is really quite difficult to make simple statements regarding the condi-
tions for onset of this complex phenomenon. Hence one might turn to stability
theory to see if any results can be generated that could suggest further experimen-
tal studies or, perhaps, different methods of correlation of existing data. An analysis
of the stability of Poiseuille flow of 2 viscoelastic fiuid has been carried out by
‘Denn and his coworkers, and we present their results here. The review paper of
Petrie and Denn gives a more critical discussion of this analysis and considers
several alternate mechanisms of melt fracture as well,

We consider Poiseuille flow down the axis of a long circular pipe or between
parallel plates, due to a pressure AP imposed on the plane z = 0. Both the steady
state and perturbed flows must satisfy the dynamic and continuity equations:

Du
p—D—t =-V- (15-65)
V-u=0 (15-66)

A constitutive equation is required, and we select one which is a compromise
between simplicity and minimal agreement with reality. A nonlinear Maxwell
model is chosen, of the form

T+ z%; =7 A (15-67)

The nonlinearity enters through the convected time derivative, defined by [see
Eg. (3-126) and the discussion of rate equations]

bry; bty dt; du; fu;

iy T g Ui T 15-68
b o Max,  Max, aw, (15-68)

in cartesian components. The steady-state flow is a simple shear flow for which the
velocity and stress fields are given by

Slit (—H<y=<H) Pipe (1 <r < R)
v = [u(y), 0, 0] v = [u(r), 0, 0]

3 ¥\? ry?
aoslo-fif] -z ]
PF=AP + nmfgz

dz
223 1 0
T=mp{ 1 0 0
O 00
du, 3Uy . du, Al7r
'Pm—: 4 ==

&y~ HE T & TR
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We note, for this flow, that this particular Maxwell model predicts

Tyy — Tap = 24np°
Tas — 733 =0
Tyz =1Mo?

Thus we have a fluid which is newtonian in shear but which shows a finite primary
normal stress difference and a zero secondary normal stress difference. These
results are at least qualitatively correct for viscoelastic fluids at small deformation
rates.

The stability analysis proceeds in the usual way. Each dependent variable is
written as a sum of a steady-state term plus a perturbation term:

u=y +u (15-69)

The variables may then be substituted in this form into Egs. (15-65) through
(15-67), and these equations are then linearized with respect to the variables ', It
is assumed that the disturbances are two-dimensional, so that (in the slit case, e.g.)
i, = 0 and 8/0x = 0. The disturbance variables are a1l written in the form

u = U(x,y)e™=—el (15-70)

where x, = primary flow direction (z)
X, = direction of primary shear (y in the slit; r in the pipe)
k = a wave number of a disturbance
ke = a growth rate
¢ = a complex number: ¢ = ¢, + ic,

If the stress components are written as in Eq. {15-70) the constitutive equa-
tions become algebraic equations in the stress components. One may then solve
-for the stresses and substitute them directly into the dynamic equations. This
eliminates the stresses in favor of the velocities. A stream function is then in-
troduced (for slit flow, for example, by defining &yi/0z = |, and 8}/8y = —u),and
when pressure is eliminated from the dynamic equations (by differentiating the z
equation with respect to y and the y equation with respect to z), the result is a
fourth-order homogeneous ordinary differential equation for the stream-function
amplitude ¥, defined by

Y =Pyt (15-71)

The details of this procedure are presented in the work of Rothenberger. In
contrast to the simpler problem of jet stability treated in Sec. 15-1, the differential
equation for ¥ does not yield to an analytical solution, and as a consequence an
approximate numerical method must be employed. ’

The solution is most conveniently formulated by first nondimensionalizing
Eqgs. {15-65) through (15-67). If this is done as illustrated in Chap. 4 one finds a
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Reynolds number and a Weissenberg number appearing. The Weissenberg
number may be defined as

Ws

]

% (pipe)
U4

slit
S Gl
If we examine the steady-state solutions given above we can show easily that the

Weissenberg number is proportional, in this problem, to the recoverable shear at
the wall:

404
y=H T (p1pe)
g, =~ Taa ) = i3] = R
B 2010,] g U4 ,
""H,— (SIlt)

Since the primary flow pormally occurs at Reynolds numbers very small
compared to unity, while the recoverable shear is of the order of 1 to 10, it is
possible to neglect the Reynolds number terms in the equation for ¥ and consider
the solution to be a function of S, only (in addition to being a function of the
independent variable y or r). The solution procedure leads to a constraining
relationship between the recoverable shear Sy and the parameters k and c. By
fixing k, and setting the imaginary part of ¢, ¢, , equal to zero, a vatue of § (k) may
be found which satisfies the equation. The family of values Sg(k) defines the
neutral stability curve. Figure 15-5 shows neutral stability curves for the pipe and
slit problems. Because of the approximate nature of the numerical methods
employed in solving this problem, the k scale is rather imprecisely located. The
critical value of S, especially in the slit case, is also believed to be inaccurate.

3 |— 09—
“ Unstable o Unstable
B Pipe B Slit
2.5 J 0.65 L i ] J
20 60 76 150
& P

Figure 15-5 Neutral stability curves for low Reynolds number flow of a Maxwell Auid defined by
Eq. (15-67). {From Rothenberger et al)
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Still, one can draw some useful conclusions from the stability analysis. First,
the flow of a viscoelastic fluid is indeed predicted to be unstable to two-
dimensional disturbances and to exhibit its instability at a critical value of re-
coverable shear. The predicted value of Sy of 2.6 for pipe flow is of the observed
order of magnitude noted in Chap. 14. The slit fiow is predicted to be unstable ata
much lower value of Sz, approximately Sp = 0.7, Insufficient data are available
{as from annular dies or flat-film dies) to evaluate this feature of the theory.
Considering the relative simplicity of the constitutive equation used heré, the
agreement with experience must be seen to be quite reasonable.

15-4 SPINNING INSTABILITY (DRAW RESONANCE)

The melt fracture phenomenon described in the previous section often limits the
output rate of a fiber-spinning system, since successful spinning usually requires a
smooth extrudate. Another type of spinning instability is possible, which arises
not from the die flow but from the free boundary flow in the drawing region
between the spinneret and the take-up point. The observation is that there is a
critical draw ratio beyond which stable operation is impossible. When that draw
ratio is exceeded, a periodic variation in fiber diameter is observed, which is
referred to as draw resonance.

The draw resonance phenomernon appears to be a viscous instability in the
sense that it is observed in nonelastic melts, and even the stability theory for a
newtonian finid predicts the existence of a critical draw ratio. Unlike the melt
fracture instability it would appear, in both observation and theory, that elasticity
has a stabilizing influence on draw resonance. A second stabilizing factor, and one
which makes comparison between theory and experiment difficult, arises from the
nonisothermal nature of most real spinning systems. Cooling of the threadline
enhances the stability of the flow, and an adequate predictive theory must account
for heat transfer to the surroundings. As suggested in Sec. 13-6, the solution of the
heat transfer problem itself is subject to uncertainties, and so any nonisothermal
stability theory will include parameters which are not normally known with much
precision.

With these comments and reservations in mind, let us examine the stability
analysis of isothermal newtonian spinning. As in any stability analysis of fluids we
begin with the relevant momentum and mass balances. In Chap. 9 we have
already seen that, to a good approximation, the momentum balance may be
reduced to

(R*T,)) =0 : (15-72)

SR

[This is equivalent to Eq. (9-11) with the inertial terms neglected.]
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The unstéady-state mass balance is easily derived in the form
arR* 9, .,
—a?--f-'a—Z-(R U) =0 (15-73)
For the newtonian fluid Eq. (9-18) gives

du, . oU
= (15-74)

T..=3u

Since U is twice differentiated with respect to z a typical set of boundary
conditions specifies U at the ends of the spinning path:

U Uy atz=0 (15-75)
T|U,  atz=L (15-76)
The single required boundary condition on R is usually taken as an initial
condition:

R=R, atz=10 {(15-77)

Because die swell may occur, the value of R, appropriate to the analysis may
not necessarily be the die radins, We will assume that in a spinning system the die
swell ratio is not great in comparison to the draw ratio, and that any die swell
phenomena, includirg relaxation of the stresses generated prior to extrusion,
occur over a distance which is short with respect to L. Under these assumptions it
is reasonable to use the die radius for Ry. In any event, conservation of mass
relates Ry and U, through the volumetric flow rate:

rREU, =0 ) (17-78)
The results of Sec. 9-1 may be used to give the steady-state solutions
z
& = (__}j‘_) =DE5=2_£="DR (15__79)
Rq
U .
= — = D 15-80
5= Di (15-80)
T. 3in Dy,
fm e =~ 2 D 15-81
A/ (58D

where we have introduced % = z/L, and a dimensionless area 4, velocity u, and
tensile stress 7.

The stability of Egs. (15-72) through {15-74), subject to boundary conditions
given in Egs. (15-75) through {15-77), has been studied by Pearson and coworkers,
who also examined the effects of nonnewtonian viscosity as well as heat transfer,
and by Denn and coworkers, who also studied the viscoelastic fluid case and
examined stability to finite amplitude disturbances. For the newtonian isothermal
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case it is most convenient to write the momentum and mass balances [after
substituting Eq. (15-74) into Eq. (£5-72)} in the dimensionless form

& éu

_E(QE) _0 (15-82)
da @ ’
ataE=0 (15-83)

where t = tU, /L.
Perturbation variables are now introduced in the form

a=a-+o (15-84)
u=1u+1y {15-85)

On substitution of these definitions of ¢ and ¥ into Egs. (15-82) and (15-83), and
taking account of Egs. (15-79) and {15-80}, the perturbation variables are found to
satisfy the following linearized differential equations:

Yir — (In Dplyrs + (In Dp)DR¥e; + (In De)}*Di*e =0 (15-86)

) . . InD
®;+ Do, + {In DR)szcp+£—u

i~ pr V=0 (15-87)

Subscripts  or { on ¢ and y refer to partial differentiation (for example,
Y = O2Y/027).

It is assumed that the perturbed area and velocity may be written in the form
@ = O(F)e {15-88)
¥ = W)™ {15-89)

where « is a dimensionless growth (or decay) rate. When Egs. (15-88) and (15-89)
are substituted into Eqs. (15-86) and (15-87) the form is unchanged, except that ¢
. and  are replaced by © and ¥, and the term @, in Eq. (15-87) becomes a®. The
boundary conditions take the form

®(0) = ¥(0) = 0 (15-50)
¥(1)=0 (15-91)

The system of linear homogeneous equations (15-86) and (15-87) (in terms of
® and ¥) and the homogeneous boundary conditions give us an eigenvalue
problem, in which the growth rate parameter « really represents an infinite set of
complex eigenvaluss. The only parameter that appears in the problem is the draw
ratio, upon which each set of the eigenvalues must therefore depend.

The method of solution is discussed in several references. The result of interest
is that at a critical value Dy = 20.2 the real part of the first eigenvalue changes sign
and becomes positive (instability) for Dg > 202. The second and higher
eigenvalues are all negative at this draw ratio. We conclude that the flow is
unstable to draw ratios in excess of Dy = 20.2.
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Figure 15-6 Draw resonance data of Donnelly
and Weinberger,
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- Experimental data on isothermal newtonian spinning are rather hard to
obtain. The major problem is finding a fluid of high enough viscosity that the
surface-tension-driven instability of Sec. 15-1 is suppressed without having to use
a polymer fluid which might be nonnewtonian. One set of data are available, due
to Donnelly and Weinberger, using a silicone oil (Dow Corning 200) which seems
to show newtonian shear behavior, with a viscosity of 1000 P at room tempera-
ture. Because the oil is polymeric (polydimethylsiloxane) it is possible that some
viscoelastic phenomena occur at high deformation rates, but the oil seems likely to
be newtonian under the conditions of the experiment described.

Experiments were conducted under isothermal conditions, the “fiber ” being
extruded vertically through a short capillary of diameter 0.28 cm and a length-
diameter ratio of 2. A take-up roll drew the fluid filament, and the controlled
variables were flow rate ¢, spinning path L, and draw ratio D, (through the
take-up speed). The principal measurements were of the filament diameter varia-
tion along the filament axis.

Figure 15-6 shows the data in terms of the ratio of maximum to minimum
filament diameter at a fixed point along the spinning path as a function of D,,.
Stable operation is characterized by no variation in diameter ratio at any fixed
axial position, or max diam. to min diam. = 1. The data suggest that values of this
ratio in excess of unity occur at a critical draw ratio of approximately Dy = 17.

Donnelly and Weinberger observe a die swell of about 14 percent in their
experiments. If the die swell diameter is used for calculation of D, instead of the
capillary diameter, the values of Dy are increased by about 28 percent, and the
critical value of Dy, is estimated to be approximately D, = 22. These two values of
Dy, (either 17 or 22) bracket the predicted value of 20.2, and although the amount
of experimental data is small, and only the single fluid was studied, the resuits.
encourage the belief that the essence of the spinning stability analysis is correct.

Data are available, however, which suggest that under some conditions it is
not possible to spin a stable filament at draw ratios anywhere near the critical
value of 20. One often observes draw resonance at values of Dy in the range of 3 to
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5. One should examine, then, the results of relaxing some of the assurnptions of the
simplest theory. In particular, let us examine the effect of

@ Cooling of the fiber

@ Nonnewtonian viscous behavior
@ Viscoelasticity

o Finite-amplitude disturbances

Nonisothermal Spinning

For a Newtcnian melt spun under nonisothermal conditions we must add an
energy equation to Eqs. (15-72) through (15-74), which are still valid. If we let § be
the melt temperature relative to the ambient temperature and assume that for a
thin fiber 8 is independent of radial position, the energy balance becomes

pcp(%fi + Ug—g) - %”‘ 8 (15-92)

where h is an appropriate convective heat transfer coefficient. Using the same
nondimensionalization as before, and using 6, (initial melt temperature minus the
ambient temperature) to normalize §, we find

o8  of 1
a—?-i- Us= — Hila (15-93)
where H is given by
H = 2mr PR (15-94)

Qo k

We note that the heat transfer coefficient might be a function of axial position 3
and of the velocity . Hence H might not be a constant.

In the nonisothermal analysis it is necessary to account for the temperature
dependence of viscosity, for example, using

o= #De—b('f—?’o) = Poe—-b(ﬂ—ﬂo} = ‘uoe~b90(0—1) (15_95)

This model makes u, the viscosity of the melt at z =0 and introduces a new
parameter b, into the analysis. The momentum balance, Eq, (15-72), takes the
form [see Eq. (15-82)]
¢ —paacg— 1q O

gg[ae bate l)ﬁ} = {15-96)
while the mass balance, Eq. (15-73), remains unchanged. With Eq. (15-93) these
three equations provide the starting point of the nonisothermal stability analysis
of Pearson and his coworkers.

We will not pursue the details further here but note instead that the main

result is that the critical draw ratio can exceed the predicted isothermal value of
20.2 when the parameter

H = b, He ¥ {15-97)
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becomes comparable to unity, say, # > 0.5. The specific results presented by
Pearson are based on the assumption that the heat transfer coefficient  is propor-
tional to U*?. Other assumptions will, of course, modify the results quantitatively,
but the basic qualitative idea would be expected to hold.

Example 15-2: Drawing of polyester fiber It is interesting, at this point, to
estimate the value of 5 for some set of spinning data, to see if # > 0.5 is
within the realm of possible operating conditions. We use the data of Example
13-4 for polyester fiber, The observed draw ratio was about 60. The following
parameters are needed:

(—xi_{;: pC, = 1.3(04) cal/em®-°C

(from Kase’s work on polyethylene terepthalate)
Q=5x10"%cms
L =15 cm (the actual drawing length, from Fig. 13-21)
VR

Note that Nu is based on the air conduetivity k, . In Eq. (15-94) we need hR,,
50

Nu = 0.2 (taking n, = 1073, using Fig. 13-20).

hRy =% Nu k, = 0.1{6.5 x 107%) = 6.5 x 107° cal/cm-s-°C

The value of 8, in this case is 290 — 22 = 268°C. For b we take b = 0.02°C™*.

From Egs. {15-94) and (15-97) we find 5 = 0.6. An 5 value comparable
to unity could be easily attained. Pearson’s theoretical work shows the possib-
ility of draw ratios of the order of 100 at such values of #.

Effect of Viscoelasticity on Spinning Stability

- isher and Denn have analyzed the spinning stability of a fluid described by a
viscoelastic model of the form

ot
A—= -
T+ pA {15-98)

Superficially, this is the same nonlinear Maxwell model discussed in Sec. 15-3 on
melt fracture. However, the viscosity coefficient u is taken, in this case, to be a
Junction of the deformation rate through a power law of the form

p= K@) (15-99)
The relaxation time is also taken to be a function of the deformation rate by using
the definition

1= (15-100)

4
G
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Figure 157 Neutral stability
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N (15-98).

where G is a constant elastic modulus. When x and 1 are taken as material
Junctions instead of constants, this constitutive equation is referred to as the
White-Metzner model.

The stability analysis proceeds as in the simpler newtonian case, with some
additional algebraic and computational complexity. For isothermal spinning the
lincarized stability equations include three parameters: the draw ratio Dy, the
constant », and a viscoelastic parameter defined by

_ a(n—1)2n E 1/"& .

N=3 ( G) I {(15-101)

‘[This same parameter appeared as « in Eq. (9-45).] Figure 15-7 shows the neutral

stability curves calculated by Fisher and Denn. There are three features of interest.

First, we find that there is an upper limit to the attainable stretch rate under
steady spinning conditions, defined by

Di=1+ % (15-102)

[This is equivalent to Eq. (9-53), the constitutive equation there being the same as
Eg. (15-98), with n =1 in Eq. (15-99).]

The next feature of interest is the effect of a deformation rate-dependent
viscosity. For n < 1 the fluid is expected to show an instability at a smaller draw
ratio than for n = 1. Thus the newtonian fluid is the most stable to spinning
instability at low values of N, according to this theory, and the observation that
draw resonance occurs at Dg as low as 3 < Dy < 5 might simply reflect a nonnew-
tonian shear effect.
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Figure 15-8 Draw resonance data on two

. " polymer melts spun under isothermal

conditions. T =218°C, L =165 c¢m,

Dy =0159 em, and U,=35 cmys,

| | A Polypropylene  (Hercules  6523);

2 3 4 5 O polystyrene (Monsanto HF 77). (From
Dy Cruz-Saenz et al.)

Finally, and perhaps of greatest interest, each neutral stability curve “ doubles
back ™ and leaves a stable operating region just under the limiting D% boundary.
This suggests that one could “spin through” the draw resonance region and find
an upper, high-draw-ratio region of stable operation. Alternatively, for N high
enough, the critical Dy can be increased by increasing N. Thus, for a fluid for
which »n = 0.5, for example, the theory predicts that if N = 0.02 one will find
instability at D, = 5. However, if N is doubled, e.g., by halving the spinning length
L [see Eq. (15-101}], one gets past the “nose ™ of the stability envelope and stable
operation is possible up to D¥. It is known that one can stabilize a fiber-spinning
operation by reducing the length of the spinning path, although it would be
speculative to take this point as a confirmation of the theory.

Data on isothermal spinning of polymer melts are provided by Weinberger
and coworkers (see Cruz-Saenz et al) and are shown in Fig. 15-8. The most
significant point is the small draw ratio at which draw resonance is observed.
Since the observed values of the power law index are approximately n = 0.5 for
both melts, the results are in crude agreement with the predictions of Fig. 15-7 for
small N. The only rheological data presented (Fig. 15-9) show the two mielts to
have practically identical shear viscosity behavior {see Prob. 15-7).

o B4 4

Log n (P}
'S
o

1 I L
0 1 2 3 Figure 15-9 Shear viscosity data at 218°C
Log ¥ {s~") for the melts of Fig 15-8 (same symbols).
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Analysis of Finite-amplitude Disturbances

A linearized stability analysis gives information regarding the response of 2 system
to small disturbances. When such an analysis predicts stability, the prediction is
relevant only to the case studied, ie., to small disturbances. The system may be
unstable to large disturbances. Although an analysis may give some results under
the assumption of linearity, there is usually a limitation to how much meaningful
information may be extracted from a linear stability analysis. Thus, as noted in
Sec. 15-1, the linearized analysis of jet stability does a good job of predicting
growth rates of small disturbances, but it fails to predict the appearance of “ satel-
lite drops™ in the disrupted jet.

If a system is unstable, the instability usually “appears,” in the literal sense of
being measurably important, only after the disturbance has grown to a macro-
scopic size. By macroscopic we mean that the disturbance variable is comparable
to the steady-state value of that variable. At this point the Hnear stability analysis
is not applicable, and subsequent features of the growth of the macroscopic distur-
bance are usually not accommodated by the theory.

Thus, the prediction of a critical draw ratio in spinning, based on the lin-
earized equations, may be irrelevant to the actual behavior of the system. The
linear theory, by its nature, does not predict the appearance of sustained periodic
variations in filament diameter, so it is not clear that the instability predicted by
the linearized model is the same as the instability that occurs. Such information
must come from a nonlinear analysis. Fisher and Denn have carried out such an
analysis for isothermal newtonian spinning.

A major result of the finite-amplitude analysis is that, for D, < 20.2, the
system is stable to finite-amplitude perturbations. Thus the linearized analysis is
adequate to determine the critical draw ratio for unstable spinning. The second
significant result is that, for Dy > 202, disturbances grow and approach a
sustained finite-amplitude oscillation whose period and magnitude are in the
range of experimental observations of draw resonance. It would appear, then, that
‘the stability analysis of spinning is indeed relevant to the problem of draw
resonance.

Observations of draw resonance and comparison to a finite-amplitude
analysis are provided in an interesting paper by Kase. Polyethylene terepthalate
(PET) was melt spun and quenched in a water bath. Figure 15-10 shows the
spinning conditions and the measured variation in filament thickness. (The
thickness was not directly measured, but the weight of filament in a 10-cm length
was measured and used as a measure of nonuniformity. Since the wavelength of
oscillation was about 70 cm, the 10-cm weight provides a reasonable measure.)

We note that the ratio of maximum to minimum filament radius correspond-
ing to these data is approximately 2. Considerably larger ratios are often observed,
but we chose to present Kase’s data because they were obtained under well-
controlled and well-documented operating conditions. Over the air gap of 2 cm
the temperature of the filament falls slightly, perhaps 20°C, and then upon enter-
ing the water the fiber is rapidly quenched and solidified. It is assumed that no
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Figure 15-10 Draw resonance data of Kase. PET filament spun under foliowing conditions:
Dy =003 cm; L =2 cm; U, = 500 em/s; Dy = 76; T, = 284°C; T, = 30°C.

drawing occurs within the water bath. Hence the experimental results correspond
to nonisothermal spinning, although the extent of cooling does not permit stable
operation at the imposed draw ratio of 76.

15-5 STABILITY OF FILM CASTING

Polymeric film may be produced by a “casting™ process, as suggested in
Fig. 15-11. In a typical operation the film is extruded toward a cold roll, the
“chili” roll, which quenches the melt and prepares it for further processing or
windup. Fiim is normally drawn to reduce its thickness to the desired value and,
possibly, to impart orientation to the material so as to alter its mechanical
properties.

Despite the “necking in” suggested in the front view of the process, the flow
may be considered two-dimensional to a good approximation, especially for a very
wide film. The steady flow analysis is nearly trivial, so we have chosen to introduce
it here with the stability analysis itself,

Figure 15-11 Side and front views of a film-casting process.
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We assume that the velocity profile is flat across the film thickness, so that u is
a function only of x. We will consider the simplest case: isothermal newtonian
flow. For two-dimensional flow the continuity equation is

du dv

— 20 . (15-103
6x+6y ( )

We let u = U(x), and on integrating the continuity equation we find

== -104
v Y (15-104)

At y = 4H this gives the maximum y-directed velocity

14U
vy = _EE;H (15-105)
The volumetric flow rate (per unit width) is
H{Z

Q=2[ wdy=UH (15-106)

0

and at steady state we take { to be constant. It follows then that

a0 au dd
dx 0=H dx +U dx (15-107)
dH HdJ4U
or PR {15-108)

The dynamic equations for this flow reduce to

d 0
N Tgy £ T,=0 {15-109)
if inertial terms are neglected. As in the analysis of fiber spinning in Sec, 9-1, the
shear stress term T, arises from the geometry. In fact, Egs. (9-1) through (9-9}are
valid for both the cylindrical fiber and the two-dimensional film with r replaced by
y. Upon integrating Eq. (15-109) with respect to y (from 0 to $H), one obtains the
integrated force balance in the forms

%an =0 (15-110)

or HT,. =f ' (15-111)

where J'is the axial drawing force per unit width of flm.
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For the newtonian fluid the three normal stresses are

du

T = — = -

x p+2].£ax {15-112)
dv : du

T, = _p+2#5= —p—2,ué; (15-113)
d

T = _p+2‘“a_‘:= —p (15-114)

Equation (15-113) follows from application of Eq. (15-103), while Eq. (15-114)
follows from the assumption that the flow is only two-dimensional.
The stress difference

du
T — T”=4‘uE {15-115)

is seen to be independent of y. However, at y = H{x) we may assume that no
stresses normal to the [ree surface act (surface tension effects are assumed negli-
gible), and, to a good approximation, this implies that T,, =0 at y = 4H and,
indeed, for all y. This leads, then, to

atu
p= -2 (15-116)
and
du
- 15-117
Toe = Ao { )

Upon combining Eqgs. (15-106), (15-108), and (15-117) with Eq. (15-111) we
find

1dg _ 1dU T, f f

e 15-118
H dx U dx 4ulU  4pHU  4pQ ( )
Integration yields
H
Ry £, 15-119
H,= e ( )
and
U_ of ¥4 {15-120)
Uy
From Eq. (15-104) we find
LT M. (15-121)

4uQ
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This completes the steady-state analysis. It is convenient to introduce dimen-
sionless variables, so we define

. X - U
=1 '
S U
“u, 7T,
- H fL
H=— = —
A, g
The steady-state solutions then become
B = gf* {15-122)
Ho=¢ (15-123)
o = yet? {15-124)
In this format it is easy to see that the draw ratio, defined as
1
Dp = 15-125
is simply related to § through
InD,=p8 (15-126)

The film-casting process is the two-dimensional counterpart of fiber spinning,
and like fiber spinning the physical process exhibits instabilities. An analysis of the
stability of the film-casting process has been carried out by Yeow. We illustrate
here a simpler case of his more general analysis. We consider two-dimensional
perturbations only, of the form

&=l + u*(%)e' ] (15-127)
H=HT1 + H*(%)e'2] (15-128)
B =571 + v*(%)e® ] (15-129)

We define a dimensionless time as r = tU, /L. The dimensionless growth rate
parameter is €, and instability corresponds to negative values of the imaginary
part of &

The unsteady-state mass balance takes the form [see Eq. (15-73)]

GH ¢

ot dx

When Egs. (15-127) and (15-128) are substituted into this mass balance the result,
after some algebra including linearization, becomes

H* +u* + Qe P2H* = ( (15-131)

(HU) =0 (15-130)

(The prime denotes d/dx.)
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If inertial terms are neglected Eq. (15-110) still constrains the perturbed flow,
and Eq. {15-115) is still valid, if only two-dimensional disturbances are assumed.
The axial stress is then

4uly d . ul, W
Tee= =7 gz B+ w*e™) = =2 M + (Bu* + u*)e™] (15-132)

Using Eq. (15-128) for H and Eq. (15-132) for T,,, one can carry out the
indicated differentiations of Eq. (15-110), and after linearization the result is
u* + fur 4 BH* =0 {13-133)

Equations (15-131) and (15-133) constitute a pair of linear homogeneous equa-
tions in the two perturbation variables H* and u*. Appropriate boundary condi-
tions are

e
il

*=0 H*=0 at
" at (15-134)

u* =0

0
1

e
il

which correspond to fixing the velocity at the two ends of the process and holding
film thickness constant at X = Q only.

Equations (15-131) and (15-133) constitute an eigenvalue problem with the
draw ratio (through f) being the parameter that determines the values of Q for
which the equations have nontrivial solutions satisfying the boundary conditions.
Stability exists so long as the imaginary part of Q is positive. Yeow has shown that
the neutral stability condition (the peint where the imaginary part of Q passes
from positive to negative) occurs at a value § = 3. Thus the critical draw ratio is
ffrom Eq. {15-126)] Dy = 20.2.

This critical draw ratio for film casting is identical to that for newtonian
isothermal spinning. This follows from the fact that in the case of a two-
dimensional disturbancef the two problems are mathematically identical with
respect to the perturbation variables. Yeow states that this is not necessarily the
case for the nonnewtonian fiuid. One might expect qualitative similarity, however,
between spinning of fiber and casting of film, with respect to the effects of nonnew-
tonian viscosity, viscoelasticity, and cooling on stability.

Several sets of experimental data are available which show the existence of
draw resonance in film casting and which shed light on several features of the
phenomenon. Figure 15-12 shows film thickness variations in a polypropylene
melt cast through air onto a chill roll. It is apparent that draw resonance occurs,
and the ratio of maximum to minimum film thickness is seen to be about 1.8.

Bergonzoni and DiCresce show even more severe oscillations in polypropy-
lene “ribbon” (narrow-width film) which was drawn through air and quenched in

t The dimensionality of the disturbance relers to the fact that both « and v are perturbed, not to the
fact that the perturbation variables are functions only of x. For a three-dimensional disturbance a

perturbed velocity w is assumed to exist, and all perturbed quantities include a z variation of the form
fax
&%,
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Y Y 35 pm
1m Figure 15-12 Draw resonance ob-
served on polypropylene film.
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water. Figure 15-13 indicates ratios of about 4.5 for the maximum to minimum
film thickness. Bergonzoni's data also indicate that for a variety of polymeric
melts a critical draw ratio of about 20 is evident, with some variation that could
probably be ascribed to nonnewtonian or viscoelastic phenomena. Figure 15-14
illustrates this point.

Kase has carried out a theoretical analysis through numerical solution of the
perturbation equations, and subsequently through solution of the full nonlinear
equations, for newtonian isothermal drawing. He shows generally good agreement
between theory and observation. One useful result is a prediction for the spatial
periodicity of the oscillationt on the final film or fiber, which Kase gives as

L, _ Ds

AT RAL (15-135)
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FLDL)
T

InDg Figure 15-15 The fuactior f(5,) in Eq. (15-135).

L, is the distance between successive maxima or minima along the quenched film
(or fiber), and f(Dg) is a function given in Fig. 15-15. Agreement between
Eq. {15-135) and observed values of L, is quite good. Theoretical predictions of
amplitude ratios are much less successful, Kase’s work overestimates the ratio of
maximum to minimum thickness by an unacceptable amount.

15-6 OTHER STABILITY PROBLEMS

We mention here briefly some other stability problems of importance in the
polymer-processing industries, for which earhier chapters considered only the

analysis of the steady state. Bibliographical references provide an opportunity for
further study,

Coating flows Figure 15-16 shows a sketch of a common occurrence in roll-
coating systems: the developmernt of waves oriented in the direction of motion of
the sheet. This instability is associated with interfacial tension and occurs in both

Figure 15-16 Instability observed in roll coating.
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)

Figure 15-17 Two-roll system studied by Pitts and Greliller.

newtonian and viscoelastic fluids. Some aspects of this problem have been treated
both theoretically and experimentally by Pitts and Greiller and by Pearson (see
Chap. 8 Bibliography), and by Mill and South. In none of these papers was the
specific case of the sheet-roll system treated, but the broad similarity of this type
of coating system to the geometrics considered in those papers makes their results
relevant to our discussion here. In a two-roll system, operating as shown in Fig.
15-17, Pitts and Greiller observe unstable coatings on the rolls when

nUR
G'Ho

Mill and South, in later experiments, correlate observations on this instability
with the criterion

> 62 (15-136)

R 314
% (ﬁ—) > 103 (15-137)
0

Pearson studied coating with a “wedge spreader,” as depicted in Fig. 15-18. He
found an instability of the type considered here when

i

Sow =03 {15-138)
where ¢ = tan 4.

Pearson carries out a moderately successful stability analysis of his problem,
but the most significant rernarks are his qualitative comments at the end of his
paper. He points out that diverging flows (as in the spreader or roll configurations
shown in Figs. 15-17 and 15-18) are subject to instability, whereas converging flow
(as in blade coating) should be stable to interfacial instability. Pearson also notes
that stability should occur in a two-roll system if the rolls move in opposite
directions. This is consistent with the common observation that reverse-roll coat-
ing, in which the sheet and roll move counter to each other, is a much more stable
process than the case of concurrent motion.

Moving spreader
B o o 0 g 8 gt N e o o o o o o o o W
R R o
& &0 4 ST s
oKL

[

K A

T s TR

Stationary plate Figore 15-18 The “wedge spreader.”
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Tubular film blowing As discussed in Chap. 10, tubular blown film is drawn, and

hénce one might anticipate the possibility of draw resonance, This is, in fact, |
observed, and Han and Park show photographs of this phenomenon and have f
carried out some preliminary studies.

PROBLEMS

15-1 Derive Eq. {15-34), and prove that p! = 0.

152 By considering the boundary conditions for the problem of newtonian jet swbility, derive
Eq. (15-43).

15-3 Derive Eq. (15-44) and its solution, Then verify Eq. (15-45).

15-4 A polyester monofilament, of diameter 5 mils, has 2 “fnish ™ coated on it by a withdrawal-
coating operatien. The filament speed is 100 cm/s, and the *finish ™ solution has a viscosity of 3 cP and
a surface tension of 30 dynesfem. Is the coating still uniform at a distance of 3 m above the bath?
15-5 Give the derivation of Eq. (15-73). i
156 Using Fig. 15-7, and taking n = 4, K = 10* dynes"%/em? and G = 2 » 10* dynes/cm?, plot the !
limiting value of D, as a function of spinning length L. Take ¢ to be fixed at 102 cm?/s, and
R, = 0.02 ¢m. Suppose a slight modification in the polymer feaves K and n unchanged but causes G to
increase by a factor of 2. Plot the limiting value of D, versus L and compare to the first case.

157 A crude cstimate of a relaxation time for the melts shown in Fig. 15-9 is the reciprocal of the
shear rate at which nonnewtonian behavior is first observed. Estimate N [Eq. (15-101)] for each melt,
and compare the predicted critical Dy, with the data of Fig. 15-8.

15-8 For the data of Kase {Fig. 15-10) calculate the temperature profile along the spinning path.
15-9 The data of Fig. 15-14 were obtained at a draw ratio of 20. Predict the spatial period of the draw
resonance and compare te the observed value of 92 in. L was 12 in. Assume isothermal conditions.
15-10 Evaluate the isothermal assumption in Prob, 15-9 by calculating the temperature in the ribbon
as a function of distance from the die. Use the ollowing data:

[
(=]

T, = 454°F Dy =
U, = 100 cm/s P2 = 42 ujs
p =083 g/cm? Cp, = 0.7 cal/g-°C i

T, = 80°F
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