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Preface to the Second Edition

Tremendous science and engineering progress has been made in polymer processing since
the publication of the First Edition in 1979. Evolution in the field reflects the formidable
contributions of both industrial and academic investigators, and the groundbreaking
developments in rheology, polymer chemistry, polymer physics, life sciences and nano-
materials, in instrumentation and improved machinery. The emerging disciplines of
computational fluid mechanics and molecular modeling, aided by exponentially
expanding computing power are also part of this evolution.

As discussed in Chapter 1 of this Second Edition, polymer processing is rapidly
evolving into a multidisciplinary field. The aim is not only to analyze the complex thermo-
mechanical phenomena taking place in polymer processing equipment, per se, but to
quantitatively account for the consequences, on the fabricated polymer products. Thus, the
focus of future polymer processing science will shift away from the machine, and more on
the product, although the intimate material-machine interactions in the former are needed
for the latter.

Consequently, this edition contains not only updated material but also a significant
restructuring of the original treatment of polymer processing. First, we deleted Part I
which discussed polymer structure and properties, since the subject is thoroughly covered
in many classic and other texts. Second, in light of the important technological
developments in polymer blends and reactive processing, new chapters on Devolatiliza-
tion, Compounding and Reactive Processing, and Twin Screw and Twin Rotor-based
Processing Equipment are introduced. These processes are widely used because of
their unique abilities to affect rapid and efficient solid deformation melting and chaotic
mixing.

However, the basic philosophy we advocated in the First Edition, which was to analyze
polymer processing operations in terms of elementary and shaping steps, which are
common to all such processing operations, and thereby unifying the field is retained. We
have continued our attempt to answer not only ‘“how” the machines and processes work,
but also “why”’ they are best carried out using a specific machine or a particular process.
In fact, we believe that this approach has contributed to the fundamental understanding
and development of polymer processing in the last quarter-century, and to the change of
focus from the machine to the quantitative prediction of product properties.

As with the First Edition, this volume is written both as a textbook for graduate and
undergraduate students, as well as resource for practicing engineers and scientists.
Normally, a two-semester course in needed to cover the material in the text. However for
students who are familiar with fluid mechanics, heat transfer and rheology, it is possible to
cover the material in one semester.

vii



viii PREFACE TO THE SECOND EDITION

To enhance the usefulness of the Second Edition for both students and practitioners of
the field, an extensive Appendix of rheological and thermo-mechanical properties of
commercial polymers, prepared and assembled by Dr. Victor Tan, and for teachers, a
complete problem Solution Manual, prepared by Dr. Dongyun Ren are included. For all it
is hoped that this Second Edition, like the First, proves to be a useful professional
“companion”.

We would like to acknowledge, with gratitude, the role and help of many: foremost,
the invaluable assistance of Dr. Dongyun Ren, who spent almost three years with us at the
Technion and NJIT/PPI, assisting with many aspects of the text preparation, as well as the
Solution Manual; and Dr. Victor Tan, whose expert and meticulous work in measuring and
gathering rheological and thermo-mechanical polymer properties provides the data needed
to work out real problems. In addition, we wish to thank our colleagures, and students, who
have influenced this book with their advice, criticism, comments, and conversations.
Among them are David Todd, Marino Xanthos, Ica Manas-Zloczower, Donald Sebastian,
Kun Hyun, Han Meijer, Jean-Francois Agassant, Dan Edie, John Vlachopoulos, Musa
Kamal, Phil Coates, Mort Denn, Gerhard Fritz, Chris Macosko, Mike Jaffe, Bob Westover,
Tom McLeish, Greg Rutledge, Brian Qian, Myung-Ho Kim, Subir Dey, Jason Guo, Linjie
Zhu and Ming Wan Young. Special thanks are due to R. Byron Bird for his advice and
whose classic approach to Transport Phenomena, inspired our approach to polymer
processing as manifested in this book.

There are others we wish to mention and recall. While they are no longer with us, their
work, ideas, and scientific legacy resurface on the pages of this book. Among them: Joe
Biesenberger, Luigi Pollara, Peter Hold, Ally Kaufmann, Arthur Lodge, Don Marshall,
Imrich Klein, Bruce Maddock, and Lew Erwin.

We wish to thank our editor, Amy Byers, our production editor, Kristen Parrish, the
copy editor Trumbull Rogers, and the cover designer Mike Rutkowski. We give special
thanks to Abbie Rosner for her excellent editing of our book and to Mariann Pappagallo
and Rebecca Best for their administrative support.

Finally, we thank our families, who in many respects paid the price of our lengthy
preoccupation with this book at the expense of time that justly belonged to them.

ZEHEV TADMOR
Costas G. Gogos

Haifa, Israel
Newark, New Jersey
May 2006



Preface to the First Edition

This book deals with polymer processing, which is the manufacturing activity of converting
raw polymeric materials into finished products of desirable shape and properties.

Our goal is to define and formulate a coherent, comprehensive, and functionally useful
engineering analysis of polymer processing, one that examines the field in an integral, not
a fragmented fashion. Traditionally, polymer processing has been analysed in terms of
specific processing methods such as extrusion, injection molding calendering, and so on.
Our approach is to claim that what is happening to the polymer in a certain type of
machine is not unique: polymers go through similar experiences in other processing
machines, and these experiences can be described by a set of elementary processing steps
that prepare the polymer for any of the shaping methods available to these materials. On
the other hand, we emphasize the unique features of particular polymer processing
methods or machines, which consist of the particular elementary step and shaping
mechanisms and geometrical solutions utilized.

Because with the approach just described we attempt to answer questions not only of
“how” a particular machine works but also “why” a particular design solution is the
“best” among those conceptually available, we hope that besides being useful for students
and practicing polymer engineers and scientists, this book can also serve as a tool in the
process of creative design.

The introductory chapter highlights the technological aspects of the important polymer
processing methods as well as the essential features of our analysis of the subject. Parts I
and II deal with the fundamentals of polymer science and engineering that are necessary
for the engineering analysis of polymer processing. Special emphasis is given to the
“structuring” effects of processing on polymer morphology and properties, which
constitute the “meeting ground” between polymer engineering and polymer science. In all
the chapters of these two parts, the presentation is utilitarian; that is, it is limited to what is
necessary to understand the material that follows.

Part III deals with the elementary processing steps. These “steps” taken together make
up the total thermomechanical experience that a polymer may have in any polymer
processing machine prior to shaping. Examining these steps separately, free from any
particular processing method, enables us to discuss and understand the range of the
mechanisms and geometries (design solutions) that are available. Part III concludes with a
chapter on the modeling of the single-screw extruder, demonstrating the analysis of a
complete processor in terms of the elementary steps. We also deal with a new polymer
processing device to demonstrate that synthesis (invention) is also facilitated by the
elementary-step approach.

We conclude the text with the discussion of the classes of shaping methods available to
polymers. Again, each of these shaping methods is essentially treated independently of

ix



X PREFACE TO THE FIRST EDITION

any particular processing method. In addition to classifying the shaping methods in a
logical fashion, we discuss the “structuring” effects of processing that arise because the
macromolecular orientation occurring during shaping is fixed by rapid solidification.

The last chapter, a guide to the reader for the analysis of any of the major processing
methods in terms of the elementary steps, is necessary because of the unconventional
approach we adopt in this book.

For engineering and polymer science students, the book should be useful as a text in
either one-semester or two-semester courses in polymer processing. The selection and
sequence of material would of course be very much up to the instructor, but the following
syllabi are suggested: For a one-semester course: Chapter 1; Sections 5.2, 4, and 5;
Chapter 6; Sections 7.1, 2, 7, 9, and 10; Sections 9.1, 2, 3, 7, and 8; Chapter 10; Section
12.1; Sections 13.1, 2, 4, and 5; Section 14.1; Section 15.2; and Chapter 17—students
should be asked to review Chapters 2, 3, and 4, and for polymer science students the course
content would need to be modified by expanding the discussion on transport phenomena,
solving the transport methodology problems, and deleting Sections 7.7, 9, and 10. For a
two-semester course: in the first semester, Chapters 1, 5, and 6; Sections 7.1, 2, and 7 to 13;
Sections 8.1 to 4, and 7 to 13; Chapters 9 and 10; and Sections 11.1 to 4, 6, 8, and 10—
students should be asked to review Chapters 2, 3, and 4; and in the second semester,
Chapters 12 and 13; Section 14.1, and Chapters 15, 16, and 17.

The problems included at the end of Chapters 5 to 16 provide exercises for the material
discussed in the text and demonstrate the applicability of the concepts presented in solving
problems not discussed in the book.

The symbols used follow the recent recommendations of the Society of Rheology; SI
units are used. We follow the stress tensor convention used by Bird et al.,* namely,
n = P& + 1, where m is the total stress tensor, P is the pressure, and 7 is that part of the
stress tensor that vanishes when no flow occurs; both P and t; are positive under
compression.

We acknowledge with pleasure the colleagues who helped us in our efforts. Foremost,
we thank Professor J. L. White of the University of Tennessee, who reviewed the entire
manuscript and provided invaluable help and advice on both the content and the structure
of the book. We further acknowledge the constructive discussions and suggestions offered
by Professors R. B. Bird and A. S. Lodge (University of Wisconsin), J. Vlachopoulos
(McMaster University), A. Rudin (University of Waterloo), W. W. Graessley (North-
western University), C. W. Macosko (University of Minnesota), R. Shinnar (CUNY), R. D.
Andrews and J. A. Biesenberger (Stevens Institute), W. Resnick, A. Nir, A. Ram, and M.
Narkis (Technion), Mr. S. J. Jakopin (Werner-Pfleiderer Co.), and Mr. W. L. Krueger (3M
Co.). Special thanks go to Dr. P. Hold (Farrel Co.), for the numerous constructive
discussions and the many valuable comments and suggestions. We also thank Mr. W.
Rahim (Stevens), who measured the rheological and thermophysical properties that appear
in Appendix A, and Dr. K. F. Wissbrun (Celanese Co.), who helped us with the rheological
data and measured m,. Our graduate students of the Technion and Stevens Chemical
Engineering Departments deserve special mention, because their response and comments
affected the form of the book in many ways.

*R. B. Bird, W. E. Stewart, and E. N. Lightfoot, Transport Phenomena, Wiley, New York, 1960; and R. B. Bird,
R. C. Armstrong, and O. Hassager, Dynamics of Polymeric Liquids, Wiley, New York, 1977.
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We express our thanks to Ms. D. Higgins and Ms. L. Sasso (Stevens) and Ms. N. Jacobs
(Technion) for typing and retyping the lengthy manuscript, as well as to Ms. R. Prizgintas
who prepared many of the figures. We also thanks Brenda B. Griffing for her thorough
editing of the manuscript, which contributed greatly to the final quality of the book.

This book would not have been possible without the help and support of Professor J. A.
Biesenberger and Provost L. Z. Pollara (Stevens) and Professors W. Resnick, S. Sideman,
and A. Ram (Technion).
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throughout this work.

ZEHEV TADMOR
Costas G. Gocos

Haifa, Israel
Hoboken, New Jersey
March 1978






Contents

1 History, Structural Formulation of the Field Through Elementary Steps,
and Future Perspectives, 1

1.1 Historical Notes, 1

1.2 Current Polymer Processing Practice, 7

1.3 Analysis of Polymer Processing in Terms of Elementary Steps and
Shaping Methods, 14

1.4 Future Perspectives: From Polymer Processing to
Macromolecular Engineering, 18

2 The Balance Equations and Newtonian Fluid Dynamics, 25

2.1 Introduction, 25

2.2 The Balance Equations, 26

2.3 Reynolds Transport Theorem, 26

2.4 The Macroscopic Mass Balance and the Equation of Continuity, 28

2.5 The Macroscopic Linear Momentum Balance and the Equation
of Motion, 32

2.6 The Stress Tensor, 37

2.7 The Rate of Strain Tensor, 40

2.8 Newtonian Fluids, 43

2.9 The Macroscopic Energy Balance and the Bernoulli and Thermal
Energy Equations, 54

2.10 Mass Transport in Binary Mixtures and the Diffusion Equation, 60

2.11 Mathematical Modeling, Common Boundary Conditions, Common
Simplifying Assumptions, and the Lubrication Approximation, 60

3 Polymer Rheology and Non-Newtonian Fluid Mechanics, 79

3.1 Rheological Behavior, Rheometry, and Rheological Material Functions
of Polymer Melts, 80
3.2 Experimental Determination of the Viscosity and Normal Stress
Difference Coefficients, 94
3.3 Polymer Melt Constitutive Equations Based on Continuum Mechanics, 100
3.4 Polymer Melt Constitutive Equations Based on Molecular Theories, 122

xiii



xiv

CONTENTS

The Handling and Transporting of Polymer Particulate Solids, 144

4.1
4.2
4.3
44
4.5
4.6
4.7
4.8
4.9

Some Unique Properties of Particulate Solids, 145
Agglomeration, 150

Pressure Distribution in Bins and Hoppers, 150

Flow and Flow Instabilities in Hoppers, 152

Compaction, 154

Flow in Closed Conduits, 157

Mechanical Displacement Flow, 157

Steady Mechanical Displacement Flow Aided by Drag, 159
Steady Drag-induced Flow in Straight Channels, 162

4.10 The Discrete Element Method, 165

Melting, 178

51
5.2
53
54
5.5
5.6
5.7
5.8
5.9

Classification and Discussion of Melting Mechanisms, 179

Geometry, Boundary Conditions, and Physical Properties in Melting, 184
Conduction Melting without Melt Removal, 186

Moving Heat Sources, 193

Sintering, 199

Conduction Melting with Forced Melt Removal, 201

Drag-induced Melt Removal, 202

Pressure-induced Melt Removal, 216

Deformation Melting, 219

Pressurization and Pumping, 235

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8

Classification of Pressurization Methods, 236

Synthesis of Pumping Machines from Basic Principles, 237
The Single Screw Extruder Pump, 247

Knife and Roll Coating, Calenders, and Roll Mills, 259
The Normal Stress Pump, 272

The Co-rotating Disk Pump, 278

Positive Displacement Pumps, 285

Twin Screw Extruder Pumps, 298

Mixing, 322

71
7.2

7.3
7.4
7.5

Basic Concepts and Mixing Mechanisms, 322

Mixing Equipment and Operations of Multicomponent and
Multiphase Systems, 354

Distribution Functions, 357

Characterization of Mixtures, 378

Computational Analysis, 391

Devolatilization, 409

8.1
8.2
8.3

Introduction, 409
Devolatilization Equipment, 411
Devolatilization Mechanisms, 413



10

11

12

13

84
8.5
8.6
8.7
8.8
8.9
8.10
8.11

CONTENTS XV

Thermodynamic Considerations of Devolatilization, 416

Diffusivity of Low Molecular Weight Components in Molten Polymers, 420
Boiling Phenomena: Nucleation, 422

Boiling—Foaming Mechanisms of Polymeric Melts, 424
Ultrasound-enhanced Devolatilization, 427

Bubble Growth, 428

Bubble Dynamics and Mass Transfer in Shear Flow, 430

Scanning Electron Microscopy Studies of Polymer Melt

Devolatilization, 433

Single Rotor Machines, 447

9.1
9.2
9.3
94

Modeling of Processing Machines Using Elementary Steps, 447
The Single Screw Melt Extrusion Process, 448

The Single Screw Plasticating Extrusion Process, 473

The Co-rotating Disk Plasticating Processor, 506

Twin Screw and Twin Rotor Processing Equipment, 523

10.1
10.2
10.3

Types of Twin Screw and Twin Rotor—based Machines, 525
Counterrotating Twin Screw and Twin Rotor Machines, 533
Co-rotating, Fully Intermeshing Twin Screw Extruders, 572

Reactive Polymer Processing and Compounding, 603

11.1

11.2
11.3

114

11.5

Classes of Polymer Chain Modification Reactions, Carried out in
Reactive Polymer Processing Equipment, 604

Reactor Classification, 611

Mixing Considerations in Multicomponent Miscible Reactive
Polymer Processing Systems, 623

Reactive Processing of Multicomponent Immiscible and
Compatibilized Immiscible Polymer Systems, 632

Polymer Compounding, 635

Die Forming, 677

12.1
12.2
12.3
124
12.5
12.6

Capillary Flow, 680

Elastic Effects in Capillary Flows, 689

Sheet Forming and Film Casting, 705

Tube, Blown Film, and Parison Forming, 720
Wire Coating, 727

Profile Extrusion, 731

Molding, 753

13.1
13.2
13.3

Injection Molding, 753
Reactive Injection Molding, 798
Compression Molding, 811



Xvi CONTENTS

14 Stretch Shaping, 824

14.1 Fiber Spinning, 824
14.2 Film Blowing, 836
14.3 Blow Molding, 841

15 Calendering, 865

15.1 The Calendering Process, 865
15.2 Mathematical Modeling of Calendering, 867
15.3 Analysis of Calendering Using FEM, 873

Appendix A Rheological and Thermophysical Properties of Polymers, 887
Appendix B Conversion Tables to the International System of Units (SI), 914
Appendix C Notation, 918

Author Index, 929
Subject Index, 944



1 History, Structural Formulation
of the Field Through Elementary
Steps, and Future Perspectives

1.1 Historical Notes, 1
1.2 Current Polymer Processing Practice, 7
1.3 Analysis of Polymer Processing in Terms of Elementary
Steps and Shaping Methods, 14
1.4 Future Perspectives: From Polymer Processing to Macromolecular Engineering, 18

Polymer processing is defined as the “‘engineering activity concerned with operations
carried out on polymeric materials or systems to increase their utility”” (1). Primarily, it
deals with the conversion of raw polymeric materials into finished products, involving not
only shaping but also compounding and chemical reactions leading to macromolecular
modifications and morphology stabilization, and thus, “value-added’ structures. This
chapter briefly reviews the origins of current polymer processing practices and introduces
the reader to what we believe to be a rational and unifying framework for analyzing
polymer processing methods and processes. The chapter closes with a commentary on the
future of the field, which is currently being shaped by the demands of predicting, a priori,
the final properties of processed polymers or polymer-based materials via simulation,
based on first molecular principles and multiscale examination (2).

1.1 HISTORICAL NOTES

Plastics and Rubber Machinery

Modern polymer processing methods and machines are rooted in the 19th-century rubber
industry and the processing of natural rubber. The earliest documented example of a
rubber-processing machine is a rubber masticator consisting of a toothed rotor turned by a
winch inside a toothed cylindrical cavity. Thomas Hancock developed it in 1820 in
England, to reclaim scraps of processed natural rubber, and called it the ‘““pickle” to
confuse his competitors. A few years later, in 1836, Edwin Chaffee of Roxbury,
Massachusetts, developed the two-roll mill for mixing additives into rubber and the four-
roll calender for the continuous coating of cloth and leather by rubber; his inventions are
still being used in the rubber and plastics industries. Henry Goodyear, brother of Charles
Goodyear, is credited with developing the steam-heated two-roll mill (3). Henry Bewley
and Richard Brooman apparently developed the first ram extruder in 1845 in England (4),
which was used in wire coating. Such a ram extruder produced the first submarine cable,

Principles of Polymer Processing, Second Edition, by Zehev Tadmor and Costas G. Gogos.
Copyright © 2006 John Wiley & Sons, Inc.



2 HISTORY, STRUCTURAL FORMULATION OF THE FIELD

laid between Dover and Calais in 1851, as well as the first transatlantic cable, an Anglo-
American venture, in 1860.

The need for continuous extrusion, particularly in the wire and cable field, brought about
the single most important development in the processing field—the single screw extruder
(SSE), which quickly replaced the noncontinuous ram extruders. Circumstantial evidence
indicates that A. G. DeWolfe, in the United States, may have developed the first screw extruder
in the early 1860s (5). The Phoenix Gummiwerke has published a drawing of a screw dated
1873 (6), and William Kiel and John Prior, in the United States, both claimed the development
of such a machine in 1876 (7). But the birth of the extruder, which plays such a dominant role
in polymer processing, is linked to the 1879 patent of Mathew Gray in England (8), which
presents the first clear exposition of this type of machine. The Gray machine also included a
pair of heated feeding rolls. Independent of Gray, Francis Shaw, in England, developed a screw
extruder in 1879, as did John Royle in the United States in 1880.

John Wesley Hyatt invented the thermoplastics injection-molding machine in 1872 (9),
which derives from metal die-casting invented and used earlier. Hyatt was a printer from
Boston, who also invented Celluloid (cellulose nitrate), in response to a challenge award of
$10,000 to find a replacement material for ivory used for making billiard balls. He was a
pioneering figure, who contributed many additional innovations to processing, including
blow molding. His inventions also helped in the quick adoption of phenol-formaldehyde
(Bakelite) thermosetting resins developed by Leo Baekeland in 1906 (10). J. F. Chabot and
R. A. Malloy (11) give a detailed history of the development of injection molding up to the
development and the widespread adoption of the reciprocating injection molding machine
in the late 1950s.

Multiple screw extruders surfaced about the same time. Paul Pfleiderer introduced the
nonintermeshing, counterrotating twin screw extruder (TSE) in 1881, whereas the
intermeshing variety of twin screw extruders came much later, with R. W Eastons co-
rotating machine in 1916, and A. Olier’s positive displacement counterrotating machine in
1921 (12). The former led to the ZSK-type machines invented by Rudolph Erdmenger at
Bayer and developed jointly with a Werner and Pfleiderer Co. team headed by Gustav Fahr
and Herbert Ocker. This machine, like most other co-rotating, intermeshing TSEs, enjoys a
growing popularity. They all have the advantage that the screws wipe one another, thus
enabling the processing of a wide variety of polymeric materials. In addition, they
incorporate ‘“‘kneading blocks” for effective intensive and extensive mixing. They also
generally have segmented barrels and screws, which enables the machine design to be
matched to the processing needs. There is a broad variety of twin and multiple screw mixers
and extruders; some of them are also used in the food industry. Hermann (12) and White (7)
give thorough reviews of twin screw and multiple screw extruders and mixers.

The first use of gear pumps for polymeric materials dates from Willoughby Smith, who,
in 1887, patented such a machine fed by a pair of rolls (4). Multistage gear pumps were
patented by C. Pasquetti (13). Unlike single screw extruders and co-rotating twin screw
extruders (Co-TSE), gear pumps are positive-displacement pumps, as are the counter-
rotating, fully intermeshing TSEs.

The need for mixing fine carbon black particles and other additives into rubber made
rubber mixing on open roll mills rather unpleasant. A number of enclosed “‘internal”
mixers were developed in the late 19th century, but it was Fernley H. Banbury who in 1916
patented an improved design that is being used to this day. The Birmingham Iron Foundry
in Derby, Connecticut, which later merged with the Farrel Foundry and Machine of
Ansonia, Connecticut, built the machine. This mixer is still the workhorse of rubber
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processing, and is called the Banbury mixer after its inventor (14). In 1969, at Farrel, Peter
Hold et al. (15) developed a ‘“‘continuous version” of the Banbury called the Farrel
Continuous Mixer (FCM). A precursor of this machine was the nonintermeshing, twin-
rotor mixer called the Knetwolf, invented by Ellerman in Germany in 1941 (12). The FCM
never met rubber-mixing standards, but fortunately, it was developed at the time when
high-density polyethylene and polypropylene, which require postreactor melting, mixing,
compounding, and pelletizing, came on the market. The FCM proved to be a very effective
machine for these postreactor and other compounding operations.

The Ko-Kneader developed by List in 1945 for Buss AG in Germany, is a single-rotor
mixer—compounder that oscillates axially while it rotates. Moreover, the screw-type rotor
has interrupted flights enabling kneading pegs to be fixed in the barrel (12).

The ram injection molding machine, which was used intensively until the late 1950s
and early 1960s, was quite unsuitable to heat-sensitive polymers and a nonhomogeneous
product. The introduction of the “torpedo” into the discharge end of the machine
somewhat improved the situation. Later, screw plasticators were used to prepare a uniform
mix fed to the ram for injection. However, the invention of the in-line or reciprocating-
screw injection molding machine, attributed to W. H. Willert in the United States (16),
which greatly improved the breadth and quality of injection molding, created the modern
injection molding machine.!

Most of the modern processing machines, with the exception of roll mills and
calenders, have at their core a screw or screw-type rotor. Several proposals were published
for “screwless” extruders. In 1959, Bryce Maxwell and A. J. Scalora (17) proposed the
normal stress extruder, which consists of two closely spaced disks in relative rotational
motion, with one disk having an opening at the center. The primary normal stress
difference that polymeric materials exhibit generates centripetal forces pumping the
material inward toward the opening. Robert Westover (18) proposed a slider pad extruder,
also consisting of two disks in relative motion, whereby one is equipped with step-type
pads generating pressure by viscous drag, as screw extruders do. Finally, in 1979, one of
the authors (19) patented the co-rotating disk processor, which was commercialized by the
Farrel Corporation under the trade name Diskpack. Table 1.1. summarizes chronologically
the most important inventions and developments since Thomas Hancock’s rubber mixer of
1820. A few selected inventions of key new polymers are included, as well as two major
theoretical efforts in formulating the polymer processing discipline.

A Broader Perspective: The Industrial and Scientific Revolutions

The evolution of rubber and plastics processing machinery, which began in the early 19th
century, was an integral part of the great Industrial Revolution. This revolution, which
transformed the world, was characterized by an abundance of innovations that, as stated by

1. William Willert filed a patent on the “in-line,” now more commonly known as the reciprocating screw
injection molding machine in 1952. In 1953 Reed Prentice Corp. was the first to use Willert’s invention, building a
600-ton machine. The patent was issued in 1956. By the end of the decade almost all the injection molding
machines being built were of the reciprocating screw type.

Albert (Aly) A. Kaufman, one of the early pioneers of extrusion, who established Prodex in New Jersey and
later Kaufman S. A. in France, and introduced many innovations into extrusion practice, told one of the authors
(2.T.) that in one of the Annual Technical Conference (ANTEC) meetings long before in-line plasticating units
came on board, he told the audience that the only way to get a uniform plasticized product is if the ram is replaced
by a rotating and reciprocating screw. Aly never patented his innovative ideas because he believed that it is better
to stay ahead of competition then to spend money and time on patents.
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6 HISTORY, STRUCTURAL FORMULATION OF THE FIELD

Landes (20) “almost defy compilation and fall under three principles: (a) the substitution of
machines—rapid, regular, precise, tireless—for human skill and effort; (b) the substitution
of inanimate for animate source of power, in particular, the invention of engines for
converting heat into work, thereby opening an almost unlimited supply of energy; and (c) the
use of new and far more abundant raw materials, in particular, the substitution of mineral,
and eventually artificial materials for vegetable or animal sources.”

Central to this flurry of innovation was James Watt’s invention of the modern steam
engine, in 1774. Watt was the chief instrument designer at the University of Glasgow, and
he made his great invention when a broken-down Thomas Newcomen steam engine,
invented in 1705 and used for research and demonstration, was brought to him. This was a
rather inefficient machine, based on atmospheric pressure acting on a piston in a cylinder
in which steam condensed by water injection created a vacuum, but it was the first man-
made machine that was not wind or falling-water driven. Watt not only fixed the machine,
but also invented the modern and vastly more efficient steam engine, with steam pressure
acting on the system and the separate condenser.

The great Industrial Revolution expanded in waves with the development of steel,
railroads, electricity and electric engines, the internal combustion engine, and the oil and
chemical industries. It was driven by the genius of the great inventors, from James Watt
(1736-1819) to Eli Whitney (1765-1825), who invented the cotton gin, Samuel Morse
(1791-1872), Alexander Graham Bell (1847-1922), Thomas Alva Edison (1847-1931),
Guglielmo Marchese Marconi (1874—-1937), Nikola Tesla (1856—1943), and many others.
These also included, of course, J. W. Hyatt, Leo Baekeland, Charles Goodyear, Thomas
Hancock, Edwin Chaffe, Mathew Gray, John Royle, and Paul Pfleiderer who, among many
others, through their inventive genius, created the rubber and plastics industry.

The Industrial Revolution, which was natural resource— and cheap labor—dependent,
was ignited in the midst of an ongoing scientific revolution, which started over two
centuries earlier with Nicolas Copernicus (1473-1543), Galileo Galilei (1564—-1642),
Johannes Kepler (1571-1630), René Descartes (1596-1650) and many others, all the way
to Isaac Newton (1642—-1727) and his great Principia published in 1687, and beyond—a
revolution that continues unabated to these very days.

The two revolutions rolled along separate tracks, with little interaction between them.
This is not surprising because technology and science have very different historical
origins. Technology derives from the ordinary arts and crafts (both civilian and military).
Indeed most of the great inventors were not scientists but smart artisans, technicians, and
entrepreneurs. Science derives from philosophical, theological, and speculative inquiries
into nature. Technology is as old as mankind and it is best defined® as our accumulated
knowledge of making all we know how to make. Science, on the other hand, is defined by
dictionaries as ‘“‘a branch of knowledge or study derived from observation, dealing with a
body of facts and truths, systematically arranged and showing the operation of general
laws.” But gradually the two revolutions began reinforcing each other, with science
opening new doors for technology, and technology providing increasingly sophisticated
tools for scientific discovery. During the 20th century, the interaction intensified, in
particular during World War II, with the Manhattan Project, the Synthetic Rubber (SBR)
Project, the development of radar, and many other innovations that demonstrated the

2. Contrary to the erroneous definitions in most dictionaries as “the science of the practical or industrial arts or
applied science.”



CURRENT POLYMER PROCESSING PRACTICE 7

power of science when applied to technology. In the last quarter of the century, the
interaction between science and technology intensified to such an extent that the two
effectively merged into an almost indistinguishable entity, and in doing so ignited a new
revolution, the current, ongoing scientific—technological revolution. This revolution is the
alma mater of high technology, globalization, the unprecedented growth of wealth in the
developed nations over the past half-century, and the modern science and technology—
based economies that are driving the world.

The polymer industry and modern polymer processing, which emerged in the
second half of the 20th century, are very much the product of the merging of science
and technology and the new science—technology revolution, and are, therefore, by
definition high-tech, as are electronics, microelectronics, laser technologies, and
biotechnology.

1.2 CURRENT POLYMER PROCESSING PRACTICE

The foregoing historical review depicted the most important machines available for
polymer processing at the start of the explosive period of development of polymers and the
plastics industry, which took place after World War II, when, as previously pointed out,
science and technology began to merge catalytically. Thus, the Rubber and Plastics
Technology century of 1850-1950 in Table 1.2 (2a), characterized by inventive praxis
yielding machines and products, which created a new class of materials and a new
industry, came to a close. In the half-century that followed, “classical” polymer
processing, shown again in Table 1.2, introduced and utilized engineering analysis and
process simulation, as well as innovation, and created many improvements and new
developments that have led to today’s diverse arsenal of sophisticated polymer processing
machines and methods of processing polymers and polymer systems of ever-increasing
complexity and variety. As discussed later in this chapter, we are currently in transition
into a new and exciting era for polymer processing.

A snapshot of the current status of the plastics industry in the United States, from the
economic and manufacturing points of view, as reported by the Society of Plastics
Industries (SPI) for 2000 (21), shows that it is positioned in fourth place among
manufacturing industries after motor vehicles and equipment, electronic components and
accessories, and petroleum refining, in terms of shipments. Specifically:

1. The value of polymer-based products produced in the United States by polymer
(resin) manufacturers was $ 90 billion. This industry is characterized by a relatively
small number of very large enterprises, which are either chemical companies, for
which polymer production is a very sizable activity (e.g., The Dow Chemical
Company), or petrochemical companies, for which, in spite of the immense volume
of polymers produced, polymer production is a relatively minor activity and part of
vertically integrated operations (e.g., ExxonMobil Corporation).

2. The value of finished plastics products shipped by U.S. polymer processors was
$ 330 billion. Polymer processing companies are large in number and of small-to-
medium size. They are specialized, have only modest financial and research
resources, but are by-and-large innovative, competitive, entrepreneurial, and see-
mingly in constant forward motion, which is characteristic of the first period of
development of the rubber and plastics industry.
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CURRENT POLYMER PROCESSING PRACTICE 9

3. The U.S. labor force employed by resin producers is a quarter of million, and by
polymer processors is a million and a half.

A lay-of-the-land presentation, in flowchart form, of the thermomechanical experiences
of polymer systems in processing equipment used for important polymer processing
manufacturing activities, is presented next. The aim is not only to inform but also to illustrate
the inherent commonality of the thermomechanical experiences of polymer systems among
the various types of equipment and operations used, which will help to unify and structure
the understanding and analysis of polymer processing equipment and operations.

Postreactor Polymer Processing (“Finishing’’) Operations

As is depicted in flowchart form in Fig. 1.1, the product of a gas-phase polymerization
reactor produced in a typical polymer (resin) manufacturer’s plant at rates up to 40 t/h, is
exposed to separation and drying steps to obtain pure polymer in particulate (powder) form.
It is then dry mixed with a proprietary package of very low concentration additives—
thermal, ultraviolet (UV), and oxidative stabilizers, as well as processing aids. The dry-
mixed powder stream is metered into very large (mega) Co-TSEs or continuous melter/
mixers (CMs), where the processes of particulate solids handling (PSH), melting, mixing/
homogenizing, and melt conveying and pressurization must take place very rapidly, due to
the high production-rate requirements.

This is the first thermomechanical experience of the reactor polymer, and it will not be
the last. The equipment choice of Co-TSE or CM is made on the basis of the unique ability
of these devices to cause very rapid melting and laminar mixing. We refer to the four
processes just discussed as the elementary steps of polymer processing. The melt stream
exiting the Co-TSE or the CM, both of which have poor melt pumping capabilities, is fed
into very large gear pumps (GPs), which are positive displacement, accurate melt
conveying/pumping devices. The melt is pumped into an underwater pelletizer with a

Monomer(s) Particulate
polymer —
Catalyst (powder form) .
initiators Stal‘)l‘llzmg
additives
Gas-phase Separator Drier
polymerization
reactor
I— Polymerization reactor domain —I
Additives-coated particulates
Shipped to l
fabricators Virgin
and <4——— plastic <€ Form Mix/homogenize, melt, PSH
compounders pellets cut
(RR cars, gaylords, bags) cool -
Co-TSE
UW pelletizer M
(UWP)
I

“Finishing” operations line =~ ———

Fig. 1.1 Postreactor polymer processing (“‘finishing”’) operations.



10 HISTORY, STRUCTURAL FORMULATION OF THE FIELD

Virgin pellets
(bags, gaylords, RR, cars)

Shape
PSH, melt, mix, pres/pump pump/pres —» cool

l—b cut

Pigment, fillers — 7qp (ggE) GP Pelletizer
reinforcing agents

Compounded To
pellets fabricator

Y

Fig. 1.2 Polymer compounding operations.

multihole die, where the exiting strands are cut into small pellets and cooled by the cold-
water stream, which takes them to a water—polymer separator. The wet pellets are then
dried and conveyed into silos; they are the ‘““virgin” plastics pellets sold by polymer
manufactures to processing companies, shipped in railroad cars in 1000-1b gaylord
containers or 50-1b bags.

Polymer Compounding Operations

The polymer compounding line is shown schematically in Fig. 1.2. Virgin pellets from
resin manufacturers are compounded (mixed) with pigments (to form color concentrates),
fillers, or reinforcing agents at moderate to high concentrations. The purpose of such
operations is to improve the properties of the virgin base polymer, or to give it specialized
properties, adding value in every case. The production rates are in the range of 1000-
10,000 1b/h. The processing equipment’s critical task is to perform laminar distributive
and dispersive mixing of the additives to the level required to obtain finished product
property requirements. Furthermore, other additives, such as chopped glass fibers, are
often fed after the compounding equipment has melted the pellets, in order to minimize
degrading the attributes of the additives, such as fiber length. Finally, to assist the laminar
mixing process, the additives may be surface-treated.

The processing equipment used by polymer compounders is mainly co-rotating and
counterrotating TSEs, with occasional single-screw extruders (SSEs) in less demanding
compounding lines. As is indicated in Fig. 1.2, the same elementary steps of polymer
processing described previously in postreactor processing are performed by compounding
equipment. The compounded stream is typically fed into a multihole strand die and the
strands are first water cooled and then chopped to form pellets. The compounding
operation exposes the reactor polymer to its second thermomechanical processing
experience. The compounded product is shipped to fabricators of finished plastic products,
commonly known as “‘processors.”

Reactive Polymer Processing Operations

Reactive polymer processing modifies or functionalizes the macromolecular structure of
reactor polymers, via chemical reactions, which take place in polymer processing
equipment after the polymer is brought to its molten state. The processing equipment then
takes on an additional attribute, that of a ““reactor,” which is natural since such equipment
is uniquely able to rapidly and efficiently melt and distributively mix reactants into the
very viscous molten polymers. The operation is shown schematically in Fig. 1.3.

The feed stream can be reactor polymer in powder form, which is then chemically
modified (e.g., peroxide molecular weight reduction of polypropylene, known as
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Virgin pellets
(bags, gaylords, RR, cars)
> - Shape Reactively To
PSH, melt, mix, react, »| Pump/pres cool mOdlfled/. fabricator ]
devol, pres/pump cut functionalized and blends
> pellets compunders

TSE, CM (SSE GP UWP
Reactant(s) ( )

(e.g., POX, MAH)

Fig. 1.3 Reactive polymer processing operations.

viscracking). Such reactive processing is usually carried out at high rates by resin
manufacturers, and includes, after chemical modification and removal of volatiles, the
incorporation of the proprietary additives package. Alternatively, the polymer feed stream
is very often composed of virgin pellets, which undergo reactive modification such as
functionalization (e.g., the creation of polar groups on polyolefin macromolecules by
maleic anhydride).

As seen in Fig.1.3, here again the reactor-processing equipment used affects the same
elementary steps of polymer processing as previously given, but now a devolatilization
process to remove small reaction by-product molecules has been added. Because of the
need for rapid and uniform melting and efficient distributive mixing (in order to avoid
raising the molten polymer temperature), Co- and counterrotating TSEs as well as CMs are
used, all of which can fulfill the reactive processing requirements for these elementary
steps. Reactive processing, then, can either be the first or second thermomechanical
experience of reactor polymers.

The reactively modified stream is then transformed into pellets, either by underwater or
strand pelletizers. The pellets are again dried and shipped to plastic product fabricators,
who need such specially modified macromolecular structures to fulfill product property
requirements.

Polymer Blending (Compounding) Operations

These polymer processing (compounding) operations are employed for the purpose of
creating melt-processed polymer blends and alloys. After the discovery of the major
commodity and engineering polymers during the second to sixth decades of the 20th
century, and as the cost of bringing a new polymer to market began to rise dramatically,
both the polymer industry and academia focused on developing polymer blends with novel
and valuable properties, in order to enlarge the spectrum of available polymers and to
satisfy final plastic product property requirements in cost-effective ways. Thus, as is
shown in Fig. 1.4, since about 1960, the increase in the number of commercially valuable
polymer blends has powerfully driven the growth of the plastics industry and directly led
to the rapid introduction of plastics in new and critical product application areas.

Turning to the polymer blending operations shown in Fig. 1.5, the feed stream consists
of two or more polymers (virgin or reactively modified pellets) and a compatibilizer in
small concentrations, which is necessary to create fine and stable polymer blend
morphologies, since polymers are generally incompatible with each other. The processing
equipment must quickly melt each polymer (concurrently or sequentially), and then
rapidly and efficiently affect distributive and dispersive mixing of the melt components
and the compatibilizer. Co- and counterrotating TSEs can satisfy these elementary steps
that are important to blending operations.
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Polymers based on Polymers based on ) /
/\ new monomer units well-known monomer units
and polymer components coc
EO-Copo
: (l;]?/[ synd. PS
PEO PAR synd. PP
PBT/LCP
PUR PTFE
PIB EPM PC/ABS P}S;;:i/*
PET EPOM PCPBT | oM
PA PP PET/EPDM HDPE
SBR HDPE PA/EPDM | oy /opE
LDPE ABS PP/EPDM | p/ppo/ps
PMMA PAN PEEK PVC/ABS | pA/HDPE
BR EPOXY PES / SAN/NBR | PVC/EVA | SMA/ABS
PS PBT PI PS/BR PS/PPO POM/PUR
PVC Silicon PEI LCP PVC/NBR GRP PBT/EPDM
1920 1940 1960 1980 2000 1920 1940 1960 1980 2000

Fig. 1.4 A chronology of the discovery of polymers and their modification. [Courtesy of Prof.
Hans G. Fritz of IKT Stuttgart, Stuttgart, Germany (2b).]

If the compatibilizer is reactive, the rapid and effective melting and mixing will
establish the proper conditions for a uniform molten-phase reaction to take place. Thus, by
employing TSEs, polymer processors (compounders or product fabricators) can create
customized, ‘“microstructured” polymer systems, which we have coined as ‘“‘designer
pellets” (22), to best serve the special product property needs of their customers; they are
no longer solely dependent on polymer resin manufacturers.

The production rates and, thus, the equipment size, are large for resin manufacturers
and moderate for compounders. We again see, that the polymer blend stream is exposed to
the same elementary steps of processing and that, again, the choice of processing
equipment used is based on which equipment can best perform the critical elementary
steps. Finally, polymer blending operations expose the polymers to their second or perhaps
third thermomechanical experience.

Plastics Product Fabricating Operations

In these operations, polymer processors fabricate finished plastics products starting from
plastic pellets, which are the products of postreactor, compounding, reactive, or blending
polymer processing operations. These pellets are processed alone or, in the case of
producing colored products, together with a minor stream of color concentrates of the
same polymer. As can be seen in Fig. 1.6, the elementary steps in the processing

Polymer 1
Polymer 2
PSH It mi . Shape Polymer To
, melt, mix, react, > » —» blends 5 .
devol (pump) Pump/pres gggl pellets fabricator
Compatibilizer(s)
(reactive/physical), TSE GP Pelletizer
additives

Fig. 1.5 Polymer blend formation operations.
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|——> Shape Trim
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Fig. 1.6 Plastic product fabrication operations.

equipment used are again the same as given previously. In product fabrication operations,
though, it is of paramount importance that the pressurization capabilities of the equipment
be very strong, since we need a melt pump to form the shape of a plastic product by forcing
the melt through a die or into a mold. Thus the equipment used by product fabricators are
SSEs and injection molding machines, which have modest particulate solids handling,
melting, and mixing capabilities, but are excellent melt pumps.

The molten stream of polymers flowing through dies or into cold molds is rapidly
cooled to form the solid-product shape. As a consequence of the rapid cooling, some
macromolecular orientations imparted during flow and near the product surfaces, where
cooling first occurs, are retained. The retained orientations in plastic products impart
specific anisotropic properties to the product and, in the case of crystalizable polymers,
special property-affecting morphologies. The ability to affect the above is called
structuring (23), which can be designed to impart extraordinarily different and beneficial
properties to plastic products.

Structuring is also carried out in postshaping operations, mainly by stretching the solid
formed product uni- or biaxially at temperatures appropriate to maximizing the retained
orientations without affecting the mechanical integrity of the product.

In-Line Polymer Processing Operations

The polymer product fabrication operations may be either the second or third thermo-
mechanical experience of the base polymer. Since polymers are subject to thermal
degradation, and since there is a cost associated with each of the melting/cooling cycles,
significant efforts are currently being made to develop what are called in the polymer
processing industry, in-line processing operations. These operations and equipment
sequentially conduct and functionally control any of the operations discussed earlier with
plastic product fabrication at the end, thus allowing for a smaller degree of macromolecular
and additive-properties degradation, and reducing the processing fabrication cost. The
practice is relatively new, and has required the functional coupling and control of pieces of
processing equipment that have distinctly different elementary step strengths: rapid,
uniform, and efficient melting and mixing versus robust pressurization and accurate
“metering” of the product stream. In-line polymer processing operations are shown
schematically in Fig. 1.7.

From a plastics industry point of view, combining the various compounding, reactive
processing and blending operations with the finished product fabrication operation, in a
single line and under one roof, holds the potential for the product fabricator to become the
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Compounding
microstructuring
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Fig. 1.7 In-line polymer processing operations (in-line compounding).

compounder as well. Furthermore, since fabricators are intimately involved with
the properties needed by the finished product, they would be able to ‘““fine-tune” the
microstructuring of their polymer system to better meet the property needs of the products
they are fabricating. Such capabilities will enable processors to respond to requests for
customized polymer systems, that is, to satisfy ‘““mass customization” needs of users of
plastic products.

Additionally, there is clear evidence that a small number of resin manufacturers “will
become more of enablers, creating new value-added businesses (of micro-structured
polymer products) ever closer to the ultimate consumer” (2c). This translates into the
planning by these companies for commercial expansion into compounding operations,
widening the spectrum of their products, and further contributing to mass customization
needs. Such developments and trends characterize the current “transition’ phase of the
polymer industry and of polymer processing, as depicted in Table 1.2. This period, it is
hoped, will mark the gateway to a future where polymer processing will evolve into
macromolecular engineering. We will briefly discuss this possibility in the last section of
this chapter.

1.3 ANALYSIS OF POLYMER PROCESSING IN TERMS
OF ELEMENTARY STEPS AND SHAPING METHODS

The field of polymer processing has been traditionally and consistently analyzed (24) in
terms of the prevailing processing methods, that is, extrusion, injection molding, blow
molding, calendering, mixing and dispersion, rotational molding, and so on. In analogy to
chemical engineering,® these processes have been viewed as the “‘unit operations” of
polymer processing. At the time of the writing of the first edition of this text (24), when
polymer processing was maturing into a well-defined and well-studied engineering
discipline, we found it necessary to reexamine this classic way of analyzing the field,
because the manner in which a field is broken down into its component elements has
profound educational implications. A carefully worked out analysis should evolve into an
abstract structure of the field that accomplishes the following objectives:

1. Focuses attention on underlying engineering and scientific principles, which are
also the basis of the unifying elements to all processes.

2. Helps develop creative engineering thinking, leading to new, improved design.

3. Provides an overall view of the field, facilitating quick and easy assimilation of new
information.

3. Systematic engineering analysis of chemical processes led to the definition of a series of “unit operations,”
such as distillation, absorption, and filtration, which are common to different chemical processes (e.g., see W. L.
McCabe and J. C. Smith, Unit Operations in Chemical Engineering, 2nd ed., McGraw-Hill, New York, 1967).
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A quarter of a century later, and in retrospect, the analysis that we presented then, and that we
discuss later, helped fulfill the previously defined objectives, and moved the field forward.

The Shaping Steps

The first step we take in our analysis of polymer processing is to clearly define its
objective(s). In this case, the objective is undoubtedly shaping polymer products. The
shaping operation can be preceded and followed by many manipulations of the polymer to
prepare it for shaping, modify its properties, and improve its appearance. Nevertheless, the
essence of polymer processing remains the shaping operation. The selection of the shaping
method is dictated by product geometries and sometimes, when alternative shaping methods
are available, by economic considerations. Reviewing the various shaping methods practiced
in the industry, we can classify them in the following groups:

1. Calendering and coating
2. Die forming

3. Mold coating

4. Molding and casting

5. Stretch shaping

The first shaping method is a steady continuous process. It is among the oldest methods,
and is used extensively in the rubber and plastics industries. It includes the classic
calendering, as well as various continuous coating operations, such as knife and roll
coating.

Die forming, which is perhaps the most important industrial shaping operation,
includes all possible shaping operations that consist of forcing a melt through a die.
Among these are fiber spinning, film and sheet forming, pipe, tube, and profile forming,
and wire and cable coating. This is also a steady continuous process, in contrast to the last
three shaping methods, which are cyclic.

The term “mold coating” is assigned to shaping methods such as dip coating, slush
molding, powder coating, and rotational molding. All these involve the formation of a
relatively thick coating on either the inner or the outer metal surfaces of the molds.

The next shaping method is molding and casting, which comprises all the different
ways for stuffing molds with thermoplastics or thermosetting polymers. These include the
most widely used shaping operations of injection molding, transfer molding, and
compression molding, as well as the ordinary casting of monomers or low molecular
weight polymers, and in situ polymerization.

Finally, stretch shaping, as implied by the name, involves shaping of preformed polymers
by stretching. Thermoforming, blow molding, stretch blow molding, and cold forming can
be classified as secondary shaping operations. The first three are very widely used.

The complex rheological properties of polymeric melts play a dominant role in the
shaping operations. Thus, the introduction of one of the most striking aspects of non-
Newtonian behavior, that of shear-thinning (pseudoplasticity), has been successfully
incorporated into the analysis of melt flow inside polymer processing equipment.
Similarly, by applying the modern sophisticated tools of numerical methods, the
incorporation of the elastic nature of the polymer is being carried out with increasing
success, particularly in stretch shaping.
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As mentioned earlier, during shaping and postshaping operations, a good deal of
structuring, that is, retained macromolecular orientation and specific morphologies, can
and is being imparted to the final plastic products. Structuring has long been understood to
be of very significant technological importance. The detailed understanding of structuring
requires the ability to quantitatively describe the flow of rheologically complex melts, heat
transfer, nucleation, and crystallization under stress. Work in this area is now underway, as
we discuss in the last section of the chapter.

The Elementary Steps

The polymer is usually supplied to the processors in a particulate form. Shaping of the

polymer takes place only subsequent to a series of preparatory operations. The nature of

these operations determines to a large extent the shape, size, complexity, choice, and cost

of the processing machinery. Hence, the significance of a thorough understanding of these

operations cannot be overemphasized. One or more such operations can be found in all

existing machinery, and we refer to them as elementary steps of polymer processing.
There are five clearly identifiable elementary steps:

1. Handling of particulate solids
2. Melting

3. Pressurization and pumping
4. Mixing

5. Devolatilization and stripping

Defining “handling of particulate solids as an elementary step is justified, considering
the unique properties exhibited by particulate solids systems. Subjects such as particle
packing, agglomeration, consolidation, gravitational flow, arching, compaction in hoppers,
and mechanically induced flow must be well understood to ensure sound engineering
design of processing machines and processing plants.

Subsequent to an operation involving solids handling, the polymer must be melted or
heat softened prior to shaping. Often this is the slowest, and hence the rate-determining
step in polymer processing. Severe limitations are imposed on attainable melting rates by
the thermal and physical properties of the polymers, in particular, the low thermal
conductivity and thermal degradation. The former limits the rate of heat transfer, and the
latter places rather low upper bounds on the temperature and time the polymer can be
exposed. On the other hand, beneficial to increasing the rate of melting is the very high
polymer melt viscosity, which renders dominant the role of the viscous energy dissipation
(VED) heat-source term. Plastic energy dissipation (PED) (25,26) arising from the
compressive and shear deformation of compacted polymer solid particulates in twin rotor
equipment, such as Co-TSEs, is such a powerful heat source that it may result in nearly
instant melting. All these factors emphasize the need to find the best geometrical
configuration for obtaining the highest possible rates of melting, and for determining the
processing equipment needed for rapid and efficient melting.

The molten polymer must be pumped and pressure must be generated to bring about
shaping—for example, flow through dies or into molds. This elementary step, called
pressurization and pumping, is completely dominated by the rheological properties of
polymeric melts, and profoundly affects the physical design of processing machinery.
Pressurization and melting may be simultaneous, and the two processes do interact with
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each other. Moreover, at the same time, the polymer melt is also mixed by the prevailing
laminar flow. Mixing the melt distributively to obtain uniform melt temperature or uniform
composition (when the feed consists of a mixture rather than a single-component
polymer), “working” the polymer for improving properties, and a broad range of mixing
operations involving dispersive mixing of incompatible polymers, breakup of agglom-
erates, and fillers—all these belong to the elementary step of ‘“‘mixing.”

The last elementary step of devolatilization and stripping is of particular importance to
postreactor compounding, blending, and reactive processing operations, although it also
occurs in commonly used processes, for example, devolatilizing in vented two-stage SSEs.
This elementary step involves mass transfer phenomena, the detailed mechanisms of
which have been investigated in some depth since the publication of the first edition of this
book, and therefore, unlike in the first edition, here we devote a full chapter to this step.
Yet, more research is needed to fully elucidate this complex process.

This theoretical analysis of processing in terms of elementary steps, which considers
the basic physical principles and mechanisms involved in each elementary step, has been
helpful since its introduction, in gaining better insight into the currently used processing
methods, encouraging further work on their mathematical formulations, and perhaps also
stimulating creative engineering thinking on improved processing methods. It has helped
provide answers not only to “how” a certain product works, but to “why” a product is
made a certain way and, foremost, “why’’ a particular machine configuration is the “best”
or the appropriate one to use. The latter question is indeed the essence of engineering. For
these reasons we will maintain and add to this approach in this edition.

Structural Breakdown of Polymer Processing

The elementary steps, as well as the shaping operations, are firmly based on the principles
of transport phenomena, fluid mechanics and heat and mass transfer, polymer melt
rheology, solid mechanics, and mixing. These principles provide the basic tools for
quantitatively analyzing polymer processing. Another fundamental input necessary for
understanding polymer processing is the physics and chemistry of polymers. As we noted
earlier, final product properties can be immensely improved by structuring.

Figure 1.8 schematically summarizes our approach to the breakdown of the study of
polymer processing. Raw material is prepared for shaping through the elementary steps. The
elementary steps may precede shaping or they may be simultaneous with it. Structuring
takes place throughout these processes, and subsequent to them. Finally, postshaping
operations for purposes other than structuring (printing, decorating, etc.) may follow.

Clearly, to be able to fully utilize the added degree of freedom for product design
provided by structuring, a full understanding and computational handling of polymer
chemistry, polymer rheology at a macromolecular level, and the physics of phase changes
under stress fields and nonisothermal conditions has to be carried out. With advances in
those fields and the exponential growth of available computing power, significant advances
are already being made toward achieving specific processed product properties, not
through trial and error, but process simulation (2d).

The conceptual breakdown of polymer processing dating back to the first edition of
1979, presented earlier, remains the same. Yet the field and the industry, in the current
transition period, have been focusing on and growing through what used to be called
compounding, and is now expanded from the simple dispersion and distribution of fillers
in polymer melts, to encompass microstructure development and stabilization in



18 HISTORY, STRUCTURAL FORMULATION OF THE FIELD

Raw 0 Finished
material product
Handling of . .
particulate solids Die forming
Melting Molding and casting
& %
Z £ £
z Pressurization g . =
g and pumping = Stretch shaping :1:9
@ o= 8
= 7] :
Mixing Calender.mg
and coating
Devolatl!lza_tlon Mold coating
and stripping
Structuring of polymers in processing
Transport Mixing Solid Polymer melt Polymer Polymer
phenomena principles mechanics rheology physics chemistry
Engineering principles Polymer science

Fig. 1.8 Conceptual structural breakdown of polymer processing product fabrication operations (23).

immiscible, compatibilized, and reactive interphase multicomponent polymer systems of
blends and alloys to create ‘“‘designer pellets.” In this activity, the important elementary
steps are rapid melting, affected mostly by PED and VED (that we refered to as dissipative
mix-melting (23a, 25, 26)), rapid distributive and dispersive mixing created by extentional
time-varying flows, and devolatilization, often occurring in the presence of reactions
involving polymer melts. Co- and counterrotating TSEs, not shear-drag flow melting and
pumping devices (e.g., SSEs), are the processing equipment used in these endeavors.
The conceptual breakdown in Fig. 1.9 (27) simply indicates the fact that in
compounding, blending, and reactive processing, the base polymer(s) undergo two
thermomechanical elementary-step experiences, and that the product of the first are value-
added and microstructured pellets, while the second is used primarily for fabricating
finished products. The important elementary steps for each experience, and the physical
mechanisms that affect them, are different, because of the different objectives in each.

1.4 FUTURE PERSPECTIVES: FROM POLYMER PROCESSING
TO MACROMOLECULAR ENGINEERING

In May 2002 an International Invited Workshop, attended by leading researchers in
polymer processing and polymer engineering science, was convened in order to take stock
of the historical evolution of the field of polymer processing, analyze current
developments in research, take note of structural changes in the industry, and consider
future trends. The underlying rationale, outlined in Appendix A of the final report (2), was
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processing (27). Designer pellets are processed in extruders or injection molding machines to form
products, with the possibility of further structuring or ‘destructuring’.

the proposition that this new and still evolving engineering discipline, propelled by the
revolutionary developments in polymer physics, polymer chemistry, computational fluid
mechanics, sophisticated novel instrumentation capabilities, modern catalysis, and
developments in molecular biology, is diverging into a broad-based multidisciplinary
activity, not unlike biotechnology and nanotechnology. Therefore, it is at a turning point.

Needless to say, for both authors working on this second edition, the workshop held the
additional potential of providing a glimpse at the future development of the field. Thus, we
present below some of the major topics of deliberation and conclusions of the workshop,
drawing liberally from the text of the Final Report.

Central to the deliberations was to first outline in broad brush-strokes the knowledge so
far acquired, and identify general areas where future research is needed. The guiding
questions were: What do we know? What do we know that we don’t know? What do we need
to know? What are the ‘“boundaries” of the field? Which are the relevant disciplines needed
for getting ahead in what increasingly appears to be a multidisciplinary field? And how can
polymer processing become a strategic element in the “chain of knowledge”?

There was agreement among the participants that much has been accomplished in
the past decades by classic polymer processing (Fig. 1.2). During this period, polymer
processing focused on analyzing the major polymer processing equipment and
processes (SSEs, TSEs, injection molding machines, blow molding machines, vacuum
forming machines, calenders and roll mills, rotational molding machines, batch and
continuous mixers, etc.). In doing so, the field grew and matured with the realization
(as noted in Section 1.3) that there are common phenomena in the thermomechanical
experiences of the material in the diverse polymer processing equipment and processes
described earlier. This realization led to the elucidation and simulation of the detailed
mechanisms and sequence of events that take place in these machines and in the
continuous and cyclic shaping processes: flow of particulate solids; principles of
melting of plastics in SSEs; principles of distributive, dispersive, and chaotic mixing;
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principles and mechanisms of devolatilization; flow of non-Newtonian polymeric
melts in complex conduits with moving surfaces using analytical, finite difference and
finite element techniques; transient developing flows into cavities; wall stress-free
one-, two- and three-dimensional flows as in fiber spinning, bubble formation, and
complex blow molding operations, to name a few; degradation reactions in processing
equipment, and so forth.

Not everything was elucidated to the same level and, as discussed in the following
paragraphs, much remains to be done in classic polymer processing. The knowledge base
developed so far was founded on, and rooted in, several disciplines, such as transport
phenomena—including fluid mechanics, heat transfer and molecular diffusion of chemical
species, non-Newtonian fluid mechanics, rheology (continuum and, to a lesser extent,
molecular), resin thermophysical properties and state equations, classic mathematical
techniques, and computational fluid mechanics, as well as polymer physics and
thermodynamics. The focus of past research, as well as much of the current research, is
on the process and the scale of examination of the machine, with the objective of
developing optimized processes and improved machines.

During this period, relatively little emphasis was placed on the product and its
microscopic and molecular structure, though there was rudimentary and semiquantitative
treatment of what was termed structuring (2b, 23). Today, in some of the larger research-
and-development centers, an important transition is being made, to focus on the product
and its properties on the micro and molecular scale.

Areas on the process side identified as needing further research are:

e A better understanding of and advanced mathematical formulation of all the basic
mechanisms under realistic machine conditions with a single polymeric feed or a
mixture of them, with the goal of simulating the process as a whole;

e A fundamental and multidisciplinary understanding of melting of compacted
polymer particulates under high deformation rates;

e A much deeper understanding of the details on how the process affects the structure
on micro and molecular levels;

e Materials/machine interactions, three-dimensional viscoelastic behavior and stabi-
lity of polymeric liquids;

e Transient flow and nonisothermal rheology;

e Nucleation and crystallization under stress;

e Molecular orientation phenomena;

e Reaction and polymerization under flow and deformation;

e Multiphase flows at high rates of strains;

e Heat, momentum, mass, entropy balances at ‘““finite domain structure levels” of
solids and liquids, during deformation, melting, and solidification;

e Thermodynamics of interfaces;

e Phase transition;

e Molecular models and modeling;

e Quantitative connection of structures and structure formation at the molecular and
micro scale to final properties;

e Measurement techniques, including process in-line measurements, at the molecular
and micro-scale levels to verify theories and predictions.
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However, even the complete understanding of these areas will not suffice to reap the full
benefits embedded in the macromolecular nature of polymeric materials, which are inherent in
the naturally occurring and synthetic polymeric building blocks. For that, a priori quantitative
prediction of product properties, made of yet nonexistent chains or combinations of chains of
different monomeric building blocks from basic principles, requiring information of only the
macromolecular structure and processing conditions, is needed.

Interesting comparisons were made to other fields, such as semiconductors, which
cannot be produced without thorough knowledge at the quantum mechanics level and fine-
tuned processing; multiscale computing in solids mechanics, in which microscopic
behavior is being predicted from first principles on atomic scales; drug development with
computer simulation screening of new molecules; modern catalysis and biocatalysts; and
molecular biology with potential adaptation of self-assembly properties to other fields,
such as biological microchips.

It was concluded that modern polymer processing, or rather future polymer processing
(see Table 1.2), will focus not on the machine, but on the product. The long-range goal will
be to predict the properties of a product made from a yet nonexistent polymer or polymer-
based material, via simulation based on first molecular principles and multiple-scale
examination. This approach, using increasingly available computing power and highly
sophisticated simulation, might mimic nature by targeting properties via complex
molecular architectural design. However, two important and key challenges have to be met
successfully in order to achieve this goal: first, highly sophisticated simulations require
highly sophisticated molecular models, which do not exist at present; second, a far more
detailed understanding of the full and complex thermomechanical history that transpires in
the polymer processing machine is needed. Then, such analysis will lead not only to new
products, but will also improve existing machines or even lead to radically new machines;
nevertheless, the focus will remain on the product. The goal is to engineer new and truly
advanced materials with yet unknown combinations of properties, which might open up a
new ‘“‘golden age” for the field, reminiscent of the 1950s, 1960s, and 1970s, when most of
the currently used polymers were developed.

Thus, the terms ‘““polymer processing,” “‘polymer engineering,” or “plastics engi-
neering”’ have become too narrow and confining, and a more accurate description of the
emerging new field ought to be macromolecular engineering. As noted earlier, the new
field is inherently multidisciplinary in nature, and if it is to be developed at a world-class
level, requires close collaboration between many disciplines of science and engineering.
Hence, the emphasis must shift from the individual researcher to large team efforts, this
having profound consequences to academic research, as well as academic departmental
boundaries. Real progress will only be possible by pooling substantial resources, and the
allocation of these significant resources should be facilitated by vision, planning, and a
comprehensive alliance between government, academia, and industry.

Macromolecular engineering is part of a broader scene. On the very fundamental level,
its boundaries merge with molecular biology, on the one hand, and the growing field of
complex fluids, that grows out of chemistry, physical chemistry, physics, and chemical
engineering, on the other hand. The preceding, in turn, has profound educational
implications, pointing to the possible creation of an entirely new and unified underlying
discipline, and a basic undergraduate curriculum in molecular, macromolecular
and supramolecular engineering, leading to specialization in chemical molecular
engineering (currently chemical engineering), macromolecular engineering (currently
polymer processing and engineering), and biomacromolecular engineering (currently
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biochemical engineering or biotechnology). Such a curricular structure is depicted in
Fig. 1.10.

Recently, Jos Put, discussed (28) the very enlightening view of J. L. Atwood et al. (29)
on the nature of molecular biology and synthetic chemistry, shown in Fig. 1.11. Nature has
achieved a tremendous level of complexity and control in living organisms, with a limited
number of building blocks; synthetic (polymer) chemistry has used a much more diverse
number of building blocks and achieved only limited, controlled structural complexity.
Nature is able to do this by supreme control on the molecular level (MW, MWD, sequence,
tacticity, etc.), by ordering on the nanolevel, and by perfect macroscopic design. On the
other hand, macromolecular synthetic chemistry has made great strides by utilizing
chemical species diversity, while achieving very modest controlled structural complexity.
Biotechnology has begun to broaden the chemical diversity of bioapplicable systems, and
synthetic nano chemistry is achieving remarkable controlled complexity at the nano level,
utilizing and offering structurally ordered platforms to macromolecules. Thus, the
merging of the boundaries of macromolecular engineering and molecular biology offers
formidable potential for new materials and products. This is depicted by the 45° vector
direction in Fig. 1.11.
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Macromolecular engineering from the research point of view is clearly a broad-based
multidisciplinary field. Consequently, the research scene and practices, in particular in
academia, require restructuring. The classic ‘“‘individual faculty member—graduate
student(s)”” model is expected to be replaced by the large, multidisciplinary team model,
because, as pointed out earlier, only these larger teams can be expected to conduct
groundbreaking research. Such teams should consist of several senior faculty members in
the needed disciplines, co-advising several graduate students as well as trained
professionals who deal with advanced instrumentation, computing, data analysis, and
literature searches.

It is perhaps worth adding that such large multidisciplinary groups already exist at
leading centers of macromolecular engineering research. In fact, we are witnessing the first
promising examples of a priori quantitative predictions of the solid product properties
requiring information of only the macromolecular structure and processing conditions from
such large multidisciplinary groups. For example, Han E. H. Meijer et al. at the Materials
Technology, Dutch Polymer Institute, Eindhoven University of Technology (30,31)
proposed such an a priori prediction for the yield stress of polycarbonate (PC) specimens
obtained under different molding conditions. Their work is based on defining a novel state
parameter that uniquely determines the current state of amorphous solids and utilizes the
classic constitutive model representation of such solids as presented by Haward and
Thackray (32), who identified two contributions to the total stress: one that accounts for the
rate-dependent plastic flow response attributed to intermolecular interactions on a segmental
scale (33,34) and represented by a nonlinear Maxwell element (35), and the other that
accounts for the strain-hardening contribution that is due to the macromolecular orientation
of the entangled network using a neo-Hookean elastic model (36).
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2.1 INTRODUCTION

The engineering science of “‘transport phenomena’ as formulated by Bird, Stewart,
and Lightfoot (1) deals with the transfer of momentum, energy, and mass, and provides
the tools for solving problems involving fluid flow, heat transfer, and diffusion. It is
founded on the great principles of conservation of mass, momentum (Newton’s second
law), and energy (the first law of thermodynamics).! These conservation principles
can be expressed in mathematical equations in either macroscopic form or microscopic
form.

In this chapter, we derive these equations in some detail using the generalized,
coordinate-free formulation of the Reynolds Transport Theorem (2). We believe that it
isimportant for every student or reader to work through these derivations at least once. We
then discuss the nature of the stress and rate of deformation tensors, demonstrate the use of
the balance equations for problem solving with Newtonian fluids using analytical and
numerical techniques, discuss the lubrication approximation, which is very useful in
modeling of polymer processing operations, and discuss the broad principles of
mathematical modeling of complex processes.

1. See R. Feynman, The Character of Physical Law, MIT Press, Cambridge, MA, 1967, where the profound nature
of the conservation laws is discussed.

Principles of Polymer Processing, Second Edition, by Zehev Tadmor and Costas G. Gogos.
Copyright © 2006 John Wiley & Sons, Inc.
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26  THE BALANCE EQUATIONS AND NEWTONIAN FLUID DYNAMICS
2.2 THE BALANCE EQUATIONS

Since in “‘transport processes’ mass, momentum, and energy are transported from one
part of the medium to another, it is essential that proper ‘“bookkeeping’ be applied to keep
track of these quantities. This can be done using balance equations, which are the
mathematical statements of the physical laws of conservation. These are very general laws
that always hold, and they apply to all media: solids or fluids, stationary or flowing. These
equations can be formulated over a specified macroscopic volume, such as an extruder, or
a microscopic volume taking the form of a differential (field) equation that holds at every
point of the medium. In the former case, the balance holds over the extensive quantities of
mass, momentum, and energy, whereas in the latter case, it holds over their intensive
counterparts of density, specific momentum, and specific energy, respectively.

In the formulation of the microscopic balance equations, the molecular nature of matter
is ignored and the medium is viewed as a continuum. Specifically, the assumption is made
that the mathematical points over which the balance field-equations hold are big enough to
be characterized by property values that have been averaged over a large number of
molecules, so that from point to point there are no discontinuities. Furthermore, local
equilibrium is assumed. That is, although transport processes may be fast and irreversible
(dissipative), from the thermodynamics point of view, the assumption is made that, locally,
the molecules establish equilibrium very quickly.

2.3 REYNOLDS TRANSPORT THEOREM

The physical laws of conservation of mass, momentum, and energy are commonly
formulated for closed thermodynamic systems,” and for our purposes, we need to transfer
these to open control volume® formulations. This can be done using the Reynolds
Transport Theorem.*

Let P represent some extensive property of the system (e.g., mass, momentum, energy,
entropy) and let p represent its intensive counterpart (i.e., per unit mass), such that:

P= JppdV (2.3-1)
|74

where ¥ is the volume of the system, which can be a function of time, ¢. The Reynolds
Transport Theorem states that the substantial derivative (see Footnote 6) of P is

1)

0
D= JE (pp)dV + Jppv ‘n dS (2.3-2)

Vv S

2. A thermodynamic system is an arbitrary volume of matter without any transportation of matter across its surface.
3. The control volume is an arbitrary, fixed volume in space.

4. We assume the reader is familiar with vector notation, which is covered in many texts (e.g., Ref. 1), and except
for brief explanatory comments, no summary of vector operation is presented. However, the tabulated
components of the balance equations in various coordinate systems presented in this chapter should enable the
reader to apply them without any detailed knowledge of vector operations.
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where Vis the control volume fixed in space, S is the surface area of the control volume, v
is the velocity field, and n is the unit outward normal vector to the control surface. In
physical terms, Eq. 2.3-2 states that the rate of change of P of the system, at the instant it
coincides with the control volume, is the sum of two terms: the rate of change of P within
the control volume, and the net rate of flow of P out of the control volume.

Proof of Eq. 2.3-2 First we take the substantial derivative of Eq. 2.3-1

DP
Dt

_d
Cdt

system

Jpp dv (a)

Then by defining Py = Pgygem We can express the left-hand side of Eq. (a)

DPS — 1 PS‘IJrA[ - Px,t
= lim =—— =

b
Dt A0 At (b)

Next we let the arbitrary volume of P, coincide at time 7 with the control volume. Since the
volume is arbitrary, we can do so without losing generality. But because there is the flow of
matter in the space, at time ¢ + At the volume of P, will be different, as shown in Fig. 2.1.

Looking at the figure we see that there are three distinct volume regions, A, B, and C.
The control volume equals the sum A + B, and the system equals B + C. Therefore P, at
time ¢ + At can be expressed as

Psiint = Ppryar + Peinr = Pevirar — Pagyar + Pogra (c)
and

PS,t = PCV,t (d)

where the subscript CV stands for control volume. Substituting Egs. (c) and (d) into Eq. (b)
gives

DPS — lim PCV,H—Ar - PCVA,z + lim PCH—Ar T PA,t+At (e)
Dt A0 At A—0 At A—0 At

Systemat ;4 A;

Control volume at ¢
CSy

Fig. 2.1 The control volume (broken curve) and the thermodynamic system (solid curve) at time
t + At in a flowing medium. The control volume and the thermodynamic system coincide at time, ¢.
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The first expression on the right hand side is the partial differential in time of
Pcy,OPcy/0t. Now, Pc,qa, is due to flow through surface CSy of the control volume,
separating volumes B and C, which can be calculated as follows:

e The local volumetric rate of flow is v-ndS
e The local rate of flow of the property is pp v-ndS
e The differential quantity of P¢ transported over time At is dP¢c = Atpv-ndS

Thus, the total amount of P¢ transported over surface CSy and time At is given by:

Pciinr = At J ppv -ndS (f)
CSy
and, therefore,
. P Ct+At
lim —&Har .
S AT ©
CSp
Similarly we can show that
. P A t+At
lim —= = — : h
lim P = [ orvenas )
CSy

The reason for the negative sign is that v-n for flow into the system is negative.
Substituting Egs. g and h into Eq. e yields the following equation:

DPs 0 .
E—&Jppdv—kv[ppv-nd.? (1)
v s

where S is the total surface (CS; + CSyy) of the control volume and Vis its volume, which
is identical to Eq. 2.3-2. This concludes the proof.

2.4 THE MACROSCOPIC MASS BALANCE AND THE EQUATION
OF CONTINUITY

In deriving the balance equations, we use vector notation and the sign convention adopted
by R. B. Bird, W. E. Stewart, and E. N. Lightfoot in their classic book Transport
Phenomena (1).

We begin the derivation of the conservation of mass by simply inserting into Eq. 2.3-2,
P =M and p = 1, yielding directly the macroscopic mass balance equation:

ot

14 N

ngdV—kav-ndS:O (2.4-1)
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We can convert the surface integral in Eq. 2.4-1 to a volume integral using the Gauss
Divergence Theorem™® to yield:

ng dv + J(V - pv)dV =0 (2.4-2)
\%4 \4

But by definition, we have selected a fixed control volume, therefore the order of
differentiation by time and integration can be reversed to get:

K% +V. pV) dv =0 (2.4-3)
|4

For this equation to hold for any arbitrary volume V, the kernel of the integral must vanish,
resulting in the equation of continuity:

dp
L LV .pv=0 2.4-4
5 T VoY (2.4-4)

Equation 2.4-4 can be rewritten in terms of the substantial derivative as:

Dp

—=—p(V-v 2.4-5
oy = PVv) (2:4-5)
Equation 2.4-4 states the mass conservation principle as measured by a stationary
observer. The derivative (0/0t) is evaluated at a fixed position in space (this is referred to
as the Eulerian point of view); whereas, Eq 2.4-5 states the conservation principle, as

5. The Gauss Divergence Theorem states that if V is a volume bounded by a closed surface S, and A is a
continuous vector field, then [ (V-A) dV = [,(n-A) dS.

6. The recurring vectorial operator V, known as del or nabla, is a differential operator that, in rectangular
coordination is defined as:

O
V=96 +—
0x 1
where &, are unit vectors in directions xj,x, and x3. For the derivation of V in curvilinear coordinates, see

Problem 2.1. The “substantial derivative,” namely, the change in time of some property in a fluid element while
being convected (or riding with) the fluid in terms of V, is given by:

D 0
ﬁ = E +v- \%
Recall that the operation of V on a scalar quantity is the gradient, which is a vector. For example, if V is operated
on a scalar pressure field P, then V P is the pressure gradient vector field, which can have different values in the
three spatial directions. The operation of V on a vector field can either be the divergence or the curl of the vector
field. The former is obtained by the dot product (also called the scalar product) as V - v or div V', where the result
is a scalar; whereas, the latter is obtained by the cross product (also called the vector product) V ® v, or curl v, and
the result is a vector field.
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TABLE 2.1 The Equation of Continuity in Several Coordinate Systems

Rectangular Coordinates (x,y, z)

dp O 0 0 B
o + e (pvy) + 8_y (pvy) —+ % (pv;) =0

Cylindrical Coordinates (r, 0, z)

op 10 19 9
5+;E(prv,.) +;%(PV0) +5Z(PVZ) =0

Spherical Coordinates (r, 0, ¢)

ap 10, , 19 , 19 B
E‘f‘—za (pr Vr) +m%(p\/9 51n0) +m% (pV¢) =0

r

Source: Reprinted with permission from R. B. Bird, W. E. Stewart, and E. N. Lightfoot, Transport Phenomena,
Wiley, New York, 1960.

measured (reported) by an observer who is moving with the fluid (this is referred to as the
Lagrangian point of view). Table 2.1 gives Eq. 2.4-4 in rectangular, cylindrical, and
spherical coordinate systems.

For an incompressible fluid, the density is constant, that is, it does not change in time or
spatial position, and therefore Eq. 2.4-5 simplifies to:

V.v=0 (2.4-6)

In fluid dynamics we frequently invoke the incompressibility assumption, even though
fluid densities change with pressure and temperature, and these may vary in time and
space. If the density change cannot be neglected, then an appropriate equation of state of
the form p = p(T, P) must be used in conjunction with the balance equations.

Example 2.1 The Use of the Macroscopic Mass Balance for a Vessel with Salt
Solution A liquid-filled vessel shown in the accompanying figure contains a 1000kg of
10% by weight salt solution. At time ¢ = 0 we begin feeding a 2% by weight salt solution
at 20 kg/h and extracting 10 kg/h solution. Find the amount of solution M and salt S in the
vessel as a function of time.
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Solution Using the macroscopic mass balance Eq. 2.4-1, we first define the control volume
as shown by the dotted line in the figure. Note that we defined the control volume above the
liquid surface. Next, we apply Eq. 2.4-1 to the control volume which, taking into account all
streams entering and leaving the tank, yields:

0 0 dh
E J Psol av + E J Pair dav — psol,2%vlsl + psolv2S2 + pairESO =0
Vi Va
(change in M in CV) (mass flow in) (air mass flow out)

(change in air mass in CV)  (mass flow out)

Note that n is normal to the surface and points outward from the control volume, hence,
streams entering are negative and leaving are positive. Now the second and last terms cancel
each other so they can be dropped to yield:

am
——=204+10=0
dt

and integration with the given initial condition gives:
M (kg) = 1000 + 10¢(min)

We next apply Eq. 2.4-1 to the salt:

0 S N
~ e _2 . 1 i ==
IJ( )pSO]dV 0 x 0.02 + 0( ) 0

14

where the first term is 9S/0¢ and S/M is the instantaneous salt concentration, leading to:

§+ 108
dr 1000 + 107

which results after integration with initial conditions S = 100 at t = 0, in

10000 + 407 + 0.2¢2
Slke) = 100 + 1

where ¢ is in minutes. The ratio of S/M gives the concentration of salt as a function of time.
This will show that, as time goes toward infinity, the concentration approaches inlet
concentration.

Example 2.2 The Radial Velocity in a Steady, Fully Developed Flow Show that in a
steady, fully developed flow of an incompressible liquid in a pipe, the radial velocity compo-
nent vanishes.

Solution In a pipe flow we have, in principle, three velocity components v,, vy, and v,. The
equation of continuity in cylindrical coordinates is given in Table 2.1. For an incompressible
fluid, this equation reduces to

10 1% Ov,

ror a0 T =0

31
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However, because of symmetry, vy must vanish and, in a fully developed flow dv,/0z = 0, we
therefore obtain

ad
E(Wr)—o

which, upon integration, yields rv, = C, where C is a constant. However, since there is no flow
across the wall, C = 0, and hence the radial velocity must vanish everywhere.

2.5 THE MACROSCOPIC LINEAR MOMENTUM BALANCE
AND THE EQUATION OF MOTION

Newton’s Second Law is a statement of conservation of linear momentum for a
system:

DP;
o= ZF,- (2.5-1)

where P; is the linear momentum mv of a body of mass m; DP/Dt is the substantial
derivative of the linear momentum; and ) F; are the forces acting on the body.
Substituting Eq. 2.5-1 into Eq. 2.3-2 with p = v, we get:

0
&JpvdV—l—Jpvv-ndS:Fb—sz (2.5-2)

Vv N

where F;, are the body forces (e.g., gravitation), and F the surface forces (e.g., viscous
forces) that are acting on the control volume. If there are other forces, such as electric or
magnetic forces, acting on the control volume, they should be added to Eq. 2.5-2 and
appropriately accounted for. Within this text, however, the only forces that we will
consider are gravitational and viscous forces.

Now Eq. 2.5-2 is a vectorial equation that has three components, reflecting the fact that
linear momentum 1is independently conserved in the three spatial directions. For a
rectangular coordinate system, Eq. 2.5-2 becomes:

0

o oviedV + | vipv -ndS = Fy, + Fy, (2.5-3)
v s

0

50| Py AVt [ oy ndS = Fyy 4 F,y (2.5-4)
v s

0

o | P dV + |v,pv-ndS =F,, +F, (2.5-5)
v 5

For deriving the equation of motion, which is the microscopic counterpart of the
macroscopic momentum balance, we proceed as in the case of the mass balance and first
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rewrite Eq. 2.5-2 using the Gauss Divergence Theorem to get:

J E (V) + V- V(pv)} dV = Fy+ F, (2.5-6)
\%4

Next, we consider the forces that act on the control volume. The body forces are due to
gravitation and act on all the mass in the control volume:

F, = Jpng (2.5-7)
|4

The surface forces that act on the control volume are due to the stress field in the deforming
fluid defined by the stress tensor m. We discuss the nature of the stress tensor further in the
next section; at this point, it will suffice to state that r is a symmetric second-order tensor,
which has nine components. It is convenient to divide the stress tensor into two parts:

n=Po+1 (2.5-8)

where P is a scalar quantity, which is the “pressure,” o is the identity tensor defined as:

(2.5-9)

=
|
co -
—o o

0
1
0
and 7 is the dynamic or deviatoric component of the stress tensor, which accounts for the

viscous stresses created in the fluid as a result of flow.
Thus Eq. 2.5-8 can be written as

T T2 T3 1 0 0 T Tiz  Ti3
1 %%} T3 =Pl O 1 0 + T21 T22 723 (25-10)
T3 M3 T33 0 0 1 31 T3 T33

which expresses nine separate scalar equations relating the respective components of the
tensors: m; = Po;; + 1;;, where d;; = 1 for i = j, and d;; = O for i # j. For convenience, the
tensor 7 is called the total stress tensor and 7 is simply the stress tensor. Clearly, m; = 7;;
for i #j and n; = P+ 1; for i =j. Thus, the total normal stress incorporates the
contribution of the “pressure,” P, which is isotropic. In the absence of flow, at equilibrium,
the pressure P becomes identical to the thermodynamic pressure, which for pure fluids is
related to density and temperature via a state equation.

Two difficulties are associated with P. First, flow implies nonequilibrium conditions,
and it is not obvious that P appearing during flow is the same pressure as the one defined in
thermodynamics. Second, when the incompressibility assumption is invoked (generally
used in solving polymer processing problems) the meaning of P is not clear, and P is
regarded as an arbitrary variable. No difficulty, however, arises in solving practical
problems, because we only need to know the pressure gradient.
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Turning back to Eq. 2.5-6, the surface forces F can now be expressed in terms of the
total stress tensor m as follows:

FS:—JmndS (2.5-11)
S

where the minus sign is introduced to account for the forces the surrounding fluid applies
on the control volume.

Substituting Eqgs. 2.5-11 and 2.5-7 into Eq. 2.5-6, using the Gauss Divergence Theorem,
we obtain:

J[g(pv)—l—Vw(pv)} dV:Jpng—JdeV (2.5-12)
J{%(pv)—i—v-v(pv)—kv-n—pg] dv =20 (2.5-13)

Equation 2.5-13 is valid for any arbitrary control volume. The only way this can hold true
is if the kernel of the integral vanishes, that is,

0

&(pv)+V-vpV+V-n—pg:0 (2.5-14)
which is the equation of motion. But, V - vpv = v(V - pv) + pv - Vv. Thus Eq. 2.5-14 can
be written as

0 9]

pgj—l—v%—l—vaV—i—pv-Vv—f—V-n—pg:0 (2.5-15)
Furthermore, the second and third terms express the product of v with the equation of
continuity. Thus they equal zero, and Eq. 2.5-15 reduces to

v

o +pv-Vv=-V.n+pg (2.5-16)

p

or, in terms of the substantial derivative, we get:

Dv
—=-V. 2.5-17
[y m+pg ( )
which we recognize as Newton’s Second Law, which states that the mass (per unit volume)
times acceleration’ equals the sum of the forces acting on the fluid element.
Next, we substitute Eq. 2.5-8 into Eq. 2.5-16 to yield the common form of the equation
of motion:

p%—kpv-Vv:—VP—Vw—kpg (2.5-18)

7. Recall that the substantial derivative implies that we “ride” with the fluid element.
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where the terms on the left-hand side express accumulation of momentum and the
convection of momentum, respectively, and those on the right side express the forces
acting on the fluid element by the pressure gradient, the stresses in the flowing fluid, and
the gravitational forces. The three components of the equation of motion, in rectangular,
cylindrical, and spherical coordinates are given in Table 2.2.

TABLE 2.2 The Equation of Motion in Terms of 7 in Several Coordinate Systems

Rectangular Coordinates (x,y, z)

%-ﬁ- Oue O D) 0P 6)T”Jrary“r +
a " "ax Ty TV e ) T T ox oy PEs
Oy Oy O, O) 0P (O | Ony | Oty |
Pl "o "oy T 5 ) T "oy \ax oy o) s
v, Ly 8\/1 ‘y v, n % _ @ 7 01y, Oty n To. n
o ox "oy T ar) T ez \ax T oy o) P
Cylindrical Coordinates (r, 0, z)

%+ 6v,+E%_é+ v, 7_67P_ 12( )+18‘c,@ 00 01, n
Par ™ ar 70 " o) T "ar \GarV T T e 9z ) " PEr
aV() BV() Vo 8V() ViVo 8\2() _ 1 6P 1 8 1 8100 a‘r()Z

(E”fE“L 0y Vza—z)*‘?%‘(rzw QR az)“ge

6v2+ avz+ﬁavz+v6vz N2 12(” )+18‘691+8T77 n
P\ "V ar TR a0 T oz bz \rorV T 00 e ) TP

Spherical Coordinates (r, 0, ¢)

o TV or T a0 Trsmoog T F

<8v, e vodv, vy Oy v?,—i—vi)

0P 10 ,, 1 0 . 1 0t  7Too+ Tg9
= (75“f””@%(ff“mo”rsme a6 )t

o\ O vodvo | ve Ov vy Vg ootd

o " ar T 790 " rsind ¢ r r

_ 10P 10 ,, 1 0 1 (9‘[0¢ 7,9 cotf

Y (r2 ar )+ ingae 0 e 5 T W) T rso

Ovg Ovg Vg Ove Ve Ovg  VgVr vev¢
(8[ v "or " r 90 T sing 0 r + cot

_ 1 a_Pi 18( )+18‘E@¢ 1 81¢¢+T£+2C0tgr n
T rsin6og  \Por\ 90 rsin0 9 - |y )T P8

Source: Reprinted with permission from R. B. Bird, W. E. Stewart, and E. N. Lightfoot, Transport Phenomena,
Wiley, New York, 1960.
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Example 2.3 The Use of the Macroscopic Momentum Balance to Calculate the
Diameter of a Free Jet A free jet of diameter d leaves a horizontal tube of diameter D,
as shown in the accompanying figure. Assuming a laminar, fully developed velocity profile
at the exit of the tube, and neglecting gravitational forces and the drag of the air on the free jet,

prove that d/D = (0.75)".

r

?
T—»x D ——> v)r(r) d
|

YYVYVY
<

Solution We first select the control volume as shown by the dotted line in the figure, assum-
ing that, at the downstream end of the control volume, the velocity profile in the free jet is flat.
Next, we apply the macroscopic momentum balance, Eq. 2.5-3, to the control volume. We
need be concerned only with the x component, because this is the only momentum that crosses
the control volume boundaries. The flow is steady, and therefore the time-dependent term
vanishes, as do the forces, since there are none acting on the control volume. Thus the equa-
tion reduces to:

vepv-ndS =0 (E2.3-1)

ne—

The velocity profile in a laminar flow is given by v, = Vy|1 — (r/R)*|, where Vj is the
maximum velocity. At the exit, the velocity is uniform and given by V,. Substituting these
terms into Eq. E2.3-1 gives:

—p J V2 [1 - (r/R)z} TS+ pV2 (nd?/4) = 0 (E2.3-2)
N
or
—2nV§(D/2)2Jé(1 —)%ag + V2 (adj4) = 0 (E2.3:3)

0

where ¢ = r/R, which then yields:

<%) _ 3 (%)2 (B2.3-4)

Next we apply the macroscopic mass balance, Eq. 2.4-1, which gives a second relationship
between the variables:

—pJVo[l - (r/R)Z] dS + pV.(nd*/4) =0 (E2.3-5)
N
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which results in

d 2
% —2 (5) (E2.3-6)

Combining Eqs. E2.3-4 and E2.3-6 gives the desired result of d/D = 0.75%7.

2.6 THE STRESS TENSOR

Consider a point P in a continuum on an arbitrary surface element AS (defined by the
normal n), as in Fig. 2.2. Let Af; be the resultant force exerted by the material on the
positive side of the surface on that of the negative side across AS.

The average force per unit area is Af;/AS. This quantity attains a limiting nonzero
value as AS approaches zero at point P (Cauchy’s stress principle). This limiting
quantity is called the stress vector, or traction vector T’. But T’ depends on the
orientation of the area element, that is, the direction of the surface defined by normal n.
Thus it would appear that there are an infinite number of unrelated ways of expressing
the state of stress at point P.

It turns out, however, that the state of stress at P can be completely specified
by giving the stress vector components in any three mutually perpendicular planes
passing through the point. That is, only nine components, three for each vector,
are needed to define the stress at point P. Each component can be described by
two indices ij, the first denoting the orientation of the surface and the second, the
direction of the force. Figure 2.3 gives these components for three Cartesian planes.
The nine stress vector components form a second-order Cartesian tensor, the stress
tensor® 1.

Furthermore, some argumentation based on the principles of mechanics and
experimental observations, as well as molecular theories, leads to the conclusion that
the stress tensor is symmetric, that is,

n; =T, (2.6-1)

Fig. 2.2 An arbitrary surface element with direction defined by normal n with resultant force Af;
acting at point P.

8. Note that we differentiate the stress tensor ©' discussed in this section from the previously discussed stress
tensor © because they are defined on the basis of different sign conventions, as discussed later in the chapter.
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Fig. 2.3 The nine Cartesian components of the stress tensor. In the limit, the cube shrinks to
point P.

Hence, only six independent components of the stress tensor are needed to fully define the
state of the stress at point P, where ); are the normal stress components, and nﬁj(i #J) are
the shear-stress components.

By considering the forces that the material on the positive side of the surface (i.e.,
material on the side of the surface at which the outward normal vector points) exerts
on the material on the negative side, a stress component is positive when it acts in the
positive direction of the coordinate axes and on a plane whose outer normal points in one of
the positive coordinate directions (or if both of the previously mentioned directions are
negative).

A stress component is negative if any one direction is negative. Hence, by this sign
convention, generally used in mechanics and mechanical engineering, tensile stresses are
positive and compressive stresses are negative. Moreover, according to this sign convention,
all the stresses shown in Fig. 2.3 are positive. Unfortunately, this sign convention is opposite
to that resulting from momentum transport considerations, thus 7't = —m (where 1 stands
for ‘transpose’). In the latter sign convention, as pointed out by Bird et al. (1), if we consider
the stress vector m, = n - 7t acting on surface dS of orientation n, the force m,dS is that
exerted by the material on the negative side onto that on the positive side. (According to
Newton’s Third Law, this force is equal and opposite to that exerted by the material of the
positive side to the material of the negative side.) It follows, then, that, in this latter
convention, tensile stresses are negative. In this book we follow this latter sign convention.

As we pointed out in the introductory remarks, polymer processing is the simultaneous
occurrence of momentum, heat, and occasionally, mass transfer in multicomponent
systems. This sign convention, as shown in the following paragraphs, leads to consistency
among the three transport processes. Nevertheless, it is worth emphasizing that the sign
convention used in no way affects the solution of flow problems. Once constitutive
equations are inserted into the equation of motion, and stress components are replaced by
velocity gradients, the two sign conventions lead to identical expressions.
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Generally, from the tensor 7 or tensor t, which is related to the former via Eq. 2.5-8, three
independent scalar invariant entities can be formed by taking the trace of t. The three
invariants are:

L =trt= Zrii (2.6-2)
3 3
II.C =1r ‘Cz = Z Z‘C,:,“L’j,‘ (26-3)
3 3
I, = tr ‘E3 = Z Z Z TijTik Thi (26—4)
1 | 1

(t:1) = %IIT (2.6-5)

Example 2.4 The Similarity Between the Three Transport Phenomena Consider an
infinite slab of solid shown in Fig. E2.4(a) with a constant temperature difference over its
surfaces.

The temperature gradient for 7(0) > T(b) is negative and given by

ar  T(0) — T(b)

dy b
and using Fourier’s law, the heat is given by:

0 =~k =310 = T0)

where £ is the thermal conductivity. Clearly, for the ase shown, the heat flux is in the positive y
direction, and flows from high temperature to low temperature.

Now consider the case of one-dimensional diffusion of component A shown in Fig. E2.4(b).
Similarly, the concentration gradient for C4(0) > C,(b) is negative and given by:

dCy  Ca(0) — Ca(b)

dy b
Yy Yy
A 7(6) A COb) A b))
b o) W) ")
2 » X » x » ' B
o) C(0) 1(0)
(a) (b) ©

Fig. E2.4 (a) Temperature, (b) concentration, and (c) velocity profile over infinite slabs of
material. In (c) the fluid is confined between two parallel plates in relative motion.



40 THE BALANCE EQUATIONS AND NEWTONIAN FLUID DYNAMICS

Using Fick’s law (assuming constant density and low concentration of the diffusing
component), the mass flux is positive and is given by
dcC,
Jay = 7%37; = D45[Ca(0) — Ca(b)]
where Z,p is the binary diffusion coefficient. As in the case of heat flux, the flux of the A
component is positive, and it flows from high concentration to low concentration.

Finally, let us examine the flow of viscous fluid between two parallel plates in relative
motion [Fig. E2.4(c)]. Because of intermolecular forces, the fluid layer next to the bottom
plate will start moving. This layer will then transmit, by viscous drag, momentum to the layer
above it, and so on. The velocity gradient for v,(0) > v,(b) is positive and given by

dvy V(0)

dy b
Using Newton’s law, which holds for an important class of fluids, we get:
dv, u

=y T EV(O)

where u is the viscosity. Clearly, the flux of x momentum is the shear stress, and it is in the y
direction from the lower plate to the upper one; that is, it flows downstream the velocity
profile, from high velocity to low velocity, and there is a positive momentum flux according to
the coordinate system used. This example demonstrates the similarity of the three transport
processes, and the reason for defining the fluxes of heat, mass, and momentum in Fourier’s,
Fick’s, and Newton’s laws with a negative sign.

2.7 THE RATE OF STRAIN TENSOR

We know from everyday experience that applying a given tensile or shear stress to a solid
material results in a given deformation. In the elastic range, Hooke’s law predicts a linear
deformation with the applied stress. The elastic modulus in Hooke’s law specifies the
nature of the particular solid. Yet in viscous fluids, the applied stress is not related to
the deformation of the fluid, but to the rate at which the fluid is being deformed, or to the
rate of strain. As we shall see in this section, in order to define the rate of strain of a fluid at
a given point, we need nine (six independent) numbers. Therefore, just like stress, the rate
of strain is a second-order symmetric tensor. It is the nature of the relationship between the
stress and the rate of strain tensors that the constitution of the particular fluid being
deformed is manifested. The generally empirical equations relating the two, therefore, are
called constitutive equations.

In an important class of materials, called Newtonian, this relationship is linear and one
parameter—the viscosity—specifies the constitution of the material. Water, low-viscosity
fluids, and gases are Newtonian fluids. However, most polymeric melts are non-Newtonian
and require more complex constitutive equations to describe the relationship between the
stress and the rate of strain. These are discussed in Chapter 3.

Geometric Considerations of the Rate of Strain Tensor

We first consider a small rectangular element at time 7 in shear flow, as shown in Fig. 2. 4.
This element is a vanishingly small differential element, and therefore without loss of
generality we can assume that the local velocity field is linear, as shown in the figure.
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X

Fig. 2.4 The deformation of a fluid element in unidirectional shear flow.

At time 7 + At the rectangular fluid element is translated in the x direction and deformed
into a parallelogram. We define the rate of shear as —dd /dt, where ¢ is the angle shown in
the figure.

Out of simple geometrical considerations, we express the rate of shear in terms of
velocity gradients as follows:

_ @ — lim 5t+At - 5t
dt a0 At
i {n/2 — arctan [ (Vey+ay — Vay) A1/Ay] — n/Z}
= — lim -

Y (2.7-1)
— Jim Ay T Vey dvy
Ay—0 Ay dy

Thus, we find that the rate of shear (or shear rate, as it is commonly referred to), or the rate
of change of the angle J, simply equals the velocity gradient.

We can extend this analysis to general flow fields v(x,y,z,¢) by considering the
deformation of the fluid element in the x,y, z,y, and x,z planes. In such a case, for the x,y
plane we get (see Problem 2.6):

doy, Ovy  Ovy, .
ar oy ox e (272)

and for the other two planes we get:

dd,, Ovy, Ov,

_ — YTt 2.7-
dt 0z + Oy Pz (2.7-3)
doy, Ovy Ov, .
_ Bz P Ve 2.7-4
a0z ox e 27-4)

where we defined the shear components of the rate of deformation tensor y in Cartesian
(rectangular) coordinates.

Now that we have discussed the geometric interpretation of the rate of strain tensor, we
can proceed with a somewhat more formal mathematical presentation. We noted earlier
that the (deviatoric) stress tensor T related to the flow and deformation of the fluid. The
kinematic quantity that expresses fluid flow is the velocity gradient. Velocity is a vector
and in a general flow field each of its three components can change in any of the three
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spatial directions, giving rise to nine velocity gradient components. We can therefore
define a velocity gradient tensor Vv (i.e., the dyadic product of V with v), which in
Cartesian coordinates can be written as:

O v On
8x1 6)62 8x3
8vz 6\/2 (91/2
Vww=| — — — 2.7-5
v 8x1 sz aX3 ( )
6‘x1 6x2 aX3

A fluid in motion may simultaneously deform and rotate. Decomposing the velocity
gradient tensor into two parts can separate these motions:

Vv==({+ o) (2.7-6)

N —

where y and @ are the rate of strain and the vorticity tensors, respectively, defined as:
7=Vv+ (Vv (2.7-7)

and
o =Vv— (V) (2.7-8)

where (VV)T is the transpose® Vv. Thus by inserting Eq. 2.7- 5 and its transpose into
Eq. 2.7- 7, we get the following expression for the rate of deformation tensor in Cartesian
coordinates:

6\/1 8\12 8\/] 8V3 (9\)1
22— —_ 4 - 24— -
6x1 8x1 + 8)(2 8x1 + 8)(3
Ovi 2 O vz DY
8x2 8)C1 8)62 axz 8)63
81/1 8\/3 8\12 8\/3 81/3
T A

(2.7-9)

For simple shear flow (as between parallel plates in relative motion) Eq. 2.7-9

reduces to:

7= (2.7-10)

S = O

S O~

S O O
~2

where 7 is the shear rate, which is a scalar quantity related to the second invariant of y
(see Egs. 2.6-5 and 2.6-3) as follows:

= 1[3G:7) (27-11)

9. The indices are ‘“‘transposed”—that is, the rows and columns are interchanged (180° flip on the diagonal).
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For simple shear flow we get:

g _d(dx\ _d (dy_dy (2.7-12)
dy dy\dt dt \dy dt

where y is the shear strain.

2.8 NEWTONIAN FLUIDS

In the previous section we discussed the nature and some properties of the stress tensor t
and the rate of strain tensor y. They are related to each other via a constitutive equation,
namely, a generally empirical relationship between the two entities, which depends on the
nature and constitution of the fluid being deformed. Clearly, imposing a given stress field
on a body of water, on the one hand, and a body of molasses, on the other hand, will yield
different rates of strain. The simplest form that these equations assume, as pointed out
earlier, is a linear relationship representing a very important class of fluids called
Newtonian fluids.

In 1687 Isaac Newton proposed a simple equation relating the shear stress to the
velocity gradient in fluids, and defined viscosity as the ratio between the two:

_ Tyx
u=— v, (2.8-1)
< dy >

This equation is known as ‘Newton’s law’. Of course, it is not really a ‘physical law’, but
only an empirical relationship describing a limited, yet very important class of fluids.
Newton’s law is generally valid for ordinary fluids with molecular weights below 1000.
Gases, water, low molecular weight oils, and so on, behave under most normal conditions
according to Newton’s law, namely, they exhibit a linear relationship between the shear

stress and the consequent shear rate.
Equation 2.8-1 holds only for simple shearing flow, namely, when there is one velocity

component changing in one (normal) spatial direction. The most general Newtonian
constitutive equation that we can write for an arbitrary flow field takes the form:

t=—uy+ 2u/3 —x)(V-v)d (2.8-2)

where x is the dilatational viscosity. For an incompressible fluid (and polymers are
generally treated as such), V- v = 0 and Eq. 2.8-2 reduces to:

T=—uy (2.8-3)

Equations 2.8-2 and 2.8-3 are coordinate-independent compact tensorial forms of the
Newtonian constitutive equation. In any particular coordinate system these equations
break up into nine (six independent) scalar equations. Table 2.3 lists these equations in
rectangular, cylindrical and spherical coordinate systems.
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TABLE 2.3 The Components of t = —uy + (2u/3 — «)(V - v)d in
Several Coordinate Systems

Rectangular Coordinates (x, y, z)

o= — {2@73(v-v)]

ox 3
ovy, 2
=—ul2—=-=(V-
“{ y 3 V)]
v, 2
Tz = — { a—z—g(v V)}
T Tyy = — % + %
Xy yx /’t ay ax
vy  Ov,
Ty =Ty = —H 872+ Ay
v,  Ov,
Tox = Taz = _H|:ax +8_Z:|
Ovy  Ovy, Ov,
VYV =0t o

Cylindrical Coordinates (r, 0, z)

o= -u -2 v)}

v, 2
= { Q Q lav,}
4 r r 00
0. = |:(9V() 1 8\/ :|
- r 00

S

10 10vg  Ov,
V)=o) 5 o

Spherical Coordinates (r, 0, ¢)

tr =25 =37 )|

ar 3

10 v 2
Top = —,u{Z(;%—&-v ) ——(V‘v)}
_ 1 Ovy v,  vgcotl 2
T(ﬁd’i_ﬂ{z(rﬂm() 8¢+ + r ) —§(V~v)}

0 /vy 10v,
w*””*’*{ 75 (7) *?a@]

o 1 sinf 0 vd, 1 %
00 = %0 =17 50 sme rsin0 9

Tor =T *—t—l %4_,2(&)
or =T = TH rsinoaqb r

9

1 (911(/,

1
(Vo) ) rsin0 O¢p

(vosin@) +

2
2
;o) + rsmaae

Source: Reprinted with permission from R. B. Bird, W. E. Stewart, and E. N.
Lightfoot, Transport Phenomena, Wiley, New York, 1960.
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Inserting Eq. 2.8-3 into the equation of motion, 2.5-18, we get'’ the celebrated Navier—
Stokes'' equation:

av

I +pv-Vv=—VP + uV* + pg (2.8-4)

p

The symbol defined as V? is called the Laplacian. Table 2.4 lists the components of the
Navier—Stokes equation in the various coordinate systems.

We should note that the Navier—Stokes equation holds only for Newtonian fluids and
incompressible flows. Yet this equation, together with the equation of continuity and with
proper initial and boundary conditions, provides all the equations needed to solve (analytically
or numerically) any laminar, isothermal flow problem. Solution of these equations yields the
pressure and velocity fields that, in turn, give the stress and rate of strain fields and the
flow rate. If the flow is nonisothermal, then simultaneously with the foregoing equations,
we must solve the thermal energy equation, which is discussed later in this chapter. In
this case, if the temperature differences are significant, we must also account for the
temperature dependence of the viscosity, density, and thermal conductivity.

Polymer processing flows are always laminar and generally creeping type flows. A
creeping flow is one in which viscous forces predominate over forces of inertia and
acceleration. Classic examples of such flows include those treated by the hydrodynamic
theory of lubrication. For these types of flows, the second term on the left-hand side of
Eq. 2.5-18 vanishes, and the Equation of motion reduces to:

)
pg‘; = —VP+ uVv + pg (2.8-5)

and the Navier—Stokes equation for creeping flows reduces to:

ov
pg = —VP+ uV’v+ pg (2.8-6)
On the other extreme of negligible viscosity, which is of little interest to the subject
matter of this book, but is added for the sake of comprehensiveness, the equation of motion
reduces to

ov

P + pv-Vv=—-VP+ pg (2.8-7)

which is the well-known Euler equation, after the Swiss mathematician Leonard Euler,
who derived it in 1775.
Finally, for the no-flow situation (v = 0), the equation of motion reduces to

VP = pg (2.8-8)

which is the basic equation of hydrostatics.

10. Note that: —V -7 = uV -7 = uV|Vv + (Vv)| = H[Vzv +V(V-v)] = uv3y

11. Claude Louis Navier (1785-1836) was a French scientist who, using molecular arguments, derived the
equation in 1882; George Gabriel Stokes (1819—1903) was a British physicist who made many contributions to
the theory of viscous flow in the period 1845-1850.
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TABLE 2.4 The Navier-Stokes Equation in Several Coordinate Systems

Rectangular Coordinates (x, y, 7)

(8vx Ovy Ovy 8vx) OP (82vx v, 82vr>
v Sy, Sy ) = LT (R +pg.

a " ax Ty TV o a2 oy o2
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P\ " Ty T 0 ) T T ox M\ o T o a2 ) T PE
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Source: Reprinted with permission from R. B. Bird, W. E. Stewart, and E. N. Lightfoot, Transport Phenomena,
Wiley, New York, 1960. In these equations
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Although polymeric melts are generally non-Newtonian, many problems in polymer
processing are initially solved using the Newtonian assumption, because these solutions
(a) provide simple results that help gain insight into the nature of the process; (b) provide
quick, rough, quantitative estimates; and (c) the rigorous non- Newtonian solution may
be too time-consuming for the problem at hand. Yet, for a true appreciation of polymer
processing, the non-Newtonian character of the material must be considered. The study of
non-Newtonian behavior forms an active branch of the science of rheology, and is
discussed in Chapter 3.

In the meantime, we will solve a number of flow problems that are highly relevant to
polymer processing problems, which demonstrate the rather straightforward use of the
equation of motion and continuity.

Example 2.5 Parallel Plate Flow The methodology for formulating and solving flow
problems involves the following well-defined and straightforward steps:

Step 1. Draw a schematic figure of the flow configuration, visualize the flow on physical
grounds, pick the most appropriate coordinate system, and make some sensible assump-
tions about the velocity components.

Step 2. Reduce the equation of continuity to the form appropriate for the problem at hand.

Step 3. Reduce the equation of motion or the Navier—Stokes equation to the form appropriate
for the problem at hand. Take advantage of the results of the equation of continuity.

Step 4. State the boundary and initial conditions, if any.

Step 5. Solve the differential equations for the velocity profiles, which then lead to the
volumetric flow rate expression, shear stress, and rate distribution, power consumption,
and so forth.

Step 6. Sketch out the velocity profiles and velocity gradient profiles and see if they are
reasonable for the problem at hand.

In this example, we consider the viscous, isothermal, incompressible flow of a Newtonian
fluid between two infinite parallel plates in relative motion, as shown in Fig. E2.5a. As is
evident from the figure, we have already chosen the most appropriate coordinate system for
the problem at hand, namely, the rectangular coordinate system with spatial variables x, y, z.
We placed the coordinate system at the stationary lower plate, with the coordinate y pointing
across the flow field, and z pointing in the direction of the flow. The upper plate is moving at
constant velocity Vj and the lower plate is stationary. Derive (a) the velocity profile; (b) the
flow rate; (c) the shear stress and shear rate distributions, and (d) the power consumption.

Solution This flow configuration is of great significance in polymer processing and it is
important to understand in depth. We therefore discuss it in some detail.

AV Vo

»
» z

<~

Fig. E2.5a Two parallel plates in relative motion. The upper plate moves at a constant
velocity V, and the lower plate is stationary.
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The infinite parallel plates construct may sound theoretical and impractical, but it is not.
The flow in screw extruder channels, between the rotor and the wall of an internal mixer or
between the rolls of calenders and roll-mills, to mention a few, can be considered to first
approximation as taking place locally between parallel plates in relative motion.

We assume a creeping laminar flow because, in all practical cases, the very high viscosities
of polymeric melts preclude turbulent flow. With increasing Reynolds number prior to
reaching turbulence, viscous dissipation heating and degradation will take place. The
following table, which illustrates characteristic values of some typical fluids, gives a sense of
the magnitude of viscosities of polymeric melts:

Characteristic Viscosities of Some Typical Fluids (Ns/m?)

Fluid Viscosity Character Fluid Viscosity Character
Air 1072 Gas Polymeric melts 10*-10° toffee-like
Water 1073 Liquid Pitch 10° stiff
Olive oil 10! Liquid Glass 107! rigid
Glycerin 1 Thick liquid

We also assume isothermal flow. Of course, no viscous flow can be truly isothermal,
because the friction between the sliding layers of fluid generates heat, called viscous
dissipation. But slow viscous flows in narrow channels can be assumed, at first approximation,
to be isothermal. This assumption greatly simplifies the solution and provides simple, useful
working equations.

We further assume that the flow is steady in time. We make this assumption because most
machines operate continuously, and even in reciprocating machines such as, for example,
injection-molding machines, the flow can be viewed instantaneously as steady state. Finally,
we assume that the fluid is incompressible and Newtonian, that the flow is fully developed, that
is, Ov,/0z = 0, and that the gravitational forces are negligible compared to viscous forces.

(a) Now we begin the actual solution of the problem. We start with the equation of conti-
nuity and, turning to Table 2.1, we find that, for an incompressible fluid (constant density), it
reduces to

Ovy  Ovy, Ov,
— == E2.5-1
ox dy 0z 0 (E2.5-1)

The third term on the left-hand side vanishes because we assumed fully developed flow, as
does the first term because we do not expect any flow in the neutral x direction. Thus we are
left with dv,/dy = 0, which upon integration, yields v, = C, where C is a constant. But v,
must equal zero on the plate surfaces and therefore, v, = 0 everywhere.

Now we turn to the Navier—Stokes equation in Table 2.4. We take each component and
analyze it term by term, dropping those that equal zero. This simple process leads to the
following equations:

o _

== (E2.5-2)
oP
5 =0 (E2.5-3)
2

O, _OP (E2.5-4)

'ué)yz "oz
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Equations E2.5-2 and E2.5-3 tell us that the pressure P is not a function of x or y. Thus P
can only be a function of z. Considering Eq. E2.5-4, with partial derivatives replaced with
ordinary derivatives, we find that the left-hand side of the equation is a function only of y, the
right-hand side of the equation is a function only of z, and the only way this can happen is if
they both equal a constant:

d*v. dP
= =C E2.5-5
N T ( )

This situation has a number of interesting implications. First, it implies that the pressure
gradient for such flows must be a constant, that is, the pressure changes (drops or rises—we do
not yet know which) linearly with distance. We can further conclude that, in principle, a
moving plate that drags liquid with it, as in this case, may, in principle, generate pressure in
the direction of flow and that this pressure will increase linearly with distance, just as pressure
drops linearly with distance, in pipe flow, for example.

Equation E2.5-5 can be integrated, but first we define the following dimensionless
variables: u, = v,/V and & = y/H. Since the pressure gradient is constant, we can replace it
by the pressure drop:

dP P, — P,
dz L

(E2.5-6)

where P, and Py are the pressure at z = 0 and z = L, respectively. Clearly, if the pressure at
the exit is higher than at the entrance, we know that pressure rises in the direction of flow and
the pressure gradient is positive, and vice versa. Rewriting Eq. E2.5.6 in dimensionless form
gives:

d*u, H?
F = Vi (PL — Py) (E2.5-7)

which can be integrated with the boundary condition u,(0) = 0 and u,(1) = 1, to give:

2 _
u = &= £(1— @% (P Lo F ") (E2.5-8)

Clearly, the first term on the right-hand side expresses a linear velocity profile due to the drag
of the moving plate, and the second term is a parabolic profile due to the pressure gradient. We
will explore the velocity profile after we derive the flow rate.

(b) We obtain the flow rate by integrating the velocity over the cross section:

H 1
q= J vody = VoHJuzdif

0 0 (E2.5-9)

VoH  H?

=2 _ = (p-P
2 12uL( L= Po)
where ¢ is the net flow rate per unit width, the first term on the right-hand side is the drag
flow qa:
VoH
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and the second term is the pressure flow g,:

3

12uL

ap = (Po—Pp) (E2.5-11)

For further insight into the flow rate equation, we can now rewrite Eq. E2.5-9 as follows:

dPiPL7P0712u
dz L  H3

(94 —q) (E2.5-12)

This equation now clearly demonstrates that the parallel plate geometry will generate pressure
if g2 > g, that is, provided that the moving plate drags more fluid than is actually delivered.
Under these conditions the parallel-plate geometry becomes a pump. This requires a
restriction or die at the discharge end. We can further see that the pressure generation is
proportional to the viscosity. Therefore, the high viscosities encountered with polymeric melts
increase the device pressurization capability (of course, high viscosities also imply large
pressure drops over dies and restrictions). We can further see that, at constant discharge rate ¢,
increasing plate velocity will increase the pressure generation (by increasing q,).

Plate velocity in actual machines becomes tantamount to speed of rotation and becomes an
operating variable. Furthermore, we find that pressurization is inversely proportional with the
gap size to the cube, which becomes a sensitive design variable. The maximum pressure that can
be generated is obtained by setting ¢ = 0, to get

(dp ) _ oo (E2.5-13)

dz H?

Finally, it can easily be shown (see Problem 2.12) from Eq. E2.5.9 that, for a given net flow
rate g there is an optimum H = 3¢/V, for a maximum pressure rise of

(dP ) _ ouvg (E2.5-14)
max,q

dz. T 278

Equation E2.5-9 further indicates that, in the absence of a pressure drop, the net flow rate
equals the drag flow rate. Note that g, is positive if Pq > P, and pressure flow is in the
positive z direction and negative when Py > Py. The net flow rate is the sum or linear
superposition of the flow induced by the drag exerted by the moving plate and that caused by
the pressure gradient. This is the direct result of the linear Newtonian nature of the fluid, which
yields a linear ordinary differential equation. For a non- Newtonian fluid, as we will see in
Chapter 3, this will not be the case, because viscosity depends on shear rate and varies from
point to point in the flow field.

By dividing Eq. E2.5-11 by Eq. E2.5-10 we get a useful expression for the pressure-to-drag
flow ratio:

4y _ 94— Qa §

qa qd 6uLVy

(Po— Pyp) (E2.5-15)
Next we substitute Eq. E2.5-15 into Eq. E2.5-8 to yield:
_ qp
u, =E+3=E(1 -8 (E2.5-16)
qd

We can plot the dimensionless velocity profile with pressure-to-drag flow ratio as a single
parameter. When this ratio is zero we get pure drag flow, when it assumes a value of —1, the
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Fig. E2.5b Schematic representation velocity shear rate and shear stress profiles of a
Newtonian fluid between parallel plates.

net flow rate is zero, and when the value is 41, the net flow rate is twice the drag flow rate. As
the value of this ratio increases, the velocity profile approaches a parabolic profile of pure
pressure flow between two stationary parallel plates. Figure E2.5b shows the characteristic
velocity profiles.

(c) By taking the derivative of the velocity we obtain the shear rate:
dv, _ V() duz Vo

z o\ 4p
=— =—|14+3(1 -2+ E2.5-17
dy Hd¢ H { +3( g)%j ( )

‘i))'z =

This equation shows that, when the pressure to drag flow ratio equals —1/3, the shear rate
at the stationary plate is zero, when it equals +1/3, the shear rate at the moving plate is
zero, and when it equals zero, the shear is constant and equals Vy/H. In this range the
velocity profile exhibits no extremum. In terms of the net flow rate, the condition of no
extremum in velocity is:

2 4q,
Qd< <q/

3 ~91°73

(E2.5-18)

With the shear rate at hand, we can calculate the local viscous dissipation per unit volume.
From Table 2.3 we note that the only nonvanishing shear-stress component is t,, = 7, which
is given by

, %
e = —Hie = {1 +3(1 - 28) Z—ﬂ (E2.5-19)

and the stress at the moving plate 7y, (1) becomes

v
1,.(1) = —yﬁ" {1 - 3;’—2} (E2.5-20)

Figure E2.5b depicts the shear rate and shear stress profiles normalized by the pure drag
flow values for a number of pressure-to-drag flow ratios.
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(d) The power input per unit area needed to drag the moving plate is given by

= —Vor,(1) = Vo ly 34 (E2.5-21)
Pw = 0lyz *:uH qa .

where the minus sign is introduced because, according to the sign convention adopted in this
book, the shear stress 1y, (1) is the stress exerted by the fluid on the plate. The fotal power
input into a system of length L and width W is

VELW

PW':# H

{1 - 3%} (E2.5-22)

For pressure-to-drag flow ratios above 1/3, the P,, becomes negative, implying that power
is flowing out of the system via the moving plate. In this case, the pressure drop is negative,
implying that an outside power source pressurized the liquid and some of that is extracted by
the moving (now restraining rather than forward dragging) plate, with the rest of the power
dissipated into heat. The specific power input, defined as the power input into a unit volume of
material leaving the system, is given by

) <1 73—%’)
P, V2L VoL
= g oot {1 _3@} — o 44 (E2.5-23)
qW Hq qa H (1 qp)
+22
qda

Clearly, the power input and the specific power input both vanish at a pressure-to-drag flow
ratio of 1/3, when the shear stress at the wall is zero. It is also worth noting that the specific
power input is proportional to viscosity and plate velocity, and inversely proportional to the
distance between the plates squared.

From Eq. E2.5-17 we can calculate the total viscous dissipation between the parallel
plates. The second invariant of the rate of strain tensor multiplied by the viscosity gives the
viscous dissipation per unit volume. From Table 2.3 we find that, for the case at hand, the
second invariant reduces to jz;’; therefore, the total viscous energy dissipation (VED) between
the plates will be given by

1
VLW A2
ny = = LHWJM; dé = “"T {1 +3 (Z—;) ] (E2.5-24)
0

Now the difference between the total power input (Eq. E2.5-22) and the total viscous
dissipation (Eq. E2.5-24) is the power converted into pressure. Indeed, if we subtract the latter
from the former, we get exactly g(Pr — Py ), which is the power input required for raising the
pressure. This pressure also will be converted into heat through a die, and therefore the
expression given in Eq. E2.5-23 correctly gives the total power input into the exiting fluid.

Example 2.6 Axial Drag and Pressure Flow between Concentric Cylinders The
accompanying figure provides a schematic representation of a wire-coating die. We wish
to analyze the flow of polymeric melt in the tip region of the die where the flow is confined
in an annular space created by an axially moving wire in a constant-diameter die. This section
determines the thickness of the coating. Polymer melt is forced into the die by an extruder at
high pressure, bringing it in touch with the moving wire. The wire moves at relatively high
speeds of up to 1000-2000 m/min. The wire drags with it the melt and the flow is a combined
pressure and drag flow. Derive expressions for (a) the velocity profile in the tip region, (b) the



NEWTONIAN FLUIDS

shear rate and stress profile, (c) an expression for the flow rate and (d) an expression for the
coating thickness.

In Region A, flow cross-section converges to a constant value in the tip Region A. The wire
moves at a constant speed.

Feed

v

“ A

—» [ | —»

%

»
»

A

<

Region A Region B

Solution

(a) The flow boundaries are best described by a cylindrical coordinate system. We assume
an incompressible, Newtonian fluid flowing at steady state in a fully developed isothermal
flow. We visualize the flow with one nonvanishing velocity component, v.(r), which is a
function of only r. The 6 direction is neutral and we do not expect flow in this direction.
Moreover, it is easy to show, along the lines of the previous example, that v, = 0, and,
therefore, the components of the Navier—Stokes equation in cylindrical coordinates listed in
Table 2.4 reduce to:

oP

oP

59=0 (E2.6-2)
oP 10 v,

ks {;a < a)} (E26-3)

Thus we find that the pressure is a function of only z and, since the right-hand side of
Eq. E2.6-3 is a function of only r, 9P/0z = constant. We can therefore rewrite this equation
as an ordinary differential equation and integrate it with boundary conditions v,(R;) = V;
and v,(R,) = 0, where R; and R, are the inner and outer radii, respectively, to give:

v, = Vo <%) +f—i (—j—i) [1 - (RL,,)Q_(I —o?) %] (E2.6-4)

where o = R;/R,. Note that the pressure gradient —(dP/dz) = (Py — PL)/L, where Py and Py,
are the pressures at the beginning of the tip region and at the exit, respectively, and L is the
length of the tip region, is positive because pressure drops in the direction of motion.

(b) Taking the derivative of Eq. E2.6-4 with respect to r gives:

_ve_Vo I (Po=P)[, (1-o’) R
~Or Ina 4uL Ino r

(E2.6-5)

rz
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The shear stress can be obtained with Eq: E2.6-5 as follows:

(E2.6-6)

. Py—P 1—0o?) R2 Vo 1
Trz:_.u'))rz:( 4 L) |:2r—( )—0:| _Ho 2

4L Ino r Ino r

(c) The flow rate can be obtained by integrating Eq. E2.6-4 as follows:

RY(Py — Pp)(1 — o 1— o2 1— o
0 = ™Ra(Po — Pu)( “)<1+u2+—“)—nRgvo(a2+ “) (E2.6-7)

8ul Ino 2Ina

Note that the flow rate increases with the pressure drop and decreases with increasing wire
speed at constant die geometry.

(d) We define the polymer coating thickness as 0. The circular cross-section area of the
coating lay is given as

S = n(R; + 0)*—nR? = 1O (2R; + 9) (E2.6-8)
In terms of the mass balance in an incompressible fluid, we have
0 = VS = Voo (2R; + 0) (E2.6-9)

Equation E2.6-9 can be rewritten as

4+ 2RO-K=0 (E2.6-10)
where
-9 (E2.6-11)
7IV()

Solving Eq. E2.6-10 according to the limit of 6 > 0 gives

CsZRl'

K
=1 } (E2.6-12)

1

If an assumption of K /R? >> 1 is made, the preceding equation can be rewritten by first taking
two terms of a binomial expansion for it:

K o
0= = E2.6-13
2R,‘ 27'CR,'V() ( )
Inserting Eq. E2.6.7 into the preceding equation results in
R (Po — Pp)(1 — o) 1—o? R? 1—o?
o=-"2 T+l +— ) =22 (o E2.6-14
164LR;V, Tty ) TR\ T 2hng ( )

Note that the thickness of the coating layer is proportional to the pressure drop and inversely
proportional to wire speed.

2.9 THE MACROSCOPIC ENERGY BALANCE AND THE BERNOULLI
AND THERMAL ENERGY EQUATIONS

Polymer processing operations, by and large, are nonisothermal. Plastics pellets are
compacted and heated to the melting point by interparticle friction, solid deformation
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beyond the yield point, and conduction. The molten polymer is heated or cooled by
temperature-controlled processing machine walls, and the deforming viscous polymer
melt constantly undergoes heating by internal viscous dissipation. Therefore, we need to
account for nonisothermal effects via appropriate equations.

The starting point is the first law of thermodynamics, which states mathematically the
great principle of conservation of energy:

dE = 5Q + §W (2.9-1)

where E is the total energy of a system, 0Q is the heat added fo the system, and oW is the
work done on the system. The differential ¢ signifies that the changes on the right-hand
side of the equation are path dependent. The rate of change of the energy in the systems is
given by:

dE . .
— =0+ W (2.9-2)
dt system
where
Esystem = Jep d¥ (29-3)

v

and where e is the specific energy or energy per unit mass. Substituting the energy E and
specific energy e for P and p, respectively, in the Reynolds Transport Theorem, Eq. 2.3-2
we get the macroscopic total energy balance equation:

dE 0

Ezajpedv—kjpevndS:Q—kW (2.9-4)

Vv N

The total rate of heat added to the control volume through the control surfaces can be
expressed in terms of the local heat flux q as follows:

0=- Jq -nds (2.9-5)
S

where the negative sign was introduced to be consistent with 0, which defined heat added
to the system as positive (recall that n is the outward unit normal vector). The rate of work
done on the control volume through the control surfaces and by gravitation is given by

W:—Jn-n-vdS+Jpg-VdV (2.9-6)
s 14
Substituting Egs. 2.9-5 and 2.9-6 into Eq. 2.9-4 gives
0
Ejpe dV+Jpev-ndS+Jq~ndS+Jn-n-vdS—Jpg-vdV:O (2.9-7)
4 s 4

and using Gauss’ Divergence Theorem, we can rewrite it as

0
E(pe)+V-Vpe+V-q+V-1t-V—pg~v:O (2.9-8)
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Next we break the total specific energy into specific kinetic and internal energies:

1
e= §v2 +u (2.9-9)

to give

d (1 1
E(EpVZ—i—pu) +V. (Epvz+pu>v+V-q+V-n-v—pg-V:O (2.9-10)

Equation 2.9-10 is the total differential energy balance, and it contains both thermal
and mechanical energies. It is useful to separate the two. We can do this by taking the
dot product of the equation of motion with the velocity vector v to get the mechanical
energy balance equation:

0 1
a(pvz)—i—V-(Epvz)v—i—v-(V-n)—pv-g:O (2.9-11)

Integration of Eq. 2.9-11 leads to the macroscopic mechanical energy balance
equation, the steady-state version of which is the famous Bernoulli equation. Next
we subtract Eq. 2.9-11 from Eq. 2.9-10 to obtain the differential thermal energy-balance
equation:

%(pu)+V~(pu)v+V-q+n :Vv=0 (2.9-12)

Substituting T = P9 + 1, we get:

5(pu) = -V (pu)v -V.q —P(V-v) —t: Vv (2.9-13)
. net rate of rate of internal ible 1z irreversible
_ rate of increase _ addition of energy addition rege?ég?n;‘“e rate of internal
in internal energy internal energy by conduction energy incroase energy_tmcr]ease
per unit volume by convective per unit volume  per wnit volume per unit volume

transport per by viscous dissipation
unit volume

or

D
pFI::—V-q—P(VW)—t:Vv (2.9-14)

This equation simply states that the increase in internal energy of a fluid element riding
with the stream is due to the heat flux, the reversible increase of internal energy per unit
volume by compression, and viscous dissipation or the irreversible conversion of internal
friction to heat. Should there be another type of heat source (e.g., chemical reaction), it can
be added to the equation.

The heat flux can be expressed in terms of temperature gradient by the Fourier
equation:

q=—kVT (2.9-15)
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and the internal energy in terms of enthalpy u = h — P/p, which in turn is expressed in
terms of specific heat to give'? the two following expressions for the equation of change of
temperature:

DT P
pCV—:V~kVT—T(a—> (V-v)—1:Vv

Dt oT

DT o1 s DP (2.9-16)
pCo—=V - kVT — ne ——1:Vy

Dt OInT/ Dt

The first equation is listed in rectangular, cylindrical, and spherical coordinates in
Table 2.5. For incompressible Newtonian fluids with constant thermal conductivity, Eq.
2.9-16 reduces to:

DT

Cc, == =
Pth

kV2T+%,u(~'/ ) (2.9-17)
which is listed in various coordinate systems in Table 2.6.

Clearly, then, the temperature dependence of viscosity, on the one hand, and the viscous
dissipation term that depends on the magnitude of the local rate of deformation, on the
other hand, couple the energy equation with the equation of motion, and they must be
solved simultaneously.

Example 2.7 Nonisothermal Parallel Plate Drag Flow with Constant Thermophysical
Properties Consider an incompressible Newtonian fluid between two infinite parallel plates
at temperatures 7(0) = Ty and T(H) = T, in relative motion at a steady state, as shown in
Fig. E2.7 The upper plate moves at velocity Vj. (a) Derive the temperature profile between the
plates, and (b) determine the heat fluxes at the plates.

Solution

(a) By assuming constant thermophysical properties, the equation of motion and energy
are decoupled. The velocity profile between the plates is simple drag flow v, = V(y/H), and
all other velocity components equal zero. We now turn to the equation of energy in rectangular
coordinates in Table 2.6, which reduces to:

&ET av.\?
X =) = E2.7-1
dy? T ( dy) 0 ( )

Substituting the linear drag velocity profile (dv,/dy) = Vy/H into Eq. 2.7-1, and defining
& = y/H subsequent to integration, yields:
T-T,
T, —T,

=&+ %é(l =) (E2.7-2)

where Br is the dimensionless Brinkman number defined as

%

Br=-— 0 _
k(T — Ty)

(E2.7-3)

12. For details see R. Byron Bird, Waren E. Stewart and Edwin N. Lightfoot, Transport Phenomena, 2nd ed.,
Wiley, New York, 2002, pp. 336-340.
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TABLE 2.5 The Equation of Energy in Terms of Energy and Momentum Fluxes in Several
Coordinate Systems

Rectangular Coordinates (x, y, 7)

8+X8+ + v,

Y ‘oz
dqx Oqy 0q, oP Ovy Ov, Ov,
= S W £ I Y (el
[8x+8y+6 ar) \ox "oy "o

{ vy Ovy 8vz}
- + Ty =+ 7T,

4
<1 %+% +1 %+% +1 avv+6vz
Y\ 9y = ox “\ 0z  Ox Y\ oz = Oy

By Ty T
Cylindrical Coordinates (r, 0, z)

(aT ar T aT
pCy By

(7T 8T+v08T+ or
P\t ar T a0 T e

10 1 0qy 8qw} 7T<8—P) <10 10vy (9\/)
-

(rqr)+7ﬁ+(9z (9T‘ r(?r( )+r(90+81

e P M () e 2

T T\ g T e
I, r@(\/g>+18v, 4 8vz+8v, 4
" or r 00 or 0z "

Spherical Coordinates (r, 0, ¢)

1 v, Owy
“\roo oz

+v,

c, oT OT vy OT 1) ﬂ
ot Or " r 90 rsin0d¢

%}

q0sin0) + S0 06

_ 10 gy, L0
TRV T sin0 60
oP\ (10, 19 1 vy

_T(ﬁ)p(ﬁﬁ(r v) + ramaae 00 + sin@%)
61},Jr 1 /Ovy 4e 1 8v¢,+ r+V9COt9
oy T g T 0\ rsin0 94 r
ad (v 10v, 0 (v 1 Ov,
Bl {Tre {C?r( > T r 89} T {'E (7) +rsin9%}

Le s1n08< )+ 1 %
%1700 \sin0/) " rsin0 9¢

Source: Reprinted with permission from R. B. Bird, W. E. Stewart, and E. N. Lightfoot, Transport Phenomena,
Wiley, New York, 1960.
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TABLE 2.6 The Equation of Thermal Energy in Terms of Transport Properties (for
Newtonian fluids at constant p, u and k. Note that constant p implies that C, = C,)

Rectangular Coordinates (x, y, 7)

o (T, o T or
PO\ P Ty TV,

=k ﬂ+&+ﬂ +2 A 2+ % 2+ % !
T ox2 0y o2 M ox Oy 0z
. v )’ L (Ove O 2+ vy | O v \?
a dy = Ox 0z Ox 0z Oy
Cylindrical Coordinates (r, 0, z)

(7T, 0T wor  oT
P \ar TV ar T r a0 T oz

,kla Q +l&+ﬁ +2 @2_’__ 8V9+ 2+ e ’
T ror d or 2 90% 07 H or o0 0z
N 2<E)+18\}, (v O 2+ Lov.  Ow 2
1 ar r 00 or 0z r o0 " oz
Spherical Coordinates (r, 0, ¢)
oC, (6T or Vo oT Vo ﬂ)

o T or T 00 T rsin0 06

=k lg 2@ + 1 g sin 9@ + 1 @
~ 2o\ ar) T sin0 00 90) " r2sin?0 9°
v, 10vg v, 2 1 8\/47 v, vgcot 2
+2H{(6r) +(;%+7) +<rsm9 O T + r
J /vy le,z 0 (v 1 0Ov, 2
+N{{8r( >+;%} +[ 8r( )+rsin0%
sinf 0 / vy 1 dv]?
+{ r %(sin(9>+r5in9%] }

Source: Reprinted with permission from R. B. Bird, W. E. Stewart, and E. N. Lightfoot, Transport Phenomena,
Wiley, New York, 1960.
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Fig. E2.7 Schematic temperature profiles between the parallel plates in relative motion at
different temperatures with temperature-independent physical properties.
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which measures the ratio of the rate of thermal heat generation by viscous dissipation to rate of
heat conduction. Clearly, in the absence of viscous dissipation, the temperature profile between
the plates is linear; whereas, the contribution of viscous dissipation is a parabolic, and the linear
combination of the two yields the desired temperature profile as depicted in Fig. E2.7.

(b) The heat fluxes at the two plates are obtained by differentiating Eq. E2.7-2, and
substituting it at y = 0 and y = H into the Fourier equation to give:

- Tz — T] ‘qu
0,(H) = —k———+ 77 (E2.7-4)
T,—Ti uv2
0)=—k———-0 E2.7-5
4,(0) T (E2.7-5)

If T, > Ti,q,(0) will always be negative. The flux of heat into the lower plate is the sum of
conduction and one half of the rate of heat generated by viscous dissipation. At the upper plate,
on the other hand, the flux may be either negative (into the fluid) or positive (into the plate) or
zero, depending on the relative values of heat flux due to conduction and viscous dissipation.

2.10 MASS TRANSPORT IN BINARY MIXTURES
AND THE DIFFUSION EQUATION

Subsequent to polymer manufacture, it is often necessary to remove dissolved volatiles, such
as solvents, untreated monomer, moisture, and impurities from the product. Moreover,
volatiles, water, and other components often need to be removed prior to the shaping step.
For the dissolved volatiles to be removed, they must diffuse to some melt—vapor interface.
This mass-transport operation, called devolatilization, constitutes an important elementary
step in polymer processing, and is discussed in Chapter 8. For a detailed discussion of
diffusion, the reader is referred to the many texts available on the subject; here we will only
present the equation of continuity for a binary system of constant density, where a low
concentration of a minor component A diffuses through the major component:

DC .
TIA = QABVZCA +RA (210-1)

where the diffusivity Y45 was assumed constant, c4 is the molar concentration of the
species A, and Ry is the molar rate of production of A per unit volume (e.g., by chemical
reaction). The equation, containing the flux and source terms, is identical in form to
Eq. 2.9-17, hence, the components of the equation in the various coordinate systems can be
easily obtained from Table 2.6.

2.11 MATHEMATICAL MODELING, COMMON BOUNDARY
CONDITIONS, COMMON SIMPLIFYING ASSUMPTIONS,
AND THE LUBRICATION APPROXIMATION

Mathematical Modeling

Engineering design, analysis, control, optimization, trouble shooting, and any other
engineering activity related to specific industrial processes, machines, or structures can
best be performed using a quantitative study of effect of the parameters as well as of the
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design and process variables on the process, machine, or structure. In any of these
contexts, this undertaking calls for mathematical modeling'® of the specific entity. Hence,
engineering mathematical modeling, as the name implies, refers to the attempt to mimic
(describe) the actual engineering entity through mathematical equations, which will
always contain simplifications about the nature of the substances involved, the relative
magnitudes of the various physical effects, and the geometry of the space in which the
phenomena take place. But “simplification” is not quite the right definition for what is
done in modeling. A better description would be construction of analogs. These may be
physical analogs or mental analogs, which are amenable to mathematical formulation. A
successful modeler is someone with a thorough understanding of the physical mecha-
nisms, who is imaginative enough to create the analog in such a way that it captures the
essential elements of the process, and is then able to cast it into mathematical equations.

Aris (3) more formally defined a mathematical model thus: “a system of equations, 3,
is said to be a model of prototypical system, S, if it is formulated to express the laws of §
and its solution is intended to represent some aspect of the behavior of S.” Seinfeld and
Lapidus (4) gave a more specific definition: ‘“Mathematical model is taken to mean the
formulation of mathematical relationships, which describe the behavior of actual systems
such that the dependent and independent variables and parameters of the model are
directly related to physical and chemical quantities in the real system.”

All the mathematical formulations presented in the following chapters are
mathematical models of polymer processing subsystems and systems that generally
consist of a series of intricate, mostly transport-based, physical phenomena occurring in
complex geometrical configurations.

Clearly, then, a mathematical model is always an approximation of the real system. The
better the model, the closer it will approximate the real system.

It is worth noting at this point that the various scientific theories that quantitatively and
mathematically formulate natural phenomena are in fact mathematical models of nature.
Such, for example, are the kinetic theory of gases and rubber elasticity, Bohr’s atomic
model, molecular theories of polymer solutions, and even the equations of transport
phenomena cited earlier in this chapter. Not unlike the engineering mathematical models,
they contain simplifying assumptions. For example, the transport equations involve the
assumption that matter can be viewed as a continuum and that even in fast, irreversible
processes, local equilibrium can be achieved. The paramount difference between a
mathematical model of a natural process and that of an engineering system is the required
level of accuracy and, of course, the generality of the phenomena involved.

An engineering mathematical model may consist of a single algebraic equation, sets of
partial differential equations, or any possible combination of various kinds of equations
and mathematical operations, often in the form of large computer programs. Indeed, the
revolutionary developments in computer technology have immensely increased the
modeling possibilities, their visualization and their interpretation, bringing all engineering
models much closer to the real process. They have also vastly expanded the practical use of
numerical solutions such as finite difference methods and finite elements.

The quantitative study of the process, which as we stressed at the outset, is the reason
for modeling, is called simulation. But modeling and simulation have useful functions

13. The word *““model” derives from the Latin word modus which means a ““measure,” hinting toward a change in
scale.
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beyond the quantitative study of the process. An attempt to build a model for a complex
process requires first of all a clear definition of objectives, which is often both useful and
educational. In addition, by repeated simulations, a better understanding of the process is
achieved, greatly improving our insight and developing our engineering intuition. Using a
model, we can study extrapolation or scale-up problems and the effect of individual
variables, and explore sensitivity and stability problems. All of these are often difficult,
costly, or even impossible to carry out in the actual processes.

Model building consists of assembling sets of various mathematical equations, originating
from engineering fundamentals, such as the balance equations which, together with the
appropriately selected boundary conditions, bear the interrelations between variables and
parameters corresponding to those in the actual processes. Modeling a complex process, such
as a polymer processing operation, is done by breaking it down into clearly defined subsys-
tems. These are then assembled into the complete model. The latter is tested for experimental
verification. A mathematical model, no matter how sophisticated and complicated, is of little
use if it does not reflect reality to a satisfactory degree as proved by experimentation.

There are various ways to classify mathematical models (5). First, according to the
nature of the process, they can be classified as deterministic or stochastic. The former
refers to a process in which each variable or parameter acquires a certain specific value or
sets of values according to the operating conditions. In the latter, an element of uncertainty
enters; we cannot specify a certain value to a variable, but only a most probable one.
Transport-based models are deterministic; residence time distribution models in well-
stirred tanks are stochastic.

Mathematical models can also be classified according to the mathematical foundation
the model is built on. Thus we have transport phenomena—based models (including most
of the models presented in this text), empirical models (based on experimental
correlations), and population—based models, such as the previously mentioned residence
time distribution models. Models can be further classified as steady or unsteady, lumped
parameter or distributed parameter (implying no variation or variation with spatial
coordinates, respectively), and linear or nonlinear.

In polymer processing, the mathematical models are by and large deterministic (as are
the processes), generally transport based, either steady (continuous process, except when
dynamic models for control purposes are needed) or unsteady (cyclic process), linear
generally only to a first approximation, and distributed parameter (although when the
process is broken into small, finite elements, locally lumped-parameter models are used).

Common Simplifying Assumptions

In the examples discussed so far, as well as those to be discussed throughout this book,
several common simplifying assumptions are introduced without proof or discussion. Their
validity for polymeric materials is not always obvious and they merit further discussion.

The No-slip Condition The no-slip condition implies that, at a solid-liquid interface,
the velocity of the liquid equals that of the solid surface. This assumption, based on
extensive experimentation, is widely accepted in fluid mechanics, though its validity is not
necessarily obvious.

The slip of viscoelastic polymeric materials (and flow instabilities) was reviewed in
detail by Denn (6). Apparent slip at the wall was observed with highly entangled linear
polymers, but not with branched polymers or linear polymers with insufficient numbers of
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entanglements per chain. The slip was observed at stresses below the onset of visible
extrudate distortions. Yet more advanced experimental tools need to be developed to
examine slip and its length scales.

Three theories were proposed to explain wall-slip: (a) adhesive failure at the wall, (b)
cohesive failure within the material as a result of disentanglement of chains in the bulk and
chains absorbed on the wall, and (c) the creation of a lubricating surface layer at the wall
either by a stress-induced transition, or by a lubricating additive. If the polymer contains
low molecular weight components or slip-additives, their diffusion to the wall will create a
thin lubricating layer at the wall, generating apparent slip.

Slip at the wall is closely related to extrudate instabilities, but in normal flow situations
within machines, in virtually all but exceptional cases, the no-slip condition is assumed for
solving flow problems.

Liquid-liquid interface At the interface between two immiscible liquids, the boundary
conditions that must be satisfied are (a) a continuity of both the tangential and the normal
velocities (this implies a no-slip condition at the interface), (b) a continuity of the shear
stress, and (c) the balance of the difference in normal stress across the interface by the
interfacial (surface) force. Thus the normal stresses are not continuous at the interface, but
differ by an amount given in the following expression:

1 1
P —Py=I——— 2.11-1
r=r (g7 @11-1)
where P; — P, is the pressure difference, due to the surface tension I', action on a curved
surface of radii of curvature of R, and R».

The Steady State Assumption A physical process has reached a steady state when a
stationary observer, located at any point of the space where the process is taking place,
observes no changes in time. Mathematically, this statement reduces to the condition
where, in the field equations describing the process, all the 9/J¢ terms vanish. In reality,
processes are very rarely truly steady. Boundary conditions, forcing functions, system
resistance, and composition or constitution of the substances involved change periodically,
randomly, or monotonically by small amounts. These changes bring about process response
fluctuations. In such cases the process can still be treated as if it were steady using the
pseudo—steady state approximation.

To illustrate this approximation, let us consider a pressure flow in which the driving-
force pressure drop varies with time. We set Op/Jt and Ov/Ot in the equations of
continuity and motion, respectively, equal to zero and proceed to solve the problem as if it
were a steady-state one, that is, we assume AP to be constant and not a function of time.
The solution is of the form v = v(x;, AP(t), geometry, etc.). Because AP was taken to be a
constant, v is also a constant with time. The pseudo—steady-state approximation
“pretends” that the foregoing solution holds for any level of AP and that the functional
dependence of v on time is v(x;,¢) = v(x;, AP(¢), geometry, etc.). The pseudo—steady
state approximation is not valid if the values of A(pv)/Ar (At being the characteristic
time of fluctuation of AP) obtained using this approximation contribute to an appreciable
fraction of the mean value of the applied AP.

The Constant Thermophysical-Properties Assumption The last commonly used set of
assumptions in liquid flow (isothermal, as well as nonisothermal) and in conductive heat
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transfer is to treat k, C,, and p as constant quantities, independent of 7and P. In polymer
processing, where both heat transfer and flow take place, typical temperature variations
may reach up to 200 °C and pressure variations, 50 MN/m?. Under such significant variations,
the density of a typical polymer would change by 10 or 20%, depending on whether it is
amorphous or crystalline, while k and C,, would undergo variations of 30 to 40%.

Under normal conditions, when solving momentum and energy equations, we can usually
assume the polymer melt to be incompressible, but the melt density at the prevailing
pressures and temperatures should be carefully evaluated. Assuming constant C, and k
(taken at the average temperature), though it may affect the results of heat transfer or
coupled heat transfer and flow in polymer processing, do give very good approximations.

The Lubrication Approximation

In polymer processing, we frequently encounter creeping viscous flow in slowly tapering,
relatively narrow, gaps as did the ancient Egyptians so depicted in Fig. 2.5. These flows are
usually solved by the well-known Ilubrication approximation, which originates with the
famous work by Osborne Reynolds, in which he laid the foundations of hydrodynamic
lubrication.'* The theoretical analysis of lubrication deals with the hydrodynamic behavior
of thin films from a fraction of a mil (10 2 in) to a few mils thick. High pressures of the

d S - ‘_‘_d( =

| Edatzy K e .:_' B
e et S R

Fig. 2.5 Lubrication of a sledge used to transport the statue of Ti in ancient Egypt, about 2400
B.C. [Reprinted by permission from G. Hahner and N. Spencer, “Rubbing and Scrubbing,” Physics
Today, September, 22 (1998).]

14. Osborne Reynolds published his monumental paper on lubrication in 1886 (Phil. Trans. R. Soc., 177,
157-234). The paper was entitled “On the Theory of Lubrication and Its Application to Mr. Beauchamps Tower’s
Experiments.” Mr. Tower was an engineer working for the railroads who was trying to understand the mechanism
of lubrication of railroad cars. He observed experimentally that a very thin layer of lubricating oil appears to be
able to support the huge load of a railroad car. Unable to explain these observations, he turned to Reynolds.
Honoring Reynolds contribution to the field of lubrication, the commonly used engineering unit for viscosity,
Ibys/in? | is called a “reyn” (just as the unit “poise” is named after Poiseuille).
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Stationary plate

Flat moving plate

Fig. 2.6 Flow region formed by two closely spaced plates with variable gap H(x,z). The lower
plate is flat and moves at velocity V. The upper plate is slowly undulating.

order of thousands of psi (millions of newtons per square meter) may develop in these films
as a result of the relative motion of the confining walls. In polymer processing we are
generally dealing with films that are several orders of magnitude thicker, but since the
viscosity of polymeric melts is also several orders of magnitude higher than the viscosity of
lubricating oils, the assumptions leading to the lubrication approximation are valid in
polymer processing as well. Next we review the principles of hydrodynamic lubrication.

Consider a narrow two-dimensional gap with slowly varying thickness in the x,z plane
with the containing wall in relative motion. Specifically, the characteristic length in the x,z
plane is much larger than the characteristic length in the perpendicular direction. Without
loss in generality, we can assume that the flow is confined between a flat surface moving in
the x,z, plane and a slowly undulating fixed surface at distance H(x,z) from the flat plate, as
shown in Fig. 2.6.

According to the lubrication approximation, we can quite accurately assume that
locally the flow takes place between two parallel plates at H(x,z) apart in relative motion.
The assumptions on which the theory of lubrication rests are as follows: (a) the flow is
laminar, (b) the flow is steady in time, (c) the flow is isothermal, (d) the fluid is
incompressible, (e) the fluid is Newtonian, (f) there is no slip at the wall, (g) the inertial
forces due to fluid acceleration are negligible compared to the viscous shear forces, and (h)
any motion of fluid in a direction normal to the surfaces can be neglected in comparison
with motion parallel to them.

According to these assumptions, the only nonvanishing velocity components are v,
and v,, and the equations of continuity and motion in the Cartesian coordinate system
in Tables 2.1 and 2.4 reduce, respectively, to:

ovy O,

= 2.11-2

Ox + 0z 0 ( )

oP v,

— = 2.11-

ax H 0y? ( 3)

oP

— = 2.11-4

=0 (.114)

2
op_ O (2.11-5)

8_z_“ay2
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Equation 2.11-4 implies that there is no transverse pressure gradient. The boundary
conditions for solving the equations are v,(H) = v,(H) = 0 and v,(0) = V,,v,(0) = V,.
Equations 2.11-3 and 2.11-5 can be directly integrated to give the velocity profiles,
recalling that P is not a function of y:

n0) = Vi(1-%) +% (%) (%-1) (2.11-6)
v) = V(1 f%) +g (?;:) (%— 1) (2.11-7)

which upon integration gives the volumetric flow rates per unit width, g, and g,.

ViH H? [ 0P
= — | —= 2.11-8
1 2 + 12p ( Bx) ( )
V.H H? oP
= — | —= 2.11-9
=5 Ty ( az) (2.11-9)
The equation of continuity is next integrated over y:
T 0 0
Ve  Ov,
—+—=]dy=0 2.11-10
J(@x + 5Z) Y ( )
0
and substituting Eqgs. 2.11-6 and 2.11-7 into Eq. 2.11-10 gives
0 oP 0 oP OH OH
— (B )+ (H ) =6pu—V, +6u—V. 2.11-11
Bx( 8x)+8z< 81) Hox +'u81 ‘ ( )

which is known as the Reynolds equation for incompressible fluids. By solving it for any
H(x,z) the two-dimensional pressure distribution P(x,z) is obtained, from which the local
pressure gradients can be computed and, via Egs. 2.11-6 to 2.11-9, the local velocity
profiles and flow rates obtained.

The lubrication approximation facilitates solutions to flow problems in complex geometries,
where analytical solutions either cannot be obtained or are lengthy and difficult. The utility of
this approximation can well be appreciated by comparing the almost exact solution of pressure
flow in slightly tapered channels to that obtained by the lubrication approximation.

The lubrication approximation as previously derived is valid for purely viscous
Newtonian fluids. But polymer melts are viscoelastic and also exhibit normal stresses in
shearing flows, as is discussed in Chapter 3; nevertheless, for many engineering
calculations in processing machines, the approximation does provide useful models.

Example 2.8 Flow between Two Infinite Nonparallel Plates in Relative Motion
Consider an incompressible Newtonian fluid in isothermal flow between two non-parallel
plates in relative motion, as shown in Fig. E2.8, where the upper plate is moving at constant
velocity Vj in the z direction. The gap varies linearly from an initial value of H, to H; over
length L, and the pressure at the entrance is P, and at the exit P;. Using the lubrication
approximation, derive the pressure profile.
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Pressure-drop region

) Pressure-rise region
'

Fig. E2.8 Two non-parallel plates in relative motion, with schematic velocity profiles
corresponding to a pressure-rise zone followed by a pressure-drop zone when entrance and
exit pressures are equal.

Solution 'We can gain insight into the nature of the flow if we first consider the special case
where the pressure at the entrance P, equals the pressure at the exit P;. Figure E2.8 shows the
schematic velocity profiles at different locations. At a steady state, the net volumetric flow rate of
an incompressible fluid must be constant. Since the gap between the plates is wide at the entrance
and narrow at the exit, the drag flow decreases linearly from entrance to exit. Hence, in order to
maintain a uniform net flow rate, pressure must initially rise (with opposing pressure flow redu-
cing drag flow), and drop toward the exit (with the pressure flow augmenting the drag flow).
Clearly, the pressure profile must reach a maximum, at which point the pressure gradient is
zero and the flow is pure drag flow. Of course, if Py # P, the pressure may rise continuously,
drop continuously, or go through a maximum, depending on the conditions.

The Reynolds equation (Eq. 2.11-11) for one-dimensional flow, as in the case at hand,
reduces to:

d ( ,dP dH
— | H — ) =6uVy— E2.8-1
dz( dz) K04 ( )

where z is the flow direction. Equation E2.8-1 can be integrated with respect to z to give
dpP
H? T 6uVoH + C, (E2.8-2)
z

where C, is an integration constant, which can be conveniently expressed in terms of H"
defined as the separation between the plates where dP/dz = 0. If the pressure exhibits a
maximum within 0 <z <L, then H" is the separation between the plates at that location; if
the pressure profile exhibits no maximum in this range, the mathematical function describing
the pressure as a function of z will still have a maximum at z < O or z > L, and H" will be the
“separation” between the virtual plates extended to that point. Thus, Eq. E2.8-2 can be
written as

dpP H—-H*

& euv
dz KYo 13

(E2.8-3)

and integrated to give the pressure profile:

Z

H—-H*

P =P+ 6uV0J—H3 dz (E2.8-4)
0
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where P(0) = Py. For a constant taper, the dimensionless gap size as a function of distance is
given by:

(=6 G-17 (E2.8-5)

where { = H/H, and {, = Hy/H;. Substituting Eq. E2.8-5 into Eq. E2.8-4 and integrating,
the latter gives the desired pressure profile:

6uVoL | (o —¢ 2
P—Py+ 1Yo o6 ¢q fov ¢ (E2.8-6)
HoHy [{({o—1) VoHo(*({y — 1)
where ¢ is the net flow rate per unit width:
1 *
q=>VoH (E2.8-7)

2

The pressure distribution therefore depends on a number of variables: geometrical (Hop, H;, and
L), operational (Vy and ¢), and physical properties (1). The maximum pressure that can be
attained is at { = 1 (z = L), at closed discharge conditions (g = 0):

6uLV0
HoH,

Prax = Po + (E2.8-8)

If the entrance and discharge pressures are equal, the pressure profile will exhibit a
maximum value at H* = 2Hy/(1 4 {y). This conclusion therefore focuses attention on an
important difference between parallel-plate and non—parallel-plate geometries. In the former,
equal entrance and discharge pressure implies no pressurization and pure drag flow, whereas,
in the latter, it implies the existence of a maximum in the pressure profile. Indeed, this
pressurization mechanism forms the foundation of the lubrication, as is shown in the next
example, and explains the experimental observation of pressure profiles along SSEs as we
discuss in Chapter 6.

Example 2.9 The Journal-Bearing Problem'> A journal of radius r| is rotating in a
bearing of radius r, at an angular velocity 2. The length of the journal and bearing in the z
direction is L. Viscous Newtonian oil fills the narrow gap between the journal and bearing. The
oil lubricates the bearing, that is, it prevents solid-solid frictional contact between the journal
and the bearing. This is accomplished, of course, as a result of the pressure field generated
within the film. We wish to derive a mathematical model that explains this mechanism and
enables us to compute the forces acting on the journal and torque needed to turn the journal.

Solution We assume that the bearing is eccentric to the rotating journal by a displacement of
magnitude, a, as shown in Fig. E2.9a.

The concentric gap is ¢ = r, — ry, and clearly a < c. The gap is very small, and locally we
can assume flow between parallel plates. Thus we define a rectangular coordinate system
X,Y,Z located on the surface of the journal such that X is tangential to the journal, as indicated
in Fig. E2.9a. The gap between the journal and bearing is denoted as B(f) and is well
approximated as a function of angle 0 by the following expression:

ri +B(0)=r, +acosl (E2.9-1)

15. We follow the solution presented in R. B. Bird, R. C. Armstrong, and O. Hassager, Dynamics of Polymeric
Liquids, Second Edition Vol. 1, Fluid Mechanics, Wiley, New York, 1987, p. 48.
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Fig. E2.9a Journal-bearing configuration with centers separated by displacement a. The
force acting by the pressure field on the journal is given by component Fy, and F,.

or
B(0) = c+acosf (E2.9-2)

Invoking the lubrication approximation, the local velocity profile (at a given angle 0) in
rectangular coordinates X, ¥, with boundary conditions vx(0) = Qr; and vx(B) =0 (see
Example 2.5) is given by

v (Y) = O (1 - g) - g (g) (1 - g) j—i (E2.9-3)

Integrating Eq. E2.9-3 gives the flow rate:

B3LdP

_Z = E2.9-4
12udX ( )

1
Q :EQ}"]BL

In this case, we are not interested in the flow rate, but rather the pressure profile around
the journal. Therefore, we express the flow rate, which (at steady state and neglecting
leaks on the sides) is constant, in terms of the gap size By at locations where the pres-
sure profile attains maximum or minimum, and where the flow rate equals the local drag
flow:

1
0= EerBOL (E2.9-5)

There will be two such locations, as schematically indicated in Fig. E2.9b.
Substituting Eq. E2.9-5 into Eq. E2.9-4, gives

dp 1 B
T = onan (ﬁ - B—;) (E2.9-6)
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Y

Fig. E2.9b The two broken lines show schematically the locations where the gap size is By
and where the pressure profile exhibits a maximum and a minimum.

Next, we obtain an expression for the shear stress by substituting Eq. E2.9-6 into
Eq. E2.9-3 subsequent to taking its derivative and multiplying it by viscosity:

dv 4 3B
TYX‘YZO = 7#7; = 'uer (E - 3720) (E29-7)

Next, we substitute Eq. E2.9-2 into Eqs. E2.9-6 and E2.9-7, recalling that dX = r;d0, to
get

14P 1 B
28 6 (= — 20 E2.9-8
Fdp oM (32 33) ( )
4 3B
Tyolrer, = ury (E - 3720) (E2.9-9)

By integrating Eq. E2.9-8 between 6 = 0 and 6 = 27, we get an equation that we can solve
for By:

Py 2n 2n
1 B 1 B
2 0 _ 0 _
Py 0 0

which yields:

2 _ 2
BO:h:C<C . ) (E2.9-11)
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where J, is defined as

2n

J do
=777
(c+acosb)
0

and

Jy = 2n(c? fa2)71/2

dJ, 2 a\-3/2
J2 :%—2 (C a)
_ 1dJ, > 1, 2 2\—5/2
J3 2dc_2< +2a (c a)

Now we can compute the torque given by
2n
T =L J [0, Qri dO (E2.9-12)
0

by substituting Eq. E2.9-9 into Eq. E.2.9-12 to give

T = —uLQr; (41, — 3BoJ2)

2nulQr} ¢? + 2a° (E2.9-13)

V2 a2t +a?/2

Next, we calculate the net force the fluid exerts on the journal. The components F, and F,
of this force, as shown in Fig. E2.9¢, are obtained by integrating around the circumference the
respective contributions of the pressure and shear stress.

The force in the positive y direction is

Fy=L | (—Psin6 — 1,9 cos H)r:rl r1 do
2n AP
= L [Pcos 9}(2)71-0- J - K%) - rro} cos Or; dO (E2.9-14)
0

dp
=L|- {(@) - ‘c,.()} cos Ory do

T
|
[

(b)

Fig. E2.9c (a) The normal force generated by the pressure and its x and y components. (b)
The tangential shear force and its x and y components.
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We can simplify this equation by neglecting the 7,9 contribution with respect to the dP/d0
contribution, because the former is of the order r; /c; whereas, the latter is of (r /c)*. Thus
(neglecting higher-order terms from 7,9), we obtain for Fy

2m
1 By
Fy=-Lr |6 Qrz(—f—) do
y : l VIS (E2.9-15)
= —6uLriQ (K, — BoK3)
where
2n
K — J‘ cosf do
" J (c+acosB)"
0
and
o= (N —en)
2= |5 Vi —eh
K= (N h—en)
= |- —c
3 2) V2 3
or
3u(2mr L)(92
Fy=— u2rn B)(Sr)n (E2.9-16)
c\?2 ca\2 1
RICRE
< (a) ) { a +2}a
The force in the positive x direction, F, is
2z
F, =L ‘ [P cosf + 1,9 sin 6},:,1 do=0 (E2.9-17)
0
Finally, the pressure distribution is obtained by integrating Eq. E2.9-8 to give
P—Pyrt 6uStriasin 0(c + 0.5a cos 0) (E2.9-18)

(2 +0.5a2)(c 4 acos 0)*

where Py is an arbitrary constant pressure.

Thus we see that the net force acts in the negative y direction, and is proportional to
viscosity, journal surface area, and tangential speed, and inversely proportional and very
sensitive to the displacement a. Indeed, as a approaches zero, the force grows and approaches
infinity, so clearly, this force prevents the journal from contacting the barrel with the tight
clearance circling the bearing.
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PROBLEMS

2.1 Coordinate Transformation (a) Verify the following relationships for the con-
version of any function in rectangular coordinates ¢(x,y,z), into a function in
cylindrical coordinates ¥/(r, 0, z)

x =rcosb, y=rsinf, 2=z

r=/x2+y2, 0:arctan))—:, 2=z

(b) Show that the derivatives of any scalar function (including components of vectors
and tensors) in rectangular coordinates can be obtained from the derivatives of the
scalar function in cylindrical coordinates

0 0 ( sin9> 0
—=cosl—+ | ———

ox or r )00
0 .0 cosf\ 0
8_y:Sln05+ (T)%
g 0

0z 0z

(Use the Chain Rule of partial differentiation.)

(c) The unit vectors in rectangular coordinates are 9, 6,, 8., and those in cylindrical
coordinates are 9,, 8y, and d&,. Show that the following relationship between the unit
vectors exists

8, = cos 08, + sin 09,

09 = — sin 09, + cos 09,

o, =19,

and

0, = cos 09, — sin 09y
= sin 06, + cos 0y

n
2
|

(d) From the results of (c), prove that

0 0 0
EB,«—O, E89_07 a 82 O
0 0 0
a0% =% 9g™ = % 9% =0
0 0 0
5.0 =0 5%=0 S8.=0
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(e) The operator V in rectangular coordinates is

0 0 0
V=06,—+6,—+06,—
'8x+ 4 y+ “0z

Using the results of (b) and (d), derive the expression for V in cylindrical coordinates
(f) Evaluate V - v in cylindrical coordinates.

2.2 Interpretation of the Equation of Continuity Show that the equation of continuity
can be written as

Dp

“r _ _v.

o = PV
where D/Dt is the substantial derivative defined as

D 0

zZ_9 v

Dt Ot v

2.3 The Equation of Continuity by Differential Mass Balance Derive the equation of
continuity in cylindrical coordinates by making a mass balance over the differential
volume Ar(rA0)Az.

2.4 Macroscopic Mass Balance in a Steady Continuous System In the flow system
shown in the accompanying figure, fluid at velocity V; and density p, enters the
system over the inlet surface S;, and it leaves at density p, with velocity V, over
surface S,. The flow is steady state. Derive a mass balance using Eq. 2.4.1.

Sl
—

S2¢

2.5 The Mean Velocity of Laminar Pipe Flow Use the macroscopic mass-balance
equation (Eq. 2.4.1) to calculate the mean velocity in laminar pipe flow of a
Newtonian fluid. The velocity profile is the celebrated Poisseuille equation:

Ve = Vinas {1 _ (%)2]

2.6 The Rate of Strain Tensor Using geometrical considerations, show that in a
general flow field

S % + %
Py = dy  Ox

B % v,
Ty = 0z Oy
. % n v,
sz - aZ 8)6
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2.7 Spatial Variation of Properties Let S(r) be a scalar field of a property of the
continuum (e.g., pressure, temperature, density) at point P defined by radius
vector r.

(a) Show that for any such scalar field an associated vector field VS can be defined
such that the dot product of which with unit vector e expresses the change of property
S in direction e.

(b) Prove that for a Cartesian coordinate system

as oS oS
VS =8, — + 8 — + 8, —
S=dgth ey

(c) If S = xy + z, find the unit vector of maximum gradient at P(2,1,0)
(d) Prove that for a cylindrical coordinate system

os 19SS _0S
VS =8, + 8 oot 8

(e) Prove that for a spherical coordinate system

oS 108 1 0§

2.8 Viscous Stresses Acting in a Surface Element Using the expression 7 - nds, show
that the forces acting on a unit surface in plane 2, 3 in a rectangular system is
m-n =87y + 062712 + 837y3.

2.9 Sign Convention of the Stress Tensor T Consider a linear shear flow and examine
the stress components 7j;

2.10 The Relationship between Shear Rate and Strain  Show that (dv,/dy) in a simple
shear flow is identical to —(dy/dt), where v is the angle shown in the accompanying
figure.

\ 4

2.11 The Invariants of the Rate of Strain Tensor in Simple Shear and Simple
Elogational Flows Calculate the invariants of a simple shear flow and elonga-
tional flow.
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Optimum Gap Size in Parallel Plate Flow Show that for the flow situation in
Example 2.5, for a given net flow rate the optimum gap size for maximum pressure
rise is

H =3q/Vy
and the maximum pressure gradient is

ar| 6uV3
dz| =~ 274%

max

Couette Flow Couette flow is the flow in the annular space between two
long concentric cylinders of radii R, and R;, created by the rotation of one of
them. Consider Couette flow with (a) the outer cylinder rotating with angular
velocity 2(s~!); (b) the inner cylinder is rotating with angular velocity —Q(s™").
(c) Also obtain the result by making a forque balance over a thin fluid shell
formed by two imaginary fluid cylinders of radii » and r + Ar and length
L(R; < r < R,).

2.14 Axial Drag Flow between Concentric Cylinders Consider the drag flow created in

2.15

the space formed by two concentric nonrotating cylinders of radii R, and R;, with
the inner cylinder moving with an axial velocity V. The system is open to the
atmosphere at both ends. (a) Derive the velocity profile. (b) Also obtain the result by
making a force balance on a thin fluid shell previously discussed.

Capillary Pressure Flow Solve the problem of flow in a capillary of radius R and
length L, where L > R. The fluid is fed from a reservoir under the influence of an
applied pressure Py. The exit end of the capillary is at atmospheric pressure.
Consider three physical situations: (a) a horizontal capillary; (b) a downward
vertical capillary flow; and (c) an upward vertical capillary flow.

2.16 Axial Pressure Flow between Concentric Cylinders Solve the problem of flow in

217

2.18

2.19

the horizontal concentric annular space formed by two long cylinders of length
L and radii R; and R,, caused by an entrance pressure Py, which is higher than the
exit (atmospheric) pressure. Consider the limit as (Ry — R;)/(Ro + R;) approaches
Zero.

Helical Flow between Concentric Cylinders Consider the helical flow in an
annular space created by a constant pressure drop (Py — P;) and the rotation of the
inner cylinder with an angular velocity Q(s™!).

Torsional Drag Flow between Parallel Disks Solve the torsional drag flow
problem between two parallel disks, one of which is stationary while the other is
rotating with an angular velocity Q(s™). (Note: vy /r = constant.)

Radial Pressure Flow between Parallel Disks Solve the problem of radial
pressure flow between two parallel disks. The flow is created by a pressure drop
(P|r:07P|r:R). Disregard the entrance region, where the fluid enters from a small
hole at the center of the top disk.
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2.20 Flow near a Wall Suddenly Set in Motion Set up the parallel-plate drag flow
problem during its start-up period ¢ < #,, when v, = f(¢) in the entire flow region,
and show that the resulting velocity profile, after solving the differential equation
v/V =1 —erf(y/+\/4put/p), if H is very large.

2.21 Heat Conduction across a Flat Solid Slab Solve the problem of heat transfer
across an infinitely large flat plate of thickness H, for the following three physical
situations: (a) the two surfaces are kept at 77 and 75, respectively; (b) one surface is
kept at T} while the other is exposed to a fluid of temperature 7}, which causes a
heat flux gy|y—y = ho(T» — T}), hy being the heat-transfer coefficient (W/m2-K); (¢)
both surfaces are exposed to two different fluids of temperatures 7, and T, with
heat-transfer coefficients & and h,, respectively.

2.22 Heat Transfer in Pipes Solve the problem of conductive heat transfer across an
infinitely long tube of inside and outside radii of R; and R,. Consider the
following two physical situations: (a) the surface temperatures at R; and R, are
maintained at 7; and T,; (b) both the inside and outside tube surfaces are exposed
to heat transfer fluids of constant temperatures 7, and T, and heat-transfer
coefficients h; and h,.

2.23 Heat Transfer in Insulated Pipes Solve case (b) of Problem 2.22 for a composite
tube made of material of thermal conductivity k; for R; < r < R,, and of material of
thermal conductivity k, for R,, < r < R,.

2.24 Parallel-Plate Flow with Viscous Dissipation Consider the nonisothermal flow
of a Newtonian fluid whose p, C, and k are constant, while its viscosity varies
with temperature as u = Ae®/R The flow is between two infinite parallel plates,
one of which is stationary while the other is moving with a velocity V. The fluid
has a considerably high viscosity, so that the energy dissipated (%,u(y :¥) in
Eq. 2.9 — 17) cannot be neglected. State the equations of continuity, momentum,
and energy for the following two physical situations and suggest a solution
scheme: (a) T(0) =Ty, T(H) =Tz (b) ¢y|y=0 = qyl,_py = 0.

2.25 Flow between Tapered Plates'® Consider the steady isothermal pressure flow of a
Newtonian and incompressible fluid flowing in a channel formed by two slightly
tapered plates of infinite width. Using the cylindrical coordinate system in the
accompanying figure and assuming that v,(r,0),vy = v, = 0:

16. W.E. Langlois, Slow Viscous Flows, Chapter VIII, Mcmillan, London, 1964.
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(a) show that the continuity and momentum equations reduce to

1o, F(0)

~ar (rv,)=0 or V= (a)
OP u v,
ar P (ae2> (b)
OP _ 2u (v, (©)
20— r \ 20 ¢

Differentiate Eq.(b) with respect to 6 and Eq.(c) with respect to r and equate. Solve
the resulting equations using the boundary condition

vp(r,£a) =0, 0= / v,r db

to obtain the velocity and pressure fields:

(r,0) (0] sin® o — sin® 0 (@
vell, = .
r sino coso — o + 2o sin® o

sin? o — sin® 0) (X2 /r% —
1o ( )oe/r —1) ©

X2 sinocoso — o 4 20 sin’ o

P(F,H)ZP()—F

where P(X,0) = Py.
(b) Show that the two nonvanishing pressure gradients in Cartesian coordinates are

OP _ 2uQ(1 +D*)D’h h* — 3Dy

- — f
Ox E (l’l2 +D2y2)3 ( )
P _ 2uQ(1 4+ D*)D*h 3h* — D*y? (@
dy E (h? 4+ D?y?)? g

where D = tano,h = D(x — X) and E = D — (1 — D?) arctan D.

(c) From the Reynolds equation (Eq. 2.4-11) show that for the tapered channel

pressure flow,
oP  30u

o e )

Plot the ratio of pressure drops obtained by Egs. (h) and (f) to show that for o < 10°,
the error involved using the lubrication approximation is very small.
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In Chapter 2 we discussed the engineering science of transport phenomena and Newtonian
fluid mechanics. Only simple fluids such as gases and small liquid molecules exhibit
Newtonian behavior. High molecular weight polymer melts are structurally complex fluids in
that their macromolecules can assume many conformations, which become more stretched
under flow, while gradually recovering into random conformations upon removal of the flow
stresses. The state of macromolecular conformations profoundly affects intermolecular
interactions during flow and, therefore, the viscosity of polymer melts strongly depends on
the flow velocity gradients, rendering them non-Newtonian and their viscosity a rheological
material function, not just a material parameter, as with Newtonian fluids. Furthermore,
polymer melts also exhibit, in addition to a viscous nature, an elastic response, since
conformations recover from stretched to random. Therefore, melts are viscoelastic materials.

A major portion of all the polymer processing shaping operations and elementary steps
involves either isothermal or, most often, nonisothermal flow of polymer melts in
geometrically complex conduits. Before dealing with the realistic polymer processing flow
problems, it is therefore appropriate to examine separately the rheological (flow) behavior
of polymer melts in simple flow situations and in the absence of temperature gradients.
Our aims are to clarify the physical meaning of terms such as non-Newtonian or
viscoelastic behavior, primary normal stress coefficient, and viscosity functions, to discuss
briefly, from a primarily physical viewpoint, the constitutive equations that either
quantitatively or semiquantitatively describe the observed behavior of polymer melts, and
to examine the experimental methods that yield the rheological information needed to
characterize polymer melt flow behavior in simple flows.

It is important to note that the rheological material functions obtained experimentally,
using rheometers, are evaluated in simple flows, which are often called viscometric or
rheometric. A viscometric flow is defined as one in which only one component of the
velocity changes in only one spatial direction, v,(y). Yet these material functions are used
to describe the more complex flow situations created by polymer processing equipment.
We assume, therefore, that while evaluated in simple flows, the same rheological
properties also apply to complex ones.

Principles of Polymer Processing, Second Edition, by Zehev Tadmor and Costas G. Gogos.
Copyright © 2006 John Wiley & Sons, Inc.
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The combined effects of flow, geometric channel complexities, and coupled thermo-
mechanical phenomena necessitate the use of numerical solutions. In the past 25 years a
large number of increasingly powerful numerical simulation packages have been
developed commercially taking advantage of the exponential growth in available and
affordable computational power to enable solutions of nonisothermal processing flows
of non-Newtonian polymer melts. We will describe some of these in the relevant chapters.

3.1 RHEOLOGICAL BEHAVIOR, RHEOMETRY, AND RHEOLOGICAL
MATERIAL FUNCTIONS OF POLYMER MELTS

Three kinds of viscometric flows are used by rheologists to obtain rheological polymer
melt functions and to study the rheological phenomena that are characteristic of these
materials: steady simple shear flows, dynamic (sinusoidally varying) simple shear flows,
and extensional, elongational, or shear-free flows.

Steady Simple Shear Flows

This type of flow is obtained either by the relative motion of the rheometer surfaces
inducing simple drag flow on the fluid, or by an externally created pressure drop inducing
pressure flow on the fluid as shown in Fig. 3.1, parts 1a, 2a, and 3. These flows have the
following general flow field: vi = v (x2), vo = v3 = 0, leading to a single nonzero shear
rate component ;, # 0. The coordinates x; for each of the steady shear flows are also
shown on Fig. 3.1. The maximum shear rates that are attainable in the simple shear drag
flows are very low, below j < 1s~!, because of secondary flow-induced instabilities
generated at the melt sample periphery edges. On the other hand, the operational shear rate
range for the externally applied pressure-induced capillary flow rheometer is
1 < § < 10*s7!, covering a range which coincides with most if not all processing flows.

Dynamic (Sinusoidally Varying) Drag Simple Shear Flows

Dynamic (sinusoidally varying) drag simple shear flows are shown in Fig. 3.1, parts 1b and
2b. They are obtained by applying a sinusoidally varying angular displacement
A(w,t) = Ap sinwt in the same rheometers that generate steady simple shear flows.
Since polymer melts are viscoelastic, the resulting time-varying shear stress has both an
in-phase (viscous) and an out-of-phase (elastic) component.

The steady and dynamic drag-induced simple shear-flow rheometers, which are limited
to very small shear rates for the steady flow and to very small strains for the dynamic flow,
enable us to evaluate rheological properties that can be related to the macromolecular
structure of polymer melts. The reason is that very small sinusoidal strains and very low
shear rates do not take macromolecular polymer melt conformations far away from their
equilibrium condition. Thus, whatever is measured is the result of the response of not just a
portion of the macromolecule, but the contribution of the entire macromolecule.

Extensional, Elongational or Shear-free Flows

Extensional, elongational or shear-free flows play a dominant role in the post die-forming
step, such as stretching of melt strands in spinning, uniaxial stretching of molten films
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exiting a flat film die, or the biaxial stretching of a tubular film exiting a blown film die to
form a “bubble.” However, as with shear rheometers, the extensional rheometer flows are
simpler than the previously mentioned real flows, because they are spatially uniform,
isothermal, and shear-free. The general form of the rate of deformation matrix for
incompressible fluids is

1 0 0
7=¢l0 om0 (3.1-1)
0 0 —(1+m)

Three uniform, steady extensional flows, which are related to post—die flows and useful
to study rheological behavior, and the ability of constitutive equations to predict such
behavior, are listed below, and are shown on Fig. 3.2.

Figure 3.2 (Case 1) shows a simple uniaxial extensional flow created by the uniform
stretching of a rectangular or a thin filament in the 1 direction. For this flow, &, = —&1;/2,
and because of the incompressibility assumption, &, = &33. Thus, in Eq. 3.1-1, m = —0.5,
giving the following rate of deformation matrix

& 0 0
y=10 —&2 0 (3.1-2)
0 0 —&2

For this simple uniaxial extensional flow to be steady, the instantaneous rate of change of
the 1 direction length (/) must be constant

—— = ¢ = const. (3.1-3)

Defining a = 1/ly, we rewrite the preceding equation:

lda .

- = 3.1-4
adt ¢ ( )

upon integration with [y being the length at r = 0
a(t) =1(t)/ly = € (3.1-5)

Thus, in order to create a steady simple uniaxial extensional flow, the rheometer must
cause the thin filament length to increase exponentially in time.

Figure 3.2 shows planar extensional flow generated by the uniform stretching of a thin
wide sheet or film in one direction only, while allowing the thickness in the
perpendicular direction to decrease. Thus, & = —é&;3 and &, = 0. Therefore, m =0
in Eq. 3.1-1, giving

1 0 O
Y=¢:10 0 O (3.1-6)
0 0 -1

Again, an exponential film length increase is necessary in order to obtain constant &,;.
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84 POLYMER RHEOLOGY AND NON-NEWTONIAN FLUID MECHANICS

In an equibiaxial extensional flow, shown in Fig. 3.2, the film is stretched at a constant
rate &,; in two directions, allowing the thickness of the incompressible molten film to

decrease. Here &)1 = &y, and &3 = —2¢&;;. Thus m = 1 in Eq. 3.1-1 and
1 0 0
Y=1¢e,|0 1 0 (3.1-7)
0 0 -2

It is quite difficult to experimentally produce the preceding three uniform and
isothermal flows, and extensional rheometers are therefore often limited to low attainable
&~ 1s7! and short duration. Nevertheless, polymer processing engineers have to deal
with nonuniform, nonisothermal extensional flows with polymer melts which, if they are
crystallizable, undergo rapid crystal nucleation and anisotropic growth of the crystalline
phase. As mentioned in Chapter 1, these phenomena in actual post—die forming operations
cause the formation of unique structures and morphologies, called structuring, which
greatly affect product properties. For further reading on experimental rheology, the reader
is referred to the extensive available literature (e.g., Refs. 1-4).

Let us now turn again to Figs. 3.1 and 3.2 to examine the experimental results obtained
with polymer melts in rtheometers and the differences between them and those obtained
with Newtonian fluids, thus gaining a specific understanding of what non-Newtonian
behavior means in the response of polymeric melt to deformation.

Rheological Response of Polymer Melts in Steady Simple Shear-Flow Rheometers

Non-Newtonian Viscosity In the cone-and-plate and parallel-disk torsional flow
rheometer shown in Fig. 3.1, parts la and 2a, the experimentally obtained torque, and
thus the 7;, component of the shear stress, are related to the shear rate y = 7, as follows:
for Newtonian fluids 7, o j, implying a constant viscosity, and in fact we know from
Newton’s law that 7, = —puy. For polymer melts, however, 71, o 9", where n < 1, which
implies a decreasing shear viscosity with increasing shear rate. Such materials are called
pseudoplastic, or more descriptively, shear thinning." Defining a non-Newtonian
viscosity,2 1,

T2 =1(7)7 (3.1-8)
and assuming that the shear rate dependence of n can be expressed by simple power

dependence, which agrees well with experimental measurements of many polymeric melts
over a broad shear rate range, we get the following relationship

n(y) = mj"! (3.1:9)

1. The term pseudoplastic is somewhat outdated because there is nothing “pseudo” in the flow behavior of
polymers. In this book we use the term shear thinning, which well describes the phenomenon.

2. Non-Newtonian viscosity is sometimes called apparent viscosity, presumably because it changes with shear
rate. In this book we call it non-Newtonian viscosity.
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This relationship, as we will see in Section 3.3, is called the Power Law fluid model, and is
used extensively in modeling flows in polymer processing.

In conclusion, we thus find that polymer melts are non-Newtonian in that they have a
viscosity that depends on the shear rate 7,5, or the shear stress 71, in steady shear flows. This
is the most important non-Newtonian property that we encounter in polymer processing.

Normal Stresses In the steady cone-and-plate and parallel-disk torsional flow
rheometers, again with polymer melts, we observe experimentally a phenomenon that is
totally unexpected and unpredictable by Newtonian rheological behavior, namely a
normal force, Fy, acting on both pairs of plates. For a Newtonian fluid, the only stress
component needed to support the single shear rate components y = 7, is shear stress
component Ty,. This stress component gives rise to the experimentally needed torque, as
noted earlier. How can the normal force Fy on the rheometer plates be explained? On the
grounds of physical macromolecular behavior, we can reason that the flow in the direction
that the velocity points, defined as direction 1, tends to orient the macromolecules in that
direction, somewhat like rubber bands stretched around a cylinder. But stretched polymer
melt macromolecules want to revert to their equilibrium coiled conformations. This
creates fensile stresses in the 1 direction, 7;; (which act as “‘strangulation” forces) as well
as stresses in the normal direction in which the velocity changes, defined as direction 2,
Ty,. These normal stresses would be relieved if the rheometer spacing were increased.
Thus, in order to maintain the plate spacing constant, we have to impose on the sheared
melt a normal force Fy. Because of the difficulties associated with the absolute value of
pressure in a flow system (see Chapter 2), we define normal stress differences rather than
individual components, such as the primary normal stress difference 7;; — 72,. In fact, as
we will see later, the measurement of the normal force Fy in the cone and plate rheometer
is a direct measure of this normal stress difference.

A graphic example of the consequences of the existence of 7;; stress in simple steady
shear flows is demonstrated by the well-known Weissenberg rod-climbing effect (5). As
shown in Fig. 3.3, it involves another simple shear flow, the Couette (6) torsional
concentric cylinder ﬂow,3 where x; = 0, x, = r, x3 = z. The flow creates a shear rate
Y12 =7, which in Newtonian fluids generates only one stress component 7j5.
Polyisobutelene molecules in solution used in Fig. 3.3(b) become oriented in the 1
direction, giving rise to the shear stress component in addition to the normal stress
component 7.

Furthermore, when the cone-and-plate rheometer is outfitted with pressure taps at
various radial positions, the experimentally obtained pressure distribution is found to be
increasing with decreasing radial distance. This, as we will see later, enables us to compute
the secondary normal stress difference, namely, 72, — 733, where direction 3 is the third
neutral spatial direction.

Next we define the two normal stress difference functions that arise in simple shear
flows

=2 = U ()it (3.1-10)

3. The Couette apparatus was developed by Maurice Couette in 1890 as a means for measuring the viscosity of a
fluid at small imposed angular velocities of the cylinders.
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(a) (b) (c)
Fig. 3.3 A 9.52-mm D aluminum rod rotating at 10 rps in a wide-diameter cylinder containing (a)
Newtonian oil, and (b) polyisobutylene (PIB) solution, which exhibits the rod-climbing
Weissenberg effect [from G. S. Beavers and D. D. Joseph, J. Fluid Mech., 69, 475 (1975)]. (c)
Schematic representation of the flow direction flow-induced 7, causing rod climbing. For
Newtonian fluids, 7;; = 0, since the small and simple Newtonian fluid molecules are incapable of
being ‘“‘oriented” by the flow.

and

o — 133 = Ua(P)i1, (3.1-11)

The coefficients ¥; and U5, like non-Newtonian viscosity, are also found to be shear rate
dependent. The non-Newtonian property of exhibiting normal stresses in shear flows plays
an important role in processing under situations in which shear stresses vanish, as in
extrudate swell, discussed later in this section.

Capillary Flow Rheometry Next we examine the experimentally obtained results with
the capillary flow rheometer shown in Fig. 3.1, which are directly relevant to polymer
processing flows, since the attainable shear rate values are in the range encountered in
polymer processing. The required pressure drop AP does not increase linearly with
increases in the volumetric flow rate Q, as is the case with Newtonian fluids. Rather,
increasingly smaller increments of AP are needed for the same increases in Q. The
Newtonian Poiseuille equation, relating flow rate to pressure drop in a tube, is linear and
given by

_ 3ulL

AP = i@

(3.1-12)

On the other hand, for polymer melts, we obtain experimentally a nonlinear
relationship

AP x Q" (n<1) (3.1-13)

Again, this dependence may reasonably be attributed to a decreasing viscosity with
increasing shear rate. With decreasing viscosity, resistance to flow at higher flow rates
decreases as well. It is this decreasing viscosity with increasing shear rates that enables
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processing machinery to operate at high rates of production and avoid excessive heat
generation that may damage the polymer.

Another important ramification of shear-thinning behavior in capillary or tube flow,
relevant to polymer processing, relates to the shape of the velocity profiles. Newtonian and
shear-thinning fluids are very different, and these differences have profound effects on the
processing of polymer melts. The former is parabolic, whereas the latter is flatter and
pluglike. The reason for such differences emerges directly from the equation of motion.
The only nonvanishing component for steady, incompressible, fully developed, isothermal
capillary flow, from Table 2.2, is

1d dapP
——(rtp,) = —— 3.1-14
rdr (re:2) dz ( )
Integrating with the boundary condition 7,,(0) = 0
AP
a=1(r)=Cr=—(5+ -1
1, =1(r) =Cr <2L> r (3.1-15)

Equation 3.1-14 holds for all fluids, since it is a physical law. This is shown in Fig. 3.4(a).

But when a rheological model relating (r) versus (r) is substituted into Eq. 3.15, two
different shear rate and velocity profiles are obtained. For Newtonian fluids, t(r) =
—uy(r), the shear rate profile is

AP

y(r) = 2L (3.1-16)

indicating that the Newtonian shear rate increases linearly with r, as shown in Fig. 3.4(b),

whereas for shear-thinning melts, using the Power Law model t(r) = —mj(r)", we get
AP 1/n |
()= (5 /n 3.1-17
r) = r -
0= (30 B.117)
P m e
I
7(r) y(r) ol ! Same
ZAVPL " Maximum
: velocity
|
: Parabola
® |
AP ®_|ar ! .
@ =@ 2L 2L | |
|
i ®
/Ry wR, LT TTTTTTTTTTTT

(a) (b) ()

Fig. 3.4 The (a) shear stress, (b) shear rate, and (c) velocity profiles of a Newtonian and a shear-
thinning fluid flowing in a capillary of dimensions R is under the influence of the same AP, that s, z(r).
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Fig. 3.5 Logarithmic plot of the shear rate-dependent viscosity of a narrow molecular weight
distribution PS (A) at 180°C, showing the Newtonian plateau and the Power Law regions and a
broad distribution PS(e). [Reprinted with permission from W. W. Graessley et al., Trans. Soc.
Rheol., 14, 519 (1970).]

Thus for shear-thinning melts, that is, n < 1, the shear rate profile, 7(r), dependence is
stronger than the first power, as shown again in Fig. 3.4(b). Consequently, as shown in
Fig. 3.4(c), shear-thinning polymer melts flow in pressure-induced flows with very high
shear rates near the walls, while there is a core of the fluid that is sheared very little.
Because of this, and the high polymer melt viscosity, the melt layers next to the wall heat
up, while the core flows isothermally. Thus, figuratively speaking, at high shear rates
where both shear rate and temperature are high near the capillary wall, the wall polymer
melt layer acts almost as a lubricant, while the core flows almost in plug flow. The shear
viscosity 7(y) of polymer melts typically decreases dramatically with increasing shear
rates in the process range of 7 (as shown on Fig. 3.5).

Polymer melts exhibit capillary exit and entrance behavior, which is different than that
of Newtonian fluids. Polymer melt extrudates “‘swell,” that is, increase in diameter,
following the capillary exit. This is, again, a ramification of the existence of tensile stresses
in the flow direction, encountered earlier. The extrudates in the stress-free boundary region
following the exit relieve this axial tension by contracting, and thus expanding radially.
Just ahead of the capillary entrance, polymer melts undergo a more complex combined
extension and shear flow. The entrance pressure drops generated are much higher for
melts, because their elongational viscosity is higher than the Newtonian, as we will see
later in this section. We will discuss both the preceding phenomena in Chapter 13.

Rheological Response of Polymer Melts to Small, Sinusoidally Varying Shear
Deformations, y(w,t) = y, sin wt

The shear rate field that results from such cyclic deformation is

dy
j; = p(wt) = yyw cos wt = J,cos wt (3.1-18)
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The cyclic stress needed to support the imposed strain and flow field is experimentally
found to be

t(w, 1) = 15 sin wt + 19" cos wt (3.1-19)

The first term of the needed stress is in phase with the applied strain; it is, therefore, an
elastic stress, since elastic materials respond to a stress only by deforming. The second
term of Eq. 3.1-19, which is out of phase with the applied strain, is in phase with the shear
rate, Eq. 3.1-18; it is, therefore, a viscous stress, since viscous fluids respond to a stress by
flow, where flow is a time-increasing strain and its measure is shear rate (see Section 2.7).
The conclusion from the response of polymer melts to small cyclic deformations, then, is
that they are viscoelastic materials. Their viscous nature is due to the ability of polymer
chain segments to drag past one another, while their elastic nature is due to the ability of
stretched chain segments to recoil, thus restoring their coiled configurations, and acting as
elastic springs.

An equivalent representation of Eq. 3.1-19, in terms of rheological functions, is

t(w,1) = %" (w) sinwt + 7% (o) cos wt (3.1-20)

where #' and 1" are components of the complex viscosity
n(w)=n"—in" (3.1-21)

For Newtonian fluids, t(w,t) = u cos wt, B =y, and n” = 0.

The viscoelastic response of polymer melts, that is, Eq. 3.1-19 or 3.1-20, become
nonlinear beyond a level of strain 7y, specific to their macromolecular structure and
the temperature used. Beyond this strain limit of linear viscoelastic response, #’, ", and n*
become functions of the applied strain. In other words, although the applied deformations
are cyclic, large amplitudes take the macromolecular, coiled, and entangled structure far
away from equilibrium. In the linear viscoelastic range, on the other hand, the frequency
(and temperature) dependence of ', ”, and #* is indicative of the specific macromolecular
structure, responding to only small perturbations away from equilibrium. Thus, these
dynamic rheological properties, as well as the commonly used dynamic moduli

G(w)=own" ad G'(0)=on (3.1-22)

are widely used for the characterization of the macromolecular structure by both polymer
scientists and engineers (7,8).

The dependence of #/, ", G, and G” on frequency reflects the ability of
macromolecular systems to flow like Newtonian fluids if the experimental time allowed
them, fexp = 1/, is very large compared to the time that they require to fully respond
macromolecularly. This temperature-dependent, material-characteristic time is commonly
called the relaxation time, J, although it is actually a relaxation spectrum (7). Conversely,
when f.,, is very short, that is, w is very high compared to 4, the macromolecular system
can only respond like an elastic solid, able only to undergo deformation and not flow. In
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terms of the dimensionless Deborah number,*

De = —=/w (3.1-23)
Texp

Polymer melts act, qualitatively speaking, as elastic solids for De > 1, as viscous
liquids for De < 1, and viscoelastic materials in the range in-between. Finally, since both
(w) and (7) represent rates of change of deformation, it is not surprising that both #*(w)
and 7(7) are rate dependent and shear thinning. As a matter of fact, n*(w), which can be
evaluated experimentally to very low frequency ranges, as low as 1072 s~!, often forms an
extension to 7(}) obtained by capillary flow at higher shear rates, as high as 10* s=!(9).
Thus, the viscosity function can be obtained over six orders of magnitude of frequency/
shear rate, yielding information on both molecular structure and processing. Dynamic
simple shear-flow rheometers yield information on the first normal stress difference N,
through the out-of-phase component of the complex viscosity #” or its equivalent in-phase
modulus G’ = n"w. The experimentally determined function 2G'(w) tracks N;(j?)
determined from steady flow cone-and-plate experiments (10,11). Laun (12) suggested
another empiricism relating G’ and N that fits the data over wider ranges of shear rate and
frequencies given by

N 2 0.7
Nl =T11 — T2 = 2G/1’]”((U) 1 + (’1—,>
n

(1):))

In summary, steady and dynamic simple shear rheometric results are complementary:
at very low (7) or (w) values they both yield useful macromolecular structure
characterization. Moreover, n*(w) in the range @ < 10 s~! forms an extension of ;(7})
obtained by capillary theometry at y > 10 s~!, a range that is relevant to processing.

Rheological Response of Polymer Melts in Steady, Uniform, Extensional Flows

Turning to Fig. 3.2, Case 1, we see that the tensile force F| needed to sustain the applied
constant extensional rate &, either levels off to a constant F (&) or exhibits strain hardening
increasing with time, occasionally in an unbounded fashion; the force is then represented
as F*(&,1). For this uniform extensional flow

F
X‘:r” +P (3.1-24)
where
—P = Ty = T33 (31—25)

4. The dimensionless Deborah number was defined and coined by Prof. Marcus Reiner from the Technion-Israel
Institute of Technology, and one of the fathers of rheology, in an after-dinner speech at the 4th International.
Congress on Rheology in Providence, Rhode Island. The Prophetess Deborah, said Marcus, “knew’ rheology,
because in her song [Judges 5:5] she says “The mountains flowed before the Lord” [[177° %157 ﬁ}’; a™7]. so
not only did she know that mountains, like everything else, flow but she knew that they flowed before the Lord and
not before man for man has a too short lifespan to notice. The ratio of relaxation time to observation time clearly
illuminates this point (Phys. Today, January 1964).
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We define a material function #, commonly called the elongational or extensional
viscosity, through the primary normal stress difference 7, — 127; thus, for the case of
Fi(¢), it is given by

Fi/A g) —
R =-A_ (71“(8). m) (3.1-26)
& &
and for F| (¢, 1), the elongational viscosity is given by
s ) _
it (&,1) = —<7T“<8’ 8) m) (3.1-27)
Experimentally, in both cases, we have
—Fi(¢)/A
q(e) = ——— (;:;8)/ 1 (3.1-28)
or
—F(g1)/A
it ) = —— (sé’ /A (3.1-29)
For a Newtonian fluid in a simple elongational flow, the constitutive equation becomes
+2¢ 0 O
T=—uy=—u| 0 —¢ O (3.1-30)
0 0 —¢
thus
T — T = —p(26 + &) = —3ué (3.1-31)

Combining Egs. 3.1-31 and 3.1-26, we obtain the so-called Trouton relation, which defines
the Trouton viscosity (13).

i =3u (3.1-32)

For polymer melts where the low shear rate limiting viscosity value is #, , 1 = 31, (14).
Examples of extensional viscosity growth, either to a steady #(¢) value or to a strain-
hardening-like mode, are shown in Fig. 3.6 for the linear nonbranched polystyrene (PS), a
high density polyethylene (HDPE) that is only slightly branched with short branches, and a
long chain-branched low density polyethylene (LDPE) (15).

We observe that strain-hardening stress and viscosity growth are associated with long
chain branching. Long chain branching is a chain structural feature that impedes large
macromolecular rearrangements of flow motions because it creates entanglements. With
this in mind, and the fact that in steady uniform extensional flow, the length is increased
exponentially to maintain & = const, it is not surprising that even at ¢ = 1072571, the
extensional viscosity still exhibits strain hardening. The Deborah number De = 11072 is
still larger than unity for LDPE, denoting very long relaxation times A > 100 s. Similar
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Fig. 3.6 Extensional growth viscosity versus time for polystyrene (top), HDPE, and LDPE. [S. A.
Khan, R. K. Prud’homme, and R. G. Larson, Rheol. Acta, 26, 144 (1987).]

results with LDPE are obtained for both the equibiaxial and planar extensional flows, as
shown in Fig. 3.7.

Turning to Fig. 3.2, Case 4, we note that the extensional flows encountered by fibers,
films, and tubes in fiber spinning, film blowing, and stretch blow molding are not uniform,;
the strand/film varies in thickness in the stretching direction(s). This extensional flow
rheometry once again involves simpler flow, and the rheological results obtained are used
to analyze or interpret more complicated, nonuniform, post-die forming flows.

Finally, it is worth discussing briefly the flow singularity at the exit corner of pressure-
flow dies used for forming fibers and film, which are consequently stretched to orient and
structure them. At that location we have to reconcile the fact that the wall melt flow layer
must, in nearly zero distance, accelerate from a zero to a finite velocity. Irrespective of the
details of this high acceleration, the surface layer undergoes high extensional rate flows,
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Fig. 3.7 (a) Uniaxial, (b) equibiaxial, and (c) planar extensional viscosities for a LDPE melt. [Data
from P. Hachmann, Ph.D. Dissertation, ETH, Zurich (1996).] Solid lines are predictions of the molecular
stress function model constitutive equation by Wagner et al, (65,66) to be discussed in Section 3.4.

and consequently, is exposed to potentially very high extensional stresses. Local crack
development can occur at critical stresses equal to those needed to rupture the melt, due to
its inability to disentangle, thus acting as a fracturing solid. Such phenomena may be the
cause of the “‘shark-skin” (16—19) melt fracture, which is discussed in Chapter 12.
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3.2 EXPERIMENTAL DETERMINATION OF THE VISCOSITY
AND NORMAL STRESS DIFFERENCE COEFFICIENTS

This section describes two common experimental methods for evaluating #, ¥, and ¥, as
functions of shear rate. The experiments involved are the steady capillary and the cone-
and-plate viscometric flows. As noted in the previous section, in the former, only the
steady shear viscosity function can be determined for shear rates greater than unity, while
in the latter, all three viscometric functions can be determined, but only at very low shear
rates. Capillary shear viscosity measurements are much better developed and understood,
and certainly much more widely used for the analysis of polymer processing flows, than
normal stress difference measurements. It must be emphasized that the results obtained by
both viscometric experiments are independent of any constitutive equation. In fact, one
reason to conduct viscometric experiments is to test the validity of any given constitutive
equation, and clearly the same constitutive equation parameters have to fit the
experimental results obtained with all viscometric flows.

Example 3.1 Capillary Flow Rheometry The experimental setup used in capillary
viscometry is shown schematically in Fig. 3.1, Case 3. Care is taken to have a uniform tem-
perature and to eliminate the piston frictional effects in the reservoir. Either constant pressure
or constant flow rate experiments are conducted, depending on the available instrument. At
very slow flow rates, with shear rates below 1s !, the surface tension of the emerging extru-
date, gravity, and the frictional forces between the piston and the reservoir cannot be
neglected; thus, the viscosity values obtained in this range are usually too high. A capillary
viscometer yields viscosity data up to shear rates, where the phenomenon of melt fracture
occurs (see Chapter 12). At high shear rates, the danger of having a high level of viscous dis-
sipation of energy, and thus nonisothermal flow, as pointed out earlier, is very real.
The starting point of our analysis is the z-component momentum equation

dpP 1d

= (1, E3.1-1

dz rdr (tr) ( )
which is valid for all incompressible fluids and is subject to the assumptions of steady and
isothermal flow. Integrating Eq. E 3.1-1, we obtain

r

T, =1, (E) (E3.1-2)

where t,, is the shear stress at the “wall” (r = R) given by

Py —Pp,
L= R E3.1-
. ( = ) (E3.1-3)

The shear stress at the wall t,, can be experimentally evaluated by measuring R, L, and
Py=P;.

By assuming only that the polymer melt is viscous and time independent, and that the
viscosity is a function of the shear rate, #(}), without the need to specify any specific
viscosity function, we can state that for capillary flow at the wall,

Tw = _y”.)rz R = 777.’w (E31_4)

where 7,, is the shear rate at the wall.
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Having the shear stress at the wall from Eq. E3.1-3 as a function of pressure drop, Eq. E3.1-
4 suggests that if in some way the shear rate at the wall, 7,,, could be evaluated experimentally
from the flow rate at the corresponding pressure drops, the viscosity function could be
determined. This is indeed possible because of the volumetric flow rate Q, which can be
expressed independently of any constitutive equation as follows

0 = 2t —2a| (252)

72
5 J—dv, (E3.1-5)
0 0

5
0

Assuming no slip at the wall of the capillary, we note that the first term on the right-hand side
of Eq. E3.1-5 is zero and it becomes

R
_ 5 [dv, i
0= nJr (dr)dr (E3.1-6)
0

From Eq. E3.1-2, r = 1,,R/7,,, a relationship that can be utilized to change the integration
variable in Eq. E3.1-6, to obtain the following equation

Ty

—nR3 [ (d
0= ; J <§> 2 dr,. (E3.1-7)
v 0

Next, Eq. E3.1-7 is differentiated (20) with respect to t,, using the Leibnitz formula of
differentiating an integral® to give

o |2 e --a(F) e
— T, + 3TwQ =T, = PwTy (E3.1-8)
nR3 dt,, dr ).

Equation E3.1-8 indicates that we can obtain the desired shear rate at the wall if we know
the flow rate corresponding to the particular shear stress at the wall and the change in flow rate
(i.e., the slope of the flow-rate function) at that point. Equation E3.1-8 with Eq. E3.1-3 can be
written as

. 1 dQ
,=——=|3 AP —— E3.1-9
T TR [ e+ d(AP)} (E3.1-9)
Finally, we can rewrite Eq. E3.1-9 as
. 3Fw Tw de
e =" 7 dn, (E3.1-10)

where I' is the Newtonian shear rate at the wall

40

I—‘w :m

(E3.1-11)

5. The Leibnitz formula:

a (x) a (x)
J f(s,x)ds:J gds—}— {f(az,x)dﬂ—f(al,x)da1

d
dx ai(x) a)(x) aZ dx dx
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Either Eq. E3.1-9 or Eq. E3.1-10, known as the “Rabinowitsch” or “Weissenberg—Rabinowitsch”
equations, can be used to determine the shear rate at the wall y,, by measuring Q and AP or t,, and
Ty, (21). Thus, in Eq. E3.1-4 both ,, and y,, can be experimentally measured for any fluid having
a shear rate—dependent viscosity as long as it does not slip at the capillary wall. Therefore, the
viscosity function can be obtained.

Experimentally, it is found that for polymer melts j,, > I',,, with the inequality, as noted in
Section 3.1, becoming more pronounced at higher shear rates.

Finally, because the results obtained in capillary viscometry, especially for capillaries of
small L/R, are influenced by both extensional and shear flow phenomena associated with the
fluid spatial accelerations at the capillary entrance, it is necessary to correct the values of t,,
given in Eq. E3.1-3. Chapter 13 covers the nature, magnitude, and significance of these,
commonly known as “Bagley” corrections.

The Rabinowitsch equation has been used in the long capillary viscometry data found in

Appendix A. Figure E3.1 shows long capillary t,, vs. I}, and 7,, vs. },, results with and without
the Rabinowitsch correction.

Example 3.2 Cone-and-Plate Flow Rheometry The cone-and-plate flow apparatus is
shown schematically in Fig. E3.2a. The polymer melt flows in the space formed by the rotat-
ing cone and stationary plate.

The experimentally measured quantities are:

1. The cone rotational frequency 2

2. The resulting torque needed to turn the cone J

3. The total force normal to the fixed plate (thrust) Fy.

4. The pressure distribution on the fixed plate as a function of r:

7000 (r)lo=r/2 = P + o0 (rlo=r/2) (E3.2-1)

Polypropylene at 193°C

le+5F

Shear stress [Pa]

let4r

10 100 1000 10000
Shear rate [1/s]

Fig. E3.1 Shear stress vs. shear rate with and without Rabinowitsch correction. [Courtesy
of V. Tan, Polymer Processing Institute (PPI), Newark, NJ.]
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Fig. E3.2a Schematic representation of the cone and plate viscometer.

We note that with the cone-and-plate rheometers, fracture of the polymer melt is observed
at shear rates exceeding 1072 or 10~ s~!. Fracture is initiated at the melt—air interface at the
perimeter. This has been attributed to the fact that the elastic energy becomes greater than the
energy required to fracture the polymer melt at those shear rates (22). Irrespective of the origin
of the fracture, it limits the operation of the cone-and-plate instrument to below the previously
mentioned shear rates.

The velocity field between the cone and the plate is “visualized” as that of liquid cones
described by 6-constant planes, rotating rigidly about the cone axis with an angular velocity
that increases from zero at the stationary plate to {2 at the rotating cone surface (23). The
resulting flow is a unidirectional shear flow. Moreover, because of the very small i, (about
1°—4°), locally (at fixed r) the flow can be considered to be like a torsional flow between
parallel plates (i.e., the liquid cones become disks). Thus

vy = Qr = (E3.2-2)
20
where z and z can be expressed in terms of the angle y = n/2 — 0
z=rsiny =y (E3.2-3)
and
20 = rsinyg = njg (E3.2-4)

Inserting Eqs. E3.2-3 and E3.2-4 into Eq. E3.2-2, the following velocity profile is obtained

v = (l/%) (E3.2-5)

Accordingly, the only nonvanishing component of the rate of deformation tensor is
Yo = Vg0 = (1/7)(8v4/80), and from Eq. E3.2-5 we obtain

Q
Yop = — e = constant (E3.2-6)

97
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Fig. E3.2b The viscosity # and first (primary) normal stress difference 7,; — 72, of LDPE
evaluated using the Weissenberg rheogoniometer (cone and plate). LDPE is Tenite 800 of
density 0.918 g/cm®, and M,, = 25, 800. [Reprinted with permission from I. Chen and D. C.
Bogue, Trans. Soc. Rheol., 16, 59 (1972).]

The preceding relationship establishes that the cone-and-plate flow is viscometric, where
¢ is direction 1, that is, the direction of motion, 0 is direction 2, that is, the direction in which
the velocity changes, and r is direction 3, that is, the neutral direction. Furthermore, the flow
field is such that shear rate is constant in the entire flow field, as it is in the flow between
parallel plates.

The torque on the shaft of the cone is due to the action of the shear stress 74 on its surface
R

g=2n J (reop)rdr (E3.2-7)
0

where 7y, is constant, since jy is constant throughout the flow field. Upon integration, we
obtain

g

Top = 5% E3.2-8

" Gk (29

This expression suffices to determine experimentally the shear stress. Having evaluated both

oy and Py, we can readily obtain the viscosity function 7 ()'/04,). Figure E3.2b gives such data

for low-density polyethylene. The data extend beyond the commonly accepted upper limit of

shear rate for polymer melts, probably because of the low average molecular weight of the
polymer.

To obtain experimental information on normal stresses, we employ and mathematically

manipulate the » component of the equation of momentum, which (neglecting centrifugal
forces) is

_____ 20 ) 4 00T Too -
o 7oy (Ptn) + —=0 (E3.2-9)

Introducing 7; = t; + P (no sum)

Tgo +7mpy 10,5 _
AR () =0 (E3.2-10)
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Upon rearrangement and integration, and taking into account that the negative of the
secondary normal stress difference, 7, — mgg, is a constant (since )'}04, is constant), and that 7y
at 0 = 7/2 (the plate) is a function of the radius, we have

r

(700 (r) — 700(R)]p_n /o= [(tgp — T00) + 2(t00 — 7,)] In (E) (E3.2-11)

The left-hand side of Eq. E3.2-11 can be experimentally evaluated; thus, the quantity in
brackets on the right-hand side can be determined.
The normal force on the stationary plate can be expressed as

R
Fy =2n J Tgor dr — TR*P ym (E3.2-12)
0

With the help of Eq. E3.2-11 and the relation P, = =, (R), we obtain, after integration of Eq.
E3.2-12, the simple relation for the primary normal stress difference function

—2Fy
nR?
Figure E3.2b shows experimental data for the primary normal stress difference for LDPE.

In summary, and in terms of the viscometric flow notation, we conclude the following about
the experimental capabilities of the cone-and-plate viscometric flow:

Tl — T2 = T — T00 = (E3.2-13)

1. The viscosity function # can be determined with the aid of Eqs. E3.2-6 and E3.2-8.

2. The primary normal stress difference, t1; — 722 = T¢¢ — Tog, can be calculated through
Eq. E3.2-13, and the coefficient ¥, can be calculated from Eq. 3.1-10.

3. The secondary normal stress difference, 72, — 733 = 199 — 7,», can be determined
subsequent to the evaluation of 7;; — 7, using Eq. E3.2-11, and the coefficient ¥,
can be calculated from Eq. 3.1-11.

These conditions are subject to the limitation for polymer melts that the applied shear rate
7 = /¥, must be below that which gives rise to fracture in the fluid sample. For solutions of
polymers, the upper limit of shear rate (or €2), however, is one at which the centrifugal forces
become important.

Figure E3.2b presents the primary normal stress difference data for LDPE, and Fig. E3.2¢
presents the primary and secondary normal stress-difference data for a 2.5% polyacrylamide
solution, again using a cone-and-plate rheometer.

We note that the primary normal stress coefficient ¥, is positive, whereas the secondary
normal stress coefficient ¥, is negative, but with a lot of scatter in the data. It is difficult to
measure (722 — 733) and its value is in doubt, but the ratio —(t;; — 722)/(t22 — 133) appears to
be about 0.1.

Bird et al. (24) pointed out a simple method of estimating the primary normal stress
difference from viscosity data. The method is approximate, originating with the Goddard—
Miller (G-M) (25) constitutive equation (Eq. 3.3-8), and it predicts that

4K () =)
V() =— | =S54 (3.2-1)
l ()=

where K is an empirical constant. Good fit to data results are obtained, with K equaling
about 2 for solutions and 3 for melts.
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Fig. E3.2¢ Values for —(‘L'|| — ‘522), (‘522 — ‘533) and the ratio —(1711 — ‘522)/(‘[22 — T33) for
2.5% acrylamide solution measured with a cone-and-plate rheometer. [Reprinted with
permission from E. B. Christiansen and W. R. Leppard, Trans. Soc. Rheol., 18, 65 (1974).]

3.3 POLYMER MELT CONSTITUTIVE EQUATIONS BASED
ON CONTINUUM MECHANICS

There is a multitude of constitutive equations proposed for polymer melts. However, only
a few have been used to solve actual polymer processing problems. Nevertheless, we feel,
as we did in the first edition of this book, that it is instructive to trace their origin and to
indicate the interrelationship among them. We will do this quantitatively, but without
dealing in detail with the mathematical complexities of the subject. The following three
families of empirical equations will be discussed:

1. The generalized Newtonian fluid models (GNF), which are widely used in polymer
processing flow analysis, since they are capable of describing well the very strong
shear rate dependence of melts.

2. The linear viscoelastic models (LVE), which are widely used to describe the
dynamic rheological response of polymer melts below the strain limit of the linear
viscoelastic response of polymers. The results obtained are characteristic of and
depend on the macromolecular structure. These are widely used as rheology-based
structure characterization tools.
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3. The nonlinear viscoelastic models (VE), which utilize continuum mechanics
arguments to cast constitutive equations in coordinate frame-invariant form, thus
enabling them to describe all flows: steady and dynamic shear as well as
extensional. The objective of the polymer scientists researching these nonlinear
VE empirical models is to develop constitutive equations that predict all the
observed rheological phenomena.

Here we follow the systematic and clear classification and description of the consti-
tutive equations of Bird et al. (14), and we refer the reader who is interested in the
detailed development of the subject to that source. There is general agreement that, by
and large, the constitutive equations for polymer melts and solutions are special cases of
a very general constitutive relation, according to which the stress at any point in a
flowing fluid and at any time depends on the entire flow history of the fluid element
occupying that point. Because it does not depend on the flow history of adjacent
elements, the dependence is “‘simple,” and the general relation is called the simple fluid
constitutive equation (26).

One physical restriction, translated into a mathematical requirement, must be
satisfied: that is that the simple fluid relation must be ‘““objective,” which means that its
predictions should not depend on whether the fluid rotates as a rigid body or deforms.
This can be achieved by casting the constitutive equation (expressing its terms) in
special frames. One is the co-rotational frame, which follows (translates with)
each particle and rotates with it. The other is the co-deformational frame, which
translates, rotates, and deforms with the flowing particles. In either frame, the observer is
oblivious to rigid-body rotation. Thus, a constitutive equation cast in either frame is
objective or, as it is commonly expressed, “‘obeys the principle of material objectivity”.
Both can be transformed into fixed (laboratory) frame in which the balance equations
appear and where experimental results are obtained. The transformations are similar to,
but more complex than, those from the substantial frame to the fixed (see Chapter 2).
Finally, a co-rotational constitutive equation can be transformed to a co-deformational
one.

Goddard (27) expressed the notion of the simple fluid constitutive equation in a
co-rotational integral series. The integral series expansion had been used in the co-
deformational frame by Green and Rivlin (28) and Coleman and Noll (29). The co-
rotational expansion takes the form:

t

t(x,1) = — J G (t—1)Idr
o (3.3-1)

tot
J— J J G11(T—t/,t—t//)[fl~f//+f//-f/]dt'/dt'—---

—00 —00

where Gy, Gqy, ... are characteristic material functions, I is the corotating rate of strain
(velocity gradient) tensor, ¢, ¢ are integration variables, and 7 is the present time. Equation
3.3-1 is in an unusable form. There are two alternative routes through which useful
constitutive equations can be obtained:
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1. Expand I in a Taylor series about 7/ = ¢

r@ﬁzym—@—f€¥+u- (3.3-2)
where
A v Vi) 5 (o 1)~ (o)) (339

is the co-rotational derivative or Jaumann derivative measuring the time rate of change of
v as measured by an observer who is translating and rotating with the local fluid velocity
and vorticity. Keeping only the first two terms of the Taylor series (which means that the
flow under consideration is almost steady), one can obtain the second-order fluid
constitutive equation

T = —ocly—l—oczé— on{y-yr—--- (3.3-4)

where «; are constants related to Gi, Gy, --. For steady shear flows, the Criminale—
Ericksen—Filbey (CEF) constitutive equation can be obtained (30):
Dy

. 1 L 1
T=-nY— (2‘1’1 + ‘I’2> {7 7} +§‘1/1 o (3.3-5)

where 1, ¥, and W, are the viscosity, first normal stress-difference coefficient, and
second normal stress difference coefficient functions, respectively. They are all functions
of the magnitude of the rate of strain tensor y = +/(} : 7)/2. Because many polymer
processing flows are steady shear flows, and because of the physical significance
of the material functions #n, ¥, and ¥,, the CEF equation is considered in detail in
Example 3.3.

If the normal stress coefficient functions ¥; and ¥, are ignored, the CEF equation
reduces to the GNF equation

T = —ny (3.3-6)

This equation reduces for an incompressible Newtonian fluid to Newton’s law, which in
tensorial form is given by

T=—uy (3.3-7)

2. If, in Eq. 3.3-1 a single integral term is retained, the Goddard-Miller (G-M)
constitutive equation is obtained (17, 25):

T=— J G(t—1\Tdl (3.3-8)

—00
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For small deformation flows it is evident from Eqs. 3.3-2 and 3.3-3 that I" equals 7, thus
the G-M equation yields the LVE fluid (14, 28, 29):

T=— J G(t—1)y(t)al (3.3-8a)

—00

where G(r — ') is the relaxation modulus, which can take specific forms, depending on
the LVE “‘mechanical model” used to simulate the real LVE behavior. For example, if a
single Maxwell element, consisting of a ““spring”” G and a ‘““dashpot” p in a series is used,
the Maxwell constitutive equation is obtained

T+ Aodt/dt = —ny¥ (3.3-9)

where A9 = 1,/G. When 1y = 0 (G — o0), the Newtonian constitutive equation for an
incompressible fluid, Eq. 3.3-7, is obtained.

Including a velocity gradient in the time derivative, we obtain the Jeffreys model (31)

, d . d .
THALTS —'1()(7"‘/1257) (3.3-10)

From the G-M equation, while still in the co-rotational frame, we can choose a specific
form of the relaxation modulus. Thus, for a single Maxwell element we can obtain

DT .
r+/loa: —NoY (3.3-11)

This is called the Zaremba-Fromm-DeWitt (ZFD) equation.
As stated earlier, the simple fluid concept can be expressed in a series of co-
deformational integrals (14, 28, 29)

t

T=— J G (t — )y ar

‘°°t . (3.3-12)
1 J J Gt — 6 — )[4 4 410" 4] g e — ...
2 )
where G, Ga, ..., are material functions and ?[1] is the co-deforming rate of strain tensor

using covariant differentiation. If contravariant derivatives are used (14)

T = —JGl (f — t/)'.Ym/dt/

| t 1 (3.3-13)
— E J J Gz(t _ t/, t— t//) 'S’[l]l X 7[1]” + '.Y[l]// . ;Y[l]/ di’ di — - -
—00 —00
where G', G2, ... are material functions and 7[1] is the co-deforming rate of strain tensor

using contravariant differentiation.
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As was the case with Eq. 3.3-1, Egs. 3-3.12 and 3.3-13 are also not usable in their
current form. But the same means for making them usable are available (see Ref. 14:
Fig. 9.6-1 and Table 9.4-1). Two specific steps to simplify the equation are as follows:

1. For almost steady flows one can expand ! or Yp) about 7 = t" and obtain second-order
fluid constitution equations in the co-deforming frame. When steady shear flows are
considered, the CEF equation is obtained, which, in turn, reduces to the GNF equation
for U, = ¥, = 0 and to a Newtonian equation if, additionally, the viscosity is constant.

2. Setting Gy, Gs, ..., or G', G, ..., equal to zero, Egs. 3.3-11 and 3.3-12 reduce to
G-M-type equations. For example,

t

T=— J G(t — 1)y df (3.3-14)
—00
is the so-called Oldroyd (32)-Walters (33)-Fredrickson (34) equation. This
equation, when integrated by parts, yields the Lodge rubber-like liquid equation (23)
t
T = J M(t — H)on} ar (3.3-15)
where M(t — ') = dG(t — ¢')/df’ and 7/[0] is the strain tensor in a co-deforming
frame using contravariant differentiation.

For small deformations, Eq. 3.3-14 reduces to the LVE Egs. 3.3-9 and 3.3-10 (yil] =7).
On the other hand, for large deformations, while still in the co-deforming frame, one can
use a particular linear viscoelastic model to represent G(¢ — ¢') in Eq. 3.3-14. If, as before,
a single Maxwell element is used, one can obtain the following analog to Eq. 3.3-11

T+ /1017(1) = —1Y (3.3-16)
where 7(y) is a co-deforming time derivative (14) equal to
D t
) =5, T {(VV) THT- (Vv)} (3.3-17)

Together with Eq. 3.3-17, Eq. 3.3-16 is the White—Metzner constitutive equation, which
has been used frequently as a nonlinear viscoelastic model. Of course, for small
deformations, t(;) = dt/dt, and the single Maxwell fluid equation (Eq. 3.3-9) is obtained.

Finally, a number of commonly used constitutive equations are derived from Eq. 3.3-13
by specifying G', G?, ... instead of specifying only G' and settingG?, . .. equal to zero.
Moreover, in these equations, M; are allowed to be functions of the invariants of the strain
or rate-of-strain tensors, since there is experimental evidence supporting this dependence
(35). Examples of such usable integral co-deformational constitutive equations are:

t

T=1+ J M1 (1= Ly i)Y + Mot =Ly o) { v -1} @ (3.3-18)

which is the Bernstein—Kearsley—Zappas (BKZ) (36) constitutive equation, and
1
=+ J M7 )| (1 +§>y[0]’ - %yw} dr (3.3-19)

—00
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which is the Bogue or Chen-Bogue (37) and Bird-Carreau (38) constitutive equation,
depending on the representation of the dependence of M on II;; ¢ is a constant.

We have tried to give a quick glimpse of the interrelationships among some commonly
used constitutive equations for polymer melts and solutions. None predicts quantitatively
the entire spectrum of the rheological behavior of these materials. Some are better than
others, becoming more powerful by utilizing more detailed and realistic molecular
models. These, however, are more complex to use in connection with the equation of
motion. Table 3.1 summarizes the predictive abilities of some of the foregoing, as well as
other constitutive equations.

In examples 3.3, 3.4 and 3.5 we discuss three of the models listed above: the LVE, some
members of the GNF family and the CEF; the first because it reveals the viscoelastic nature
of polymer melts; the second because, in its various specific forms, it is widely used in
polymer processing; and the third because of its ability to predict normal stress differences
in steady shear flows.

Example 3.3 Small Amplitude Oscillatory Motion of a Linear Viscoelastic Body
We wish to derive the steady state response of a linear viscoelastic body to an externally
applied sinusoidal shear strain (dynamic testing) using the constitutive Eq. 3.3-8, which for
this viscometric flow reduces to

&y
t(t) = — J G(t — z’)dt’, dt (E3.3-1)
and
dy /
< = Towcos i (E3.3-2)

Let the linear viscoelastic body be represented by a continuous spectrum of relaxation times,
that is,
+00
G(t—1)= J H(In 2)e "/ *d1n ) (E3.3-3)
—0o0

Substituting in the constitutive equation and integrating, we have

1 [ee]
w(t) = — J J H(In2)e e /*dn .| yow cos wf df’

o] t
= —wy, J H(n 2)e "/ J é'*coswr’ di'| din ]
—0oC —00

T H . .
= — ———2 lwAcos wt + w” A" sinwt|d(In A E3.3-4
w | ol Jd(n ) (334
THmH??2 |
—y ———————d(Inl)| sinwt
w| [ dn)

T H(ln A)wA
% il St

sy d(In )| coswt
®
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~ Applied strain
— Elastic solid stress

A = = Viscous fluid stress
= . = Viscoelastic fluid stress

Time

Amplitude

Fig. E3.3 The schematic stress response of elastic, a viscous, and a viscoelastic body to a
sinusoidally applied strain.

Thus, according to the result just given, the response of a linear viscoelastic body to a
sinusoidal strain (a) lags in time behind the applied strain, and (b) is composed of purely
elastic and purely viscous parts. Figure E3.3 illustrates these features.

Furthermore, it is useful to define the following quantities associated with dynamic

mechanical testing:

(a) The in-phase or elastic dynamic modulus

+00
H(In 2)w?)? ,
G (w) = J ——————d(In/ E3.3-5
(0) = | By (£33-5)
(b) The out-of-phase or loss dynamic modulus

+00H(1 ) .

A
G (w) = Jﬂd In E3.3-6
@)= | T d(n) (E33-6)

(c) The loss tangent or dissipation factor; the ratio of the mechanical energy dissipated to
that stored per cycle

1

tand = el (E3.3-7)

Note that since in this case, the Deborah number, De = Aw, the moduli and the loss tangent,

G',G" tané, are functions of the Deborah number.
The moduli can be expressed in terms of the discrete spectrum of relaxation times given by

G(t—1) ZG ~(=0)/% (E3.3-8)

as

= Z (k) (E3.3-9)

1+ (w4;)

and
N
Zﬂ (E3.3-10)
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GNF-based Constitutive Equations

As was pointed out before, the GNF is the generic expression for a whole family of
empirical, semiempirical, or molecular model-based equations that were proposed to
account for the non-Newtonian, shear-thinning behavior of polymer melts that take the
form

T=-ny (3.3-20)

GNF-based constitutive equations differ in the specific form that the shear rate
dependence of the viscosity, 1(7), is expressed, but they all share the requirement that
the non-Newtonian viscosity 7(}) be a function of only the three scalar invariants of the
rate of strain tensor. Since polymer melts are essentially incompressible, the first invariant,
I; = 0, and for steady shear flows since v, = f (x2),and v, = v3 = 0 the third invariant,
II; = 0, and therefore the non-Newtonian viscosity can only be a function of the second
invariant #() =f(Il;). In practice, this functionality is expressed via the
magnitude of vy, and is given by

1
P =[50 (3.3-21)

For viscometric flows, /I; = 2}3,, and thus the magnitude of ¥ is 7 = |}/, or the absolute
value of the shear rate.

There are numerous fluid models or empirical constitutive equations that comply with
the GNF fluid assumptions that were proposed in the literature. They vary in form and in
the number of parameters that have to be determined by fitting them to experimental
results. Rheological flow curves of non-Newtonian fluids and polymer melts generally
exhibit a Newtonian range in the low shear rate range, followed by a broad range of shear-
thinning viscosity, and ending in an upper Newtonian range (though the upper range is
hardly relevant to polymer melts because of excessive heat generation and the possibility
of degradation in this range). These empirical equations have two uses: the primary use is
to insert them into the equation of motion to obtain an analytical solution to real
processing flow problems. The more complex the empirical model is, the more difficult it
is to reach analytical solutions, but even the simplest one converts the equation of motion
into a nonlinear set of differential equations as compared to the linear Newtonian
equivalent. The second use is to record in a simple way (with the minimum number of
required parameters) the experimentally obtained results. This use simply converts a table
of results to an algebraic equation. For numerical solutions, such as finite-element methods
(FEM), having a more complex empirical equation does not add to the mathematical
complexity of the solution. We now review a few of the commonly used empirical
equations with an increasing number of parameters.

The Power Law Model

The Power Law model (excluding temperature dependence) is a two-parameter empirical
model proposed by Ostwald and de Waele (39). It is based on the experimental observation
that by plotting Inn(})vs. In(}), a straight line is obtained in the high shear rate region for
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many non-Newtonian fluids, including most polymer melts. This suggests the following
functional relationship between non-Newtonian viscosity and shear rate

n(p) = my"! (3.3-22)

where m(Ns"/m?) and the dimensionless n are parameters, commonly called the
consistency and Power Law index, respectively. Thus a Power Law constitutive equation
can be arrived at:

n—1
el . . .
T=—m)" = m[ S Y)] 7 (3.3-23)
The parameter m is a sensitive function of temperature, obeying an Arrhenius-type
relationship
AE (1 1
= — | =—= 3.3-24
m moexp[ = (T T())] ( )

where my is the value of m at Ty, and AE is the flow activation energy. For mathematical
convenience, a simpler relationship is frequently used

m = mge 7~ To) (3.3-25)

where a is an empirical parameter. Equation 3.3-25 holds well over relatively narrow
temperature ranges.

The following comments can be made about the Power Law equation and the viscosity
or “flow curve,” as, for example, that shown in Fig. 3.5:

e The upper limit of the Newtonian plateau is dependent on M, and the melt
temperature. Commonly, it is roughly in the region 7 = 1072s~!. Low viscosity
fiber-forming Nylon and polyethylene terephthalate (PET) are important exceptions,
as their Newtonian plateau extends to higher shear rates.

e This upper limit decreases with increasing M,,, with increasing molecular weight
distribution (MWD) at constant M,,, and with decreasing melt temperature. On
physical grounds, it is considered to terminate roughly where the Deborah number
reaches unity.

o If the Power Law equation is used in pressure flows, where 0 <y <. . an error is
introduced in the very low shear rate Newtonian region. In flow rate computation,
however, this is not a very significant (40).

e The transition from the Newtonian plateau to the Power Law region is sharp for
monodispersed polymer melts and broad for polydispersed melts (see Fig. 3.5).

e The slope of the viscosity curve in the Power Law region is not exactly constant.
The flow index n decreases with increasing shear rate. Thus the Power Law equation
holds exactly only for limited ranges of shear rate, for a given value of n.

In conclusion, despite its limitations, the Power Law model is one of the most widely
used empirical relations in polymer fluid dynamics, and it gives surprisingly good results,
even for nonviscometric and slightly transient flows.
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The Ellis Model

The Ellis model (41), is a three-parameter model, in which the non-Newtonian viscosity is
a function of the absolute value of the shear stress tensor, 1,

n)=—1To (3.3-26)

1 + (‘C/‘Cl/z)“_]

yielding the following constitutive equation

t=-n()y=—

Mo :
— |7 (3.3-27)
1+ (T/T]/Z)' 1]

where 7 is related to the second invariant of the stress tensor as follows

1
v= /51 (3.3-28)

The three parameters are ¢, which is the slope of the curve log(n/ny — 1) vs. log(t/12);
712, which is the shear stress value, where 1 = #,/2; and #,, which is the zero shear
viscosity. Thus the Ellis model matches the low shear Newtonian plateau and the shear-
thinning region.

The Cross Model

The Cross and the temperature-dependent Cross-WLF model (42) is an often used GNF-
type model accounting for, like the Ellis and Carreau fluids for the viscosity at both low
and high shear rates,

no(Th)

M%ﬂP%ZIIT&?gTj

(3.3-29)
-E*

where n denotes the Power Law index; t* the critical stress level at which # transitions
from the Newtonian plateau, #,, to the Power Law regime; and y is the shear rate. If an
Arrhenius viscosity temperature dependence is assumed, then a shift factor ay is defined as

bgmc:ég(i__L> (3.3-30)

Given the value of the activation energy, AE, a master curve #(T,7) can be constructed,
and Eq. 3.3-30 becomes

1
n=|—" | (3.3-31)
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This relation holds well for semicrystalline polymers; for amorphous polymers, it holds
for T > T, + 100°C. Below this region free volume effects predominate necessitating the
use of the Arrhenius—WLF equation

AE /1 1 T, -1,
] 2R () oy (A 33-32
o8 4T ="p (Tl T2) 1(b2+T2—T1> ( )

The parameters b; and b, have to be experimentally determined.

The Carreau Model

The Carreau model (43) is a four-parameter model that accounts for the both the low shear
rate Newtonian region and the high shear rate upper Newtonian region that is expected
(although polymer melts do not reach this region, because of excessive heating and
degradation at these high shear rate values):
y) — 1
n’gv)_ nﬂoo _ — (3.3-33)
oM i+ ()

where 7, is the zero shear rate viscosity, 4., is the infinite shear-rate viscosity, 4 is a
parameter with units of (relaxation) time, and n is a dimensionless parameter. Note that the
shear-thinning nature of melts is accounted for by the parameter n(n < 1), as was the case
with the Power Law model. The product A7 = De reflects the viscoelastic nature of the
melt, which at low De number values De — 0 become Newtonian. As De is increased,
melts become less viscous and more elastic.

There are numerous other GNF models, such as the Casson model (used in food
rheology), the Ellis, the Powell-Eyring model, and the Reiner—Pillippoff model. These are
reviewed in the literature. In Appendix A we list the parameters of the Power Law, the
Carreau, and the Cross constitutive equations for common polymers evaluated using
oscillatory and capillary flow viscometry.

The Bingham Fluid

The Bingham fluid is a two-parameter, somewhat different model from the previous
rheological models, in that it has a final yield stress below which there is no flow, whereas
above it, the stress is a linear function of the rate of strain

1N = 00 T< 1,

. T (3.3-34)
n(7) = no + (f) >
where 7, is the yield stress, and i is the Newtonian viscosity for vanishing yield stress. A
typical Bingham plastic fluid is ketchup, but many other fluids have this property, such as
“no drip” paints, pastes, and slurries.

Example 3.4 Flow of a Power Law Fluid in Tubes For an isothermal, laminar, fully devel-
oped steady pressure flow of an incompressible Power Law model fluid in a horizontal tube without
slip, we wish to derive (a) the velocity profile and (b) the flow rate.

(a) For a tubular flow we use the cylindrical coordinate system. Since flow is isothermal
and the fluid incompressible, the equation of motion and continuity, together with the
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constitutive equation, fully describe the flow. On the basis of symmetry, we assume that there
is no 0 dependence and that vy = 0. Fully developed flow implies that dv,/dz = 0, and hence
the equation of continuity reduces to

d
o () (E3.4-1)

which can be integrated to give rv, = C, where C is a constant. Since v, = 0 at the tube radius, we
conclude that C = 0, and therefore v, = 0. Hence, the only nonvanishing velocity component is
v,, which is a function only of r. Turning to the equation of motion in Table 2.2, the three
components of the equation therefore reduce to

opP
5 =0
opP

-
P 19

5= rar)

0 (E3.4-2)

Clearly, the left-hand side of the equation is a function only of z, since P # f(r, 0), whereas
the right-hand side of the last equation is a function only of r; therefore, they both must equal a
constant, indicating that the pressure gradient is constant along the tube and that partial
differentials can be replaced by ordinary differentials. Following integration, we get

T, = — (%) fl—f el (E3.4-3)

where C) is an integration constant. The constant C; is zero, because at »r = 0, where the
velocity has a maximum and the gradient is zero, the shear stress must vanish as well. Thus the
shear stress distribution is given by

T = — (g) i—f (E3.4-4)

indicating that the shear stress increases linearly from a value of zero at the center to a
maximum at the wall. The only nonvanishing velocity gradient in this flow is dv./dr, and
therefore the rate of deformation tensor of Table 2.3 reduces to

dv

00 dr

y=10 0 0 (E3.4-5)
dv,
- 00

and the Power Law constitutive equation reduces to

dv
= —my" == E3.4-6
T = —myt ( )
However, y in Eq. E3.4-56 is obtained from Eq. E3.4-5 and given by
SN dv.\*  |dv, (E3.4.7)
=NV w ) T e '
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where the scalar product of the tensor § is 2(dv,/dr)*. By substituting Eq. E3.4-7 into
Eq. E3.4-6, we get

n—1

dv,
= E3.4-
dr (E34-8)

dv,
dr

Tpp = —M

Note that shear rate 7 is the magnitude of the tensor ¥, and therefore it must always be positive.
Thus we maintain the absolute-value sign over the term that reflects the shear dependence of
the viscosity.

Combining Eq. E3.4-8 with Eq. E3.4-4 yields

dv, "7ldvz r (dP
= — === E3.4-9
" ar dr 2 (dz) ( )
In tubular flow for all r,dv,/dr < 0; therefore
dv, dv,
—|=—— E3.4-10
dr dr ( )
and Eq. E3.4-9 can be written as
dv, r dP\*
i E3.4-11
dr ( 2mL dz) ( %

where s = 1/n. Note that the pressure gradient in the preceding equation is negative, and
therefore the term in parenthesis is positive. This equation can be integrated with boundary
condition v,(R) = 0 to give

vo(r) = (Hil) {—%%S [1 - (%)M} (E3.4-12)

For Newtonian fluids with s = 1, this equation reduces to the classic parabolic profile.

(b) The volumetric flow rate is obtained by integrating Eq. E3.4-12.

R
R’ R d4P]*
Q:J2nwzdr= n ——
s+3 2m dz
0 (E3.4-13)
@R [ R AP
T s+3| 2m L

where AP = Py — Pr, Py is the pressure at z = 0,and P at z = L. Equation E3.4-13 is the
Power Law equivalent to the celebrated Newtonian Hagen—Poiseuille equation, with s = 1
andm=p

Q=-—(Po—Pr) (E3.4-14)

Example 3.5 The CEF Equation in Steady, Fully Developed Flow in Tubes The visc-
osity functions in both the Power Law model GNF fluid and the CEF fluid are expected to be
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the same. Therefore, assuming that the velocity field of a CEF fluid, in steady viscometric
flow, will be the same as that of a purely viscous fluid, we can calculate the stress field needed
to maintain such a flow. In this Example, we calculate the stress field needed to maintain the
pressure-driven tube flow discussed in Example 3.4.

In Section 3.3 we discussed the origins of the CEF equation

. 1 T )
T=—NY— (E\Ifl +\Ilz){v-v}+§\1115¥ (E3.5-1)

where the material functions #, U, and ¥, are functions of shear rate, and they hold for steady
shear flow and account for the shear-thinning viscosity and for normal stresses.
Our starting point is the rate-of-deformation tensor given in Eq. E3.4-5

0 0 j.
v=10 0 0 (E3.5-2)
e 00

To calculate the stresses generated by the CEF fluid, we need to calculate the quantities y - y
and Dy/Dr in Eq. E3.5-1. The first one is a simple matrix multiplication, resulting in

7 00
{-y}=10 0 O (E3.5-3)
0 0 i
Next we calculate
=g v Vi + L (o 4) — {3 o] (E3.5-4)
@177817 Y 7 Y Y .

The first term on the right-hand side is zero because the flow is steady. The components of the
second term, v - Vy, we obtain from Table 3.2

(V . V’Y)rz = (V : V)')),, - VTO'?HZ
(0w 9N, (£33
“\"ar T a0 0z Pre = Vo

Since v, = 0,vp = 0, and Ov./0z = 0 for a developed flow, the term (v - V) .= 0. Similarly,
we evaluate all other components and conclude that v - Vy = 0. The vorticity tensor @ can be
obtained for this flow from Table 3.3

0 0 j,
o=Vv— (W= 0 0 0 (E3.5-6)
_).}rz 0 0
Next, with Egs. E.3.5-2 and E3.5-6 we derive
0 0 3.\ /0 0 . 200
{o-7} = 0 0 0 0 0 0)J=(0 0 O (E3.5-7)
. 0 0 . 0 0 0 0 —%
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TABLE 3.2 The Components of (v- Vy) in Three Coordinate Systems

115

Rectangular Coordinates® (x,y,7)

V V=0V (V) =V VYY), =(v- V)i,
(V ' V’.Y)yy = (V ! V)yy» (V ' V’.Y)yz = (V ’ V"Y)U' = (V ’ V)’J}zy
V-V, =(-V)ie (VY1) =V, = V)i
Cylindrical Coordinates® (r,0,z)
. . V. i
(V : VY)rr - (V ) V)yrr - 70 (‘))1‘0 + y@r)
. . Vo . .
(v Vi) = (v- V)iug + (o + 30,)
(V ) V’.Y)zz = (V : V)’}.)ZZ
(V : V’.Y)ro = (V ) VY)O; (V V)'})g, ()}rr - ‘5)66)
. . . Vo .
(V- Vi) = (v Vi) = (v Vi + 7%
. . . Ve,
(V- Vi) = (V- Vi), = (v V)i =

Spherical Coordinates® (r,0, ¢)

. . 2vy . 2vg
(V : VY)rr = (V : V)yrr - /yr() - 7’Vrgb

(V- Vi)gg = (v-V)igy + 2—5&6 - 2—5’64; cot0

(V- Vg = (V- Vg + o+ 2254 cot

(V- Vi), = (v- V), = (v V)i + = (o = Fa0) =~ (g0 + i c0L)
(V- VY, = (V- VT = (V- V)i — 5’0¢ + v_¢, (P — Pgg) + P cOL O]

(V- V1) = (V- V) g9 = (V- V)i +—Vr¢ +1 [Ver (o0 — Vo) cOt 0]

Source: Reprinted by permission from R. B. Bird, R. C. Armstrong, and O. Hassager, Dynamics of

Polymeric Liquids, 2nd Edition, Vol. 1, Fluid Dynamics, Wiley, New York, 1987.

o o o
“(V-V):vla +v’0y+v“0z

0 wo 9
M) =gt

. 0 wo vy O
VY =y e 50 006

and -2 0 0
{1 -0} = 0 0 O (E3.5-8)
0 0 7
Thus, Eq. E3.5-4 reduces to
7= ~{o-7}—-{y-0})={ 0 0 O (E3.5-9)
2 0 0 2
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Table 3.3 Components of the Vorticity Tensor ® in Three

Coordinate Systems®

Rectangular Coordinates (x,y,z)

Ovy  Ovy

O =~y =50 =
v, Ovy

i
o~ o — vy Ov,
T 9z ox

Cylindrical Coordinates (r,0,z)

10 10v,
W) = —Wor = ;E(W()) 790
Wo; = =Wz = law - %
T oral oz
Wy = —W), = v, — %
r rz az ar

Spherical Coordinates (r,0, ¢)

10 10v,
Wrg = —Wor = ;E(WU) 790
1 0 1 vy

Wyp = —Wgp = —r Sin@% (v(,, sin 0)

1 Ov, 10

Cor =0 = 15506 ror )

B rsin@%

Source: Reprinted with permission from R. B. Bird, R. C. Armstrong,
and O. Hassager, Dynamics of Polymeric Liquids, 2nd Edition, Vol. I,

Fluid Dynamics, Wiley, New York, 1987.
#All diagonal components are zero.

Finally, we substitute Eqs. E3.5-2, E3.5-3, and E3.5-9 into Eq. E3.5-1 to obtain the stress

field
Trr T Tz 0 0 ?rz 1
Tor Too To: | =-n()| 0 0 0 |- {5‘1’1(?) +‘I’2(5’)}
T 10 Tz 7. 00
Lm0
T3 0 0 o
0 0 _’}.)%z

~.
N

o O

o o O

o O

~.

N

(E3.5-10)
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From Eq. E3.5-10 we obtain the following nonvanishing stress components:

Tre =Ty = —N)p
1 . I . .
Ty = — (5‘1/1 + ‘I’z)vfz +§‘I’1Vi = —Uyj7,
(E3.5-11)
799 = 0
1 . 1_ . .
Tee = _(E\PI + \IJZ)'YfZ - E\IJI'Y%Z = _(\Ill + \112)y%z

We therefore observe that unlike in the Power Law model solution with a single shear stress
component, 7,,, in the case of a CEF model, we obtain, in addition, two nonvanishing normal
stress components. Adopting the sign convention for viscometric flow, where the direction of
flow z is denoted as 1, the direction into which the velocity changes r, is denoted as 2, and the
neutral direction 0 is denoted as direction 3, we get the expressions for the shear stress in terms
of the shear rate, the primary, and secondary normal stress differences (see Eqs. 3.1-10 and
3.1-11):

T = T21 = — NPy (E3.5-12)
T =T =T — T = — U193 (E3.5-13)
T — 133 = T — T = — V273, (E3.5-14)

with the three material functions of the CEF equation being identified as follows: #(7) is the
viscosity function; W (j) is the first normal stress-difference coefficient; and W,(7) is
the second normal stress-difference coefficient. Examples of the shear rate dependence of
both the viscosity and the coefficient of the first normal stress-difference functions are shown
in Fig. E3.5.
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Fig. E3.5 Steady-state shear viscosity # and first normal stress coefficient ¥, obtained from
dynamic measurements versus shear rate for a low-density polyethylene melt, melt I. [H. M.
Laun, Rheol. Acta, 17, 1 (1978).]

Example 3.6 Combined Drag and Pressure Flow between Parallel Plates In this exam-
ple we examine the isothermal, laminar, steady, fully developed combined pressure and drag
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VO
—

>

H vA(y)

>z
Fig. E3.6a Two parallel plates at a distance H apart with the upper plate moving at constant
velocity V. The velocity profile is for a particular flow situation where the pressure is ‘‘built
up”’ in the z direction and is sufficiently high to create a ““back flow” in the lower part of the
channel.

flow of an incompressible Power Law model fluid, between parallel plates in relative motion
as shown schematically in Fig. E3.6a. Superimposed on the drag flow there may be a positive
or negative pressure gradient. In the figure we show a case where the pressure gradient is posi-
tive (i.e., pressure increases in the positive z direction). We present this example for two rea-
sons: first, it is the type of flow that occurs in many types of processing equipment, most
notably single-screw extruders, and second, it illustrates the relative complexity introduced
in dealing analytically with the absolute sign in the Power Law model.

This problem was solved by Hirshberger (44), whose solution we follow. We will derive
the velocity profile and the flow rate and demonstrate how to deal with a Power Law model
fluid when the flow field where the velocity gradient is negative in one region and positive in
the other.

The flow is viscometric because there is only one velocity component, v,(y), which is
changing only in one spatial direction, y. Adopting a rectangular coordinate system, we find in
analogy to Example 3.3 that v, = v, = 0, and therefore the equation of motion reduces to

op

Ei 0

oP

5 =0 (E3.6-1)
op Oy

9z Oy

From the preceding equations we conclude that the pressure is a function of coordinate z
only. Consequently, in the last equation the left-hand side is a function of z only, whereas the
right-hand side is a function of y only. This is only possible if both equal a constant. Thus we
conclude that the pressure gradient is constant, that is, pressure rises (or drops) linearly with z,
and that the shear stress, in the presence of a pressure gradient, is a linear function of y, and in
the absence of a pressure gradient it is constant across the gap. These observations follow from
the momentum balance, and, they are therefore, true for all fluids, Newtonian and non-
Newtonian alike.

Following the logic described in Example 3.4, we find that the Power Law model fluid for
this viscometric flow reduces to

n—1 dVZ
dy

dv.
dy

Tyz =

(E3.6-2)
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Substituting Eq. E3.6-2 into Eq. E3.6-1 and casting it into dimensionless form, we obtain

d
dé

where u, = v,/Vj, and the dimensionless pressure gradient G is defined as

Hﬂ+l 4P
G= — E3.6-4
6mvy (dz) ( )

dv,
dy

nildv
I
=) = E3.6-
y) 6G (E3.6-3)

Equation E3.6-3 can be integrated with respect to ¢ to give

du,

nflduZ
7 =6G(¢ - 2) (E3.6-5)

dé

where —6G/ is an integration constant. The advantage of writing the integration constant this
way is that A acquires a clear physical meaning; it is the location where the shear rate is zero,
or the location of the extremum in the velocity profile. We need to know this location in order
to rid ourselves of the absolute value in Eq. E3.6-5. Depending on the value of G, there are
four velocity profiles that we must consider (Fig. E3.6b). Cases a and b exhibit an extremum in
the velocity profile within the flow regime. In the former, the pressure gradient is positive
(dP/dz > 0); in the latter it is negative (dP/dz < 0). Cases ¢ and d exhibit no extremum in
the velocity profile within the flow regime, thus, in this case, 4 lacks physical meaning,
although it still is the location of an extremum value of the mathematical function describing
the velocity profile. In Case ¢, A < 0,and in Case d, itis A > 1.InCasescandd, j,, = dv,/dy
is positive through the flow regime, whereas in Cases a and b, it changes sign above and
below 4.

We note from Eq. E3.6-4 that G may be positive or negative depending on the sign of the
pressure gradient. It is, therefore, convenient to introduce at this point a variable accounting
for the sign of G

signG = Gl (E3.6-6)
We can now rewrite Eq. E3.6-5 as
du, " du,
- =~ = 6 sign G|G|(£ — 2 E3.6-7
| g =6 GlGIE - 2) (E3.67)

It can easily be verified that for regions ¢ > A for both positive and negative pressure gradients
(i.e., both Cases a and b), Eq. E3.6-5 can be written as follows:

di
dlg = [6G|*(¢ — 1)’sign G (E3.6-8)
where s = 1/n. Similarly, for & < 1 we get

du,
d¢

= —|6G|° (1 — &)’sign G (E3.6-9)
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Fig. E3.6b Four regions of the solution of Eq. E3.6-5 corresponding to four types of
velocity profiles. In regions (Cases) a and b, the velocity profile exhibits an extremum. In the
former the pressure gradient is positive (dP/dz > 0); in the latter, it is negative
(dP/dz < 0). The location of the extremum is at £ = . In regions ¢ and d, the velocity
profile exhibits no extremum in the flow regime. In the former the pressure gradient is
positive (dP/dz > 0); in the latter, it is negative (dP/dz < 0). The curves present solution 1
as a function of G from Eq. E3.6-5, forn =1, n = 0.6, and n = 0.2.

Equations E3.6-8 and E3.6-9 can be integrated subject to boundary conditions u,(1) = 1
and u,(0) = 0, respectively, to give

1 _ ‘6G|S oIS e IS | s
=101y [(1 )= (6= 4) ]SIgnG (E3.6-10)
and
— |6G‘Y _ I+s _ gl4s| o;
U, = (T+9) [(f A) s }mgnG (E3.6-11)

Since the velocity is continuous throughout &, Eqs. E3.6-10 and E3.6-11 are equal at
¢ = J, resulting in an equation for the unknown / as a function of G and sign G

1+s

11+s n1+s
—(1- __*s
8 (=27~ |6G|’sign G

(E3.6-12)
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Equation E3.6-12 is a nonlinear algebraic equation that must be solved numerically.
However, it provides the limiting values of G for determining a priori whether the flow
corresponds to Case a or b. By setting 4 = 0 for G > 0, and 2 = 1 for G < 0, we obtain the
following conditions for the existence of an extremum within the flow region 0 < & <1

1
|G| > 6(1 +5)" (E3.6-13)

By substituting Eq. E3.6-12 into Eq. E3.6-10, we can rewrite the velocity profile in one
equation

_|6GF*
T (14s)

Uz

[|§ - ;L|1“‘—)J“] sign G (E3.6-14)

subject to the inequality in Eq. E3.6-13.
Turning now to Cases ¢ and d, where no extremum occurs and du,/d¢ > 0, we note that
Eq. E3.6-7 can be written for G > 0 and G < 0, respectively, as

du, : ,
d”g: = (6G)(E—2' G>0 (E3.6-15)
and
du, ) s
e =(—-6G)’ (1 =¢) G <0 (E3.6-16)
Integration of Eqgs. E3.6-15 and E3.6-16 with boundary conditions u,(0) =0 and
u;(1) = 1 results in the following velocity profiles for each of the Cases ¢ and d:
(6G)X [ 1+s I+s
= —A) T =(=4 G>0 E3.6-17
w= iy 6= 0= > (E3.6-17)

) 145
NI+s l—} 1+s _ E3.6-1
(=4) " =(1=42) + 60y 0 G>0 (E3.6-18)
and
—6G)* )
" = ﬁ [z‘“ — (- g)lﬂ G<0 (E3.6-19)
where 4 is obtained from
' 1+s
A\ I+ 1+s
—(A-1 - =0 G<O0 E3.6-20
()= ) — < (E3.6-20)

By setting 4/ = 0 in Eq. E3.6-18 and 1 = 1 in Eq. E3.6-20, we find the following condition for
the flow without an extremum within the flow regime

1
Gl < g (1+5)" (E3.6-21)

a result that, of course, is predictable from Eq. E3.6-13.



122 POLYMER RHEOLOGY AND NON-NEWTONIAN FLUID MECHANICS

All the velocity profile and the equations for obtaining 4 can be collapsed, respectively,
into a single equation

|6G|’sign G Jds paylts |&— 7»|1H—|i|l+s
; = N <|f =4 =4] > = m (E3.6-22)
and
1+s
y) I+s_ 1-2 Is, T — E3.6-23
A | I |6G|’sign G ( )

In solving for A in the last equation, we find multiple solutions, but we must recall the
following inequalities that help select the right solution

1
ifG 2 Z(1+5)"  then  0<i<l1

1
if |G| < 5(1 +s)" andif G>0 then 1<0

—

if |G| <=(149)" andif G<O0 then 1A2>1

6
Figure E3.6b, which plots the solution of Eq. E3.6-23 for three n values, also indicates the
four solution regions.

Finally, we can integrate the velocity profile to obtain the volumetric flow rate per unit
width

5
_ VoHI6GIsien Gy 5y _ it - 2 4 9] (E3.6:24)

(I+5)2+s)

Figure E3.6c plots the dimensionless flow rate g/q,, where g4 is the drag flow rate,
namely, the flow rate with zero pressure gradient, versus the dimensionless pressure gradient
G. The figure shows that, whereas for Newtonian fluids, as expected, there is a linear
relationship, non-Newtonian fluids deviate from linearity. The more non-Newtonian the
fluid is, the greater is the deviation. Of particular interest is the inflection point indicating,
for example, that in screw extruders, even for the isothermal case, increasing die resistance
brings about somewhat unexpected changes in flow rate.

3.4 POLYMER MELT CONSTITUTIVE EQUATIONS BASED
ON MOLECULAR THEORIES

Molecular theories, utilizing physically reasonable but approximate molecular models,
can be used to specify the stress tensor expressions in nonlinear viscoelastic constitutive
equations for polymer melts. These theories, called kinetic theories of polymers, are, of
course, much more complex than, say, the kinetic theory of gases. Nevertheless, like the
latter, they simplify the complicated physical realities of the substances involved, and we
use approximate “‘cartoon’ representations of macromolecular dynamics to describe the
real response of these substances. Because of the relative simplicity of the models, a
number of response parameters have to be chosen by trial and error to represent the real
response. Unfortunately, such parameters are material specific, and we are unable to
predict or specify from them the specific values of the corresponding parameters of other
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Fig. E3.6¢c Dimensionless flow rate versus dimensionless pressure gradient, with the Power
Law exponent n as a parameter, for parallel-plate flow, as given in Eq. E3.6-24.

substances, even of similar macromolecular structures. In other words, the kinetic theory
of polymer melts is not true molecular theory.

With these comments in mind, we list and briefly discuss the two classes of these
theories: the single molecule (14) and entanglement network theories (23).

Single-molecule Theories

Single-molecule theories originated in early polymer physics work (45) to describe the
flow behavior of very dilute polymer solutions, which are free of interpolymer chain
effects. Most commonly, the macromolecular chain, capable of viscoelastic response, is
represented by the well-known bead—spring model or “cartoon,” shown in Fig. 3.8(a),
which consists of a series of small spheres connected to elastic springs.

Upon flow in the solvent environment, the drag that the solvent exerts on the spheres
(representing the viscous nature of the real macromolecule), orients the bead—spring and
stretches the elastic springs between the beads (which represent the elastic nature of the
real macromolecules). The consequent stored energy in the springs is capable of restoring
the equilibrium conformations of the bead—springs, but it is resisted by Stokesian drag on
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Fig. 3.8 Single-molecule bead—spring models for (a) a dilute polymer solution, and (b) an
undiluted polymer (a polymer melt with no solvent). In the dilute solution, the polymer molecule
can move about in all directions through the solvent. In the undiluted polymer, a typical polymer
molecule (black bead) is constrained by the surrounding molecules and tends to execute snakelike
motion (“‘reptation”) by sliding back and forth along its backbone direction (46). [Reprinted by
permission from R. B. Bird, W. E. Stewart and E. N. Lightfoot, Transport Phenomena, 2nd Edition,
Wiley New York (2002).]

the beads, responding with relaxation times that are proportional to the effective solvent
drag viscosity and inversely proportional to the elastic spring constant.

Extension of this theory can also be used for treating concentrated polymer solution
response. In this case, the motion of, and drag on, a single bead is determined by the mean
intermolecular force field. In either the dilute or concentrated solution cases, orientation
distribution functions can be obtained that allow for the specification of the stress tensor
field involved. For the concentrated spring—bead model, Bird et al. (46) point out that
because of the proximity of the surrounding molecules (i.e., spring—beads), it is easier for
the model molecule to move in the direction of the polymer chain backbone rather than
perpendicular to it. In other words, the polymer finds itself executing a sort of a snake-like
motion, called reptation (47), as shown in Fig. 3.8(b).

Entanglement Network Theories

Entanglement network theories are based on the following premise: polymer melts are
much like cross-linked rubber macromolecular networks, except that their cross-links are
due to chain entanglements and are temporary. Such entanglements are continuously
destroyed and formed to establish network entanglement densities characteristic of the
state of motion of the network, being maximum at equilibrium. Green and Tobolsky (48)
extended the rubber elasticity theory (49-52) to liquids with “‘temporary junctions” with
equal probabilities of breaking and reforming. Following Larson (53), the development of
the constitutive equation for such liquid with temporary entanglement networks is
as follows: Let the probability that a chain breaks loose of a junction point, per unit time,
be 1/, where A is of the order of the relaxation time. The probability that the strand
does not break free in the time interval t’ to ¢ (present time), P,, obeys the differential
equation
d 1

EPZ/J - _;Pt’,t (34-1)
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with Py = 1. Hence
Py, ==/ (3.4-2)

When the material is deformed, each strand is stretched affinely until it breaks free from
its junction. After it breaks free, it relaxes to a configuration typical of equilibrium. As
often as a strand breaks free, another relaxed strand becomes entangled. The probability
that a strand breaks free and becomes reentangled in an interval of time between ¢ and
'+ dr’ is di’ /1. The probability that it survives without breaking from time ¢ to time ¢ is
Py ,. It obeys the differntial equation

d 1

—Py, =—Py 3.4-3
dr 't . 1t ( )
The contribution dt to the stress from those stretched strands that meet both of these
conditions is, according to Eq. 3.4-1,

dr | P
dv == Py,Gy (1) = Gze“ Wy (£ 1) at (3.4-3a)

with G = (4/5)vkgT, where v is the entanglement density and yy;) is the Finger relative
strain tensor between the states of the fluid at # and . The total stress produced by strands
that became reentangled at all past times, 7, is then

t

T = J m(t — t’) Y[l](tl? t) dt, (34'4)

—00

where m(t — t') is the so called memory function, which is determined by the linear or the
nonlinear viscoelastic spectra, depending on the level of strain. For the former case,

m(t — 1) Zi—exp 1)/ (3.4-5)

Equations 3.4-3 and 3.4-4 form the molecular theory origins of the Lodge ‘“‘rubberlike
liquid” constitutive Eq. 3.3-15 (23). For large strains, characteristic of processing flows,
the nonlinear relaxation spectrum is used in the memory function, which is the product of
the linear spectrum and the damping function h(y), obtained from the stress relaxation melt
behavior after a series of strains applied in stepwise fashion (53)

In the preceding treatment, the ‘‘strands”’—entire chains or chain segments—are free to
move through any path, for example, relaxing to an equilibrium configuration. But as
noted in Fig. 3.9, any given polymer chain is able to move only in a constrained path,
because of the surrounding chains and, therefore, tends to move and advance along its
backbone direction by, as pointed out before, in a snakelike, reptation motion.

Pierre-Gilles deGennes (47) utilized this concept and coined the term in his work to
explain why the relaxation times of entangled melts have a 4 ~ M>* dependence. Earlier,
the lateral confinement of melt chains to a tubelike region had been postulated by Edwards
(54). Since these early days of the reptation theory, a very significant volume of work has
been dedicated to incorporating features that are physically reasonable and warranted in
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(a) (b) (©)

® (i) (iii)

(iv) )
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Fig. 3.9. (a) A polymer melt chain entangled in a mesh of other chains. (b) Individual neighboring
chain entanglement points that result in (c) the confinement of the given chain to a tubelike region.
[(d)(d)—(d)(v)] represents a schematic reptation of the polymer chain out of its (stretched for
visualization) tube, requiring a reptation time 7. [Reprinted by permission from R. G. Larson, The
Structure and Rheology of Complex Fluids, Oxford University Press, New York, 1999.]

order to improve the predictions of the corresponding members of the repration-based
constitutive equation. But before discussing some of them, it is useful to present a pictorial
representation of reptation according to the work of Graessley (55). He considers the
polymer chain shown on Fig. 3.9(a), entangled in a mesh of other polymers to be confined
by individual chain neighbors in a manner shown in Fig. 3.9(b). As a physical
consequence, the polymer chain is confined in a tubelike region shown in Fig. 3.9(c).

Motion within the tube is achieved by a random walk (*‘primitive path’’) of unit steps of
the order of the tube diameter, a. When a straight reptation tube is considered, for
simplicity, reptation diffussional motion of the chain out of the tube is represented
schematically in the steps depicted from Fig. 3.9(d)(i) to Fig. 3.9(d)(v).

Perkins and colleagues (56) have provided graphic and direct evidence of reptation,
using a fluorescently stained, very long DNA molecule in an entangled environment of
similar unstained DNA molecules. Figure 3.10 shows time-sequence images of such a
60 pm long molecule, which was attached at one end to a small sphere that was pulled
through the fluid using a laser-optical trap to form a letter “R.” As seen in the picture
sequence, the free end of the DNA undergoes retraction through a tubelike region defined
by the surrounding mesh of the invisible neighboring DNA chains.

The retraction follows the path of “R” containing the stretched, strained DNA
molecule, strikingly demonstrating reptation. Molecular dynamic computational simula-
tions (a tool of rapidly increasing utility in melt rheology and structuring) also show chain
motion that is highly anisotropic, suggesting that diffusion motions of long chains are
largely confined in a tube (57), as shown in Fig. 3.11.

The constitutive equations benefiting from the specific representations of reptation
theory have the general form of the Lodge rubber-like liquid equation, since they are all
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Fig. 3.10. Time sequence of images showing retraction of one end of a fluorescing 60-pum long
DNA molecule entangled in a solution of other, nonfluorescing DNA molecules. The fluorescing
molecule was attached at one end to a small sphere that was pulled through the solution using a laser-
optical trap, to form the letter “R”. The free end then retracts through a tubelike region formed by the
surrounding mesh of other, invisible DNA chains. [Reprinted by permission from the cover of
Science, May 6, 1994 (Copyright 1994, American Association for the Advancement of Science).]

entanglement network theories, treating chain motion, deformations, and entanglements
and disentanglements with different degrees of scrutiny and physical assumptions. Thus,
the Doi-Edwards equation (58,59) considers the contributors to the stress tensor of the
stretched and oriented tube segments due to the flow. This results in the integral form

t

() = J m(t —)S¥.(¢)dl (3.4-6)

—00

where S?E, the Doi—Edwards strain measure for tube segments independently aligned

_> _ss

(3.4-7)

_18.0

18.0

Fig. 3.11. Each of the two images contains superimposed configurations of a chain at many
different instants in time in a molecular-dynamics simulation of a melt of such chains in a box. Over
the time scale simulated, each chain appears to be confined to a tubelike region of space, except at
the chain ends. [Reprinted by permission from K. Kremer and G. S. Grest, J. Chem. Phys., 92, 5057
(Copyright 1990 American Institute of Physics).
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where S is the second-order orientation function and u is the deformation vector. The
memory function m(r — ') is expressed as

m(t—1) = %’OVBF(t —1t)/or (3.4-8)

where the plateau modulus is defined from the Treloar theory of rubber elasticity (52):

3CkTH?
G) =223 (3.4-9)
a
0

The function F(r — ') is related, as with the temporary network model of Green and
Tobolsky (48) discussed earlier, to the survival probability of a tube segment for a time
interval (¢t — ¢') of the strain history (58,59). Finally, this Doi-Edwards model (Eq. 3.4-5)
is for monodispersed polymers, and is capable of moderate predictive success in the non
linear viscoelastic range. However, it is not capable of predicting strain hardening in
elongational flows (Figs. 3.6 and 3.7).

The pom-pom polymer reptation model was developed by McLeish and Larson (60) to
represent long chain-branched LDPE chains, which exhibit pronounced strain hardening
in elongational flows. This idealized pom-pom molecule has a single backbone confined in
a reptation tube, with multiple arms and branches protruding from each tube end, as shown
in Fig. 3.12(a). M, is the molecular weight of the backbone and M, that of the arms.

Corresponding dimensionless entanglement lengths are S, = M,,/M, for the backbone
and S, = M,/M, for the arms, where M, is the entanglement molecular weight. The
dominant contribution to the stress tensor is assumed to arise from the backbone/crossbar
segment. Because these branches are entangled with the surrounding molecules, the
backbone can readily be stretched in start-up extensional flows, producing strain

(a) (b)

Fig. 3.12 (a) A pom-pom with three arms at each branch point (¢ = 3). At short times the
polymer chains are confined to the Doi—Edwards tube. S, is the dimensionless length of branch
point retraction into the tube; 4 is the stretch ratio where L is the curvilinear length of the crossbar
and Ly is the curvilinear equilibrium length. (b) Relaxation process of a long-chain—branched
molecule such as LDPE. At a given flow rate ¢ the molecule contains an unrelaxed core of
relaxation times t > &' connected to an outer “fuzz” of relaxed material of relaxation t < & !,

behaving as solvent. [Reprinted by permission from N. J. Inkson et al., J. Rheol., 43(4), 873 (1999).]
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hardening when it gets fully stretched and the poms on each end as they ‘““cork” the tube
ends. The tension that the poms may be able to sustain and impart on the backbone is
gkp/a, where g is the number of poms and a is the reptation tube diameter. Beyond this,
tension in the backbone is sufficient to gradually withdraw the dangling arms into the tube
(Se > 0). When this branch point withdrawal is complete, strain-hardening behavior
disappears. On the other hand, in start-up of shear flows, the backbone tube stretches only
temporarily and eventually goes back to zero as the pom-pom molecule is aligned by the
flow, thus producing shear strain softening.

Inkson et al. (61) and McLeish (62) in a recent review have proposed also a multimode
pom-pom model in an attempt to account for the multiple levels of branching believed to
be present in LDPE molecules. Because the precise structure and degree of branching
of LDPE molecules are unknown, with no experimental techniques to determine them,
the potential exists for these multimode models to “characterize” the LDPE macro-
molecular structure through fitting with experimental rheological data.

Figure 3.12(b) indicates how a reptating large molecule with multiple branch points
relaxes after deformation. The free chain arms relax rapidly, much as the pom-pom arms at
the outer branch point. This branch point is able to move one diffusive step after a deep
retraction of the chain arms connected to it. This allows the molecular segment in the next
(inward) branch point to relax. This, in turn, is repeated until the innermost segment relaxes.
The relaxation time of a segment depends hierarchically on the path distance to the nearest
free end that can release it from its tube constraint by retraction. The multimode pom-pom
models, which utilize a small set of trial-and-error picked modes and utilize experimentally
determined discreet relaxation spectra are able to closely account for three rheological
functions: n(p, 1), 17 (¢, t), and 1_1;1 (ép,, t), simultaneously over four decades of times and
rates (61), which is rather remarkable. Still, these models lack the ability to predict the
rheological behavior of a structurally slightly different polymer, that is, there is no direct
connection to the specific macromolecular characteristics of the polymer melt

Wagner et al. (63-66) have recently developed another family of reptation-based
molecular theory constitutive equations, named molecular stress function (MSF) models,
which are quite successful in closely accounting for all the start-up rheological functions
in both shear and extensional flows (see Fig. 3.7). It is noteworthy that the latest MSF
model (66) is capable of very good predictions for monodispersed, polydispersed and
branched polymers. In their model, the reptation tube diameter is allowed not only to
stretch, but also to reduce from its original value. The molecular stress function f(r), which
is the ratio of the reduction to the original diameter and the MSF constitutive equation, is
related to the Doi—Edwards reptation model integral-form equation as follows:

t t

o) = J m(t — 1) Sysr ()i’ = J m(t — ) 2 S (1)t (3.4-10)

—00 —00

In the MSF theory, the function, f, in addition to simple reptation, is also related to both
the elastic effects of tube diameter reduction, through the Helmholtz free energy, and to
dissipative, convective molecular-constraint mechanisms. Wagner et al. arrive at two
differential equations for the molecular stress function f: one for linear polymers and one
for branched. Both require only two trial-and-error determined parameters.

The constitutive equations discussed previously contain both linear and nonlinear
response parameters. Both have to be evaluated experimentally. The first five to ten terms



130 POLYMER RHEOLOGY AND NON-NEWTONIAN FLUID MECHANICS

! ! ‘

Smooth convergent Rheotens extensional Double cavity die
slit (SCS) Rheometer (DCD)
(RER)

Fig. 3.13 Schematic of three prototype industrial flow (PIF) geometries showing shaded exten-
sional flow regions for each geometry. [Reprinted by permission from J. F. Agassant et al., Intern.
Polym. Proc., 17, 3 (2002).]

of the discrete LVE spectrum constitute a sufficient number of linear response terms. They
are derived from small-strain (below the limit of linear viscoelastic response), sinusoidally
varying flow experiments, specifically using the experimentally obtained G', G” or 5*.
Until recently, the nonlinear response parameters have been obtained from flow
experiments that are relatively simple (rheometric) and that impose large strains as large
step-strain experiments, or extensional flows. Both result in altering the quiescent,
entangled macromolecular network of the melts. This practice has left open the question of
how relevant the evaluation of all the constitutive equation parameters is, using simple
rheometric experiments that do not have the complexity of real processing flows. This
question has been the subject of a large-scale investigation by a multidisciplinary network
of European polymer researchers, which has been in progress for several years, and is
described in by Agassant et al. (67). Two-dimensional, isothermal prototype industrial
flows (PIF), resembling and closely related to polymer processing practice were used.
Three such flows are shown in Fig. 3.13.

The flow birefringence pattern of these flows can be obtained through the use of a pair
of flat glass walls. Using image enhancement and the stress-optical law (68),

A= C(‘L’ll — ‘622) (34-11)

where A is the birefringence and C is the stress-optical constant, the principal normal
stress difference can be obtained experimentally and enhanced and ““‘skeletized’ by image
analysis. This is shown in Fig. 3.14 for the smooth convergent die of the PIFs shown in
Fig. 3.13.

Such contours are then compared with numerically derived ones obtained in the
following fashion: a nonlinear response constitutive equation is selected (60, 61, 64, 69) to
be used with the equation of motion for a given PIF. The numerical solution computational
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Fig. 3.14 Experimental and matching numerical simulation data for the smooth convergent die
geometry of HDPE, Stamylan HD862 at T = 190°C. [Reprinted by permission from J. F. Agassant
et al., Intern. Polym. Proc., 17, 3 (2002).]

packages required for the solution of the PIFs (as contrasted to the simpler rheometric
flows) have to be powerful and the computational demands on both time and computer are
daunting. Three different finite-element numerical codes were used: the commercial
Fluent Group Polyflow (70), Venus (71), developed at Eindhoven University, and Seve 2
(72), developed at the CEMEF of Ecole des Mines de Paris.

In the example given, the constitutive equation used is a multimode Phan Tien Tanner
(PTT). It requires the evaluation of both linear and nonlinear material-response
parameters. The linear parameters are a sufficient number of the discrete relaxation
spectrum /; and #; pairs, which are evaluated from small-strain dynamic experiments. The
values of the two nonlinear material-response parameters are evaluated as follows. Three
semiarbitrary initial values of the two nonlinear parameters are chosen and the principal
normal stress difference field is calculated for each of them using the equation of motion
and the multimode PTT. They are compared at each field point (i, j) to the experimentally
obtained normal stress difference and used in the following cost function F

(GSM _ o2 172

ZZ y exp)’f (3.4-12)

where GJ™ is the “grey level” of the normalized simulation pattern and G the
corresponding experimental pattern at any (i,j) point. The cost function is then evaluated
for each of the three initial nonlinear parameter pairs (69). The simplex optimization
method is then employed to arrive at the “optimal” values of the nonlinear parameters,
which minimize the value of the cost function. The agreement between the experimentally
and numerically obtained birefringence patterns, using the optimal nonlinear parameter
pair, is shown in Fig. 3.15; it is very good.

Thus, adequate determination of nonlinear rheological parameters can be obtained,
using industrial polymer processing—relevant flows, albeit with very substantial
computational efforts, virtually assuring the relevance of the use of the constitutive
equation for solving other complex processing flows.
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x/h
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Experiment We=4.3
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-2 T T T T

Fig. 3.15 (top) Measured and (bottom) calculated isochromatic fringe patterns for the extended
pom-pom model at We = 4.3 of LDPE, DSM Stamylan LD 2008 XC43, T = 150°C. [Reprinted by
permission from J. F. Agassant et al., Intern. Polym. Proc., 17, 3 (2002).]

Finally, as we stated at the beginning of this section, all these recent successful molecular
theory—based constitutive equations are still not capable of answering the question of what
the empirical parameters, chosen by trial and error, will be for a yet-to-be-synthesized
polymer, to accurately describe its rheological properties. One expects an answer to this
question, if the theory would be based on fundamental molecular properties. The inability to
answer this question rests in the fact that molecular theories, such as the previously stated
one, are based on physically reasonable, ingeniously conceived and formulated, molecular
cartoons. Nevertheless, with available computational power growing exponentially, and the
potential synergy between molecular theories and molecular dynamics calculations,
predicting the properties of existing macromolecular systems and those yet to come, from
“first molecular principles” will not come in the distant future, but sooner.
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PROBLEMS

3.1 Pressure Flow between Parallel Plates with Various GNF Fluids Derive expres-

sions for the pressure flow rate of a fully developed, isothermal, steady flow between
parallel plates for the following constitutive equations: (a) Power Law model: = mj"~!,
(b) Ellis model: 1,/n =1+ (r/rl/z)‘x*l, (c) Bingham Plastic: n = 00,1 < 10;9 =
Uo + T0/7, T > To. (d) Calculate the flow rate per unit width for 2 MI LDPE at 170°C
when the pressure gradient is 1.5 MPa/cm and the plate separation is 0.25 cm, using the
Power Law model and the Ellis model.

3.2 Evaluating the Melt Index (MI) from the Flow Curve Develop a methodology and

computer program logic to evaluate the Melt Index (ASTM Standard D) of a material
from its flow curve (non-Newtonian viscosity as a function of shear rate).

3.3 Evaluating the Flow Curve from Experimental Data The flow rate of 3% CMC

solution in water was measured in a long capillary as a function of pressure drop.
Based on the results given in the following table, compute the non-Newtonian
viscosity versus the shear-rate curve.

40/mR3(s71) 7,,(N/m?) 40Q/nR3(s7h) 7,,(N/m?)
250 220 3500 670
350 255 5000 751
500 298 7000 825
700 341 9000 887
900 382 12500 1000
1250 441 17500 1070
1750 509 25000 1200

2500 584
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3.4 Inherent Errors in Using the Power Law Model in Pressure Flows The shear rate
during pressure flow between parallel plates varies from zero at the center to maximum
shear rate at the wall, y,,. Most polymer melts show Newtonian behavior at low shear rates,
hence using the Power Law model for calculating flow rate introduces a certain error. How
would you estimate the error introduced as a function of &*, where &* is the position below
which the fluid is Newtonian? [See Z. Tadmor, Polym. Eng. Sci., 6, 202 (1966).]

y

£=10

X

3.5 A Race Between Newtonian and Non-Newtonian Fluids Consider two vertical
tubes, side by side, of diameter R and length L, as shown in the following figure, one
filled with a Newtonian fluid and the other with a Power Law model fluid. The fluids
emerge through a capillary of length / and radius r such that r < R. As the fluids
began to emerge, an interesting phenomenon was observed: first, the level of the non-
Newtonian fluids dropped faster than the Newtonian fluid, but then the Newtonian
fluid overcame the former. (a) Derive a mathematical model that can explain the
observed phenomenon. (b) If, after 10s, the height of both fluids is at H/2, what
heights will they reach after 20s if the Power Law exponent is 0.5?

=
=

T

Newtonian Power law

3.6 Stresses Generated by CEF Fluids in Various Viscometric Flows What stresses
are necessary to maintain a CEF fluid flowing in the following flows: (a) parallel-
plate drag flow; (b) Couette flow with the inner cylinder rotating; and (c) parallel-
plate pressure flow. Assume the same type of velocity fields that would be expected
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from a GNF or a Newtonian fluid. The three just-named flows are all viscometric.
You should obtain the results in Eqs. E3.5-12 to E3.5-14.

Torsional Flow of a CEF Fluid Two parallel disks rotate relative to each other, as
shown in the following figure. (a) Show that the only nonvanishing velocity
component is vp = Qr(z/H), where € is the angular velocity. (b) Derive the stress
and rate of deformation tensor components and the primary and secondary normal
difference functions. (c) Write the full CEF equation and the primary normal stress
difference functions.

A

H

s O

Special Form of the Rabinowitsch Equation Show that the expression Q =
[ R/(s +3)](~RAP/2mL)’ is a special form of the Rabinowitsch equation
(Eq. E3.1-9) for a Power Law fluid.

The Rabinowitsch Equation for Fluids Exhibiting Slip at the Wall Derive the
Rabinowitsch equation for the case where the fluid has a slip velocity at the wall V.
[See L. L. Blyler, Jr., and A. C. Hart, Polym. Eng. Sci., 10, 183 (1970).]

The Flow of Non-Newtonian Fluids in Flows between Almost Parallel Plates
The lubrication approximation was discussed in terms of Newtonian fluids. Consi-
dering a nearly parallel plate pressure flow (H = Hy — Az), where A is the ‘“‘taper,”
what additional considerations would have to be made to consider using the lubrication
approximation for (a) a shear-thinning fluid flow, and (b) a CEF fluid?

The Flow of a Shear-Thinning Fluid on an Inclined Plate A shear-thinning
viscous liquid defined by n,/n = 1 + (/7 /2)0H flows at steady state gravitationally
on a surface inclined by angle f5, as shown in the following figure. (a) Derive an
expression for the film thickness ¢ in terms of the volumetric flow rate. (b) Find its
value for « = 1.
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Evaluation of GNF Fluid Constants from Viscometric Data Using the flow
curve of Chevron/Philips 1409 MI = 50 LDPE in Appendix A, calculate the para-
meters of the Power Law, Cross and Carreau models.

Helical Annular Flow Consider the helical annular flow between concentric
cylinders with an axial pressure gradient and rotating outer cylinder as shown in the
accompanying figure. Specify the equations of continuity and motion (z and 0
components) and show that, if a Newtonian fluid is used, the equations can be
solved independently, whereas if n = n(y), where j is the magnitude of 7, the
equations are coupled.

(1

J |
//

>
»

z

N S

3.14 Dimensional Changes in Planar and Biaxial Extensional Flows Determine the

3.15

rate of dimensional changes that have to be applied on a flat film in order to generate
(a) planar extension, and (b) biaxial extension flows.

Pressure Flow Calculations Using the Equivalent Newtonian Viscosity® Consi-
der fully developed isothermal laminar pressure flow between parallel plates of a
shear-thinning liquid with a flow curve fitted to the following polynomial relation-
ship above the shear rate 7,:

Inn=ay+alny +a11(1n§))2 +aT + anT? + apTIng 7> P,

and Newtonian behavior below 7:

The coefficients a;; can be accurately determined from experimental data by
standard linear multiple regression methods.

(a) Show that the flow rate per unit width is given by
o2 Ty '
q—=— N J Ty dZ
TW
0

where £ is half the thickness and t,, is the shear stress at the wall.

6. E. Broyer, C. Gutfinger, and Z. Tadmor, ‘““Evaluating Flows of Non-Newtonian Fluids,” AIChE J., 21, 198
(1975).
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(b) Show that, for a Newtonian fluid, the flow rate can be written as

_2hzrw
=3

q

(c) Show that, by defining an equivalent Newtonian viscosity,

3
Ty

B=——7
3 [tpde
0

the flow rate of a non-Newtonian fluid can be calculated with the Newtonian
equation in (b) with u replaced by L.

(d) Show that i can be expressed uniquely in terms of t,, and 7, for example, by an
equation such as

lnﬂ =by+byInt, + b”(ln TW)Z + b, T + b22T2 + bpTInt,

and indicate a procedure for evaluating the coefficients of b; from a;;.

(e) Using the expression in (d), explain how to calculate the flow rate for a given
pressure drop, and the pressure drop for a given flow rate.

3.16 The Secondary Normal Stress Difference as a Stabilizing Force in Wire Coating
Dies Using a CEF equation, it can be shown,’ that, if the wire in a wire coating die
is off center, a lateral stabilizing force arises proportional to the secondary normal
stress-difference function W,. Use a bipolar coordinate system &, 6, ¢ (Fig. P3.16),
the components of the equation of continuity, and motion in Table P3.16. Assume
that there is no axial pressure gradient and the only nonvanishing velocity
component is v¢(£), with boundary conditions v¢(&;,0) = Vy and v¢(&,,0) = 0.
Further assume the fluid to be incompressible and the flow isothermal.

(a) Show that the velocity profile is given by

E-&
& —-&

VC / V() =
(b) Show that the equation of motion reduces to

oP 0 (1
X— — Trr =
R + RE <X‘rgg> 0

op
a0

1
fﬁrégsinﬁ =0

7. Z. Tadmor and R. B. Bird, “Rheological Analysis of Stabilizing Forces in Wire-Coating Dies,” Polym. Eng.
Sci., 14, 124 (1974).
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L]

X @=n

Fig. P3.16 Bipolar coordinate system. The shaded area denotes the cross section of the fluid, and
the constant a, the distance of the pole from the origin. [Reprinted by permission from R. Bird, R.
Armstrong, and O. Hassager, Dynamics of Polymeric Liquids, Volume 1, Fluid Mechanics, Second
edition, Wiley, New York, 1987.]

where
X =cosh¢ +cos 0

(c) Show that the lateral force in the wire per unit length f; is

W,nV3
2
a(é — &)
where a is the distance of the poles of the bipolar coordinate system from the
origin, which is related to the separation of centers of wire and die J, via

0 o 1 a 2 R1 2 a 2
ROV (R—) ) (R—) +(R—)
& =sinh™! (;) and & =sinh™! <§2>

3.17 The Single Maxwell Element LVE Constitutive Equation Consider the single
Maxwell mechanical element shown in the following figure. The element was
at rest for # < 0. A shear strain y,(¢) is applied at ¢ = 0. By stating that the stress
is the same in the dashpot and spring, while the total strain is the sum of those

f;c:_

Note that
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TABLE P3.16 The Equations of Continuity and Motion in Bipolar Coordinates (&, 0, ¢)

Continuity

g X 0 X0 0 1 1
tp—l— ——pve +——-pvo + = pvg—fsmhé pvg—i-fsme pvg | =0

0 adé a 90 ¢
Motion
{8‘}5 +ve (X 0 ve+— ! Vo sm9> +vg (X 0 Vet+— ! Vo smhé) +v¢ (2%)]
ot 0¢ 00 ¢
XoP [X0 X0

0 1 . 1 .
= _Ea_f — Ea—ifgé +E%‘E()§ +8—C‘C<5 +;(’L’oo — ‘Eéé) sinh & +;(T05 + ‘Ca)) sin0| + pg:

%—&- ¢ {2 1 sin0 | + X0 1vsinhé + 2
Plar T\ qae" 2" Y\ a90" " a"* Y\ ac

XoP [X 0 X0 0 1 . 1 .
:_E%_ ;8—615()—&- 20 ‘C()()—Fac‘[(()—l— (‘C()()—‘C&)Slﬂ@—;(‘fgg—|—‘C£())Sll’lhf +pgo

|2, ’_‘ﬁ (X2, ) 40 (2
ar " V\aaE’) T\ aae") T \ac
oP [x o X0

—8_C BE Tec+— 80‘50(4-

1 1
5( — T sinh ¢ —I—;‘E()( sinO} +p8¢

in which, for Newtonian fluids, 7; = —,u{(VV) + (VV)T}“.
i

Source: Z. Tadmor and R. B. Bird, “Rheological Analysis of Stabilizing Forces in Wire-Coating Dies,” Polym.
Eng. Sci. 14, 124 (1974).
Note: For the definition of X and a, see Problem 3.16.

of the spring and the dashpot, obtain Eq. 3.3-9 in shear. Solve the differential
equation to obtain t/y, = Ge™'/* for a stress relaxation experiment, that is,
Y12 = Yo-
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3.18 The Boltzmann Superposition Principle Apply the Boltzmann superposition principle

to obtain the LVE (Eq. 3.3-8) using 7(t) = y,Ge"/*. Consider the applied strain y(z) as
being applied discretely in a series of small steps Ay, as shown in the following figure:

n

1A
"

%

3.19 The Single Voigt Element LVE Constitutive Equation In the Voigt mechanical
element shown in the following figure, the total stress is the sum of the stresses
on the dashpot and spring. On the other hand, the strain in each component
is equal to the total strain. (a) Use these facts to develop the constitutive
equation for a single Voigt element. (b) Solve the differential equation for a
creep experiment (1 =0, t < 0;7 = 10, > 0).

3.20 The Boltzmann Superposition Principle: Alternate form of the LVE Equation
Apply the Boltzmann superposition principle for the case of a continuous stress
application on a linear viscoelastic material to obtain the resulting strain y(¢) in
terms of J(¢r — ') and dt/dr’, the stress history. Consider the applied stress in terms
of small applied Az;, as shown on the accompanying figure.

Y
"
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"%

%

fo
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Creep in Structural Design A pendulum clock manufacturer wants to replace the
metal pendulum arm of the clocks with a polymer rod. Is his idea a good one? Use
the answer to Problem 3.20.

Prediction of W' (t) by the Rubberlike Liquid Constitutive Equation Calculate
the extensional viscosity as a function of time after the start-up of a steady
uniaxial extension of a Lodge rubberlike liquid, Eq. 3.4-3, having a single
relaxation time /¢ and modulus Gy, Eq. 3.4-4. Before the initiation of the steady
extensional flow the sample is and had been at rest, thus the stretch ratio
history is: A(#,#) = exp[é(f —1)] for # > 0 and A(¢,t) = exp(é) for ¥ <0
(independent of ¢')
Prediction of the Steady-State Viscosity in a Simple Shearing Flow by the K-BKZ
Constitutive Equation The K-BKZ (Kaye—Bernstein, Kearsley, and Zappas)
constitutive equation [A. Kaye, Note No. 134, College of Aeronautics, Cranford
University, U.K. (1962)] has the same integral form as the Green and Tobolsky
Lodge rubberlike liquid, but utilizes a strain-dependent modulus G[(t —¢'),y] =
mt(t—t’)h(y) = h(y) i%"exp[(f—t’)/ii}. Thus, it has the general form t =
J m(t — 1)y (7,1) di'. Consider a fluid with a single relaxation time, 2o, and
;no(o)dulus, Gy, and with h(y) = e™?. Calculate the steady-state shear viscosity

function n(}).
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In this chapter we deal with the entire “journey” of polymeric particulate solids, from the
polymerization reactor to the shaped and structured finished product. The reader is referred to
Chapter 1, which discusses all the processes and elementary steps involved in this journey.

The products of polymerization reactors are most often in particulate form: gas phase and
slurry reactors produce porous spherical particulates about 300 um in diameter; emulsion
reactors produce ultrafine 0.1 pm-diameter powder particulates; and suspension reactors
produce beads that are 100—1000 pm in diameter. Except for the gas-phase reactor, the
particulate product stream has to be dried. The particulate reactor products are then
transported in finished form to storage silos. Since they do not contain the necessary
“stabilizer package,” and since, fine particulates are in general, more difficult to feed in
compounding and final fabrication processing equipment, the following steps are taken. The
particulates are transported in fluidized form to conical blenders, where stabilizing additives
are spray-mixed onto them. From there, they are metered by weight-in-loss feeders with feed
screws into large, twin-rotor melting extruders where melting and intimate mixing of the
stabilizers are accomplished. Large, multihole, generally underwater strand dies with fast
rotating knife blades in contact with the die-hole ring produce pellets of typical cylindrical
dimension, that is, 0.3 cm diameter and 0.3 cm height. The molten pellets are cooled skin-
deep by water in turbulent flow in the water box and transported as slurry for further cooling,
spin-drying, storage, and shipping into 50-1b bags, 1000 1b gaylords or railroad cars. Typical
polymer particulates are shown in Fig. 4.1.

As we pointed out in Chapter 1, the preceding describes the postreactor *“finishing”
operation. The pellets are then shipped to be compounded, namely, blended with fillers,
colorants, or other polymers, where after melting, mixing, and reacting, they form physical

Principles of Polymer Processing, Second Edition, by Zehev Tadmor and Costas G. Gogos.
Copyright © 2006 John Wiley & Sons, Inc.
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Fig. 4.1 Typical polymer particulates.

or reactive blends, as we shall see in Chapter 11. The pellets are meter-fed into twin rotor
compounding equipment and exit again out of multihole dies to be pelletized as hot strands
or underwater; in both cases, they are water-cooled and dried, packaged, and shipped to
final polymer product fabricators. Finally, pellets are fed into single-rotor shaping
processing equipment, such as single screw extruders or injection molding machines. For
water-absorbing polymers, such as PET and polyamide (PA), the pellets are dried by hot
air for 2 to 4 hours before processing, and transported in airtight conduits in fluidized form,
to hoppers sealed from the atmosphere.

All the preceding “‘particulate handling steps’ are affected by the unique properties
of all particulates, including polymeric particulates; while they may behave in a
fluidlike fashion when they are dry, fluidized and above 100 pm, they also exhibit
solidlike behavior, because of the solid—solid interparticle and particle—vessel friction
coefficients. The simplest and most common example of the hermaphroditic solid/
fluidlike nature of particulates is the pouring of particulates out of a container (fluidlike
behavior) onto a flat surface, whereupon they assume a stable-mount, solidlike behavior,
shown in Fig. 4.2. This particulate mount supports shear stresses without flowing and, thus
by definition, it is a solid. The angle of repose, shown below, reflects the static equilibrium
between unconfined loose particulates.

Solidlike behavior abounds when the surface-to-volume ratio is very high," that is, when
the particulates are even mildly compacted, surface-charged, or wet; all contribute to large
frictional forces and to nonuniform, often unstable stress fields in both flowing and
compacted particulate assemblies, as we discuss later in this chapter. We begin by
discussing some of the unique properties of polymer particulates relevant to processing.
Comprehensive reviews can be found in the literature (1-4).

4.1 SOME UNIQUE PROPERTIES OF PARTICULATE SOLIDS
Scientific and engineering investigations into the properties and behavior of particulate

solids date back to the early work of Coulomb, who in 1776 developed a theory on “soil
pressure and resistance,” thus laying sound foundations for important engineering

1. Pellets, compared to fine powders, with low surface-to-volume ratios, are readily flowable, easily fluidized and
meter- or hopper-fed. These attributes justify pelletization.
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Fig. 4.2 The angle of repose. It should be noted that the angle of repose is generally not a measure
of flowability of solids, and as Jenike (22) points out, it is strictly useful only to determine the
contour of a pile. Its popularity stems from the ease with which it can be measured.

practices. Later, in 1852, Hagen analyzed the flow of sand in an hourglass, and shortly
afterward, Reynolds, in 1885, made his observation on the dilatancy of a deforming mass
of sand.? The latter, unique property of particulate solids can be observed while walking on
wet sand at the seashore. The sand ““whitens” or appears to dry momentarily around the
foot because the pressure of the foot dilates the sand.

The analysis of particulate solids systems in analogy to fluids can be divided into statics
and dynamics: it is interesting to note that, in spite of the early beginnings of scientific
interest in the properties of particulate solids, this field—in particular the dynamics of
particulate solids—has not experienced the same intensive scientific development as fluid
dynamics. In most engineering curricula, relatively little attention is focused on the
analysis of particulate solids. Therefore, as engineers, we are generally ill-equipped to
analyze these complex systems and to design equipment for handling them, and we may
often be surprised by the behavior of solids, such as, for example, the fact that the drag on
the plough is independent of its speed (5).

A closer look at the properties of particulate solids and their response to external forces
reveals, as pointed out earlier, that these are a blend of (a) liquidlike behavior, (b) solidlike
behavior, and (c) particle-interface—dominated behavior, unique to these systems. Like
liquids, particulate systems take the shape of the container they occupy, exert pressure on
the container walls, and flow through openings. Yet like solids, they support shearing
stresses (hence, they form piles), may possess cohesive strength, and exhibit a nonisotropic
stress distribution upon application of a unidirectional load. But unlike liquids, shearing
stress is proportional to normal load rather than to rate of deformation, and unlike solids,
the magnitude of the shearing stress is generally indeterminate, and all that can be said is
that the following inequality holds

t<f'o (4.1-1)

where f”is the interparticle static coefficient of friction and ¢ represents a range of normal
forces (““pressures’’) that can be applied to the particulate system before a value of shear
stress 1 is reached that is high enough to start the particles sliding past one another. That is,
before particulate solids flow starts, there is a range of equilibrium states and a range of
bulk densities allowable. Only at the inception of flow are the frictional forces fully
mobilized (4). At this state, the relation takes the form of Amonton’s law, discussed in the
following subsection, which is the defining equation for the coefficient of static friction.

2. O. Reynolds, “On Dilatancy of Media Composed of Rigid Particles in Contact. With Experimental
Tllustrations.” Philos. Mag., Ser. 5, 20, 469 (1885).
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Solid-Solid (Dry) Friction

Friction is the tangential resistance offered to the sliding of one solid over another, due to dry
friction. Friction is an apparently simple phenomenon with very complex mechanisms that
take place on a variety of length scales, from atomic to nano and up. The study of friction is part
of the engineering—scientific discipline of tribology,” which is the scientific study of friction,
wear, and lubrication (6). It was Leonardo da Vinci (1452-1519) who discovered the first two
laws of friction, namely, that the area of contact has no effect on friction and that friction is
proportional to the load. These two laws were rediscovered later by Guillaume Amontons
(1663-1705), and later Charles-Augustin Coulomb (1736—-1806), added the third law:

1. The friction force (Fr) is directly proportional to the applied load (Fy); that is,
Fr < Fy, where the proportionality constant for any pair of solid surfaces is called
the coefficient of friction, f.

2. The force of friction is independent of the apparent area of contact.

3. Kinetic friction is independent of sliding velocity.

Bowden and Tabor (7) suggested a physical explanation for the observed laws of friction.
They determined that the true area of contact is but a small fraction of the apparent area of
contact, because the surfaces of even the most highly polished material show irregularities
appreciably larger than atomic dimensions called in the literature asperities, as shown in
Fig. 4.3. Thus, with increasing normal load, more asperities come in contact and the
average area of contact grows, as shown in Fig. 4.4

Consequently, Bowden and Tabor (7) specify two factors that are responsible for dry
friction: the first, and usually the more important factor, is the adhesion that occurs at the

Fig. 4.3 A magnified view of a solid surface showing surface roughness of hills, referred to as
asperities, separated by valleys. [Reproduced by permission from I. M. Hutchings, Tribology:
Friction and Wear of Engineering Materials, Edward Arnold, UK, 1992 (co-published by CRC
Press, Boca Raton, FL).]

3. The word “tribology” comes from the Greek word tp1fiw, which means “to rub.”
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-

Fig. 4.4 Two surfaces in contact with (a) without normal load, and (b) with normal load.

regions of real contact: these adhesions, welds, or junctions have to be sheared if sliding is
to occur; the second factor arises from the plowing and grooving of one surface by the
asperities of the other. However, elastic deformation, which precedes the yield point, also
plays a role, as does the presence of surface contaminants, such as organic compounds or
oxides, which tend to decrease adhesion. Disregarding the latter effects, in the case of
static friction, only adhesion at the contact sites is important, whereas in either sliding or
rolling friction, the second factor, plowing, enters the picture. By neglecting the second
factor relative to the first, we can approximately explain the first two laws of friction.
Because the real contact area is so small, we can assume that, even if the normal load is
small, the pressure at the contact points is sufficiently high to reach the value of the yield
stress of the softer material o,. Assuming that this is indeed the case, that is, that plastic
flow occurs, we can argue that the area at a point of contact, A; is

A =2 (4.1-2)

where Fy; is the load supported by the contact point. An adhering contact point forms a
joint that can be broken only when the value of the applied tangential force F; reaches the
level

FT,- =Ty Ai (41-3)

where 7, is the shear strength of the softer material. If we assume that the total tangential
frictional force is simply the sum of all, F7;, we obtain that

T T
Fr= o En =25 = () (414
y y

Equation 4.1-4 suggests that the static coefficient of friction is a material property
characteristic of the pair of solid surfaces and, specifically, of the softer solid

f== (4.1-5)
y

By extension, Egs. 4.1-4 and 4.1-5 are assumed to hold for kinematic friction ( f), too,
assuming that adhesion predominates. The statement that the kinematic friction coefficient
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fis a material property, independent of the geometric nature of the surface and frictional
process conditions, is only a rough approximation.

Only recent developments in instrumentation of scanning probe microscopy, such as
scanning tunneling microscopy (8) and atomic force microscopy (9), have made it possible
to study friction on the nanometer and higher scales. These experiments show that the
behavior on the single asperity level is different from that on the macroscopic scale.

One of many complications in the experimental studies, and in developing a theoretical
foundation, is the interpretation of the experimental results and the complexity caused
by ambient conditions, because real surfaces are always contaminated with airborne
molecules, water, hydrocarbons, debris, and the formation of liquid bridges. Moreover,
sliding of one solid onto another introduces a new set of circumstances and unknowns. It
may lead to high and unknown local temperatures and pressures, generating fresh and
chemically different surfaces, and mostly altering the topography of the surface as a
result of deformation and wear. For these reasons, the coefficients of static and sliding
friction are different. The static coefficient is larger than the sliding (kinematic)
coefficient. However, recent findings and techniques lend support to Bowden and Tabor’s
assumption that the macroscopic, dry frictional behavior is undoubtedly dominated by
the physics of individual contacts and interactions of contacting asperities (10,11).

In view of these complexities, it is remarkable that Eq. 4.1-4 represents numerous
metal-metal, dry frictional data rather well, for both the static and sliding cases. Polymers,
on the other hand, exhibit an even more complex frictional behavior on metal. This is,
perhaps, not surprising, since the physical situation involves a relatively soft, viscoelastic,
and temperature-dependent material in contact with a hard, elastic, and much less
temperature- and rate-dependent material. Empirical evidence of these complexities is the
nonlinear relationship between the frictional force and the normal load

Fr = CF%, (4.1-6)

from which a load-dependent coefficient of friction can be deduced

f=CFi! (4.1-7)

where C is a constant and the exponent o is found to vary between the values of 1 and
0.666. It has been suggested by Lodge and Howell (12) that & = 2/3 corresponds to
the case of pure elastic deformation at the contact points, whereas o = 1, according to
Eq. 4.1-4, corresponds to purely plastic (yielding) deformation. Hence, values in
between appear to reflect viscoelastic deformation at the contact points. If this is the
case, the total contact area would be expected to depend on the normal load, the time of
contacts, the temperature, and the speed of sliding. As we shall see later in the chapter, these
effects are generally observed. It is worth noting that the expression for the dry coefficient of
friction (Eq. 4.1-7) has the same form as that of the viscosity (“internal friction’”) of a Power
Law fluid that describes the non-Newtonian behavior of polymer melts.

From the foregoing it follows that, except for « = 1, the coefficient of friction
decreases with increasing load, F. This observation is a general feature of polymers,
namely, that the effective coefficient of friction reduces at higher loads (13,14).

Thus, before we consider the response of particulate systems to externally applied
stresses, we must know whether the shear and normal stresses at any point and orientation
are above the values specified by the equality of Eq. 4.1-1. Furthermore, since there are
two kinds of particulate solids, the noncohesive (free-flowing) and the cohesive, we
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comment on the phenomenon of agglomeration, which transforms the former to the latter.
Finally, we must remember that, since it is necessary to contain particulate solids, the wall
particulate static coefficient of friction and the wall shear and normal forces must be
specified. The wall is another location at which flow can be initiated.

4.2 AGGLOMERATION

The term agglomeration describes the forming of a cluster of particles from individual
particles. Agglomerates form because of the binding of van der Waals forces between
individual particles, which require intimate contact to exert any significant attraction. For
small particles of sizes up to ultrafine 10 pm, the mass of any one individual particle is so
small that it creates a loose-particle agglomeration, and great difficulties in fluidization
are encountered. Rotating fluidized beds creating 10-20-g centrifugal fields have recently
been used to make the mass of each particulate effectively 10-20 times larger, enabling
gas—solid fluidization (15). Presumably, any surface shear stresses imposed on the system
have the effect of decreasing the size of agglomerates, either by breakup, or by erosion, or
by both (16,17), as is discussed in Chapter 7 in connection with dispersive mixing of solid
additives by shear and extensional polymer processing flows. Additionally, solid—solid
forces are significantly amplified by increases in pressure exerted on loose particulate
assembly regions, leading to ‘““caking.” In the processing of particulate-filled polymers,
when the particulates and polymer (powder or pellets) are fed as a solid mixture into either
single- or twin-rotor processing equipment, compaction takes place in SSEs, and repeated
cycles of compressions in TSEs, often leading to caking before melting. Following
melting, such agglomerated ‘“cakes” may be held strongly enough for the shearing
stresses in the flowing melt to prevent dispersing them. We discuss such a problem in
Chapters 9 and 10.

4.3 PRESSURE DISTRIBUTION IN BINS AND HOPPERS

The static pressure under a liquid column is isotropic and is determined by the height of the
column above the point of measurement, %, and the density of the liquid p

P = pgH (4-3‘1)

In a column of particulate solids contained in a vertical bin, the pressure at the base will
not be proportional to the height of the column because of the friction between the solids
and the wall. Moreover, a complex stress distribution develops in the system, which
depends on the properties of the particulate solids as well as the loading method. The
latter affects the mobilization of friction, both at the wall and within the powder. Finally,
arching or doming may further complicate matters. Hence, an exact solution to the problem
is hard to obtain. In 1895, Janssen (18) derived a simple equation for the pressure at the base
of the bin, which is still frequently quoted and used. The assumptions that he made
are: the vertical compressive stress is constant over any horizontal plane, the ratio of
horizontal and vertical stresses is constant and independent of depth, the bulk density is
constant, and the wall friction is fully mobilized, that is, the powder is in incipient slip
condition at the wall.
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Fig. 4.5 A Vertical bin filled with particulate solids.

A force balance over a differential element (Fig. 4.5) simply using pressure P
instead of the compressive stress, with shear stress at the wall t,, = o, tan f§,, + ¢,
where f3,, is the angle of internal friction and c,, is the coefficient of cohesion at the wall
(14), gives

Appgdh+ (P+dP)A = (c, +f,KP)Cdh+  PA (4.3-2)
[Weight of  [Pressure acting [Frictional forces [Pressure acting
element] downward] suporting element] upward]

where p,, is bulk density, A is the cross-sectional area, C the “wetted” circumference, and
K is the ratio of compressive stress in the horizontal direction to compressive stress in the
vertical direction. The physical parameter K is discussed by Tadmor and Gogos (19).
Integration of Eq. 4.3-2 results in

P =P

[fQCK(z - hl)} N (Aﬂb%i— cw) {1 exp [waK(j"—hl)] } (4.3-3)

where P; is the pressure at height ;. For the special case of a cylindrical bin, with 7 = H,
where P; = 0 and ¢,, = 0 (no adhesion between solids and the wall), Eq. 4.3-3 reduces to
the more familiar Janssen equation

P= Z;’f[? {1 — exp {%K%_H)] } (4.3-4)

Clearly the pressure at the base approaches a limiting value as H goes to infinity

(4.3-5)
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Fig. 4.6 Base pressure in a 10-in-diameter cylindrical hopper filled with 1/8-in PS cubes with
K= 0.521,f:v =0.523, and p, = 39lb/ft3. [Reprinted by permission from W. L. McCabe and J. C.
Smith, Unit Operations of Chemical Engineering, McGraw-Hill, New York, 1956.]

Hence, most of the weight is supported frictionally by the walls of the bin. The maximum
pressure is proportional to bin diameter and inversely proportional to the coefficient of
friction at the wall.

Figure 4.6 plots the pressure measured under a load of PS pellets in a 10-in-diameter
cylindrical bin as a function of solids height. The many attempts to verify the Janssen
equation have met with varying success, and improved models have been offered (20)
(these are discussed in some detail in the first edition of this book), but the shape of the
curve as predicted by the model is usually observed (4). The underlying reason for the
good qualitative agreement is that the particulate assembly in the cylindrical hopper is
stripped of its volume-wise particle-to-particle interactions, which are due to interparticle
friction. The column of particulates is treated as a solid plug with only three properties:
density, p,; the ratio of the compressive stress in the horizontal direction, K; and the static
friction coefficient between the particulates and the hopper wall, fv'v. All these may vary
from one location to another, because of neighboring particulate interactions, which
include both Newton’s second law of motion and a force-deformation constitutive
equation for the particulates. The discrete element method (DEM), which we discuss in
Section 4.10, takes this approach in simulating static and flowing particulate assembly
behavior under externally applied and gravity forces.

44. FLOW AND FLOW INSTABILITIES IN HOPPERS

In polymer processing practice, we need to ensure that the particulate gravitational mass
flow rate of the hopper exceeds, over the complete operating range, the extruder ‘“‘open
discharge” rate (i.e., the rate without any die restriction). That is, hoppers must not be the
production-rate limiting factor. Second, and more importantly, it is necessary for stable
extrusion operations and extruded product quality that the flow be steady and free of
instabilities of the particulate flow emerging from the hoppers. Finally, as we will see in
Chapter 9, we need to know the pressure under the hopper in order to determine the
pressure profile in a SSE.

There are generally two types of gravitational flow in bins and hoppers [Fig. 4.7(a),
4.7(c)]: “mass” flow and “funnel”” flow. In mass flow, the whole mass of particulate solids
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() (d)

Fig. 4.7 Schematic representation of (a) “mass” flow in hoppers, (b) “arching,” (c) “funnel”
flow, and (d) “piping.”

moves toward the exit, and in funnel flow, the particles flow out through a central opening.
In the former, the main cause for flow disturbance is doming or arching, where all the
weight of the solids is supported by the walls [Fig. 4.7(b)], whereas in the latter flow,
disturbances may occur when the solids can sustain the existence of an empty central tube,
called ‘piping’ [Fig. 4.7(d)]. These and other flow disturbances were discussed by
Johanson (21). In both arching and piping, the solids must have consolidated sufficiently to
develop the level of strength necessary to sustain the weight of the retained particulate
solids. Hence, obstruction to flow is acute in cohesive particulate solids and it depends, in
addition to material properties, on hopper geometry, which determines the stress
distribution in the system. Jenike (22) and Richmond and Gardner (23), among others,
developed design methods and criteria for building obstruction-free hoppers and bins.

Fig. 4.8 Regions of different flow behavior in two-dimensional hoppers as observed by radiographic
techniques. [Reprinted by permission from J. Lee et al., Trans. Soc. Rheol., 18, 247 (1974).]
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The flow pattern in two-dimensional hoppers was studied by Lee et al. (24). They used
radiographic techniques to determine simultaneously the flow field and the porosity field.
The marks left by tracer particles during discharge permit the evaluation of the local
velocity vector, and the intensity of the shade, the porosity. On the basis of both velocity
and porosity fields, the authors distinguished between four regions (Fig. 4.8): region D
they identified as a ““plug-flow zone”’; in region B they observed rigid-body behavior;
region A appeared to be a “‘rupture zone,” where intensive deformation occurs, and region
C is a free-flow zone. A detailed mapping of the flow kinematics in two-dimensional
hoppers using the stereoscopic technique developed by Butterfield et al. (25), was done by
Levinson et al. (26). Other noninvasive techniques such as MRI were applied more
recently to the study of the flow fields in particulate systems (27,28).

Although a great deal of progress has been made in obtaining flow fields of particulate
solids, and design criteria for arch-free flow are available, it is not yet possible to calculate
discharge rates from first principles. Hence, empirical equations are used for this purpose.
It should be noted, perhaps, that in most polymer processing applications, such as in
hopper feeding processing equipment, the maximum, open discharge hopper flow rates are
much higher than present processing rates. This was aptly shown in a recent paper by
Potente and Pohl (29), where it is shown that hoppers can become limiting (because of
flight interference to hopper flows) only at very high screw speeds.

4.5 COMPACTION

The response of particulate solid systems, specifically powders, to forced compaction, is of
great interest in a broad range of processes. Tableting or pelleting of pharmaceutical
products, powder pressing in ceramic industries, powder metallurgy, and briquetting of
coal can serve as examples. In polymer processing, loose particulate solids are compacted
prior to melting inside most processing machinery, and the performance of these machines
is greatly influenced by the compaction behavior of the solids.

In polymer processing, compaction is an important and necessary step in order to
reduce the interparticle, unoccupied spaces and thus eliminate air. It is essential for
melting in both single-screw extruders as well as for twin-rotor processors, as we shall see
in Chapters 5 and 10. In twin-rotor devices, such as Co-TSEs, for example, the large and
repeated deformation of compacted particulates by the “kneading elements,” which
induces large plastic deformation of particulates, is the dominant melting mechanism.

In other applications, the purpose of compaction is to induce agglomeration. The
compaction is obtained by applying an external force. This force is transmitted within the
system through the points of contact between the particles. By a process of small elastic
and plastic deformation (shear deformation and local failure), the points of contact
increase, as do the forces holding the particles together, as discussed in the section dealing
with agglomeration. The externally applied force generates an internal stress field, which,
in turn, determines the compaction behavior.

It was Wollaston (30) who in 1829 recognized the great pressures needed for
compaction of dry powders—an observation that led to his famous toggle press. Since that
time, compaction and deformation of powders and particulate systems have been
extensively studied (31-35). There are many difficulties in analyzing the compaction
process. Troublesome in particular are the facts that the properties of particulate solids
vary greatly with consolidation, and that stress fields can be obtained, in principle, only in
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Fig. 4.9 Compaction in a cylindrical channel, between frictionless pistons. Fy is the applied force,
Fp is the resultant force on the lower portion.

the limiting cases of steady flow or in a state of incipient flow when the friction is fully
mobilized. In compaction, these conditions are not necessarily fulfilled.

Let us consider an apparently simple situation of compaction of solids in a cylinder
(Fig. 4.9). Assuming a uniform stress field, a normal force Fy applied to the top ram
generates within the solids a certain normal stress .., as well as a radial stress t,,. The
frictional shear force due to the latter acts in the opposite direction to the applied
force. Hence, the transmitted force to the lower ram, F;, will be smaller than the applied
force. By making a force balance similar to that made in deriving the Janssen equation,
and assuming that the wall friction is fully mobilized, that the ratio of axial to radial
stresses is a constant throughout, and that the coefficient of friction at the wall is
constant, we obtain the following simple exponential relationship between the applied
and transmitted force:

Fo 4f KL
= w2 4.5-1
F. exP( D ) (4.5-1)

Experimental data seem to conform to this relationship, yet there are serious doubts
about its validity. Both the coefficient of friction and the ratio of normal stresses vary along
the compaction (although it appears that their product stays approximately constant,
explaining the reasonable agreement with experimental data). Experimental measurement
of stresses within the compaction, however, reveal a rather complex stress distribution
(31), which depends very much on conditions at the wall and the geometry of the
compaction, as shown in Fig. 4.10.

Another question of fundamental importance discussed by Long (33) is the nature of
the ratio of axial to radial stresses. Since there is complex stress distribution, the principal
axes may not coincide with the axial and radial directions, respectively. Long (33)
investigated this relationship by carrying out ‘“‘radial stress cycles.” The cycles are
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Fig. 4.10 (a) Stress and (b) density distribution in a cylindrical compaction of magnesium
carbonate at an applied pressure of 2040 kg/cm?. [Reprinted by permission from D. Train, Trans.
Inst. Chem. Eng., 35, 262 (1957).]

obtained by first increasing the axial stress, then decreasing it. A residual radial stress
remains after the axial stress has been reduced to zero. This residual stress is responsible
for the necessity of forcing the compacted mass out from the die after removal of the axial
stress. According to Long, at small axial stresses, before any yield takes place in the
powder, the ratio of radial to axial stresses will be given by the Poisson ratio, v, which is the
stress needed to suppress the radial expansion the compact would undergo if it were free to
expand. However, once yield takes place, the ratio is determined by some yield criterion
such as the Coulomb yield function (19), and a more or less linear increase of radial stress
with axial stress is observed.

The response of polymeric particulate solids to compaction was investigated
experimentally by Schneider (36) and Goldacker (37). For polyethylene, for example, a
constant radial-to-axial stress ratio of 0.4 was observed.

The bulk density of particulate solids increases by compaction. Dilation, mentioned
earlier, occurs only in the presence of a free surface, which allows for a loosening of the
packing arrangements of the particles. The increase in density, or decrease in porosity,
seems to follow an exponential relationship with the applied pressure (38,39)

e =gpe PP (4.5-2)

where & is the porosity at P = 0, and f§’ is a “‘compressibility coefficient,” which, in view
of the complex stress distribution in compacts, should depend on properties of the
particulate system, on compact geometry, and possibly on the loading history. Therefore,
Eq. 4.5-2 can be viewed as an approximate empirical relationship reflecting some average
values. The inability to quantitatively describe or predict the internal stresses and
deformations of particulate assemblies under static or dynamic loads, and the velocity
fields of flowing particulates, has led to the rapidly growing development and use of the
numerical method, which is uniquely appropriate for the discreet nature of particulate
assemblies.
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4.6 FLOW IN CLOSED CONDUITS

In polymer processing, it is usually necessary to force the particulate solids through some
sort of closed conduit or channel. In a ram-type injection molding machine, the solids are
pushed forward by the advancing ram. They move in a channel that becomes an annular
gap upon reaching the torpedo. In a screw extruder, the solids get compacted and dragged
forward in the helical channel formed between the screw and the barrel. These examples
represent the two basic conveying and compaction methods used in polymer processing:
external, mechanical, positive displacement conveying and compaction, and drag-induced
conveying and compaction by a solid boundary in the direction of flow. In the former, the
friction between the solids and the stationary walls reduces the conveying capacity,
whereas in the latter, friction between the solids and the moving wall is the source of the
driving force for conveying. It is perhaps worthwhile to note that the two solids-conveying
mechanisms are identical in concept to external mechanical pressurization and drag-
induced, viscous pressurization of liquids, discussed in Chapter 6.

Rigorous analysis of the flow of compacted particulate solids in closed conduits is
difficult, as we discussed earlier. Discreet numerical methods such as DEM, which is
discussed in Section 4.10, offer the promise of more rigorous analysis, but these methods
are also subject to severe limitations related to small elastic deformations and relatively
simple channel geometries. Moreover, the difficulties with using DEM are compounded by
the complexities of polymer processing, such as temperature increases as a result of
friction and external heating, and the viscoelastic response of polymeric particulate
systems under externally applied forces. Thus, despite the very serious doubts as to the
validity of the conventional assumptions that compacted particulate systems can be
analyzed as a continuum, often referred to as a solid plug, which is devoid of internal local
assembly rearrangements and deformations, the ‘solid-plug’ assumption is widely used in
polymer processing modeling. We therefore analyze the following three modes of
particulate flows next: mechanical-displacement flow (Section 4.7), steady mechanical-
displacement flow aided by frictional drag (Section 4.8), and steady, drag-induced flow in a
straight channel (Section 4.9). These are really not flows as we refer to them in fluid
mechanics, but rather transport of slightly compressible but otherwise nondeformable plugs.

4.7 MECHANICAL DISPLACEMENT FLOW

We now analyze mechanical-displacement flow in a straight channel of constant cross-
sectional area, as shown in Fig. 4.11 (with the upper plate at rest). A column of compacted
solids of length L is compressed between two rams. The one on the left exerts a force F on
the solids and it is opposed by a smaller force F;, on the right. Thus, friction on the channel
walls also opposes the applied resultant force.

A differential force balance with the following assumptions: (a) the compacted solids
are either at a steady motion or in a state of incipient slip on the wall (friction at the wall
is fully mobilized); (b) axial and radial stresses vary only with the axial distance x;
(c) the ratio of the radial-to-axial stresses is a constant K, independent of location; (d) the
coefficient of friction is constant and independent of compaction; and (e) temperature
effects in the case of steady motion are negligible, results in

F.— (F, +dF,) — c(%) Kfidx =0 (4.7-1)
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Fig. 4.11 A column of particulate solids compressed between two pistons in a channel with a
constant cross section. A force Fy is applied at x = 0, which is balanced by a force F; at x = L. The
column is either moving at constant velocity or is stationary. The upper plate is either stationary or
is moving with constant velocity.

where f; is either the static coefficient of friction for the case of incipient motion, or the

kinematic coefficient of friction for steady motion; C is the circumference, which for

noncircular cross sections is the wetted perimeter; and A is the cross-sectional area.
Integration of Eq. 4.7.1 gives

F, = Foe FKC/A (4.7-2)

where F is the axial force at location x. The axial stress may be obtained by multiplying
the force by the cross-sectional area. The force at the downstream ram F is obtained by
setting x = L in Eq. 4.7-2.

Hence, in dealing with steady motion of particulate solids, it is evident that the axial
stress or ‘“‘pressure’’ drops exponentially, whereas in the case of liquid flow, it drops
linearly with distance. This difference stems, of course, from the fact that frictional forces
on the wall are proportional to the absolute local value of normal stress or pressure. In
liquids, only the pressure gradient and not the absolute value of the pressure affects the
flow. Furthermore, Eq. 4.7.2 indicates that the pushing force increases exponentially with
the coefficient of friction and with the geometric, dimensionless group CL/A, which for a
tubular conduit becomes 4 L/D.

Experimental support on the validity of Eq. 4.7-2 was presented by Spencer et al. (32),
who also proposed a theoretical derivation based on considering a discrete number of
contact points between solids and containing walls. They assumed isotropic stress
distribution (K = 1) and obtained an expression identical to Eq. 4.7-2

F /
Fu_ anop (4.7-3)
Fy

where L is the initial length of the column. The use of initial length of column, even
though the column shortens upon compression, is justified by Spencer et al. on the basis of
assuming a constant number of contact points. Experiments were carried out with a
stationary column of saran powders and granular polystyrene, and results confirmed the
theoretical derivation within experimental error.

Example 4.1 Force Requirements of Ram Injection Molding Machines We consider a
ram injection-molding machine consisting of a 2-in-diameter barrel in which a well-fitting
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ram reciprocates. We wish to calculate the maximum length of the solid plug the machine can
deliver if the downstream pressure during injection is 10,000 psi and the barrel can sustain a
radial stress of 25,000 psi. The static coefficient of friction is 0.5, and the radial-to-axial stress
ratio is 0.4.

With a 25,000-psi allowed radial stress, the maximum allowable axial stress is
25,000/0.4 = 62,500 psi. Substituting the appropriate values into Eq. 4.7-3, but not setting
K =1, we get

In(6.25) = (0.5)(0.4)(4)

0|~

The length L is 4.58 in. Thus with an axial force of about 20,000 Ib, we can only press a 4.58-
in-long solids column driving the radial stress to its upper limit! Clearly, if it is necessary for
injection molding machines of this type to develop such high downstream pressures,
appropriate means must be provided to reduce the coefficient of friction on the wall. This can
be achieved, for example, by heating the barrel, generating a liquid film on the wall. This will
change the drag mechanism to that of a viscous laminar flow, which is independent of the
absolute local normal stresses.

4.8 STEADY MECHANICAL DISPLACEMENT FLOW AIDED BY DRAG

Drag-aided, particulate solids flow occurs when at least one of the confining solid walls
moves in the direction of flow parallel to its plane. The friction between the moving
wall and the solids exerts a forward dragging force on the solids. Figure 4.11 shows a
rectangular channel with the upper plate, which forms the top of the channel, moving at a
constant velocity in the x direction. Particulate solids are compressed into a column of
length L between two rams. We now can differentiate between four possible states of
equilibrium:

a. The solids are stationary with friction on the stationary walls fully mobilized, and
with Fy > Fj.
b. The same as Case 1, but with F; > Fj.

c. The solids move at constant velocity (less than the velocity of the upper plate) in the
positive x direction.

d. The same as Case 3, but the solids move in the negative x direction.

Force balances on a differential element for these four cases appear in Fig. 4.12. The
moving plate exerts a force of Cif,,;K(F/A) in all cases, where C; is the portion of the
“wetted” perimeter of the moving plate and f,,; is the kinematic coefficient of friction.
The stationary channel walls in Cases (a) and (b) exert a force C; fv/v.K (F/A), where f‘; is the
static coefficient of friction and Cj is the portion of the wetted perimeter of the lower plate
and side walls that is stationary. This force points in the direction of increasing force. Thus
it points to the left in Case (a) and to the right in Case (b).

Finally in Cases (c) and (d), the stationary walls exert a force Cf,,»K(F/A), where f,»
is the kinematic coefficient of friction. This force acts in the direction opposite to the
direction of motion of the plug.
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Fig. 4.12 Force balances on a differential element of solids in Fig. 4.11. (a) Stationary solids
Fo > Fp; (b) Stationary solids, Fo < Fr; (c) Solids move at constant velocity in the positive x
direction. (d) Solids move at constant velocity in the negative x direction.

Force balances such as Eq. 4.7.1, with the further assumption that the channel is flat
and the torque induced by couples of forces can be neglected, lead to the following
equations.

Case a Fp < Fy: Stationary plug; friction mobilized:

Fr KL

L L — — 4.8-1

= e (G~ ) (481
Case b Fp > Fy: Stationary plug; friction mobilized:

F KL

—=exp| (Cifin +Cof,) = (4.8-2)

Fy A
Case ¢ Plug moves in the direction of the upper plate:

Fr KL

- = wl — w2) 4.8-

7= exp (Cur — Coa) (483
Case d Plug moves in the direction opposite to the upper plate (FL, > Fy):

F KL

F—L = exp |:(C]fw1 + Cofi2) A] (4.8-4)

0

In the foregoing, we have allowed for different kinematic coefficients of friction on the
moving plate f,,; and the stationary walls f,,;.

Analysis of these equations reveals the role of drag on the force and stress distribution.
First, we consider the case of a stationary column of solids. Assume that the drag force
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Fig. 4.13 The effect of drag on the ratio F,./F, for a stationary column of solids. (The ordinate is a
logarithmic scale.)

exerted by the moving plate can be gradually increased by changing f,,; C;, by modifying
the surface properties of the plate through coating, roughening, and so on, or increasing
C;. This is demonstrated graphically in Fig. 4.13.

If f,,1C) is zero, the ratio of the forces is Fy/Fy = exp[(—sz;V)KL/A], as given in
Eq. 4.7-2. A gradual increase in f,,; C; increases this ratio, implying that, for a given F7,
less and less force has to be exerted on the upstream ram, until this ratio reaches a value of
1 (i.e., Fp, = Fp) when Cify,; = C; f»/w At this point, the forward dragging force exerted by
the upper plate exactly compensates the fully mobilized frictional forces on the stationary
walls. Now we can slightly increase F, thereby demobilizing the friction on the stationary
walls. This is indicated by the vertical line in Fig. 4.14. We then reach a point where the
frictional forces on the stationary plate are zero and the forward dragging force is fully
compensated by the force F; Under these conditions

F KL
F_i = exp (lewl X) (4.8-5)
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Fig. 4.14 The effect of drag on the ratio F;/F, for a steadily moving column of solids. (The
ordinate is a logarithmic scale.)
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which is indicated by the heavy dot in Fig. 4.13. The force F can gradually be further
increased, mobilizing the frictional forces on the stationary walls in the opposite direction
until they are fully mobilized, where the ratio of forces is

FL KL
ZL _ exp( 20, 22 4.8-
Fo exp( Cifmi 1 ) (4.8-6)

A further increase in f,,; C; will result in an increase in the ratio F;/F, according to
Eq. 4.8-2. Analyzing the whole curve, we see that we have a condition indicated by the
vertical line in Fig. 4.13, where the force ratio is indeterminate. The condition indicated by
the heavy dot on the vertical line can also be interpreted as representing a point where the
downstream ram is replaced by a rigid channel block, which responds only to the forces
exerted on it by the solids and prevents mobilizing the friction on the stationary walls. This
is in agreement with the St. Venant principle, which states that, if statically equivalent and
opposing surface tractions are applied on a solid, the differences are negligible at far away
locations, that is, on the surface of the stationary walls; hence, this surface plays no role in
the force balance.

The same kind of analysis for the case of steadily moving solids leads to similar
conclusions, as Fig. 4.14 demonstrates. We should note, though, that in this case, we do not
have a continuous transition between the two directions of motion, because within the
region between the two curves, the solids must come to rest, thus encountering the two
previously discussed cases and leading to possible instabilities.

Both cases, however, vividly demonstrate the profound effect that drag forces, induced
by a moving boundary, may have on the force distribution. In positive displacement flow,
the addition of a drag permits the reduction of the force Fjy needed to maintain a certain
downstream force F to any desired level. Moreover, results indicate that drag is capable of
generating pressures within the solids above those applied externally. The pressure rise is
exponential with distance. The same holds for a moving plug. Hence drag, as we shall see
in the next section, is a mechanism by which solids can be compacted as well as conveyed.

4.9 STEADY DRAG-INDUCED FLOW IN STRAIGHT CHANNELS

We have concluded that frictional drag, when applied to a steadily moving column of solids,
can generate stresses or pressures above those applied externally. Consider once more the
case of a flat rectangular channel with the upper plate moving and the solids moving in the
same direction at constant velocity. The force ratio is plotted in the lower curve of Fig. 4.14.
Clearly, for any given F;, (which must be greater than zero, except for the frictionless case),
we can get any F; greater than Fy, provided C| f,,1 is large enough. This ratio F /F, seems
to be independent of either the plate velocity or the velocity of the solids. All that is required
is that these velocities be steady. This result was obtained because we have assumed that the
frictional force depends only on normal stress and is independent of velocity, which, as we
have seen in this chapter, is a reasonable assumption. Yet the velocity of the solids multiplied
by the cross-sectional area gives the flow rate. Thus the previous argument implies that, in
this particular setup, flow rate is indeterminate. How, then, can we use the drag-induced flow
concept to obtain a geometrical configuration in which flow rate is not only indeterminate
but is also predictable? Such a situation would arise if the frictional drag could be made
dependent on solids velocity. We can create such a situation by replacing the upper cover
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Fig. 4.15 A rectangular channel filled with solids that move in the positive x direction at constant
velocity u, covered by an infinite plate moving at constant velocity Vj at an angle 0 to the down-
channel direction, z.

plate with an infinite plate, moving not in the down-channel direction, but at an angle, 0, to
this direction, as in Fig. 4.15.

The frictional force exerted by the moving plate on the solids remains constant, but the
direction of this force will be given by the vectorial difference between the plate velocity
and solids velocity (Fig. 4.16). Hence, the velocity component of this force in the down-
channel direction, which participates in the force balance, becomes a function of both
plate velocity and solids velocity (or flow rate). From the velocity diagram in Fig. 4.16, we
obtain the following expression for the angle ¢, which is the angle between the direction of
the force exerted by the moving plate on the solids and the direction of motion of the
moving plate (the solids conveying angle) where

usin 6

tan ¢ = (4.9-1)

Vo — ucosf
where V) is the velocity of the upper plate, and u is the velocity of the solids. Note that, for
stationary solids, the angle ¢ becomes zero, and it increases with increasing flow rate.

Next we can proceed with the force balance on the differential element shown in
Fig. 4.16. We first concentrate on making a down-channel force balance, neglecting the
cross-channel component of the forces

Fy — (Fy +dFy) + CifunK (%) cos(0 + ) dx — CofunK (%) dr=0  (49-2)

Fig. 4.16 Top view of a differential element of the column of solids in Fig. 4.15.
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which upon integration with the initial condition F(0) = F, gives

I]j—z = g—(x) = exp{ [Cifivi cos(0 + ¢) — Cafyuo] %} (4.9-3)
Hence the ratio of forces, which by dividing by the cross-sectional area also equals the
ratio of axial stresses, which we shall refer to as pressures, become a function of the flow
rate via the angle ¢ determined by Eq. 4.9-1. This implies that, for a given inlet pressure
Py, a fixed outlet pressure determines the flow rate, or conversely, a given flow rate
determines the magnitude of outlet pressure the device can generate. The lower the flow
rate, the higher the pressure rise.

The previously described solids conveying mechanism represents, in essence, the
conveying of solids in SSEs, although a realistic conveying model for the latter is
somewhat more complicated because, as Chapter 9 explains, the channel is curved.

Drag-induced flow in a rectangular channel, as in Fig. 4.15, neglecting cross-channel
forces, resulted in Eq. 4.9-3. We now consider the effect of these forces on the conveying
mechanism.

At steady flow conditions the moving plate exerts a force on the solids in the (0 + ¢)
direction. This force is separated into two components: one in the down-channel direction,
which was used in the force balance, and the other in the cross-channel direction, which
was neglected. The latter will have the following effects: it will increase the normal stress
on the side wall, A, in Fig. 4.15, and it will alter the stress distribution within the solids.
Assume for the sake of simplicity that the St. Venant principle holds, that is, the externally
applied force by the plate is completely balanced by the additional force on the side wall A,
and within the solids (which will be considered to be located ““‘far” from the places where
these tractions act), there will be no effect. In other words, we neglect the changes in the
stress distribution within the solids. The cross-channel force component, F*, is

X . w X i 0
F*:me(:W)(de) sin(0 + ¢) =11 KE S"}; FPdx o

where Wand H are the width and height of the channels, respectively. Now we can write a
down-channel force balance, including the effect of this additional normal force on side
wall A on the frictional force along this wall

F, — (F, +dFy) +fw,1<(;‘;/> (W dx)cos(0 + ¢) — fraK (;W> (W + H)dx

F (4.9-5)
— fw2 {K(ﬁ>de + F*} =0
which, upon rearrangement and with Eq. 4.9-4, gives
dF, finK v H .
F_XZL [cos(@—i—qﬁ) —% (1 +2W> —fw2 sm(@—l—d))]dx (4.9-6)
Integration of this equation gives
% _ % _ exp{flex[Cos(g + @) —fua Sin(i;r }) — fwr [fwr (1 + ZH/W)]} (4.9-7)
0 0
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Equation 4.9-7 reduces to Eq. 4.9-3 if the second term on the right-hand side vanishes.
Clearly the cross-channel force induces additional friction on the side wall, A, which in
turn reduces the pressure generation capability for a given flow rate (given angle ¢), or it
reduces the conveying capacity for a given pressure rise.

4.10 THE DISCRETE ELEMENT METHOD

In Sections 4.4 and 4.5, we dealt briefly with particulate flow instabilities in hoppers and
the nonhomogeneous stress distributions created under uniaxial loading of a particulate
assembly. In this section, we will expand on the discrete nature of such assemblies, and
refer the reader to the computational and experimental tools that have been developed, and
are rapidly advancing, to study such phenomena.

An assembly of particulates is composed of distinct particles that undergo displacements
independently from each other, and interact only via points of contact between the particles.
This discrete character of such assemblies results in complex behavior under loading and
unloading, as well as under flow, which the available, continuum-based constitutive
equations fail to describe. In this section we describe particle dynamics simulations, which
are based on the discreet, rather than the continuum nature of particulates, and which offer a
better chance to describe the behavior of such systems. Experimentally, it is very difficult to
measure internal stresses or flow details in real particulate assemblies. Thus, “model”
experimental systems have to be used, which consist of assemblies of geometrically simpler
“particles.” For example, DeJosselin de Jong and Verrijt in 1971 (40) used a two-
dimensional assembly of photoelastic disks of various sizes under load. Figure 4.17(a), taken
from their work, records the “force vector” plots resulting from the two-dimensional
loading, and Fig. 4.17(b) shows a simulation by Cundall and Strack (41). The complex stress
field is evident where the width of the lines indicates the magnitude of the force.

Relatively simple optical experimental techniques to study noncohesive particulate
flow have also been developed, such as the polarized light probe system by Allersma
(42,43). With this technique, the principal stress distribution and displacement of
photoelastic granular material flowing in two-dimensional hoppers, with and without
obstructions (distribution bars), can be obtained, as shown in Fig. 4.18.
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Fig. 4.17 (a) Force vectors obtained in a two-dimensional assembly of photoelastic disks under
horizontal and vertical loads, Fy/Fy = 0.39. (b) DEM calculations by Cundall and Strack (41) of
the force vectors for Fy/Fy = 0.41 [Reprinted by permission from P. A Cundall and O. D. L
Strack, “A Distinct Element Model for Granular Assemblies,” Géotechnique, 29, 47-65 (1979).]
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(a) (b)

Fig. 4.18 (a) The visualized stress distribution in a hopper with seven distribution bars. (b) The
measured particle displacements in the same hopper indicating uniform flow. [Reprinted by
permission from H. G. B. Allersma “Optical Analysis of Methods to Influence the Stress
Distribution in Hoppers,” in Mechanics of Deformation and Flow of Particulate Materials, C. S.
Chang et al. Eds., ASCE Publication, New York, 1997.]

Altobelli et al., used a more elaborate three-dimensional MRI technique to study the
flow of suspended particles (44) and granular flows (27), also studied by Ng et al. (45) for
pellet-sized pills under load, while being sheared in a nonmagnetic ‘“‘shear box,” similar to
the Jenicke cell (22). This technique holds great potential for detecting details of
particulate movements and deformations of three-dimensional particulate assemblies, but
is currently limited to very low shearing velocities.

In the last decades, the modeling of both compacted particulates and flowing particle
assemblies under loads and under flow conditions has been advanced by DEM, first
developed by Cundall (46) for two-dimensional compacted-disk assemblies in 1971. The
origins of DEM are in the field of molecular dynamics (MD), where the motions of
individual molecules are tracked under the influence of an external force (e.g., electrostatic)
field (47). Experimental results such as those with model photo-elastic assemblies just
discussed have also assisted the development of the DEM simulation models.

In a dynamic particulate assembly, particle—particle interactions dominate. Thus, it is
essential for DEM to establish methods for identifying contacts and modeling the contact
interactions for all particulates. Most DEM simulations assume that the particles are
spheres, to facilitate the identification of the contact location. There are two categories of
DEM: the hard-(infinitely rigid) sphere model and the soft-sphere model. The hard-sphere
model is appropriate for sparse populations of bodies moving at high speeds, with
instantaneous two-body collisions only, which can be modeled as instantaneous exchanges
of momentum and energy (48). Haff (49) discusses the physical nature of such binary,
collision-dominated systems, resembling gases, but where the collisions are allowed to be
inelastic in the transfer of momentum and energy. He derives, heuristically, the equation of
state and the momentum and energy balances for such systems. This model, however, is
not applicable to dense particulate flows and deformation of packed particulates under
loads, relevant to polymer particulate solids handling.
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On the other hand, in Cundall’s soft-sphere model of the DEM, “‘soft” spheres colliding,
or in contact with several neighboring particles, undergo virtual (overlap) deformations,
which give rise to reaction (e.g., elastic, springlike) forces normal and tangential to the
contact. Thus, each contact can exert both a force and a moment on each particle, the total of
which is the resultant of all the contacts and the body forces of gravity and electrostatic
fields, if any. The new positions and velocities of each particle are determined by Newton’s
second law and solving second order differential equations involving the linear and angular
acceleration of each particle. The simultaneous solution of the entire assembly differential
equations determines the new “state” of the assembly. Figure 4.19 shows the computational
flow diagram of the soft-sphere DEM model. It is important to note that this DEM model is
equally applicable to static, quasi-static, and dynamic flow conditions.

We follow Cundall and Strack (41) in discussing this DEM model in two-dimensional
assemblies of disks under load. The equilibrium contact forces and particle displacements and
deformations of a stressed assembly of disks are predicted through a series of calculations
tracing the dynamic state of each particle, which is the result of the propagation, through the
assembly, of the externally applied wall stresses. Calculations are carried out in sequential,
small time increments over which we can assume that the particle velocities and accelerations
are constant. The time steps are also small enough so that disk-to-disk interactions
(disturbances) have the time to propagate only to immediate “neighbors’ and no further. Thus,
at all times during the calculations, the resulting forces on any disk are determined only by its
interactions with the neighbors it is in contact with. This is the essential computational
component that enables DEM to follow nonlinear interactions between very large numbers of
district disks, with moderate computer memory requirements.

[ Initialize particle position, orientations, and velocities ]

>
>

Update particle link-list
(find new or broken contacts)

A.

Calculate the forces and torques on each particle

l

Integrate the equation of motion to calculate the
new positions, velocities, and orientations

[ Calculate average properties ]

l

4‘ Time increase: t =t + dt ]

Fig. 4.19 The computational algorithm of the soft-sphere DEM model.

Loop




168 THE HANDLING AND TRANSPORTING OF POLYMER PARTICULATE SOLIDS

The DEM calculation cycle (as noted in Fig. 4.19) involves the use of Newton’s second
law, giving the motion of a particle resulting from the forces acting on it, alternating with
the use of a force-displacement (particle deformation) constitutive relationship to find
contact forces from displacements. The deformations of individual soft particles are
“virtual” in the sense that they are used only to calculate reaction forces. The response and
deformation of the entire assembly is calculated by the displacements and the rigid-body
rotation of all particles. This assumption limits the applicability of the soft-sphere DEM to
the description of the dynamic state of packed polymer pellets or powders in processing
equipment, such as twin rotor processing equipment, as we will discuss in Section 5.8 and
Chapter 10. There, the applied deformations are large and the solid polymer particulates
undergo plastic deformations, which cause large temperature increases in the deforming
assembly. The following example serves as a simple illustration of the DEM cycling
through a force-displacement constitutive response, F = k A n, and Newton’s second law,
which relates the force to acceleration and, thus, particle motion.

Example 4.2 Soft-Sphere Model DEM Treatment of Two Disks Deformed by Two
Rigid Walls To demonstrate the basic and simple physical model used in DEM, we
turn to a pair of two disks, X and ¥, compressed between two rigid walls, as shown in
Fig. E4.2.

Initially, at # = #;, the walls and disks touch with no force, Fy = 0, Fig. E4.2(a). The walls
move toward each other at a constant velocity, v. At time ¢ = f, + Ar the walls have each
moved a distance vAt. Since the disturbance cannot travel beyond a single disk as assumed by
the model, both disks maintain their initial positions during this time interval. Thus, overlaps
are created at points A and C, Fig. 4.2(b), given by

An = vAt (E4.2-1)

The contact A at time ¢ + At is defined as the halfway point between Ap and A,,. The relative
displacement at A is related to the force resulting from the assumed linear constitutive
response of the particle (that of a simple “spring” in LVE terms)

AF, = k,(An),, (E4.2-2)
At the two disks at 1 =1y + At

Fy, =Ki(An),  Fy, = —K,(An), (E4.2-3)

1
Using Newton’s second law of motion to find the accelerations (constant over Af) of disks X
and Y

. F . F
g = g_fn

E4.2-4
- y ( )

By integrating X] and Yl over 1] to tp = g + 2At, the velocities of the two disks at #, are
determined by

X)), = <&> At (1), = (ﬁ) At (E4.2-5)
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(a) (b)

2
(A”A)t] + (A”A)rz (A”C)tl + (A"C)r2
©

Fig. E4.2 Soft-sphere DEM model for two disks being compressed by two confining walls
moving in opposite direction with a velocity v. [Reprinted by permission from P. A. Cundall
and O. D. L. Strack, “A Distinct Element Model for Granular Assemblies,” Géotechnique, 29,
47-65 (1979).]

Thus the relative displacement at points A, B, and C at t, are given by, see Fig. E4.2(a)

(Any), = {v - (%) At] At (E4.2-6)
(Ang), = K%) Ar — (I;—Yy‘) At} At (E4.2-7)
(Ane),, = K%)At— (_v)] At (E4.2-8)

where An; are taken to be positive for compression. This cycle of calculation will be repeated
again and again.

In the general case of an assembly with a very large number of disks the calculation cycle is
as follows: the F; = kAn; is applied at each contact point of any disk and the vectorial sum of
the contact forces is calculated to yield the net force acting on the disk. However, for an
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Fig. 420 DEM-simulated packing density under gravity for a two-dimensional spherical
particulate assembly 50 pm in diameter, with ' = fj, = 0.364 and with van der Waals forces,
showing the formation of clusters, which decrease the packing density by more than 10%.
[Reprinted by permission from Y. F. Cheng, S. J. Guo, and H. Y. Li, “DEM Simulation of Random
Packing of Spherical Particles,” Powder Technol., 107, 123-130 (2000).]

assembly of particles there are both normal and tangential forces, the latter giving rise to
moments My, and angular acceleration 0y,, where

Ixx, =) My, (E4.2-9)

I, are the moments of inertia of disks X;. Interparticle frictional forces are included for both
compacted and flowing particulate assemblies

In 1979, Cundall and Strack (41) used the DEM simulation just outlined to compare it
with the experiment of de Josselin de Jong (40), and their results are shown in Fig. 4. 17(b).
The agreement is excellent, qualitatively, and good, quantitatively. What is important is
the fact that this experimental verification of the power of soft-sphere DEM simulations
established the field and contributed to its rapid growth.

The soft-sphere DEM is also used to model particulate packing under gravity (50),
shown in Fig. 4.20, and particulate flows and fluidization (51,52). DEM simulations
scarcely have been used to simulate the pellet/powder behavior under flow or compaction.
A notable example is the work of Yung, Xu, and Lau (53) in simulating the conveying of
polymer pellets in the solids-conveying region of SSEs. The simulated dependence of the
conveying rate on the screw speed, barrel, and screw wall friction coefficients is consistent
with that observed experimentally.
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PROBLEMS

4.1.

Friction Between Two Surfaces Answer the following questions or discuss state-
ments: (a) Two clean, highly polished steel surfaces when brought into contact appear
to stick as if having very high coefficient of friction. (b) Would the dynamic coefficient
of friction between steel and a polymer increase or decrease with increasing surface
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roughness. (¢) Why would the dynamic coefficient of friction between polymer pellets
and a metal increase with time of rubbing one against the other? How would this affect
start-up of solid pellet-fed machines? (d) Would you expect the dynamic coefficient of
friction to increase or decrease with metal surface temperature? (e) The dynamic
coefficient of friction on a clean surface of LDPE is 0.3 and that of HDPE is 0.08. How
do you explain the difference?

Effect of Liquids on Friction (a) Why do cars tend to slip on a wet road? Why is
the risk higher with a worn-out tire? (b) Why do certain people lifting something
heavy without gloves spit on their palms? (c) Describe in a short essay how it would
be to live in a frictionless world.

Solids Height in an Extruder Hopper An LDPE-fed SSE is equipped with a 10-
cm cylindrical hopper. The operation is sensitive to the pressure under the hopper. If
the static coefficient of friction is 0.5 and the ratio of compressive stress in the
horizontal direction to compressive stress in the vertical direction is 0.5, what should
the minimum height of the solids be in the hopper to secure steady operation?

The Effect of Drag on the Pressure Distribution in Solids Filling a Rectangular
Channel A bed of particulate solids is compressed in a rectangular channel
between two freely moving rams, with the upper plate of the rectangular channel
moving at a constant velocity. The width of the channel is 5cm and its height is
0.5 cm. The coefficient of friction on the stationary channel walls is 0.5 and the ratio
of axial to perpendicular stresses is 0.4 and can be assumed constant throughout the
bed. The force on the downstream ram is 1000 N. (a) Calculate the force that has to
be applied on the upstream ram at equilibrium conditions as a function of the
coefficient of friction on the moving wall that can be varied in the range of 0 to 1.0.
(b) What effect will the doubling of the velocity of the moving plate have on the
results in part (a)?

Two-dimensional Pressure Distribution in Solids Filling a Rectangular Channel
Consider the rectangular channel geometry shown in Fig. 4.15. Equation 4.9-7 gives
the pressure distribution, accounting for the cross-channel force, but neglecting
cross-channel pressure distribution. (a) Show that the down-channel pressure
distribution that accounts for cross-channel pressure distribution is given by:

Px) _
IHW = (R] — Rz)x (P46-1)

where P(x) is the mean pressure over the cross-section at location x, the same as
before

P0o) :P(x,O)IgTu'/ ~1)

where P(x,0) is the axial pressure at z = 0 (see Fig. 4.15) and

sin(0 + ¢)

Ry = fui I
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and
R, — fwl COS(Q + ¢) _ﬁv2
, =
H
fwsRi (P +1)
Ry = efiW —1

where f,1, fu2, and f,,3 are the coefficients of friction on the moving plate, channel
bottom, and channel sidewalls, respectively. (b) Show that for Ry W — 0, Eq. P4.6-1
reduces to Eq. 4.9-7 with K = 1.

4.6. Flow Rate in a Rectangular Channel The pressure profile for drag-induced
solids conveying in a rectangular channel is given by Eq. 4.9-7. The channel
dimensions are W = 2.5 in and H = 0.5 in. The pressure at a certain upstream
position is 10 psig, and 10 in downstream it is 55.7 psig. The coefficient of
friction on the moving wall is 0.5 and 0.2 on the stationary walls. The upper wall
moves at an angle of 15° to the down-channel direction and at a velocity of 10 in/
s. The bulk density is 30 Ib/ft® and K = 0.5. Calculate the mass flow rate of
solids.

4.7. Experimental Determination of the Storage Friction Coefficient, 4Kf, Hyun
and Spalding* developed a polymer particulate solids compaction cell shown
schematically in Fig. P4.7(a) and used it to obtain temperature and pressure-
dependent bulk density data, as shown on Fig. P4.7(b;) and p4.7(b,).

(a) Comment on the compressibility behavior of the semicrystaline LDPE and
amorphous high impact polystyrene (HIPS) (b) the cell was also used to calculate
(estimate) the storage friction coefficient f/ = 4f, K in the force balance Eq. 4.5-1.
Measuring the top and bottom plunger pressure, they reported the following:

f] Values 25°C 50°C 75°C 90°C
LDPE 0.28 0.20 0.18
HIPS 0.29 0.25 0.24 0.60

Assuming that Py = P = (Pyop + Ppot) /2 calculate the ratio of Pyp/Ppo; for each
temperature. Comment on the physical significance of the results. The inner
diameter of the cell is D = 1.4 cm and H is height of the bulk material in the cell,
D/H =0.5.

4.8. Calculation of the Particulate Solids Conveying a Screw Feeder The perfor-
mance of a feed screw of 1.0-in flight diameter, 0.325-in screw root diameter and
1.2-in lead was experimentally executed for LDPE pellets with a bulk density of
0.45 g/cm® by measuring the mass flow rate in the rotational speed range of 10-215
rpm. The results are shown in the table below. Construct a particulates drag-flow
model that calculates with results that are in close agreement with the experimental
results.

4. K. S. Hyun and M. A. Spalding, Polym. Eng. Sci., 30, 571 (1990).
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Screw Speed (rpm)

Throughput (Exp.) (kg/hr)

10
20
50
100
150
200
215

2.94

5.88
14.04
26.4
40.44
522
58.08
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4.9. The Discreet-Element Method for an Assembly of Two-dimensional Disks Exam-
ple 4.2 serves as a simple illustration of the DEM cycling through a force-displacement
constitutive response, F; = kAn; and the law of motion, which relates the F; with X;
and, thus, particle motions. In the general case of an assembly with a very large number
of disks the calculation cycle is as follows: the F; = kAn; is applied at each contact
point of any disk and the vectorial sum of the contact forces is calculated to yield the net
force acting on the disk. For such an assembly there are both normal and tangential

[~ }«——— Top-load cell
Linear gl
transformers [ --a— X
4———— Piston
=
Cylinder e
Heater —| 4
Thermocouple >
- Polymer g
ZIN ’ 2
Bottom plug A
A JEZ+— Cylinder support
E ; E?’ ] Bottom-load cell 550 L L L L 1 1 | I 1
A 0 1 2 3 4 5 6 7 8 9 10
Pressure P, MPa
@ (b
1000 90°C

Density, kg/M3

Pressure P, MPa
(by)

Fig. P4.7 (a) Schematic representation of the compaction cell used by Hyun and Spalding. (b)
Experimentally obtained bulk densities of (b,) LDPE pellets (b,) HIPS pellets.
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(a) (b)

Fig. P4.9 The soft-sphere DEM method for a two-dimenstional assembly, demonstrated by the
interaction of two disks, x and y. Positive F,, and F; are as shown.

forces, the latter giving rise to moments My, and angular acceleration éx,., where

I, éx; = ZMx[

where Ix, are the moments of inertia of disks X;. After the net forces and moments
are determined on every disk of the assembly, new accelerations are calculated for
Newton’s second law for each disk and, form those, their motions.

The more general force-displacement two-dimensional DEM method is shown in
Fig. P4.9 for a pair of disks x and y in a dynamic state.

The points P(,y and P, are defined as the points of intersection of the line
connecting the disk centers with the boundaries of the two disks. Contact takes place
if and only if the center-to-center distance D is smaller than the sum of the two disk
radii. If this condition is met, the relative (virtual) displacement at the contact C is
determined by the integration of the relative velocity, defined as the velocity of point
Py with respect to P(,). The unit vector ¢; = (cosa, sina) = (y; — x;)/D. The unit
vector #; is obtained by a clockwise 90° rotation of ¢;, that is, t; = (e; — e1). The
relative velocity of the point P(,) with respect to P,) can be expressed as X;

X = (& —3;) = (O R + Oy Ry

Calculate (a) the relative normal (1) and tangential (9) relative velocities and, by
integrating the normal and tangential displacements, (b) the increment of the normal
AF, and tangential forces AF using the linear laws AF,, = k,An and AF; = k;As.
(c) Once the normal and shear (tangential) forces are specified for each contact
point, the sums Y (Fu)(y), are resolved to the components > (Fu),) and
>~ (Fu)(y,)» and the resulting moment on disk x is > My = 3 FsR(,); the relations
sum the effects of all contacts. From the preceding resultant force and moment on
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disk x and Newton’s second law on disk x

mwXi = (Fu),
1)0(2) =Y M(x)

Calculate the new velocity and updated position and rotation on each disk.

4.10. The Effect of High Single Screw Rotational Speeds in Limiting Operational Mass
Throughput Rates Potente and Pohl® point out that as the single screw rotational
speed is increased the actual equipment becomes increasingly smaller than that of the
drag throughput rate of the metering section. This is shown on Fig. P4.10. (a) Give the
physical reasons for this experimental finding. (b) Given the equipment geometric
variables at which rpm value will the throughput rate begin to get affected? D = 50
mm, 6 = 17.4°, W = Lead x cos@, —e = Dcosf, —0.1 W=44cm and H =
0.5 cm; the polymer is LDPE pellets with p, = 0.45 g/cc. (c) Is this limitation of
practical significance?

800
700 [~
600 —
500 —
400 [~ n
300 —

200 (-

100 —

Throughput (kg/h)

0 | | | |
0 500 1000 1500 2000 2500

Screw speed (1/min)

Fig. P4.10 The LDPE throughput rate of a 5 cm square-pitched single screw extruder screw with
e=0.1 Wand H= 0.5 cm.

5. H. Potente and T. C. Pohl, Int. Polym. Process., 17, 11 (2002).
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Most shaping operations consist of the flow and deformation of heat-softened or melted
polymers; hence, the preparation of the polymer for the shaping operation generally
includes a “heating” or “melting” step. In either case, we define the process of bringing
polymers, commonly in particulate form, from the feed temperature to the desired
processing temperature range, appreciably above the glass transition temperature, T, for
amorphous polymers and above the melting point, 7}, for semicrystalline polymers, as the
elementary step of melting.

The thermal energy requirements to achieve melting can be estimated from the specific
enthalpy curves shown in Fig. 5.1. The area under any given curve represents the thermal
energy needed to heat or melt one unit mass of that polymer from room to any higher
temperature.

We note that semicrystalline polymers, where the “‘break’ points are indicative of 7,
require more energy because they must undergo the phase transition of fusion. For
example, about 700kJ/kg are needed to heat HDPE to 200°C, while for the same
processing temperature PS requires about 350 kJ/kg, that is, half the energy.

Melting of particulate solids has received relatively little attention in the classic
engineering literature, probably because it is rarely a rate-limiting operation. Nevertheless,
Ross (1) in the 1950s did offer a systematic classification of melting methods of fusible
solids, though none of them is applicable to polymeric solids. However, melting in
polymer processing is a very important elementary step, not only because it is often the
rate-controlling step, which consumes 70—80% of the total processing energy input, but
also because it determines to a large extent the product quality related to homogeneity and
stability (e.g., injection-molding quality and film-thickness variation, respectively).
Additionally, during melting of polymer blends, a major part of the blend morphology is
being established.

In this chapter we elucidate the physical mechanisms of melting, demonstrate some of
the common mathematical tools used in solving them, and demonstrate how these

Principles of Polymer Processing, Second Edition, by Zehev Tadmor and Costas G. Gogos.
Copyright © 2006 John Wiley & Sons, Inc.
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Fig. 5.1 Specific enthalpy curves for some common polymers.

mechanisms, in conjunction with inherent physical properties of polymers, lead to certain
geometrical configurations of melting.

After the polymer has been shaped into the desired form, we are faced with the
solidification problem (i.e., the inverse of the melting problem). We will find that, some of
the solution methods developed in this chapter with regard to melting, are also valid for
solidification.

5.1 CLASSIFICATION AND DISCUSSION OF MELTING MECHANISMS

The physical mechanisms that can bring about melting or heating of any substance are
included in the terms of the thermal energy balance, Eq. 2.9-14

p%z—V-q—P(V-V)—(‘E:VV)—&-S (5.1-1)

In Eq. 5.1-1 we added an additional possible homogeneous energy source S (e.g.,
dielectric heating). Clearly, the equation indicates four alternative sources by which the
internal energy of a material can be raised, originating from each one of the terms on the
right-hand side of the equation: (a) (—V - q), which is the net rate of internal energy
increase per unit volume from an outside source by heat conduction; (b) P(V - v), which
is the (reversible) rate of internal energy increase per unit volume by compression; (c)
[—(z:Vv)], which is the (irreversible) rate of internal energy increase by flow and
deformation; and (d) S which is a possible external source for homogeneous internal
energy increase such as dielectric heating. We can also include in such a term
exothermic chemical reaction (although this emerges from an appropriately defined
internal energy) and ultrasonic heating (although this can also be accounted for by the
deformation term).

Let us now discuss, in physical terms, how important each of the previously discussed
mechanisms is to the melting of polymers, and the limitations or advantages of each one
due to the physical nature of polymers.
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Fig. 5.2 Schematic representation of melting compacted polymeric solids by an outside heat
source. A melt layer is formed which grows with time.

Conduction Melting

Conduction melting is the most common mode of raising the temperature of a solid and
melting it. The surface temperature of a solid polymer or that of a compacted bed is raised
by contact with a hot, solid surface, as shown in Figure 5.2.

As a result of this contact, a molten layer of polymer is formed, which grows with time.
The mechanism of this kind of melting can be termed conduction melting without melt
removal. The rate-controlling factors are the thermal conductivity, the attainable temperature
gradients, and the available contact area between the heat source and the melting solid,
reflecting material, operational, and configurational constraints, respectively. Thus, the low
thermal conductivity of polymers (polymers are thermal insulators) and their temperature
sensitivity (which makes them subject to thermal degradation and limits the attainable
temperature gradients) place upper limits on the heat fluxes that can be applied.

Example 5.1 Thermal Degradation Characterization Thermal degradation is char-
acterized by two temperature-dependent parameters, the induction time 0 (T) for the onset of
degradation, as shown in Fig. ES.1(a) for unplasticized Polyvinyl chloride (PVC), and the rate
of degradation. The latter is shown in Fig. E5.1(b) in terms of the rate of change of the
consistency index of the Power Law parameter, as a function of time and temperature, and can
be expressed by the following equations:

m(t) = mg t < 0(T)
m(t) = mgexp|[Crexp “E/RT] 1 > 0(T)



CLASSIFICATION AND DISCUSSION OF MELTING MECHANISMS 181

10°
10? 1
10
HEsS
= (=)
| on
£ 5 G
E 1
S 10 10—2
>
10° 1073
194 202 210 218 194 202 210 218
1100 1 103k
T T

(a) (b)

Fig. ES.1 Parameter reflecting thermal degradation of unplasticized PVC, Geon 101 EP-F24,
as indicated by the time dependence of the consistency index m of the Power Law fluid model.
[Reprinted by permission from E. A. Collins, B. FE. Goodrich Chemical Co., Avon Lake, Ohio.
Paper presented at the 1965 Society of Plastics Engineers Annual National Technical

Conference, March 1966.]

Because of these limitations, and in particular because of the fact that, in such a
mechanism, the temperature gradient at the wall that determines the heat flux to the solids
drops exponentially with time, this melting mechanism is rather inefficient. However, the
latter drawback can be alleviated if some mechanism continuously removes the molten
layer. This, as shown in Fig. 5.3, can be accomplished either by applying a force normal to
the heated surface, forcing out the melt by pressure flow, or by having the contact surface
move parallel to its plane, dragging away the molten layer. These comprise the two

t Melt (drag flow) Hot surface
Melt
(squeezing flow

Solids

) Solids

Hot moving
surface

Fig. 5.3 Schematic representation of drag-induced melt removal and pressure-induced melt
removal mechanisms.
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melting mechanisms of conduction melting with pressure-induced melt removal and drag-
induced melt removal, respectively.

“Grid melters” take advantage of the former mechanism and single screw extruders
(SSEs), of the latter. In the elegant drag-removal melting mechanism that takes place in SSEs,
significant temperature gradients can be maintained over thin films of melt, which not only
quickly removes the freshly molten material from the vicinity of the high temperature zone
and reduces the risk of degradation but also generates heat via viscous dissipation, further
increasing the efficiency of melting. Moreover, in SSEs, the velocity of the moving solid
plane or “wall” is tantamount to screw speed, and it becomes an important operating variable
controlling the melting rate. Later in this chapter, we derive mathematical models for all these
melting mechanisms.

Compressive Melting

Polymer solids and melts are virtually incompressible, and therefore very high pressures are
needed for the term P (V - v) to assume reasonable values. Nevertheless, Menges and Elbe (2)
demonstrated the feasibility of an injection molding process based on this mode of melting.

Deformation Melting

For viscous liquids the [—(t : Vv)] term in Eq. 5.1-1 equals (t:¥)/2 and expresses the
viscous energy dissipation (VED) per unit volume due to friction. The expression of the
scalar product of the two tensors is given in the various coordinate systems in Table 2.5. For
Newtonian fluids, this term further simplifies to u(7y : ¥)/2, and is given in the various
coordinate systems in Table 2.6. Clearly, this term may be quite significant, because the
viscosity of polymeric melts and the shear rates under processing conditions are high. As
this term indicates, most polymeric melt flows are nonisothermal. Yet it also represents an
important source of heat energy in drag-removal conduction melting, because of the very
high shear rates imposed on the thin films in this melting mechanism. In fact, SSEs can be
operated adiabatically with all the heat energy for melting originating in viscous dissipation.

As in viscous liquids, solid deformation also leads to irreversible conversion of
mechanical energy to heat. In solids, however, deformation must exceed the elastic limit,
and the imposed mechanical energy that is not elastically recovered is irreversibly
dissipated into heat energy. In the melting step of polymer processing, we deform not a
single piece of homogeneous solid polymeric body, but rather repeated deformation is
imposed on a compacted bed of particulate solids. This generates significant, though
nonhomogeneous, heat energy throughout the actively deformed bed via two distinct
mechanisms: (a) individual polymeric particles undergo repeated deformations, generat-
ing heat within the particle, which we define as plastic energy dissipation (PED) (3), and
(b) mechanical energy is dissipated into heat via interparticle friction, which we define as
frictional energy dissipation (FED) (3). The compacted bed of solids cannot, of course, be
considered a *““‘continuum,” and neither of these heat sources is uniform and homogeneous
throughout the bed. Yet, as a first approximation for such “‘active” compacted polymer
particulates and assemblies undergoing plastic deformations, we can add two source terms
to the equation of thermal energy (Eq. 2.9-16), yielding:

DT
psC-Y e

oy =~V a+PED + FED (5.1-2)
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The PED and FED terms are not easy to describe mathematically since, as pointed out
earlier, they are not, strictly speaking, homogeneous sources within the compacted beds or
particulate assemblies, which are made up of discrete bodies. Thus, friction takes place
between macroscopic bodies, and even the deformation field within a single particle is
nonhomogenous. Nevertheless, because of their predominant role in processing equipment,
in particular in co-rotating twin screw extruders (TSEs), these melting sources provide a
very effective deformation mix-melting mechanism. When molten polymer regions are
formed due to PED and FED, and if the deforming stresses persist, then both PED and
VED will act simultaneously as heat sources, resulting in a very effective mechanism of
deformation mix-melting. We discuss this mechanism in more detail, and formulate it
mathematically, in Section 5.8.

Homogeneous Internal Melting

Alternative heating mechanisms to conduction, such as dielectric or ultrasonic energies,
have also been attempted. These mechanisms can be dissipated by polymer solids, creating
volumewide homogeneous heat sources. With these mechanisms, the governing form of
the thermal-energy balance becomes

or

C,—
Pt ot

=-V.q+$§ (5.1-3)

Although feasible, as shown by Erwin and Suh (4), using dielectric heating as an energy
source is rather limited in polymer processing practice as a primary melting mechanism.

In summary, the melting mechanisms that are effective in melting polymers at
acceptable rates, according to criteria of avoiding thermal degradation and achieving high
processing rates, are summarized in Fig. 5.4a as

1. Conduction melting with forced melt removal, where both conduction and melt
flow—induced VED achieve appreciable melting rates. This is the primary melting
mechanism in single rotor polymer processing equipment. Such equipment, for
example, SSEs and injection molding machines, are primarily forming devices,
with the large pumping capabilities needed for forming; single-rotor devices allow
the compacted polymer particulates to remain passive, without participating in the
melting process.

2. Plastic energy dissipation and frictional energy dissipation, in that order of
importance, where compacted polymer particulates are ‘“‘relentlessly’” deformed
by twin rotor devices, which rapidly raise their temperature and create regions of
melts.

3. Dissipative mix-melting (DMM), which becomes the operative melting mechanism
after PED and FED have created a solids-rich melt suspension. In this early two-
phase stage, PED may still be dominant. Soon afterwards, as melt-rich suspensions
are created, VED becomes the dominant mechanism capable of rapidly eliminating
all solids regions. Again twin rotor co- and counterrotating devices can cause the
solid particulate assemblies to deform rapidly and repeatedly, enlisting them in the
melting process. This is the reason that such devices are used when uniform and
very rapid melting is required, as in postreactor polymer ‘““finishing” operations.
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Fig. 5.4 Summary of the main mechanisms of the elementary step of melting. (I) Reprinted from
Z. Tadmor and C. G. Gogos, Principles of Polymer Processing, Wiley, New York, 1979. (II)
Reprinted by permission from C. G. Gogos, Z. Tadmor and M. H. Kim, “Melting Phenomena and
Mechanisms in Polymer Processing Equipment,” Adv. Polym. Technology, 17, 285-305 (1998).

5.2  GEOMETRY, BOUNDARY CONDITIONS, AND PHYSICAL PROPERTIES
IN MELTING

To solve a heat transfer problem in polymer processing, the geometrical boundaries over
which heat transfer takes place must be defined, boundary conditions selected, and the
nature of the physical properties of the polymer specified.

Although melting in polymer processing may take place in geometrically complex
machinery, the rate-determining step can often be modeled in terms of simple geometries,
such as semi-infinite bodies, infinite flat slabs, and thin films. Analytical techniques prove
to be useful in many of these cases. In solidification, on the other hand, the geometry of
the frequently complex finished product coincides with the geometrical boundaries of
the heat transfer problem, necessitating the application of numerical techniques.

The most important boundary condition in heat transfer problems encountered in
polymer processing is the constant surface temperature. This can be generalized to a
prescribed surface temperature condition, that is, the surface temperature may be an
arbitrary function of time 7(0,7). Such a boundary condition can be obtained by direct
contact with an external temperature-controlled surface, or with a fluid having a large heat
transfer coefficient. The former occurs frequently in the heating or melting step in most
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processing machinery, whereas the latter may be the case in cooling and solidifying, such
as in the water trough solidification of extruded products.
A prescribed surface convection condition mathematically is stated as

h[T,(t) — T(0,1)] = —kQT(O7 1) (5.2-1)
Ox

where T,(t) is the ambient fluid temperature, and / is the heat transfer coefficient. The

exposed surface temperature, 7(0,¢), is another common boundary condition in heat

transfer; in polymer processing, for example, we find it in air cooling of blown films, in

oven heating of sheets prior to vacuum forming, in cooling of finished injection molding

products, and in many other applications.

Yet another boundary condition encountered in polymer processing is prescribed heat
Sflux. Surface-heat generation via solid—solid friction, as in frictional welding and
conveying of solids in screw extruders, is an example. Moreover, certain types of intensive
radiation or convective heating that are weak functions of surface temperature can also be
treated as a prescribed surface heat-flux boundary condition. Finally, we occasionally
encounter the highly nonlinear boundary condition of prescribed surface radiation. The
exposure of the surface of an opaque substance to a radiation source at temperature 7,
leads to the following heat flux:

oF [T} —TH0,1)] = —k 0 7(0,1) (5.2-2)

Ox
where o = 5.6697 x 1078 W/m* K* [1.712 x 107° Btu/h ft> °R*] is the Stefan—Boltz-
mann radiation constant, and % is the combined configuration-emissivity factor. As
pointed out earlier, if 7, > T, the boundary condition Eq. 5.2-2 reduces to a constant-flux
condition.

In the melting process, amorphous polymers undergo a second-order transition and
change from brittle to rubbery solids at the glass transition temperature, T,. Although 7, is
reported as a single temperature value, the transition actually takes place over a
temperature range of the order of 5-10°C. The value of T, increases with increasing
heating rate and applied hydrostatic pressure. Amorphous solids gradually become more
deformable as they approach T,, become “‘rubberlike” at T, < T < T, + 100°C, known
as the “rubbery plateau’ region, and become fluidlike at T > T, + 100°C, called the flow
(terminal) region. The crystalline portion of semicrystalline polymers, on the other hand,
undergoes a first-order transition from the solid to the liquid state, with a characteristic
heat of fusion 4, at the melting point 7;,. Melting of the crystallites occurs over a 10-30°C
range, depending on the spectrum of their sizes and perfection level, and on the rate of
heating. The reported value of T, is the temperature value at the end of this process; it
depends on the polymer structure and, in the case of random copolymers, on the
copolymer composition. Block copolymers exhibit the melting temperature characteristic
of each of the two homopolymers.

Above T, the viscosity of the melt has Arrhenius-type dependence, decreasing
(exponentially) with increasing temperature. Therefore a sharp transition is observed in
both mechanical and viscous properties of semicrystalline polymers at 7, resulting in a
physical situation that is closer to the classic melting interface of monomeric crystals
where, on one side, there is a viscous liquid, and on the other side, an elastic solid.
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The physical and thermophysical properties of density, thermal conductivity, and
specific heat are temperature dependent. It is a reasonably good approximation to use
constant values for both the solid and molten states.

5.3 CONDUCTION MELTING WITHOUT MELT REMOVAL

As pointed out in the previous section, melting can often be modeled in terms of simple
geometries. Here we analyze the transient conduction problem in a semi-infinite solid.
We compare the solutions of this problem, assuming first (a) constant thermophysical
properties, then (b) variable thermophysical properties and finally, and (c) a phase
transition with constant thermophysical properties in each phase. These solutions, though
useful by themselves, also help demonstrate the profound effect of the material properties
on the mathematical complexities of the solution.

The equation of thermal energy (Eq. 2.9-16) for transient conduction in solids without
internal heat sources reduces to

oT
pC

v g =V KVT (5.3-1)

If the thermal conductivity k and the product pC, are temperature independent, Eq. 5.3-1
reduces for homogeneous and isotropic solids to a linear partial differential equation,
greatly simplifying the mathematics of solving the class of heat transfer problems it
describes.

Example 5.2 Semi-infinite Solid with Constant Thermophysical Properties and a Step
Change in Surface Temperature: Exact Solution The semi-infinite solid in Fig. E5.2 is
initially at constant temperature 7j. At time r = 0 the surface temperature is raised to
Ti. This is a one-dimensional transient heat-conduction problem. The governing parabolic
differential equation

ar T

where o is the thermal diffusivity, must be solved to satisfy the following initial and boundary
conditions T(x,0) = T (00, 1) = Ty and T(0,¢) = T. Introducing a new variable? 5 combines
the two independent variables x and ¢ as follows:

n=Cxt" (E5.2-2)

1. For heat conduction in nonisotropic solids, see Ref. 5.

2. This transformation follows from general similarity solution methods, and is a similarity transformation. The
term “‘similar” implies that profiles of the variable T = T'(x, 1) (at different coordinates x) differ only by a scale
factor. The profiles can be reduced to the same curve by changing the scale along the axis of ordinates. Problems
that lack a “characteristic length™ are generally amenable to this solution method.
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Fig. E5.2 Temperature profiles in a semi-infinite solid with a step change in temperature at
the boundary.

where C and M are constants to be determined. Inserting Eq. E5.2-2 into Eq. E5.2-1 results in

ar 2 o1 T
il E5.2-3
gy = e ( )

For Eq. E5.2-3 to be independent of 7, the following equality must hold: 2m + 1 =0 or
m = —1/2. Thus, the following ordinary differential equation is obtained

d*T 1 dT

i i E5.2-4
dn? * 22! dn ( )
Next we let C = 1/v/4a, which further simplifies Eq. ES.2-4 to
T il g (E5.2-5)
dn? 1 dn '

Equation E5.2-5 can be easily solved by introducing another variable of transformation,
y = dT /dy. The resulting temperature distribution is

T=0 \/TE erf(y) + G, (E5.2-6)
where
X
- E5.2-7
"= i (ES.2-7)

and erf (z) is the well-known “‘error function” defined as

e *ds (E5.2-8)
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The constants C; and C, are obtained from the boundary conditions. Thus, boundary
condition 7(0,¢) = T is satisfied if C, = T whereas both conditions 7'(x,0) = T(c0,1) = T
imply T = Ty at n — oo (which is the direct result of the combination of variables). Thus we
get Cy = 2(Ty — T;)/n'/?. Substituting these values into Eq. E5.2-6 results in

T—T
To — T

= erf(n) (E5.2-9)

which satisfies both the differential equation and the boundary conditions, and hence is a
solution to the problem.

The heat flux into the solid is obtained by differentiating Eq. E5.2-9 with respect to x, and
using Fourier’s law

or To—-T, _» k
Y L S L e e T, —T E5.2-10
* (8x>x:0 |: Vot ‘ :|x*0 \% 7[061,‘( I 0) ( )

The results so far are both interesting and significant. First, we have obtained a particular
dimensionless combination of the key variables: distance, time, and thermal diffusivity in Eq.
E5.2-7, and the temperature profile becomes a unique function of this single dimensionless
variable 7.

We shall see later that this combination of the key variables is also characteristic of
conduction heating with phase transfer. The heat flux is infinite at # = 0, but quickly drops with
the inverse of 71/2. Thus after 10 s it is only 30% of the flux at 1 s, and after 60 s, it is only 13% of
the heat flux at 1s! The obvious conclusion is that conduction melting without melt removal
becomes inefficient for anything but short times.

Example 5.3 The Semi-infinite Solid with Variable Thermophysical Properties and a
Step Change in Surface Temperature: Approximate Analytical Solution We have sta-
ted before that the thermophysical properties (k, p, C,) of polymers are generally temperature
dependent. Hence, the governing differential equation (Eq. 5.3-1) is nonlinear. Unfortunately,
few analytical solutions for nonlinear heat conduction exist (5); therefore, numerical solu-
tions (finite difference and finite element) are frequently applied. There are, however, a num-
ber of useful approximate analytical methods available, including the integral method
reported by Goodman (6). We present the results of Goodman’s approximate treatment for
the problem posed in Example 5.2, for comparison purposes.
We begin with Eq. 5.3-1 and introduce a variable of transformation for 7

dO(x,t) = pC,dT (E5.3-1)

or in integrated form:
T
O(x,1) = JpCﬂ dTr (E5.3-2)
To

where O is the heat added per unit volume at location x and time 7. Substituting Eq. E5.3-1 into
Eq. 5.3-1 gives

00 0 00

= (0

5 = o (E5.3-3)
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Next we integrate Eq. E5.3-3 over x from the outer surface (x = 0) to a certain, yet
unknown depth 6(¢), which is defined as the thermal penetration depth

[ S J [%a(e) aa_ﬂ dx (E5.3-4)

The penetration depth reflects the time-dependent distance from the surface to a location
where thermal effects become negligible. Using the Leibnitz formula for the left-hand side of
Eq. E5.3-4, we get

o
d do
EJ@ dx — @((37I)E
0
But O(9, ) = 0, because we defined J as the distance at which thermal effects fade away; that is
we assume that 7(5) = Ty. Thus, the right-hand side of Eq. E5.3-4 simply becomes
00
— {oc(@) —}

Ox x=0

and Eq. 5.3-4 can be rewritten as

our-[uo??]

E5.3-5
Ox x=0 ( )

The advantage of the Goodman transformation is now apparent: the temperature-
dependent thermophysical properties in the integrated differential equation have to be
evaluated only at the surface temperature, 7. The variation of the properties with the
temperature appear in the boundary condition for O(x, t)

T,

Ox,1) =0, = J pC,dT (E5.3-6)

Ty

Boundary conditions T'(x,0) = T(co,t)= Ty are both taken care of by assuming a time-
dependent thermal penetration depth of finite thickness.

Next we assume a temperature profile that a priori satisfies the boundary condition
©(0,1) = ©,,0(6,0) = 0 and (00/0x),_; = 0, such as

0=0, (1 - §>3 (E5.3-7)

By substituting Eq. E5.3-7 into Eq. E5.3-5, the time dependence of 0 is obtained

8 = /2401 (E5.3-8)

where o, is « evaluated at T). For polymers with typical o values of 1 x 1077 m?/s, the
penetration depth is 1 mm after 1s and 1 cm after 60s.
From Eq. E5.3-7, we obtain

3
O(x,1) = 0, (1 - W) (E5.3-9)
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The temperature profile at any given time is obtained by calculating © for various x values
(0 < x < 0) and obtaining from Eq. E5.3-7 the corresponding temperatures. The latter, of
course, requires knowing the temperature dependences of pC,,.

For constant thermophysical properties Eq. E5.3-9 reduces to

T-T, x \°
— =1 —— E5.3-10
T —Tp ( \/24051) ( )
The heat flux at x =0 is
Y _n-m) (ES3-11)
qx 8o1/3 1 0 .

which can be compared to the exact solution in Eq. E5.2-10, showing a small difference
between the two solution methods. This difference depends on the selection of the trial
function, and in this case it is 8%.

Example 5.4 Melting of a Semi-infinite Solid with Constant Thermophysical
Properties and a Step Change in Surface Temperature: The Stefan—-Neumann
Problem The previous example investigated the heat conduction problem in a semi-infinite
solid with constant and variable thermophysical properties. The present Example analyzes
the same conduction problem with a change in phase.

Interest in such problems was first expressed in 1831 in the early work of G. Lame and B.
P. Clapeyron on the freezing of moist soil, and in 1889 by J. Stefan on the thickness of polar
ice and similar problems. The exact solution of the phase-transition problem in a semi-infinite
medium is due to F. Neumann (who apparently dealt with this kind of problem even before
Stefan), and thus, problems of this kind are called Stefan—-Neumann problems. The interest in
these problems has been growing ever since (7,8).

The presence of a moving boundary between the phases introduces nonlinearity into the
boundary conditions. Hence, there are only a few exact solutions, and we must frequently turn
to approximate analytical or numerical solutions.

In this example, we consider the classic Stefan—-Neumann solution. The solid is
initially at a constant temperature Ty. At time ¢ = O the surface temperature is raised to
Ty, which is above the melting point, 7,,. The physical properties of each phase are
different, but they are temperature independent, and the change in phase involves a latent
heat of fusion 1. After a certain time ¢, the thickness of the molten layer is X;(7); in each
phase there is a temperature distribution and the interface is at the melting temperature 7},
(Fig. ES.4).

Heat is conducted from the outer surface through the melt to the free interface, where some
of the heat is absorbed as heat of fusion, melting some more solid, and the rest is conducted
into the solid phase. The densities of melt and solid are usually different. We denote the melt
phase with subscript / and the solid with subscript s. The thickness of the molten layer
increases because of melting, and there is also a slight increase due to a decrease in density as
the solid melts. If there were no decrease in density, the thickness of the molten layer would
remain X;. Thus, the relationship between X; and X; is given by

X _b_p (E5.4-1)

Xs P
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Quter surface at ¢

T4 Quter surface at t=0
Melt
Ti
T(x)
A \
x-?

X (t)—

X (t)—>

LS _amEEEA

Fig. E5.4 Melting in a semi-infinite solid. X;(¢) is the thickness of the molten layer at time
t, X,(¢) is the distance of the interface from the location of external surface at time r = 0. The
temperature profile in the solid is expressed in coordinate x,, which is stationary, whereas the
temperature profile in the melt is expressed in coordinate x;, which has its original outer
surface of melt, hence, it slowly moves with time if p, # p;.

The governing differential equation in both phases is Eq. E5.2-1. For the melt phase, it
takes the form

Ll (E5.4-2)

with boundary conditions 7;(0,7) = T} and Ty(x;,1) = T.
It should be noted that the coordinate x; has its origin at the outer surface of the melt which, if
ps # p;. slowly moves with the melting process. For the solid phase we have

2T, 10T,
B o _

ox2 o Ot

(E5.4-3)

with the boundary conditions 7s(oo,t) = Ty and Ts(xy, 1) = Tpy.

The coordinate x, has its origin at the external surface when melting started, and it is
stationary. In addition to the boundary conditions just given, we can write a heat balance for
the interface (this is occasionally referred to as the Stefan condition).

ki (@) - k(ﬁ) = dax; - dX;
0) oy, O P Py (E5.4-4)

Heat flux into Heat flux out Rate (')tf mlelx}tl‘ng
the interface from interface per unit interface

We assume that the temperature profile in each phase has the form of the temperature profile in
a semi-infinite solid with a step change in surface temperature as derived in Example 5.2. Thus
we get the following temperature profiles for melt and solid phases, respectively,

— xl -
T, =T, +Aerf (—2\/1_11) (E54 5)
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which automatically satisfies the boundary condition 7;(0,¢) = Ty, and

T,=To+B erfc( (E5.4-6)

)

where erfc (s) = 1 — erf(s), and which satisfies the boundary condition 7(c0, ) = T,. Both
equations must satisfy the boundary condition, stating that the temperature at the interface is
that of the melting point:

Tm - Tl + A erf( (E54-7)

1)
T, =Ty +Berfc<

5 \/ﬁ) (E5.4-8)

Now, Eqgs. ES.4-7 and E5.4-8 must hold for all times . This is possible only if both X; and
X, are proportional to the square root of time. We can, therefore, write

X, = KVt (E5.4-9)

and with the aid of Eq. E5.4-1 we get

X, = BKVt (E5.4-10)

where K is an unknown constant. From Eqgs. E5.4-9 and E5.4-10 we conclude, without even
having the complete solution, that the thickness of the molten layer grows at a rate proportional to
the square root of time. It is interesting to note the similarity between the penetration depth, as
obtained in the preceding examples, and the location of the interface. This similarity suggests the
application of approximate solution methods to phase-transition problems.

The constant K can be evaluated by substituting Eqs. E5.4-5 and E5.4-6 into Eq. E5.4-4.
Subsequent to evaluating the constants A and B from the boundary conditions and Eqs. E5.4-9
and E5.4-10

(T — T ke P /% (Ty — T, ke K145 Kp

Vet (KB/2 /o) /aerfe(K/2,/5%) i

(E5.4.11)

The root of this transcendental equation is K, and it is a function of the initial and boundary
conditions, as well as the physical properties of the two phases. Tabulated solutions of
Eq. E5.4-11 for f =1 to four-digit accuracy are given by Churchill and Evans (9). The
temperature profiles in the two phases are obtained from Eqs. E5.4-5 and E5.4-6, with the aid
of Egs. E5.4-7 and E5.4-8

T =T, . erf(u/2y/ur) )
Ty —Tw ! erf(KB/2/a) (ES4-12)

and

T, —Tw erfc(x,/2+/ot)
=1 (ES.4-13)
To —Tn erfc(K /2+/ay)
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Equations E5.4-12 and ES5.4-13 satisfy the differential equation and the boundary and
initial conditions. Therefore they form an exact solution to the problem. In the preceding
solution we neglected heat convection as a result of the expansion of the melt phase due to the
density decrease. The rate of melting per unit area as a function of time can be obtained from
Eq. E5.4-10

_ dX]_pSK
VAT PG T o

(E5.4-14)

Again we note the similarity in the solution of the conduction problem with constant
thermophysical properties, to those with variable properties, and with phase transition.
Clearly, the rate of melting drops with time as the molten layer, which essentially forms a
thermal shield, increases in thickness. This result, once again, directs our attention to the
advantage accruing from forced removal of the molten layer from the melting site. The
average rate of melting is

t
1(p.K K
wA:—Jp-‘ dr =" (E5.4-15)
0

The preceding examples discuss the heat-conduction problem without melt removal in
a semi-infinite solid, using different assumptions in each case regarding the
thermophysical properties of the solid. These solutions form useful approximations to
problems encountered in everyday engineering practice. A vast collection of analytical
solutions on such problems can be found in classic texts on heat transfer in solids (10,11).
Table 5.1 lists a few well-known and commonly applied solutions, and Figs. 5.5-5.8
graphically illustrate some of these and other solutions.

Most real cases of polymer melting (and solidification) involve complex geometries
and shapes, temperature-dependent properties, and a phase change. The rigorous treatment
for such problems involve numerical solutions (12-15) using finite difference (FDM) or
FEMs. Figure 5.9 presents calculated temperature profiles using the Crank—Nicolson FDM
(16) for the solidification of a HDPE melt inside a flat-sheet injection-mold cavity. The
HDPE melt that has filled the cavity is considered to be initially isothermal at 300°F, and
the mold wall temperature is 100°F.

5.4 MOVING HEAT SOURCES

Conductive heating with moving heat sources was treated in detail by Rosenthal (17),
particularly in relation to metal processing such as welding, machining, grinding, and
continuous casting. In polymer processing, we also encounter heat conduction problems
with moving heat sources as well as heat sinks. The commonly practiced welding of
polyvinyl chloride, the continuous dielectric sealing of polyolefins, the heating of films
and thin sheets under intense radiation lamps, and in certain cases, the heating or chilling
of continuous films and sheets between rolls are some examples. These processes are
usually steady or quasi—steady state, with heat introduced or removed at a point or along a
line. We now examine one particular case to demonstrate the solution procedure.
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Fig. 5.5 Temperature profiles for unsteady-state heat conduction in finite flat plates:
T(x,0) = Ty, T(£b,t) = T). [Reprinted by permission from H. S. Carslaw and J. C. Jaeger,
Conduction of Heat in Solids, 2nd ed., Oxford University Press, New York, 1973.]

Example 5.5 Continuous Heating of a Thin Sheet Consider a thin polymer sheet infi-
nite in the x direction, moving at constant velocity V; in the negative x direction (Fig. ES.5).
The sheet exchanges heat with the surroundings, which is at T = Ty, by convection. At
x = 0, there is a plane source of heat of intensity g per unit cross-sectional area. Thus the
heat source is moving relative to the sheet. It is more convenient, however, to have the coor-
dinate system located at the source. Our objective is to calculate the axial temperature profile
T(x) and the intensity of the heat source to achieve a given maximum temperature. We
assume that the sheet is thin, that temperature at any x is uniform, and that the thermophy-
sical properties are constant.

1.0
2_
at/lR _/0_4///

0.8
ailR?=02 / /

|
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Tl N To
0.4
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at/R?=0.01
0
0 0.2 0.4 0.6 0.8 1.0
EA
R

Fig. 5.6 Temperature profiles for unsteady-state heat conduction in infinite cylinders:
T(r,0) =Ty, T(R,t) = Ty. [Reprinted by permission from H. S. Carslaw and J. C. Jaeger,
Conduction of Heat in Solids, 2nd ed., Oxford University Press, New York, 1973.]
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Fig. 5.7 Temperature profiles for unsteady-state heat conduction in spheres: T(r,0) = T,
T(R,t) = T;. [Reprinted by permission from H. S. Carslaw and J. C. Jaeger, Conduction of Heat in
Solids, 2nd ed., Oxford University Press, New York, 1973.]
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Fig. 5.8 Temperature at the center of different shapes versus time; X is the thickness, side
dimension, or diameter; initial temperature is 7y, then the temperature of the outside surface is
raised to 7). [Reprinted by permission from H. Grober and S. Erk, Die Grundgesetze der
Wiérmeii bertragung, Springer-Verlag, Berlin, 1933, Fig. 28, p. 58.]
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Fig. 5.9 Dimensionless temperature in a thin injection mold during solidification of HDPE.
[Reprinted by permission from C. Gutfinger, E. Broyer, and Z. Tadmor, Polym. Eng. Sci., 15, 515
(1975).]
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Fig. E5.5 Heating of a moving thin sheet with a plane heat source.

The energy equation for this problem reduces to:

dT T
C,Vo—=k—5—-0, E5.5-1
P 0 dx kdx2 (E5.5-1)

where Q, is the heat exchanged with the surrounding per unit volume:

0, =" (10 - 1) (E5.5-2)

where ¢ and A are the perimeter and cross-sectional areas, respectively. Substituting Eq. E5.5-
2 into Eq. E5.5-1 and using the “excess temperature” 77(x) = T(x) — Ty instead of 7'(x), we
obtain

&’T VodT'
e IOE —m*T =0 (E5.5-3)
where
e\ 12
m= (Hf) (ES.5-4)

Equation E5.5-3 is to be solved subject to the boundary conditions 7" (+o00) = 0. Equation
E5.5-3 is a linear second-order differential equation that can be conveniently solved by
defining a differential operator D" = d" /dx", yielding

(D2 - %D - m2) T7'=0 (E5.5-5)

in which the differential operator behaves as though it were an algebraic polynomial.
Since T’ # 0, the expression in parentheses must equal zero, and solving for D, we get as
roots:

2
p=You [y (E) (E5.5-6)
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The temperature profile is then

v Vo\’ v Vo)’
T'(x) = Ajexp 2—;4— m2+<2—z) x| + Biexp 2—2— m2+(—0) X

(E5.5-7)

Since we cannot satisfy both boundary conditions except for the trivial case 77 = 0, we
split our solution into two regions x > 0 and x < 0, resulting in the following solutions:

Vo> Vo
T'(x) =B - 2 — ) —= >0 E5.5-8
0 =exp| - (yfm (1) <20 )5 az (B3 5-8)
and
Vo\® | Vi
T'(x) = Ajexp m? + (2—;) + 2—2 X x<0 (E5.5-9)

Now at x = 0 both equations should yield the same, yet unknown maximum temperature 7 __;
thus, we get

A =B =T,

max

=T'(0) (E5.5-10)

The value of 7}, depends on the intensity of the heat source. Heat generated at the plane
source is conducted in both the x and — x directions. The fluxes ¢; and ¢,, and in these

respective directions are obtained from Eqs. ES.5-8 and E5.5-9:

Vo Vo
q = kT | \/m? + (27() -5, (E5.5-11)
Vo> Vo
qr = _kTr/nax m? + (z) + ﬂ (E5.5—12)

A heat balance at the interface requires
q=lqil+ a2 (ES.5-13)
Substituting Eqs. E5.5-11 and E5.5-12 into Eq. E5.5-13 and solving for T}, . gives

S S
2
Vi
2k [m? + (—0)
20
Thus the maximum excess temperature is proportional to the intensity of the source, and it
drops with increasing speed V), and increases in the thermal conductivity and the heat transfer
coefficient. From Eqs. E5.5-8 and E5.5-9 we conclude that the temperature drops quickly in

the positive x direction as a result of the convection (Vy < 0) of the solid into the plane
source, and slowly in the direction of motion. Again, in this chapter we encounter

T =

max

(E5.5-14)
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exponentially dropping temperatures in solids with convection—a frequent situation in
melting configurations.

5.5 SINTERING

When solid particles come in contact with each other at elevated temperatures, they tend to
coalesce, thereby decreasing the total surface area. This process is called sintering (18). It
is usually accompanied by a decrease in the total volume of the particulate bed. A decrease
in surface area brings about a decrease in (surface) free energy; hence, the surface tension
is the driving force for the coalescence process.

The sintering process proceeds in two distinct stages, first by developing interfaces and
bridges between adjacent particles with little change in density, followed by a
densification stage in which the interparticle cavities are eliminated (Fig. 5.10). It should
be noted that sintering is a local phenomenon between adjacent particles involving viscous
flow. The rate of the process is therefore greatly affected by the local temperature. Hence,
along with the sintering process, we usually have to deal with the overall heat transfer
problem within the particulate system, where previously discussed solutions are
applicable, with the thermophysical properties replaced by “effective” values.

Fig. 5.10 A monolayer of 700 pm. diameter Polymethyl methacrylate (PMMA) beads during a
sintering process at 203°C, x 50. (a) After 25 min; (b) after 55 min. [Reprinted by permission from
M. Narkis, D. Cohen, and R. Kleinberger, ““Sintering Behavior and Characterization of PMMA
Particles,” Department of Chemical Engineering, Technion Israel Institute of Technology, Haifa.]
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The processing of metallic and ceramic powders by sintering is an old and well-
developed technological activity. In polymer processing, melting by a sintering process is
practiced in areas such as rotational molding (19,20) and powder coating. Moreover, it
provides the only practical way to process polytetrafluoroethylene, whose very high
molecular weight precludes other common processing methods (21). Finally, a process of
high-pressure compaction, followed by sintering, has been suggested for melting and
shaping high-temperature polymers such as polyimides and aromatic polyesters, as well as
for physical mixtures of preset composition distribution of more common polymers (22,23).

The model of viscous sintering was developed by Frenkel (24), who derived the
following expression for the rate of coalescence of spherical adjacent particles:

2
x _2r, (5.5-1)
R 37y
subject tox/R < 0.3, where x is the neck radius (Fig. 5.11), R is the radius of the particles,
I’ is the surface tension, and # is the viscosity. This expression was applied successfully to
glass and ceramic materials, but for polymeric materials Kuczynski et al (18), working
with polymethyl metacrylate (PMMA), found the experimental data to follow the
following type of empirical equation:

(Rf—;)p: F(T)t (5.5-2)

where ¢ is sintering time, and F(T) is a function only of the temperature. For p = 1,
Eq. 5.5-2 reduces to a Frenkel type of equation. Kuczynski et al. derived this equation
theoretically by assuming the melt to be non-Newtonian and to follow the Power Law
constitutive equation. The result is

x2 I/ t (8nI’ 1/n
(E) —5(7) (5:5-3)

where n and m are the Power Law model constants. Thus the parameter p in Eq. 5.5-2
acquires rheological meaning. For n = 1, Eq. 5.5-3 reduces to the Frenkel equation as
corrected by Eshelby (25). Yet the flow field during the coalescence process is
probably neither homogeneous nor isothermal; therefore, a complete analysis of the
coalescence stage would first require a detailed analysis of the kinematics of the flow field.
Thus, the theoretical analysis should preferably be carried out with a viscoelastic

Fig. 5.11 Schematic view of the first stage in the sintering process.
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constitutive equation, because viscoelastic effects, as suggested by Lonz (21), may play an
important role in sintering of polymeric materials, and accounting for nonisothermal
effects.

The coalescence stage is usually considered terminated when x/R reaches a value of
0.5. For the densification stage that follows, Frenkel (24) suggested the following
expression:

r
LA R (5.5-4)
ro 2nro

when ry is the initial radius of the approximately spherical cavity formed by the first stage,
and r is the radius at time .

As sintering proceeds and coalescence and densification occur, the overall heat
conduction problem does not remain unaffected. Clearly, the effective thermophysical
properties change, thereby influencing the overall temperature distribution and the local
sintering problem as well.

5.6 CONDUCTION MELTING WITH FORCED MELT REMOVAL

In the preceding sections, we have discussed the physical mechanisms by which thermal
energy can be supplied to a solid polymer, and have outlined some of the mathematical
tools available for solving these problems. We have dealt with various aspects of
“conduction melting without melt removal,” which is generally applicable to melting a
semifinished or finished product, as well as to the solidification processes following
shaping. We have noticed in most of the problems analyzed that heat fluxes and rates of
melting diminish rapidly with time as the molten layer increases in thickness. It follows
logically, then, that the rate of melting can be considerably increased by a continuous
removal of the molten layer formed. This process, as Section 5.1 pointed out, not only
leads to high rates of melting, but is the essential element in creating a continuous steady
source of polymer melt, which in turn is the heart of the most important shaping methods of
die forming, molding, calendaring, and coating, as well as for preparing the preshaped
forms for the stretch shaping operations.

Removal of the melt, also discussed in Section 5.1, is made possible, in principle, by
two mechanisms: drag-induced flow and pressure-induced flow (Fig. 5.4). In both cases,
the molten layer must be sheared, leading to viscous dissipation. The latter provides an
additional, important source of thermal energy for melting, the rate of which can be
controlled externally either by the velocity of the moving boundary in drag-induced melt
removal or the external force applied to squeeze the solid onto the hot surface, in pressure-
induced melt removal.

In either of these cases we convert external mechanical energy into heat. This source of
heat is not negligible; it may even be the dominant or sole source in the melting process,
for example, in the case of “autogenous’ screw extrusion.” Having two alternative sources
of heat energy provides the processing design engineer with a great deal of flexibility.

3. This term is used for an extrusion operation where the barrel is heated for the start-up, but then heating is
discontinued and the only source of heat is viscous dissipation.
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Finally, the continuous removal of melt has the added benefit of not exposing polymer
melts to high temperature surfaces or regions for long residence times.

From a mathematical point of view, problems of conduction melting with forced melt
removal are far more complex than ordinary conduction melting, because they involve the
simultaneous solution of the momentum and energy equations. Moreover, boundary
conditions are often ill defined.

We will now analyze forced drag melt removal in some detail. This is the dominant
melting mechanism in the SSE, and to a very large extent, in the injection molding
machine as well. These, of course, are two very important devices for polymer processing
forming operations. Chapter 6 discusses the flow in the single screw geometry from first
principles, and Chapter 9 analyzes in detail the melting mechanism in single screw-based
machines using the melting model presented in Section 5.7.

5.7 DRAG-INDUCED MELT REMOVAL

We consider an infinite slab of isotropic homogenous solid of width W, pressed against a
moving hot plate (Fig. 5.12). A highly sheared, thin film of melt is formed between the

(a)

(b)

Y

Fig. 5.12 (a) Schematic representation of a slab of polymer melting on a hot moving surface.
(b) Enlarged view of a portion of the melt film.
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solid and the plate, and this film is continuously removed. After a certain time, steady-state
conditions evolve; that is, velocity and temperature profiles become time independent. The
problem is two-dimensional, in that the temperature and velocity fields are functions of x
and y only. No variations occur in the z direction, which is infinite. The thickness of the
melt film is very small at x = 0, and it increases in the positive x direction, the shape of the
melt film 6(x) being an a priori unknown function.

Heat is conducted from the hot plate, which is at a constant temperature 7y, to the solid—
melt interface at 7 = T,,, assuming that the polymer is polycrystalline. As discussed in
Section 5.1, amorphous polymers at T, do not change abruptly from brittle solids to
viscous liquids. Thus the choice for 7}, is not obvious. One can pretend that the transition is
sharp and set an arbitrary level of temperature (larger than 7,) at which flow begins to
occur. Alternatively, as suggested recently by Sundstrom and Lo (26), the glass transition
temperature can be used together with the WLF equation to select an appropriate melting
point.

We are seeking a solution for the rate of melting and the temperature distri-
bution of the emerging melt. Clearly, these variables will be functions of the
physical properties of the solid, the plate temperature and velocity, and the width of the
solid slab.

The drag-removal melting mechanism was discovered and mathematically modeled by
Tadmor (27) in connection to melting in SSEs (see Section 9.3). It was further refined,
experimentally, verified, and formulated as a self-contained computer package by Tadmor
et al. (28-31). Later Vermeulen et al. (32), and Sundstrom and Lo (26) and Sundstrom and
Young (33) analyzed the problem both experimentally and theoretically; Mount (34)
measured experimental rates of melting, and Pearson (35) analyzed the theoretical
problem mathematically in detail, as shown in Fig. 5.12. In this section we follow
Pearson’s discussion.

In trying to analyze the detailed mechanism of this melting configuration, we must first
consider the nature of the solid. For a perfectly rigid, incompressible body moving toward
the interface without rotation, the rate of melting at the interface must be independent of
the coordinate x, because the bulk velocity of the solid will be uniform across x. Hence,
0(x) and P(x), and the velocity and temperature fields in the film must assume values that
will satisfy this requirement, as well as the equations of motion and energy, with the
appropriate boundary conditions. But in highly sheared thin films of very viscous
polymers formed under a relatively soft deformable bed of particulate solids, a constant
pressure assumption in the film is more appropriate. This, in turn, implies that, at steady-
state conditions, the rate of melting may generally be a function of x, although this
variation may be small. A variable melting rate therefore implies, that the solid either
deforms or rotates or does both.

Solid polymers, in particular, in the form of a bed of compressed pellets or powder as
encountered in polymer processing, can be considered deformable. The melt formed at the
interface penetrates some of the voids between the particulate solids forming the bed,
enabling sliding and rearrangement in the neighborhood of the interface. Through such a
mechanism, it is easy to visualize the continuously deforming solid concept. Thus, the
physical situation in this case would be one of a slowly deformable solid pressed against
the moving hot plate.

The solid interface has a small velocity in the negative y direction that may slowly vary
with x. Yet the solid is rigid enough to sustain the shear stresses in the film and to prohibit
the development of an x-direction interface velocity. We are now in a position to state the
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simplifying assumptions to the problem and specify the governing differential equations.
The following assumptions are made:

. Constant thermophysical properties
. Incompressible fluid
. No slip at the wall

B O B N

. Power Law (or Newtonian) fluid with temperature-dependent viscosity:

m = moe =) (5.7-1)

. Steady state conditions

. Negligible gravitational forces

. Laminar flow prevails throughout

. The film thickness is much smaller than its width 6/W < 1

0 N N W

These, together with the small Reynolds number in the film, justifies the use
of the lubrication approximation. Moreover, the same considerations lead us to
neglect exit effects (at x = W), and precise entrance conditions (at x = 0) need not be
specified.

The equations of continuity and motion, respectively, reduce to

v,  Ovy
Y0 5.7-2
Ox + dy ( )
and
OP Oty
el 5.7-3
Ox Oy ( )

Since we assume a pure drag flow in the film, Eq. 5.7-3 further reduces to

OTyx
Jy

=0 (5.7-4)
Expressing the shear stress in terms of the local velocity gradient, Eq. 5.7-4 becomes

0 v \"
O | alr-T) <__X> ] _ 5.7-5
8y[ dy (5:7-5)

Equation 5.7-5 can be integrated with respect to y to give

_(88_1;) — AT/ (5.7-6)

Thereby, if a = 0 (i.e., temperature-independent viscosity), the velocity profile is linear for
both Newtonian and Power Law fluids. If, however, a # 0, the local velocity profile
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becomes a function of the temperature. Since temperature varies sharply over y, we expect
significant nonlinearity of the profile in the y direction. Moreover, because of convection,
T is also a (weaker) function of x, introducing a corresponding (weak) x dependence
of the velocity profile. Hence, the equations of motion and energy must be solved
simultaneously. The latter reduces to
T T T
PpCin (vx ((?9—x +vy ?Ty) =k, ?}? — Tyy %—‘; (5.7-7)

where p,,, C,,, and k,, are the thermophysical properties of the polymer melt, with heat
conduction in the x direction assumed to be much smaller than conduction in the y
direction, and further assuming that the only significant contribution to viscous dissipation
is that originating from the t,, component of the stress tensor.

Next we specify the boundary conditions in the film. At the solid boundary we have:

T(O) =Ty, Vx(o) = Vo, Vy(o) =0 (57-8)
and at the solid—melt interface we have:

T() =T, () =0 (5.7-9)

The velocity v, (J) at any position x is determined by the rate of melting at the interface,
to be obtained from the following heat balance:

oT oT,
NE e
( ay)y_é ol —1s(0)] )

Rate of melting at the
Rate of heat conducted interface t :"“ interface gare of heat conducted 5.7-10
intothe interface per unit area timesthe heat of fusion oyt of the interface per -
interface area unit interface area

where 4 is the heat of fusion, and k, and T are the thermal conductivity and temperature,
respectively, of the solid. The term on the left-hand side is the rate of heat conducted from
the hot film into the interface.

For melting to take place, 0T /Jy < 0. This term is therefore positive and provides the
heat source for melting, which as we see on the right-hand side, is used for two purposes:
to heat the polymer to the melting point at the interface where T = T, (second term) and to
melt the polymer at the interface (first term).

The last term on the right-hand side can be obtained by solving the temperature profile
in the solid bed. Consider a small, x-direction portion of the film and solid [Fig. 5.12(b)].
We assume the solid occupies the region y > 6 (where ¢ is the local film thickness) and
moves into the interface with constant velocity vy,. The problem thus reduces to a one-
dimensional steady heat-conduction problem with convection. In the solid, a steady,
exponentially dropping temperature profile develops. The problem is similar to that in
Section 5.4. The equation of energy reduces to

T 0T,
Cv sy o kx
Ps sVsy ay ayz

(5.7-11)
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where p;, Cs, and k; are the thermophysical properties of the solid polymer. Equation 5.7-

11 can be easily solved with the boundary conditions Ty(d) = T, and Ty(c0) = Ty, to give
the following temperature profile:

T =Ty + (T) — Tyo) exp [@} (5.7-12)

The velocity vy, < 0, and hence Eq. 5.7-12, satisfies both boundary conditions. The rate
of heat conduction out of the interface, noting that vyyp, = vy(9),p,,. is

_ks (g> = _(Tm - Tso)vy(é)meS (57_13)
8)) y=0

Thus Eq. 5.7-10 can now be written as

8T)
k[ S=) = p, vy (8)2° 5.7-14
(ay e (5.7-14)
where

2= h+ Cy(T, — Tyo) (5.7-15)

Thus A" is the total heat energy required to bring a solid from an initial temperature T}
to T,, and to melt it at that temperature. Sundstrom and Young (33) solved this
set of equations numerically after converting the partial differential equations into
ordinary differential equations by similarity techniques. Pearson (35) used the same
technique to obtain a number of useful solutions to simplified cases. He also used
dimensionless variables, which aid in the physical interpretation of the results, as
shown below:

T—-Thn
= (5.7-16)
To— T,
&= % and n= )5) (5.7-17)
v vy
U, = — and = ) 5.7-18
Vo Y V(0o /W) ( )
where the meaning of dy will be clarified below.
We first rewrite the boundary conditions
0(0) =1, u(0) =1, uy(0) =0 (5.7-19)
O(1) =0, u,(1)=0 (5.7-20)
The melting condition at the interface (Eq. 5.7-14) reduces to
kn(To — T))W (00O 0
=T (19) i, a0
A pmV050 on n=1 do
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This relationship provides us with a reasonable choice of dy. Since this boundary condition
determines the physical process, the dimensionless group k,,(To — T,,)W /A p,, V05(2)
should be of the order of 1. Hence, we can choose d as

kn(To — T, )W\ '/
— (&mlLo = Im) W 7-22
50 ( )‘*pmvo ) (5 ’ )

As we shall see later, dy is not merely an arbitrary scaling (normalizing) factor; by the
choice we made it turns out to be of the order of the film thickness, provided viscous
dissipation or convection are not too significant to the process.

We now can rewrite the transport equation in dimensionless form as follows. The
continuity equation is

duy  ddu, 9o Ouy
P U et A Mt it Ay 5.7-23
oc "son T on (57-23)
where § = dd/dé.

Details of the derivation of Eq. 5.7-23 are as follows. Substituting u, and u, from
Eq. 5.7-18 into the equation of continuity results in

Bux Voéo 8uy
Vi ———==0
0 Ox + W 0Oy

Next we rewrite the partial differentials in terms of the new variables # and ¢. We recall
that u.(&,1),uy(n), & = Fi(x), and n = F»(x,y). The x dependence in 7 is due to J(x).
Hence, we can write

Quy _ 0w 0C | OucOn _ 1 Jux _ y 90 Jux
Ox O 0x Onox WOE §*0x On
_i@ux 115814)(

S WOE WO oy

Similarly, we obtain

Ouy _ Ouy ¢ n Ouy On 1 0uy

dy OEdy  ondy oon

The dimensionless form of the equation of motion is

a »O aux " o
[ Y] 2o s

where

b=—a(Ty —Tp) (5.7-25)



208 MELTING

Finally the equation of energy using the definition of dy becomes

o[ 20, 8,00 500
e STy TS oy
50 282@ 50 n+1 46 8ux n+1
where
M = /14* (5.7-27)
N Cm(TO - Tm) '
and
BGn+1)/2 (n—1)/2 9%, _
pro Vo ey A= 1)/2 (5.7-28)

(TO _ Tm)(”+1)/zkr(r’ll+1)/2w(n—l)/2

In these equations, Br is a modified Brinkman number, which is a measure of the extent
to which viscous heating is important, and M measures the ratio of heat energy needed to
melt the polymer, as compared to that needed to heat the melt to 7. If the latter is small, M
will be large and the convection terms in the energy equation can be neglected. The
dimensionless parameter b measures the significance of the temperature dependence of the
viscosity over the temperature range considered (flow activation energy).

Achieving a complete solution of the set of equations above is difficult, as pointed out
earlier. In addition to the numerical solution (33), Pearson (35) proposed a heuristic approach.
Insight into the nature of melting with drag-forced removal can be obtained, however, by
considering some special cases that lead to analytical, closed-form solutions. These simplified
cases per se represent very useful solutions to the modeling of processing methods.

Newtonian Fluid with Temperature-Independent Viscosity
and Negligible Convection

For a Newtonian fluid close to isothermal conditions (i.e., n = 1 and b < 1), and with
convection neglected (i.e., M > 1), the equation of motion becomes
O%u,
on?

=0 (5.7-29)
which, for the boundary conditions stated in Eqs. 5.7-19 and 5.7-20 has the solution
uy=1-—ng (5.7-30)

The equation of energy, which for this case can be solved independently, reduces to

9’0 Auy\
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Substituting Eq. 5.7-30 into Eq. 5.7-31, followed by integration, yields the temperature
profile

B
@:1—n+7rr,(1—;1) (5.7-32)

The mean temperature © is obtained from Eq. 5.7-32 as follows:

1
_ ©dy 2 B
) _ Jo:©dn - m_<-, or (5.7-33)
fO Uy d"] 3 1

Now we can solve Eq. 5.7-21 for u, (1) by substituting from Eq. 5.7-32
(0©/0n),_,= —(1 + Br/2) to obtain

uy(1) = —% (1 + %) (5.7-34)

Finally, we turn to the equation of continuity and integrate it over #, after substituting
Ou,/On = —1 from Eq. 5.7-30 and noting that du,/9¢ = 0, to obtain

16

Combining Egs. 5.7-34 and 5.7-35 subsequent to integration yields the film profile 0(¢)

8 = So+/(4 + 2Br)¢ (5.7-36)

We have obtained the important result that, with convection neglected, the film
thickness is proportional to the square root of the distance. The rate of melting (per unit
width) is now given by

1
5
we(x) = p,,Vod J e diy = ‘% b (5.7-37)
0

By substituting Eq. 5.7-36 into 5.7-37 with & = 1 and 0y from Eq. 5.7-22, we obtain

B\ 1%  [Vop, k(To — T, Br\ 12
wy, = {Vg(sgpi(H?)} = {—Opm (ﬁ‘) )<1+7>W}

1/2 (5.7-38)

= Y™

{Vopm [kn(To — T) + uV3/2] W}
A

The physical meaning of the various terms now becomes evident. The numerator in the
square bracket in the last expression contains the sum of heat conduction and viscous
dissipation terms. The denominator is the heat energy needed to heat the solid from Ty to
melt at 7,,. The rate of melting also increases proportionally with the square root of the
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plate velocity and slab width. Yet an increase in plate velocity also increases the viscous
dissipation.

In this expression we have neglected convection in the film. Tadmor et al. (28) and
Tadmor and Klein (29) made an approximate accounting for convection by replacing A*
with an expression that includes the heat needed to bring the melt from 7,, to the mean
melt temperature

A= + Cs(Tm - TsO) + Cm(TO - Tm)é (57'39)

Furthermore, by carrying out the mental exercise of ‘“removing” the newly melted
material from the interface, “carrying” it to ¢ = 0, and allowing it to flow into the film at
that point, the film thickness will stay constant and the resulting effect will be a reduction
of wy, in Eq. 5.7-38 by a factor of v/2.

Power Law Model Fluid with Temperature Dependent Viscosity

Both shear thinning and temperature dependence of viscosity strongly affect the
melting rate. Their effect on the rate of melting can be estimated by considering a
case in which convection is neglected and viscous dissipation is low enough to permit
the assumption that the viscosity variation across the film is determined by a linear
temperature profile:

O=1-79 (5.7-40)

The equation of motion (Eq. 5.7-24) reduces to
O i (9N (5.7-41)
on an

Equation 5.7-41 can be solved for the local velocity profile u, (1)

eb/r] _ eh/
= 5.7-42
=10 ( )
where
b To — T,
p—bt__dlo-Tn) (5.7-43)
n n

Clearly, b’ is a dimensionless number that takes into account both the temperature and
shear rate viscosity dependence.
The equation of energy (Eq. 5.7-26), reduces in this case to

2 n—1 n+1
9944h<@> e“1@<—%:) =0 (5.7-44)

on? 0
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Substituting Eq. 5.7-42 into Eq. 5.7-44, followed by integration, yields

oo en8) () (el v

As in the Newtonian case, we solve Eq. 5.7-21 for u,(1), after obtaining (9©/9n), _,

from Eq. 5.7-45
50 n—1 b/ n+1 b/ -1 +e—b/
() (L) ()] e

(3

Finally, the equation of continuity (Eq. 5.7-23), with du,/0¢ = 0 and subsequent to
substituting du,/On from Eq. 5.7-42, results in

B ben Ou,
M= ||— —=0 5.7-47
"(5()) <1 - e”’) " ( )
which is integrated to give
9 1 o

Combining Eqs. 5.7-46 and 5.7-48 results in a differential equation for

5 n—1 b/ n+1 bl —1 + e—b'
2 0
&1t Br(3> <71 L eb,) <4b,2 )

dé
@0 _ : 5.7-49
d¢ e —1)+1 ( )

(1 —eé)

An approximate solution of Eq. 5.7-49 can be obtained if a mean ¢ value is assumed in
the term (do/ 5)"71. This is a weak dependence of the viscous dissipation term on 6. The
resulting melt film profile is

50 n—1 b/ n+1 b/_l_i_e,b’
o) () o))

U,

1/2
4

0 =00

(5.7-50)

where

/

1—b —e?

Uy=2—"——
2T (e - )

(5.7-51)
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By substituting the expressions of dy and Br from Eqgs. 5.7-22 and 5.7-28, respectively,
Eq. 5.7-50 can be written as

22kn(To — T, 12
5= { [ k’”(UOp V’”if Ul]x} (5.7-52)
2Pm Vo
where
2mgVEH (b " — 14
U, = (5)n_1 =" s (5.7-53)
The rate of melting (per unit width) is given by
1
Voo
wi(x) = p,, Voo Ju dy = "Tp’" Us (5.7-54)
0
And substituting ¢ from Eq. 5.7-52 into Eq. 5.7-54 gives
VoUslk (To — Tyn) + Uy /2]x\ '/
wi(x) = {Pm oUalkn 0/1* )+ 0/ ]x} (5.7-55)

Thus the physical significance of U, and U; becomes evident. The former reflects the
reduction (U, < 1) of the rate of melt removal of the film by drag flow as a result of
temperature dependence and shear thinning of the viscosity, whereas U; /2 is the rate of
viscous dissipation (per unit width) in the melt film. The relative significance of
conduction and dissipation for melting is obtained by comparing the two terms in the
square Brackets in Eq. 5.7-55.

If convection is to be accounted for by the same approximate method as described in the
previous Newtonian case, then A* in Eq. 5.7-55 is replaced by A**, which is given in
Eq. 5.7-39, and w, (x) given in Eq. 5.7-55 is reduced by a factor of /2. Finally, the mean
temperature of the film

|
Ju©®dn
= _ 0
O="—— (5.7-56)
Juedn
0

is obtained by substituting Eqgs. 5.7-40 and 5.7-42 into Eq. 5.7-56

bj2+e (1 +1/b)—1/b
b +et —1

0= (5.7-57)
This is an approximate expression because, for the sake of simplicity, a linear
temperature profile was used rather than Eq. 5.7-45. The preceding expressions were
applied to the solution of the melting problem in screw extruders (28,29). This is
discussed in Chapter 9.
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Fig. E5.6 Rate of melting of a 2 x 2-in block of HDPE on a hot rotating drum. (a) Drum
temperature at 154°C. (b) Drum temperature at 168°C. Rate of melting measured in volume of
displaced solid. [Reprinted by permission from D. H. Sundstrom and C. Young, “Melting Rates
of Crystalline Polymers under Shear Conditions,” Polym. Eng. Sci., 12, 59 (1972).]

Example 5.6 Drag-induced Melt Removal Melting The rate of melting of a 2 x 2in.
block of solid HDPE at room temperature of 25°C on a hot rotating drum was measured
by Sundstrom and Young (33). Their results appear in Fig. E5.6. (a) Analyze the effects
of drum speed and temperature in light of the previously derived theoretical models. (b) Cal-
culate the rate of melting at a drum speed of 1 in/s on a 168°C drum, using a Newtonian
model and compare it to the experimental value. (c) Repeat step (b) with a Power Law model
with a linear temperature profile in the melt film.

The rheological properties of the HDPE used in the experiments follow a Power Law
model (33)

n= 4.0334 x 1036—0.010872(T—127))~)70,547

where 7 is the non-Newtonian viscosity (N-s/m?), Tis the temperature (°C), and j is the shear
rate s~ '. The Power Law exponent is 7 = 0.453. The melting point (33) is 127°C. The heat of
fusion is 218 kJ/kg. The specific heat of the solid polymer is 2.3 klJ/kg -°C, and that of the melt
(28) is 2.512 kl/kg -°C. The thermal conductivity of HDPE melt is a function of temperature
(36)

k = 0.0573 +0.0010467T

where k is in W/m -°C and T'is the temperature (°C). Finally, the density of the solid polymer is
955 kg/m® and that of the melt (28) is 776 kg/m”>.

Solution

(a) The first step is to evaluate the relative significance of heat conduction and viscous
dissipation. This is provided by the Brinkman number in Eq. 5.7-28, which for a Newtonian
liquid, reduces to

%

Br=— 0
km(T() - Tm)
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An estimate of the melt viscosity can be obtained from the Power Law expression given
earlier, assuming a shear rate of 50s~ ' and taking a mean temperature of
(168 + 127)/2 = 147.5°C. (We will check later whether these assumptions are acceptable.)
This yields

1= (4.0334 x 103)6—0.010872(147.5—127)(50)70.547
=379.8N -s/m’

The tangential velocity of the drum selected is 1 in/s, or Vo = 0.0254m/s, and the thermal
conductivity at the mean temperature is 0.212 W/m°C. Thus

(379.8)(0.0254)*
Br = =0.0282
"= 0212)(168 — 127) 0%

Clearly, viscous dissipation is not significant in the experimental range given for the 168°C
drum temperature experiments. Neither is it significant for the lower drum temperature
experiments, which were conducted at lower drum speeds. It follows from the theoretical models
(Egs. 5.7-38 and 5.7-55) that the rate of melting in this case is proportional to the square root of
drum speed and the temperature difference (7y — T,)

wr X/ V()(T() — Tm)

It is easy to verify that the curves in Fig. E5.6 follow quite well the predicted increase
in rate of melting with drum speed. For example, the predicted rate of melting at 1.6 in/s
from the corresponding value at 0.2 in/s is 0.41/1.6/0.2 = 1.13 in’/s, which is very close
to the measured value. Similarly, selecting a fixed drum speed of 0.5 in/s, the measured
rate of melting at 154°C is 0.5 in'/s. The predicted value at 168°C is
0.5/(168 — 127)/(154 — 127) = 0.616 in’/s, which once again is very close to the measured
value.

(b) The rate of melting is evaluated from Eq. 5.7-38. First, however, the viscosity
calculation is reexamined. This is done by calculating the film thickness from
Egs. 5.7-22 and 5.7-36. The former gives dp with W = 0.0508 m and with A* calculated
from Eq. 5.7-15

2 =218 x 10* + 2.3 x 10%(127 — 25) = 452.6 x 10° J /kg

Thus

(0.212)(168 — 127)(0.0508)1"/2 .
S0 = =2225x 10
0= (4526 x 10%)(776)(0.0254) e

and the maximum film thickness at ¢ = 1 from Eq. 5.7-36 is

Smax = 2225 x 107*1/(4) + (2)(0.0282) = 4.481 x 10 m

The mean film thickness is 3.353 x 10~* m, and the mean shear rate is 0.0254/3.353 x
10~* =76 s~!. The mean temperature is obtained from Eq. 5.7-33

~ 2 0.0282
0= 3 + TR 0.669
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Hence, T = 0.669(168 — 127) + 127 = 154.4. Repeating the calculations with the viscosity

evaluated at 76 s~ " and 154°C temperature, and with thermal conductivity of 0.218 W/m -°C,

results in a viscosity of 281 N- s/m?, Br = 0.0203, 59 = 2.256 x 10~* m, a mean film

thickness of 3.495 x 10~* m, a mean shear rate of 73 s~ 1, and a mean temperature of 154°C.
Using these values, the rate of melting is calculated from Eq. 5.7-38

2 —4\2 2 12
wy = [(0.0254)° (2:256 x 107" (776)° (1 + 0.0203/2)|
=4.469 x 10 kg/m - s

The rate of melting for the whole block is (4.469 x 1073)(0.0508) = 2.27x 10~*kg/s,
which is equivalent to 0.0145 in*/s (note that the volume measured by Sundstrom and Young
(33) is the displaced solid). Comparing this result with the measured value of 0.009 in*/s
indicates that the Newtonian model overestimates the rate of melting by about 60%. In the
model used, the effect of convection in the film was neglected. By accounting for convection
as discussed earlier, the rate of melting is given by

o VOpm [km(TO - Tm) + ,qu/Z} w
YT 2 CulTo — T,)6]

(0.0154)(776) [(0.218)(168 — 127) + (281)(0.0254)* /2 (0.0508)
2[(452.6 x 10%) + (2.512 x 10%)(168 — 127)(0.669)]

=2.945 x 10 Kg/m - s

which results in a total rate of melting of 0.00956 in*/s. This is only 6% above the measured
value.

(¢) To calculate the rate of melting from Eq. 5.7-55 we first calculate »',U}, and U, as follows:

. (0.010872)(168 — 127)
=_ = -0.984
b 0453) 0.98

From Eq. 5.7.51, U, is obtained

(—0.984) — (1) + "%

V2= Q)5 0841 — 00wty

=0.839

which indicates that the reduction in drag removal due to temperature dependence of viscosity
is 16%. Finally, U, is obtained from Eq. 5.7-53 using the previously estimated mean film
thickness

o _ (2)(4.0334 103)(0.0254)"3 7 0.984 \'*3 ((—0.984) — 1 + 0%
- (3495 % ]0_4)70547 60’984 -1 (_0984)2
=0.1644J/s - m

Substituting these values into Eq. 5.7-55, with 1* replaced by /4 ** and a factor of 2 in the
denominator to account for convection, and with © from Eq. 5.7-57, gives

[(0.0254)(776)(0.839)[(0.218) (168 — 127) + (0.1644) /(2)]0.0508 />
L= { (2)[(452.6 x 103) + (2.512 x 103)(168 — 127)(0.695)] }

=2.6885 x 103 kg/m - s
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which is equivalent to a total rate of melting of 0.00872 in*/s, or only about 3% below the
measured value.

The close agreement between the predictions and the measured rates of melting is to some
degree fortuitous because all the thermophysical properties were selected from the literature
rather than measured on the particular grade of HDPE used in the experiments.
Thermophysical property data can vary for the same polymer over a relatively broad range.
In addition, no doubt, experimental errors were also involved in the measured data, and one
cannot expect perfect agreement. Nevertheless, it is reasonable to conclude that the
theoretical models discussed in this section predict correctly the change in melting rate with
changing experimental conditions, and that they provide reasonable estimates of the rate of
melting.

Incorporating both the effect of convection in the film and the temperature dependence of
the viscosity into the model improves the agreement between predictions and experimental
measurements. It should be noted, however, that experimental conditions were such that
viscous dissipation was insignificant and the temperature drop across the film was relatively
small. Consequently, non-Newtonian effects, and effects due to the temperature dependence
of viscosity, were less significant than were convection effects. This may not be the case in
many practical situations, in particular with polymers, whose viscosity is more temperature
sensitive than that of HDPE.

5.8 PRESSURE-INDUCED MELT REMOVAL

In the pressure-induced process, the melt is removed by the squeezing action of the solid
on the melt; hence, the force by which the solids are pushed against the hot surface
becomes the dominant rate-controlling variable. This melting process is less important in
polymer processing than the drag removal process. Nevertheless, as Stammers and Beek
(37) point out, in manufacturing certain synthetic fibers (e.g., polyester yarns) the polymer
is melted on a melting grid; the melting process on such a melting grid is that of pressure
removal of the melt. Stammers and Beek developed the following approximate theoretical
model for the melting process.

Consider a polymer bar of radius R pressed by force Fy against a hot metal bar at
constant temperature 7T}, of the same radius, as in Fig. 5.13. A film of melt is formed that is
being squeezed out by radial flow.

The following simplifying assumptions are made:

. The solid is rigid and moves with constant velocity toward the hot bar.

. The film between the polymer and the hot bar has a constant thickness, 6.
. Flow in the film is laminar.

. The fluid is Newtonian.

. Viscosity is temperature independent.

. Thermophysical properties are constant.

. Steady state.

. Gravitational forces are negligible.

O 00 N O U B W N =

. Convection and viscous dissipation on the film are negligible.

Some of these assumptions may be questionable, for example, the assumptions that the
solid is rigid and the film thickness constant. In reality, as the preceding section
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Fig. 5.13 Schematic representation of a solid polymer melting on a hot metal bar.

demonstrated, allowing the solid to deform and using an a priori unknown 6(r) would be
more plausible. Nevertheless the foregoing assumptions do allow the ‘“‘construction” of a
simple model for the process, providing insight into its nature. Moreover, the model did
show reasonably good agreement with experiments carried out with polyethylene and
polyoxymethylene.

With the rigid polymer assumption, the total rate of melting can immediately be
written as

wr = 1(—vy)p,R? (5.8-1)

where vy, < 0 is the velocity of the solid polymer. Our objective is to find a relationship
between the velocity vy, the operating conditions (the pushing force Fy, the hot plate, and
solid temperatures), and the polymer physical properties.

By pressing the bar against the plate, a radial velocity profile will be induced in the melt
film, thus removing the newly melted polymer from the location of melting, and draining
it. The mean radial velocity at any location r, v, can be expressed in terms of (the yet
unknown) velocity vy, by a simple mass balance

pyrt(—vyy) = 2mrdv,p,, (5.8-2)

where 9 is the local separation between the interface and plate. Thus from Eq. 5.8-2 the
mean radial velocity with § = p,/p,, is

b
Jv, dy (5.8-3)
0
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The radial component of the equation of motion reduces to

dj B d*v,
ar dy?

(5.8-4)

We have substituted ordinary differentials for the partial differentials in the equation of
motion because the left-hand side is only a function of r, whereas we assume the right-hand
side is only a function of y (lubrication approximation). Therefore, they simply equal a
constant. Equation 5.8-4 can now be integrated over y, with boundary conditions v,(0) = 0
and v,(J) = 0, to give

v =s———(y = d)y (5.8-5)

An expression for the pressure gradient dP/dr versus r can be obtained by substituting
Eq. 5.8-5 into Eq. 5.8-3

_ (ii:) _ 6"(‘5+)rﬁ (5.8-6)

Integration of Eq. 5.8-6 with the boundary condition P(R) = P, where Py can be the
atmospheric pressure, leads to the following pressure profile:

P(V)—POW(RZ’"Z) (5.8-7)

The total force Fy can be calculated from the pressure profile:

(5.8-8)

3um(—vy )R
Fy = JanP(r) dr = R*Py + (7!”( o) ﬂ)

26°

Equation 5.8-8 is, in effect, the relationship we are looking for, and by rearranging it we
get a relationship of the velocity vy, in terms of the external total force Fy and a number of
other variables

28° (Fy — nPoR?)
(—vy) = R (5.8-9)
We cannot, however, calculate the melting rate of this geometrical configuration from
Eq. 5.8-9 because we do not yet know the value of 6. This value is determined by the rate
of heat conducted into the solid—melt interface. If we make use of one more of the
simplifying assumptions just given, namely, that viscous dissipation is negligible, the
following simple heat balance can be made on the interface (see Eq. 5.7-14)

, (Tb . Tm) — p(—ve)li+ CT — T1)] (5.8-10)
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where 7 is the initial temperature of the solid. Substituting Eq. 5.8-9 into Eq. 5.8-10
results in the final expression, which is the process-design equation

/4 3/4
0.6787 [Fy — nPoR2\ " kn(Ty — Tp
(—vy) = ( ) o ) (5.8-11)

"R up A+ Cy(Tw — 1))

The melting capacity of this geometrical configuration can easily be calculated from
Eqgs. 5.8-11 and 5.8-1.

The results are very revealing and instructive. The rate of melting increases with the
total force Fy, but only to the one fourth power. The physical explanation for this is that
with increasing force, the film thickness is reduced, thus increasing the rate of melting.
However, the thinner the film, the larger the pressure drops that are needed to squeeze out
the melt. The dependence on the plate temperature is almost linear. The inverse
proportionality with R is perhaps the most important result from a design point of
view. If viscous dissipation were included, some of these results would have to be
modified.

Stammers and Beek (37) have performed a number of experiments to verify the
theoretical model just described, using polyethylene and polyoxymethylene. The linear
relationship between vy, /(Fy)'/* and [(T}, — T,,)*/*/u/*), as predicted by Eq. 5.8-11, was
clearly established, and the slope calculated from this equation agreed well with the
experimental data.

5.9 DEFORMATION MELTING

It is evident from the foregoing discussion that considerable effort has been invested in
elucidating the mechanism of conduction melting, and in particular that of conduction
melting with forced drag flow melt removal, the latter because it is the operative melting
mechanism in single-rotor processing equipment such as SSEs and injection-molding
machines. We will discuss in detail the utilization of this melting mechanism in the
modeling of single-rotor melting in Chapter 9, a task that proves to be rather
straightforward, due to the ordered segregation of the two polymer phases involved: the
flowing molten polymer, and the “passive,”gradually melting, compacted particulate
“bed.”

On the other hand, we discussed and presented in physical terms the very powerful
melting mechanisms resulting from repeated, large deformations, forced on compacted
particulate assemblies by twin co- or counterrotating devices. These mechanisms, which
we refer to in Section 5.1, are frictional energy dissipation (FED), plastic energy
dissipation (PED), and dissipative mix-melting (DMM).

At the time of the writing of the first edition of this text (38), we wrote the following
about mechanical energy dissipation in repeatedly deforming "active" compacted
particulates and the evolution of their melting:

...the dominant source of energy for melting (in twin rotor devices) is mechanical energy
introduced through the shafts of the rotors and converted into thermal energy by continuous
gross deformation of the particulate charge of polymer... by a number of mechanisms:
individual particle deformations [now known as PED (3)], inter-particle friction [now known as
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FED (3)] and viscous dissipation in the molten regions. As melting progresses the latter
mechanism becomes dominant. Mixing disperses the newly formed melt into the mass [creating
a solids-rich suspension]; the melt that comes in intimate contact with solid particles cools
down and at the same time heats up the surface layer of the particles; the particulate solid charge
is eventually converted into a richer, thermally inhomogeneous suspension and ultimately into a
homogeneous one. ... Nevertheless, the advantages of this melting method dictate that more
theoretical [and experimental] analysis be devoted to it in the near future.

Indeed, over the last decade, the area of melting of active compacted particulate
assemblies in twin-rotor equipment has received a good deal of experimental attention.
This body of experimental work utilizes both glass windows on sections of the barrel for
on-line observations (39-43) and, more often, extracted solidified ‘“‘carcasses” of the
processed stream, which are sectioned along the downstream direction in the melting
region (3,44-50). This body of work has confirmed the existence, and elucidated the
natures of PED, FED, and DMM and, most importantly, has confirmed the evolution of
melting in twin-rotor devices mentioned earlier. Such evolution, based on extensive
“carcass’ analyses for both polypropylene (PP) pellets and powder feeds in Co-TSEs, is
shown in Fig. 5.14 (3,51).

As seen in the figure, the successive downstream states of the PP pellets as they are
conveyed, consolidated, and melted, result from PED, VED, and DMM taking place
throughout the volume of the processed stream. The small size of the 30-mm-diameter

Melt-rich Solids-rich Melt-bound Very deformed ~ Slightly deformed Undeformed States of
suspension suspension solid particulates ~ solid particles solid particles solid particles the stream
Schematic
representation
, - - o - . ) Co-TSE
Fully filled region in Partially filled region in melting configuration Solids conveying
melting configuration configuration screw
configuration
PED . Meltin
VED PED Conduction g
VED FED mechanisms
(DMM) ( ) (pellets)
PED . Meltin,
VED PED Conduction g
VED FED mechanisms
(DMM) (powder)

Fig. 5.14  Schematic representation of the evolution of melting of polypropylene (PP) pellets in a
30-mm-diameter co-TSE. The figure represents rendition of the analyses of many experimental
carcasses. Shown are: the physical states of the pellets stream being melted; a schematic of the
carcass ‘“‘morphology”; the screw conveying/kneading element sequence; and the melting
mechanisms responsible for affecting melting of the pellets stream. Shown in the bottom row are
the melting mechanisms responsible for advancing melting of a polypropylene powder feed.
[Reprinted by permission from M. H. Kim, Ph.D Dissertation Department of Chemical
Engineering, Stevens Institute of Technology, Hoboken. NJ., (1999).]
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Fig. 5.15 Evidence of melting of fine particulates of PP powder melted in a 30-mm Co-TSE,
taking place in the partially filled kneading section. Such molten fines are capable of creating, as
glue points, particulate clusters. [Reprinted by permission from M. Esseghir, D. W. Yu, C. G.
Gogos, and D. B. Todd, SPE ANTEC Tech Papers, 43, 3684 (1997).]

split-barrel extruder with a maximum channel depth of 4 mm causes pellets to be
deformed, that is, undergo PED, even in partially filled sections upstream of the
consolidated particulates melting zone.

Carcasses of PP powder feed (not shown in Fig. 5.14) do show clear evidence of the
melting of single particulates by FED, becoming local “glue points™ and creating clusters
of powder particulates, as shown in Fig. 5.15. Further evidence of FED was provided by
Shih et al. (39) working with a glass end-plate Brabender Plasticorder melting powder
charges. Gogos et al. (51) investigated the melting behavior of three PP powder systems
using Shih’s experimental device. The three powder systems differed in concentration of
fine particulates. The fines-rich system exhibited very early and fast evidence of cluster
formation: the power generated by neighboring particulates moving at different speeds
(Av) while under a normal force Fy is

pw =fFnAv (5.9-1)

where f is the interparticle coefficient of friction. Small particulates wedged between
larger ones in the “nip”” compressing region between the rotors will melt first by FED,
because of their large surface-to-volume ratio.

We now turn our attention to PED. As mentioned earlier, individual pellets become
grossly deformed while in compacted assemblies, for example, in kneading sections of the
Co-TSE. These volumewise particulate deformations make the particulate assemblies
active participants in the process of melting through the mechanism of PED. Two
questions must be addressed: (a) how powerful a heat source term is PED? and (b) how can
the complex reality of compacted particulate assemblies undergoing large and repeated
deformations be described and simulated mathematically?

We know from our discussion of deforming particulate “‘beds’ in Chapter 4 that the
answer to the second question, that is, the quantification of PED in deforming assemblies,
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Fig. 5.16 Schematic representation of (a) a compacted pellet assembly undergoing kneading
(squeezing) deformations as the pair of kneading paddles co-rotates, reducing the available volume,
forcing them to move into connecting spaces of neighboring down- and upstream kneading element
pairs; (b) a single molded disk undergoing unconfined compressive deformation, used by Gogos
et. al. (3) to represent the “‘complex’’ physical reality shown in (a) and estimate the resulting actual
PED. [Reprinted by permission from M. H. Kim, Ph.D Dissertation, Department of Chemical
Engineering, Stevens Institute of Technology, Hoboken, NJ, (1999).]

is not available to date because of the complexity of the physical phenomena involved. For
this reason, Kim (52) and Gogos et al. (3) decided to probe and elucidate the physical
nature and magnitude of PED by measuring or estimating the adiabatic temperature rise in
single molded-polymer disks undergoing rapid, unconfined compressive deformations.
The complexity of deforming particulate assemblies by kneading Co-TSE elements are
shown side by side with the simplicity of the experiments conducted by Kim and Gogos in
Fig. 5.16 (52).

Typical results obtained during unconfined compressive deformation experiments using
direct thermocouple measurements—a difficult experimental task—are shown in Fig. 5.17.
A number of the results are important: the magnitude of the increases in the observed
specimen temperature is significant; temperature increases are negligible in the initial
elastic deformation region, as expected; and the magnitude of the measured
“adiabatic”’ temperature rise AT, increases with the strength of the polymer because of
the higher deformation stresses. Thus, for strong amorphous polymers below 7,, such as
PS, the observed AT, values are almost one order of magnitude larger than those obtained
with semicrystalline polymers at temperatures between T, and 7,. It was found
experimentally that the measured AT, values can be closely approximated by relating the
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Fig. 5.17 Unconfined compression stress—strain curves and experimentally measured temperature
increase AT, as a function of strain for PS (Dow 685), LDPE (Dow 640), and PP (LG H670). The
initial test specimen was at 26°C and the crosshead speed of the compressing bar with the load cell
was 25.4 mm/min. The specimen dimensions were: 101 mm diameter and 71 mm height. [Reprinted
by permission from M. H. Kim, Ph.D Thesis, Department of Chemical Engineering, Stevens
Institute of Technology, Hoboken, NJ (1999).]

“area” under the stress—strain curve with the adiabatic specific enthalpy increase during
compression

&

PED = Jads =pC, AT, (5.9-2)
&
or
[ode
AT, =" 5.9-3
. (593)

Note that, since the stress—strain curves are dependent on the applied strain rate and the
specimen temperature, both PED and AT, are functions of the strain, strain rate, and
temperature.

Kim (52) conducted a large number of compressive deformation experiments using
specimens at increasingly higher initial temperatures at the highest experimental strain
rate available to the universal testing machine used. With these data he constructed iso-
PED curves in the Hencky strain—initial specimen temperature space, shown in
Fig. 5.18(a). Excellent estimates of the PED generated on PS disks of any initial
temperature above room temperature undergoing deformation to any strain ¢ < 1.6 at25.4
cm/s can thus be obtained. Furthermore, using Eq. 5.9-2 the iso-PED results can be
transformed to the so AT, curves shown in Fig. 5.18(b). Using this figure, one can get a
good estimate of how much the initial temperature of a PS will increase after successive
&Hencky = 1 deformations, as indicated in Fig. 5.19.
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Fig. 5.18 (a) Iso-PED (J/m?) curves obtained from unconfined compressive deformation
experiments of Dow PS 685 cylindrical specimens compressed at 25.4 cm/min. Many experiments
were conducted for a number of initial specimen temperatures (7;) and with a number of applied
strains at each T;. (b) iso AT, (°C) for PS 685 derived from curves in part (a) employing the relation
AT|, ;. = PED/ pC,. [Reprinted by permission from M. H. Kim, Ph.D. Thesis, Department of
Chemical Engineering, Stevens Institute of Technology, Hoboken, NJ (1999).]
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Fig. 5.19 The effect of consecutive unconfined compressive deformations on the temperature
increase of a PS cylinder initially at 26°C. The first ¢ = 1 deformation increases for sample
temperature by 37°C; the second starting from 26 + 37 = 63 °C, increases it to 97°C, close to T,.
[Reprinted by permission from M.H. Kim, Ph.D. Thesis, Department of Chemical Engineering,
Stevens Institute of Technology, Hoboken, NJ (1999).]
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Fig. 5.20 The PED for PP is apparently smaller in magnitude than that for PS; it is also more
temperature dependent, decreasing with increasing initial temperature. Semicrystalline plastics are
weaker and their amorphous phase in the region 7' > T, becomes more mobile, rapidly lowering
the needed deformation stresses. [Reprinted by permission from M.H. Kim, Ph.D. Thesis,
Department of Chemical Engineering, Stevens Institute of Technology, Hoboken, NJ (1999).]

After the first ¢ = 1 deformation, the initial sample temperature (26°C) will increase by
37°Cto (26° 4+ 37°) = 63 °C. After the second deformation, the new sample temperature
will be 63° 4 34° =97°C. It is striking that only two successive compressive ¢ = 1
deformations are capable of raising the PS sample temperature very close to 7,. The
conclusion from such experimental findings, which we will discuss further in connection
with twin rotor devices in Chapter 10, is that PED is a very powerful melting mechanism
for PS.

Similar experiments were conducted to evaluate the magnitude of PED in semicrystal-
line polymers in the region Tyoom < T < T),. Iso-PED and iso-AT, curves for Dow LDPE
640 are shown in Fig. 5.20(a) and 5.20(b). These curves show dramatic differences when
compared to those for PS: not only the magnitude of the PED and, consequently, the AT,
values are smaller, for example, for PS at an initial temperature of 26°C after
e =1,AT, = 37°C, while for LDPE it is only 10°C, but the temperature sensitivity of
PED is much stronger for LDPE, so much so that at an initial temperature of 80°C for PS,
it is 27°C, while for LDPE, it is only 4°C.

The physical origin for this difference is indicated in Fig. 5.21: amorphous polymers
below T, exhibit a constant modulus, since they are single-phase, rigid-chain
structures, while semicrystalline, two-phase structures in the range T, < T < T,, become
weaker with increasing temperature, due to the increased mobility of the amorphous
chains.

The theoretical models that have been proposed to quantify and simulate the melting
phenomena taking place in “‘active’ compacted particulates are still rudimentary, not for
lack of effort and interest, but because of the physical complexities involved, as noted
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Fig. 5.21 Polymer feed temperatures are at or near Tiyom. For common amorphous plastics,
Troom < T, and for semicrystalline 7, < Tyoom < T. As disussed in the text, PED, through large
solid-state irreversible deformations, makes the solid an ““active participant” in the melting process,
rapidly creating a molten state. The modulus of amorphous polymer is higher and less temperature
dependent in the region 7' > Tyyom. Consequently, the magnitude of amorphous PED is larger and
less temperature dependent when compared to semicrystalline PED.

earlier. Vergnes et al. (53) concur with the foregoing analysis and suggest that “Gogos
et al. (3) showed the important roles of pellets plastic deformation and interparticle
friction, which modify (i.e., should be included in) the thermal energy balance.” These
phenomena, they continue, ‘“‘should probably be taken into account in heat generation for
melting. However, it remains difficult to quantify properly these terms, and the lack of
physical data makes it difficult to introduce them in a model.”

Potente and Melish (49), Vergnes et al. (53), Bawiskar and White (54), and Zhu et al.
(55) have proposed simulation models to describe melting in the Co-TSEs. These models
are all based on the assumption that melting occurs mainly by VED during the flow of
suspensions of solid polymer particulates in melts, with the evolution of melting involving
the decrease in the size of the particulates. In Chapter 10 we will review the model of
Vergnes et al., the PED-based model of Gogos et al. (56) and Kim and Gogos (57), and one
by Jung and White (58), The latter two consider the PED contributions to melting in full
Co-TSE kneading elements.
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PROBLEMS

5.1

5.2

Feeding a Metal Strip into a Hot Oven A thin metal strip of thickness ¢ and width
Wis fed at a constant speed V) into a hot furnace at temperature 7y, as shown in the
figure. Find the minimum distance L where the feeding roll can be placed, such that
the strip temperature should not exceed 7', while the room temperature is 7; and
T, > Ty. Assume that the strip temperature at x = 0 equals the furnace temperature,
and that heat transfer is uniaxial in the x direction (no heat losses).

R U 9
L]

Here Are the Answers. What Were the Questions? (a) Different operators got
different readings because they immersed the thermometer for different periods of
time. (b) After immersing the bulb for time r = MC,/hA, the dimensionless
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temperature 0 = (T — T)/(T; — T;) reached 1/e, and after twice that time 1/e?,
where Ty is the fluid temperature, T; the initial temperature, M is the mass of the
bulb, and 4 is the heat-transfer coefficient.

Solution of Heat Transfer Problems by Combination of Variables  Show that the
partial differential equation

or_ o

o Fox

is reduced to the ordinary differential equation E5.2-3 by defining a new variable
n = Cxt™, where C and m are constants. Note that we combine the variables in such a
way that T = f (), where 7 = F(x,1). Use the Chain Rule to obtain expressions for
OT/ot, OT /Ox, and 0°T /Ox?, then substitute for dn/dt, On/Ox, and &y /0x>.

Time-dependent Temperature Boundary Conditions (a) Consider the heat-
transfer problem involved inside a semi-infinite solid of constant properties with a
varying surface temperature:

T(0,1) =Ty + A cos(wr)

(b) Show that, with time, the relative amplitude of temperature A, = A(x)/A(0) is
given by A, = exp(—xy/7/xo) where xo = \/2n0/w. If the heat-transfer period
equals the fluctuation period 27/w, then x( is a good estimate of the penetration
thickness.

(c) Find the penetration thickness for a period of 100 s for LDPE, which has thermal
diffusivity of & = 7 x 1078 m?/s.

Rotational Molding Throne et al.* investigated heat-transfer problems in rota-
tional molding of polymeric powders. One of the simulation models for heat
transfer they have considered is depicted in the accompanying figure. The lower

4. See M. Anandha Rao and J. L. Throne, “‘Principles of Rotational Molding,” Polym. Eng. Sci., 12, 237 (1972).



PROBLEMS 231

(shaded) area represents a stagnant pool of polymer powder that undergoes
rigid-body rotation with the rotating mold. When it reaches point R, it releases
and falls back to C, where it is again heated by the hot mold wall. For each cycle,
the time of contact is the time it takes for the mold to rotate from C to R. During
the flowing stage, the powder is considered to be mixed thermally.

By following their work, using the Goodman method (6) and a temperature profile

T(x,1) :Ts(l —%f

where T, = T(0,1) = T, (1 —e P ) + T*, with T, the oven setpoint temperature,
P the experimentally determined characteristic time of heating of the mold, and T*
the initial offset temperature, show that the penetration thickness 6(¢) is given by

2+/60
Too(l — e Pr) + T+

o(t) = {r(. (T2 + 27T + T

272 2T T*}
00 s —pt —pty
+|—+—] (€ —e

TZ 1/2
_ﬁ (e—zlitz o e—zﬁz,)}

where t. = t, — t; is the time of contact, o = o at x = 0.

5.6 Dielectric Heating In dielectric heating, the rate of heat generated per unit
volume for a field strength % of frequency fis

G =13.3 x 107"f7 2k tan 6

where G is in cal/cm’s, k' is the dielectric constant, and J is the loss tangent. Derive
the one-dimensional temperature profile 7'(x) in a slab of width b and constant
thermophysical properties with dielectric heating of intensity G. The slab is initially
at a uniform temperature Ty and 7(b) = T(—b) = Ty.

Answer:

G 32b2 o
TTOﬂ{(b ) s Z

n=0

1 —o(2n 4 1)*n%?
(2n+1
><sin[M 1+% }}

4p?

5.7 Frictional Welding Two pieces of PMMA are to be welded frictionally. Estimate
the normal pressure that has to be applied in order to raise the interface temperature
from 25°C to 120°C in 1 s. The relative velocity between the sheets is 10 cm/s. The
thermal conductivity of PMMA is 4.8 x 10~* cal/cm - s, the thermal diffusivity is
9 x 10~* cm?/s, and the coefficient of friction is 0.5.
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5.8 Fluidized-bed Coating of an Article A rectangular metal article with dimensions
of 0.5 x 5.0 x 10.0 cm is to be coated with PVC powder to a uniform coat thickness
of 0.01 cm, using the fluidized-bed coating process. The fluidized-bed temperature
is 20°C and the initial metal temperature is 150°C. (a) Assuming no convective
losses to the fluidized bed, what would the metal temperature decrease need to be to
form the desired coat thickness? (b) Estimate the effect of convective heat losses on
the temperature decrease of the metal.

5.9 Parallel-Plate, Nonisothermal Newtonian Drag Flow with Constant Viscosity (a)
Show that the temperature profile in steady drag flow of an incompressible
Newtonian fluid between parallel plates at distance H apart, in relative motion Vj
and different constant temperatures, 77 and 75, assuming constant thermophysical
properties and temperature independent viscosity, is given by

_Tl
T, —T,

= &+ Bré(1-)¢
where ¢ = y/H and Br is the Brinkman number defined as

V2
Br = K
k(T, —Ty)

(b) Calculate the heat fluxes at the two plates.

5.10 Parallel-Plate, Nonisothermal Newtonian Drag Flow with Temperature-depen-
dent Viscosity (a) Review the approximate linear perturbation solution given in
Example 1.2-2 in R. B. Bird, R. C. Armstrong, and O. Hassager, Dynamics of
Polymeric Fluids, Vol. 1, Wiley, New York, 1977. (b) Review an exact analytical
solution in B. Martin, Int. J. Non-Newtonian Mech., 2, 285-301 (1967).

5.11 Formation of Thick Polymer Sheets Forming thick sheets of unplasticized
amorphous polymers (e.g., PVC) is difficult because of the frequency of void
formation during cooling. For this reason such products are sometimes made by
pressing together a number of thin extruded sheets between hot plates in hydraulic
presses. (a) Using Fig. 5.8 estimate the time required to fuse together twenty sheets
of PVC, each 0.05 cm thick, initially at 20°C, by pressing them between two hot
plates kept at a constant temperature of 150°C. Use the thermo-physical data in
Appendix A. (b) Discuss the problem of thermal degradation.

5.12 Cooling of Extruded PE Wire® Consider a copper conductor, 0.16 in in
diameter, coated by extrusion to a 0.62-in insulated wire (first transatlantic cable
core wire). The conductor is preheated to the extrusion temperature 412°F, and

5. R. D. Biggs and R. P. Guenther, Mod. Plast., 1963, 126 (May 1963).
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exits into a water trough maintained at 80°F at 42 ft/min. Assuming a flat
temperature distribution in the copper, since its conductivity is about 2000 times
that of PE, solve the heat transfer problem of cooling the insulated wire in terms of
a heat-transfer coefficient of 500 (Btu/ft>hr-°F) and the thermophysical properties
for PE shown in accompanying figure.

Adiabatic Compression Heating Melting of polymers by adiabatic compression
has been shown to be feasible for processes such as injection molding (2). Discuss
this method, in principle, in terms of an order-of-magnitude analysis of the terms
of the thermal energy balance for an amorphous (PS) and a semicrystalline
polymer (LDPE). Use the data in Appendix A.

Melting Efficiency with Melt Removal in Conductive Melting There are four
reasons for melt removal (from the heat-transfer region) in conductive melting.
The first is efficiency of melting; the second is avoidance of thermal degradation
by shortening the residence time of the melt in regions near high-temperature
surfaces; the third is the further generation of heat in the entire volume of the melt
by viscous dissipation of mechanical energy; and the fourth is that melt removal
induces laminar mixing and thermal homogenization. In this Problem, we wish to
compare the melting efficiency and polymer melt stability for the “melting” of
PVC with and without melt removal. A slab of PVC 8 x 8 x 2 cm at 20°C is to be
melted by a hot metal surface at 200°C. Melt removal is accomplished by moving
the hot surface at a speed of 1 cm/s. Use data in Fig. 5.3 and Appendix A. Assume
an average value for p,k, and C, below and above 7.

Sintering of PS “Pearls” Calculate the rate of coalescence of PS “pearls” made
from suspension polymerization, which are 0.2 cm in diameter. The temperature of
the sintering process is 180°C. Use the Power Law constants of the unmodified PS
in Appendix A. The surface tension of the melt can be taken to be 32.4 dyne/cm.°

6. H. Schonhorn, “Theory of Adhesive Joints,” in Adhesion and Bonding, N. M. Bikales, Ed., Wiley, New York,

1971.
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Flow and Heat Transfer in the Molten Film during Melt Removal Formulate
equations of the coupled heat transfer and flow problems involved during the melt
removal (by a simple shearing flow) in the conductive heating of a polymer sheet.
If x is the direction of the melt removal and y the direction of the main temperature
gradient, allow both v, and v, to be nonzero (because 6 = d(x)); also, allow for a
convective heat flux in the x direction. Assume that the polymer is crystalline, with
constant “average” values for p, k, and C,,.

Heat Transfer in Blow Molding Estimate the cooling time of a 15 cm long, 4 cm
in O.D., and 0.3 cm thick HDPE parison at 200°C, which is inflated onto a 10-cm-
diameter and 15-cm-long cylindrical bottle mold at 15°C by 5°C cold air. Solve the
heat-transfer problem involved. Use the p,k, and C, data given in Appendix A.
Assume that the inner surface of the bottle is at 15°C.

Heat Transfer in Underwater Pelletizing In underwater pelletizing, the melt
strands are extruded directly in a water bath and “chopped” by a rotating, high-
speed knife into short-length cylinders called pellets. Consider an LDPE extrudate
at 200°C, chopped into pellets of L =D = 0.4cm in a bath kept at 10°C. (a)
Formulate the complete heat-transfer problem. (b) Estimate the time required to
cool the center of the pellet to 70°C by assuming that pellet surface temperature
equals the temperature of the water.
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The polymeric melt generated by the melting step must be conveyed and pressurized or
pumped by the processing machine to force it through dies, or into molds, to assume useful
shapes. This is the subject matter of this chapter.

We shall analyze pressurization, starting with its basic principles. First, by analyzing
the various terms in the equation of motion, we deduce the possible mechanisms for
pumping and pressurizing a fluid. This exercise maps out the theoretical envelope of
pressurization mechanisms. Then, via a set of logical deductions, we uncover the simplest
and most fundamental geometrical elements of all pumps, which through a sequence of
systematic steps will lead us to a rich arsenal of machine configurations, among them, not
surprisingly, most common pumps. In fact, this latter step serves as a formal means to
synthesize or invent novel machine configurations. Finally, we examine in some detail the
mathematical modeling of the most important, common machine configurations, deriving
practical design equations.

Pumping or pressurization is perhaps the most characteristic polymer processing
step, because it shows how dominant an effect the very high viscosity of polymeric
melts has on processing machine configurations. High viscosity mandates very high
pressures to force the melt through restrictions at the desired processing rate.
Extrusion pressures up to 50 MN/m? (500 atm) and injection pressures up to 100 MN/m*
(1000 atm) are not uncommon in practice. We shall see that most machines have narrow
gap configurations, which not only enable the generation of high pressures, but also
provide for good temperature control of the melt and lead to relatively short residence
times. Furthermore, we shall also see that the common, practical processing machines have
not only relatively short residence times but also narrow residence time distributions,
enabling them to process temperature-sensitive polymeric materials.

Principles of Polymer Processing, Second Edition, by Zehev Tadmor and Costas G. Gogos.
Copyright © 2006 John Wiley & Sons, Inc.
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6.1 CLASSIFICATION OF PRESSURIZATION METHODS

The response of a fluid to external forces is governed by the equation of motion. Therefore,
by carefully analyzing the various terms of the equation of motion

Dv
Y vp_v. 1-1
5y T+ pg (6.1-1)

we can discover all the possible and fundamentally different pressurization mechanisms.

We first note that the equation of motion provides information only on pressure gradients
in the liquid, and provides no information regarding the absolute value of the pressure. The
latter is determined by external conditions imposed on the system. For example, the pressure
in a liquid contained in a cylinder equipped with a plunger is determined by the force exerted
by the plunger on the liquid, plus the hydrostatic head. We classify this pressurization
method as static pressurization, because the pressure can be maintained without flow and
without motion of the containing walls. The level of pressure that we can generate by this
method is independent of the rheological properties of the fluid. Furthermore, the flow that
results from this pressurization method, if we provide an exit for the liquid, is called positive-
displacement flow. We already encountered this type of flow in Chapter 4 in solids
conveying. The outstanding characteristic of this type of flow is an external surface moving
normal to its plane and thus displacing part of the fluid. This pressurization method is used
quite extensively in polymer processing, for example, in injection molding, compression
molding, counterrotating fully intermeshing twin screw extrusion, and gear pump extrusion.

An alternative means for generating pressure in a fluid is by inducing an internal
pressure gradient. To achieve this, a positive gradient in the direction of flow is needed for
generating pressure. The equation of motion indicates that a nonzero pressure gradient
can, in principle, be generated if any of the remaining three terms (pDv/Dt, V - 1, and pg)
has a nonzero value. The first term may acquire a nonzero value only if the fluid is in
motion and there is acceleration (or rather deceleration). The second term will acquire a
nonzero value only if the fluid is under deformation. Hence, these are defined as dynamic
pressurization mechanisms. The third term, which is the gravitational term, creates a
hydrostatic pressure gradient and is utilized, for example, in casting.

Since polymeric melts are characterized by having high viscosity, the dominant
pressurization mechanism stems from V - t (which is proportional to viscosity). Clearly,
the higher the viscosity, the larger this term becomes, and potentially larger pressure
gradients can be generated. Thus, the high viscosity of the polymeric melts becomes an
asset in this pressurization mechanism.

The purpose of pressurization is to generate pressure as pumps do (as opposed to lose
pressure, as in pipe flow). This can only be achieved by a moving external surface that
“drags” the melt, leading to drag-induced flows. Indeed, the outstanding characteristic
feature of viscous dynamic pressurization is a surface moving parallel to its plane. This,
unlike a surface moving normal to its plane, will not displace the liquid, but drag it along.
The high viscosity implies high momentum transport rates normal to the moving surface.
Single screw extruders (SSEs), co-rotating intermeshing twin screw extruders (TSEs),
calenders and roll mills, and co-rotating disk processors generate the pressure needed to
shape, form, and mix the material by this mechanism.

Viscous dynamic pressurization is not the only pressurization mechanism that stems from
the V - 1 term of the equation of motion. As discussed in Chapter 3, polymeric melts exhibit
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normal stress differences, and these stresses may also yield a nonzero value to this term.
Indeed, the normal stress extruder utilizes this mechanism of pressurization.

The pDv/Dt term in the equation of motion accounts for acceleration. In polymer
processing this is not a very important source of pressurization. Yet centrifugal casting
takes advantage of angular acceleration as a mechanism for generating pressure, and linear
deceleration to generate ‘““impact molding.”

Finally we note that, in principle, a reduction in density can generate pressure in a
closed system. Low-pressure structural molding and certain reaction injection molding
processes involving foaming during the molding operation generate sufficient pressure to
force the melt to fill the mold.

Although the equation of motion provides information on the possible sources of
pressurization, the actual multitude of realistic geometric configurations that can make
efficient use of these mechanisms is a matter of creative engineering design. In the next
section, we propose a methodology for synthesizing or inventing such geometrical
configurations in a rational and systematic way (1,2). This process will also help elucidate
the pressurization mechanism of the machines and the underlying reasons for their
particular shape.

6.2 SYNTHESIS OF PUMPING MACHINES FROM BASIC PRINCIPLES

Machine invention is clearly an act of synthesis, as is engineering design. In synthesis we
construct, assemble, and put together ideas, elements, concepts, or combinations of these
in order to create an artifact that hopefully does something useful. We combine elements
into a whole, into a new entity.

In contrast to invention and engineering design, in science we mostly analyze. We
decompose the whole into its constituent elements. We deconstruct. And, of course, this
process of deconstruction helps us discover the laws of nature. Similarly, when the tools
of analysis and the fundamentals of science are applied to technology, to an engineering
discipline, or an industrial process, they are also decomposed into their fundamental
building blocks and elements. These are then systematically arranged and generalized
in order to create a formal structure. Then by recombining the elements and building
blocks in novel ways into a new whole, inventions and innovations can be made. Thus,
through analysis, the fundamental building blocks and elements of processes and
machines can be uncovered, and after they are uncovered, they can be reassembled in a
rather formal way in a myriad of different ways to create new inventions and
innovations.

The historical origins of this approach, often referred to as the morphological approach,
go back to Frantz Reuleaux (3), who was seeking an ‘“‘elementary structure of the machine
simple enough to be general and exhaustive enough to provide designs for special
constructions,” and was later generalized by Simon (4), Hubka (5), and others. In this
section, we apply this methodology to polymer processing.

In the previous section, by exploring alternative mechanisms for pressurizing a liquid,
we arrived at two basic geometrical machine elements, namely, a plate moving normal to
its plane and a plate moving parallel to its plane. These are shown in Fig. 6.1.

Next we take these two elements and combine them with a second stationary or moving
plate to create the basic building blocks for machine design. A building block is the
simplest geometrical configuration that captures the most fundamental element of the
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Fig. 6.1 The two basic machine elements: a plane moving normal to its plane and a plane moving
parallel to its plane.

pressurization mechanism. For example, we already demonstrated in Example 2.5 that two
parallel plates in relative motion capture the mechanism of single screw extrusion
pumping, and therefore this is the building block of the SSE.

There are 14 distinguishable building blocks that can be constructed from the two
machine elements and a second plate placed parallel or at an angle to the machine
elements, as shown in Fig. 6.2. Not all of them have the same practical significance, not all
of them may lead to useful design solutions, but they are all clear, distinguishable machine
building blocks.

Next we construct machine configurations using the building blocks. In order to do this
we must first find a practical solution for creating a constantly moving “infinite” plate.
This can, of course, be accomplished by employing rotational motion. In the case of the
plate moving parallel to itself, Fig. 6.3 shows several possible alternatives for achieving
such motion: an infinite moving belt, the outside of a solid cylinder, the inside of hollow
cylinder, and the face of a disk. Many other geometrical shapes can create moving
surfaces, but they will not differ fundamentally from the ones in Fig. 6.3.

In the case of a plate moving normal to itself there are two options: (a) via simple
reciprocating action, as in reciprocating plunger pumps and injection and compression
molding machines, which can also take the form of rolling cylinders, as in intermeshing
counterrotating twin screws; and (b) by placing planes on a rotary element, as is the case
with gear pumps. These are shown schematically in Fig. 6.4.

Now we proceed with the formal invention process by pairing building blocks with the
foregoing design solution to the moving surfaces. A number of the examples that follow
will clarify the process.

—> —> —> —>
[
1 2 - 4

v v v v v

> —
. 6 7 - 9
v v v > V>
10 11 12 T; 14

Fig. 6.2 Fourteen different building blocks created from the two machine elements and stationary
plates. Note that motion of the second plane in the opposite direction will not create new building
blocks because only the relative motion between the planes matters.
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Fig. 6.3 Some design solutions for creating infinite surfaces moving parallel to their plane.

Example 6.1 The Synthesis of the Roll Pump Consider building block 1 in conjunction
with an infinite surface created by a rotating solid cylinder, as shown in Fig. E6.1a(a) and
Fig. E6.1a(b). The curvature of the cylinder does not change the concept and mechanism of
drag flow. Next, the stationary surface must be created. The simplest solution is to place the solid
cylinder inside a stationary barrel, as in Fig. E6.1a(c) and Fig. E6.1a(d), where in addition we
created entrance and exit ports through the barrel separated by a solid obstruction.

Thus, we have invented a new geometrical configuration for a viscous pump. We can now
easily construct a mathematical model and design such a pump for a desired pressure and flow
rates. The pressurization capability of such a pump, at a given frequency of rotation and
geometry, is proportional to the length of the flow channel. In our case, this will be one
circumference. We can relax this constraint by assembling several rolls in sequence, as shown
in Fig. E6.1b. This leads to an apparently infinite number of possible solutions, because in
principle we can add as many rolls as we wish. Of course, most of these will not be practical
solutions. Single roll extruders can be designed not only as pumps, but as complete processors

Fig. 6.4 Some possible design solutions for creating periodic continuous motion of a surface
normal to its plane.



(©) (d)
Fig. E6.1a The synthesis of a roll pump from building block 1. (a) The building block; (b) a
rotating solid cylinder forms the moving surface; (c) the inner surface of a hollow cylinder forms
the stationary surface. The two surfaces create a curved shallow pumping channel. Entrance and
exit ports are formed by openings in the outer cylinder, and they are separated by a “channel
block”; (d) side view of the roll pump.

99190
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Fig. E6.1b  Alternative design solution of a roll pump from building block 1. On the top we
see two two-roll pumps: one co-rotating and the other counterrotating. The latter is a toothless

gear pump; where the pumping mechanism is viscous drag rather than positive displacement.
In the middle we have three three-roll configurations, and at the bottom a four-roll pump.
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(1), and, in fact, such machines have been suggested and built (6,7). However, in practice they
have too many disadvantages as compared to the screw-type processors, and are rarely, if
ever, used.

Example 6.2 The Synthesis of the Inverse Single Screw Pump There is, however,
another, more elegant way to relax the channel-length constraint, as shown in Fig. E6.2. After
one circumference, a flow channel formed by the moving and stationary planes of a given
width can be twisted helically by an amount equal to the width of the channel to create a
much longer helical channel on the same roll or shaft. The channel itself can be simply
machined onto the inner surface of the stationary cylinder or barrel.

By mathematical modeling, it can be shown that the twisting of the channel does not alter
the mechanism of pressurization, but only slightly reduces the pumping efficiency. The
motion of the moving surface, which now is at a certain angle to the direction of flow, reduces
drag or pumping by a factor given by the cosine of this angle. But on the other hand, the
twisting of the channel into a helical one brings about important gains. A cross-channel drag
flow is induced, leading to better mixing and reduced residence time distribution. It
enables the drag-removal melting mechanism to take place, and it also enables the
operation of a partially filled channel for venting, devolatilization, and smooth

Fig. E6.2 The synthesis of an inverse screw extruder from building block 1. (a) The
building block; (b) a rotating solid cylinder forms the moving surface; (c) the inner surface of
a hollow cylinder forms the stationary surface. The result is a single roll processor without
the channel block; (d) the shallow channel is wrapped around the rotating shaft. The
maximum length of the channel is set by the circumference of the shaft; (e) a twisted channel
relaxes the length constraint; (f) cross section of an inverse screw processor.
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conveying of particulate solids. Finally, from a mechanical design point of view, the
helical geometrical configuration makes it easy to feed the machine through an opening
in the stationary barrel and discharge it by terminating the shaft, as shown in Fig. E6.2.
The resulting machine is, in fact, an inverse screw extruder, where the screw channel is
machined into the inside of the barrel and a smooth shaft rotates in it."

Example 6.3 The Synthesis of the Hollow Cylinder Pump We take building block 1
and use the inner surface of a hollow cylinder as the moving surface. The procedure follows
the same conceptual lines of design as outlined in the previous examples and it is clearly
demonstrated in Fig. E6.3a. A small variation is to have the entrance and exit ports at different
ends of the shaft, as shown in Fig. E.6.3b.

Example 6.4 The Synthesis of the Single Screw Extruder The SSE is the most com-
mon, important, and extensively used processing machine. It was invented and patented by
Mathew Gray in 1879, although it is generally attributed to Archimedes (it is still called
the “Archimedes screw’’) and the ancient Egyptians supposedly had the device long before
that (8). Continuing in this distinguished tradition, this important machine configuration can

(a) (b)

(©

Fig. E6.3a The synthesis of a hollow cylinder pump. (2) The building block; (b) a rotating
hollow cylinder forms the moving plane; (c) the stationary plane is formed by the outer surface of
a solid stationary shaft. A channel block separates inlet and outlet. Feeding and discharge are
carried out through slits in the shaft leading to axial holes drilled in the shaft; (d) the two surfaces
that form a shallow curved channel are bounded by a sidewall or “flight” running along the
circumference of the shaft.

1. Using this concept, a helical barrel rheometer (HBR) was developed. It is a single screw pump with a straight
shaft and a helically wound channel mashined into the barrel, with the clearance being the difference between the
barrel and shaft diameters. At closed discharge the pressure drop across one flight can be directly related to the melt
viscosity, given the geometry and frequence of rotation. With this design the pressure trace is steady with time and
not a saw-tooth as in an SSE screw pump, eliminating the need for pressure transducer time responce analysis. It is
pressure generating and can thus be used as an online rheometer, since it can pump the sample stream back to the
processing equipment. Additionally, since it can pressurize the melt during viscosity measurements, it is capable of
measuring the effect of foaming agent diluents on the melt viscosity. [D. B. Todd, C. G. Gogos, and D. N.
Charalambopoulos, U.S. Patent 5,708,197 (1998); D. B. Todd, C. G. Gogos, M. Esseghir, and D. W. Yu,
“Monitoring Process Viscosities with a New On-line Rheometer,” Plastics Eng., 53, 107 (1997); S. K. Dey, D. B.
Todd, and C. Wan, ““Viscosity of Blowing Agent-laden Polymers,” SPE ANTEC Tech. Papers, 50, 3122 (2004).]
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Fig. E6.3b Side view of a hollow cylinder pump with feed port at one end of the shaft and
discharge at the other end.

easily be “invented” in a systematic way by pairing building block 1 with the inner surface of
a rotating hollow cylinder, as shown in Fig. E6.4.

As in the inverse screw pump, we relax the channel length constraint to one
circumference by twisting it and making it helical [Fig. E6.4(d)]. We create the helical
channel by machining it onto a solid shaft, resulting in a screw. We now have a single

Fig. E6.4 The synthesis of the SSE for building block 1. (a) The building block; (b) a rotary
hollow cylinder forms the moving plane; (c) the shallow channel of certain width spread over
one circumference of the cylinder; (d) a twisted helical channel relaxes the length constraint;
(e) the channel machined onto a solid shaft, the rotation of the cylinder interchanged with that
of the shaft, and feeding and discharge ports fixed on the cylinder or barrel, resulting in an SSE.
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screw placed inside a rotating hollow barrel. Next, we set the rotation of the barrel and that
of the screw in opposite directions,? and then by creating an entry port in the barrel
and terminating the screw for discharge, we obtain the SSE configuration, as shown in
Fig. E6.4(e).

Example 6.5 The Synthesis of the Disk Processor In this example, we once again take
building block 1 and pair it with the flat face of a rotating disk to obtain a disk processor, as
shown in Fig. E6.5a. As was the case in the roll pump, the inlet and outlet ports are cut into the
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Fig. E6.5a The synthesis of a disk pump from building block 1. (a) The building block; (b)
a rotating disk forms the moving plane; (c) front view of the pump in a closure with inlet and
outlet ports separated by a channel block; (d) side view of the pump having two pumping
chambers on either side of the rotating disk; (e) multichamber—multistage setup with material
moving from stage to stage via ‘‘transfer channels” (not shown) machined in the
closure connecting discharge port of the downstream chamber with the inlet port of the
upstream one; (f) parallel-in series combination of chambers.

2. If centrifugal forces play no role in the mechanisms taking place in the machine, as is the case for viscous polymeric
materials at common screw speeds, then from a fluid mechanics point of view, it makes no difference whatsoever if the
barrel rotates or if the screw rotates in the opposite direction. A fluid particle in the screw channel is oblivious to what
moves. It only senses the relative motion generating the shearing forces. However, it is far more convenient to place the
coordinate system on the screw, because then the boundary conditions become far simpler, with stationary channel walls
and a single surface (that of the barrel), moving relative to them. Moreover, we are interested in the motion of the melt
relative to the stationary screw channel due to drag exerted by the barrel surface, and not relative to a stationary barrel on
which rigid rotation is superimposed. Just consider a slippery barrel surface, which leaves the melt rotating in unison with
the screw with zero output. Clearly, for a fluid particle, the screw will appear stationary. Therefore, in analyzing SSEs
theoretically, we assume that the screw is stationary and that the barrel rotates in the opposite direction.
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Fig. E6.5b The synthesis of a flat spiral pump from building block 1. (a) A section of
the curved channel formed by a stationary plane and the rotating disk plane; (b) the extension
of the channel into a flat spiral; (c) outside view of the flat spiral pump, with the spiral
channel machined into the surface of one disk and another closely spaced rotating disk
covering it.

barrel and separated by a ““channel block.” Clearly, both surfaces of the disk can be utilized as
shown in Fig. E6.5a(d). Moreover, like the roll pump, we can relax the length restriction by
using a multichamber—multistage arrangement as in Fig. E6.5a(e), or by creating a spiral
channel on the surface of the flat disk, as shown in Fig. E6.5b.

Example 6.6 The Synthesis of the Rotating Cup Pump We now take building block 2
and pair it with both a rotating solid cylinder and a hollow cylinder to create two moving
planes, as shown in Fig. E6.6a. The separation between the axial inlet and outlet ports
machined into the cover plate [Fig. E6.6a] is a bit cumbersome and has to be created by
an axial channel block attached to the cover plate and extending into the cup. Apparently,
no such machine actually exists and it may not be too useful, but the point is that this
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Fig. E6.6a The synthesis of the rotating cup pump from building block 2. (a) The
building block; (b) a rotating solid cylinder and a rotating hollow cylinder for the moving
planes; (c) the rotating elements are separated by a channel block with feeding and discharge
ports shown on either side; (d) side view of the processor where the rotating elements are
combined into a rotating cup and a stationary cover plate closure holds the channel block.
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(@ (b)

Frame placed in annular Increase channel length The rotaing
space between rotating by making it helical spiral extruder
cylinders

Fig. E6.6b The synthesis of the free rotating flight pump from building block 2. (a) an
annular channel is created between the rotating shaft and hollow cylinder; (b) the channel is
twisted and extended into a helical spiraling channel; (c) the channel is formed by a spiral
that rotates between a stationary shaft and stationary barrel, with a feed port and exit port
machined into the barrel.

novel configuration, which would surely work, emerged systematically from our “inven-
tion” procedure.

As in the previous examples, we can relax the channel length limitation either by adding a
second stage using an axially rotating cup pump or alternatively, by creating a spiral channel
between a rotating shaft and hollow cylinder, as shown in Fig. E6.6b. This leads to a rotating
spiral pump which, when optimized, generates eightfold more pressure at the same frequency of
rotation (for a Newtonian fluid) as the single screw pump. Building such a pump for viscous
liquids and high pressure is mechanically rather challenging, but it is a common configuration
for short solids feeders.

Example 6.7 The Synthesis of the Co-rotating Disk Processor The last example in
synthesizing new machine configurations from building blocks is the co-rotating disk proces-
sor. Here we pair building block 2 with the moving planes of two rotating disks, as shown in
Fig. E6.7. The disks are attached to a rotating shaft enclosed within a stationary barrel with
inlet and outlet ports, separated by a channel block. The space thus created forms a processing
chamber.

Processing chambers can be connected in parallel or in series. In the latter case, material
can be conveniently transferred from one chamber to the next via transfer channels machined
into the barrel. Heating and cooling of the disks can be accomplished by temperature-
controlled liquids fed through rotary joints into the shaft and the disks. Theoretical analysis
shows that this geometrical configuration is most effective not only for pumping but for all the
other elementary steps as well. This configuration was invented by one of the authors (9) and
the concept was commercialized by the Farrel Company in Ansonia, CT (10-16), which
manufactured and sold a whole series of such machines, trademarked Diskpack (See
Section 9.4).

The preceding examples have shown the potential of the methodology using only two
building blocks. Some additional examples are given in the problems listed in Section 6.5
and at the end of this chapter. The others are left as a challenge to the readers. Uncovering
a novel design solution hidden among the multitude of alternatives offers a worthy
experience in what can be termed ‘“‘the joy of design.”
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Fig. E6.7 The synthesis of the co-rotating-disk pump. (a) The building block; (b) two co-

rotating disks form the moving planes; (c) front view of the processor showing the inlet and
outlet ports separated by the channel block; (d) side view of the pump.

6.3 THE SINGLE SCREW EXTRUDER PUMP

In this section we derive a simple mathematical model for the single screw pump. In such a
model, we seek relationships between performance and operating variables with the
geometrical variables as parameters.

The single screw configuration has held its ground for over 125 years as the simplest
and most useful geometrical configuration for processing plastics. In fact, the bulk of
plastics are processed using an SSE, shown schematically in Fig. 6.5, at least once in their
journey from raw material to finished product. A detailed treatment of single screw
extrusion is given by Tadmor and Klein (17).

Melt feed

I v Stationary cylinder (barrel) I

4

Rotating j 5

SCrew

Fig. 6.5 Schematic view of an SSE. Its main components are a rotating screw within a stationary
barrel. Polymer is fed through an inlet port and leaves the machine through a closure equipped with
a die at the discharge end. Not shown in the figure are the electric motor drive and gear reducer for
adjusting the rotational speed.
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Fig. 6.6 A single-flighted square-pitched screw.

Not only is the single screw a very efficient pump but, as we saw in Chapter 4, it also
conveys particulate solids well, and by virtue of its geometry it triggers and maintains
the elegant drag-removal melting mechanism (see Section 5.7). It operates smoothly and
conveniently with partially filled screws for venting (see Problem 6.9) and having a
narrow residence time distribution, it enables processing of temperature-sensitive
materials. It is a good extensive distributive mixer, though of course being close to plug
flow, it lacks back mixing,3 and contrary to common wisdom, it can also be designed for
dispersive mixing (2).

The single screw as shown in Figs. 6.6 and 6.7 is a relatively simple geometrical
configuration that is easy to manufacture, and therefore relatively inexpensive. Thus
multiple screws can be retained with a single machine for different applications.

Geometry

Single screw extruders range in size from as small as 2 cm to as large as 75 cm in diameter,
with axial length L to diameter D (taken at the tip of flight) ratios of 24 to 26, although
occasionally we find extruders with L/ D ratios as high as 40 or as low as 8. The latter are
generally either rubber extruders or early” thermoplastic extruders. Between the tip of the

< Ly 5‘

Fig. 6.7 Geometry of a square-pitched single-flighted screw.

3. Albert Aly Kaufman, one of the pioneers of extrusion, who established the celebrated Prodex Extruder
Manufacturing Company, used to say ‘“What goes in comes out. Don’t expect the screw to even-out non-uniform
feeding of additives. It can’t.”

4. The extruders used for rubber do not require the length of those used for plastics, because they do not need as
long a melting section as plastics do. When the plastics industry adopted the rubber machinery, it imitated the
rubber extruder design, but as demands for output and quality mounted, the length-to-diameter ratio of the
extruder grew over time, until it leveled off at current values.
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flight of the screw and the inner surface of the barrel Dy, there is a small radial clearance 5f
of the order of 0.1-0.3% of D,. Polymer melt fills this gap and acts as a lubricant,
preventing metal-to-metal contact. The diameter of the screw at the tip of the flights is
Dy = Dy, — 26;. The axial distance of one full turn of the flight is called the lead L;.

Most screws of SSEs are single flighted, with Ly = Dy, referred to as square-pitched
screws. The radial distance between the root of the screw and the barrel surface is the
channel depth, H. The main design variable of screws is the channel depth profile that is
H(z), where z is the helical, down-channel direction, namely, the direction of net flow of
the material. The angle formed between the flight and the plane normal to the axis is called
the helix angle, 0, which, as is evident from Fig. 6.8, is related to lead and diameter

Ly
tanf = — (6.3-1)
nD

The value of the helix angle is therefore a function of the diameter. At the tip of the flight it
is smaller than at the root of the screw. A square-pitched screw, neglecting the flight
clearance, has a helix angle of 17.65° (tan 8 = 1/x) at the 