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PREFACE TO THE THIRD EDITION

THE preparation of the Third Edition of this book has presented
problems which were not encountered either with the First or with
the Second Edition. The expansion of the subject during the last 16
years has involved a problem in the selection and arrangement of
material to which there is no completely satisfactory solution. As a
guiding principle I have assumed that the primary objective should
be to provide a logical and reasonably detailed presentation of the
main developments in the field of the equilibrium elastic properties
of rubber (including the photoelastic and swelling properties),
together with the associated theoretical background. In conse-
quence it has been necessary to eliminate the last two chapters of
the Second Edition, dealing respectively with stress-relaxation and
flow and dynamic properties. The two chapters relating to crystalli-
zation have also been removed, though some references to this
subject have been included in an enlarged Chapter 1. Despite its
great inherent interest, particularly in relation to the historical
development of the physics of rubber elasticity, the subject of
crystallization in rubber is now seen to be incidental rather than
fundamental to the main theme of this book, and its proper
treatment would require an extensive discussion of crystallization in
polymers other than rubber. A number of authoritative treatments
of this wider subject are already in existence.

The main advances in more recent years have been in the
thermodynamic analysis of rubber elasticity and in the essentially
separate development of the phenomenological (i.e. non-
molecular) approach to the subject. To take account of the former it
has regrettably been necessary to divide the treatment of the
thermodynamics into two parts, the first (elementary) being con-
tained in Chapter 2, and the second (advanced) in the final chapter.
The previous Chapter 8 (on phenomenological theory) has been
expanded into three separate chapters (Chapters 10,11, and 12), of
which Chapter 11 contains essentially new material.

Inevitably these changes will to some extent reduce the attrac-
tivenese of the book for the student who wishes to acquire a broad
knowledge of the whole range of physical phenomena associated
with rubber. It can only be hoped that this loss will be more than
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offset by the greater value of the book as a critical review of the
subject of rubber elasticity in the more restricted sense, in which
field no comparable work is readily available.

L.R.G.T.
Department of Polymer and Fibre Science,

University of Manchester Institute of Science and Technology



PREFACE TO THE FIRST EDITION

IT 1s sometimes considered unnecessary for those engaged in the
practical development of industrial processes to concern themselves
with the so-called theoretical aspects of their subject. On examina-
tion, it is usually found that exponents of this point of view are not
entirely consistent, for in any type of work involving experimenta-
tion it is impossible to get along without some sort of theory,
however limited or ad hoc it may be. My excuse for doing the work
which I do (of which this book is one aspect) is that I always believe
that if one is going to have a theory at all one may as well take some
trouble to find the one which most nearly represents the known
facts.

In the subject of rubber elasticity it is not easy to discover from
the mass of literature, often of a rather mathematical character,
what are the generally accepted theories. In this book I have
therefore attempted to convey (in not too mathematical language)
the fundamental concepts of the subject, and to present the whole in
a more or less consistent form. In this task I have admittedly given
expression to my own point of view, and I have drawn freely on the
work of my associates at the British Rubber Producers’ Research
Association. I cannot hope to acknowledge the many who have
helped me by the discussion of particular sections, but I should like
to mention particularly Dr. G. Gee, Director of the B.R.P.R.A.,
who read and criticized the manuscript in detail, my colleague Mr.
R. S. Rivlin, who gave me the benefit of his unpublished ideas and
works, and Dr. K. Weissenberg, with whom I was able to discuss the
final chapter.

I should also like to thank the Board of the B.R.P.R.A. for
encouraging me to undertake this work, and fer the provision of

facilities for its execution.
L.R.G.T.

British Rubber Producers’ Research Association,
Welwyn Garden City
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1

GENERAL PHYSICAL PROPERTIES
OF RUBBERS

1.1. What is a rubber?

THE original material of commerce known as rubber (or more
precisely ‘india-rubber’) is obtained in the form of latex from the
tree Hevea Braziliensis. The more expressive term ‘caoutchouc’,
derived from the Maya Indian words meaning ‘weeping wood’, in
reference to the exudation of the latex from a wound in the bark (Le
Bras 1965), has been retained by the French, and transliterated into
other European languages. The word rubber is derived from the
ability of this material to remove marks from paper, to which
attention was drawn by the chemist Priestley in 1770 (Memmler
1934, p. 3). In current usage the term rubber is not restricted to the
original natural rubber, but is applied indiscriminately to any
material having mechanical properties substantially similar to those
of natural rubber, regardless of its chemical constitution. The more
modern term elastomer is sometimes employed in relation to syn-
thetic materials having rubber-like properties, particularly when
these are treated as a sub-class of a wider chemical group. However,
in the present work the more popular usage will be followed. It will
generally be obvious from the context whether the word rubber is
used in the general or in the more restricted sense; in cases where
confusion might arise it will be sufficient to refer to natural or Hevea
rubber.

The reasons for this choice are not entirely verbal. It is at least
equally justifiable from the scientific standpoint to define a rubber
in terms of its physical properties as in terms of its chemical
constitution. Indeed, in the present work, we shall be concerned
very much more with those fundamental structural aspects in which
all rubbers may be considered to be essentially the same than with
the more detailed specific features in which they differ from one
another. The emphasis will be placed mainly on rubber-like elas-
ticity as a phenomenon associated with the rubber-like state of
matter.
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The most obvious and also the most important physical charac-
teristic of the rubber-like state is of course the high degree of
deformability exhibited under the action of comparatively small
stresses. A typical force-extension curve for natural rubber is
shown in Fig. 1.1; the maximum extensibility normally falls within

4__

l

Tensile force (N mm %)

0 L | 1 : |
0 200 400 600

Extension (per cent)

F1G. 1.1. Typical force-extension curve for vulcanized rubber.

the range 500-1000 per cent. The curve is markedly non-linear (i.e.
Hooke’s law does not apply), hence it is not possible to assign a
definite value to Young’s modulus except in the region of small
strains. In this region its value (represented by the tangent to the
curve at the origin) is of the order of 1:0Nmm™. These
properties—high extensibility and low modulus—are to be con-
trasted with the properties of a typical hard solid (e.g. steel), for
which the value of Young’s modulus is 2:0x 10° N mm™ and the
corresponding maximum elastic (i.e. reversible) extensibility about
1-0 per cent or less. There is thus an enormous difference between
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rubbers on the one hand and ordinary hard solids (crystals, glasses,
metals, etc.) on the other.

Thermoelastic effects

In addition to these familiar mechanical properties rubber also
possesses a number of other less well-known properties, namely,
the thermal or thermoelastic properties, which are of even greater
scientific significance. The study of these properties dates from the
beginning of the last century, when Gough (1805) made the follow-
ing two observations, i.e.

(1) that rubber held in the stretched state, under a constant load,

contracts (reversibly) on heating; and

(2) that rubber gives out heat (reversibly) when stretched.

Gough’s conclusions were confirmed some 50 years later by Joule
(1859), who worked with the more perfectly reversible vulcanized
rubber which had become available since the time when Gough’s
original experiments were carried out. The two effects referred to
-are usually known as the Gough-Joule effects. An example of the
second, taken from Joule’s publications, is reproduced in Fig. 2.10
(p. 38); this shows the rise of temperature due to the evolution of
heat on stretching up to an extension of 100 per cent.

These thermoelastic effects are not peculiar to natural rubber, but
are characteristic of the rubber-like state, being observed in a wide
variety of synthetic rubbery polymers.

1.2. Chemical constitution of rubbers

Natural rubber is essentially a hydrocarbon, whose constitution
was established by Faraday (1826) to be consistent with the formula
(CsHg)... The rubber exists in the latex in the form of small globules,
having diameters in the range 0-1-1-0 um, suspended in a watery
liquid or serum, the concentration of the rubber being about 35 per
cent. The rubber particles would coalesce, of course, were it not for
a layer or sheath of non-rubber constituents, principally proteins,
which is adsorbed on their surfaces and functions as a protective
colloid. From this latex the solid rubber may be obtained either by
drying off the water or by precipitation with acid. The latter
treatment yields the purer rubber, since it leaves most of the
non-rubber constituents in the serum.

Chemically, the rubber hydrocarbon is a polymer of isoprene
(CsHg) built up in the form of a continuous chain having the
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B
C C C (b)

F1G. 1.2. The structure of the molecule of {a) Hevea rubber and (b) gutta-percha.
A-B =isoprene unit. C=methyl group.

structure shown in Fig. 1.2. The succession of isoprene units in the
chain is perfectly regular, with every fourth carbon atom in the
chain carrying the methyl (CH,) side-group. The presence of the
double bond is very significant, since it is this that largely determines
the chemical reactivity of the molecule and its ability to react with
sulphur or other reagents in the vulcanization process. The double
bond is also responsible for the susceptibility of the rubber molecule
to oxidation or other degradative reactions leading to a deteriora-
tion of physical properties (aging).

The structure of gutta-percha, the other natural polymer of
isoprene, differs slightly but significantly from that of rubber. As
will be seen from Fig. 1.2, the difference lies solely in the arrange-
ment of the single C—C bonds with respect to the double bonds in
the chain backbone. In rubber the single bonds lie on the same side
of the double bond, forming the so-called cis-configuration, whilst
in gutta-percha they lie on opposite sides of the double bond, giving
the trans-configuration. One consequence of this difference is that
gutta-percha crystallizes more readily than rubber; it is in fact
crystalline at room temperature, becoming rubber-like only when
heated above the crystal melting point, namely, 65 °C.

Although the two single bonds adjacent to the double bond
remain permanently fixed in a single plane (whether in the cis- or
trans-configuration), the remaining single bonds are not thus fixed
but are subject to rotation out of the plane formed by neighbouring
bonds, as will be discussed in detail later. The structural forms



TaBLE 1.1
Structural formulae of some typical rubbers and related materials

—CH,—C=CH—CH,— Polyisoprene (natural rubber, gutta-percha)
&,

~—CH,—CH=CH—CH,— Polybutadiene

—CH,—C=CH —CH,— Polychloroprene (Neoprene)
&

—CH,—CH— Polyvinyl chloride
&

—CH,—CH— Polystyrene
CH,

—CH,—C— Polyisobutylene (basis of ‘butyl’ rubber)
du,

|
|
—CH,—CH=CH— CH2+ CH,—CH-— +tButadiene-styrene (BSR) rubber

|
1

—CH,—~CH=CH—CH z+ CH;— (ITH— tButadiene-acrylonitrile (‘nitrile’) rubber
|

' CN
P
——O—Sli—— Polydimethy! siloxane (silicone rubber)
CH;,
—CH,— Polyethylene (polythene)
—CH,— (I: H— Polypropylene
CH,
T
—CHZ—(II—— Polymethyl methacrylate (Perspex)
COOCH,

t In these copolymers the respective monomer units occur in a random sequence
along the chain.
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depicted in Fig. 1.2 are thus to a certain extent schematic; in
practice the molecule does not have the linear planar conformation
which these diagrams suggest.

Synthetic rubbers

Examples of some of the more important synthetic rubbers are
given in Table 1.1. The most widely used synthetic general-purpose
rubber is a butadiene-styrene copolymer (SBR), developed on a
large scale in U.S.A. during World War II to make good the loss to
the enemy of the major rubber-growing areas of the world (Malaya
and the Dutch East Indies). Butyl rubber, based on
polyisobutylene, which has a very low gas permeability, has impor-
tant applications for inner tubes, etc. Polychloroprene (Neoprene)
has superior resistance to degradation, compared with natural
rubber, with the further advantages of lower oil-absorption and
lower flammability; these properties render it attractive for
engineering applications, particularly where oil or petrol contami-
nation is likely. Another oil-resistant rubber is ‘nitrile’ rubber—a
copolymer of butadiene and acrylonitrile; this material, however,
has poor resilience at low temperatures (cf. Fig. 1.5, p. 15).
Polybutadiene itself is highly resilient (i.e. has very low hysteresis
losses) over a wide temperature range, as are also the silicone
rubbers, based on the Si—O chain structure; the latter are also
particularly resistant to chemical degradation, and may be used
over the range —55°C to +300°C (Houwink 1949). Another
material of interest, e.g. in tyres, is the so-called ethylene-
propylene terpolymer; this is a copolymer consisting essentially of
ethylene and propylene, but with a small proportion of a third
ingredient.

1.3. Early theories of rubber elasticity

Early attempts to account for the mechanical properties of rubber
in terms of classical concepts of the molecular structure of matter
encountered overwhelming difficulties. In the first place natural
rubber (the only type of rubber then available) appeared both
unique and enigmatic. Yet its molecular constitution as then under-
stood could hardly have been simpler. Other known hydrocarbons
of apparently entirely similar chemical constitution were invariably
ordinary liquids or solids. What was it about the rubber hydrocar-
bon that should render it so different from, say, terpentine, which
has an identical empirical formula?
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Quite apart from this difficulty, the classical solid was envisaged
as an array of atoms (or molecules) maintained in fixed mean
relative positions by well-defined interatomic forces. Application of
astress (e.g. a tensile force) to such a structure leads to a disturbance
of the equilibrium which calls into play a counterbalancing internal
stress. Owing to the very strong dependence of such interatomic
forces on the distance between atoms, such a mechanism is incapa-
ble, even theoretically, of supporting extensions of magnitude
greater than about 10 per cent; it cannot conceivably serve as a basis
for the interpretation of deformations of 100 times this magnitude.

The basic difficulty can in principle be circumvented, without
entirely breaking away from classical concepts, by postulating
either some sort of open network structure, or alternatively a helical
or coil-spring type of molecule. In either system large total defor-
mations may be obtained without the introduction of large strains
into the elastic elements of the structure. Examples of the first type
of theory were the ‘two-phase’ theories, among which that of
Ostwald (1926) was perhaps the most plausible. This attributed the
essential elasticity to a sort of network of micelles or molecular
aggregates based on proteins or resins derived from the outer
sheath of the latex globule, this network being suspended in a
semi-liquid medium formed of rubber hydrocarbon of lower
molecular weight. Among theories of the second type, the helical-
spring theory of Fikentscher and Mark (1930) was the most notable.
In this, the retraction tendency was associated with the residual
forces between neighbouring turns of the helix which was believed
to represent the configuration of the polyisoprene chain.

A rather similar theory by Mack (1934) envisaged a folded
configuration of the molecule which was maintained by the agency
of forces between neighbouring hydrogen atoms. This model per-
mitted an extension of 300 per cent in passing from the closely
packed to the fully extended form by rotation about single bonds in
the chain structure. A further extension of the assembly of
molecules, leading to a total extensibility of 600 per cent, was
accommodated by allowing for a rotation of the extended chains
from their initially random directions into the direction of the
applied strain.

1.4. The kinetic theory of elasticity

The theories referred to above, and others of a similar character,
sought to explain the long-range elasticity in terms of the only
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available rubber in common use at the time, i.e. natural rubber.
Their interpretation of the mechanical properties of this material
was unconvincing, and furthermore, they were completely incapa-
ble of accounting for its even more remarkable thermoelastic
properties. It is significant that the first real progress towards a
proper understanding of rubber elasticity owed much to the recog-
nition that natural rubber was no longer to be regarded as in a class
by itself but that it was very closely related in both structure and
properties to a number of other materials, e.g. gelatin, muscle
fibres, silk, etc., broadly classed as colloids, but widely diverse in
chemical constitution. Thus, for example, Woéhlisch (1926) drew
attention to the similarity between the contraction of tendons
(collagen) on heating and the contraction of stretched (crystalline)
raw rubber, which he sought to explain in terms of the thermal
agitation of crystals, micelles, or rod-like molecules. Later, with the
refinement of methods of measuring very high molecular weights
and the emergence of the concept of a polymer as a genuine
chemical entity whose molecular weight could be in the range
100 000-1 000 000 (a typical value for rubber being 350 000), the
full significance of the form and dimensions of the molecule began
to be appreciated. It gradually became evident that a molecule of
such dimensions could no longer be regarded as a geometrically
rigid structure held in a fixed configuration by static internal forces,
but that some degree of flexibility, associated with internal vibra-
tions and rotations having their origin in thermal fluctuations, was
to be expected. Thus, for example, Haller (1931) calculated that the
thermal fluctuation of bond lengths and valence angles in a paraffin
chain could lead to a considerable curvature of the chain axis.
However, this calculation ignored the much more important consid-
eration of rotation about bonds.

The first exponents of the now generally accepted theory of
rubber elasticity were Meyer, von Susich, and Valko (1932) and
Karrer (1933), though the latter author was thinking primarily of
muscle. Meyer et al. based their theory on the consideration that the
thermal energy of the atoms of a long-chain molecule will lead to
greater amplitudes of vibration in the direction perpendicular to the
chain than in the direction of the chain itself, since the lateral forces
between chains are much weaker than the primary valence forces
within the chain. The effect of this dissimilarity would be to produce
a repulsive pressure between parallel or extended chains, which
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would have the effect of tending to draw the ends of the chains
together and could thus be regarded as equivalent to a longitudinal
tension. As a result a stretched rubber should retract ‘until an
irregular statistically-determined arrangement of the molecules and
their parts is brought about, in which condition molecular impacts
no longer have a resultant directional effect’. The quotation shows
that Meyer et al. clearly appreciated the relation between rubber-
like elasticity and the ability of the chain to take up an irregular or
statistically determined form by virtue of the interchange of energy
between its constituent elements and the surrounding atoms. This is
the fundamental concept of the now generally accepted theory of
rubber elasticity.

The authors showed that their kinetic theory led directly to the
conclusion that the tension in stretched rubber (at constant length)
should be proportional to the absolute temperature—a result which
was confirmed in later experiments by Meyer and Ferri (Fig. 2.1,
p- 25).

Though using as an argument in favour of their theory the
similarity in elastic properties exhibited by various materials (gela-
tin, cellulose, silk, etc.), Meyer and his associates recognized the
quantitative differences between particular materials and drew
attention to the significance of crystallization as a factor determin-
ing the range of extensibility and other mechanical properties in
those polymers in which it was believed to occur.

Karrer (1933) attempted to explain the properties of muscle
fibres on similar lines and, like Meyer, regarded muscle as a member
of a class of long-chain structures which included rubber. He noted
that a long-chain molecule in which internal rotation about bonds
can take place will be subject to the Brownian motion of the various
elements of its structure and will consequently take up a variously
contorted shape unless constrained by a tensile force applied to its
ends. This tendency of a chain to take up a random conformation he
related to the principle of ‘maximum mechanical chaos’, which is
equivalent to the concept of maximum entropy developed by
Meyer. In the normal or resting state the protein molecules in the
muscle fibre were assumed to be held in a parallel extended
alignment by chemical forces; the process of retraction or activa-
tion of the muscle was then assumed to be initiated by chemical
changes leading to the loosening of these intermolecular
forces.
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By thermodynamic reasoning Karrer showed that the perfor-
mance of work by the retracting muscle should be accompanied by
an absorption of heat, or, in an adiabatic process, by a fall of
temperature. The calculated amount of this fall for the muscle in a
frog’s leg was 0-006 °C.

This interest in the thermodynamic implications of the phenome-
non of rubber-like elasticity may be regarded as a return to the point
reached in the pioneer investigations of Joule in the mid-nineteenth
century. As has already been noted Joule made measurements of
the heat changes developed in the extension of rubber, and Kelvin
(1857) demonstrated the connection between these thermal effects
and the effect of temperature on the elastic retractive force dis-
covered by Gough (1805). It is stated by Meyer (1939), and also by
Guth, James, and Mark (1946), that Joule recognized that the
contraction of stretched rubber is due to the motion of its con-
stituent particles. This may have been so, but so far as the author has
been able to discover, it is nowhere explicitly stated in his writings.t
In any case, Joule was not in a position to develop any kind of more
detailed interpretation of the phenomenon, owing to the totally
inadequate knowledge of the chemical structure of rubber at that
time.

Even after the publication of Meyer’s theory, many years elapsed
before scientists generally were prepared to acknowledge its
superiority over rival interpretations of rubber elasticity. This reluc-
tance to accept what is now generally regarded as a major scientific
advance may be attributed partly to a very proper scepticism with
respect to a subject which had become overburdened with some-
what fanciful theories with little experimental backing, partly to the
difficulty of separating the essential phenomena of elasticity from
the subsidiary, though quantitatively very significant, thermo-
mechanical effects associated with strain-induced crystallization,
and partly to the revolutionary nature of the kinetic theory itself,
this last factor being closely related to the corresponding reluctance
to accept the concept of a high polymer in any form whatever.
However, with the advent of a wide range of synthetic rubbers, the
significance of the theory became rapidly more apparent, and the
concept of rubber-like elasticity as an attribute of a certain general

T In private correspondence Meyer writes, ‘Joule must have drawn the conclusion
himself, but he does not say it clearly’.
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type of molecular structure rather than of the specific constitution of
the polyisoprene chain became more widely accepted.

1.5. Cross-linking and vulcanization: network theory

General conditions for rubber-like elasticity

Implicit in the preceding discussion is the implied assumption that
the inherent elasticity of the long-chain molecule is sufficient in
itself to confer highly elastic properties on a material in bulk. This,
however, is only one, albeit the most fundamental, of the necessary
conditions. A more realistic consideration of this problem must take
into account not only the properties of the molecule in isolation but
also the way in which the individual molecules are held together so
as to form a coherent structure. Taking these considerations into
account, we are led to the conclusion that for a material to exhibit
rubber-like properties the following three requirements must be
satisfied:

(1) the presence of long-chain molecules, with freely rotating

links;

(2) weak secondary forces between the molecules;

(3) an interlocking of the molecules at a few places along their

length to form a three-dimensional network.

The first of these conditions has already been dealt with. The
second arises from the consideration that, if the individual chain is
to have the freedom to take up the variety of statistical conforma-
tions upon which the phenomenon of rubber-like elasticity ulti-
mately depends, its motion must not be impeded by the surrounding
molecules; this implies that the forces between the molecules
(secondary forces) shall be weak, as in a liquid. Indeed, apart from
the fact that successive segments are permanently connected to
each other by primary chemical bonds, the intermolecular forces in
a rubber are in no way different from those existing in a typical
liquid. However, if this were the only requirement, the material
would in fact behave as a liquid, and not as a solid. The third of the
above conditions is introduced in order to overcome this difficulty.
By the introduction of a certain number of cross-linkages or junc-
tion points between the chains at a very few points along their length
it is possible to produce a coherent network in which all the
molecules are linked together and hence can no longer move
independently as in a liquid. Owing to the great length of the chains,
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the number of such points of cross-linkage required to achieve this
result (theoretically two per chain) is not sufficient to interfere
significantly with the requisite local freedom of movement or
statistical fluctuations of the individual chains.

Network formation

The necessary cross-linkages between chains are normally intro-
duced by the process of vulcanization, which is a chemical reaction
with sulphur, originally discovered by Charles Goodyear in 1839
(Memmler 1934). Though other reagents are frequently used in
current industrial practice, vulcanization has remained an essential
requirement of rubber technology from that time until the present
day. Rubber articles are extruded or moulded into their required
form at a suitably elevated temperature while the rubber is in a
semi-liquid or plastic condition; the final form is then fixed, and the
required elasticity or rigidity secured, by cross-linking of the chains.

In dealing with the subject of rubber elasticity we shall be
concerned in general not with the original raw rubber but with the
vulcanized material, which is more perfectly elastic (i.e. reversible)
in its behaviour than raw rubber. In passing, however, it should be
mentioned that in raw rubber an effect similar to that of chemical
cross-linking is obtained from the complex geometrical entangle-
ments between chains, which produce a local enhancement of the
residual (van der Waals) forces. Under prolonged loading such
‘entanglement-cohesions’ or ‘physical’ cross-linkages will slowly
break down, giving rise to the phenomena of stress-relaxation and
creep, but for short times of stressing a degree of elasticity not very
different from that of vulcanized rubber may be displayed by the
unvulcanized material.

One of the most important developments in the statistical theory
has been its application to the problem of the network of long-chain
molecules as it exists in a vulcanized rubber. This application, which
is fully dealt with in Chapter 4, has led to the derivation of specific
stress—strain relations for various types of strain, which may be
compared with experimental observations. This development has
been particularly fruitful, and has transformed our outlook on the
whole subject of the structure and physical properties of rubbers. Its
influence has extended far beyond the consideration of the purely
mechanical properties. For example, by a slight extension of its
basic concepts it has been found possible to adapt the theory so as to
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provide a quantitative interpretation of such additional phenomena
as the swelling of a rubber in organic liquids, and the development
of double refraction under stress (photoelasticity).

1.6. The glass-rubber transition

The rubber-like state, as we have seen, depends on the possibility
of random thermal motion of chain elements by rotation about
single bonds in the chain backbone. In any real material rotation
cannot be completely free from restrictions imposed by the pres-
ence of neighbouring groups of atoms either in the same molecule
or in neighbouring molecules. The degree of freedom of rotation
will be a function of the relative values of the thermal energy of the
rotating group and the potential barrier that has to be overcome in
order that rotation may occur. The probability that a given group
will have sufficient energy to enable it to surmount a potential
barrier £ will be governed by a Boltzmann factor of the type
exp (—&/kT), and will therefore increase rapidly with increase in
temperature. Conversely, on lowering the temperature a point will
be reached at which rotation will no longer take place at an
appreciable rate. In this state the material ceases to behave like a
rubber and becomes hard and rigid like a glass.

The transition from the rubber-like to the glassy state is a
phenomenon which is encountered in all rubbers, whether vul-
canized or unvulcanized, though the temperature at which this
transition occurs naturally depends on the chemical constitution of
the molecule. The transition temperature is about —71°C for
unvulcanized natural rubber, and a few degrees higher for the
vulcanized material. The geometrical structure is not affected by the
transformation, being still of the random or amorphous type; this is
shown by the X-ray diffraction pattern, which has the form charac-
teristic of a liquid or glassy structure, namely a broad diffuse ring or
‘halo’.

The transition to the glassy state is accompanied by changes in
certain other physical properties in addition to the changes in elastic
properties. Of these the most important is the change in expansion
coefficient. This is shown in the top curve in Fig. 1.3, representing
the volume-temperature relationship for raw rubber in the
amorphous state. The change in slope at the transition temperature
corresponds to a considerable increase in expansivity which is
usually interpreted as a direct result of the increase in molecular
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F1G. 1.3. Volume-temperature relationship for purified rubber, showing second-
order transition at —72 °C and crystal melting at 11 °C. (Bekkedahl 1934.)

mobility associated with the rubber-like or quasi-liquid structure.
Since, however, the glass—rubber transition is not a structural
change there is no first-order change in specific volume (or density)
such as occurs, for example, in the transformation from the amor-
phous to the crystalline state (see below). For this reason the
glass—rubber transition is sometimes referred to as a second-order
transition. Another property which undergoes a similar type of
change at the same temperature is the heat content or enthalpys; this
is revealed by an increase in the specific heat, and is similarly
indicative of an increase in molecular mobility.

Gradualness of transition

The change in mechanical properties from the glassy to the
rubbery state as the temperature is raised is not as sudden as the
change in expansivity shown in Fig. 1.3, but takes place over arange
of temperature of 50 °C or more. This is shown, for example, in Fig.
1.4, which represents the variation of amplitude of deformation,
under an oscillatory stress of constant amplitude, with increase of
temperature. Below —70 °C the deformation is very small, corres-
ponding to a modulus of elasticity of the order 10° N m™. As the
temperature rises it increases at first rapidly, and then more slowly
as the full rubbery deformation, corresponding to a modulus of the
order 10°Nm™, is approached. In the intermediate transition
region the elastic properties are very poor, owing to the high
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FIG. 1.4. Amplitude of deformation as function of temperature. Frequency g Hz.
(Aleksandrov and Lazurkin 1939.)

internal viscosity (hysteresis) resulting from the limited mobility of
chain segments.

Rebound resilience

The phenomena encountered in the transition region are directly
reflected in the property of rebound resilience. If there were no
losses the rebound of a ball would be 100 per cent. For natural
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Fi1G. 1.5. Rebound resilience as function of temperature. (Mullins 1947.)
1. Natural rubber. 2. SBR (butadiene-styrene). 3. Neoprene (poly-
chloroprene). 4. Hycar OR 15 (butadiene-acrylonitrile). 5. Butyl rubber.
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rubber at room temperature the rebound resilience is around 60 per
cent, corresponding to the dissipation of some 40 per cent of the
elastic strain energy by internal viscosity. As the temperature is
lowered the resilience falls, reaching a very low minimum at about
—35°C, after which it again rises steeply as the glass-hard state is
approached. (Fig. 1.5). The temperature of minimum resilience
(maximum energy loss) corresponds to the middle of the transition
region shown in Fig. 1.4, where the properties are changing most
rapidly; this is some 30 °C above the glass transition temperature as
determined from expansivity measurements.

Glassy polymers

The temperature at which the rubber—glass transition occurs is an
extremely important property of a polymer. For general-purpose
rubbers it is important that this temperature shall be sufficiently low
to avoid undesirable energy losses over the range of temperature
likely to be encountered in actual use. The factors which determine
the transition temperature are primarily the strength of the inter-
molecular forces and the degree of flexibility of the chain. Bulky or
highly polar side-groups introduce steric hindrances to internal
rotation about bonds as well as increasing the intermolecular forces;
such groups therefore tend to raise the glass transition temperature.
These effects are illustrated by the two most common of the glassy
polymers, namely, poly(methyl methacrylate) (Perspex) and poly-
styrene, whose structures are given in Table 1.1 (p. 5). Each of these
has a glass transition temperature in the neighbourhood of 100 °C.
In other respects the structure of these materials is comparable to
that of a rubber, and on heating to about 160 °C they acquire
rubber-like properties.

1.7. Crystallization in raw rubber

It has been known for a long time that if rubber is maintained at a
low temperature (e.g. 0 °C or lower) it gradually crystallizes. Unlike
the glass transition, the change to the crystalline state is a first-order
transition, and corresponds to a change of structure. As with other
materials, crystallization in rubber is accompanied by an increase of
density and by the release of latent heat. The presence of a
crystalline phase, however, is most unambiguously revealed by the
change in the X-ray diffraction pattern, which in the crystalline
rubber contains a series of sharp rings, representing reflections from
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specific crystal planes, in addition to a weaker diffuse background
arising from the residual disordered or amorphous component.
The process of crystallization may conveniently be followed by
observations of the accompanying changes in specific volume. An
example, taken from the early work of Bekkedahl (1934), is repro-
duced in Fig. 1.6. The characteristic S-shaped curve may be inter-
preted in terms of the processes of nucleation and crystal growth. As
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FIG. 1.6. Growth of crystallization in raw rubber at 0 °C, as measured by volume
changes. (Bekkedahl 1934.)

in other processes involving the development of a new phase,
crystallization takes place preferentially about existing nuclei,
which may be thought of as arising initially by the random associa-
tion of neighbouring segments of chains to form an ordered array.
The increase in the rate of crystallization in the early stages is
accounted for by the increasing size of the nuclei, and possibly also
by an increase in the number of nuclei present. The final reduction
in rate is due to the mutual interference between expanding nuclei,
and the difficulty of disentangling the remaining amorphous chain
segments so as to draw them into one or other of these centres of
growth.

This general model accounts also for the effect of temperature on
the rate of crystallization. This rate, as shown in Fig. 1.7, at first
increases as the temperature is reduced, owing to the higher proba-
bility of formation of a nucleus. With further reduction in tempera-
ture, however, the decreasing mobility of chain segments begins to
take effect, with the result that the rate of crystallization passes
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F1G. 1.7. Rate of crystallization (1/1) as function of temperature. t = time for half
final amount of crystallization to occur. (Wood 1946.)

through a maximum and ultimately falls to a very low value as the
glass transition temperature is approached.

Detailed examination of the X-ray diffraction pattern of the
crystallites shows the axes of the chains to lie parallel to one another
in the unit cell. From the unit-cell dimensions the density of the
crystal is estimated at 1-00 g cm™ (Bunn 1942), which is 10 per cent
higher than the density of the amorphous rubber (0-91 g cm™). The
maximum increase in density obtained on crystallizing rubber (Fig.
1.6) is well below this figure, and indicates that only about 27 per
cent of the material is in the crystalline phase, the remainder being
still in the amorphous condition. The picture which emerges is
therefore of an assembly of crystallites formed by the three-
dimensional ordering of chain segments interspersed within a con-
tinuous matrix of disordered, non-crystalline material (Fig. 1.8(a)).

The presence of an amorphous component accounts for the fact
that crystalline rubber still shows a second-order transition (Fig.
1.3), though the change in expansivity at the transition temperature
is correspondingly reduced in magnitude. Fig. 1.3 shows the crystal-
line state to be stable so long as the melting temperature is not
approached. The temperature of melting of the crystallites is found
to depend on the temperature at which the crystallization has taken
place; for crystallization at 0 °C melting starts at about 6 °C and is
complete at 16 °C.

Because of the reinforcing effect of the crystallites, crystalline
rubber is considerably harder (by a factor of about 100) and less
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extensible than amorphous rubber, though it is still flexible, owing
to the residual amorphous (rubber-like) component of the struc-
ture. It also has a yellowish waxy appearance, due to the reflection
of light from clusters of crystals known as spherulites. (The indi-
vidual crystallites have dimensions much smaller than the
wavelength of light, i.e. 10-100 nm, and hence do not produce
reflection.)

(a)

= —
RR =

(b)

F1G. 1.8. Diagrammatic representation of structure of rubber crystallized in (a) the
unstrained state and (b) the strained state.
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The typical crystalline polymers—polythene, nylon, etc.—have
structures and mechanical properties essentially similar to those of
crystalline rubber, with the difference that their crystal melting
points are considerably higher, so that they remain stable under
ordinary conditions of use.

It should be emphasized that the representation of the structure
given in Fig. 1.8 is undoubtedly greatly oversimplified. Our views on
this subject have been greatly modified by the demonstration that
single crystals of polymers such as polythene obtained by crystalli-
zation from dilute solution have the form of thin platelets or
lamellae, which are produced by the regular folding backwards and
forwards of single polymer chains, the chain axes being roughly
perpendicular to the plane of the lamella. There is considerable
evidence that chain-folded lamellae also form the basic structural
entities in polymers crystallized from the melt (Geil 1963). A
lamellar type of crystallization has also been identified in rubber by
Andrews and co-workers (Andrews, Owen, and Singh 1971). The
precise crystalline morphology in any particular case depends not
only on the nature of the polymer but also on the detailed structural
characteristics, such as molecular weight and molecular weight
distribution, chain branching, etc., and the conditions of crystalliza-
tion.

1.8. Crystallization in the stretched state

The general features of the crystallization process which are
found in raw rubber occur also, with certain modifications, in the
vulcanized material. The chief difference is in the time-scale, vul-
canized rubber crystallizing much more slowly under comparable
conditions. This difference arises from the presence in vulcanized
rubber of a cross-linked network, which to a certain extent impedes
the relative displacement of chain segments required for the forma-
tion and growth of nuclei.

Another difference is in the phenomenon of crystallization by
stretching. Vulcanized rubber in the unstrained state does not
crystallize at an appreciable rate at room temperature, but the
application of a high extension produces immediate crystallization.
X-ray studies show the pattern of this crystallization to be different
from that for normal crystallization in the unstrained state, the
crystallites showing a preferred orientation in the direction of the
extension. The amount of crystallization increases rapidly with
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F1G. 1.9. Percentage crystallinity in vulcanized rubber as function of elongation.
(Goppel 1949.)

increasing extension (Fig. 1.9). On retraction from the stretched
state the original amorphous condition is simultaneously restored.

This phenomenon of spontaneous crystallization on extension
appears at first sight extremely difficult to understand. Studies on
raw rubber, however, have greatly assisted in obtaining a solution to
this problem. Raw rubber has the advantage that the process of
crystallization can be readily followed at all states of strain, includ-
ing the unstrained state, and not only at high extensions. Further-
more, when crystallized in the stretched state, raw rubber does not
retract to the unstrained state on removal of the stretching force,
there being no cross-linked elastic network to provide the necessary
restoring force.

Fig. 1.10 shows the density changes which accompany the crystal-
lization of raw rubber at 0 °C in the unstrained state, and at various
extensions up to 700 per cent (Treloar 1941). From these and
similar observations it is concluded that there is no distinction in
principle between crystallization in the unstrained state and strain-
induced crystallization, the only significant difference being in the
rate at which the process takes place, which is highly sensitive to the
degree of orientation or preferential alignment of the chains. At the
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highest extensions (~700 per cent) the process takes place so
rapidly that its earlier stages escape observation.

Mechanical properties of stretched crystalline rubber

The structure of raw rubber after crystallization in the stretched
state may be represented as a system of roughly parallel crystallites
with interconnecting amorphous material, as in Fig. 1.8(b). This
type of structure is analogous to that of a fibre, such as, for example,
nylon or Terylene. The similarity in structure extends also to the
mechanical properties. Stretched crystalline rubber is highly aniso-
tropic in mechanical properties, possessing a high strength in the
direction of the extension but very low strength in the transverse
direction. These ‘fibrous’ properties of highly stretched raw rubber
were first demonstrated by Hock (1925), who showed that on
cooling in liquid air and hammering it split up into bundles of fibrils.
This effect he attributed to crystallization, which was first conclu-
sively demonstrated independently by the direct X-ray observa-
tions of Katz (1925).

There is considerable evidence (Gee 1947; Morrell and Stern
1953) that crystallization also plays a significant part in enhancing
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the strength of vulcanized rubber. Many of the synthetic rubbers,
particularly those formed by the random co-polymerization of two
different monomer units, such as butadiene—styrene rubber (Table
1.1, p. 5), do not have a regular sequence of chain atoms and hence
are incapable of forming a crystal lattice. Such rubbers, after
vulcanization, generally have very much lower strengths than
natural rubber vulcanizates, though from the practical standpoint
this difference can be largely overcome by suitable compounding
techniques, e.g. by the incorporation of a reinforcing filler such as
carbon black.



2

INTERNAL ENERGY AND ENTROPY
CHANGES ON DEFORMATION

2.1. Stress—temperature relations

In the preceding chapter attention was drawn to the peculiar
thermoelastic phenomena encountered with rubber, and the signifi-
cance of these phenomena in relation to the kinetic theory of rubber
elasticity proposed by Meyer and his associates was emphasized. In
the present chapter we shall examine in closer detail the underlying
thermodynamic relations involved in the study of these thermoelas-
tic phenomena and the way in which they may be applied experi-
mentally to obtain quantitative information bearing on the question
of the mechanism of the deformation process. ‘

At this stage the treatment will be limited to the more elementary
aspects of the subject which are required in order to establish a basis
for the development of the statistical theory and for the proper
understanding of its physical significance. The more extensive and
elaborate later developments, which involve various refinements in
matters of detail, must necessarily be deferred to a later chapter
(Chapter 13).

The kinetic theory in its simplest form attributes the elasticity of
rubber to changes in the conformations of a system of long-chain
molecules in passing from the unstrained to the strained state. Such
changes are associated with changes in the configurational entropy
of the system, the internal energy being considered to remain
unchanged. For any mechanism of this kind (i.e. involving only
changes of entropy) it may be shown (as below) that the stretching
force, for a given state of strain, should be proportional to the
absolute temperature. The early experiments of Meyer and Ferri
(1935) showed this conclusion to be substantially fulfilled, over a
wide range of temperature, provided that the extension was suffi-
ciently large (Fig. 2.1). In the region of lower strains, however, the
behaviour appeared to be anomalous, the force increasing less
rapidly than would be expected theoretically, or even actually
decreasing as the temperature was raised. These observations have
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FIG. 2.1. Force at constant length as function of absolute temperature. Extension
350 per cent. (From Meyer and Ferri 1935.)

since been repeated by many other workers, notably by Anthony,
Caston, and Guth (1942), Wood and Roth (1944) and, to quote a
more recent example, Shen, McQuarrie, and Jackson (1967), with
precisely similar results. The data presented in Fig. 2.2, reproduced
from the work of Anthony et al. (1942), may be taken as typical of
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FiG. 2.2. Force at constant length as function of temperature. Elongations as
indicated. (Anthony, Caston, and Guth 1942.)
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the behaviour in the low-strain region. It will be seen that the
reversal in slope of the stress-temperature plots occurs at an
extension of about 10 per cent—the so-called thermoelastic inver-
sion point.

The explanation of these peculiar effects is in fact very simple,
and was correctly given by both Meyer and Ferri and by Anthony,
Caston, and Guth. They arise from the normal thermal expansivity
of the unstrained rubber, as a result of which the unstrained length
of the sample varies with change in temperature. As a result, an
increase of temperature at constant length involves a reduction of
the strain or relative extension, and this in itself will cause a
reduction of the applied force. Thus even though the force at a given
value of strain may increase with increasing temperature, this
increase may be more than counterbalanced by the associated
reduction in strain. This will be seen more clearly from Figs 2.3 and
2.4. If the elongation is calculated on the basis of the unstrained
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F1G. 2.3. Force at 20 °C and 70 °C plotted against extension calculated on unstrained
length at 20 °C. (Anthony, Caston, and Guth 1942.)
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length at 20 °C, the origin of the force—elongation curve for 70 °Cis
displaced; hence although the slope is higher, the force is initially
lower, the two curves intersecting at about 10 per cent strain (Fig.
2.3). If, however, the extensions are calculated on the basis of the
unstrained length at the temperature of operation, the curves for
different temperatures all pass through a single origin, and the
values of force, for any given value of strain, are almost exactly
proportional to absolute temperature (Fig. 2.4). This adjustment,
therefore, eliminates the thermoelastic inversion effect.
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F1G. 2.4. Force at various temperatures plotted against extension calculated on
unstrained length at temperature of measurement. (Anthony, Caston, and Guth
1942.)
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2.2. Thermodynamic analysis

For the more explicit examination of these thermoelastic
phenomena it is necessary to develop relations between force,
length, and temperature on the one hand and the thermodynamic
quantities, internal energy and entropy, on the other. The required
relations are obtainable directly from the first and second laws of
thermodynamics. From the first law of thermodynamics the change
in internal energy dU in any process is given by

dU=dQ+dW, 2.1)

where dQ and d W are respectively the heat absorbed by the system
and the work done on it by the external forces. The second law
defines the entropy change dS in a reversible process by the relation

TdS=dQ, (2.2)
and hence from (2.1), we have for a reversible process

dU=TdS+dW. (2.3)

In discussing the equilibrium of a system which is subject to
reversible changes (e.g. elastic deformations) it is convenient to
introduce the Helmholtz free energy A, defined by the relation

A=U-TS. (2.4)
For a change taking place at constant temperature we have then
dA=dU-TdS. (2.5)

Combining this equation with (2.3) we obtain the standard ther-
modynamic result

dA =dW (constant T), 2.6)

which signifies that in a reversible isothermal process the change in
Helmholtz free energy is equal to the work done on the system by
the applied forces.

In most thermodynamic textbooks the subject is subsequently
developed with particular reference to gases and liquids, for which
the significant variables include pressure p and volume V. The work
done on the system in a small displacement is then written as

dW=—-pdV.
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In discussing problems related to the elasticity of solids, on the other
hand, we are concerned primarily with the work done by the applied
stress, corresponding, for example, to a tensile force f acting on a
specimen of length /, in which case the work done in a small

displacement is
dW=fdl (2.7

When in addition a hydrostatic pressure (e.g. atmospheric pressure)
1s also present the total work done by the applied forces becomes

dW=fdl-pdV. (2.7a)

For strict accuracy it is necessary to take account of both terms on
the right-hand side of (2.7a). But in the case of rubbers, the volume
change d V is usually very small, and if p is the atmospheric pressure
the term p dV is less than f d/ by a factor of 107> or 107*. As a first
approximation we may therefore neglect this term and use eqn
(2.7), which is strictly accurate only at zero applied pressure or
under constant-volume conditions, in place of the exact expression
(2.7a) (the more accurate analysis, not involving this assumption, is
referred to in § 2.4). By making use of eqns (2.6) and (2.7) the
tension may then be expressed in the form

= (), =G, @3

which shows that the tensile force is equal to the change in
Helmholtz free energy per unit increase in length of the specimen.

The significance of the important relation (2.8) may be better
appreciated by reference to Fig. 2.5, which represents diagrammati-
cally the variation of Helmholtz free energy for an elastic body as a
function of its length L The unstressed state is such that the
Helmholtz free energy is a minimum, so that (0A/dl)r =0 when
[=1, If | is greater than I,, (0A/dl); is positive, corresponding
to a tensile force, while if / is less than l,, (dA/dl)r is negative,
corresponding to a compressive force. (It should be noted, however,
that the force-deformation relation will not in general be linear,
except for very small strains.)

The tension, like the free energy, may be expressed as the sum of
two terms (from eqn (2.5)), thus

A, e
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F1G. 2.5. Dependence of Helmholtz free energy A and force f on length [ for
specimen subjected to uniaxial extension or compression. {, = unstrained length.

of which the first represents the change in internal energy and the
second the change in entropy, per unit increase in length. The
second term is related to the temperature coefficient of tension, as
will now be shown.

Writing eqn (2.4) in differential form, we have for any change (i.e.
not necessarily isothermal)

dA=dU-TdS—-S5dT,
whilst from (2.3) and (2.7)
dU=fdl+TdS.
Combination of these two equations gives
dA=fdl—-SdT.

Hence, by partial differentiation,

By a well-known property of partial differentials
3(04) _ 0 (04)
ol\aT/, aT\odl/7

and hence, from eqns (2.10),

(GG @1
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Eqn (2.11) gives the entropy change per unit extension in terms of
the measurable quantity (3f/dT), the temperature coefficient of
tension at constant length. Insertion of this relation in (2.9) gives for
the corresponding internal energy change

(&), =1-1(Gz); 212

The relations (2.11) and (2.12) are of fundamental importance in
rubber elasticity, since they provide a direct means of determining
experimentally both the internal energy and entropy changes
accompanying a deformation. Their application may be illustrated
by reference to Fig. 2.6, in which the curve CC' represents the

Force at constant length

0 Temperature (K)

F1G. 2.6. Slope and intercept of force-temperature curve.

variation with temperature of the force at constant length, which
may or may not be linear. The slope of this curve at a point P is
(8f/aT),, which from eqn (2.11) gives the entropy change per unit
extension (8S/al), for an isothermal extension at the temperature
T. In a corresponding way, the intercept OA of the tangent to the
curve at P on the vertical axis T =0 is f— T(3f/0T),, which by eqn
(2.12) isequal to the change of internal energy per unit extension.
Thus the internal energy and entropy contributions to the force at
any given value of the extension are directly obtainable from the
experimental force-temperature plot. In particular, if the force—
temperature plot is linear (as in Fig. 2.1) both internal energy and
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entropy terms are independent of temperature. If in addition the
force~temperature relation is represented by a straight line passing
through the origin, the internal energy term is zero, i.e. the elastic
force arises solely from the change in entropy on extension.

2.3. Application to experimental data

In applying eqns (2.11) and (2.12) to the derivation of internal
energy and entropy changes on extension, difficulties may arise on
account of the imperfect elasticity or reversibility of the rubber. The
analysis presupposes that for any given strain and temperature the
value of the applied force is uniquely determined. However, even
when vulcanized, rubber suffers from some degree of irreversibility,
as evidenced by stress-relaxation and creep effects, which cannot be
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Guth 1942,)
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entirely eliminated. It is found, however, that if for each value of the
strain the rubber is held at a relatively high temperature (e.g.
70-100°C) for a sufficient time to allow the stress to relax to a
substantially constant value, then effectively reversible stress—
temperature plots are obtained for all variations of temperature not
exceeding the original temperature of relaxation. This or some
equivalent procedure has therefore been adopted in all experimen-
tal studies of this kind.

The application of eqns (2.11) and (2.12) to the stress—
temperature data of Anthony et al. (1942), examples of which are
given in Fig. 2.2, yielded the results shown in Fig. 2.7. It is seen that
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F1G. 2.8. Slope T(3f/aT), and intercept of force-temperature relation at constant
extension ratio. (Anthony, Caston, and Guth 1942.)
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for extensions exceeding 100 per cent the dominant component of
the force is the entropy component — T(3S/dl)r, but that there is in
addition a significant internal energy contribution. As the extension
is decreased this internal energy term becomes relatively more
important, and in the region of small extensions (0—10 per cent) it is
the major factor in the situation. Indeed, in this region it is hardly
correct to refer to the internal energy and entropy contributions to
the force, except in the purely formal sense, because the internal
energy term actually exceeds the total force while the corresponding
entropy term, being negative, is subtracted from it.

These peculiarities reflect the changes in slope of the force-
temperature relations at constant length, and may similarly be
eliminated by appropriate adjustment of the unstrained length to
compensate for the thermal expansivity of the unstrained rubber.
Application of this ‘correction’ yields the force-temperature rela-
tion at constant extension ratio A, i.e. (3f/dT), rather than at constant
length I Values of this quantity derived from the same original data
are given in Fig. 2.8, together with the corresponding ‘intercept’ at
T=0K, namely, f— T(3f/dT),. To the degree of accuracy obtain-
able, this intercept is approximately zero.

2.4. Interpretation of thermoelastic data

To understand the above results it is necessary to take account of
the changes of volume which accompany the application of a stress.
These volume changes arise from the hydrostatic component of the
applied tensile stress, and are associated with the bulk compressibil-
ity of the material. To take account of such volume changes it is
necessary to distinguish between extensions at constant pressure
and at constant volume. The experimental stress~temperature rela-
tions are normally obtained at constant (i.e. atmospheric) pressure,
and the corresponding entropy and internal energy components are
expressed by the modified relations

(0, B9 el e

in which His the heat content (U + pV). In the present situation this
does not differ significantly from the internal energy U.

The volume changes due to the applied stress, though small (i.e.
of the order of 107*), nevertheless make a significant contribution to
the internal energy. This contribution, however, arises from the
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forces between the molecules, and is in no way directly related to the
deformation of the network of long-chain molecules, which is our
primary concern. It would be physically more relevant to our
present problem to consider a deformation at constant volume. The
maintenance of constancy of volume during deformation would
require the superposition of a hydrostatic pressure. Such an experi-
ment would be difficult to carry out, and though it was eventually
successfully performed in 1963 (cf. Chapter 13), this was not
visualized as a practical possibility in the early days of the subject.
However, both Elliott and Lippmann (1945) and Gee (1946a)
developed general thermodynamic formulae which enabled the
relations between the stress—temperature coefficients at constant
volume and at constant pressure and the corresponding ther-
modynamic quantities (dU/dl)vr and (3U/dl),r to be deduced.
They also showed that it was possible to derive the internal energy
change at constant volume from measurements at constant pressure
by considering the stress—temperature coefficient at constant exten-
sion ratio A (i.e. constant strain) rather than at constant length. The
appropriate relation, which is only an approximation, is

(57), =r-1(35) . (2.14)

This result provides an immediate interpretation of the data of
Anthony et al. reproduced in Fig. 2.8. The interpretation is that the
internal energy contribution to the force, at constant volume, is
approximately zero, in agreement with the basic postulate of the
kinetic theory.

This important conclusion implies that the observed internal
energy changes which occur under the normal constant pressure
conditions are due to the accompanying changes of volume. Pursu-
ing this argument, Gee derived a quantitative relation between the
internal energy and the change of volume on extension, from which
he was able to predict the amount of the volume change to be
expected.

The above conclusion does not apply at very high extensions,
where the effects of crystallization become apparent. Anthony et al.
employed a natural rubber vulcanizate containing 8 per cent of
sulphur; this was chosen because of its good reversibility and
absence of crystallinity on extension. Wood and Roth (1944), who
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made a similar study covering a wider range of extension, worked
with a more normal low-sulphur vulcanizate. Their results showed
an increasingly large negative internal energy component as the
extension was increased from 200 per cent to 700 per cent (Fig. 2.9).
That this was to be associated with crystallization was confirmed by
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F1G. 2.9. Slope T(3f/oT), and intercept of force-temperature relation at constant
extension ratio. (Wood and Roth 1944.)
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the fact that in a similar study of the non-crystallizing styrene—
butadiene rubber the internal energy changes were comparatively
small (Roth and Wood 1944).

It is necessary to emphasize that the theoretical relation (2.14) is
only an approximation. Its derivation involves the assumption that
the rubber is isotropically compressible in the strained state, i.¢. that

al) [
—) == 2.15
(av it 3V ( )

which, as Gee (1946a) fully appreciated, is strictly valid only in the
limiting case of very small strains (A - 1), and is likely to become
increasingly inexact with increasing strain, particularly when crys-
tallization occurs. A more realistic treatment, taking into account
the anisotropy of compressibility in the strained state, cannot be
derived on the basis of purely thermodynamic reasoning but neces-
sitates the introduction of a specific physical or molecular model of
the structure. Such a model has in fact been developed by Flory
(1961), and is fully discussed in Chapter 13. This shows that the
conclusion drawn from the original studies by Gee, though broadly
correct, require some modification in detail. In particular, it shows
that, while the volume changes are responsible for the major
contribution to the internal energy changes which accompany an
extension at constant pressure, they are not, in general, the sole
factor in the situation, there being a further contribution arising
from energetic interactions within the single molecule. This con-
tribution arises even when the deformation is carried out under
constant-volume conditions.

2.5. Thermal effects of extension

Reference was made in Chapter 1 to the observations of Joule on
the heat of extension, as revealed by the rise of temperature (Fig.
2.10). The explanation of this effect is very simple, and follows
directly from the basic concept of the kinetic theory, namely, that
the deformation of a rubber (at constant temperature) is associated
with a reduction of entropy, with no change in internal energy.
Putting dU =0 in eqns (2.1) we obtain

dW=—-dQ (constant T). (2.16)

The work done by the stretching force being necessarily positive, it
follows that dQ, the heat absorbed, is negative, i.c. that heat is
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Fi1G. 2.10. Temperature rise in adiabatic extension.

evolved on extension. The amount of the heat evolution is exactly
equal to the work done on the rubber by the applied force.

The physical meaning of this conclusion is as follows. The internal
energy of the rubber is purely kinetic, and arises from the thermal
agitation of the constituent atoms of the chains. This energy is a
function only of the temperature, and is independent of the confor-
mations of the chains, i.e. of the state of strain. Since the internal
energy does not change, the work performed by the applied force in
an isothermal deformation must be balanced by the emission of an
equivalent amount of heat.

If this heat is not emitted but is retained, as in an adiabatic
extension, the energy supplied by the applied force is used to
increase the molecular agitation, i.e. to produce a rise in tempera-
ture. The temperature rise is therefore —dQ/c,, where ¢, is the heat
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capacity (specific heat) at constant length and —dQ is the equiva-
lent heat emission in an incremental extension dl at constant
temperature. The total temperature rise AT in an extension from
the unstrained length [, to the final length [ is obtained by integra-
tion of —dQ with respect to /. Since the process is reversible we may
put dQ = T dS and hence obtain

ATz—IJI <§) dl (2.17)

b
CrJy T

it being assumed that ¢, does not vary appreciably with length. This
equation provides a direct link between the heat of extension and
the entropy changes on extension, as determined from the stress—
temperature relations.

Fig. 2.10 gives, in addition to Joule’s original data, the later
results given by James and Guth (1943) on the temperature rise in
an adiabatic extension. These are seen to be of precisely similar
form, though the quantitative agreement is fortuitous, since differ-
ent samples of vulcanized rubber will in general not be identical in
physical properties. The initial cooling effect corresponds to the
positive entropy of deformation, which we have already seen to be
characteristic of the low-extension region. Since the quantity AT
involves an integration, the minimum in the AT curve should
correspond to the thermoelastic inversion point, at which (05/3)+ is
zero. Experimentally, the minimum is seen to occur at an extension
somewhat below 10 per cent (7 per cent to be precise), which is
consistent with the range of observed values of the inversion point.
There is thus a complete parallel between the experimental temper-
ature changes on extension and the thermoelastic data. This conclu-
sion is further reinforced by more recent measurements of the heat
of extension, discussed in Chapter 13.

In the region of high strains the observed thermal effects are
complicated by the incidence of crystallization which gives rise to
the evolution of a ‘latent heat’. This will be apparent from Fig. 2.11,
in which the temperature rise is seen to increase steeply in the
region beyond 300 per cent extension. The lack of reversibility
between extension and retraction measurements is a further indica-
tion of crystallization, which tends to persist as the extension is
reduced (cf. Fig. 9.7, p. 190). These effects were not observed in the
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F1G. 2.11. Temperature changes in adiabatic extension (or retraction). (Dart,
Anthony, and Guth 1942.)

case of a rubber such as butadiene-acrylonitrile which does not
crystallize on extension.

2.6. Conclusion

The consideration of the thermodynamics of the process of
extension is fundamental to the development of the statistical
theory, as given in subsequent chapters. On the simplest basis, as we
have already noted, this theory postulates that the deformation is
accompanied by a reduction of entropy, without change in internal
energy. Analysis of the available experimental data shows this
assumption to be approximately justified at moderately large
strains, but to be very far from the truth at small strains, in the
region of 10 per cent extension or below. However, the major part
(though not necessarily the whole) of the observed internal energy
changes may be accounted for in terms of the associated changes of
volume which accompany the application of the stress. These
volume changes depend on the finite compressibility of the rubber,
which is not taken into account in the elementary presentation of
the statistical theory, since it is not directly related to the mechanism
of the deformation process. Further complications may arise in the
region of very high extensions, as a result of crystallization, which is
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associated with a relatively large reduction in volume, and a corre-
spondingly large reduction in internal energy. When due allowance
is made for these secondary effects, however, it is clear that the basic
thermoelastic and thermal observations are consistent with the
postulates of the statistical theory and provide a direct proof of the
underlying kinetic mechanism of the deformation process.



3

THE ELASTICITY OF
LONG-CHAIN MOLECULES

3.1. Statistical properties of long-chain molecules

THE preceding chapters have set out the basic concepts of the
kinetic theory of rubber elasticity and discussed in general ther-
modynamic terms some of its most characteristic consequences. We
have seen that in its dependence on the changes of conformation of
long-chain molecules the elasticity of rubber stands in striking
contrast, both physically and thermodynamically, to the elasticity of
an ordinary solid such as a crystal or a glass. We now proceed to the
next stage in the development of the kinetic theory, which consists
in the quantitative derivation of the actual mechanical properties of
a rubber in terms of its molecular constitution. This development
involves two essentially separate issues, which have already been
hinted at in Chapter 1. These are first, the treatment of the statistical
properties of the single long-chain molecule in terms of its geomet-
rical structure, and secondly, the application of this treatment to the
problem of the network of long-chain molecules corresponding to a
cross-linked or vulcanized rubber. The first of these issues is the
subject of the present chapter.

The study of the statistical properties of the long-chain molecule
is a complex one, and may be carried to various stages of refine-
ment. In the present context we shall be concerned primarily with
those statistical properties which are common to all rubber-like
molecules, and which may conveniently be dealt with in terms of an
idealized chain of freely rotating links. The statistical properties of
such an idealized model involve geometrical considerations only,
and may be dealt with quite simply. The more realistic treatment of
an actual molecule, however, requires that the effects of energetic
interactions between different segments of the same chain should be
taken into account. This is a problem of considerably greater
complexity, which falls outside the scope of the present work.

Even with the simplest model of the chain the degree of
mathematical difficulty depends on the range of extension consid-
ered. If only moderate extensions are involved a very simple
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statistical treatment, known as the Gaussian treatment, is sufficient.
But for the higher range of extensions this treatment becomes
increasingly inadequate as the distance between the two ends of the
chain approaches the fully extended length, and a more elaborate
non-Gaussian treatment has to be used. The Gaussian treatment for
the single chain will be developed in the present chapter, and its
application to the problem of the network in the one which follows.
The development of the non-Gaussian theory will be presented in
Chapter 6.

3.2. Statistical form of long-chain molecule

The statistical form of the long-chain molecule may be illustrated
by considering an idealized model of the polymethylene or
paraffinic type of chain (CH.,),, in which the angle between succes-
sive bonds (i.e. the valence angle) is fixed but complete freedom of
rotation of any given bond with respect to adjacent bonds in the
chain is allowed. This is illustrated in Fig. 3.1, in which the first two

L

\
C, G, Cs
F1G. 3.1. Rotation about bonds in paraffin-type molecule.

bonds C,C, and C,C; are represented as lying in the plane of the
paper. The third bond, C;C,, will in general not lie in this plane but
will rotate in a random manner about the bond C,C; as axis.
Similarly, C,Cs will rotate about C,C,, and so on. The chain will thus
take up an irregular or randomly kinked form (Fig. 3.2(b)) in which
the distance between its ends is very much less than that corre-
sponding to the outstretched or planar zig-zag form (Fig. 3.2(2)).
The actual conformation will be subject to continual fluctuation due
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/\/\/\/\/\

(a) (b)
F1G. 3.2. (a) Planar zig-zag; (b) randomly kinked chain.

to thermal agitation and hence cannot be defined explicitly, but it is
possible to specify some of the properties of the system in statistical
terms, or in terms of certain average values. Thus, for example, it
may be shown that the root-mean-square (r.m.s.) value of the
distance r between the ends of a chain containing n bonds (where n
is a large number) is given by

—, /1+cos @ 3
{ ). (3.1)

25_:] _
(r9) " 1—cos @

where [ is the bond length and 6 the supplement to the valence
angle. Taking the valence angle to be 109;°, § = 70;°, and therefore
cos 6 =1, hence for this case

(r2 = 1(2n). (3.1a)

This result illustrates the quite general conclusion that the mean (or
r.m.s.) dimensions of any chain of this kind are proportional to the
square root of the number of bonds or links which it contains.

The general form of the idealized freely rotating chain is more
clearly indicated in Fig. 3.3, which represents an actual wire model
of a polymethylene chain containing 1000 links. In the construction
of this model the links were set at the required valence angle, but the
position of each successive link in the circle of rotation was chosen
at random by the throw of a die. This gave an equal probability for
each of six equally spaced positions in the circle, which may be
regarded as a sufficiently close approximation to complete random-
ness. The photographic reproduction in Fig. 3.3 is, of course,
equivalent to a two-dimensional projection of the actual three-
dimensional form. The particular conformation obtained is just one
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F1G. 3.3. Form of 1000-link polymethylene chain according to the statistical theory.

of a very large number of equally probable forms (6 to be precise)
which might have been produced by this method of construction,
but it happens to be a fairly ‘average’ sample, the end-to-end
distance being within about 10 per cent of the calculated r.m.s.
value (eqn (3.1a)).

Polyisoprene chains

The calculation of the mean-square length of a molecule is not
limited to the case where all the bonds and valence angles are equal.
A general method of treating more complicated structures has been
worked out by Wall (1943) and applied to the polyisoprene chain
(Fig. 1.2, p. 4) in which there is one double bond per four chain
carbon atoms. The two single bonds adjacent to the double bond are
fixed in a plane; apart from this restriction, freedom of rotation
about single bonds is assumed. Wall considered both natural rub-
ber, in which the single bonds have the cis-configuration with
respect to the double bond, and gutta-percha, which is otherwise
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similar to natural rubber, but in which the trans-configuration
occurs. For the former he obtained, on the basis of accepted values
of bond lengths and valence angles, the numerical result

(rf = 0-201n* nm, (3.2)

where n (assumed large) is the total number of bonds in the chain
(including double bonds).

3.3. The randomly jointed chain

From the preceding examples it may be inferred that the general
form of the long-chain molecule, as depicted in Fig. 3.3, is indepen-
dent of the precise geometry of the chain, provided only that the
number of bonds about which free (or relatively free) rotation can
occur is sufficiently large. The particular geometry of the chain
affects only the mean-square length, or average dimensions, of the
chain, not its general form. For the development of the statistical
theory in general mathematical terms it is convenient to make use of
an idealized model of the simplest possible kind, which does not
correspond directly to any actual molecular structure. This consists
of a chain of n links of equal length [, in which the direction in space
of any link is entirely random and bears no relation to the direction
of any other link in the chain. Such a randomly jointed chain
automatically excludes valence angle or other restrictions on the
freedom of motion of neighbouring links.

In order to define the statistical properties of the randomly
jointed chain we consider one end A to be fixed at the origin of a
Cartesian coordinate system Ox, Oy, Oz and allow the other end B
to move in a random manner throughout the available space (Fig.
3.4). However, though the motion is random, all positions of B are
not equally probable, and for any particular position P, having
coordinates (x, y, z), there will be an associated probability that the
end B shall be located within a small volume element dr in the
vicinity of the point P, which for convenience may be taken as a
rectangular block of volume dx dy dz. The derivation of this proba-
bility requires the evaluation of the relative numbers of configura-
tions or conformations of the chain which are consistent with
different positions of the point P, the probability of any particular
position being taken as proportional to the corresponding number
of conformations. The solution to this problem, which has been
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F1G. 3.4. The statistically kinked chain. Specification of probability that the end
should fall in the volume element dr(=dx dy dz).

given by Kuhn (1934, 1936) and by Guth and Mark (1934) is
represented by the equation

3

p(x,y,z)dx dy dz =%3 exp{—b*(x*+y*+2z*}dx dy dz, (3.3)

where
b*=3/2nl’. (3.3a)

This formula gives the probability that the components of the vector
r representing the end-to-end distance for the chain shall lie within
the intervals x to x +dx, y to y +dy, and z to z +dz, respectively.
This probability is expressed as the product of the probability
function p(x, y, z) or probability per unit volume (sometimes re-
ferred to as the probability density), and the size of the volume
element considered, which in this case is dx dy dz.

The formula (3.3) is of fundamental importance in the statistical
theory of rubber elasticity. Its form is that of the Gaussian error
function, which is of frequent occurrence in statistical problems
concerned with the superposition of random effects. It has a number
of interesting properties, some of which are considered below. It is
important to note, however, that this form is only approximate,
since its derivation involves the assumption that the distance r
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between the ends of the chain is not comparable with the maximum
or fully extended length nl of the chain, i.e. that

r< nl. (3.4)

The precise region over which this approximation may be regarded
as valid will depend on the accuracy required in any particular case;
for higher extensions of the chain the more accurate non-Gaussian
theory referred to earlier is required.

3.4. Properties of Gaussian functions

We note first that the function (3.3) is spherically symmetrical, for
on putting x>+ y*>+z>=r* we obtain the probability density in the
form

p(x, y, z) = (b*/m?) exp {—b*(x*+y*+2°)} = (b*/m?) exp (— b*r?),
(3.5)
which is a function of r only. This result is, of course, to be expected,
and merely implies that all directions of the vector OP (Fig. 3.4) are
equally probable. Furthermore, the probability density p(x, y, z) is
a maximum when r =0, that is when the two ends of the chain are
coincident, and falls continuously as r increases. This means that if
one end of the chain is fixed at the point O, the most probable
position of the other end is at the same point O.
A second very important property of the Gaussian function (3.3)
is that it can be represented as the product of three independent
probabilities in each of the separate coordinates, i.e.

b
p(x,y,z)dx dy dz =—gexp (—b’x?) dx X
;71-2

X;b%exp (—b*y* dy X;b; exp(—b*z*)dz. (3.6)

This implies that the probability that the chain shall have a particu-
lar component of length in, say, the x direction is completely
independent of its components of length in the y and z directions.
(This property of the chain is valid only in the Gaussian region of
extension, defined by the condition (3.4). In the extreme case, if the
chain is stretched to its fullest extent along the x-axis, the probabil-
ity of a finite value of y or z is necessarily zero.)

The separability of the component probabilities enables us to
integrate over all values of y and z, so as to obtain the total
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probability of a given component of length in the x direction,
regardless of the values of y or z. Since

+00

-

j exp (—b%y?) dy=J exp (—b?z%) dz:—b—, (3.7)
the result is
p(x)dx = (b/7%) exp (— b*x?) dx. (3.8)
0-6F
0-4r
p(x)
02F
| |
-20 —1:0 0 1-0 2:0
X
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FiG. 3.5. Distribution functions: (a) p(x)=constantXexp (—b’x?); (b) P(r)=
constant X r* exp (—b*r?).

The form of this function is shown in Fig. 3.5(a), from which it is
seen that the probability of a component of length between x and
x +dx is given by the area of an elementary strip of width dx and
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height p(x). The constant b/ a, called the normalizing factor, is
chosen so that the total probability of any value of x is unity, i.e.

J p(x)dx =1, (3.8a)
in accordance with (3.7).

The function (3.8), like (3.3), contains only a single parameter b,
which is related to the number of links in the chain and the link
length [ through (3.3a). This means that these functions have the
same general form for all randomly jointed chains, but differ in
breadth, according to the value of b. If the length of the link is fixed,
the effect of increasing the number of links is to decrease b (eqn
(3.3a)) and hence to increase the breadth of the distribution, and
vice versa.

3.5. The distribution of r-values

The observation that the maximum probability per unit volume,
or probability density, as defined by the function (3.3), occurs when
x=y=z=0, i.e. when the two ends of the chain are coincident,
must not be taken to imply that the most probable distance between
the ends of a chain is zero. For the calculation of the probability of
any given value of the end-to-end distance r the restriction to a
particular direction in space implied by the preceding analysis is
inappropriate, and it becomes necessary to take account of all
directions equally. We therefore consider the probability that the
end B of the chain, whose end A is fixed at the origin O, shall be
found within a spherical shell of radius r and thickness dr (Fig. 3.6).
The appropriate volume element in this case is therefore the volume
of the spherical shell, 47r? dr, and the required probability P(r) dr is
obtained by multiplying this by the probability density at the radial
distance r, as given by (3.5). Hence

P(r)dr=(b*/m?) exp (— b*r*) x 4=’ dr
or
P(r)dr = (4b*/7)r* exp (— b*r?) dr. (3.9)

The function P(r), as shown in Fig. 3.5(b), is of an entirely different
form from the probability density function (3.5) or the function p(x)
representing the probability of a given component of length in a
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F1G. 3.6. Determination of distribution of r-values, regardless of direction in space.

fixed direction in space. It represents the distribution of end-to-end
distance r for a set of free chains such as might exist for example in
dilute solution. Whereas the function p(x) is symmetrical and has a
maximum value when x =0, the function P(r) is zero at r =0 and
reaches a maximum at a finite value of r. This most probable value
rmp» found by differentiation of P(r) with respect to r, is

T =1/b =(2nl?/3):. (3.10)
A more important quantity, the mean-square value of r, is given by
J rP(r) dr
- 0

rP=—m——=—=nl’ 3.11)
J' P(r)dr

The functions P(r) and p(x) are identical in form to the corre-
sponding Maxwell distribution functions representing the distribu-
tion of velocities among the molecules of a gas. The function P(r)
corresponds to the distribution of total velocities v, and the function
p(x) to the distribution of the components of velocity v, with respect
to a fixed direction in space. From the mathematical standpoint the
two problems are entirely analogous, being concerned with the
random addition of vectors representing in the one case a length and
in the other a velocity.
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Target analogy

The apparent paradox that the probability density function (3.5)
is a maximum when r = 0, while the distribution function P(r) is zero
at r = Qillustrates the necessity for a careful definition of the sense in
which the term probability is being applied in any given situation.
The present problem may be illuminated by considering a strictly
analogous problem in everyday life, i.e. the distribution of shots on
a target, which for a sufficiently large number of shotsis describable
by an analogous two-dimensional Gaussian distribution function.
The number of shots per unit (small) area is obviously a maximum at
the centre (r = 0), but if the target area is divided into a number of
concentric rings of thickness dr, the maximum number of shots
within a ring will occur at a finite value of r, owing to the increase in
the area of the ring with increasing r (Fig. 3.7). In this sense it would

FI1G. 3.7. Target analogy to random-chain problem.
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be true to say that the most probable position of any shot is at the
centre (r = 0) but that the most probable distance of any shot from
the centre is certainly not zero.

3.6. Equivalent random chain

It may be shown quite generally that the statistical distribution of
end-to-end distances for any chain, whatever its geometrical struc-
ture, reduces to the Gaussian form if the number of rotatable links is
sufficiently large (Flory 1969, p. 6). This is true even when the
rotation about single bonds is not completely free but is restricted
by ‘energy barriers’ or other hindrances to rotation. The effect of
the structure of the chain on its statistical properties is therefore
represented simply by the numerical value of the parameter b in
the Gaussian distributions (3.3) or (3.9). Since this parameter also
determines the value of the mean-square length through eqn (3.11),
it follows that if the mean-square length can be calculated the
Gaussian statistical distribution is completely determined.

On the basis of these considerations it can be seen that for any
actual long-chain molecule it is always possible to find a corre-
sponding randomly jointed chain which will have the same statisti-
cal properties. The first requirement is that the mean-square lengths
of the actual molecule and of the postulated random chain shall be
the same; this, however, from eqn (3.11), determines only the
product nl?, and not the separate-values of n and I. To determine
these the further condition, namely, that the two chains—the actual
molecule and the postulated randomly jointed chain—shall have
the same fully extended or outstretched length, must be introduced.
Given these two conditions there is one, and only one, random
chain which can be regarded as statistically equivalent to the actual
molecule.

To determine the number of links and the length of the link in the
equivalent random chain, let us assume that the actual molecule,
when fully extended without distortion of bond lengths or valence
angles, has the length R,, and that its mean-square length is r3. Let
R, and r? be the corresponding values of the fully extended length
and mean-square length of the postulated random chain, having n,
links of length .. If the mean-square lengths for the two chains are
to be the same we have

r=nls, (3.12)
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and if both are to have the same fully extended length
R.=R,=n,l,. (3.13)

For given values of R, and 72, these two simultaneous equations
lead to the following solution for n, and [,

n,=R/r:, L=r%/R.. (3.14)

The values of n, and [, define a random chain which has the same
statistical properties in the Gaussian region and the same fully
extended length as the actual molecule, and may therefore be
regarded, at least to a first approximation, as statistically equivalent
to the actual molecule.

The equivalent random link

The significance of the above concept of the equivalent randomly
jointed chain may be illustrated by reference to the idealized
models of the polymethylene and cis-polyisoprene structures,
assuming free rotation about bonds. For the former, the mean-
square length, from eqns (3.1) and (3.1a) is

— 1+cos 6
ré = Rylk

- 2
e o5 2n.ls, (3.15a)

while the fully extended length (or length of chain axis for the planar
zig-zag form shown in Fig. 3.2(a)) is

R.. = ol cos 16 = Vinmln. (3.15b)

Substitution of these values in eqn (3.14) gives for the equivalent
random chain

n.=n. L=v6l,=2-45L,. (3.15¢)

The polymethylene chain (with freely rotating bonds) may there-
fore be replaced by a randomly jointed chain having one-third the
number of links; it follows, therefore, that one random link is
equivalent to three C—C bonds in the original structure.

For the cis-polyisoprene chain the length of the isoprene unit (in
the planar configuration, Fig. 1.2(a) (p. 4) is 0-460 nm; the fully
extended length R,, for a chain containing n,, isoprene units is
therefore 0:460 n,,. There being four chain bonds per isoprene unit,
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the corresponding mean-square length in nm?, from Wall’s formula
(eqn (3.2)), is r2 =4(0-201) n., or 0-162 n,.. These figures give
n.=1-31n,, [.=0-3521,. (3.16)

In this case, therefore, the number of monomers per random link is
1/1-31 or 0-77.

It is important to emphasize that these examples refer only to the
idealized freely rotating models of the polymethylene and poly(cis-
isoprene) chains. The actual properties of the polymethylene and
rubber chains, which are examined in later chapters, are signifi-
cantly different, owing to the presence of energy barriers to
rotation, referred to earlier in this chapter.

3.7. The entropy of a single chain

In the case where rotation about the bonds in the molecular chain
can be considered to be unrestricted the internal energy of the
molecule will be the same for all conformations, and the Helmholtz
free energy (p. 28) will be determined solely by the entropy term.
According to the general principles of statistical thermodynamics,
as developed by Boltzmann, the entropy will be proportional to the
logarithm of the number of configurations available to the system,
i.e. to the logarithm of the number of possible configurations
corresponding to any specified state.

If the chain is considered to be isolated and completely free from
external constraints, all conformations have the same a priori prob-
ability. This condition is approximately realized in the case of a
molecule dissolved in a large excess of a neutral liquid, i.e. aliquid in
which there are no resultant energetic interactions between the
polymer and solvent molecules. If, on the other hand, there are
certain restrictions imposed on the free motion of the chain, the
number of available conformations will be reduced. In a vulcanized
rubber, with which we are ultimately concerned, the original
molecules are connected together at certain points so as to form a
network. The points of cross-linkage thus restrict the motion of the
ends of the intervening segments of molecules or ‘network chains’
to a small element of volume in the immediate vicinity of certain
points, which as we shall see later (Chapter 4) may be regarded as
fixed in space. This situation can be treated by assuming one end of
the chain to be fixed at the origin O (Fig. 3.4) while the other is
confined to a small volume element d7 in the neighbourhood of the
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point P at a distance r from O. In the presence of this restriction, the
number of conformations available to the chain is proportional to
the probability density (eqn (3.5)) multiplied by the size of the
volume element dr. The entropy s of the chain is therefore given by

s =k{ln p(x, y, z) dt}. (3.17)
Substitution of the expression (3.5) for p(x, y, z) thus yields
s = k{In (constant) — b*r*+1In dr}. (3.18)

Since the volume element dr is assumed constant, this may be
written in the form

s =c—kb*r? (3.19)

where c is an arbitrary constant which includes the volume element
dr. In any actual problem we are concerned only with the difference
of entropy between any two states; the constant c is therefore of no
physical significance.

The result (3.19) shows the entropy to have its maximum value
when the two ends of the chain are coincident (r=0) and to
decrease continuously with increasing distance between the ends.

It is important to bear in-mind that there is no unique sense in
which the entropy of a molecule is to be defined, but that any
expression for the entropy (as for the corresponding probability)
must be regarded as applicable only in so far as the specified
conditions of the problem under examination correspond with the
restrictive conditions assumed in the calculation. Entropy is a
property of a statistical system, and if the number of links is
sufficiently large it is legitimate to regard a single chain as a
statistical system. But the chain does not possess an entropy by the
mere fact of having a specified conformation (as, for example, in a
glassy polymer, where this conformation is frozen in), but only by
virtue of the large number of conformations accessible to it under
specified conditions of restraint. With this in mind it will be obvious
that it would be incorrect to take the r-distribution function (3.9), in
which no restriction on the direction of the vector r is involved, as a
basis for the calculation of the entropy of a chain whose ends are
located at fixed positions in space.
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3.8. The tension on a chain

For a chain whose ends are located at specified points separated
by a distance r, the entropy s is given by (3.19) and the correspond-
ing Helmholtz free energy by — Ts. The work required to move one
end of the chain from a distance r to a distance r +dr with respect to
the other is equal to the change in Helmbholtz free energy (eqn
(2.6)), and therefore

dw dA ds

—=—=—T— .20

dr dr Tdr (3:20)
Inserting the value of ds/dr obtained by differentiation of the
entropy function (3.19) we obtain

dW/dr =2k Th. (3.21)

Since work is done in changing the end-to-end distance r, it follows
that there must be a tensile force f acting along the direction of r.
The work done by this force in a displacement dr being given by
dW = f dr, we have

f=dW/dr=2kTbr. (3.22)

Thus, a molecule with its ends fixed at specified points is acted on by
a tensile force in the direction of the line joining its ends and
proportional to the length of that line (Fig. 3.8).

F1G. 3.8. The tension on a chain whose ends are fixed in position is proportional to
the distance r.

Since the tension is proportional to r, the molecule may be
regarded as possessing an elasticity governed by Hooke’s law (stress
proportional to strain). It corresponds, in fact, to a classical spring of
zero unstrained length.
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The spring analogy, however, should not be taken too literally.
Being statistical in origin, the tension in a chain whose end-points
are located at fixed positions will be subject to continual fluctua-
tions, like the pressure exerted by a gas on the walls of its containing
vessel. Likewise, if the molecule is subjected to a constant tension,
its length will be a fluctuating quantity. These fluctuations will
become relatively less important as the number of links in the chain
is increased. The formula (3.22) represents the average value of the
tension over a period of time.

A further point to be remembered is that the linear force-
extension relation (3.22) is subject to the same limitations as the
Gaussian distribution function from which it is derived. It is there-
fore valid only so long as the distance between the ends of the chain
is not so large as to be comparable with its fully extended length.
This means in practice (as will be shown in Chapter 6) that the
distance r should not be more than about one-third of the fully
extended length. For higher chain extensions the Gaussian approxi-
mation becomes increasingly inaccurate and must be replaced by a
more accurate distribution function. This is discussed in Chapter 6.



4

THE ELASTICITY OF A
MOLECULAR NETWORK

4.1. The nature of the problem

THE general form of the force-extension curve for a well-
vulcanized rubber in simple extension is shown in Fig. 1.1 (p. 2).
The abscissae in this diagram represent the extension as a percen-
tage of the unstrained length, and the ordinates the tensile force per
unit area of the unstrained cross-section. This representation of the
force is used for experimental convenience, but the quantity so
defined differs from the true stress, or force per unit area measured
in the strained state. In classical elasticity theory, which is limited to
small strains, the difference is unimportant since the area does not
change significantly on straining, but in rubbers the difference
between the force per unit unstrained area (or nominal stress) and
the true stress is considerable.

Whilst most practical tests are concerned with the properties of
rubber in simple extension, the stress—strain relations for other
types of strain, such as, for example, simple shear or uniaxial
compression, are of equal interest from the theoretical standpoint.
One of the most interesting aspects of the statistical theory is that it
has provided a basis for the correlation of the behaviour of rubbers
under different types of strain. In fact, it has led to the derivation of
general formulae for the principal stresses in terms of the most
general type of strain, from which any particular stress—strain
relationship, e.g. for simple extension or shear, is obtainable as a
special case. This ability to deal with any type of strain, in contrast to
the restriction to simple extension which was characteristic of the
earlier theories referred to in Chapter 1, is one of the outstanding
merits of the statistical theory and is largely responsible for the great
influence which this theory has had on the historical development of
the study of large elastic deformations. At the same time, the
greater range of opportunities thus presented for comparison with
experimental observations has provided a more extensive basis for
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the critical assessment both of the range of validity of the theory and
of its inadequacies and shortcomings.

As explained in earlier chapters, the theory is based on the
concept of a vulcanized rubber as an assembly of long-chain
molecules linked together at a relatively small number of points so
as to form an irregular three-dimensional network. The statistical
treatment of the network is similar in principle to the treatment of
the single chain given in the last chapter; it is required first to
calculate the entropy of the whole assembly of chains as a function
of the macroscopic state of strain in the sample, and from this to
derive the free energy or work of deformation. From the work of
deformation corresponding to a given state of strain the associated
stresses are then readily derived by the application of mechanics.

The first successful attack on this problem was due to Kuhn
(1936), who derived a relation between the elastic modulus and the
molecular weight of the chains, though he did not develop the form
of the stress—strain relation for large strains. More precise treat-
ments, leading to explicit forms of stress—strain relations which are
valid for large strains, were developed by Wall (1942), Flory and
Rehner (1943), James and Guth (1943), and the author (Treloar
1943a, 1943b). These later theories led to results which are sub-
stantially in agreement with each other.

4.2. Detailed development of the theory

Fundamental assumptions

The following presentation of the theory is based essentially on
the original theory of Kuhn, as amended by the author. It makes use
of the following assumptions.

1. The network contains N chains per unit volume, a chain
being defined as the segment of molecule between successive
points of cross-linkage.

2. The mean-square end-to-end distance for the whole assem-
bly of chains in the unstrained state is the same as for a
corresponding set of free chains, and is given by the formula
(3.11) (p. 51).

3. There is no change of volume on deformation.

4. The junction points between chains move on deformation as
if they were embedded in an elastic continuum. As a result
the components of length of each chain change in the same
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ratio as the corresponding dimensions of the bulk rubber.
(Affine deformation assumption.)

5. The entropy of the network is the sum of the entropies of the
individual chains, the latter being given by the formula (3.19)
(p. 56).

The following comments on these assumptions may be made
here.

Assumption 2 is the most obvious simple assumption that can be
made concerning the mean-square value of r in the unstrained state,
but it is not necessarily a correct assumption. Its significance will be
considered in more detail later.

Assumption 3 is well justified on the basis of experiments, which
show the volume changes on deformation to be very small, i.e. of the
order 107 or less.

The affine deformation assumption (4) is the key assumption in
the whole theory, since it relates the deformation of the individual
chains to the macroscopic strain in the material. Though introduced
as an assumption by most authors, its validity has been rigorously
proved in the form of the theory given by James and Guth (1943).
These authors also show that it is fustifiable to neglect the fluctua-
tions of positions of the junction points (arising from the thermal
agitation of the associated chains), and to regard them as fixed at
their mean or most probable positions.

The last assumption (5) is equivalent to the statement that the
chains are ‘Gaussian’.

Calculation of entropy of deformation

Most authors have been concerned with the case of a simple
extension, but it is no more difficult to treat the more general case of
a pure homogeneous strain of any type. This is defined by three
principal extension ratios along three mutually perpendicular axes.
Under such a strain a unit cube (Fig. 4.1) is transformed into a
rectangular parallelepiped having three unequal edge lengths A4, A,,
and A;. These extension ratios may be either greater than 1,
corresponding to a stretch, or less than 1, corresponding to a
compression, provided that the condition for constancy of volume
(assumption 3 above), namely,

A1/\2A3= 1 (41)

is satisfied.
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I

(a) (b)

FIG. 4.1. Pure homogeneous strain: (a) the unstrained state; (b) the strained state.

Let us consider an individual chain (Fig. 4.2) having an end-to-
end distance represented by the vector r,, with components
(X0, Yo, Zo), in the unstrained state of the network, and let (x, y, z) be
the components of the vector length r of the same chain after
deformation. Then by the affine deformation assumption

X = A1Xo, y = A2Yo, Z = A3Zo, (4.2)

the axes of coordinates being chosen to coincide with the principal
axes of strain. The entropy of the chain in the original state, as given
by eqn (3.19), will be

so=c—kb*ro=c—kb*(x+yi+z?), (4.3)

where b is the constant in the Gaussian distribution function (3.3).
The entropy of the same chain in the strained state is obtained by
substituting the values of (x, y, z) given by (4.2) for (xo, yo, 20), i.€.

s=c—kb*(AIxi+Adys+A3z3). (4.3a)

}J

(X0,0:20)

F1G. 4.2. The ‘affine’ deformation of chains.
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The contribution to the total entropy of deformation for the net-
work due to this chain will therefore be

As=s—so= —kb{(A}—Dx3+(A3—1)y3+(A3-1)z3}. (4.4)

The total entropy for all the N chains contained in unit volume of
the network is obtained by summation of the expression (4.4).
Assuming for the moment that the chain contour length or chain
molecular weight is the same for all the chains, the parameter b
(which is a function of chain length) will be constant, and we may
write for the total entropy of deformation

AS=Y As=—kb{(AI-1) L x§+ A~ 1D T yo+(A3-1) X 25} (4.5)

In this expression Y.xj is the sum of the squares of the xo-
components, in the unstrained state of the network, for the assem-
bly of N chains. Since the directions of the chain vectors r, in the

unstrained state are entirely random, there will be no preference for
the x, y, or z directions and hence, remembering that

LxotYystX zo=Y 1,
we may write

Y X=X Yo=2 2Zo=3L T (4.6)
But,

Y r2=Nr, (4.62)

where r3 is the mean-square length of the chains in the unstrained
state. Hence from (4.5),

AS = —INKb*r3(A2+A2+A2-3). (4.7)

If we now introduce the assumption that the mean-square chain-
vector length in the unstrained state is the same as for a correspond-
ing set of free chains we have rj=23/2b? which on insertion into
(4.7) gives

AS = —INkK(AI+A2+A3-3). (4.8)

This result does not contain the parameter b, and hence is not
directly dependent on the chain contour length. It follows that the
same formula would apply even if the contour lengths of the chains
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were not the same for all, as would be the case for a random
cross-linking process.

Work of deformation

The Helmholtz free energy or work of deformation is obtainable
directly from (4.8). Assuming, in accordance with the basic princi-
ples of the kinetic theory, that there is no change of internal energy
on deformation (Chapter 2), we have W= —T AS and hence

W =3NkT(Ai+A3+A3-3), (4.9)

in which W represents the work of deformation or elastically stored
free energy per unit volume of the rubber (iater referred to as the
strain-energy function).

It will be convenient for many purposes to write (4.9) in the form

W=1GO2+ A2+ A2=3), (4.9a)

where
G = NkT. (4.9b)

4.3. Significance of theoretical conclusions

The result represented by eqns (4.9) or (4.9a) is of the utmost
importance. This relation may be thought of as the fundamental
expression by which the elastic properties of a rubber in the
Gaussian region are completely defined, and we shall see in § 4.4
below that it enables the stress—strain relations for any type of strain
to be derived. Itis of particular interest to observe that this equation
(and hence the stress—strain relations derivable from it) involves
only a single physical parameter or elastic constant G which is
dependent on the structure of the material. This constant is related
to N, the number of chains per unit volume, which is itself deter-
mined by the degree of cross-linking; for normal cross-linking (in
which four chains meet at each junction point) it is equal to twice the
number of cross-links per unit volume. It follows that the elastic
properties of a rubber, in so far as they can be represented by the
statistical theory, are independent of the chemical nature of the
molecules of which it is composed, provided only that they have the
necessary length and flexibility for the basic assumptions of the
theory to be satisfied.
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It will be shown later that the elastic constant G in eqns (4.9a) and
(4.9b) is equivalent to the shear modulus. Since the length of the
network chains decreases as the degree of cross-linking is increased,
this constant may be expressed alternatively in terms of the number
average chain molecular weight M.. The appropriate relationship
(which is easily derived) is

G = NkT = pRT/M., (4.9¢)

in which p is the density of the rubber and R the gas constant per
mole.

4.4. The principal stresses

In the state of pure homogeneous strain depicted in Fig. 4.1, there
are three principal stresses acting in directions parallel to the
principal axes of strain on planes corresponding to the faces of the
rectangular block. If these stresses are denoted by t,, ¢,, and ts, the
problem is to determine their magnitude in terms of the cor-
responding principal extension ratios A;, A,, and A;. The derivation
of these general stress—strain relations is based on the expression
(4.9a) for the elastically stored energy, and makes use of the
condition for constancy of volume (eqn (4.1)).

As noted earlier, it is important to distinguish between true and
nominal stresses. We shall define t,, t,, and t; as the forces per unit
strained area, or true stresses, and use the symbols f;, f,, and fs to
represent the corresponding forces per unit unstrained area, or
nominal stresses. For a body initially in the form of a unit cube, the
force f; acts on an area A,A; measured in the strained state; the
corresponding true stress is therefore, from (4.1),

t1=f1/)t2A3=)\1f1, (410)

with similar expressions for ¢, and ;.

To determine the forces, the method used is to equate the change
in the stored energy in any variation of A, A,, and A; to the work
done by the applied forces. However, these three extension ratios
cannot be varied independently of one another, since they are
connected by the constant-volume relation (4.1), which implies that
if any two of these are chosen as independent variables the third is
then determined. Thus if A, and A, are chosen as independent
variables we have A; = 1/A,A,. The strain energy function may thus
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be written
W=3G(AI+A2+1/A3A2). (4.11)

Let us consider, for simplicity, the case when only two forces f, and
f> are applied, so that f;=t,=0 (Fig. 4.3). If the extension in the
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|
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}

F1G. 4.3. Two-dimensional extension under the action of forces f, and f,.

direction A; is increased by the amount dA,, while A, is held
constant, the only work done by the applied forces is that done by
the force f,. Assuming the unstrained block to be in the form of a
unit cube we have then

dW=f dl=f dA,, (4.12)
where dl is the increase in length. From (4.11) we have also
dW=(@W/ar,)dA; = G(A,—1/AiA3) dA,. (4.13)
Equating these values of d W we obtain
fi=G(A—1/A3A3). (4.14)
The corresponding principal stress ¢, from (4.10), is
H=Afi= GAT=1/A1A0) = G(AT—-A)). (4.15)

A similar result is obtained for t,. The three principal stresses thus
become

h=G(A1—A);  6=GA3-A3); =0 (4.16)

To obtain the general solution corresponding to the case when ¢,
is not zero, let us superimpose on to the above stress system a
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negative hydrostatic pressure —p (i.e. a hydrostatic tensile stress
+ p). Since in accordance with Assumption 3 (§ 4.2) the volume
must remain constant this hydrostatic stress can have no effect on
the state of strain. The stresses, however, are each increased by the
amount p to give

ti=G(Ai—A)+p; tL=G(AS—A3)+p; L=p. (4.17)

The interpretation of eqns (4.17) is that for a material which is
incompressible with respect to volume the stresses are indetermi-
nate to the extent of an arbitrary hydrostatic pressure p. Only the
differences between any two of the principal stresses, which are of
course unaffected by the addition of a hydrostatic stress, are deter-
minate. From either (4.16) or (4.17) these are given by

L—bL= G(Ai_)‘g),
L—ty=G(A5—A)), (4.18)
t3_ t1 = G(Ag—l\%).

In most practical problems the fact that the principal stresses are,
in general, indeterminate does not lead to any difficulty, since one of
them can usually be obtained from the boundary conditions. In
particular, if one of the surfaces is stress-free as, for example, in the
case of simple extension, the corresponding principal stress is zero,
and the indeterminacy is automatically removed. For a simple
extension corresponding to an extension ratio A, we have £, =1, =0,
and also, from eqn (4.1), A3 = A3 = 1/A,. Substitution into the first of
eqns (4.18) then yields

t=GAI-1/A)). (4.19)

Making use of (4.10) the corresponding force per unit unstrained
area becomes

fi=GA,—1/A%) (4.19a)

4.5. Significance of single elastic constant

At first sight it seems surprising that a single elastic constant
should be sufficient to define the properties of a rubber, in which the
strains may be large, whereas in the classical theory of elasticity,
which is limited to small strains, two independent elastic constants,
e.g. the bulk modulus k and the shear modulus n, are required. This
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apparent inconsistency is a result of the assumption of constancy of
volume or incompressibility. From the physical standpoint this
assumption implies that changes of volume, which are proportional
to 1/k, are negligible compared with changes of shape, which are
proportional to 1/n, i.e. that the ratio n/k is small compared with
unity. For an ordinary solid n and k are of the same order of
magnitude, but for rubbers the ratio of shear modulus to bulk
modulus is of the order 10™%, and this condition is therefore
satisfied. As a result the response to a stress is effectively deter-
mined solely by the shear modulus n. This difference in the values of
the two elastic constants is a consequence of the totally different
molecular mechanisms responsible for the changes of volume and
changes in shape, respectively, to which attention has already been
drawn in Chapter 2 (cf. also § 4.7 below).

4.6. The elastic properties of a swollen rubber

The phenomenon of the swelling of rubbers in low molecular
weight liquids will be dealt with in Chapter 7. Therefore in this
section we shall not consider the process of swelling as such but will
restrict ourselves to the consideration of the effect of the swelling on
the mechanical properties of a cross-linked rubber. To define the
problem it is assumed that the sample in the unswollen state is in the
form of a cube of unit edge length, and that it contains N chains (per
unit volume). The degree of swelling will be defined in terms of the
volume fraction v, of rubber in the mixture of rubber and liquid; the
volume swelling ratio, referred to the dry state, will thus be 1/v,,
and the corresponding linear dimensions of the swollen sample
(linear swelling ratio) will be Ao =1/v,’. In the following argument
we shall not be concerned with the nature of the swelling liquid, nor
with the question of the equilibrium degree of swelling and the
factors by which it is determined; the parameter v, will be intro-
duced merely as a means of defining the state of swelling of the
network, regardless of whether or not this state is the equilibrium
state with respect to the absorption of liquid.

The swelling process itself corresponds to an isotropic expansion
of the network, and will therefore be accompanied by a reduction in
the network entropy. On the application of a stress to the swollen
rubber there will be a further reduction of entropy due to the
deformation of the already swollen network. The total reduction of
entropy involved in the transformation from the initial unswollen
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unstrained state to the final strained swollen state will thus be the
sum of two terms: one associated purely with the swelling, and the
other with the subsequent strain. Our present interest will be
limited to a consideration of the second of these two terms, this
being the one by which the mechanical properties of the swollen
rubber are determined.

The expression (4.8) for the entropy of deformation, though
originally worked out for the case of a constant-volume deforma-
tion, is equally applicable to the more general case in which this
restriction is not introduced, since its derivation is not in any way
dependent on this limitation. The total entropy change AS, in
passing from the unstrained unswollen state to the strained swollen
state for the most general pure homogeneous strain may therefore
be written in the form

AS,= —sNk(li+ 53+ 5-3), (4.20)

where [, [,, and I; are the lengths of the edges of the original unit
cube, i.e. the principal extension ratios referred to the unswollen
state. The change of entropy AS, associated with the initial isotropic
swelling, corresponding to the linear extension ratio Ao, is

ASo= —INK(3A2—3) = —INk(3v, —3). (4.21)

The entropy of deformation AS' of the swollen network is the
difference between these two quantities, i.e.

AS' = AS,—ASo= —iNK(I2+ 2+ 2 —=30,7%). (4.22)

We now define extension ratios A, A,, and A; with reference to the
unstrained swollen state, so that [, = A, Ay, = A0, ?, etc., and obtain

AS' = —iNkv, 3(A2+A2+A2-3). (4.23)

This is the entropy of deformation per unit volume of the original
unswollen rubber. We require the entropy of deformation AS per
unit volume of the swollen rubber; this is given by

AS = v, AS' = —iNkv A2+ A2+ 12-3). (4.24)

The corresponding strain-energy function for the swollen rubber
thus becomes

W= —TAS =iNkTv (A2 +A2+A2=3). (4.25)

This equation represents the properties of the swollen rubber in
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terms of the extension ratios measured in the swollen state and the
volume fraction of rubber v,. It should be noted, however, that N is
the number of chains per unit volume of the unswollen rubber.

On putting v, =1, this result (4.25) reduces to that previously
obtained for a dry rubber (eqn (4.9)).

Comparison with dry rubber

Comparison of the result expressed by eqn (4.25) with the
corresponding expression for the unswollen rubber shows the
dependence of the stored energy on strain to be of the same form in
both cases, the only difference being in the value of the shear
modulus. If G and G’ are the respective moduli in the unswollen
and in the swollen states, then

. pRT ,
f=”Mc 5, (4.26)

GI:sz

where p is the density in the unswollen state. The resultant stress—
strain relations for the swollen rubber, which are of the type

h—t=Gv (A3—A2) =G'(A2—A), (4.27)

show a corresponding difference. These results imply that the only
effect of the swelling is to reduce the modulus in inverse proportion
to the cube root of the swelling ratio, without changing the form of
the stress—strain relations.

Alternative formula for network entropy

By the use of a different method of calculating the entropy of
deformation, based on the consideration of the entropy of forma-
tion of the network from a corresponding set of independent chains,
Flory (1950) and Wall and Flory (1951) have obtained the result

AS,= —Nk{li + 3+ ;-3 —In (l,LL)}, (4.28)

which differs from (4.20) by the inclusion of the term —In (I;1,15).
The method of derivation of this formula has been the subject of
much discussion, which, however, remains inconclusive. Fortu-
nately the two formulae (4.20) and (4.28) become identical for the
case of an unswollen rubber, for which In ({,1,1;) =0, while for a
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swollen rubber the effect of the additional term is in most practical
cases rather small.

4.7. Development of the theory by James and Guth

In this section we shall examine more critically the assumptions
on which the network theory as presented above was based, and
consider some of the refinements which have been suggested with a
view to bringing the theoretical model into closer correspondence
with physical reality.

The first and most obvious objection to the theory in the form
outlined above is that the network junction points are conceived of
as fixed at particular points in space. The freedom of movement of
the system is thus limited to the lengths of chain between these fixed
points. The function used to represent the entropy of the individual
chains corresponds precisely with this conception, since it is derived
on the basis that the ends of the chain are held at fixed positions
(p. 55). In reality, of course, the junction points are not fixed but
take part in the micro-Brownian motion of the associated chain
elements or links. In the very detailed and precise treatment given
by James and Guth (1943) it is only those junction points which are
located on the boundary surfaces of the rubber which are specified
as fixed; all the other junction points are allowed complete statisti-
cal freedom, subject only to the restraints imposed by the associated
network chains through their mutual interconnections. The system
thus comprises a certain number of fixed or boundary junction
points, whose relative positions define the state of strain, together
with a very much larger number of fluctuating junction points. The
statistical problem is to compute the number of configurations, or
the configurational entropy, of the whole assembly of chains for
specified positions of the boundary junction points.

The solution of this problem involves a rather lengthy mathemat-
ical argument, which will not be reproduced. The detailed analysis,
however, reveals a number of particularly significant properties of
the Gaussian network, of which the most important are the
following.

1. The fluctuations of position of any junction point in a net-
work of Gaussian chains may be described by a Gaussian
probability function. The mean value of the fluctuations of
any given junction point is independent of the strain in the
network.
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2. The average force between any two adjacent junction points
is the same as if both were fixed at their most probable
positions.

3. The average forces exerted by the network are the same as
would be produced if each chain were replaced by a classical
elastic spring exerting a tension proportional to its length.

4. As a corollary to point 3, if the network is subjected to a
homogeneous strain, the average positions of the junction
points will be displaced as if they were embedded in an elastic
continuum.

5. The forces exerted by the network are the same whether any
given junction point is treated as free, or as fixed at its most
probable position.

6. For the calculation of the forces acting on the bounding
surfaces, the network may be replaced by a fictitious system
of three independent sets of Gaussian chains parallel to the
three coordinate axes.

These and other results are proved by a rigorous analysis which is
quite general in that it involves no assumptions regarding the
distribution of chain contour lengths or the detailed structure of the
network. Proposition 4 establishes the validity of the affine defor-
mation assumption used in the elementary presentation of the
theory. Proposition 1 implies that the portion of the configurational
entropy which is associated with the fluctuations of the junction
points is independent of strain, and hence may be ignored in
calculating the entropy of deformation (the same principle is
involved in proposition 5). This justifies the elementary treatment
in which the junction points are considered to be fixed.

In the previous chapter it was shown that a single chain could be
compared in its elastic properties with a classical elastic spring, in
which the force is proportional to its end-to-end distance. Propo-
sition 3 carries the analogy still further, and implies that each chain
in the network is under a tension which (in the absence of any other
forces) would tend to reduce the volume of the network to zero. In
an actual rubber this contractile tendency is counterbalanced by
mutual repulsive forces between the atoms. Thus James and Guth
distinguish, in the actual rubber, two quite different types of forces,
the first being those associated with the configurational entropy of
the network, while the second, arising from van der Waals’ interac-
tions between the molecules, determines the volume of the system,
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or its response to hydrostatic pressure. The assumption involved in
the statistical treatment is that the free energy of deformation is
associated only with the network configurations, and not at all with
the interatomic forces. This is true as a first approximation; so long,
in fact, as changes of volume are of negligible amount, so that the
rubber may be considered incompressible. When this condition is
satisfied an arbitrary hydrostatic pressure may be introduced as
required to balance the internal tension due to the network, the
value of this pressure being determined by the boundary conditions.

It is seen, therefore, that the more precise analysis of James and
Guth justifies most of the assumptions on which the elementary
treatment given in § 4.2 was based. There remains, however, one
important exception to this general conclusion, which must now be
examined more critically. The exception is the assumption that the
mean-square end-to-end distance for the chains in the unstrained
network is the same as for a corresponding set of free chains. This
assumption is related to the rather more specific assumption (which
was implied in the early theories of Kuhn (1936) and of Wall (1942),
and reproduced in the first edition of this book) that the distribution
of chain vector lengths in the unstrained network is identical to the
instantaneous distribution of chain vector lengths for a correspond-
ing set of free chains. At first sight this appears to be a plausible
assumption, for in any assembly of chains, prior to cross-linking, not
only the whole molecules, but also all segments within the
molecules (provided they contain a sufficient number of links) will
be describable in terms of the Gaussian distribution function. If at
any instant a number of cross-linkages are simultaneously intro-
duced so as to form a network, the vector-length distribution
immediately after cross-linking might be expected to remain
unchanged.

This argument may be challenged on two grounds. First, even
though the distribution of chain vector lengths immediately after
cross-linking were consistent with the above assumption it would
not remain so. For the introduction of additional restraints in the
form of cross-linkages creates a totally new situation in which the
junction points will tend to move to new positions in which they are
in equilibrium under the action of the effective tensions in the
associated chains—tensions which were non-existent prior to cross-
linking. Secondly, in any actual cross-linking reaction the junction
points are introduced not simultaneously but progressively, so that
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the system continuously approaches a new equilibrium state after
the introduction of each successive junction point. Under these
conditions the original assumption is even less justifiable.

James and Guth (1947) show that the general expression for the
modulus may be written in the form

G=kTY nAz, (4.29)

where n. is the number of links in the 7th chain, and A, is its mean
fractional extension r/n! in the unstrained state of the network. In
the case when the distribution of vector lengths in the unstrained
state is equal to that for a corresponding set of free chains this
expression reduces to the form

G =NkT (4.29a)

in agreement with the elementary theory. An attempt to evaluate
the expression (4.29) without introducing this assumption is dis-
cussed in § 4.9 below.

4.8. Network imperfections: ‘loose end’ corrections

In the preceding treatment of the network it has been tacitly
assumed that the molecules originally present in the rubber are
cross-linked in such a way as to form an assembly of mutually
interconnected segments or network ‘chains’. For normal ‘tet-
rafunctional’ cross-linking, in which four network chains terminate
at each junction point, the number of chains will be exactly twice the
number of junction points, and every chain will contribute equally
to the network elasticity. This is obviously an oversimplification, for
it is clear that in any actual process involving random cross-linking
various types of departure from this idealized structure must be
present. Three of the principal types of departure, or ‘network
defects’, to which Flory (1944) has drawn attention, are illustrated
in Fig. 4.4. The first (Fig. 4.4(a)) consists of an interlooping or
physical entanglement between chains which, by restricting the
number of available configurations, has an effect comparable to that
of a chemical cross-linkage, and will tend to increase the modulus.
The second type of defect (Fig. 4.4(b)) occurs as a result of the
linkage of two points on a single chain, giving rise to a closed loop
which makes no contribution to the network elasticity; such
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0%

F1G. 4.4. Types of network defect. (Flory 1944.) @Cross-linkages, OChain termina-
tion.

intramolecular linkages should therefore be discounted in the
evaluation of the modulus. The third type (Fig. 4.4(c)) consists of
chains which are connected to the network at one end only; such
terminal chains or ‘loose ends’ likewise make no contribution to the
network elasticity.

Of these network defects, only the last was treated quantitatively
by Flory. Taking the number of original or primary molecules
before cross-linking to be N,, he argued that N, — 1 intermolecular
linkages are required to link these together into a single ramified
structure in which there are no closed loops. Thereafter, each
additional corss-link will produce one closed loop, or two network
chains. It is only these additional cross-linkages which are effective
in network formation. Taking v, to be the total number of cross-
linkages introduced, the number v. of these which are effective will
therefore he

Ve =vg— N,,

where N, is taken as equivalent to N,—1. The number N, of
effective chains will be twice this quantity, i.e.

Ne=2Ve=2VQ(1_Np/V()). (4.30)

If no defects were present, we should have N, =2v,. The additional
factor 1—N,/v, thus represents the effect of the loose ends. It is
convenient to express this in terms of the molecular weight M of the
primary molecules. For unit volume of rubber of density p, we have
N, =pA,/M, where A, is Avogadro’s number, and similarly 2v, =
pAo/M,, where M. is the ‘chain molecular weight’ for the idealized
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network, in which loose ends are absent. Hence

N.=2v,(1-2M./M). (4.31)
The corresponding shear modulus is given by
pR T( 2Mc>
=N.kT = ——). .
G =NAT="=1-= (4.32)

It will be seen that this reduces to the elementary form (4.9c) for

sufficiently large values of the primary molecular weight, i.e. as
1/M-0.

Later modifications

While Flory’s correction for loose ends, represented by eqn
(4.32), has been frequently applied in the interpretation of experi-
mental data (cf. Chapter 8), later workers have introduced further
modifications based on more realistic treatments of the process of

1-0

0-8

Scanlan

I ! 1
0-0 0-2 0-4 06 0-8 1-0
M. M
F1G. 4.5. Correction for ‘loose ends’ as derived by Scanlan (1960) for primary chains
of uniform length, compared with Flory’s formula. The quantity N./2v, represents
the fraction of effective cross-linkages.
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network formation. These treatments take into account such factors
as the distinction between different types of junction points (tri-
functional, tetra-functional, etc.), and the effect of a ‘sol” compo-
nent not attached to the coherent network structure. In general,
these treatments do not lead to explicit algebraic solutions, but
require evaluation by numerical methods. Particular mention may
be made of the theories of Case (1960), Scanlan (1960), and
Gordon, Kucharik, and Ward (1970). These agree in finding that
Flory’s formula overestimates the effect of loose ends. The differ-
ence depends to some extent on the distribution of chain lengths
among the primary molecules, but the results of Scanlan, cor-
responding to a uniform chain length, may be taken as representa-
tive (Fig. 4.5). For high degrees of cross-linking the reduction in
modulus due to loose ends is only half that given by Flory’s formula
(corrected to take account of the presence of a ‘sol” component,
representing chains not connected to the network). Since for practi-
cal vulcanized rubbers the values of M./M are typically in the
neighbourhood of 0-05, this will apply also to most practical cases.
This particular conclusion, moreover, is unaffected by the replace-
ment of the uniform initial chain length by a random distribution,
and may therefore be regarded as quite general.

4.9. The absolute value of the modulus

The discounting of ineffective chains which contribute nothing to
the network elasticity still leaves open the question of the value to
be assigned to the mean-square chain vector length in the
unstrained network. This question has been examined in detail by
James and Guth (1947), who consider the cross-linking to take
place not instantaneously but progressively, the network being
allowed to come to equilibrium after the introduction of each
successive cross-linkage. They note that the detailed solution to this
problem requires a knowledge not only of the number of effective
cross-linkages in the final network (in the sense used in the preced-
ing section) but also of the number B, which were effective or
‘active’ at the time when they were introduced. This quantity B, is
not obtainable from a knowledge of the final network structure but
is a ‘historical’ parameter.

James and Guth’s treatment involves the calculation of the
increase in modulus dG/d B, resulting from the introduction of one
cross-link between any two arbitrary points (or segments) of the
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partially formed coherent network existing at any instant. The
result, which is only approximate, is expressed by the relation

dG/dB.=kT. (4.33)

This relation was shown to be exact for two extreme cases, cor-
responding to (a) very loose and (b) very tight ‘coupling’ or topolog-
ical connection between the two points to be cross-linked. It was
also shown to be a very close approximation (i.e. to within 4 per
cent) for an idealized regular cubic network. It was therefore
considered to be substantially correct for the general case.

The result (4.33) may be compared with that given by the more
elementary theory, as represented by eqn (4.29a). Since the number
of chains is in this case taken to be equal to twice the number of
cross-links, eqn (4.29a) would yield an increase of modutus of 2kT
per cross-link introduced. Eqn (4.33) therefore represents a reduc-
tion of one-half compared with the standard formula. This reduc-
tion expresses the effect of the subsequent adjustment of the
junction-point positions after the introduction of an additional
cross-linkage—a process which is necessarily accompanied by an
increase of entropy of the whole assembly, and therefore by a
reduction in the mean-square vector extension of the chains.

The second stage of James and Guth’s treatment consisted in
relating the number N, of effective chains? in the final network to
the number B, of cross-linkages which were ‘active’ at the time of
their formation. Unfortunately this is exceedingly difficult to esti-
mate, since each new cross-link introduced may increase the
number of effective chains by 0, 1, 2, or more. James and Guth
consider that it is ‘reasonable to expect’ that

N.=2B,, (4.34)

this being the relation which would apply at relatively high degrees
of cross-linking, if the effects of loose ends were disregarded. Taken
together with (4.35) this leads to the value of modulus

=3NkT, (4.35)

which again represents a reduction of one-half compared with the
standard formula (4.29a).

T Given by G, in James and Guth’s notation.
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Criticism of James and Guth’s conclusion

While James and Guth’s criticism of the elementary theory must
be accepted, it is rather difficult to assess the reliability of their final
conclusion. Although the result represented by (4.33) is approxi-
mate only, the analysis indicates that it should be a fairly close
approximation. It is in connection with (4.34) that the more serious
uncertainty arises, since this estimate has no rigorous foundation.
Bearing this in mind, the question of the precise significance of the
factor 3 in (4.35) must remain open to doubt.

Taking all aspects of the problem into account there necessarily
remains some uncertainty in the quantitative evaluation of the
modulus, since any of the proposed representations of the net-
work must depart to some extent from the conditions corresponding
to even the simplest real material. An uncertainty corresponding to
a factor of two between different forms of the theory probably
represents the best that can be expected in the circumstances, and is
in any case not likely to be of great practical importance.



5

EXPERIMENTAL EXAMINATION
OF THE STATISTICAL THEORY

5.1. Introduction

IN the last chapter we saw that the statistical network theory leads
to an expression for the work of deformation in a pure homogene-
ous strain of the most general type (eqn (4.9)), and to corresponding
general stress—strain relations (eqns (4.18)), which involve only a
single material constant or modulus, which is related to the degree
of cross-linking or number of chains per unit volume of the network
(eqn 4.9b)). Attempts to verify the theory by comparison with the
actual properties of rubbers have been concerned both with the
form of the stress—strain relations, and with the comparison of the
measured value of the modulus with that derived from chemical
estimates of the degree of cross-linking. Only the first of these two
aspects—the form of the stress—strain relations—will be considered
in the present chapter, the question of the absolute value of the
modulus being the subject of Chapter 8.

Reference has already been made to the fact that most of the
early studies, being restricted to the case of simple extension, were
not capable of providing a critical assessment of the statistical
theory, whose particular merit lies in its ability to predict the
behaviour to be expected in any type of strain. The main emphasis,
therefore, will be on the application of the theory to different types
of strain. For this purpose, we shall examine certain particularly
simple types of strain which are most readily produced and which
display the significant features of the phenomena encountered in
the most tangible form. These are (1) simple extension, (2) uniaxial
compression or equi-biaxial extension, and (3) shear. The more
complex problem of the pure homogeneous strain will not be
examined at this stage, but will be deferred to Chapter 10, in which
the problem of the mechanics of rubber is considered in a more
general way.

The theoretical relations corresponding to the above particular
types of strain will first be derived.
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5.2. Particular stress—strain relations
Simple extension

In this type of strain one dimension of the specimen, which for
simplicity may be taken to be a cube of unit edge length (Fig. 5.1), is

i
f=-—- 1 f
VA [
/ :
£
(a) (b) IJ (©)

1 5
A3

F1G. 5.1. Types of strain. (a) Unstrained state; (b) simple extension; (c) uniform
two-dimensional (equi-biaxial) extension.

increased in the ratio A while the other two dimensions are cor-
respondingly reduced. For constancy of volume the incompressibil-
ity condition (eqn (4.1)) then gives

A=A, A=As=AT (5.1)
The corresponding strain energy, from (4.9a), is therefore
W=:G(A*+2/A -3). (5.2)

The only force acting is the tensile force in the direction of the
extension. If f is the magnitude of this force per unit cross-sectional
area measured in the unstrained state, the work done in increasing
the length by an amount d/ is dW = f d/ = f dA, hence

F=dW/dA = G(A —1/A2). (5.3)

The quantity f is the so-called nominal stress. Since, from (5.1), the
cross-sectional area is reduced in the ratio 1/A on straining, the true
stress ¢ (i.e. the force per unit area measured in the strained state) is
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given by

f 2
=——=)M=G(A*—-1/A 4
t=1 7 Af = G( /A), (5.4)
which is the form derived earlier (eqn (4.19)) from the general
stress—strain relations.

Uniaxial compression

The state of strain known as uniaxial compression is obtained by
the application of inwardly directed forces to a pair of opposite
surfaces of a cubical block (or, in the case of a cylinder, in a direction
parallel to the axis), the lateral surfaces being free of stress. This
type of strain is formally identical to simple extension, but in this
case A (the compression ratio) is less than 1. The expansion of the
lateral dimensions is in the ratio A~ 2 in accordance with (5.1). The
force per unit unstrained area is again given by (5.3), but in this case

4

Extension ratio

Tensile or comprehensive force

-6

F1G. 5.2. Theoretical relation between force and extension (or compression) ratio
(eqn (5.3), with G =1-0).
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f will be negative (i.e. compressive). Thus both elongation and
compression are represented by a single curve, having the form
shown in Fig. 5.2.

Equi-biaxial extension (inflation)

In this type of strain the rubber is stretched by equal amounts in
two directions at right angles (Fig. 5.1(c)). Such a strain occurs, for
example, in the inflation of a spherical balloon. The state of strain
corresponds exactly with that produced by uniaxial compression,
the only difference being in the nature of the applied stress. If A, is
the stretch ratio in the plane of the sheet, we have (as for uniaxial
extension or compression, eqns (5.1))

A2=As=A7%, (5.5)

where A, corresponds to the thickness direction.

Since the stress t; normal to the plane of the sheet is zero, the
stress £, (or &) in the plane of the sheet is obtainable from eqns
(4.18). Taking into account the relation (5.5) we have, therefore,

t2=t3=G(A%—A§)=G(A§—1//\§). (5.6)

This equation represents the true stress (force per unit strained
area) in the sheet, as a function of the extension ratio in the
two-dimensional extension. In the case of a thin sheet (e.g. as in
an inflated balloon) it is of interest to calculate the force f actingon a
section of unit length (in the strained state) cut at right angles to the
plane of the sheet. If d, is the original thickness, the area on which
the force f acts is A,do, hence

f=t2/\1do=t2doA;2=Gdo(l—l/Ag) (57)

In the equi-biaxial extension all lines in the plane of the extension
are changed in the same ratio, and the stress is the same on all
sections normal to this plane. For a thin sheet this stress may be
thought of as a surface tension, or force f per unit length, whose
magnitude is given by (5.7). For extensions exceeding A = 2-0 this
tension becomes substantially independent of the extension and is
therefore analogous to the surface tension of a liquid (Fig. 5.5).

Simple shear

Simple shear is a type of strain which may be represented by the
sliding of planes which are parallel to a given plane through a
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F1G. 5.3. (a) Simple shear; (b) pure shear.

distance proportional to their distance from the given plane (Fig.
5.3(a)). It is by definition a constant-volume deformation, whether
or not the material is incompressible. The lateral faces of a cube are
transformed by simple shear into parallelograms, and the amount of
the shear is measured by the tangent of the angle ¢ through which a
vertical edge is tilted. There is no strain in the plane normal to the
plane x0y (the plane of shear); the extension ratio corresponding to
this direction is therefore unity. Since the volume is constant, the
three principal extension ratios may therefore be expressed in terms
of the major axis of strain A4, i.e.

A}z/\.l, Azzl, A3=1/A1. (5.8)

It is to be noted that the directions of the principal axes of strain are
not related to the direction of sliding in any simple way, and depend
on the magnitude of the strain. (For small strains, the principal axes
are inclined at 45° to the direction of sliding.) The amount of the
shear y may be related either to the angle ¢ or to the principal
extension ratios (Love 1934) thus

y=tan ¢ =A;—1/A.. (5.9)
The strain energy W, from (5.1) and (5.8), has the form
W=1G(A1+1/A}-2)=3Gv". (5.10)

Assuming that the work done on the body is due entirely to the
shear stress £, it follows that

t, =dW/dy = Gy, (5.11)

which means that the shearing stress is proportional to the shear
strain. Hooke’s law is therefore obeyed in simple shear, and the



OF THE STATISTICAL THEORY 85

quantity G corresponds to the modulus of rigidity in the classical
theory of elasticity. The statistical theory thus leads to the interest-
ing result that a rubber should obey Hooke’s law in shear, though
not in extension or compression.

Pure shear

For some purposes the less familiar type of deformation known as
pure shear is more convenient than simple shear. In general, a pure
strain is one which involves extensions in three perpendicular
directions, without rotation of the principal axes of strain; the most
general homogeneous strain involves both extensions and rotations.
In a pure shear the extension ratios are represented as before by
eqns (5.8), but the axes of strain are not rotated (Fig. 5.3(b)). A
simple shear is thus equivalent to a pure shear together with a
rotation.

The state corresponding to pure shear, in the case of an incom-
pressible material, may be maintained by principal stresses ¢, and ¢,
only, with t; = 0. For a material obeying the relations (4.18) (p. 67)
these have the values

t=GAI=1/A9), L=G(1—-1/A3). (5.12)

These are the stresses referred to the strained surface areas. The
corresponding forces per unit unstrained area are, from eqn (4.10),

fi=GA—1/A3),  f,=G(1-1/A)). (5.13)

5.3. Experimental examination of stress—strain relations

In examining the applicability of the stress-strain relations
deduced above, it is desirable to work with samples of identical
material under all types of strain, so that numerical values of the
constant G derived from experiments involving different types of
strain may be directly compared. Systematic experiments of this
kind were originally carried out by the author (Treloar 1944a) on a
natural rubber vulcanizate containing 8 per cent of sulphur, this
being chosen for its relative freedom from hysteresis compared with
more typical commercial vulcanizates available at that time. The
types of strain studied were (a) simple extension, (b) equi-biaxial
extension, and (c) pure shear. By working with equi-biaxial (two-
dimensional) extension rather than the equivalent uniaxial com-
pression the difficulties associated with the bulging of the sample
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under compressive loading were avoided, and hence very much
larger values of equivalent compressive strain could be achieved.
Similarly, from experiments on pure shear it was possible to obtain
much larger values of strain than would have been practicable for
the equivalent simple shear. Furthermore, each of these three types
of strain could be carried out on samples cut from a single sheet of
vulcanized rubber, so that any variations in modulus which might
have arisen from the use of independently vulcanized samples were
automatically eliminated.

Simple extension

Fig. 5.4 shows the behaviour in simple extension, obtained by
direct loading. Up to about 450 per cent extension (A =5-5) the
curves were substantially reversible (curve (c)), but at higher elon-
gations hysteresis effects became apparent (curve (b)). The curve
(a), for which the experimental points are shown, was continued up
to the breaking point. The theoretical curve (eqn (5.3)) has been
fitted to the experimental data in the region of small extensions, the
required value of the constant G being 0-39 N-mm .

Comparison of the theoretical and experimental curves shows a
rather poor agreement. The deviations are of two distinct kinds.
First, in the middle region of extension (from A =15 to A =4), the
experimental curve falls below the theoretical one, due to the fact
that its curvature is initially greater than it should be according to
the theory. Secondly, at high extensions (A >4), the slope of the
experimental curve begins to rise, the rate of this rise increasing
progressively as the breaking point is approached.

The nature of these deviations, which are more apparent in the
case of simple extension than in other types of strain, will be
examined in some detail in § 5.4. It will be sufficient here to note
that the more prominent of the above two effects, namely, the
upturn of the curve in the high-extension region, is not to be
regarded as a failure of the statistical theory as such but is the result
of a mathematical simplification inherent in the Gaussian statistical
theory, based on the distribution function (3.3) (p. 47). As pointed
out in Chapter 4, this theory is valid only so long as the extension is
not too great; for very large extensions the effect of the finite
extensibility of the chains (and hence of the network) must be taken
into account. The non-Gaussian theory discussed in the following
chapter, in which this effect is taken into account, will be seen to
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F1G. 5.4. Simple extension. Comparison of experimental curve with theoretical form
(eqn (5.3)) (G=0-39 N mm™).
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provide a basis for the interpretation of the upward curvature at
large strains.

The remaining deviation—the lower stress in the intermediate
region of strain—presents a more serious difficulty, for which no
satisfactory explanation has yet been proposed.

Equi-biaxial extension (inflation)

This type of strain was produced by the inflation of a circular
rubber sheet clamped round its circumference, after the manner of a
bursting test. The strain in the sheet is of course not uniform over its
surface, but it is very nearly uniform over a region in the neighbour-
hood of the centre of the sheet, or ‘pole’ of the spheroidal balloon,
to which the measurements of strain were confined. The measure-
ment of the extension ratio A, in the plane of the sheet was obtained
by observing the length of the circular arc between two marked
points on the sheet symmetrically disposed with respect to the
centre. In addition the radius r of curvature in the polar region and
the corresponding inflation pressure p were observed. By analogy
with surface tension, the latter is related to the tensile force f per
unit length of section by the equation

p=2f/r. (5.14)

The result is shown in Fig. 5.5, in which the ordinate is f/d,, where
do, is the orginal thickness of the sheet. The continuous curve
corresponds to the theoretical relation (5.7). The agreement
between theory and experiment is very close up to A,==3-0, after
which the effects of the limited extensibility of the network begin to
appear. It is satisfactory to note that the value of the parameter G
which most nearly represents these results is the same as that chosen
to fit the first part of the curve for simple extension.

Equivalent uniaxial compression

The experimental values of the force f in the plane of the sheet
may be used to calculate the equivalent compressive stress in the
corresponding uniaxial compression. According to eqn (5.7) the
true stress ¢, in the plane of the inflated sheet is given by

t= A2f/ do. (5.15)

Superposition of a hydrostatic pressure —t, reduces the tensile
stresses f, and #; to zero and gives a resultant compressive stress
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FIG. 5.5. Two-dimensional (equi-biaxial) extension. Comparison of experimental
curve with theoretical form (eqn (5.7)) (G =0-39 Nmm ™).

normal to the surface of the sheet of the same magnitude. Hence,
ty=A3f/do. (5.16)

This is the true compressive stress. The corresponding compressive
force f; acting on unit area measured in the unstrained state is
readily obtained. Since unit unstrained area in the plane of the sheet
becomes an area A; in the strained state, we have

f1=t1)\§=)tg /do. (517)

Eqn (5.17) may be used to convert values of f, the tensile force in
the plane of the sheet, to f;, the equivalent compressive force. This
may then be plotted against A, the equivalent compression ratio (as
given by eqn (5.5)). The result so obtained is shown in Fig. 5.6,
together with the first part of the simple extension curve already
given in Fig. 5.4. Both the extension and the compression data are
seen to lie approximately on a single curve, corresponding to the
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F1G. 5.6. Complete extension and compression curve. —— Theoretical relation
(eqn (5.3)). Compression data from equivalent two-dimensional extension (Fig. 5.5).

theoretical relation (5.3), with no discontinuity in passing through
the origin.

It is noteworthy, however, that the compression data fit the
theoretical curve over a much greater fraction of the range covered
than the data for simple extension.

Pure shear

The definitions of pure shear and simple shear, and the relation
between these two types of strain, have been discussed in § 5.2
above. For an incompressible material such as rubber, a state of
pure shear may be achieved by the stretching of a rectangular sheet
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in one direction so as to produce an extension ratio A;, while
maintaining the perpendicular or transverse dimension unchanged
(A, =1). Ideally, this necessitates the application of tensile forces f,
in the direction of the extension and f in the transverse direction. In
practice, however, if the width of the sheet is very much greater than
its ‘length’, the direct application of forces in the transverse direc-
tion can be dispensed with, these forces being automatically gener-
ated as a result of the restraints introduced by the clamps. This is
illustrated in Fig. 5.7, which represents the appearance of a wide

A B

C D

F1G. 5.7. Distribution of strain on stretching of wide sheet. The edges AB and CD are
clamped.

strip (75 mm X 5 mm), on whose surface a set of equidistant vertical
lines had been marked, when stretched to about 6 times its original
length. It is seen that except in the immediate vicinity of the free
edge the state of strain is substantially uniform, corresponding to
A, = 1. (In principle it is possible, by working with strips of equal
length but different widths, to eliminate the edge effect; in practice,
however, this was found to be an unnecessary complication.)

Measurement of the tensile force f, (per unit unstrained area) as a
function of the principal extension ratio A, for such a sheet, by the
same method as that used in the simple extension experiment,
resulted in the curve shown in Fig. 5.8. The theoretical form (5.13),
with G =0-39 N mm™2, is shown for comparison. It is seen that the
deviations from the theoretical form are of a similar kind to those
observed in simple extension, though the amount of the difference
in the region A, = 1-5-4-0 is relatively somewhat smaller.

Equivalent simple shear

From the measured force f; in the principal direction A; for pure
shear it is possible to calculate the shear stress in the equivalent
simple shear. This could be done by direct resolution of the force,
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FiG. 5.8. Force—extension relation for wide sheet (pure shear) compared with
theoretical relation f; = G(A; —1/A3) (G =0-39N mm 7).

but the algebraic transformations are somewhat involved (cf. Chap-
ter 12). A very simple solution may, however, be obtained by
making use of the strain energy or work of deformation W, per unit
volume. In the case of pure shear the only work done is that done by
the force f; (since A, is constant). Hence, for an incremental
extension dA,,

dW=f1 dAl. (5.18)

Similarly, for the equivalent simple shear, the only work done is that
done by the shear stress ¢, (Fig. 5.3(a)), hence for the equivalent
increase dvy in shear strain

dw=t, dy. (5.19)
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These two expressions must be identical, hence

da
by = flgj. (5.20)
Making use of the relation (5.9) between A, and y we obtain
dA, 1
—= . 5.21
dy 1+A% ( )
The shear stress in the equivalent simple shear thus becomes
fi
by =73 .
Y143 (5.22)

Values of ¢, calculated in this way from the data presented in Fig.
5.8 are plotted in Fig. 5.9 against the equivalent shear strain vy

1
l

(a)

(b)

[

Shear stress (N mm ~2)

04—

0.0 | | I ] J
0 1 2 3 4 5
Shear strain
F1G. 5.9. Relation between shear stress and shear strain (curve (b)) calculated from
data of Fig. 5.8. The theoretical line (a) has the slope 0:39 N mm™.
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derived from eqn (5.9). The linear relation (5.11) required by the
theory, with a value of shear modulus G of 0-39 N mm™2, is seen to
fit the experimental data adequately up to a shear strain of 1-0
(corresponding to an angle of shear ¢ of 45°). Beyond this point the
experimental curve falls below the theoretical line, in accordance
with the corresponding deviation of the force in pure shear appear-
ing in Fig. 5.8.

Alternative representation of experimental data

An alternative representation of the data of Figs 5.4,5.5,and 5.8,
which provides a more direct comparison between the various types
of strain, is based on eqns (4.18), according to which the difference
of principal stresses is proportional to the difference of the squares
of the corresponding extension ratios. Conversion of the forces to

Equi - biaxial s
extension N\ Shear/ 7

«8F o
E
E 2
z -~ - ,
N s Simple extension
| //
- Fe
4+ 78
/
— == Theoretical form (eqn (4.18),
with G = 0-:39 N mm 2
0 ' 20 :
¢ W ieag B =

FI1G. 5.10. Alternative representation of data given in figs. 5.3, 5.4 and 5.8.

true stresses yields the results shown in Fig. 5.10 for simple exten-
sion, equi-biaxial extension, and shear. It is seen that the three
respective curves converge towards the theoretical straight line (of
slope 0-39 N mm ™) as the strain is reduced.
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This form of plot brings out the considerable difference between
the data for equi-biaxial extension (or equivalent uniaxial compres-
sion), which agree very closely with the theoretical form up to quite
large values of the strain, and the data for extension and shear, both
of which deviate markedly from the theory at relatively small values
of strain. It also brings out the similarities in the final upward
tendency in the region of very high strains, associated with the finite
chain extensibility (non-Gaussian region).

5.4. Deviations from theory: Mooney equation

The deviations from the theoretical form of force—extension
curve for simple extension have been extensively studied by later
workers, who have shown that they are consistent with a semi-
empirical formula devised by Mooney (1940), namely,

f=2A=1/A%)(C.+ C/A), (5.23)

where f, as before, is the force per unit unstrained area correspond-
ing to the extension ratio A. This formula contains two empirical
constants, C; and C;; the formula (5.3) derived from the statistical
theory corresponds to the particular case C,=0.

The theoretical basis of the Mooney equation is fully discussed in
Chapter 10 and will not be considered at this stage except to say that
itis derived on the assumption that Hooke’s law is obeyed in simple
shear. Eqn (5.23) is therefore the most general form of force-
extension relation for simple extension consistent with a linear
stress—strain relation in simple shear.

Writing eqn (5.23) in the form

f &
2(A_1/A2)—C,+/\, (5.23a)
it is seen that a plot of f/2(A —1/A?) against 1/A should yield a
straight line of slope C, and intercept C; + C, on the vertical axis at
1/A = 1. Typical plots of this kind for a series of vulcanized rubber
compounds, taken from the work of Gumbrell, Mullins, and Rivlin
(1953) are shown in Fig. 5.11, from which it appears that the
constant C; varies widely according to the degree of vulcanization
(the actual values ranging from 0-10 Nmm™ to 0-31 Nmm™?),
while C, remains approximately constant (0-10 N mm™2). This
result suggests that C, is a function of the network structure and is
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F1G. 5.11. Mooney plots for various rubbers in simple extension. (Gumbrell,
Mullins, and Rivlin 1953.)

analogous to 3G in the statistical theory, while C, has some entirely
independent origin. This tentative conclusion receives further sup-
port from the study of the effect of swelling by an organic liquid,
which was originally shown by Gee (1946b) to reduce the extent of
the deviations from the statistical theory. If the statistical theory
were applicable we should have, on the basis of eqn (4.27) (p. 70),

f'=Gu(A —1/A%), (5.24)

where f’ is the force referred to the unstrained unswollen area, v, is
the volume fraction of rubber, and G = NkT. The quantity ¢,
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defined as

__ [
b= 20 =107 (5.24a)

should on this basis be a constant. Fig. 5.12 shows plots of ¢ against
1/A, for different degrees of swelling, as obtained by Gumbrell,

0-200

0-175

¢ (N mm™?)

0-150

T

0-125 |-
0-4

F1G. 5.12. Effect of swelling in benzene on behaviour in simple extension (v, =
volume fraction of rubber; ¢ defined by (eqn (5.24a)) (Gumbrell et al. 1953.)

Mullins, and Rivlin (1953). Their results are seen to be consistent
with the modified Mooney formula

flvzé Cz
12—+ .
20 =1/A%) ¢ A (5.25)

in which C, is approximately constant (independent of the degree of
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swelling) while C, falls progressively with increasing degree of
swelling (decreasing v,); at the highest degree of swelling (v, = 0-20)
the value of C, was found to be zero. The decrease in C, with
increasing swelling indicates a systematic reduction and ultimate
disappearance of the deviations from the statistical theory. It is
remarkable also that these effects were found to be quite indepen-
dent of the type of rubber (Fig. 5.13); other experiments showed

é
0:10
e Natural rubber
o Butadiene - styrene
* = Butadiene —acrylonitrile
0-08 -
= 006
E
E
&
' 0-04
0:02 -
0-00 L L 1 0.
1-0 0-8 0-6 0-4 02

Volume fraction of rubber, v,

F1G. 5.13. Dependence of constant C, (eqn (5.25)) on v, for various rubbers.
(Gumbrell, et al. 1953.)

that they were also independent of the nature of the swelling liquid.
In all cases the value of C, tended to zero for a value of v, of about
0-25, corresponding to a volume swelling ratio of 4-0.

The general nature of these phenomena has been amply con-
firmed by numerous later workers, though with variations in detail.
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As an example, reference may be made to the recent work of Allen,
Kirkham, Padget, and Price (1971) on peroxide-cured natural
rubber compounds. The only significant difference from the earlier
work was in the values of C, for the unswollen rubbers; these were
not entirely independent of the degree of cross-linking, but varied
by a factor of about 2-0. A similar discrepancy was also obtained by
Mullins (1959a) in a study of a wide range of peroxide- and
sulphur-vulcanized rubbers.

The significance of the deviations from the statistical theory, as
represented by the constant C, in the Mooney equation, cannot be
assessed on the basis of experiments involving simple extension
alone, but requires a consideration also of other types of strain.
Studies of the stress—strain relations under the most general type of
strain, i.e. the pure homogeneous strain, in which A, and A, may be
independently varied, are discussed in Chapter 10. It is only on the
basis of such studies that a general understanding of the quantitative
significance of the deviations from the statistical theory can be
obtained. In anticipation of the conclusions to be drawn from such
studies, it is important to note here that the Mooney theory does not
provide a satisfactory and self-consistent basis for the representa-
tion of the properties of a rubber in the most general state of strain,
and that the values of the constants C, and C, (and in particular the
ratio C,/C,) obtained from experiments on simple extension give a
misleading and rather exaggerated impression of the magnitude of
the deviations from the statistical theory.

The further question of the possible molecular interpretation of
these deviations from the statistical theory must also be deferred
until later, since this also requires the consideration of the data for
all possible types of strain. Again in anticipation of the discussion of
this subject in Chapter 10, it may be indicated here that no generally
acceptable molecular interpretation of the observed effects has yet
been established.

5.5. General conclusions

The conclusion to be drawn from the experimental observations
reported in this chapter is that the formulae of the statistical theory,
involving a single physical constant, correctly describe the proper-
ties of a real rubber to a first approximation. In particular, they
provide a basis for the understanding of the relation between the
stress—strain curves for widely different types of strain. However, in
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view of the very general nature of the theoretical arguments, and
the simplifications necessarily introduced into the treatment of the
network model, it is not surprising that some deviations from the
ideal theoretical behaviour are to be found. These deviations, which
other work has shown to be not limited to the particular case of
natural rubber here examined, are of two kinds. First, at moderate
strains, there is a tendency for the stresses to fall below the
theoretical values, and secondly, at very large strains, the stresses
tend to rise and may eventually greatly exceed the theoretical
predictions. The first effect, which is not easy to understand, is
discussed more fully in Chapter 10. The second is understood in
principle; it arises from the finite extensibility of the network chains,
and may be taken into account by a more complete statistical
theory, as will be shown in the following chapter.

A further question of importance is the relation of the numerical
value of the modulus (G in eqns (4.9a) and (4.9b)) to the number of
chains per unit volume, which is determined by the degree of
cross-linking. This question is examined in detail in Chapter 8.



6

NON-GAUSSIAN CHAIN STATISTICS
AND NETWORK THEORY

6.1. Introduction

Up to this point the development of the statistical theory of the
network has been based upon the approximate or ‘Gaussian’ dis-
tribution function (3.3) for the single chain, whose derivation
assumes that the end-to-end distance r is very much less than the
fully extended length of the chain R. The results derived on this
basis are therefore limited to strains which are not too large, that is
to say, to strains which do not begin to approach the limiting
deformability of the network. In comparing the experimental
stress—strain curves with the formulae derived from the Gaussian
theory attention has already been drawn to the marked upturn in
the stress in the region of very large strains, which is particularly
evident in the case of simple extension (Fig. 5.4, p. 87). In this
region, where an appreciable proportion of the chains become
highly extended, the Gaussian statistical treatment is no longer
valid, and a more accurate ‘non-Gaussian’ form of theory becomes
essential.

The non-Gaussian statistical treatment of the single chain, which
avoids the approximation inherent in the Gaussian theory, takes
into account the finite extensibility of the chain, and thus leads to a
more realistic form of distribution function which is valid over the
whole range of r-values up to the maximum or fully extended
length. In a similar manner, the treatment of the network of
non-Gaussian chains leads to a limited extensibility of the network,
the maximum extension being approximately proportional to the
square root of the number n of random links in the chain. Hence as
the chain length is reduced the maximum extension, and therefore
also the range of validity of the Gaussian approximation, is cor-
respondingly diminished. Since the chain length is inversely propor-
tional to the degree of cross-linking, this implies that the Gaussian
theory becomes increasingly inadequate as the degree of cross-
linking is increased. For chains which are very short, e.g. cor-
responding to n =35 or less, the mean chain extension even in the
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unstrained state already exceeds that for which the Gaussian
approximation is valid; for networks of such short chains, therefore,
a non-Gaussian treatment is essential for the accurate representa-
tion of the behaviour even under the smallest strains.

Unfortunately the attempt to replace the Gaussian statistical
theory by a more exact treatment involves a considerable sacrifice
of both simplicity and generality. As we have seen, the Gaussian
statistical treatment is applicable to any type of molecular structure,
and the Gaussian network has properties (such as, for example, the
affine displacement of junction points) which enable it to be ana-
lysed, at least to a first approximation, in relatively simple
mathematical terms. These advantages are no longer present with
the non-Gaussian theory. Nevertheless, the subject is of such
fundamental interest that a number of attempts to deal with it have
been made and broad agreement has been reached on the general
conclusions.

The following account begins with the non-Gaussian statistical
treatment of the single chain—primarily the randomly jointed
chain—and continues with the more difficult problem of the net-
work of non-Gaussian chains.

6.2. Statistical treatment of randomly jointed chain

The inverse Langevin approximation

As in the elementary statistical theory dealt with in Chapter 3, the
actual molecular structure is replaced by an idealized chain of n
links, each of length [, such that the direction in space of any
particular link, in the absence of external restraints, is entirely
random and independent of that of neighbouring links in the chain.
If we assume one end A of such a chain to be fixed at the origin of
coordinates, as in Fig. 3.4 (p. 47), it is required to find the probabil-
ity that the other end B shall be within a small volume elementdr in
the neighbourhood of a point P at a distance r from the origin.

The method of solution of this problem given by Kuhn and Griin
(1942) follows lines which are familiar in statistical ther-
modynamics. They first derive the most probable distribution of
link angles with respect to the vector length AB. The probability of
the given vector length is then taken to be simply the probability of
this particular distribution of link angles.

For the calculation of the most probable distribution of link
angles we note that the a priori probability that a particular link
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chosen at random shall be found in the angular interval 6, to 6, + dé;
is proportional to the corresponding solid angle, i.e. to

3 sin 6; d6.

The a priori probability of a distribution represented by n, links in
the range d,, n, in the range d#6,, etc., irrespective of order, is
therefore given by the expression

W, = H(zsm()) (’) (6.1)

in which the second factor represents the number of distinguishable
permutations among the n,. This probability has to be maximized
for all possible variations in the n,, subject to the conditions

Y n,=n, [Yncos=r (6.2)
The solution, written in the form of a continuous function, is
n )
n= gm—hB—E e’ 1sin 6 dé. (6.3)

This will be seen to involve only one parameter B8, which is itself
determined by the fractional extension of the chain r/n/, and is
defined in the following way:

r/nl =coth B—(1/B8)=<L(B). (6.4)

The function #(B) is known as the Langevin function. Alterna-
tively, we may write

B=<"(r/nl), (6.5)

where ¥ is the corresponding inverse Langevin function.

The most probable distribution of link angles represented by
(6.3) is thus determined only by the fractional extension r/nl, and is
therefore independent of the actual value of #n, the number of links
in the chain. Its significance may be appreciated from the polar
diagrams shown in Fig. 6.1, in which the radius vector is propor-
tional to the number of links at the angle 6, omitting the purely
geometrical factor 3 sin 6. A random distribution, corresponding to
the unrestricted chain, would be represented on this type of plot by
a circle. This is also the distribution for the case r/nl =0. With
increasing r/nl (fractional chain extension) the distribution
becomes more and more asymmetrical.
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P i .

F1G. 6.1. Angular distribution of links in random chain. Parameter r/nl. (Kuhn and
Griin 1942.)

The probability of a length r is assumed, as stated above, to be
given by the probability of the most probable distribution of link
angles. This is readily obtained by substituting the final distribution
(6.3) into (6.1) and introducing Stirling’s approximation

Inn!'=nlnn-n (6.6)

for the factorials. In this way Kuhn and Griin obtain the probability
density p(r) in the logarithmic form

In p(r) = constant — n(éﬁ +In sin[:l B). (6.7)

Comparison with Gaussian form

The form of (6.7) may be more readily appreciated from the
series expansion, originally given by W. Kuhn and H. Kuhn (1946),
ie.

) +206a) *3stan)

= —niz|=) =) e )+ 6
In p(r) = constant n{z o o\l 350\l (6.7a)
The corresponding Gaussian formula (eqn (3.5), p. 48) is equivalent
to

In p(r) = constant — (3r*/2nl?), (6.7b)

which is seen to correspond to the first term in the series expansion
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(6.7a). The Gaussian statistical theory is thus based on the assump-
tion that all higher terms in r/nl are negligible compared with the
first term.

Substitution of numerical values shows that for r/nl =3 the error
in In p(r) resulting from this assumption is about 3 per cent, while
for r/nl =3 it amounts to about 8 per cent. For still larger chain
extensions the Gaussian formula ceases to be a useful approxima-
tion.

The probability P(r) of an end-to-end distance r irrespective of
direction in space is obtained exactly as in the Gaussian case by
multiplying the probability density p(r) by the size of the volume
element 47rr*dr, i.c.

P(r)dr=4mr’p(r)dr. (6.8)

The form of the function (1/4#r*)P(r), which is equivalent to p(r)
in eqn (6.7), is shown on a logarithmic plot in Figs 6.2 and 6.3 for
various values of n. The approach to the Gaussian form for small

0
_2 bl
(a)
1_4 B n=6
v,
oy
o [ (c)
e
=11}
S —6F
(b)
._8-
L | 1 1
0- - 0-6 0-8 1-0
0 2 0-4 (rind)?

F1G. 6.2. Probability density functions for six-link random chain. (a) Gaussian; (b)
inverse Langevin approximation (eqn (6.7)); (c) exact (eqn (6.13)).
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FIG. 6.3. Probability density functions for random chains of 25 and 100 links. (a)
Gaussian; (b) inverse Langevin approximation (eqn (6.7)); (c) exact (eqn (6.13)).

values of r/nl is clearly shown, as is also the asymptotic approach to
the maximum chain extension (r/nl =1) at which the probability
falls to zero (In p(r) » —0).

6.3. Entropy and tension

The calculation of the entropy s for the single chain follows
directly from the expression (6.7) for the probability density. Put-
ting s = k In p(r) we obtain the result

§=em kn<n_rlﬁ +sin[}i B); B= gﬂ(n%)’T (6.9)

T This expression for the entropy has been obtained independently by J. J.
Hermans (1943).
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in which ¢ is an arbitrary constant. The function within the bracket
is identical with that in (6.7) and has the series expansion (6.7a).

The tension on the chain is derived exactly as in the Gaussian
theory by differentiation of the entropy function. According to eqns
(3.20) and (3.21) (p. 57) we have

Substitution of the expression (6.9) for s yields on differentiation

()G
f_(l 4 o) (6.10)
The function £ (r/nl) may also be expanded in series form to give
kT{ (r) 9(r)3 297<r>5 1539(r>7 }
=—3(= )+ =) +===) +—=={=) +...[ .
=PG5 T 1rs\n) Ters (6.102)

As for the probability (and entropy), so also for the tension, the first
term in the series corresponds to the Gaussian approximation (cf.

20

——— First -term approximation

L r/nl)

] 1 1 1
0 0-2 04 06 08 1-0
rinl

FIG. 6.4. Form of force—extension relation for a random chain (eqn (6.10)).
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eqns (3.19) and (3.22)). The form of the complete function (6.10) is
shown in Fig. 6.4, and is seen to approximate to linearity for values
of fractional chain extension less than about 3.

6.4. Alternative derivation of tension on chain

An alternative treatment of the problem, given originally by
James and Guth (1943) and later by Flory (1953), enables the
tension on the chain to be derived directly, without proceeding by
way of the entropy.

According to this method we consider the chain to be fixed at one
end (Fig. 6.5), and to be acted on at the other end by a force fin a

FIG. 6.5. Derivation of the tension on a single chain.

fixed direction, which may be taken to be parallel to the x-axis. The
total chain length will then be the sum of the x-components for the
individual links; hence to obtain the mean chain length it is sufficient
to find the mean value of the x-component for all the links. Since a
link inclined at an angle 6, to the x-axis has a component of length
x; =1l cos 6, the rotation of a particular link from the position
corresponding to 6§ =0 to the position 8 = 6, (with all other link
angles held constant) therefore results in the performance of work
against the applied force amounting to fI(1—cos ;). The contribu-
tion of this particular link to the orientational potential energy may
thus be taken as — fI cos 6; or — fx; (neglecting the additive constant
fl, which is the same for all links). Introducing the Boltzmann
concept, the probability of the particular link angle may then be
assumed to be proportional to exp (fx,/kT); the mean value of x;
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will thus be given by

Jl x; exp (fx,/kT) dx;

X = = lff(%), (6.11)

jl exp (fx,/kT) dx;

in which £ is the Langevin function defined by (6.4). This is the
mean component of length for an arbitrarily chosen link. Since the
same formula applies to all the links in the chain, the mean value of x
for the whole chain is simply nx. Since, by symmetry, the mean y-
and z-components are zero, the mean r vector coincides with
the x-axis. Hence we may write

r=nx= nlf(kf—,lr), (6.12)

D e

which is identical with (6.10) above.

6.5. The exact distribution function

The preceding treatments both utilize methods commonly em-
ployed in statistical thermodynamics. It is important to remember,
however, that these methods yield exact results only when the
number of units in the statistical assembly is sufficiently large. In
most molecular systems, where we are concerned with numbers of
the order of 10?, this condition is amply satisfied. In the present
problem, however, the number of links in the chain is by no means
large in this sense and the accuracy of the results obtained by these
methods must become increasingly open to question as this number
is reduced. It is not easy to decide a priori precisely how much error
is to be expected for any particular value of n. Fortunately, how-
ever, an alternative method of deriving the distribution function in
exact mathematical terms, which does not involve statistical-
thermodynamic arguments, is available. This method applies for
any value of n (from 1 upwards) and may therefore be used to assess
the accuracy of the more general methods in the case when n is
small.
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The alternative method treats the problem as a purely geometri-
cal question, and involves no approximations of any kind. The
solution was originally obtained by the author (Treloar 1946) by a
simple transformation of a result previously obtained by Hall (1927)
and by Irwin (1927) in connection with the theory of random
sampling, and has since been derived independently by Wang and
Guth (1952) and Flory (1969, p. 313). For a chain of s links, each of
length [, the probability of an end-to-end distance between r and
r+dr (irrespective of direction in space) is represented by the
formula

n—2

r n k swn n—-2
SF (n=2)! EO( 1y x"C{m —(s/n)}"*dr (6.13)
where k/n<sm<(k+1)/n, m=3(1—r/nl), and "C, represents the
number of combinations of n things taken s at a time.

Distribution functions for three different values of n, calculated
from this formula, are shown in Figs 6.2 and 6.3. The quantity
plotted is, as before, the probability density (1/4#r*)P(r), an arbi-
trary constant having been added so that all the curves start from the
origin. It will be seen that the curves for different n-values are not
all of identical form, i.e. the probability is not simply a function of
r/nl, as it is for the inverse Langevin approximation. Comparison of
the respective curves shows that for n = 6, the latter, though better
than the Gaussian form, is quantitatively seriously in error. At
n =25, the difference between the two formulae is already quite
small, while at n =100 it is practically negligible. The logarithmic
plot, being directly related to the entropy of the chain (eqn (6.9)),
provides the most direct representation of the significance of the
non-Gaussian statistical theory in relation to the problem of rubber
elasticity. For other applications, however, a linear plot may be
more appropriate. On a linear plot (Fig. 6.6) the differences
between the various formulae are much less noticeable, even for
values of n as low as 6.

In an actual rubber the effective value of n will depend not only
on the number of bonds in the chain, but also on the chain ‘stiffness’,
which will be a function of its chemical constitution. For natural
rubber values of n (for the chains in a normal cross-linked network)
are likely to lie in the range 50-100 (cf. § 6.10 below) and the use of
the inverse Langevin approximation will therefore be justified. For
certain other systems (e.g. cross-linked polythenes), however, very

P(r)dr=
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FIG. 6.6. Distribution functions P(r) for six-link random chain, on linear plot; I = 1.
(a) Gaussian; (b) inverse Langevin; (c) exact.

much smaller effective chain lengths—corresponding to n =10 or
less—may occur, and this approximation may not be sufficiently
exact. Whether, apart from its mathematical complexity, the exact
distribution is in such cases to be preferred is questionable, since an
actual ‘stiff’ chain cannot be adequately replaced by a randomly
jointed chain containing a small number of links. The distinction
between the different treatments of the random chain is therefore
somewhat academic, and is probably less important than the ques-
tion of the relation of the randomly jointed chain model to any
actual molecular structure.

6.6. Application to real molecular structures

This question of the relation of the randomly jointed chain to an
actual molecular structure raises problems of very considerable
difficulty. In an actual molecule successive bonds are not unrelated
in direction but are joined together at a specific angle (valence
angle). In addition to this, there will be interactions of an energetic
character between neighbouring atoms in the chain which impede
the rotation to a greater or less extent. While it may be shown quite
generally (Flory 1969, p. 6) that the Gaussian distribution repre-
sents the limiting form of distribution for any chain structure of
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sufficient length, provided that the condition r « R (where R is the
fully extended length) is satisfied, no comparable generality can be
shown to exist in the non-Gaussian region, where this condition
does not apply. Each particular chain structure must therefore be
examined independently, using numerical methods of computation.

In rather crude studies of this kind, the author showed that for
freely rotating models of both the polymethylene (polythene) and
rubber structures the distribution function for long chains approxi-
mated to the inverse Langevin form (6.7) derived for the randomly
jointed chain, with suitably chosen values of n, the number of
random links (Treloar 1943¢, 1944b). This is shown in Fig. 6.7. In

(a) o 80-link polymethylene
34-link random chain
i (right-hand scale)

(b) o 64-isoprene
90-link random chain
(left-hand scale)

—120+

1 1 1 | 1 | | 1 1

0 0-2 0-4 06 0-8 1-0
(r/R)?

FI1G. 6.7. Comparison of freely rotating models of polymethylene and rubber chains
with randomly jointed chain.

the case of the polymethylene chain the number of C—C bonds per
random link, namely, 80/34 (or 2-35), differs somewhat from the
figure of 3-0 bonds per random link obtained for the same model in
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the Gaussian region (eqns (3.15c), p. 54). Similarly for the poly-
isoprene chain the figure of 64/90 (or 0-71) isoprene units per
random link is not quite the same as the value 0-77 isoprene units
for the Gaussian region (p. 55). These differences, however, are not
thought to be significant, in view of the rather large errors inherent
in the method used in the calculations, and it may therefore be
concluded that the distribution functions for typical chain structures
approximate to the form derived for the randomly jointed chain,
and are relatively insensitive to the details of the structure.

This degree of generality encourages us to expect that the same
conclusion might be extended to more realistic types of chain in
which hindrances to rotation and other complications may be
present. Some direct evidence to this effect is provided by the recent
work of Hill and Stepto (1971) in which interactions between
neighbouring groups in the polymethylene-type chain are included.
Their calculations indicate an increasingly close approach to the
random-chain distribution, as represented by the exact formula
(6.13), as the number of bonds is increased from small values up to
30.

6.7. Non-Gaussian network theory

As was noted at the beginning of this chapter the various simplifi-
cations which so greatly facilitate the mathematical treatment of the
properties of the Gaussian network are no longer justifiable in the
vastly more complex case of the network of non-Gaussian chains.
The treatment of this problem in a rigorous manner presents
formidable mathematical difficulties, which can be reduced to man-
ageable proportions only by the introduction of assumptions which
are not strictly valid. To this extent the conclusions arrived at must
be regarded as somewhat uncertain in the quantitative sense.

Simplified theory: three-chain model

The simplest and by far the most tractable model of the non-
Gaussian network, which nevertheless brings out all its essential
characteristics, is the three-chain model. This is based on the
assumption, strictly valid only for Gaussian chains, that the network
may be replaced by three independent sets of chains parallel to the
axes of a rectangular coordinate system. It is to be expected that this
assumption, though not strictly justified, will not be too seriously in
error, except possibly at extreme deformations.
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Let us assume that in the unstrained state the r vectors of the
three chains lie along the Ox, 0y, and 0z axes, respectively, and that
each of these has the value r,. It is further assumed that the effect of
the deformation is to change the r vectors in the same ratio as the
corresponding dimensions of the bulk rubber, i.e. that the chains
undergo an affine deformation. For a simple extension in the ratio A
in the direction Ox the r vectors of the three chains in the deformed
state, assuming constancy of volume, will be

r, = Aro, r,=r,= ro/)‘%. (6.14)

We now introduce the non-Gaussian entropy function (6.9) to
represent the entropies s,, s,, and s, of the three chains. Since s, = s,
the total entropy in the deformed state will accordingly be given by

—1
S, +2s, = kn{mfl(roA> In £ (rod/nl) }

nl nl sinh & '(roA/nl)
rod % l(ro/\_%) =%‘1(r0)\‘%/nl) }
- + T . .
2"”{ il ~ ) a2 ) 619

If N is the number of chains per unit volume, the total entropy S per
unit volume will be (N/3)(s.+2s,). If S, is the entropy in the
unstrained state the work of deformation then becomes

W= ~T(S—S,) = — T{(N/3)(s, +25,) — So}. (6.16)
The tensile force f per unit unstrained area is then obtained by
differentiation, i.e.
daw_ NTd(sx+2sy)
dr 3 dA

Substitution of the expression (6.15) in (6.17) followed by differen-
tiation with respect A yields

I (@i () e

This may be further simplified if ro, the vector chain length in the
unstramed state, is given the r.m.s. value for the free chain, namely,
In*. The final result is

e Qe Gl e

f= (6.17)
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This relation between the force and the extension ratio, which was
originally obtained by James and Guth (1943) by an essentially
similar method, reduces to the Gaussian formula for values of A
which are not too large. For on substitution of the first term in the
expansion for £~ given in eqn (6.10a), i.e. ¥ '(x)=3x, into eqn
(6.19) the result is

f=NkT(A—-1/A%), (6.19a)

in agreement with the expression derived in Chapter 4 (eqn
(4.19a)).

The corresponding relations for the difference of principal stres-
ses in a pure homogeneous strain of the most general type, defined
by principal extension ratios A4, A;, and A; are easily shown to be of
the form (cf. Wang and Guth 1952)

h—t,= NkTﬁ{mx*@i) —A2££‘1<’~\§)}, (6.20)
3 n: n:

in which ¢, and ¢, are the principal stresses. Again, on insertion of
the small-strain approximation ¥ '(x)=23x, this reduces to the
previously obtained Gaussian relation (eqns (4.18)),

tl_tZ:NkT(A?_Ag). (6.203)

The form of the force—extension curves corresponding to eqn
(6.19) is shown in Fig. 6.8 for three values of n. The strong upward
curvature at high extensions is the direct consequence of the limited
extensibility of the chains, as can be seen by comparing these curves
with the force-extension curve for the single chain (Fig. 6.4). The
maximum extension ratio for the network, like that for the single
chain, is equal to the square root of the number of random links in
the chain. The non-Gaussian force—extension relations are thus
determined by two parameters, of which the first, N, defines the
vertical scale or modulus in the region of small or moderate strains,
while the second, n, which is specific to the non-Gaussian theory,
controls the behaviour in the high-strain region and the ultimate
extensibility of the network. Mathematically, these two parameters
may be treated as independent variables, though in physical reality
they are not independent of each other. For as we have seen, N is
related to the chain molecular weight M. (eqn (4.9¢), p. 65) and for
any given polymer the value of M, automatically determines the
number n of equivalent random links; as a result n must be
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Extension ratio

FIG. 6.8. Non-Gaussian force-extension curves from three-chain model (egn
(6.19)).

inversely proportional to N. In general, however, the value to be
assigned to the equivalent n for any given M, value is not known, so
that the numerical relationship between N and n cannot be given in
general terms.

The four-chain (tetrahedral) model

A much more realistic representation of the conditions existing in
an actual network may be obtained by a suitable modification of the
4-chain model originally introduced by Flory and Rehner (1943) for
the development of the Gaussian theory. This model has the further
advantage of being adaptable also to the problem of calculating the
photoelastic properties of the non-Gaussian network, discussed in
Chapter 9.

The model considers an elementary ‘cell’ of the network consist-
ing of four chains radiating outwards from a common junction point
P (Fig. 6.9). If the chains all have the same contour length, the
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A

FiG. 6.9. The Flory-Rehner ‘tetrahedral’ model.

average positions of their outer ends (i.e. of the nearest neighbour
junction points) will be at the four corners of a regular tetrahedron
ABCD. In Flory and Rehner’s treatment of the Gaussian network
the outermost junction points were considered to be fixed at their
mean positions, while the central junction point was allowed to
fluctuate in position in response to the random thermal motion of
the associated chains. The deformation is assumed to displace the
relative positions of the outermost junction points in a manner
corresponding to the macroscopic strain (affine deformation) but
the central junction point is allowed to fluctuate, as in the
unstrained state. The entropy of formation of the four-chain cell of
the network from the original independent chains was calculated
first for the unstrained state and then for the strained state, the
difference of entropy for these two states being taken as the entropy
of network deformation.

An essential part of the calculation of the entropy of formation
involves finding the probability that the four chains, whose outer
junction points are fixed at A, B, C, and D, shall meet within a small
volume element in the neighbourhood of some arbitrarily chosen
point P. Integration of this probability over all possible positions of
P then gives the total probability of their meeting at any point in
space.
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So long as the calculation is restricted to the Gaussian region of
extension, certain terms in the calculation do not affect the resultant
entropy of deformation. In particular it is found, first, that the most
probable position of the central junction point is at the centre of the
deformed tetrahedron, i.e. at the position corresponding to an affine
displacement of the centre O of the original cell. Secondly, the
fluctuations of position of the central junction point (which are
themselves described by a spherically symmetrical Gaussian dis-
tribution) are found to be independent of the state of strain and
therefore do not enter into the calculation of the entropy of
deformation. It follows from this that (in the Gaussian case) it
makes no difference to the result whether the central junction point
is treated as fluctuating or as fixed at its most probable position,
corresponding to an affine deformation.

These conclusions illustrate some of the general properties of the
Gaussian network already discussed in Chapter 4. None of these
conclusions apply to the non-Gaussian network. A realistic consid-
eration of the corresponding non-Gaussian model should therefore
take into account a number of additional factors which do not arise
in the case of the Gaussian theory. Of these, the three most
important are the following:

(1) the non-Gaussian character of the individual chains;

(2) the non-affine displacement of the mean or equilibrium

position of the central junction point;

(3) the variation of the extent of the fluctuations of the central

junction point with strain.

Unfortunately the detailed calculations of the entropy of defor-
mation, taking account of all these factors, can be carried out only
by numerical methods of computation. Such calculations have been
carried out by the author (Treloar 1946) on the basis of the exact
series expression for the distribution of r-values for the randomly
jointed chain discussed in § 6.5. These calculations showed that for
n-values of 25 and 100 the contribution to the entropy arising from
the fluctuations of the central junction point (item (3) above) was
negligible compared with that due to the deformation of the
chains.t In later work (Treloar 1954), based on the inverse Lan-
gevin approximation, this factor was therefore neglected, and atten-
tion was concentrated on the effect of the non-affine displacement

+ This is consistent with the more general conclusion of Wang and Guth (1952)
that the neglect of fluctuations of junction points leads to an error of the order 1/n.
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of the central junction point. A typical result (Fig. 6.10), in which
calculations based on (a) affine and (b) non-affine displacements are
compared, shows the latter to have a significant effect on the
extensibility of the network at high values of the stress.
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F1G. 6.10. Non-Gaussian force—extension curves for n = 25. (a) 3-chain model; (b)
tetrahedral model, affine displacement; (c) tetrahedral model, non-affine displace-
ment.

Inverse Langevin series approximation

One disadvantage of the preceding model is that in the non-
Gaussian region the elementary four-chain cell ceases to behave
isotropically, i.e. the properties depend to some extent on the
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direction of the applied strain. In the calculations referred to above
the results quoted represented the mean properties for three mutu-
ally perpendicular directions of straining. The same difficulty arises
in a more acute form with the three-chain model of James and Guth,
but in this case the strain was arbitrarily considered to be applied
along one of the chain directions. In any such simplified ‘cell’ model
the properties necessarily reflect the particular geometry of the
chosen system. To avoid this difficulty it is desirable to operate on
the total assembly of chains, which in the unstrained state cor-
responds to a random angular distribution of r vectors in space.
Moreover, by using the inverse Langevin expression for the chain
entropy in the series form (eqn (6.7a)) it is possible to derive an
explicit algebraic solution to the problem in the form of a cor-
responding series, which in principle can be developed to any
required degree of accuracy by the inclusion of a suitable number of
terms. This approach has been discussed by Wang and Guth (1952),
and developed more fully by the author (Treloar 1954). According
to the latter, if the r.m.s. length in the unstrained state is ro, the
number of chains having r vectors in the range r to r+dr after a
deformation defined by the extension ratio A, assuming an affine
deformation of junction points, is given by

N r

f(r)dr_{rO(A—l/Az)% (r2_rg//\);} dr. (621)
Introduction of the value of the chain entropy given by the series
expansion (6.7a) for this group of chains, followed by integration
over all chains, yields the total entropy of the system, from which
the force is obtained by differentiation with respect to A. The result
is expressed in the form of a series, of which the first five terms are

1){ 3< ) 4) 297 ( . 8)
—_— +_
f= NkT(A 1 25n 3A 61257 SA*+8A+

12312

64)
37305 000n° (35/\ +60A°+72+
1536 1280)+

126117
+ A8+ 5
693(673 750)n° 630 1120A°+ 14401+ —— A + IC

+ } (6.22)
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This expression yields the result represented in Fig. 6.11 for the case
n =25 (curve (a)).

The above method becomes difficult to apply at strains approach-
ing the limiting extension of the network, owing to the excessive
number of terms, of rapidly increasing complexity, which are
required. To check the accuracy of the five-term approximation, the
author compared the above curve with the result obtained by a
modified treatment in which the complete function (6.7) for the
chain entropy was used, the summation over all chains being carried
out by graphical integration. This result, shown by curve (b) in Fig.
6.11, is in close agreement with that obtained from the four-chain
model, assuming an affine deformation of the central junction point

18—

(b)

I 2 3 4 5
Extension ratio

F1G. 6.11. Non-Gaussian force—extension curves, n = 25. (a) Complete assembly of
chains, series expansion (6.22); (b) complete assembly of chains, graphical integra-
tion; (c) four-chain model (as curve (b) in Fig. 6.10}; (d) Gaussian.
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(curve (c)), but differs substantially from the five-term series expan-
sion at extensions near to the maximum. It is therefore concluded
that the inclusion of five terms in the series is inadequate for a
proper representation of the behaviour in this region.

6.8. Comparison with experiment

In view of the rather slight differences between the results derived
from the various forms of non-Gaussian network theory, the choice
of a model for comparison with experimental data may well be
determined by ease of computation rather than theoretical pre-
cision. On this score, the three-chain model of James and Guth
possesses overwhelming advantages.
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F1G. 6.12. Non-Gaussian force—extension relation (eqn (6.19)) fitted to experimen-
tal data, with NkT=0-273 Nmm™>, n=75.
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Fig. 6.12 represents an attempt to fit the experimental data for
simple extension (already given in Fig. 5.4, p.87) by the non-
Gaussian formula (6.19), by suitable choice of the parameters N
and n. Owing to the deviations from the (Gaussian) statistical theory
in the region of low extensions, discussed in the previous chapter, it
is not possible to obtain a satisfactory fit to the data over the whole
range of extension. The curve shown in Fig. 6.12 has been adjusted
to give a good fit in the high-extension region (A > 3), but it is rather
inadequate in the region of low strains. There is no doubt, however,
that the non-Gaussian theory gives a very much better representa-
tion of the general features of the experimental curve than the
Gaussian theory, which entirely fails to represent the point of
inflection and subsequent rapidly increasing slope at high strains.

6.9. Possible influence of crystallization

In considering the application of the non-Gaussian theory to
experimental data, no account has been taken of the possible effects
of strain-induced crystallization on the mechanical properties of the
rubber. It -so happens that the region of strain in which the non-
Gaussian theory becomes relevant coincides roughly with the
region where crystallization develops most strongly (cf. Fig. 1.9,
p. 21), and it has been suggested (Flory 1947) that the upturn in the
force—-extension curve should be attributed primarily to this factor.
Certainly the crystallization which occurs would be expected to
produce some stiffening of the rubber, but it is not easy to predict
the magnitude of the effect. It has been noted, however, by Wang
and Guth (1952) that the characteristic form of the force—extension
curve for natural rubber is only slightly affected by raising the
temperature to 100 °C, though this will substantially reduce the
crystallinity (cf. Fig. 9.7, p. 190). They note also that the charac-
teristic inflection is also present in the case of non-crystallizing
synthetic rubbers.

The later work of Smith, Greene, and Ciferri (1964), using X-ray
diffraction and other methods of detecting the onset of crystallinity,
has shown quite definitely that the initial upturn in the force-
extension curve is a genuine non-Gaussian effect, unrelated to
crystallization, though at higher extensions complications
associated with crystallization were observed.

In view of all the evidence, therefore, it seems reasonable to
interpret the main features of the experimental force-extension
curve in terms of the non-Gaussian statistical theory, and to regard
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the effects of crystallization as secondary in character, producing
only minor modifications.

6.10. The equivalent random link

From the values of the parameters N and n required to fit the
experimental force—extension curve in Fig. 6.12 it is possible to
estimate the number of isoprene units in the equivalent random
link. The value NkT=0-273 Nmm™ corresponds to a ‘chain’
molecular weight M. (eqn (4.9¢), p. 65) of 8:31 kg mol™; since this
is equivalent to 75 random links, it follows that the ‘molecular
weight’ of the equivalent random link is 0-111 kg mol™, which is
equal to 1-63 isoprene units.

As would be expected, this figure is considerably in excess of the
value 0-77 isoprene units per random link derived theoretically on
the basis of a freely rotating chain model, and indicates a consider-
able ‘stiffness’ due to energetic interactions within the chain.

The above result, however, is based on a rather crude method of
fitting the experimental curve, and cannot be regarded as highly
accurate. In an attempt to overcome this difficulty a semi-empirical
approach has been proposed in which a ‘Mooney’ term is incor-
porated into the non-Gaussian theory. The first such attempt was
that of Mullins (1959b) who presented his data for a series of
vulcanizates in the form of ‘Mooney’ plots, as in Fig. 6.13. These
curves are essentially similar to those of Gumbrell et al. (1953) given
in Fig. 5.11 (p.96), but are continued into the non-Gaussian
region of strain. Assuming that the linear portion of these curves
corresponds with the Gaussian region, as modified by an additional
Mooney C, term, the deviations from linearity with increasing
strain (decreasing 1/A) may be taken to represent the non-Gaussian
terms in the series expansion (6.22). To obtain the appropriate
value of n (the number of equivalent random links in the chain),
Mullins first calculates C, and C, from the linear region, then finds
the value of A, i.e. A =A*, at which the curves deviate from the
straight line by an arbitrary amount (2-5 per cent of the C, term).
Since only a small contribution from the non-Gaussian terms is
therefore involved, it is sufficient, in relating A * to n, to retain only
the first three terms in the expansion (6.22). For a given value of n,
A* is then the value of A for which the function

3 ( ) 4) 297 ( . 8)
- — G — . 2
1+25n 3A VAR 5A*+8A e (6.22a)
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FI1G. 6.13. ‘Mooney’ plot of experimental force-extension data for peroxide cross-
linked rubbers containing (a) 1 per cent; (b) 2 per cent; {c) 3 per cent; (d) 4 per cent;
(e) 5 per cent peroxide. (Mullins 19595.)

is equal to 1-025 times its value at A =1. In this way Mullins
originally obtained the figure of 1-1 isoprene units for the equiva-
lent random link. Unfortunately, his calculations contained a
numerical error; the corrected relation between A* and n is given in
Table 6.1.

TABLE 6.1

Conjugate values of A* and n which give 2-5 per cent increase in C,
term (Mullins, private communication)

n 50 100 150 200 250 300
A* 2-21 2-90 3-43 3-89 4-30 4-68
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Introduction of this correction increases the figure for the number
of isoprene units per random link from 1-1 to 1-5. This revised
figure is not very different from the value 1-63 obtained from the
more elementary method of curve-fitting.

The later work of Morris (1964), incorporating a more complete
analysis, has raised doubts about the reliability of the Mullins
method. Starting from an identical theory (i.e. using the first three
terms in eqn (6.22) together with a Mooney C, term), Morris shows
that the value of n deduced from A* provides a very inadequate
basis for predicting the form of the curve at high extensions, where
the non-Gaussian terms become predominant. He therefore finds
the best fit over the whole range of strain, treating C, (i.e. NkT), C,,
and n as adjustable parameters. Fig. 6.14 shows that the fit so
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F1G. 6.14. ‘Mooney’ plot of force—extension data for the following M, values: (a)
5-478 kg mol™*; (b) 5-:505 kg mol™*; (c) 5-644 kg mol™". (Morris 1964.)

obtained is very good. His results, however, yield a very much
higher value for the equivalent random link, namely 4-3 isoprene
units.

There is no doubt that, on the basis of the chosen model, the
treatment of Morris is the more accurate. His figure for the equiva-
lent random link, however, seems unduly high, when compared
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either with the admittedly crude figure obtained from the curve in
Fig. 6.12 or with the values obtained from photoelastic data (Chap-
ter 9). The Mooney equation itself, however, is open to serious
criticism as a means of representing the general stress—strain
behaviour of rubber (Chapter 10), and the further identification of
the constant C, with NkT in the statistical theory cannot be
regarded as soundly based. In the circumstances, therefore, the
significance of any conclusions drawn from this type of analysis must
be regarded as open to question.



7
SWELLING PHENOMENA

7.1. Introduction

A NUMBER of references have already been made to the swelling of
rubbers by organic liquids and to the effects of such swelling on their
mechanical properties. The nature of the swelling process in itself,
and the factors which determine the degree of swelling attained in
any particular circumstances, have not, however, yet been
considered.

The property of swelling in suitable low-molecular-weight liquids
is one which is possessed by a wide range of high polymers, both
natural and synthetic. In many respects this property is akin to
solution, and, as in the case of solution, it is markedly dependent on
the nature of the swelling liquid. Just as materials may be devided
in respect of solubility into those which are soluble in water
(hydrophilic) and those which are soluble in organic—e.g.
hydrocarbon—solvents (hydrophobic), so polymers may similarly
be divided in respect of swelling into the water-swelling and the
organic-liquid-swelling classes. The first class includes cellulose
(cotton, wood, etc.), proteins (gelatin, wool, silk, etc.), while the
dominant group in the second class consists of the rubbers, both
natural and synthetic. Fortunately for the present purpose the
rubbers as a class are somewhat simpler in their swelling behaviour
than the water-absorbing systems in the sense that their behaviour
may be described at least to a first approximation in terms of a
rather simple statistical-thermodynamic model; a correspondingly
general model does not appear to be possible in the case of
water-absorbing materials.

For a complete exposition of swelling phenomena it would be
desirable to incorporate a general account of solution phenomena
in low-molecular-weight materials as well as in high-polymer
systems. This, however, is a large subject, and would be beyond the
scope of the present work. The treatment here must be limited to
the rather small section of this subject which has a direct bearing on
the phenomena of swelling in rubber-like materials; the reader who
wishes to pursue the subject further is referred to the excellent texts
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by Hildebrand and Scott (1950), Guggenheim (1952), and Tompa
(1956).

7.2. General thermodynamic principles

In swelling, as in solution, we are concerned with the equilibrium
between phases. The simplest case to consider is that in which one
phase contains two components, while the other contains only one.
In normal solutions the two-component or mixed phase is liquid
while the one-component or pure phase is solid; in the case of
swelling the situation is reversed, the mixed phase being the solid
and the pure phase the liquid. From the thermodynamic standpoint,
however, this difference has no significance.

The equilibrium of any system of this type is determined by the
condition that its free energy shall be a minimum with respect to
changes in the composition of the mixed phase. Thus for the
particular case when the mixed phase is polymer plus liquid and the
single phase is the pure liquid, this means that the change in free
energy resulting from the transfer of a small quantity of liquid from
the pure liquid phase to the mixed phase shall be zero. To represent
this quantitatively it is convenient to introduce the Gibbs free energy
of dilution AG,, defined as the change in the Gibbs free energy of
the system due to the transfer of unit quantity (1 mol) of liquid
(component 1) from the liquid phase to a very large quantity of the
mixed phase. For a system at constant pressure the condition for
equilibrium with respect to the transfer of liquid is then

AG,=0. (7.1)

The total free energy of dilution may be expressed in terms of the
heat of dilution AH; and the entropy of dilution AS,. Thus

AG,=AH,—~TAS,. (7.2)

In this expression AH; and AS; are the corresponding changes in the
heat content H and entropy S of the system per mole of liquid
transferred from the liquid phase to the mixed phase. The heat
content H is defined by the relation

H=U+pV, (7.3)

in which U is the internal energy and V the volume. When p is the
atmospheric pressure, the effect of the term pV may generally be
neglected, so that H and U become practically equivalent.
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Experimentally, the derivation of AH, and AS; rests on the
relation between these quantities and the equilibrium partial
vapour pressures of the components in the mixed phase. In the case
when only one component (the low-molecular-weight liquid) has an
appreciable vapour pressure the molar free energy of dilution is
given by

AG,=RT In(p/po), (7.4)

where p is the vapour pressure of the liquid component in equilib-
rium with the mixture (swollen rubber) at the temperature T and p,
is its saturation vapour pressure. (This equation assumes that the
vapour obeys the perfect gas laws; if this assumption is not fulfilled a
correction must be introduced.) The heat of dilution is
thermodynamically related to the temperature dependence of
relative vapour pressure, thus

_¥AGY/T)_ . ,9In(p/po)
a1/ T) RT3

Eqgns (7.4) and (7.5) enable AG, and AH, to be determined by
experiment; the remaining quantity AS, is then given by the
difference between these two quantities (eqn (7.2)).

An alternative method of obtaining AH; is by a direct
calorimetric measurement of the heat of mixing. From the
definition of heat content it follows that the change of heat content
is equal to the heat absorbed on mixing of the two components at
constant temperature. This method may be difficult to apply in the
case of a rubber, on account of the slowness of the liquid absorption
process, but where it can be applied it provides a useful check on the
data obtained from vapour-pressure measurements.

Eqn (7.4) defines the relation between the free energy of dilution
and the vapour pressure of the liquid component of the swollen
rubber for any composition or degree of swelling. For the case when
the polymer is in contact with the pure liquid the condition for
equilibrium between the two phases, from eqns (7.1) and (7.4),
becomes

AH, (7.5)

RTIn (p/po) =0, (7.4a)

or p/p, =1, indicating that the equilibrium vapour pressure of the
liquid in the mixed phase is equal to the vapour pressure of the pure
liquid. This conclusion, which may be regarded as self-evident,
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implies simply that the equilibrium degree of swelling will be the
same whether the polymer is in direct contact with the pure liquid,
or whether it is in indirect communication with the liquid via the
saturated vapour.

It may be noted in passing that the condition defined by eqn
(7.4a) need not necessarily correspond to a finite or limited degree
of swelling. For an unvulcanized rubber in a good solvent the
‘swelling’ may proceed to an unlimited extent, the rubber and liquid
being miscible or mutually soluble in all proportions. In such a case,
eqn (7.4a) is satisfied only at infinite dilution (zero concentration) of
the polymer. In a vulcanized rubber, on the other hand, the swelling
is necessarily limited, since unlimited swelling could not take place
without disruption of the chemically bonded network structure.

The free energy of dilution may be obtained not only from direct
vapour-pressure measurements, but also, under suitable
conditions, from any one of a number of properties which are
thermodynamically related to the vapour pressure (colligative
properties). Of these, the most important is the osmotic pressure 11.
This is defined as the excess pressure which it is necessary to apply to
the mixed phase in order that it shall be in equilibrium with the pure
liquid. The appropriate relation is

= —(RT/ V) In (p/po), (7.6)

where V), is the molar volume of the pure liquid. The quantity II
may also represent the swelling pressure, the only difference
between these quantities being the purely practical one that for an
osmotic pressure measurement a semi-permeable membrane is
required in order to separate the two phases (which are both liquid),
while in the measurement of swelling pressure (where the mixed
phase is solid), the separating membrane becomes superfluous.
Other solution properties of less general interest which are related
to the vapour pressure are the elevation of the boiling point and the
depression of the freezing point, with respect to the pure liquid.

7.3. Experimental data

As an example of the application of these thermodynamic
principles, we may consider the experimental data obtained by Gee
and his associates for the swelling (or solution) of unvulcanized
natural rubber in benzene. Fig. 7.1 represents the relative vapour
pressure p/ po of the solvent as a function of the volume fraction v, of
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F1G. 7.1. Relative vapour pressure for rubber-benzene mixtures.

the solvent in the mixture. In this system the two components are
miscible in all proportions, and the vapour pressure therefore
differs from that of the pure liquid for all values of v,, though for
concentrations of solid below about 10 per cent (v,>0-9) the
difference is too small to be apparent in this figure. From these
vapour pressure data the corresponding values of AG,, the free
energy of dilution, may be directly calculated, using eqn (7.4); the
results so obtained are shown in Fig. 7.2. This quantity is always
negative, with values ranging from —oo at v, =0 to zero at v, =1.

Heats of dilution AH,, whether obtained from the temperature
coefficient of relative vapour pressure or by direct calorimetry,
cannot be measured with the same accuracy as the corresponding
free energies. This is apparent from Fig. 7.3, which shows the values
obtained from the temperature coefficients of vapour pressure and
of osmotic pressure, using eqn (7.5). In this figure the quantity
plotted is AH,/v3, where v,=1—v,. The experimental accuracy
was obviously not sufficient to determine the form of the curve, but
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F1G. 7.2. Free energy, heat, and entropy of dilution for the system rubber-benzene,
calculated from vapour pressure and osmotic data.

this was inferred from more accurate direct calorimetric
measurements on a polyisoprene of low molecular weight (Gee and
Orr 1946). The corresponding curve for AH, is included also in Fig.
7.2, from which it is seen that the maximum value of this quantity is
1300 J mol™, or about 17 J (4 cal) per gram of benzene.



134 SWELLING PHENOMENA

1500 ©

AH,/ i mol™")

500

o ¢ o Vapour pressure,
various methods

x Osmotic pressure X

0 I 1 | 1 |
0-0 02 0-4 0-6 0-8 10

Volume fraction of solvent, v,

F1G.7.3. The quantity AH,/ v} for the system rubber-benzene (Gee and Orr 1946).

Finally, the entropy of dilution, obtained from AG,; and AH, by
the use of eqn (7.2), has the form shown in Fig. 7.2.

7.4. Significance of thermodynamic quantities

Important conclusions may be drawn immediately from the
relative magnitudes of AG,, AH,,and T AS, shownin Fig. 7.2. First,
it is clear that the most important term is T AS,, which is always
positive and relatively large. The heat term AH, is relatively small,
and is in this case positive, corresponding to an absorption of heat
on mixing. The positive sign means that this term acts in the sense of
reducing the numerical value of AG,, i.e. it tends to oppose the
process of swelling or solution. Similar results are obtained with
other rubbers in good solvents, though the sign of AH, may in some
cases, e.g. rubber—chloroform, be negative. Our conclusion,
therefore, is that the ‘driving force’ in the process of swelling or
solution is the large increase in the associated entropy, the
corresponding change in heat content or internal energy being
relatively unimportant.
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A process which would satisfy these thermodynamic conclusions
is the process of diffusion or random intermixing of the two
components. Such a process is accompanied by a large increase in
the entropy of the system. In addition, if no strong intermolecular
forces of a chemical or quasi-chemical character are brought into
play, the change in heat content or internal energy will be relatively
small. If this explanation is accepted, it follows that in all important
respects the phenomenon of the swelling of a rubber in a typical
solvent is analogous to the mixing of two mutually soluble low
molecular weight liquids which do not interact chemically, e.g.
benzene and petrol. A more detailed comparison shows that the
values of AH, for typical rubber-liquid systems are in the same
range as the values for simple liquids of comparable chemical
constitution, as would be expected from the consideration that the
intermolecular force fields, on which the value of AH, depends, are
not markedly affected by the length of the molecules concerned, i.e.
by their polymeric nature. The term AS;, however, as is shown in
more detail in the following section, is associated directly with the
configurational arrangements of the molecules and is therefore
greatly affected by their length. The entropy of dilution, though not
different in sign, is therefore very different in magnitude in the case
of a polymer than in the case of liquid-liquid mixtures.

It is apparent, therefore, that the facility for swelling does not
imply any specific chemical attraction between the rubber and
liquid molecules. It is a purely physical mixing or interdiffusion
process in which the two components may be regarded as
chemically neutral.

There is a close thermodynamic analogy between the elastic
properties of a rubber and the phenomenon of swelling. Both are
manifestations of the configurational entropy of the system of
long-chain molecules. The increase in entropy on elastic retraction
or on mixing are both in harmony with the principle that any
spontaneous process is accompanied by an increase in the entropy
of the system. In both cases also this primary effect is accompanied
by a secondary and essentially irrelevant change in internal energy
arising from intermolecular forces (cf. Chapter 2).

The above characteristic features of the phenomenon of swelling
in rubbers are in marked contrast to the typical characteristics of
water-swelling substances. In these, the quantity AH, is generally
negative and large (i.e. heat is evolved on absorption of water) while
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the entropy is negative and smaller (cf. Katz 1933). In such systems,
among which cellulose (cotton) may be taken as typical, the driving
force in the process of swelling is the chemical attraction between
water and polymer molecules (via hydrogen bonds), which is
effective in spite of the reduction in entropy.

7.5. Statistical treatment of swelling

The essential problem in the statistical treatment of swelling is to
determine the increase of entropy which accompanies the mixing of
polymer and liquid molecules. This increase in entropy arises from
the greater probability of the mixed state compared with the
unmixed state, and may be calculated in terms of the number of
configurations available to the system at any given composition.

Comparatively simple methods for the calculation of the
configurational entropy of mixing have been worked out by Flory
(1942) and by Huggins (1942). In Flory’s model the liquid and
polymer molecules are considered for convenience of calculation to
be arranged on a three-dimensional lattice of sites such that each
site may be occupied either by a liquid molecule or by a single
segment of a polymer chain. While a liquid molecule is free to
occupy any vacant site, the successive segments of a particular
polymer molecule are, of course, restricted to adjacent sites, as
illustrated in the accompanying two-dimensional diagram (Fig.
7.4). If n, is the total number of sites and N the number of polymer

FIG. 7.4. Schematic representation of lattice model. The circles represent solvent
molecules.
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molecules, each consisting of x segments, the number of liquid
molecules is no— xN. The problem is to calculate the total number of
distinguishable configurations or conformations of the N polymer
molecules and ny—xN liquid molecules on the lattice. For this
calculation Flory considers the polymer molecules to be laid down
successively, segment by segment, on the lattice. When these have
been dealt with the liquid molecules are allowed to fill the remaining
vacant sites.

Let us consider the state existing after N; polymer molecules have
been introduced, and let us calculate the number of ways in which
the next polymer molecule may be laid down. Its first segment may
be placed on any one of the n,—xN; vacant sites. The second
segment may be placed on any one of the Z nearest-neighbour sites
to that occupied by the first segment that is not already occupied by
a polymer segment. The fraction of unoccupied sites on the whole
lattice being (no—xN;)/ne, the number of sites available to the
second segment is taken as Z(no— xN;)/no, i.e. proportional to the
average concentration of unoccupied sites. Similarly the number of
sites available to the third segment is

a =(Z—1)(no—xN:)/no, (7.7)

since one of the Z nearest-neighbour sites is already occupied by
the second segment. This same expression is also used to represent
the number of sites available for all later segments; this means that
the complication due to the probability of occupancy of a
potentially vacant site by earlier segments of the same chain is
ignored. The total number of conformations for the (i + 1)th chain is
thus

Vi1 =%(no—-xN,-)(—ZZTl)oz“1 (7.8)

the factor 3 being introduced because either end of the chain may be
taken as the starting-point. The total number of distinguishable
conformations for the assembly of N polymer molecules is then

1 N
w=—1[w :
N R (7.9)
where v, is obtainable from (7.8).

The configurational entropy AS is obtained from (7.9) by the use
of Boltzmann’s relation S=kIn W. This gives, after further
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reduction,

n xN

AS k<nlnn+xN Nlnn+xN) k(x—1)N[In(Z-1)—-1]

~kNIn2, (7.10)

where n = no—xN is the number of liquid molecules. Subtracting
from this expression’ for AS the configurational entropy corre-
sponding to the original unswollen polymer, obtained by putting
n =0 in eqn (7.10), the entropy AS. associated with the mixing
process is obtained in the form

n xN
m=—k( +N1 ) 11
AS nmn+xN nn-+-xN (7.11)
or
AS.. = —k(nlnv,+ N In v,), (7.11a)

where v, and v, are the respective volume fractions of liquid and
polymer in the mixture. Note that the configurations of the liquid
molecules are not directly involved in the above calculation. This is
because the sites remaining vacant after the introduction of the
polymer molecules can be filled in one way only.

The entropy of dilution AS, with respect to the liquid component
is obtained by differentiation of (7.11) with respect to liquid content
(n). In terms of molar quantities the result finally obtained (on
writing 1 — v, for v,) is

AS,= —R{ln(1—-0v)+(1—1/x)vs}. (7.12)

Free energy of dilution

To obtain the free energy of dilution AG,, it is necessary to
introduce an expression for the heat of dilution AH,. This is done by
Flory on a semi-empirical basis, using the formula

AH, = av;. (7.13)

This formula, which has some theoretical justification, has been
found to apply to a large number of simple liquid mixtures.
Introduction of eqns (7.12) and (7.13) into (7.2) leads to the
following expression for the Gibbs free energy of dilution

AG,=RT{n(1—-v,)+(1—-1/x)v,+(a/RT)v3}. (7.14)
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The alternative treatment of the problem by Huggins (1942)
follows the same general lines as that of Flory, but includes a more
precise analysis of the number of sites available to segments of the
polymer molecule subsequent to the third. His expression for the
entropy of dilution is similar to (7.12), but contains an additional
term in v3. On inclusion of a heat of dilution of the form (7.13),
exactly as in Flory’s method, the resultant expression for the free
energy of dilution becomes

AG,=RT{In (1 -v,)+(1—1/x)v,+ xv3}, (7.15)

in which y is a parameter which includes a component y, due to
entropy in addition to the purely energetic contribution AH|, i.e.

X = xo+a/RT, (7.15a)

where y, and « are constants. At any given temperature, however,
eqns (7.14) and (7.15) are formally identical. Furthermore, if the
number of segments in the polymer chain is sufficiently large, so that
1/x is very small, either of these equations reduces to the form

AG,=RT{In (1—v,)+ v, + yv3}, (7.16)

in which y may be regarded as a constant. This is the form usually
referred to as the Flory-Huggins equation.

It is a remarkable feature of this result that it includes only a
single adjustable parameter y which is dependent on the special
properties of the particular polymer-liquid combination rep-
resented. This suggests that many of the restrictions introduced by
the somewhat artificial lattice model are formally unnecessary and
irrelevant to the essential physical problem, and that the resultant
equation should have a degree of generality exceeding that which
would be strictly justified on the basis of the original model.

7.6. Comparison with experiment

The application of the Flory-Huggins eqn (7.16) to the vapour-
pressure data of Gee and Treloar (1942) for the rubber—benzene
system is shown in Fig. 7.1, where the continuous curve represents
the theoretical relation, with y =0-41. The agreement over the
whole range of composition is seen to be very good. However, the
analysis of the free energy into a heat and an entropy term yields a
less satisfactory result. According to eqn (7.13) the quantity AH, /v3
should be constant, for variations of composition v,. Fig. 7.3 shows
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that this expectation is not fulfilled. It must therefore be concluded
that the deviations from the theoretical form of AH, are compen-
sated by deviations in AS; in such a way that the resultant free
energy is unaffected. From the present point of view, however,
these divergencies are not serious, since our primary concern is with
the form of the free energy AG,. This is adequately represented by
the Flory-Huggins equation, with y treated as an adjustable
parameter. Typical values of this parameter, taken from a review
article by Sheehan and Bisio (1966) are given in Table 7.1.

The significance of the constant y is further examined in § 7.9
below.

7.7. The swelling of cross-linked polymers

An examination of eqn (7.16) shows that if y <}, AG, is negative
for all values of v,, which means that the polymer and liquid are
miscible in all proportions, i.e. the polymer is soluble. On the other
hand, if y >}, there is a particular value of v, for which AG, = 0; this
represents the condition for limited or equilibrium swelling.

These considerations apply only when the polymer is not cross-
linked. In a cross-linked polymer, as we have already noted, the
presence of an interconnected network precludes the possibility of
solution. For such a material the Flory—Huggins equation is not in
itself sufficient to give the free energy of dilution; it is necessary to
take into account also the configurational entropy of the network.
The total free energy of dilution must therefore be expressed as the
sum of two terms, i.e.

AG] ZAGlm +AGle’ (7'17)

where AG,,, represents the free energy of dilution for the polymer
in the state prior to cross-linking and AG,. corresponds to the
change of free energy (per mole of liquid absorbed) due to the
associated elastic expansion of the network. This second term is
obtained from the Gaussian network theory, as represented by the
expression (4.9a) for the elastically stored free energy. For an
isotropic expansion of the network we have A,=A,=A;=0;’
(where 1/v, is the volume swelling ratio); the change in network
free energy on swelling is therefore

RT 3pRT
P A2+ AZ+A2—3)=2F

IM. IM. (A23—1). (7.18)

W=




TaBLE 7.1
Values of Flory—Huggins parameter x. (The third decimal figure is probably not significant)

Butadiene-
acrylo-
Butadiene— nitrile
styrene rubber Silicone
Poly- rubber (18 per cent rubber
Natural chloroprene Butyl (71-5 per cent acrylo- (dimethyl
Liquid rubber (Neoprene) rubber styrene) nitrile) siloxane)
Benzene 0-421 0-263 0-578 0-398 0-52
Toluene 0-393 0-557 0-465
Hexane 0-480 0-891 0-516 0-656 0-990 0-40
Decane 0-444 1-147 0-519 0-671 1-175
Dichloromethane 0-494 0-533 0-579 0-474 0-39%4
Carbon tetrachloride 0-307 0-466 0-362 0-478 0-45
n-Propyl acetate 0-649
Methyl ethyl ketone 0-856
Acetone 1-36

VNAWONIHd DONITTAMS

1541
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The corresponding term in the molar free energy of dilution is
dW/on,, where n, is the number of moles of liquid in the swollen
polymer. Putting

1/v,=1+n,V, (7.19)

(where V; is the molar volume of the swelling liquid) into eqn (7.18)
and differentiating, we obtain

RT 1
AGle:ﬂA—d— Vivs. (7.20)

Introducing this into eqn (7.17) together with the Flory-Huggins
expression for AG,,, we obtain the total free energy of dilution in
the form

\"
AGl=RT{ln(1-—v2)+vz+Xv§+f;VI'v§}. (7.21)
The condition for equilibrium swelling, AG, =0, is therefore
V, 1
In (1—v;)+ 0o+ xv2+ 22 03 =0, (7.22)

c

The equilibrium degree of swelling is represented by the value of v,
which satisfies this equation.

If the modified formula of Flory (eqn (4.28)) were used in place of
eqn (4.20) to represent the network entropy, eqn (7.18) would be
replaced by

RT = -
Wngc(Sv;‘—ln vy’ —3), (7.18a)
and the equation for equilibrium swelling would become

., PVif
In(1 —v2)+vz+xv§+%<vg— 02/2) =(. (7.22a)

<

7.8. Relation between swelling and modulus

Eqn (7.22) expresses the relation between the equilibrium
swelling and the degree of cross-linking, represented in terms of the
molecular weight M, of the network chains. The latter quantity, in
turn, is directly related to the elastic (shear) modulus G, given by the
elementary Gaussian network theory in the form (4.9c), i.e.

G = NkT = pRT/M..
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For a given polymer subjected to varying amounts of cross-linking
there is thus a unique relationship between the equilibrium degree
of swelling (in a given liquid) and the modulus.

This relationship between swelling and modulus has been the
subject of a number of experimental studies, starting with the early
work of Flory (1944, 1946) and Gee (1946b). By expanding the
logarithm in eqn (7.22) and neglecting powers of v, higher than the
second, Flory showed that for high degrees of swelling this
relationship could be reduced to the approximate form

(x —3)v3+(pVi/M)vi=0
or
(pVi/M.) =~ x)v. (7.22b)

Using a series of differently cross-linked butyl rubbers, Flory (1944)
presented his results in the form of a double logarithmic plot of the
force per unit unstrained area at a given strain (which is
proportional to pRT/M.) against the equilibrium degree of swelling
(1/v,) in cyclohexane. The data (Fig. 7.5) fell on a straight line of
slope —3, in agreement with eqn (7.22b). Gee, working with natural
rubber, calculated the values of modulus from measurements of the

4 (N mm %))

log (force at A

A 1
0:7 0-8 09 1-0
log (1/r,)

FiG. 7.5. Relation between equilibrium swelling (1/v,) and modulus for butyl
rubbers with various degrees of cross-linking (From Flory 1946).
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F1G. 7.6. Relation between eqailibrium swelling and degree of cross-linking for
natural rubber in (a) carbon tetrachloride (b) carbon disulphide, and (c) benzene.
Curves from eqn (7.22) (Gee 1946b).

force—deformation relations in the swollen state, thereby
circumventing the difficulties associated with the deviations from
the statistical theory (Chapter 5). By an appropriate choice of y,
reasonably close agreement was obtained with the theory,
particularly in the case of good swelling agents (Fig. 7.6). Moreover,
as will be seen from Table 7.2, these values of y were in close
agreement with the values obtained from direct vapour-pressure
measurements.

More extensive studies of the relation between swelling and
modulus have been carried out by Mullins, who worked mainly with
peroxide-vulcanized rubbers, but included some conventional
sulphur vulcanizates for comparison. Cross-linking by peroxides
has the advantage of producing direct C—C cross-linkages between
chains, without the introduction of any non-rubber constituents
into the network structure. To overcome the difficulties arising from
deviations from the form of force—extension curve predicted by the
statistical theory (as a result of which the value of modulus depends
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TaBLE 7.2
Values of x from swelling and from vapour-pressure measurements
(Gee 1946b)
From From vapour
Liquid swelling pressure
Carbon tetrachloride 0-290 0-28
Chloroform 0-340 0-37
Carbon disulphide 0-425 0-49
Benzene 0-395 0-41
Toluene 0-360 0-43-0-44
Petroleum (light) : 0-540 0-43

on the magnitude of the strain at which the measurements are
made) Mullins (1956) worked with rubbers in the highly swollen
state, corresponding to v,<0-25, where these deviations are
eliminated, i.e. where C,=0 (cf. Chapter 5). In cases where a
sufficiently high degree of swelling was not obtainable values
obtained by extrapolation from lower degrees of swelling were
employed. An empirical correction for ‘loose ends’, based on data
obtained for rubbers of different molecular weight M before cross-
linking, was applied; this is discussed in Chapter 8, in which the
methods employed are presented in detail. The values of modulus
so obtained were converted to equivalent values of modulus for the
unswollen rubber by multiplying by the factor v; 3 in accordance
with the statistical theory (eqn (4.26)); the quantity finally obtained
was designated by the symbol 2C,. Fig. 7.7 shows the relation
between the constant 2C; obtained in this way and the value of v,
corresponding to the equilibrium degree of swelling in n-decane.
The results are in close agreement with the Flory-Huggins relation
(eqn (7.22)), with a value of y of 0-415. Equally good agreement was
obtained with the modified formula (7.22a); in this case the value of
x required to fit the data was 0-45;.

In a subsequent paper Mullins (1959b) noted that at high degrees
of swelling the effects of the limited extensibility of the network
(non-Gaussian effects) could produce a significant increase in the
modulus even in the region of small extensions. He concluded that
for this reason values of C; obtained from measurements on the
unswollen rubbers should be preferred to those derived from
measurements on swollen rubbers. The values obtained on this
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F1G. 7.7. Relation between elastic constant 2C; and v, for equilibrium swelling in
n-decane. (From Mullins 1956.)

basis were some 10 per cent lower than the previously obtained
values. At the same time minor improvements were introduced into
the calculation of the molecular weights prior to cross-linking. The
final results obtained using these modifications showed a similar
agreement with the Flory-Huggins relation (7.22) to that obtained
originally, but necessitated a small adjustment in the value of y,

from 0-41 to 0-42.
It is necessary to emphasize that the values of 2C; used in these

experiments do not represent the shear modulus of the unswollen
rubber, which for small strains is given by 2(C, + C,). The use of 2C;
is based on the assumption that it is this constant alone which is
directly related to the network properties, and which should
therefore be identified with the value of the shear modulus given by
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the statistical theory, namely, pRT/M.. Possible objections to this
assumption are discussed in detail in Chapter 8.

7.9. The cohesive-energy density

Up to the present we have considered the specific differences in
swelling behaviour among the various polymer—liquid systems to be
capable of representation by means of the empirical parameter y,
which we saw was related primarily, though not entirely, to the heat
of mixing or energy associated with the interactions between
polymer and liquid molecules. In this section we examine in more
detail the nature of this interaction and consider alternative
methods of representing its numerical magnitude.

The most important consideration in this connection is that the
energetic interactions between polymer and solvent molecules, as
previously noted, are not specifically related to the polymeric
nature of the polymer component but arise from the local fields of
force between neighbouring atoms; they are therefore likely to
resemble very closely the energetic interactions between corre-
sponding pairs of low-molecular-weight liquids of comparable
chemical constitution. Bearing this in mind, Gee (1942, 1943)
attempted to apply the concept of the cohesive-energy density to
obtain a semi-quantitative understanding of the role of
intermolecular interactions in the determination of swelling
properties. The cohesive-energy density (c.e.d.) is defined as the
energy required to separate all the molecules in a given material
from one another; its value (per mole) is equal to (L —RT)/V,
where L and V are respectively the molar latent heat of evaporation
and molar volume. For many non-polar liquid mixtures it has been
found that the heat of dilution AH, (for component 1) may be
represented by the expression

AH, = kV,(ei—e})*v3, (7.23)

in which e; and e, are the respective c.e.d. values for the two liquids,
v, is the volume fraction of component 2, and k is a numerical
factor. According to this equation, the heat of dilution is always
positive, and passes through a minimum (zero) when e, = e,.
Adapting this idea to the case of a polymer—liquid mixture, Gee
suggested that, for a given polymer swollen in a variety of liquids,
the swelling should be a maximum when AH, is a minimum, i.e. for
that liquid whose c.e.d. is equal to that of the polymer. He found
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that a plot of the volume swelling ratio for a given vulcanized rubber
against the c.e.d. of the swelling liquid yielded a curve with a
pronounced maximum; the position of this maximum was therefore
taken to be a measure of e,, the c.e.d. of the polymer, which of
course cannot be measured directly. In this way he derived the value
e; =637 cal cm™ (266 J cm ™) for natural rubber. A plot of swelling
against Vi(ei—ed), in accordance with eqn (7.23), then yielded a
curve having the form shown in Fig. 7.8.

4_V
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F1G. 7.8. Relation of swelling to cohesive-energy density. (Gee 1943.)

The solubility parameter

Equations such as (7.23) may be presented rather more con-
veniently in terms of a parameter known as the ‘solubility
parameter’, which is defined as the square root of the c.e.d., and is
denoted by the symbol 8. Numerical values of this parameter for a
large number of polymers, obtained by a method similar to that of
Gee, and also for solvents of various types, have been collected by
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Sheehan and Bisio (1966); a selection from these figures is given in
Table 7.3. The values of & for the various solvents change
systematically with their chemical constitution and tend to increase
with increasing polarity. The best solvents (or swelling agents) for a

TABLE 7.3 1
Values of solubility parameter 8 (cal cm ™)

Polymers

Natural rubber 8-10
Butyl rubber 7-84
Polybutadiene 8-44
Neoprene (polychloroprene) 8-85
Butadiene—styrene (28-5 per cent styrene) 8-33
Butadiene—-acrylonitrile (18 per cent acrylonitrile) 8:70
Butadiene—acrylonitrile (39 per cent acrylonitrile) 10-30
Polyethylene 7-94
Solvents

Hexane 7-33
Decane 7-77
Cyclohexane 8-25
Benzene 9-22
Toluene 8-97
Chloroform 9-30
Carbon tetrachloride 8-63
Acetone 9-74
Ethanol 12-97
Methanol 14-52

given polymer are those whose é-values are nearest to that of the
polymer, and which therefore are most closely related in chemical
structure to the polymer. Thus hydrocarbon rubbers (natural
rubber, butyl rubber, polybutadiene) are readily soluble in
hydrocarbon solvents (petrol, benzene, etc.), but insoluble in polar
liquids such as acetone and alcohol. For the more polar butadiene—
acrylonitrile rubbers the value of 8 increases with increasing
acrylonitrile content, with a consequent increasing resistance to
absorption of hydrocarbon solvents such as petrol and lubricating
oils.

In view of the association of both y and cohesive-energy density
with the heat of dilution, represented by the respective equations
(7.15a) and (7.23), a close relationship between the two parameters
x and & is also to be expected. The formulation of this relationship,
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however, is complicated by the presence of both entropic (xs) and
energetic (xx) contributions to the observed y-value, and it is only
the yu component which is relevant in this connection. On the basis
of experimental data for non-polar polymer—solvent systems
Blanks and Prausnitz (1964) estimated the mean numerical value of
xs at 0-34, This value may be used, in conjunction with an equation
given by Shvarts (1958), namely,

8 =8, {(RT/ Vi)(x — xs)}%, (7.24)

which is substantially the same as (7.23), to relate the values of &
and x for a variety of liquids, and has proved moderately successful
in accounting for the experimental data (Sheehan and Bisio 1966).

7.10. The dependence of swelling on strain
General equations

So far we have been concerned with the question of the
equilibrium swelling of a cross-linked rubber in the stress-free state
in contact with a liquid, and have seen that this can be satisfactorily
accounted for in terms of the Flory—-Huggins theory. We now turn to
the rather more complicated problem of determining the
equilibrium degree of swelling in the presence of a stress or
mechanical restraint. This problem was first solved by Flory and
Rehner (1944) and also by Gee (1946b) for the case of a simple
tensile stress. Rather surprisingly (at first sight) it was found that the
effect of the tensile stress is to increase the amount of the swelling,
compared with that for the stress-free-rubber. In the case of a good
swelling agent the effect is quite large and may readily be confirmed
experimentally.

We shall begin by considering the theory for the general case,
corresponding to a pure homogeneous strain of any type, and will
then apply the result obtained to more specific types of strain. This
problem has been worked out by the writer (Treloar 1950a). As in
the previous treatment (§ 7.6) the total change of free energy is
represented as the sum of two terms, one of which corresponds to
the mixing of polymer and liquid molecules, and the other to the
free energy (entropy) of network deformation. In addition,
however, it is necessary to take into account the work done by the
forces which have to be applied to maintain the specified state of
strain.
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Let us consider a specimen of the cross-linked material, originally
in the form of a unit cube, which is in contact with the liquid, and is
constrained by normal forces applied to its faces to the form of a
rectangular block having dimensions /i, ,, and /5 (Fig. 7.9). The

1 / _"j/,
I l 51,

Fi1G. 7.9. Equilibrium of swollen rubber under stress.

edges of the block define the principal axes of the strain, while the
applied forces determine the principal stresses t;, ,, and ;. If the
volumes of the polymer and liquid are assumed to be additive we
shall have

11 12 l3=1/02=1+n1V1, (7.25)

where n, is the number of moles of liquid in the swollen polymer and
V. is the molar volume of the liquid, v, being the volume fraction of
polymer, as previously. According to our initial assumption we may
write

AG=AG,.+AG,, (7.26)

where AG is the total change in the Gibbs free energy of the system
(polymer plus liquid) on passing from the unstrained unswollen state
to the strained swollen state and AG,, and AG. are the terms
representing the corresponding free energies of mixing and of
network deformation.

Consider now the process of absorption of a further small
quantity 8n, moles of liquid, under the condition that /, and ; are
held constant, while [, increases by the amount 8,. We note that the
stress ¢; acts on a surface area I,/5; the corresponding force on this
surface is therefore t,1,/5. Since no work is done by ¢, and #;, the total
work 8W done by the external forces is simply

BW: 1 1213811 - tl V1 5"1 (7.27)
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from (7.25) above. Under constant temperature conditions, which
will be assumed throughout, the condition governing the
equilibrium of a system which is subjected to the action of external
forces is that the change in the Helmholtz free energy AA in a small
displacement from equilibrium shall be equal to the work done by
the applied forces, i.e.,

6AA =o6W. (7.28)

From the definition of Gibbs free energy the relation between AG
and AA, under conditions of constant pressure p and temperature
T, is

AG=AA+pAV. (7.29)

In the present case the net volume change (of liquid plus polymer) is
assumed to be zero, and we may therefore put AG =AA. Hence,
from (7.27) and (7.28),

8AG=8W=t1V1 5”1, (7.30)
or, in terms of partial differentials,

<6AG) =tuV) (7.31)

8n1

biz

Further, from (7.26) we have
<6AG) =aAGm+<aAGe)

on,

, (7.32)

any /i, om Il

where the first term on the right is the free energy of dilution for the
polymer in the uncrossed-linked state. For this we shall assume the
Flory-Huggins relation (7.16), which in the present notation
becomes

AG,

o = RT{In (1 —v,) + v, + yv3}. (7.33)
1

To obtain the second term we make use of the expression (4.9a) for
the elastic free energy of the swollen network referred to the
unswollen state; this gives

RT
AG. = W="7(1§+1§+1§—3). (7.34)

c
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We thus obtain, with the aid of eqn (7.25)

vzlg.
(7.35)

Combining (7.33) and (7.35) according to (7.32), to obtain the total
free energy of dilution, and introducing the equilibrium condition
(7.31), we arrive at the final result

RT

V
t1=71{ln (1—v2)+v2+xv§+l])w: vzlf}. (7.36)

(6AGe) _<8AG,><6_11) ZpRT &_leRT
an, (AR 611 on, Lis MC llzlg JVIC

This equation expresses the relation between the swelling ratio
(1/v,), the dimension [;, and the stress ¢,. Corresponding relations
may be written down for ¢, and t; in terms of [, and /;, respectively.
These equations together represent the solution to the problem.

Stress—strain relations for swollen rubber

From the three equations of the type (7.36) we obtain by
subtraction three general stress—strain relations for the swollen
rubber in the form

RT RT
-t =2 (2 —12) =F

M. M.

vH(AI-AD), (7.37)

in which A,, A; and A, are the principal extension ratios referred to
the swollen unstrained state. These equations have already been
derived for a swollen rubber (p. 70); they do not involve the free
energy of mixing, and are valid whether or not the rubber is in
equilibrium with the liquid. The condition for equilibrium with
respect to the liquid content determines the value of v,, but not the
mechanical properties of the rubber at any particular value of v,. If
v, 1s considered to be fixed, the swollen rubber may be regarded as
incompressible, in which case only the differences of principal
stresses are determinate, just as in the case of an unswollen rubber.
However, if in addition we introduce the condition that the swollen
rubber shall be in equilibrium with the swelling liquid, the further
relationship (7.36) is introduced, whereby the values of the
principal stresses become uniquely determined. Of the seven
quantities Iy, L, L5, 1, 2, t5, and v,, only three can be independently
chosen; the remaining four are then determined by three equations
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of the type (7.36) together with eqn (7.25). Thus, for example, if the
dimensions /,, l,, and L; are chosen as independent variables, the
value of v, follows immediately from eqn (7.25), and the principal
stresses are obtainable from eqn (7.36) together with the
corresponding equations for ¢, and t;.

The physical significance of this result is that whereas in an
incompressible rubber (i.e. whether unswollen or swollen to a
specified or fixed extent) the volume, and hence the state of strain,
is unaffected by the superposition of an arbitrary hydrostatic pres-
sure; in a compressible rubber, or in a rubber considered to be in
equilibrium with respect to the swelling liquid, this is no longer true,
since any such superimposed hydrostatic pressure will reduce the
volume or liquid content (see below). In this respect, therefore, a
swollen rubber in continuous equilibrium with a surrounding liquid
may be regarded, from the purely formal standpoint, as having
mechanical properties equivalent to those of a compressible
material.

The application of the above analysis to particular cases of
practical interest will now be considered.

The special case of hydrostatic pressure

In the case of a simple hydrostatic pressure p applied to the
polymer (but not to the liquid), we have

L=L=1=—pP; 11212=l3:vz-
Hence for equilibrium we have, from eqn (7.36),

RT A
—V—l{ln(1~—v2)+vz—xv§+a4:v;}=—p. (7.38)

The pressure p is equivalent to the swelling pressure (p. 131). For
the particular case when p = 0, corresponding to free swelling, eqn
(7.38) reduces to the form (7.22) given previously.

The special case of simple elongation (or uniaxial compression)
For a tensile stress ¢, acting in the direction [, we have

tz=t3:O; l%:l§:1/llvz

Using the expression for t, corresponding to eqn (7.36) the
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equilibrium condition becomes

RT V.
b=% {ln(l—v2)+v2+xu2 &l‘l}zo. (7.39)

This equation may be solved for v,, for a specified value of [, the
length in the direction of the applied force. If l, is greater than 03}
this force is tensile, while if [, is Iess than v3’ it is compressive. For
I, = v;" the tensile stress is zero, corresponding to free swelling.

The special case of equi-biaxial (two-dimensional) extension
This case is defined by the relations
t=1s, t,=0; B=05=1/lv,.
Hence

RT pV;
Hh= Vl {ln (1 Uz) + Uz+X'U2 Mcv;l;} - O. (7.40)

In this expression [, is the stretch ratio in the plane of the stretched
sheet, referred to the unswollen unstrained dimensions.

7.11. Experiments on swelling of strained rubber

Experiments on simple extension were carried out originally by
Flory and Rehner (1944), using butyl rubber swollen in xylene, and
by Gee (1946b) using natural rubber in a variety of swelling agents.
The theoretical relation between the extension and the degree of
swelling was satisfactorily confirmed, except in the case of poor
swelling agents, for which quantitative agreement was not obtained.

In a more extensive study the author (Treloar 1950b) examined
natural rubber in simple extension, uniaxial compression and equi-
biaxial extension, using both benzene and heptane as swelling
liquids. The results are reproduced in Figs 7.10, 7.11, and 7.12. In
the case of benzene, the value of xy was taken from published work
on vapour pressures, and the value of M, was then calculated from
the equilibrium swelling in the unstrained state using eqn (7.22).
For the swelling of the same rubbers in heptane, for which the value
of xy was not available at the time, the same value of M, was used,
and y was calculated from the free-swelling data. In either case the
theoretical curve was therefore adjusted to fit the swelling data at
one point only, i.e. for free swelling, but the dependence of
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Fi1G. 7.11. Dependence of swelling on strain. Equi-biaxial extension.
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F1G. 7.12. Dependence of swelling on strain. Uniaxial compression.

swelling on strain is then theoretically determined, and cannot be
further adjusted. The degree of correspondence between the
theoretical and experimental curves therefore provides a critical
test of the theory.

Origin of dependence of swelling on strain

At first sight the increase of swelling with extension may seem
somewhat surprising. It may, however, be understood in principle in
quite general terms. The quantity which determines the direction of
the change of swelling is the hydrostatic component of the applied
stress. For a simple hydrostatic pressure this leads directly to a
reduction of swelling with increasing pressure. A uniaxial
compressive stress ¢ is equivalent to a hydrostatic pressure of
magnitude t/3 together with two shear stresses of the same
numerical value. It may be assumed (to a first approximation) that
the shear stresses (for which the hydrostatic stress component is
zero) have no effect on the swelling. The total effect of the uniaxial
compressive stress therefore arises from the hydrostatic pressure
component, which produces a reduction in the swelling.
Conversely, by the same argument, a tensile stress, for which the
hydrostatic pressure component is negative, would be expected to
lead to an increase in swelling.
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These ideas may be generalized and applied to other systems,
including those for which the Flory-Huggins theory is not appro-
priate. In this way it has been found possible, for example, to
account for the observed increase in water content of cellulose and
hair on the application of a tensile stress (Treloar 1953).

7.12. Swelling under torsional strain

The application of the general relations between swelling and
strain developed in § 7.10 is not restricted to problems in which the
state of strain is homogeneous throughout the specimen. An
interesting example of a case involving inhomogeneous strain is
provided by the torsion of a circular cylinder. In this case (Treloar
1972) the state of strain varies with radial position, and the degree
of swelling also varies in a similar manner. On account of the
complexity of the problem a general analytical solution is possible
only for small torsional strains; for large strains numerical methods
of computation have to be employed.

For a cylinder of radius a, in the unswollen state subjected to an
axial extension in the ratio B, (referred to the unswollen axial
length) and torsion ¢, in radians per unit swollen length, the
analytical expression for the change A V in the swollen volume due
to the torsion alone is

é_Vz (le/MC)B3¢2a§
Vo 42x—1/(1—v)}vy

(7.41)

where V is the total volume of the swollen cylinder. This expression
is strictly valid only for an infinitesimal torsional strain, in which
case the volume fraction of polymer (v;) varies only to an
infinitesimal extent across the section of the cylinder. It is to be
noted that the predicted change of swelling (AV/V) is a second-
order effect, being proportional to the square of the torsional strain,
and that for a good swelling agent (x <3) it is negative, i.e. the
swelling decreases on twisting. Fig. 7.13 shows a typical
experimental result obtained by Loke, Dickinson, and Treloar
(1972), in which the reduction of swelling (—AV/V) is plotted
against the square of the torsion. This figure includes for
comparison the small-strain solution represented by eqn (7.41), and
the more accurate result obtained by numerical computation. On
account of the smallness of the effect, the experimental accuracy
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FiG. 7.13. Effect of torsion on swelling of cylinder. (a) Approximate theory (eqn
(7.41)); (b} exact theory, numerical computation; (c) experimental.

was not good, but there is no doubt that the results substantiate the
general form of the theoretical predictions. For a range of
differently cross-linked rubbers, the quantitative deviations of the
experimentally observed values of the relative volume change from
the predictions of the accurate theory varied from 12 per cent to 23
per cent.

The reduction of swelling due to torsion has its origin in the
presence of a normal component of compressive stress in the radial
direction, discussed in detail in Chapter 12, where it is shown that
this component of stress is proportional to the square of the
torsional strain, unlike the shear stress, which is proportional to the
first power of the strain. Being proportional to the square of the
strain, the radial component of stress does not appear in the classical
theory of elasticity, which of course is limited to infinitesimal
strains. These observations on swelling in torsion are therefore of
fundamental interest in demonstrating one of the important
conclusions derivable only from the theory of large elastic
deformations.



8
CROSS-LINKING AND MODULUS

8.1. Introduction

IN considering the extent to which the statistical theory is capable of
representing the properties of a rubber in a quantitative manner
attention has so far been concentrated on the form of the stress—
strain relations for various types of strain. We have seen (Chapter 5)
that to a first approximation the theoretical stress—strain relations,
which involve only a single elastic constant G, provide an adequate
basis for the interpretation of the properties of an actual rubber
(provided that the strains do not approach the limiting extensibility
of the network) though significant deviations are also observed,
particularly in the case of simple extension. The further question
which remains to be examined is that of the relation between the
observed value of the shear modulus G and the value predicted by
the statistical theory, which in its simplest form is given by

G = NkT=pRT/M.,, (8.1)

where N is the number of network chains per unit volume and M, is
the corresponding ‘chain molecular weight’.

The number of chains per unit volume is determined by the
number of cross-linkages per unit volume introduced in the process
of vulcanization. For an ideal network containing no network
defects in the form of ‘loose ends’, intramolecular cross-linkages,
etc., we have for the simplest form of cross-linkage (tetra-
functional), in which each junction point is the meeting point of four
chains,

N=2y, (8.2)

where v is the number of cross-links per unit volume, or the
cross-link density. If, therefore, we can introduce a known number
of cross-linkages it is a simple matter in principle to calculate the
value of the modulus and to compare this with the directly measured
value.

Unfortunately, the achievement of this objective is beset with
difficulties on both the experimental and theoretical sides. On the
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experimental side the choice of a suitable chemical reaction to yield
quantitative cross-linking has presented some difficulty, though this
problem appears now to have been largely overcome. A more
serious problem, which has not yet been fully resolved, arises from
the deviations in the form of the force—extension curve from the
theoretical form, as a result of which it is not possible to assign a
unique and unambiguous value to the modulus.

On the theoretical side a completely satisfactory treatment of the
effect of network imperfections is lacking. Apart from this there
remain unresolved difficulties in the derivation of a precise theoreti-
cal formula for the modulus. Both these difficulties have already
been discussed in Chapter 4. Practical studies have mostly been
based on the formula (8.1) given by the elementary theory, together
with the Flory ‘loose-end’ correction (eqn (8.3)) or some modifica-
tion of it.

8.2. Early work
Sulphur-vulcanized rubbers

One of the first to examine the implications of the theory was Gee
(1947), who compared the measured moduli for a series of natural
rubber vulcanizates with the values to be expected on the basis of
the amount of chemically combined sulphur, assuming one cross-
link for each atom of combined sulphur. In general, the measured
moduli were considerably lower than the calculated values, the
differences being greater for compounds vulcanized with sulphur
alone (where it amounted to a factor of about 5) than for those
which incorporated an accelerator in addition to sulphur. These
experiments showed clearly that no simple relation existed between
the modulus and the amount of combined sulphur. This was attri-
buted to the formation of polysulphide cross-linkages and other
types of combination of the sulphur not involving inter-chain
linkages—an explanation which was supported by the direct chemi-
cal evidence then existing (Bloomfield 1946; Farmer and Shipley
1946) and which has since been amply confirmed (Porter 1967).

Butyl rubbers

In an examination of butyl rubbers Flory (1946) took into account
the effect of loose ends, as represented by his formula

G =(pRT/M.)(1-2M./M). (8.3)
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The butyl rubbers are based on polyisobutylene:
{_C(CHs)z_CHz_‘]m

in which is incorporated a small percentage of a conjugated diene
(isoprene or butadiene) to provide the necessary double bonds for
the cross-linking reaction with sulphur. A series of fractions of
varying initial molecular weight M, each containing the same pro-
portion of diolefin, were prepared and subsequently cross-linked
under identical conditions; the number of cross-linkages per unit
volume could therefore be assumed to be the same for all. The
modulus measurements were made on the ‘gel’ fraction, obtained
by dissolving out the ‘sol’ fraction consisting of molecules not
chemically linked to the continuous network. The amount the sol
fraction, for a given degree of cross-linking, increases as the initial
molecular weight decreases, becoming 100 per cent at a critical
value of molecular weight M’ corresponding to the ‘gel point’,
below which no true network formation occurs. On the theory of
random cross-linking the number of cross-links at the gel point is
equal to one-half the number of primary molecules.

Fig. 8.1 shows a typical result in the form of a plot of modulus
f/(A—1/A%) measured at A =4-0 against the reciprocal of the
measured molecular weight of the primary molecules. Assuming M.

0-25r

0-20

G (N/mm?)

0-15

0-10

105/ M

F1G. 8.1. Modulus G vs molecular weight M before vulcanization. (From Flory
1946.)
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to be constant, this is consistent with the expected form of depen-
dence of modulus on M (see eqn (8.3)). From the slope of the line a
calculated value of M. of 30 000 was obtained; this was consistent
with the value calculated from the gel point (M = M), namely,
35 000. However, the value of M. calculated from the numerical
value of the modulus extrapolated to 1/M =0 (for which the
loose-end correction factor vanishes) was only 10 500, which is
lower than the above by a factor of 3-5. The discrepancy fell slightly
with increasing cross-linking, to a factor of 2-5 for an M. (calculated
from the modulus) of 8000.

Diazo compounds as cross-linking agents

The above results illustrate the difficulties encountered when
indirect methods are used for the estimation of the degree of
cross-linking. In later experiments Flory and co-workers employed
a more direct method, based on the use of compounds of the type

O0—CO—N=N—CO—O—CH,
/
R

AN
O—CO—N=N—CO-—0—CH;

known as bisazodicarboxylates, which react with the polymer at
each of the N==N bonds to give a calculable number of cross-
linkages. In measurements on both natural and butadiene—styrene
rubbers cross-linked by this means (Flory, Rabjohn, and Shaffer
1949) care was taken to achieve equilibrium under the applied
stress; for this purpose a solvent absorption—desorption technique
was used. The results for natural rubber are shown in Fig. 8.2, in
which the (nominal) stress is plotted against the equivalent percen-
tage of cross-linking agent, the values calculated from eqn (8.1)
being represented by the dotted line. Though the departures from
proportionality are significant, the experimental values are of the
correct order of magnitude. Similar data were obtained for the
butadiene—styrene rubbers.

This early work of Flory and his associates has been of great
importance in establishing the consistency of the statistical theory in
providing at least an approximately correct basis for the calculation
of the numerical value of the elastic modulus of a cross-linked



164 CROSS-LINKING AND MODULUS
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Tension at 100 per cent extension (N mm %)
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Theoretical =————
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Equivalent percentage of cross-linking agent

F1G. 8.2. Dependence of tensile force at 100 per cent extension on degree of
cross-linking. (Flory et al. 1949.)

rubber. Measurements of the modulus, however, were based on the
value of the force at an arbitrarily chosen extension, together with
the assumption that the theoretical form of force-extension rela-
tion, represented by eqn (4.19a), is applicable. In practice, owing to
the deviations from this relation noted above, the ‘experimental’
value of modulus will be dependent on the particular degree of
extension employed in the measurements. Moreover, it cannot be
assumed that the effect of these deviations will remain relatively
unchanged as the degree of cross-linking is varied.

8.3. The experiments of Moore and Watson and of Mullins

In an attempt to overcome these difficulties a comprehensive
series of experiments was undertaken by Moore and Watson, in
conjunction with Mullins. Moore and Watson (1956) employed as
cross-linking agents certain organic peroxides (e.g. di-(¢-butyl)
peroxide) which produce direct C—C cross-linkages by a catalytic
reaction, thus avoiding the introduction of unwanted non-rubber
constituents into the network structure. The reaction is quantita-
tive, and hence the number of cross-linkages introduced can be
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determined by analysis of the reaction products. The material used
was deproteinized natural rubber. Samples of different initial
molecular weight before cross-linking were prepared by milling,
and each of these samples was cross-linked to varying extents to
produce a range of M. values in the final state.

The deviations from the statistical theory were avoided by work-
ing with rubbers in the highly swollen state (or by extrapolation to
this state), where the C, term in the Mooney equation becomes
negligible (cf. Chapter 5). Measurements were made of the equilib-
rium swelling in n-decane; from these values the corresponding
M. -values were obtained by application of the Flory—Huggins
relation (7.22). This relation contains the adjustable parameter y,
the value of which was obtained from the relation between modulus
and swelling obtained by Mullins (1956) as represented in Fig. 7.7
(p. 146). In effect, therefore, the chemically estimated degree of
cross-linking can be compared with the physical estimate of the
same quantity derived from the modulus through eqn (8.1); for this
particular purpose the use of the Flory-Huggins relation is merely
an intermediate stage introduced as a convenient means of handling
the experimental data.

The experiments of Mullins (1956) have already been dealt with
in Chapter 7, but the correction which he introduced to take
account of ‘loose ends’ has not been discussed. In considering this
question we note first that Mullins obtained the values of C; for the
swollen rubbers on the basis of the modified Mooney relation

F=207(A—1/AD(C,+ G, /M), (8.4)

where f is the force per unit unstrained unswollen area. This
equation implies that the constant 2C, may be identified with the
shear modulus G of the statistical theory; it therefore represents the
modulus not of the actual swollen rubber (which for the case C,=0
would be 2C,v5°) but of a hypothetical dry rubber for which the
relation between modulus and swelling (v,) is in accordance with the
statistical theory. Hence, for an ideal network containing no loose
ends we should have

2C,= G = pRT/M.. (8.5)

Introduction of the Flory loose-end correction (eqn (8.3)) then gives
RT pRT

c =2 20 (8.6)

oM. M-
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For a given value of M., i.e. for a series of rubbers of identical
cross-linking, Mullins found a linear relation between C; and 1/M
to apply; by extrapolation to 1/M = 0 he thus obtained the value CY
corresponding to infinite initial molecular weight M. Putting C7 =
pRT/2M., eqn (8.7) may be written in the form

CT~Ci=pRT/M, (8.7)

which does not involve M, explicitly; the data for the various series
of rubbers of different M, could thus be represented by a single line,
as shown in Fig. 8.3. The slope of this plot, however, is not
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F1G. 8.3. Change in elastic constant C7 — C, (eqn (8.7)) for cross-linked rubbers,
plotted against reciprocal of initial molecular weight M. (Mullins 1956.)

consistent with (8.7), but has the value 8-5% 10° N mm, which is
about 3-7 times the theoretical value pRT. (This result might appear
to be inconsistent with Flory’s data for butyl rubbers, for which the
fractional reduction in modulus was in good agreement with the
theory; however, for a proper comparison, the absolute reduction in
modulus should be calculated. This, as Mullins points out, would
introduce a factor of about 3.)



CROSS-LINKING AND MODULUS 167

It is interesting to note that the sulphur vulcanizates gave the
same numerical dependence on 1/M as the peroxide vulcanizates.

The relation between modulus and degree of swelling shown in
Fig. 7.7 (p. 146) was based on the values of CT obtained by the
above empirical procedure. As observed in Chapter 7, these data
were fitted to the Flory—Huggins equation (7.22) by choosing the
value 0-41; for x; this was the value used by Moore and Watson in
the calculation of M. from their equilibrium swelling data, a similar
correction to that used by Mullins being introduced to take account

> w &
o = =

Physical determination of cross-linking (10%/M,)

=)

1 1 L
0-0 1-0 2:0 30
Chemical determination of cross - linking (10%/A1,)

FIG. 8.4. Relation between physical and chemical estimates of cross-linking, as
represented by 1/M,, for peroxide-vulcanized rubbers. (a) Experimental, using eqn
(7.22); (b) experimental, using eqn (7.22a); (c) theoretical. The various symbols refer
to different vulcanization conditions. (Moore and Watson 1956.)
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of ‘loose ends’. In this way values of the ‘physical’ estimate of
cross-linking, represented by 1/M,, were obtained for comparison
with the chemical estimates of the same quantity derived on the
assumption that the number of chains is equal to twice the number
of cross-links. The data so obtained are reproduced in Fig. 8.4,
curve (a). Calculations were also made on the basis of Flory’s
modified formula (7.22a) (curve (b)). Taking the original formula to
be the more appropriate, it is seen that the experimental data fall on
a line whose slope is somewhat higher than that required theoreti-
cally. A more serious discrepancy, however, is the presence of a
finite intercept of the experimental line on the vertical axis, which
implies that the rubber behaves physically as if it possesses a finite
number of cross-links, even in the absence of any specifically
introduced chemical cross-links. Moore and Watson suggested that
this effect could arise from the presence of entanglements between
chains, such entanglements being equivalent to ‘physical’ cross-
linkages. To account for the observations the number of such
‘physical’ cross-linkages would be relatively small, namely, 1 per
245 isoprene units.

8.4. Effect of entanglements

The above suggestion has been more closely examined in the later
paper of Mullins (1959), already referred to in Chapter 7. In this
paper the values of C, were derived from the dry rather than the
swollen rubbers; they correspond, therefore, only to the C; con-
tribution to the modulus. These values were some 10 per cent lower
than the values previously derived from the swollen rubbers; in
consequence, a slightly different value of y (namely, 0-42) was
required to fit the swelling data. The effect of these modifications on
the final relation between physical and chemical estimates of cross-
linking was, however, rather slight, as can be seen from Fig. 8.5.

In dealing with the question of physical entanglements Mullins
argues that such entanglements will contribute to the network
elasticity only if they are permanently ‘entrapped’ by adjacent
chemical cross-links; the effective number of such entanglements
will therefore increase with increasing cross-linkage. Furthermore,
the chain-end correction should be based not on the number of
chemical cross-links alone, but on the total number of chemical
cross-links and physical entanglements. From this standpoint he
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(Mullins 1959a.)

writes, for the number of effective cross-links v.,
Ve = (Vchem + Vent)(l - BMC/M): (88)

in which V4., and v, represent the respective numbers of chemical
and physical cross-links and B8 is an empirical constant derivable
from experiment. This leads to the expression

Ci=(C*+a)(1-BMI/M), (8.9)

in which M? is the molecular weight of the chains in the chemically
cross-linked network, calculated on the value of C;, (namely, C7T*)
corresponding to 1/M =0. Taking the experimental value of B,
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namely 2-3, the data reproduced in Fig. 8.5 could be represented by
eqn (8.9) with a = 0-078 N mm™. This is apparent from Fig. 8.6, in
which the values of 1/M* calculated from eqn (8.9), with these
values of the constants, are plotted against the corresponding
chemically estimated values. The agreement between the two esti-
mates is evidently very close.
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F1G. 8.6. Comparison of physical and chemical estimates of cross-linking after
allowing for entanglements. (Mullins 1959a.)

It is interesting to note that Bobear (1966) applied the Mullins
formulation with considerable success to data for radiation cross-
linked silicone rubbers obtained by St. Pierre, Dewhurst, and
Bueche (1959). A somewhat more elaborate treatment of the
physical entanglement problem has also been developed by
Meissner (1967).

8.5. Discussion and conclusion

While the experiments of Moore and Watson and of Mullins
represent the most careful work on the problem of the relation
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between cross-linking and modulus yet carried out, there remain
certain difficulties which are inherent in the problem and which it
has not been possible to resolve in an entirely satisfactory manner.
These difficulties stem from the deviations of the force-extension
relation from the theoretical form referred to in the introduction to
this chapter. The original treatment of Mullins (1956) is concerned
with the modulus of the highly swollen rubber, for which the
force-extension curve is of the theoretical form, i.e. C,=0. Inso far
as the problem is regarded as relating the modulus, determined
under the most appropriate conditions, to the chemically deter-
mined cross-link density, i.e. to the comparison of physical and
chemical estimates of cross-linking, there can be no criticism of this
procedure. Indeed, this was presumably the primary purpose of the
investigation. It is in relating the modulus so determined to the
properties and structure of the unswollen rubber that the difficulties
arise. With regard to this problem there is no fundamental differ-
ence between the use of C;-values determined in the swollen state
and the derivation of the C;-values from measurements on the
unswollen rubber, as in the work of Mullins (1959b); the difference
between the values obtained has been shown to be not large. By
whichever method it is determined, the value of 2C; may be very
different from the small-strain shear modulus of the unswollen
rubber, which is given by 2(C, + C,). In Mullins’ experiments the
ratio G,/ C, varied from 0:43 to 0-79; the small-strain shear moduli
would thus range from 1-43 to 1-79 times the values given by 2C,
alone. This is a very considerable difference, which of course was
fully appreciated by the authors. Even if the arguments are limited
to the C;-value, however, the identification of the constant 2C; with
the NkT of the statistical theory is still open to question. This will be
apparent from the examination of other types of strain, as given in
Chapter 10, in which it is shown that the Mooney equation does not
provide a satisfactory and self-consistent basis for the representa-
tion of the properties of a rubber under the most general type of
strain. In particular, it is found that the empirical Mooney constant
C, derived from simple extension data cannot be taken to represent
the deviations from the form of strain—energy function given by the
statistical theory.

This difficulty is not entirely disposed of by the observation that
the Ci-values for the dry rubber differ only slightly from the
corresponding values derived from measurements on the swollen
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rubber, for which the statistical theory is apparently valid. The
hiatus in this argument is that the values of C, used by Mullins are
not the actual values for the swollen rubber, but the values con-
verted by the factor 07 (eqn (8.4)) so as to relate to the unswollen
state. The values so obtained represent the properties not of the
actual rubber but of a hypothetical rubber for which the relation
between C; in the dry and in the swollen states is in accordance with
the predictions of the statistical theory. There is no basis for this
assumption other than the experimental observation that the values
of C, for the unswollen rubber calculated in this way are consistent
with the values of C; derived from measurements on the dry rubber.
But if the latter are open to question (as a representation of network
properties) the basis for this assumption is removed.

To sum up, therefore, we may say that in view of the fact that the
properties of a rubber in the unswollen state cannot be described in
terms of a single elastic constant it is not possible to obtain an
unambiguous relation between the degree of cross-linking and the
modaulus, since no single value of modulus is applicable in the region
of large strains. If attention is restricted to the values of C; derived
either from the swollen or from the dry rubber, then the increase in
modulus with increase in degree of cross-linking is within about 25
per cent of the value derived from the elementary statistical theory,
but the absolute values of modulus differ rather more, owing to the
finite intercept on the vertical axis corresponding to zero cross-
linking. This intercept is probably connected with the presence of
physical entanglements between chains, which act in a manner
similar to chemical cross-linkages.

In attempting to assess the significance of these conclusions it is
necessary to bear in mind the very general nature of the theoretical
model with which the experimental results are being compared.
This model is obviously a gross oversimplification of the physically
existing network structure, and the elementary treatment, as we
have seen in Chapter 4, introduces approximations into the treat-
ment which are not capable of absolute justification. This is exem-
plified by the more elaborate treatment of James and Guth, which
as noted in Chapter 4 suggests that the value of modulus given by
the elementary theory may require modification by a factor of 3.
Whether or not this figure ultimately proves to be justified, the
result may give some indication of the limitations on the quantita-
tive accuracy of the theory in its present form. The experimental
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data, however interpreted, would thus appear to fall within the
range of uncertainty of the theory itself, and to this extent may be
regarded as in satisfactory agreement with the theory.

If this appears to be a somewhat negative conclusion, some
satisfaction may be drawn from the fact that the prediction of the
absolute magnitude of a physical property from considerations of a
quite general character not involving the introduction of any
parameters derived from experimental observations (other than
Boltzmann’s constant, obtained from observations on gases) is an
achievement of considerable significance. Taking a broad view, the
presence of relatively minor inconsistencies is of less importance
than the major success of the statistical theory in predicting not only
the approximate form of the stress—strain relations of a rubber in
any state of strain, but, in addition, the absolute value of the
modulus to within a small numerical factor.



9

PHOTOELASTIC PROPERTIES
OF RUBBERS

9.1. Refractive index and polarizability

ITis well known that many crystals are optically anisotropic, being
characterized by different values of refractive index for different
directions of propagation of light through them, or, more precisely,
for different directions of polarization of the transmitted light. This
optical anisotropy, which gives rise to the phenomenon of double
refraction, has its origin in the different polarizabilities of the
medium for different directions of the electric field or electric vector
in the electromagnetic wave. Generally there is a close connection
between the optical anisotropy and the mechanical or elastic aniso-
tropy, since both are directly related to the type of symmetry
exhibited by the molecular structure of the crystal. Materials such as
glasses and rubbers, whose structure is essentially irregular or
amorphous, are normally isotropic in their physical properties; such
materials do not show double refraction in the unstrained state. But
if such materials are deformed by the application of a stress their
structural randomness is disturbed; they cease to be isotropic and
begin to exhibit properties in some ways akin to those of a crystal. In
particular they show double refraction or birefringence, which is a
rather sensitive indicator of the structural dissymmetry induced by
the strain.

The effect of an electric field on a polarizable medium is to
produce a separation of charge or polarization, the polarizability
being defined as the ratio of induced dipole moment to field
strength. In an optically anisotropic medium the properties are
represented by the refractive index ellipsoid, the principal axes of
which represent the three principal refractive indices ni, n., and ns;
in three mutually perpendicular directions. This in turn is related to
the polarizability ellipsoid, whose axes correspond to the principal
polarizabilities B8;, B2, and B,, and coincide in direction with the axes
of the refractive index ellipsoid. In an optically isotropic medium
the relation between the polarizability per unit volume (8) and the
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refractive index n is expressed by the Lorentz-Lorenz formula

n*—1 47
12 3P ©.1)

9.2. Optical properties of long-chain molecules

The problem of dealing with the optical properties of strained
rubbers or strain birefringence, which was first successfully attacked
by Kuhn and Griin (1942), requires the calculation of the principal
polarizabilities in a strained cross-linked network. The method used
by Kuhn and Griin follows closely on the lines taken in the treat-
ment of the corresponding problem of the elastic or mechanical
properties of the network, as discussed in Chapter 4. First, the
optical properties of the single chain were determined as a function
of the vector distance between its ends. Next, the contribution of an
individual chain in the network to the total polarizability of the
network, in any specified state of strain, was determined. Finally,
the total polarizability of the network was obtained by summation
over all the chains.

As in the treatment of the elastic properties, the actual molecule
is replaced by a hypothetical chain of randomly jointed links of
equal length. The optical properties are introduced by associating
with each link an optical anisotropy, defined by polarizabilities «;, in
the direction of its length and «; in the transverse direction, the link
being therefore assumed to possess axial symmetry.

Let us assume the chain, containing n links each of length /, to be
held with its ends separated by a vector distance r, which for
convenience may be taken to coincide with the axis Ox of a
rectangular coordinate system. The resultant components of
polarizability for the whole chain along the axes Ox, Oy, and 0z may
be calculated if the directions of all the links are known; these
directions will of course be determined by the specific conformation
of the chain. However, if the number of links is large it is possible to
define statistically the distribution of link angles and hence to obtain
the corresponding mean components of polarizability for the chain.

The angular distribution of link directions has already been
discussed in Chapter 6; it is represented by the expression

do

nB pBecosé 1 _
=— .3 do.— 2
n sinhBe ssin 6do o 9.2)
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in which B is the inverse Langevin function &£ '(r/nl). For a link
defined by the angles 6 (with respect to Ox) and ¢ (with respect to
the plane x0y), the components of the polarizability tensor referred
to the coordinate axes may be shown to be

Qe = a; COS” 0 + a, sin’ 6,

ay, = (a; — a,) sin® § cos® ¢ + a,,

a,, = (a, — ay) sin® @ sin® ¢ + s, 93
a,, = a,, = (a; — ) sin 6 cos 4 cos ¢, ©:3)
@y = &, = (@ — a,) sin’ 6 sin ¢ cos ¢,

0 = @y, = (a; —az) Sin 6 cos ¢ sin ¢,

the notation being such that a,, is the polarizability in the direction
Ox for a field applied in the direction Oy.

If Y., Yy, €tC., are the corresponding components of polarizabil-
ity for the whole chain, we then have six equations of the type

YVex = J a,, dn, 9.4)

in which dn is the number of links in the angular range dé, dé¢.
Substitution of the expression (9.2) for dn and integration with
respect to the angular variables yields the result

S AP 1/4.
Yex = n{al (al az)f_l(r/nl)}’ (953)
o B r/nl
Yoy = Yoz = n{az +(a; az)—““""_:f_l(r/nl)}, (9.5b)
Yoy = Yoz = Yax = 0. (95C)

The fact that the cross-polarizabilities 7,,, etc. in (9.5¢) are all zero
implies that the principal axes of the polarizability ellipsoid coincide
with the axes of coordinates, while eqn (9.5b) implies that the two
transverse polarizabilities are equal. The whole chain therefore has
the optical properties of a uniaxial body whose optic axis coincides
with the r vector, i.e. the line joining the ends of the chain. These
properties would, of course, be anticipated from the basic symmetry
of the system.

Writing vy, and v, in place of y. and v, for the respective
longitudinal and transverse polarizabilities of the whole chain, the
optical anisotropy or difference of principal polarizabilities, from
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(9.5a) and (9.5b), may be written

3r/nl }

C P (r/nl) (9.6)

Y1—Y2=n(a;— az){l
It will be noted that the dependence of optical anisotropy on chain
extension involves only the fractional chain extension r/nl. This
means that the form of this dependence is the same for all chains. At
the maximum chain extension (r=nl) the anisotropy becomes
n(a; — as), corresponding to n links in full alignment.
The form of the function (9.6) is shown in Fig. 9.1 in terms of the
relative chain anisotropy (y; — vy2)/n(a: — az).

10

© o °
£ =N (=2 ]
T T T

Relative anisotropy
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F1G. 9.1. Optical anisotropy as function of relative length of random chain.

By expansion of the inverse Langevin function in eqn (9.6) as in
eqn (6.10a) (p. 107) we obtain the corresponding series expression

= (e ){Q(L)2+£(L)‘+19§(L)6+ }
neeEmaT N ) 15\t T1s\mt) T S
(9.6a)

For values of (r/nl) which are not too large the first-term approxi-
mation

3 2
Yi—v2=n{a— az)g(n_rl> (9.6b)
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is valid. This approximation, which is entirely analogous to the
Gaussian approximation for the chain entropy (eqn (6.7b) p. 104),
implies that for small chain extensions the optical anisotropy is
proportional to the square of the chain vector length r. It is
interesting to note, further, that for a free chain, for which r> = nl?,
the mean anisotropy is simply

Yi—v: =3 — az), (9.6¢)

1.e. three-fifths of the anisotropy of a single statistical link.

A further observation of interest in practical applications is that
the expression (9.6), unlike the analogous expression for the
entropy, does not tend to infinity at high chain extensions; it is
therefore more readily approximated by a finite number of terms in
the expansion (9.6a). A simple alternative series, arrived at empiri-
cally, namely,

3r/nl 3(r)2 1(r)" l(r)6
=] o= o= :
1 FNr/nl) 5\nl/ 5\nl/ 5\nl (9.6d)
has been found to be numerically accurate to within 1 per cent over

the whole range of r/nl from 0 to 1 (Treloar 1954), and is thus of
considerable value in numerical calculations.

9.3. The Gaussian network

Simple extension

In their treatment of the optical properties of the Gaussian

network Kuhn and Griin proceed by the following stages.

1. The network is assumed to contain N chains per unit volume
whose r vectors in the unstrained state are distributed ran-
domly in direction.

2. On deformation the components of vector length for each
chain are assumed to change in the same ratio as the corre-
sponding dimensions of the bulk rubber (affine deformation).
This determines the length r’ and angular coordinates (6', ¢')
of the chain vector length in terms of the original length r and
orientation (6, ¢) and the extension ratio A.

3. The principal polarizabilities for a chain of length r’ being
given by eqns (9.5a) and (9.5b), the contribution of a given
chain to the total polarizabilities referred to the principal
axes of strain are obtained by means of equations of the type
(9.3).
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4. Integration over all chains then gives the total polarizabilities

for the whole network.

Denoting the network polarizabilities respectively parallel and
perpendicular to the direction of the extension by 8, and 8., the
final result obtained after following through the above procedure is
represented, in the first-term approximation corresponding to
(9.6b), by the equations,

Bi= N{g(a1+2a2)+%(al —az)nl;—(v—%)},
9.7)

= Mgt 4200 bt (1)

Bz =N 3(011+ (12) 15(011 a2)nlz VA

where r? is the mean-square vector length in the unstrained state.

The final step involves transforming these polarizabilities into the

corresponding principal refractive indices n; and n,. For this pur-

pose Kuhn and Griin assume the validity of the Lorentz-Lorenz

relation (9.1) in respect of the separate polarizabilities—an assump-

tion which is not strictly justified, but which is probably sufficiently

accurate, in view of the relative smallness of the differences of

polarizabilities compared with the mean value. Introducing the

approximation

ni-1 ni—1  6n

n2+2 ni+2 (ni+2)

2(nl_n2)7 (9'8)

in which n, is the mean refractive index, given by 3(n, +2n,), and
putting r* = nl?, as for a corresponding set of free chains, they finally
obtain the optical anisotropy in the form

_2m (n3+2)

nhi—n,=
45 Ho

N(al—a2)</\2—%). (9.9)
The quantity n, — n,, representing the strain birefringence, is thus
determined by the number of chains per unit volume (N), the
anisotropy of the random link in the chain (a;—a,), and the
extension ratio A. It is not directly affected by the number of links n
in the chaip.

Stress-optical coefficient

To obtain the relation between the birefringence and the applied
stress it is necessary to introduce the Gaussian stress—strain relation
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as already derived from the network theory. (At this point it is
necessary to go beyond the original presentation of Kuhn and Griin,
which preceded this development of the network theory.) For the
(true) stress ¢t we have (p. 67)

t=NkT(A*—~1/A). (9.10)

It is seen that both the birefringence and the stress involve identical
functions (A>—1/A) of the strain. We may therefore eliminate this
variable and obtain the linear stress-birefringence relationship

n,—n2=Ct, (9.11}

in which the strain-independent parameter C is given by

C— 27 (ni+2)?
45kT n,

Eqn (9.11), which states that the birefringence is directly propor-
tional to the stress, is equivalent to Brewster’s law, previously found
to apply to glassy materials under small-strain conditions. The
constant C is known as the stress-optical coefficient. It is important
to note that this constant depends only on the mean refractive index
(which is not in itself a network property) and on the optical
anisotropy of the random link. It does not involve N, and is
therefore independent of the degree of cross-linking of the net-
work.

(o —az). (9.12)

General homogeneous strain

Kuhn and Griin’s analysis was limited to the case of simple
extension, in which the optical properties correspond to those of a
uniaxial crystal whose optic axis coincides with the direction of
extension, and are specified by two refractive indices n, and n,. In
the more general problem of the pure homogeneous strain the
refractive index ellipsoid will have three unequal axes n,, n,, and n;
corresponding to the principal axes A,, A», and A; of the strain
ellipsoid.

This problem has been treated by the author (Treloar 1947), who
used an essentially similar but mathematically somewhat simplified
model compared with that used by Kuhn and Griin for the purpose.
The network of N chains was divided up into N/3 sets of three
mutually perpendicular chains, each having the same value of r in
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the unstrained state. For any one set the principal polarizabilities
were calculated under an imposed strain corresponding to principal
extensions A;, A, and A;. The expressions for the resultant
polarizabilities were shown to be independent of the orientation of
the axes of the strain ellipsoid with respect to the original r vectors,
and hence applied equally to all the sub-sets. The principal
polarizabilities .., B,,, B.., for the whole network were thus readily
obtained. These are given by

Bee = N{sn(a: +2a5) +15(a1 —a2)(2AT— A2 —A3)},
Byy = N{%n(al +2a,) +1s(a _aZ)(ZA%_)‘g—/\%)}’ (9.13)
B.. = Nfn(a +2a,) + (e — @) (203 - Ai - AD).

Converting to refractive indices through eqn (9.1) and introducing
the approximation (9.8), the differences of refractive index are
obtained in the form
2 2
m—ny =D ITN  i-a), (014)
o 45
with corresponding expressions for n,—n; and n;—n,. The differ-
ence n;—n, represents the birefringence for a ray of light propa-
gated in the As-direction, the n; and n, corresponding to the two
principal directions of electric vector (planes of polarization) for
such a ray. From eqn (9.14) it is seen that the birefringence is
proportional to the difference of the squares of the corresponding
principal extension ratios in a plane perpendicular to the ray
direction.
The principal stress—strain relations derived from the Gaussian
network theory (p. 67) are of the form

We have, therefore,
Hi—R= C(t1_t2), (916)

in which, as before, the constant C is the stress—optical coefficient
defined by (9.12). It follows that the birefringence for light propa-
gated along one of the principal axes of strain is proportional to the
difference of principal stresses in the transverse plane. This is a
generalization of Brewster’s law as previously applied to the case of
uniaxial strain. The result (9.15) has no analogue in the classical
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theory of photoelasticity but reduces to the classical form (bire-
fringence proportional to difference of principal strains) when the
deformations are small.

9.4. The effect of swelling

It is a simple matter to extend the theory to the case of a rubber
swollen by a solvent. For this purpose it is assumed that the solvent
is optically neutral and isotropic, even when the rubber is strained.
The solvent is therefore assumed to affect the optical properties
only indirectly, by altering the mean chain extensions. In the
unstrained state the r.m.s. chain extension (r’ )2 is assumed to be
proportlonal to the linear dimensions of the swollen rubber, i.e., to
v3%, where v, is the volume fraction of rubber in the mixture. For a
network of chains occupying unit volume in the unswollen state the
effect on the polarizabilities is then simply to alter the mean value of
r? in the expressions for the polarizabilities (correspondmg to eqns
(9.7) for the case of simple extension) from nl? to nl*v;°. A further
factor of v, has to be introduced to relate the polarizabilities to unit
volume in the swollen state. The modified form of (9.14) is therefore

(no + 2) 2 aN
Ho 45

where n, is now the mean refractive index of the swollen rubber,
which effectively includes the contribution of the isotropic polariza-
bility of the solvent. In so far as the refractive index of the solvent
differs from the refractive index of the (unstrained) rubber, the
factor (nj+2)°/no in eqn (9.17) will have some effect on the
birefringence.

The effect of swelling on the principal stresses has been given in
Chapter 4. The differences of principal stresses are represented by
equations of the type

ni—n,= (m—a)vd(Ai-AD),  (9.17)

Lh—t= NkTvz(/\l—/\z) (918)

Since the factor v occurs in both (9. 17) and (9.18), the stress-optical
coefficient C, as represented by eqn (9.12), remains unchanged,
except for the possible effect of the solvent on n,, noted above.

9.5. The non-Gaussian network

The foregoing results are applicable only to the Gaussian net-
work and are therefore valid only in so far as the chains are
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sufficiently long and the strains are not too large. The treatment of
the optical properties of the non-Gaussian network, like that of the
mechanical properties, is considerably more complex. Kuhn and
Griin (1942) attacked this problem by an extension of their original
treatment, discussed in § 9.3 above. The assumption of an ‘affine’
displacement of network junction points was retained, but in place
of the first-term approximation (9.6b) for the optical anisotropy of
the single chain the first three terms in the series (9.6a) were
included. The resulting expressions for the network polarizabilities
(comparable to 9.7), in the Gaussian approximation) thus contain
additional terms involving r*/n?l* and r®/n*I°. To evaluate these
terms Kuhn and Griin assumed the distribution of r vectors in the
unstrained state to be Gaussian, as for a corresponding set of free
chains, and therefore wrote

P/ml=1;  r*/n?f*=5/3;  r*/n’l°=35/9. (9.19)

With these values the expression for the anisotropy of network
polarizability for a simple extension in the ratio A becomes

Bi—Ba=Nla— a3 (17— )+ (62" +22 - 54

<10A +6A3~i—6)+ .. } (9.20)

+ 6
875n?

As in the case of the mechanical properties, the higher-order terms
in this expression involve n, the number of links in the randomly
jointed chain. However, as we have already seen, the assumption of
a distribution of r vectors corresponding to an assembly of free
chains is open to criticism; it is also incompatible, in the non-
Gaussian treatment, with the assumption of an affine displacement
of junction points (Treloar 1954). It may well be nearer the truth to
assume that all the chains have the same initial vector length. If this
is assumed to be given by r* = nl? we should then have

/Pt =r¢/ne=1. (9.19a)

Inserting these values into Kuhn and Griin’s equations in place of
the values (9.19), and introducing the closer approximation (9.6d) in
place of the series (9.6a) for the chain anisotropy, the author
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(Treloar 1954) obtained the result

BI~BZ=N(a1~a2){%<,\2—l>+ (6/\“+2,\ —%)+

A 150n

1 , 16}
+6A°—— )
350 (10,\ 6A A) ., (9.21)

which differs from (9.20) in assigning smaller numerical values to
the coefficients in the higher-order terms. The difference is illus-
trated in Fig. 9.2 (curves (a) and (b)) for the case n=25. Both
expressions reduce to the Gaussian form if the higher-order terms
are neglected (cf. eqn (9.7)).

An alternative mathematical treatment of the stress-optical
properties of the non-Gaussian network, based on a somewhat
similar physical model, has been developed by Smith and Puett
(1966).

The effect of relaxing the affine deformation assumption has been
examined by the author (Treloar 1954) using as a basis the Flory—
Rehner tetrahedral cell model (p.117). The results (which cannot
be represented by general mathematical formulae) are shown in
Fig. 9.2, in terms of the ‘optical orientation factor’, or anisotropy
relative to that of the fully extended chains. It is seen that the
conclusions are not greatly affected according to whether the cen-
tral junction point was subjected to an affine displacement or
allowed to assume its equilibrium position under the action of the
forces in the adjacent chains. As noted previously, however, the
restriction to an affine displacement had the effect of reducing the
extensibility.

The relation between the optical anisotropy and the stress, for
two different values of n, based on the tetrahedral cell model with
affine displacement, is shown in Fig. 9.3. Whereas in the Gaussian
approximation this relation is linear (Brewster’s law) and indepen-
dent of n, the non-Gaussian theory leads to departures from this
behaviour which become apparent at smaller values of the stress the
smaller is the value of n (i.e. of chain length). For sufficiently small
values of n even the slope at the origin (or limiting value of the
stress-optical coefficient) is dependent on n.

A more precise theory of the photoelastic properties of the
non-Gaussian network would need to find some method of dealing
with the problem of the distribution of chain vector lengths in the
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F1G. 9.2. Theoretical optical anisotropy for network, with n =25. (a) Kuhn-Griin
theory, eqn (9.20); (b) Kuhn-Griin theory, modified, eqn (9.21); (c) four-chain
model, non-affine deformation; (d) four-chain model, affine deformation; (e¢) Gaus-
sian.

unstrained state, which would necessarily include also the consider-
ation of the distribution of chain contour lengths. In the absence of
such a theory the conclusions derived from the rather crude models
referred to above cannot be regarded as quantitatively precise,
though they do indicate the general form of the dependence of
optical anisotropy on strain and on the parameter n, the number of
statistical links in the chain.
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F1G. 9.3. Optical anisotropy as function of stress, derived from four-chain model,
with n =5 and n =25.

9.6. Measurement of birefringence

The theoretical relations derived in the foregoing sections are
concerned with the values of the three refractive indices n,, n,, and
n; corresponding to the principal axes of the refractive index
ellipsoid, whose axes correspond in direction with the axes of the
strain ellipsoid. If these axes are chosen so as to coincide respec-
tively with the axes Ox, Oy, and Oz of a rectangular coordinate
system, then the refractive index of the medium for a ray of light
travelling in the direction Ox will be n: if it is polarized with its
electric vector parallel to Oy and ns if its electric vector is parallel to
Oz. For any other plane of polarization the ray may be resolved into
two components, having refractive indices n: and ns. The value of
n2— ns3 is a measure of the birefringence for the direction of propa-
gation Ox. The corresponding birefringences for directions of
propagation Oy and Oz are respectively ns —n: and n1—no.
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In the case of simple extension the system possesses uniaxial
symmetry, and is characterized by one optic axis. For light propa-
gated along this axis the birefringence is zero. For the general
(triaxial) strain the properties correspond to those of what is histori-
cally defined as a ‘biaxial’ crystal, this term referring to the fact that
in such a system there are two (and only two) directions of propaga-
tion, called the optic axes, along which there is no birefringence.
These directions are those for which the section of the refractive
index ellipsoid normal to the ray direction are circular (Jenkins and
White 1957).

The measurement of birefringence requires the use of an optical
compensator, which introduces an adjustable optical path differ-
ence between the two rays polarized in perpendicular planes to
compensate for their different refractive indices in the medium (Fig.
9.4). The experimental arrangement consists of a polarizer P (Nicol

S P R A E

g

F1G. 9.4. Experimental arrangement for measurement of double refraction. S:
light-source; P: polarizer; R: specimen; B: Babinet compensator; A: analyser; E:
eyepiece.

prism or polaroid plate) set so that the light incident on the
specimen R is polarized at an angle of 45° to the directions of the
principal axes of strain, a compensator B, and an analysing Nicol or
polaroid set at right angles to the polarizer. The principle of the
measurement is indicated in Fig. 9.5. The incident light, polarized in
the direction OP, is resolved into two components, Oa and Ob,
parallel to the principal axes of strain in the specimen. These travel
with velocities ¢/n, and ¢/ n,, respectively, where ¢ is the velocity of
light in vacuo. After passing through the analyser A, these have
components Oa’ and Ob’ of equal amplitudes, polarized in the same
plane. For an optically isotropic material these two components,
being in opposite senses, would interfere to produce zero resultant
intensity of illumination. For an optically anisotropic material,
however, there will be an optical path difference A between the two
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FiG. 9.5. Interference effects. OP: plane of polarizer; Ox, Oy: principal axes of
strain; OA: plane of analyser.

components, which will in general lead to the transmission of light.
Extinction will occur only when the path difference corresponds to
an integral number of wavelengths. If d is the thickness of the
specimen and A, and A, are the wavelengths in the medium corre-
sponding to the refractive indices n; and n,, then

A= /\()/nl and Az = /\0/"2, (9.22)

where A, is the vacuum wavelength. The path difference, in number
of waves, is therefore given by

d d d
A—/\—l—/\—z—(l’h”nz)A—O. (923)
The condition for extinction of the transmitted light is therefore,
(ni—nzy)d/Ao=k (k=0,1,2,..)). (9.23a)

One of the simplest forms of compensator is the Babinet compen-
sator, which consists of two quartz wedges of equal wedge-angle,
cut with their optic axes at right angles to each other, so as to
introduce path differences in opposite senses (Fig. 9.4). At the point
at which the two thicknesses are equal there appears a dark band,
corresponding to k = 0, while on either side there are parallel bands
correspondingto k= +1,+2,...andk=—-1, —2,..., etc., when
the system is viewed in monochromatic light. Introduction of a
birefringent specimen displaces the band system, which may then be
brought back into its original position (with reference to a cross-
wire) by displacement of the first wedge in the compensator through
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a measurable distance. Knowing the displacement corresponding to
one wavelength, this immediately gives the equivalent optical path
difference.

In practice it is convenient to work with white light so as to be able
to identify the zero-displacement fringe, which then appears as a
black fringe surrounded by a succession of coloured fringes, corre-
sponding to the extinction of the successive constituent colours of
the white light.

9.7. Investigations on natural rubber

A typical example of the behaviour of vulcanized natural rubber
in simple elongation is shown in Fig. 9.6 (Treloar 1947). Both the
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F1G. 9.6. Hysteresis in tension (a) and birefringence (b) curves for natural rubber.
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tension and the birefringence curves show marked hysteresis loops
in the same region of extension, but whereas the tension is lower in
the retraction half-cycle, the birefringence is higher. Consequently,
a plot of birefringence against stress yields a still more pronounced
hysteresis loop (Fig. 9.7, 25°C curve). However, at the lower
stresses {corresponding to extension ratios below about 3-0) the
expected proportionality between birefringence and stress (eqn
(9.11)) is exactly realized.

It is inferred that these hysteresis loops are the result of crystalli-
zation, the crystallites themselves being oriented in the direction of
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F1G. 9.7. Relation between birefringence and stress for natural rubber at 25 °C,
50°C and 100 °C.
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F1G.9.8. Effect of swelling in toluene on hysteresis. v, = volume fraction of rubber.

the extension and therefore making a specific contribution to the
birefringence which is additional to that due to the amorphous
network. This supposition is confirmed by experiments at higher
temperatures (Fig. 9.7) which show a progressive diminution and
ultimate suppression of the effects with rising temperature. A
comparable effect is produced by the introduction of a swelling
agent (Fig. 9.8), which similarly retards or eliminates the crystalliza-
tion.
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Pure homogeneous strain

A more crucial test of the validity of the statistical theory is
provided by observations on the more general state of strain, i.e. the
pure homogeneous strain, involving principal stresses #; and f,
corresponding to two independently variable extension ratios A;
and A,. The method of producing this state of strain in a rubber
sheet, and the corresponding stress—strain relations, are considered
fully in Chapter 10; the birefringence measurements, which made
use of the experimental arrangement shown diagrammatically in
Fig. 9.4, involved only a minor addition to enable a beam of light to
be transmitted normally through the biaxially strained sheet. Fig.
9.9 shows that the birefringence in the plane of the sheet (n; —n,) is
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F1G. 9.9. Birefringence versus A7—AJ for dry rubber and for rubber swollen to
v, =0-525 in medicinal paraffin.

directly proportional to the difference of the squares of the principal
extension ratios (Treloar 1947), in accordance with the theoretical
relation (9.14). The relation between the birefringence and the
difference of principal stresses (Fig. 9.10) is also linear (eqn (9.16)),
and since the points corresponding to simple extension fall on the
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F1G. 9.10. Birefringence versus t, —1, for dry and swollen rubber as in Fig. 9.9.

same line as the points for the more general strain, the value of the
stress-optical coefficient is the same for both types of strain.

It is to be noted that while the incorporation of a swelling liquid
leads to a reduction in the slope of the birefringence—strain relation
(Fig. 9.9), as required by the theory (eqn (9.17)), the slope of the
birefringence-stress relation in Fig. 9.10 (as also in Fig. 9.8) is
substantially unaffected. However, later work by Gent (1969),
referred to later, suggests that this result may not apply generally to

all types of swelling liquid.

Absolute refractive indices

The theoretical treatment implies that the total (mean) polariza-
bility of the network, being independent of the orientation of the
polarizable units, should be independent of strain; the same should
apply also to the mean refractive index no, which is equal to
3(n,+ n,+ ns). For the case of simple extension, for which n, = ns, it
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follows that the relation
ny—No— _‘2(n2_n0) (9.24)

should apply, i.e. that the change in n,, the refractive index corre-
sponding to the direction of extension, should be in the opposite
sense to the change in the refractive index for the transverse
direction, and of twice the amount. Fig. 9.11, reproduced from the

¥

1522 c,/

"

1-521F
-
¥}
=
g
2 oL
S
o \ X
x Absolute values of #, and n, Bt
o Values calculated from
birefringence (compensator) X
measurements
1-519 1 1
1-0 -5 20 25

Extension ratio

F1G. 9.11. Absolute values of n, and n, compared with values calculated from
birefringence (compensator) measurements. (Saunders 1956.)

work of Saunders (1956), confirms this relationship. The crosses
represent direct refractometer measurements of n, and n, indepen-
dently, while the circles are calculated in accordance with (9.24)
from the values of birefringence obtained with a Babinet compen-
sator.
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9.8. The effect of the degree of cross-linking

The results reported in the preceding section may be regarded as
typical, and are sufficient to establish the validity of the statistical
theory for the interpretation of the form of the dependence of
birefringence on stress and on strain. This confirmation is the more
significant in that the theoretical relations were derived indepen-
dently of, and indeed prior to, their experimental verification.

We turn now to the more detailed question of the significance of
the numerical value of the stress-optical coefficient and its interpre-
tation in relation to the structure of the molecular chain. As already
noted, eqn (9.12) implies that this quantity (C) should be indepen-
dent of degree of cross-linking; it is therefore a characteristic
parameter of the particular molecular structure.

Early work by Thibodeau and McPherson (1934) on sulphur-
vulcanized rubbers revealed a marked dependence of C on degree
of cross-linking, as represented by the percentage of combined
sulphur. This, however, could have arisen from a spurious effect of
side reactions with sulphur leading to chemical modification of the
chain structure and hence of the chain polarizability. A more
appropriate value in relation to the optical properties of the rubber
molecule itself would be that obtained by extrapolation of the
Thibodeau and McPherson data to zero sulphur content. By such
extrapolation Saunders (1950) obtained a value for C of 1-96 X
107 mm® N™'; this compares with the figure of 2:05x 107 mm?* N
which he obtained from direct measurements on natural rubber
vulcanized by means of an organic peroxide, which introduces
cross-links without in any way modifying the structure of the chain.
Later more extensive investigations (Saunders 1956), using both
peroxide and radiation methods of cross-linking, showed that
except for the highest degree of cross-linking the values of stress-
optical coefficient were substantially independent of degree of
cross-linking and also of the method of cross-linking (Table 9.1);
these experiments yielded the mean value C=1-97x10° m*>N~".
The degree of cross-linking was represented by the value of M.,
calculated from either (9.25a) or (9.25b) below,

pRT/M.=2C,, (9.25a)
pRT/M.=2(C,+ Cy), (9.25b)

where C; and C, are the constants in the Mooney equation.
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TAaBLE 9.1
Dependence of stress-optical coefficient for natural rubber on chain
molecular weight M. (Saunders 1956)

Stress-optical

Cross-linking M, M. coefficient

process (from eqn (9.25a)) (from eqn (9.25b)) (10°m*N™')
2500 2150 1-83
P id 5890 4210 1-95
eroxide 8 084 5270 1-98
14 160 7 400 2:00
12 380 7334 1-95
Radiation 20160 13 360 2-01
45 860 15290 2:09

Further experiments by Saunders (1956) on peroxide-vulcanized
gutta-percha, (trans-polyisoprene), at a temperature of 85 °C, i.e.
above its crystal melting point, yielded similar results; these are
given in Table 9.2.

TABLE 9.2
Dependence of stress-optical
coefficient for gutta-percha on chain
molecular weight M. at 85°C

(Saunders 1956)
Stress-optical
coefficient

M, (107°m*N™)
3740 3-11
4100 3-08
6 060 3-06
6710 3-09
13370 3-06
35640 309
Mean 3-06

Unvulcanized rubber

The above observations give strong support to the theoretical
deduction that the stress-optical coefficient is a fundamental
molecular parameter, whose value does not depend on the degree
of cross-linking of the network. This conclusion receives further
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confirmation from an experiment of Saunders (1956) on unvul-
canized natural rubber. In this experiment a sample of smoked
sheet was subjected to successively increased loading, and the
birefringence and strain were measured immediately after the
application of the load and also just prior to the application of the
next additional load, during which time appreciable further exten-
sion or creep occurred. Notwithstanding this time dependence, the
resulting relation between birefringences and stress for both sets of
data was represented by a single straight line (Fig. 9.12), whose
slope (namely, 1-92 x 107 m? N™') is within 3 per cent of the mean
value obtained for the cross-linked rubber.

6F c
o Immediately after application of load !/
x Immediately before application
3t of additional load
]
7

104 (n, — n,)
T

After 2 min recovery

0 After4l9 h recovery |
0 01 0-2 0-3

Stress (N mm 2)

FiG.9.12. Birefringence-stress relation for unvulcanized rubber. (Saunders 1956.)

This important result may be readily interpreted if it is assumed
that the rate of breakdown of the entanglements or ‘physical’
cross-linkages between chains is not too rapid, so that the chains are
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able to assume their quasi-equilibrium conformations under the
influence of the stress acting at any instant. Under these conditions
the birefringence, which is of course a function of the molecular
orientation rather than the over-all macroscopic strain, will be
directly related to the stress in the same way as in a permanently
cross-linked network.

9.9. Polyethylene

Particular interest is attached to the polyethylene chain on
account of the simplicity of its molecular constitution and its
frequent use as a model for the treatment of the statistical proper-
ties of long-chain molecules. It might therefore be expected to offer
advantages from the standpoint of the molecular interpretation of
photoelastic properties.

This expectation is not wholly realized, owing to the fact that,
unlike typical rubbery molecules, the polyethylene chain is subject
to rather strong intramolecular interactions which interfere with the
freedom of rotation about bonds, i.e. with its flexibility. However,
its study does bring out a number of aspects of the problem which,
though less conspicuous in other systems, are nevertheless of funda-
mental importance. ,

Polythene is a crystalline polymer, hence for photoelastic studies
it must be examined at temperatures above the crystal melting
point. The degree of crystallinity is widely variable. In ordinary
‘low-density’ polythene the chains contain a number of side-
branches; these have the effect of limiting the degree of crystallinity
to the range 50 per cent to 70 per cent approximately. Polythenes
prepared by Ziegler-type catalysts, on the other hand, are substan-
tially linear, and have degrees of crystallinity ranging up to about 90
per cent, with correspondingly high densities. It is also possible to
prepare ‘polymethylenes’ of linear form by suitable chemical pro-
cesses; these are also of the high-density type.

Saunders (1956) studied a series of low-density polythenes which
had been subjected to varying degrees of cross-linking by irradia-
tion in an atomic pile. From Fig. 9.13 it is seen that their stress—
strain properties, which were measured at 130°C, conform
approximately with the Gaussian network theory, giving linear
plots of stress against A>—1/A, where A is the extension ratio.
Linear plots of birefringence versus stress were also obtained, but
the slope (i.e. the stress-optical coefficient C) decreased substan-
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F1G. 9.13. Stress as function of A>—1/A for cross-linked polythenes with various
radiation doses R. Initial molecular weight 32 000. (Saunders 1956.)

tially with increasing degree of cross-linking (Fig. 9.14). The col-
lected data in Fig. 9.15, which include both low-density polythenes
and high-density polymethylenes, appear to indicate a fairly defi-
nite relationship between C and chain molecular weight M..

It was originally suggested that this effect could be explained in
terms of the non-Gaussian network theory of photoelasticity, but
later work by Saunders, Lightfoot, and Parsons (1968), based on a
different choice of bond polarizability values (see below), has cast
doubt on the acceptability of this hypothesis. On the other hand,
Gent and Vickroy (1967), who worked with polythenes cross-linked
by irradiation at a temperature above the melting point of the
crystals (i.e. cross-linked while in the amorphous state), found no
significant variation of stress-optical coefficient with degree of
cross-linking over the range of chain molecular weight covered
(M.=2000-10 000), as is seen from Fig. 9.16. There was, however,
some slight evidence that for comparison samples cross-linked in
the crystalline state, as in Saunders’ experiments, the values of C
tended to fall at high degrees of cross-linking. Gent and Vickroy
concluded that the effect obtained by Saunders was probably due to
the chains in the crystalline polythene being in an extended or
non-random state at the instant of cross-linking; this could lead to a
higher value of modulus through the factor r3, the mean-square
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F1G. 9.14. Birefringence-stress relations for polythenes as in Fig. 9.13. (Saunders
1956.)
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FIG. 9.15. Dependence of stress-optical coefficient C on M. for polythenes of
different initial molecular weight M. (From data of Saunders 1956.)
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FIG. 9.16. Birefringence—stress relations for cross-linked polythenes at 169 °C. Nos
1, 2, 4, 5, and 6 cross-linked at 145 °C; No. 9 cross-linked at 40°C. (Gent and
Vickroy 1967.)

chain length in the unstrained network used in the calculation of the
entropy (eqn (4.7), p. 63). Cf. also Chapter 13,eqn (13.3), p. 272).
This conclusion, however, is not confirmed by Saunders et al.
(1968), who showed that the dependence of C on degree of cross-
linking was precisely similar for samples cross-linked in either the
crystalline or the amorphous state; they also criticized Gent and
Vickroy’s interpretation of their data and maintained that there was
in fact no inconsistency between the two sets of experiments. In any
case the inference drawn by Gent and Vickroy that non-random
cross-linking would lead to a lower value of stress-optical coefficient
is incorrect, for on the basis of the Gaussian network theory an
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identical factor r? occurs in the equations for the polarizabilities
(eqn (9.7)) as for the stress, leaving the value of the stress-optical
coefficient C unchanged. (This factor does not appear explicitly in
the elementary theory, in which it is assumed that r> = nl”.) Indeed,
the birefringence should be regarded as more specifically related to
the stress than to the strain; this is borne out by the observations on
stress-optical coefficient during creep, referred to in § 9.8.

It may also be noted that a comparable dependence of stress-
optical coefficient on M, was obtained by Mills and Saunders (1968)
for silicone rubbers. Since these materials are non-crystalline the
suggested explanation of Gent and Vickroy would not apply in this
case. No satisfactory explanation of the phenomenon has up to the
present been suggested.

9.10. Optical properties of the monomer unit

We have already seen that by the use of the Gaussian network
theory the value of the quantity «, — a,, the optical anisotropy of the
random link in the hypothetical random chain, may be obtained
directly from the experimental value of the stress-optical co-
efficient, through eqn (9.12). It has also been emphasized that the
latter quantity has a characteristic value for any given polymer,
which theoretically (and with certain exceptions also practically) is
independent of chain length or degree of cross-linking. The ques-
tion now arises of the relation between the optical anisotropy of the
random link and the bond structure of the actual molecular chain. If
we can calculate independently the optical anisotropy of the repeat-
ing unit in the chain, a comparison of this with the optical anisotropy
of the random link should enable us to determine the number of
monomer units in the equivalent random link. This in effect would
provide a measure of the statistical properties of the chain, i.e. the
ratio of the r.m.s. length to the fully extended length.

For the calculation of the anisotropy of the monomer unit we may
apply the principle of the additivity of bond polarizabilities, dis-
cussed by Denbigh (1940). According to this principle the contribu-
tion of a given bond to the total molecular polarizability is indepen-
dent of the chemical compound in which the bond is found. Values
of the two principal polarizabilities (longitudinal and transverse)
calculated on this basis from data for the Kerr constant and for the
depolarization of scattered light (both relating to molecules in the
vapour state) have been given by Denbigh. An alternative method
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of derivation, based on an analysis of the measured values of the
principal refractive indices of a number of crystalline materials of
known structure, has been put forward by Bunn and Daubeny
(1954). The values for the longitudinal (b)) and transverse (b.)
polarizabilities for the three bonds of main concern in the present
context are given in Table 9.3.

TaBLE 9.3
Values of longitudinal and transverse bond polarizabilities (107! m?)
Bunn and Daubeny Denbigh
Bond b, b, b, b,
Cc—C 10-0 2:5 18-8 0-2
C=C 26-0 10-7 28-6 10-6
C—-H 8-2 6-0 79 5-8

It is unfortunate that for the most important bond, namely, the
C—C single bond, the agreement between the two sets of figures is
very poor, and therefore the choice to be made will have a profound
affect on the resulting calculations. Originally Saunders (1957)
chose the data of Bunn and Daubeny, but in their later work
Saunders et al. (1968), taking into account the discussion of this
problem by Volkenstein (1963), as well as internal evidence from
the analysis of the temperature dependence of a; — a, (see below),
concluded that the Denbigh values were probably the more reliable.

The calculation of the polarizabilities of the monomer unit in
terms of the individual bond polarizabilities involves the equations
of transformation (9.3). The polarizabilities required are the three
polarizabilities corresponding respectively to the direction of the
axis of the fully extended chain and to the two transverse direc-
tions; in general, these directions do not coincide with the principal
axes of the polarizability ellipsoid. For the cis-isoprene repeating
unit (rubber), shown in Fig. 9.17, Ox is taken parallel to the chain
axis, while Oy and Oz represent the two transverse directions, the
plane xOy corresponding to the plane of the main valence bonds. In
general we are concerned only with the longitudinal polarizability b
and the mean transverse polarizability b. for the unit. These are
given by

b= b.; b.=3(b,, +b..). (9.26)
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L =]

F1G. 9.17. The isoprene unit in the rubber chain (schematic). Bonds represented by
dotted lines do not lie in the plane of the paper.

Calculated values of the three independent polarizabilities, and of
the mean anisotropy b, — b, for natural rubber, gutta-percha, cis-
polybutadiene and polyethylene are given in Table 9.4.

TABLE 9.4

Directional polarizabilities and optical anisotropies of monomer units
(107" m®) (Morgan and Treloar 1972)

Polymer b.. b,, b., by— b,
Natural rubber 111-71 103-63 65-51 27-14
Gutta-percha 112-90 103-55 65-51 28-37
cis-polybutadiene 93-52 77-19 50-90 29-47
Polyethylene 24-21 19-29 14-60 7-21

9.11. The equivalent random link

The ratio of the experimentally derived anisotropy of the pos-
tulated random link in the Kuhn-Griin theory to the calculated
anisotropy of the monomer unit, i.e.

o — >

1= " (9.27)

provides a basis for estimating the number of monomer units which
are statistically equivalent to one random link. Values of this
quantity for the materials listed in Table 9.4 are given in Table 9.5.
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TABLE 9.5
Values of ‘equivalent random link’ (Morgan and Treloar 1972)

Monomer C—C bonds ¢ (free

units per per rotation
Monomer b,— b, o —a, random  random model)
unit (107'm* (107" m?) link g link
CsH; cis 271, 4718 1:73 5-19 0-77
(natural rubber)
C;H; trans 28-3, 96-25t 3-39 10-17 1-25
(gutta-percha)
$C,H, 96 per cent cis 29-2, 777, 2-66 7-94 0-77
(polybutadiene)
CH, 7-2, 133-49 18-5 185 3-00

(polyethylene)

TExtrapolated from data at higher temperatures by Saunders (1956).

t Calculated on basis 96 per cent cis; 4 per cent trans.

§ Saunders (1956, 1957).

q Extrapolated from data at higher temperatures by Saunders et al. (1968).

In view of the fact that rotation is possible only about single C—C
bonds in the chain backbone, a more appropriate basis for compari-
son of the different structures would be in terms of the number of
C—C bonds per random link; these also are given in the table. In
addition ‘theoretical’ values of g based on the assumption of
completely free rotation about single bonds are included for com-
parison.

It is seen that for each of the molecules examined the estimated
value of q is considerably higher than that calculated on a free-
rotation basis, as is of course to be expected, since the latter neglects
the effects of steric hindrances, or energy barriers restricting rota-
tion. Of more interest is the conclusion that for the trans-isoprene
structure the value of g is nearly twice that for cis-isoprene,
implying that the former has a more extended mean chain confor-
mation. The greater tendency of gutta-percha to crystallize, as
evidenced by its melting point (65 °C)—higher than that for natural
rubber, which is normally amorphous at room temperature—is in
keeping with this observation. Removal of the CH, side-group from
cis-polyisoprene to produce cis-polybutadiene might also be
expected to favour a more extended conformation by facilitating
closer alignment or packing of the chains; the data also lend support
to this supposition. This polymer, however, due to the lack of
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stereo-regularity (head-to-tail; tail-to-head) resulting from the
polymerization process, is not capable of crystallization. But the
most significant result is that for polyethylene, for which the number
of C—C bonds per random link (namely, 18.5) is well above that for
any of the other structures given. This high ‘stiffness’ is in harmony
with the great facility with which this polymer crystallizes, and the
comparatively high crystal melting point (110-30 °C). In part these
features are a reflection of the basic geometry of the polyethylene
chain, as shown by the comparatively large value of the length of the
random link calculated on the basis of free rotation, but the more
important contribution must surely be associated with energetic
interactions favouring the extended rather than the folded confor-
mations. '

It should perhaps be noted that an even higher figure for
polyethylene (48-5 CH, units per random link) would be obtained
on substitution of the bond polarizability data of Bunn and
Daubeny in place of those of Denbigh (Saunders 1957).

Comparison with other methods

The assignment of a value of g—the number of repeating units in
the equivalent random link—determines the number of equivalent
random links in a chain of specified length (molecular weight), and
hence effectively defines its statistical properties over the whole
range of extension (r values). This aspect has already been fully
discussed in Chapter 6. Figures for the equivalent random link for
natural rubber derived from the non-Gaussian network theory were
there shown to vary considerably, according to the assumptions
introduced into the calculations. The simple statistical theory, as
treated by James and Guth, yielded the value g =1-63, in fair
agreement with the photoelastic estimate (1.73). The Mooney
modification of the non-Gaussian statistical theory yielded the
value g =1-5 according to the (corrected) Mullins analysis, and
g =4-3 on the basis of the more complete Morris analysis. In view of
the wide spread in these estimates, the most that can be said is that
the photoelastic value is certainly acceptable.

9.12. The efiect of swelling on stress-optical coefficient

Reference was made in § 9.7 to the observation that the stress-
optical coefficient C appeared to be not significantly affected by
swelling, in accordance with the prediction of the statistical theory.
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Later work by Gent (1969), however, on both natural rubber and
gutta-percha swollen with a wide range of organic liquids, shows
wide variations in stress-optical coefficient, and suggests that the
writer’s earlier result may have been fortuitous. Gent’s results for
natural rubber are given in Table 9.6 in terms of a; — a», the optical
anisotropy of the random link, the values of which are arranged in
regularly increasing order.

TABLE 9.6

Random-link anisotropy (a,—a,) derived from stress-optical co-
efficient for swollen rubber (Gent 1969)

Liquid by—b,
Swelling refractive Swelling for liquid a,—a,
liquid index ratio p;' (107%°m? (107 m?)
Benzene 1-498 6-0 1-8 3-85
CS, 1-624 6-1 9-6 4-05
CCl, 1-458 7-8 0-0 4-15
Toluene 1-494 6-7 30 4-45
None (1-520) —— — 4-80
n-Decane 1-406 4-6 — 4-95
p-Xylene 1-492 6-1 1-7 5-40
p-Dichlorobenzene 1-538 7-3 83 6-05
Biphenyl 1-604 4-3 3-8 6:45

It so happens that for both the solvents used by the author the
effect was very slight. In the case of toluene (Fig. 9.8) this is directly
confirmed by Gent’s data. For medicinal paraffin (Fig. 9.10) a
comparable figure is not available, but the result for n-decane given
in the table suggests that in this case also any effect should be small.

The statistical theory assumes that the directional polarizabilities
of the individual links in the long-chain molecule are completely
unaffected by the presence of neighbouring molecules, whether of
the polymer or of the swelling liquid. The justification for this
assumption is by no means obvious, since the polarization of any
given unit in the assembly of polarizable units by the electric field
could well modify the internal field and thus affect the polarization
of neighbouring units. If this were the cause of the effects observed
by Gent the change in a; — a, would be expected to depend either
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on the mean polarizability (i.e. on the refractive index n) or on the
anisotropy of polarizability (b,—b;) of the swelling liquid. The
results, however, show no correlation between a; — a, and either of
these quantities (Table 9.6); it is concluded, therefore, that internal
field effects are not responsible. The factor which appears to be
most closely correlated with the changes in a; — a; on swelling is the
geometrical anisotropy or axial ratio of the molecule of the swelling
liquid; the liquids listed in Table 9.6 are in fact also in order of the
axial ratios of their molecules. It is inferred that liquid molecules
with high axial ratios tend to align themselves in a direction parallel
to neighbouring polymer chains and hence to acquire a degree of
orientation similar to that existing in the strained polymer network.
This will automatically produce an additional contribution to the
strain birefringence, assuming the anisotropy of polarizability to be
roughly correlated with the geometrical anisotropy of the liquid
molecule.

This reasoning led Gent to suggest that in the unswollen rubber
the surrounding chains similarly contribute to the observed optical
anisotropy of the random link, and that their effect is about equal to
that for the swelling liquids toluene and n-decane which come
nearest to dry rubber in Table 9.6. On this basis the ‘true’ value of
a;,— a, for the isolated polymer molecule should be taken not as
that derived from the stress-optical coefficient for the unswollen
rubber but as the value derived from the stress-optical coefficient of
the rubber when swollen in a liquid whose molecule is approxi-
mately spherical in form, i.e. the lowest value of a; — a» in the table.
The reduction in a; —a,, and in the corresponding value of g for
rubber, if this procedure were adopted would amount to approxi-
mately 20 per cent.

In the case of polythene, however, Gent and Vickroy (1967)
found a reduction of a; —a, from the value 8-5x107°° m® for the
unswollen polymer to 3-9X 107> m® on swelling in decalin, i.e. a
reduction of over 50 per cent. The corresponding value of g derived
from the data for the swollen polymer would be only 5-4 CH, units
per random link (Gent 1969), compared with the figure of 18-5 CH,
units per random link given in Table 9.5. Part of this difference,
however, arises from the fact that the data in this table refer to a
temperature (extrapolated) of 20 °C, whereas Gent’s value is calcu-
lated for the temperature of measurement, namely 102-138 °C (see
§9.13).
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9.13. Temperature dependence of optical anisofropy

The expression (9.12) for the stress-optical coefficient derived on
the basis of the Gaussian network theory indicates that this co-
efficient should be inversely proportional to absolute temperature,
provided, of course, that the remaining parameters in the equation,
and in particular the optical anisotropy of the random link, a; — a,,
are not themselves dependent on temperature. In a real chain,
however, the presence of energy barriers to internal rotation
implies that the statistical length of the chain, and hence the length
of the equivalent random link, are functions of temperature.

Temperature coefficients of link anisotropy «; —«, are readily
obtained by measurements of stress-optical coefficients over a
convenient range of temperature. In general, the calculated values
of a;—a; are found to be consistent with an Arrhenius type of
variation, namely,

a,—a,= A exp(E/RT), (9.28)

where E is equivalent to an activation energy. The value of E may
be obtained from a plot of In(a; —a,) against 1/T. Data for the
polymers previously considered are listed in Table 9.7. A positive

TABLE 9.7
Temperature coefficients of link anisotropy (cal mol™") (Morgan and
Treloar 1972)
dln(a1 - az)
d(1/T)
Natural rubber -~270
Gutta-percha +40
Polybutadiene (96 per cent cis) +85

Polyethylene +1090

sign indicates that the link anisotropy, and hence the link length,
decreases with increase of temperature. It is seen that for the
rubbery polymers the temperature dependence is rather slight, but
that in the case of polyethylene it is large, and in the sense that the
link length decreases with increasing temperature. This is consistent
with the greater ‘stiffness’ of the polythene chain compared with the
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rubbers and with its preference on energetic grounds for the
extended form properties which are also implied by the high
values——of g for this material.

The more detailed interpretation of the temperature dependence
of a, — a, for polythene has been discussed by Saunders et al. (1968)
in terms of the energy barriers to internal rotation. Fig. 9.18 shows

o *Hostalen” high-density
o ‘Hifax’ high-density
A ‘DYNK’ low-density

10 i A ;
’— x Gent and Vickroy low -density < x
’g‘a 09
|
g
s 08
]
A
0-7 1 1 1 1 1 I }
1-8 1-9 2:0 21 2:2 2-3 2-4 2:5

T(K™)

FiG. 9.18. Temperature dependence of log,, (e — a) for various polythenes. The
lines correspond to an energy difference between trans - and gauche-configurations
of 1150 cal mol™* on Sack’s theory. (From Saunders et al. 1968.)

data obtained by them for the temperature dependence of three
types of polythene. These data can be fitted by a theoretical
treatment of the statistics of the chain given by Sack (1956) if a value
of 1150 cal mol™ (4830 J mol ') is taken for the energy difference
between the trans-configuration (the state of lowest energy) and the
‘gauche’-configuration, corresponding to a rotation through 120°
with respect to the trans-configuration.

The above conclusions regarding the temperature dependence of
the random link length, and hence of the statistical length of the
chain, are in qualitative agreement with independent assessments
based on the thermodynamic analysis of the stress—temperature
relations, discussed in Chapter 13.
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THE GENERAL STRAIN:
PHENOMENOLOGICAL THEORY

10.1. Introduction

IN previous chapters attention has been given to the deviations
from the Gaussian statistical theory, which in the case of simple
extension may be represented to a close approximation by the
two-constant formula of Mooney. It has also been noted that in the
case of uniaxial compression these deviations are either non-
existent or very much less evident. From this it follows that the
Mooney equation is not capable of providing a completely satisfac-
tory and self-consistent basis for the representation of the general
form of the strain-energy function for all types of strain.

In order to obtain a more accurate mathematical formulation of
the general properties of rubber it is necessary to have recourse to a
‘phenomenological’ method of approach, i.e. to a method which is
based not on molecular or structural concepts but on purely
mathematical reasoning. The aim of such a method is essentially to
find the most general (or convenient) way of describing the proper-
ties; it is not in itself concerned with their explanation or interpreta-
tion in the molecular or physical sense. However, before any
molecular explanation is sought it is obviously highly desirable that
the properties of the material shall be presented in the most general
and complete form so as to avoid false deductions based on inade-
quate data.

The various forms of phenomenological theory which have been
developed vary widely both in their generality and in their degree of
sophistication, from those which do little more than describe in
mathematical terms a particular stress-strain relation, e.g. simple
extension, to those which attempt to relate all types of strain on the
basis of one or more fundamental postulates. Our interest will be
primarily in the latter type, and in the present chapter we shall
examine in some detail two such theories, the original theory of
Mooney as applied to the general strain problem, and the later
development due to Rivlin. A more comprehensive survey of the
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whole field of phenomenological theory, which will include some
more recent developments, will be given in the subsequent chapter.

10.2. The theory of Mooney

The earliest significant phenomenological theory of large elastic
deformations, which has played a dominant part in all later work in
the field, is that of Mooney (1940). It is to be noted that this theory
appeared some years before the Gaussian statistical theory, so that
its evolution obviously bore no relation to the deviations from the
latter theory as such; Mooney was concerned simply with the
problem of developing a theory of large elastic deformations ab
initio.

Actually, Mooney’s theory was developed in two forms—a
special and a general. Almost all applications have been concerned
with the special form, and it is to this that the present discussion will
be restricted.

Mooney’s theory, in the above-mentioned form, is based on the
following assumptions:

(1) that the rubber is incompressible, and isotropic in the

unstrained state;

(2) that Hooke’s law is obeyed in simple shear, or in a simple
shear superimposed in a plane transverse to a prior uniaxial
extension or compression. (The more general theory is
based on an arbitrary (non-linear) stress—strain relation in
shear).

Of these two assumptions, the first, as has been noted in connection
with the statistical theory, is in very close agreement with experi-
ment. Regarding the second, Hooke’s law is known to apply
approximately to simple shear up to moderately large strains (cf.
Fig. 5.9, p. 93; the assumption that it also applies in any plane
transverse to a prior uniaxial extension or compression (i.e. to an
isotropic plane) is, however, far more general.

On the basis of these assumptions Mooney derived, by purely
mathematical arguments involving considerations of symmetry, the
strain-energy function

W=CiAT+A3+A3-3)+C(1/A2+1/A3+1/A3-3), (10.1)

which contains the two elastic constants C, and C,. Itis seen that the
first term in this expression corresponds identically to the form
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derived from the Gaussian network theory (eqn (4.9a), p. 64), with
2C, =G = NkT, (10.2)

the Gaussian theory is thus the particular case of the Mooney theory
corresponding to C, = (. For the case of simple shear the principal
extension ratios are given by A; = 1/A,, A, = 1;eqn (10.1) then gives

W=(Ci+GC)A2+1/A2=2)=(C,+ C1)v?, (10.3)

the equivalent shear strain vy being equal to A; —1/A;. The shear
stress is

t, =dW/dy=2(Ci+Cy)y, (10.4)

which corresponds to Hooke’s law, the modulus of rigidity (shear
modulus) being 2(C, + C,).

It may easily be shown that a linear shear stress versus shear strain
relation applies equally to a shear strain in a plane perpendicular to
a prior uniaxial extension or compression.

For a simple extension (or uniaxial compression) we have A;=
A3=1/A,, and eqn (10.1) becomes

Differentiation with respect to A, then gives the force f per unit
unstrained area in the form previously quoted (eqn (5.23), p. 95),
namely (dropping the subscript),

=20 —=1/A)C,+ C,/A). (10.6)
The corresponding true stress ¢ is given by

From the work of Gumbrell, Mullins, and Rivlin (1953), con-
sidered in Chapter 5, we have seen that the experimental data for
simple extension are consistent with eqn (10.6), and that the ratio
C,/C, may vary from about 0-3 to 1:0. On the other hand, the
results for equi-biaxial extension, which is equivalent to uniaxial
compression, require that C, should be approximately zero, in
accordance with the statistical theory (cf. Fig. 5.6, p. 90). This
inconsistency is more clearly evident from a Mooney plot of the data
of Rivlin and Saunders. (1951) for simple extension and uniaxial
compression (Fig. 10.1). In the extension region (1/A <1) the
Mooney line corresponds to a ratio C,/C; of about 0-8, but in the
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F1G. 10.1. Data for simple extension and uniaxial compression. (Rivlin and Saunders
1951.) (Note change of scale at A = 1.)

compression region (1/A > 1) we have C, = 0. It is worth noting that
if the Mooney line representing the extension data were extrapo-
lated into the compression region the force at 1/A = 12 would attain
a value of more than ten times the observed value at this point. Thus,
if we consider the extension and compression data together, it is
clear that the Mooney equation is no improvement over the statisti-
cal theory; indeed it is very much less effective. Since uniaxial
compression is only one of the various possible types of strain to be
considered, it must follow a fortiori that as a general representation
of the form of the strain-energy function the Mooney equation is
quite inadequate.

A further and more fundamental difficulty appears on examina-
tion of the curve for simple shear (Fig. 5.9, p. 93) derived from
experimental data for the equivalent pure shear. This shows devia-
tions from linearity of the same kind, and of a similar order of
magnitude, to the deviations from the statistical theory in the case of
simple extension (Fig. 5.4, p. 87). The deviations from the basic
postulate of the Mooney theory (Hooke’s law in simple shear) are
thus of the same order as the deviations in simple extension which
this theory is being used to interpret. Any such interpretation is
therefore logically inadmissible.

The true significance of these inconsistencies will become appar-
ent when we come to examine the experimental data for the general
biaxial strain and the interpretation of these data on the basis of the
more general theory of Rivlin, which we now proceed to examine.

10.3. Rivlin’s formulation

For a complete specification of the mechanical properties of a
rubber it is necessary to define the form of the strain-energy
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function W for a pure homogeneous strain of the most general type
(Fig. 4.1, p. 62). Rivlin (1948) considered from a purely
mathematical standpoint the problem of the most general possible
form which the strain-energy function could assume. At first sight it
might appear that this could be represented by any arbitrarily
chosen function of whatever form; closer examination, however,
shows that this is not so, and that considerations of logical consis-
tency, together with certain implied assumptions of the problem,
themselves introduce restrictions on the forms which this function
may assume.

Rivlin took as his basic assumptions that the material is incom-
pressible and that it is isotropic in the unstrained state. The con-
dition for isotropy requires that the function W shall be symmetrical
with respect to the three principal extension ratios A;, A,, and As.
Furthermore, since the strain energy is unaltered by a change of sign
of two of the A;, corresponding to a rotation of the body through
180°, Rivlin argued that the strain-energy function must depend
only on the even powers of the A. The three simplest possible
even-powered functions which satisfy these requirements are the
following:

L=A1+A5+A3%,
L=AA+A20%+A3A2, (10.7)
L= A3\,

These three expressions, being independent of the particular choice
of coordinate axes, are termed strain invariants. Any more complex
even-powered function of the A; can always be expressed in terms of
these three basic forms.t

The condition for incompressibility or constancy of volume dur-
ing deformation introduces the further relation

13:A1A2A.3= 1, (10.8)

1 In the second edition of this book (though not in the first) it was implied (p. 155)
that W was necessarily an even-powered function of the A, This is incorrect. The A,
referred to in Rivlin’s analysis are related to the equation for the strain ellipsoid,
which when referred to its principal axes takes the form x?/A}+y*/A;+2%/A3=1,
and hence yields a solution in terms of the A7 (cf. Rivlin (1948, eqns 3.3)). This
solution does not discriminate between positive and negative roots. If, however, the
A; are re-defined, in conformity with physical reality, as the principal semi-axes of the
strain ellipsoid, which are essentially positive quantities, the restriction to an
even-powered function is evaded.
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which enables the remaining two strain invariants to be written in
the form

Li=A}+A3+A%,

(10.9)
L=1/A+1/A5+1/A%.

The quantities I; and I, may be regarded as two independent
variables which are determined by the three extension ratios (of
which, for an incompressible material, only two are independent).
The strain-energy function for an incompressible isotropic elastic
material may therefore be expressed as the sum of a series of terms,
thus

W= Y -3 (L-3), (10.10)

i=0,j=0

involving powers of (I, —3) and (I, — 3). These quantities are chosen
in preference to I, and I, in order that W shall vanish automatically
at zero strain (I, = I, = 3); for the same reason Cy,=0.

In the absence of any prior knowledge derived either from
observation or from a structural or molecular theory there is no way
of selecting a set of terms, or of assigning values to the constants in
(10.10) to represent the behaviour of an actual material. However,
from considerations of mathematical simplicity alone it might
reasonably be expected that a small number of terms, correspond-
ing to the lowest members of the series, would predominate. The
first of such terms, obtained by putting i =1, j =0, namely,

represents the form of strain-energy function derived from the
Gaussian network theory (eqn (4.9a)). This is therefore one of the
two simplest possible forms which could have been chosen. The
other, namely,

W= Co(l,—3)=Co(1/Ai+1/A5+1/A3-3), (10.12)

has no obvious application to rubber. However, the combination of
these two expressions yields the Mooney equation, i.e.

W: C10(11_3)+C01(12'_3), (10.13)

which is equivalent to (10.1) above. The Mooney equation is thus
seen to be the most general first-order relationship in I, and L,.
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It may be helpful to visualize the general strain-energy function
W(,, I) as a curved surface in space, when plotted along the
vertical axis of a rectangular coordinate system in which the two
horizontal axes are I,—3 and I,—3. The most general first-order
function of I, and I, will be represented by a plane. If also W=0
when I;-3=1-3=0, this plane (OABC in Fig. 10.2) passes

Jr W
B
S 13
A ﬁ /D' 1
Py
I e e
0 E 1,3

F1G. 10.2. Representation of the strain energy W as a function of the two strain
invariants. OABC = Mooney theory; OADE = statistical theory.

through the origin. This corresponds to the Mooney form of strain-
energy function. The particular case dW/al, = 0, corresponding to
the statistical theory, is represented by a plane (OADE) which
contains the I, —3 axis.

It can immediately be understood that any continuous curved
surface (whose gradients are also continuous) can be approximated,
over a sufficiently small area, by its tangent plane, which in the
present case is represented by the equation

which differs from the Mooney equation (10.13) only in the pres-
ence of an additive constant A. Since the stresses are determined
only by the changes in W, this additive constant is of no physical
significance. Hence, so long as we restrict ourselves to a limited
range of the variables, the Mooney equation necessarily provides a
fair approximation to the behaviour of the material.

It follows from this that great care must be exercised in drawing
general conclusions from the apparent agreement with the Mooney
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theory obtained experimentally. Experiments involving any par-
ticular type of strain, e.g. simple extension or simple shear, provide
too restricted a basis for the derivation of the true form of W. In
such simple types of strain the variables I, and I, are related to each
other, as is shown for certain particular cases in Fig. 10.3. Any such
simple strain traces out a single line on the strain-energy surface. It
is only by considering all types of strain (i.e. the general biaxial
strain) and covering as wide a range of strain as possible, that the
true picture can be assessed with any hope of reliability.

- A,=24;,=225
24 -
Equi-biaxial
extension
20+
16 —
1,
12 -
o 1-75
8 40
Simple extension

F1G. 10.3. Relationbetween I, and I, for particular types of strain.

10.4. Pure homogeneous strain

The principal stresses corresponding to a pure homogeneous
strain of the most general type may be derived by an argument
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similar to that given on p. 65. These involve the partial derivatives
of the strain-energy function with respect to the independent
variables I, and I, and are expressed by the equation (Rivlin 1948)

1 oW
t.-*Z(AZ%%V—X— %—I—)+p (i=1,2,3), (10.15)
1 2

where p is an arbitrary hydrostatic stress. By subtraction this may be
eliminated to give the three principal stress differences, i.e.

—t,=2(A1—-Ad{o W/aI1 +A3(0W/sLL)},
t—t;=2(A2—A2)}{9 W/aI1 +A2(0W/aL)}, (10.16)
ti— 1t =2(A2=AD{oW/ol, + A0 W/oL,)}.

Simple elongation

For the particular case of simple extension we obtain, on putting
A=Ai=A" =4=0,

1\/oW 1aW)
e — 10.17
2(’\ )(611 A oL/’ ( )

where ¢ is the tensile stress and A the extension ratio. On putting
oW/al, = C,, dW/3I, = C,, in accordance with the Mooney form of
W, this yields the result given previously (eqn (10.6a)).

Simple shear

Simple shear is not a pure strain, and the relation between shear
stress t, and shear strain vy is therefore not obtainable directly from
eqns (10.16). However, substitution of the values A;=1/A;, A, =1
into eqns (10.9) gives

L=3=0L-3=A1+1/A7-2=47, (10.18)

since y = A;— 1/A,. The corresponding shear stress has been shown
by Rivlin (1948) to be given by

oW aW)
—p(W W 10.
‘ 2(611 T (10.19)

For the case when d W/al, and dW/aI, are both constants (C,; and
C,, respectively) this reduces to

t,=2(C;+C)y (10.20)

in agreement with eqn (10.4) above.
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10.5. The general strain: early experiments

To devise an experiment which will allow the application of two
independently variable strains in two perpendicular directions with
the simultaneous measurement of the stresses is not altogether
simple. The technique devised by the author (Treloar 1948), though
not ideal, seems to meet the requirements sufficiently well, and
enables moderately large strains (i.e. up to A = 3) to be attained. In
this method a suitably marked sheet of rubber having the dimen-
sions shown in Fig. 10.4(a) is extended in two directions at right

(b)

F1G. 10.4. Biaxial extension test-piece. (a) Unstrained; (b) strained (smaller scale).
The middle area ABCD is in state of pure homogeneous strain.

angles by means of strings attached to a number of projecting lugs
on its perimeter. Of the five strings attached to one side, the middle
three were loaded with equal weights while the two outermost were
independently adjusted so as to secure a uniform distribution of
strain in the middle region (rectangle ABCD). The principal exten-
sion ratios A; and A, in the plane of the sheet were directly
measured, the third extension ratio A; being then calculable from
the incompressibility condition (eqn (10.8)). The principal stresses
t; and £, in the plane of the sheet were obtained from the forces
applied to the sides AB and CD of the rectangular block ABCD.
The third principal stress t; was of course zero.

Fig. 10.5 shows a plot of the difference of principal stresses t;, — 1,
in the plane of the sheet against AZ—\Z for a sulphur-vulcanized
natural rubber compound (Treloar 1948). Data are included also
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F1G. 10.5. Biaxial extension. Difference of principal stresses ¢, — ¢, plotted against
A2—AZfor rubber in unswollen and swollen (v, = 0-525) states.

for the same rubber swollen to nearly twice its original volume
(v2=0-525) in medicinal paraffin. In these experiments the values
of A; and A, ranged from about 0-7 to 3-2 for the dry rubber and
from about 0-7 to 2-5 for the swollen material. In both states the
linear relation (4.18) (p. 67) required by the statistical theory was
approximately satisfied, though significant differences are detect-
able in the case of the dry rubber. A different picture emerged,
however, when ¢, and t, were plotted separately against A; — A3 and
A3— A3, respectively. According to eqns (4.18) we should have

t1 = tl _t3 = G(A%_Ag),

(10.21)
t2 = t2_ t3 = G(A;'—Ag).

The data for the unswollen rubber, plotted on this basis, are shown
in Fig. 10.6, from which it is apparent that eqns (4.18) are not
satisfied.

These data were not analysed in terms of dW/al, and dW/dl,;
they were, however, compared with the Mooney equation, for
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F1G. 10.6. Biaxial extension. Stress ¢, (or t,) plotted against AZ— A3 (or AZ—-A2) for
unswollen rubber.

which dW/aI, = C, and aW/al, = C,, so that eqns (10.16) become
h—6=2C(A;—AD{1+(C,/CHAZ}, etc.  (10.22)

According to this, a plot of t, against (AT —A3){1 +(C,/C,)A3}, with a
suitable choice of the ratio C,/C,, should yield a straight line. This
was found to be the case for the swollen rubber, with C,/C; = 0-10,
but for the dry rubber the best result obtainable, using C,/C, =
0-05, yielded a curve rather than a straight line, indicating that C,
could not be treated as a constant, i.e. the Mooney equation was not
capable of providing an accurate representation of the data (Fig.
10.7).

The reason for the apparent rather close agreement with the
statistical theory in the plots of t, —f, against A} —A} shown in Fig.
10.5 will appear later.
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10.6. The experiments of Rivlin and Saunders

The data obtained from the above experiments in which A, and A,
were not separately controlled were not well adapted to determin-
ing with any degree of precision the form of the strain-energy
function in terms of I, and I, or of its derivations d W/al, and
dW/al, which occur in the general stress—strain relations (10.16).
An important advance was introduced by Rivlin and Saunders
(1951), who adopted the more logical procedure of choosing the
conjugate values of A, and A, in the biaxial strain experiment in such
a way that in any given test one of the two strain invariants ; and I,
was held constant while the other was varied. To achieve this end
they introduced a set of helical springs to replace the dead-weight
loading used by the author; the strain in either direction could
therefore be continuously varied at will and the corresponding
stresses determined from the spring extensions.

Since t; =0, the values of ¢, and ¢, corresponding to any given
values of A; and A, (and hence of I, and I,) are readily derivable
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from eqns (10.16). The explicit solution is as below,

1'% Adt At
2——( e 2)(1\%—1\5)*1,
3

oI,  \A2—A2 AZ—A
w (10.23)
J 4 t, _
2~=~( _ )/\2~/\2 :
31, Ai—AZ A%—Ai( i)

The resulting dependence of d W/31, and dW/al, on both I, and I,
obtained in this way is shown in Fig. 10.8. The continuous lines in
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F1G. 10.8. Dependence of dW/dl, and dW/4l, on I, and I,. (Rivlin and Saunders
1951.)



PHENOMENOLOGICAL THEORY 225

the separate graphs are drawn in such a way as to be self-consistent,
on the assumption that d W/4alI, is a constant (independent of I; and
I,), while aW/0L is a function of I, but is independent of I, (for a
given value of I). It is seen that the major term, for all states of
strain, is dW/aI,, and that d W/aI, varies from about g of dW/3I, at
small values of I, to about 35 of dW/dl, at the highest values
employed. It was therefore tentatively suggested that the strain—
energy function has the general form

W=C(I,-3)+d(I,-3), (10.24)

in which @ is a function whose slope diminishes continuously with
increasing I,.

The accuracy of these results is limited by the accuracy of the
original data, which are themselves limited not so much by the
accuracy of the measurements of stress and strain in themselves, but
rather by the inherent lack of complete reproducibility (reversibil-
ity) of the rubber. The occurrence of (A —A2)™" as a factor in eqns
.(10.23) magnifies the experimental errors in the resultant values of
aW/al, and dW/JL,, particularly in the region where A; — A, is small,
rendering the results in this region rather unreliable. This accounts
for the larger scatter of the points in the lower ranges of I, and I,
shown in Fig. 10.8.

10.7. Interpretation of Mooney plots

The conclusions arrived at by Rivlin and Saunders enable the
apparent applicability of the Mooney equation in the case of simple
extension to be more critically interpreted. In this state of strain, as
pointed out in § 10.3, the variables I, and I, are not independent (cf.
Fig. 10.3), and it is therefore not possible in this case to apply eqns
(10.23) so as to obtain the values of dW/al, and aW/4l, at each
particular value of the strain. The constants C; and C, derived from
a Mooney plot cannot therefore be identified with the quantities
aW/al, and daW/al, in eqns (10.16) unless it is known (from
independent experiments) that both 6 W/aI, and dW/4dl, are inde-
pendent of strain. But the experiments of Rivlin and Saunders show
conclusively that dW/al, is strongly dependent on strain. Thus,
while the relations aW/aI, = C,, dW/al, = C, necessitate a linear
Mooney plot in the case of simple extension, the converse is not
true, and the apparent consistency of the data with the Mooney
equation could equally well be attributed to a variation of d W/aI, or
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dW/alI, (or both) with strain. That this is in fact the correct explana-
tion is proved not only by the work of Rivlin and Saunders but also
by later experiments referred to in the next chapter.

An explicit warning against the nidive identification of the
Mooney constants derived from simple extension data with the
partial derivatives d W/aI, and dW/aL, in the general strain-energy
function has been given by Rivlin and Saunders (1951) but seems to
have been generally disregarded. Such an identification, as they
point out, is quite inconsistent with their own general strain data,
and also with results which they present in relation to shear and
torsion. It also gives a misleading impression of the magnitude of
the deviations from the statistical theory. In a particular experiment
which they quote, the ratio C,/C; derived from a Mooney plot of
simple extension data was 0-8, whereas the maximum ratio of
aW/al, to dW/al, derived from their biaxial strain data was about
0-125.

In the light of the general strain data of Rivlin and Saunders, the
close agreement with the statistical theory observed in the case of
uniaxial compression can be readily understood. The explanation
lies in the particular range of the variables I, and I, covered by the
different types of strain. For a simple extension with A =35, for
example, the values of I, —3 and I, —3 are 22-4 and 7-04, respec-
tively; for a uniaxial compression with A, =3, however, these figures
are reversed, i.e. I, —3=7-04, I,—3 = 22-4. The higher values of I,
in uniaxial compression result in much smaller values of 9 W/dl, in
this type of strain.

Again, the absence of obvious deviations from the statistical
theory in the plot of t;, — t,, the principal stress difference in the plane
of the sheet, against A} — A3, for the general biaxial strain (Fig. 10.5)
can be understood on the basis of the general stress—strain relations
(10.16). In this case both A, and A, are greater than unity, and since
As=1/A;A, we shall have, in general, A3« 1. Consequently the
effect of the term A3(d W/4L,) in the first of eqns (10.16) will rapidly
diminish with increasing strain. On the other hand, plots of ¢, —t; or
t,—t; (Fig. 10.6) will involve the terms A3(3W/aL,) or A3(8W/3L,),
which are not small compared with dW/al,; these will therefore
show significant deviations from the statistical theory.

Finally, it should be pointed out that the general validity of Rivlin
and Saunders’ conclusions, as embodied in eqn (10.24), must be
subject to some uncertainty, on account of the experimental limita-
tions, referred to above, and also, of course, to possible variations
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between different rubber vulcanizates. Later work, referred to in
the next chapter, does in fact suggest that some minor modifications
may be desirable at least in particular cases. Such modifications are
however rather marginal in character and do not alter the broad
conclusions originally established by Rivlin and Saunders concern-
ing the form of the deviations from the statistical theory.

10.8. Molecular significance of deviations from statistical theory

It has already been indicated that no generally accepted molecu-
lar interpretation of the deviations from the statistical theory dis-
cussed above has yet been advanced. Possible interpretations are
usually presented as explanations of the Mooney C, term, as
deduced from experiments in simple extension, but from the evi-
dence presented in the previous section the reader will appreciate
that this definition of the problem is too narrow, and may be
positively misleading. The real problem is to explain the general
form of the strain-energy function, and in particular the presence of
a 0W/al, term which decreases with increasing I,.

Among possible molecular explanations of the observed
phenomena the following are perhaps the most plausible:

(1) non-Gaussian chain or network statistics;

(2) Internal energy effects;

(3) chain entanglements;

(4) irreversible effects;

(5) non-random packing effects.

Non-Gaussian chain or network statistics

It has been suggested by Isihara, Hashitsume, and Tatibana
(1951) that the non-Gaussian network theory could give rise to a
deviation of the type represented by a Mooney C; term. Without
taking into account the quantitative values of higher-order terms in
relation to the C, term, this in itself is not very significant, and
indeed Thomas (1955) has claimed that their theory yields the
wrong sign for the C, term.

Internal energy effects

It would indeed be reasonable to expect the effect of energetic
interactions between chains to give rise to significant deviations
from the simple statistical theory. This point of view has been put
forward by Wang and Guth (1952). However, the characteristic
variation of C, (in simple extension) with degree of swelling,
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discussed in § 10.3, and its independence of both the type of rubber
and the nature of the swelling liquid, would appear to preclude such
an explanation. It would also be necessary to explain the absence of
deviations from the theory in the case of uniaxial compression.

Krigbaum and Koneko (1962) have treated the statistics of
long-chain molecules on the basis of a lattice model, taking into
account energetic interactions within the chain. A non-Gaussian
network theory incorporating such molecules gives a suggestion of a
deviation of the kind observed in simple extension.

A suggestion by Thomas (1955) that an empirical term, repres-
enting an internal attractive force, be introduced into the expression
for the free energy of the single chain has been shown to lead to
general stress—strain relations showing rather close agreement with
the experimental data of Rivlin and Saunders. This is one of the few
attempts to relate the general strain properties to a structural
characteristic, though it leaves open the question of the possible
origin of such an additional term.

Chain entanglements

A strong case can be made for thinking that the explanation for
the deviations from the statistical theory must be connected with
some general topological features of the network. Similar types of
deviation to that observed with natural rubber are found in a wide
variety of cross-linked networks, e.g. butyl and silicone rubbers
(Ciferri and Flory 1959), hydrofluorocarbon (Viton), rubbers (Roe
and Krigbaum 1963), and polythene (Gent and Vickroy 1967). A
likely explanation might be in terms of chain entanglements, which
may act as partial cross-links (cf. Moore and Watson, 1956, p. 168).
The mathematical difficulties involved in any attempt to work out a
quantitative theory on these lines are, however, formidable. An
approach by Prager and Frisch (1967), based on an extremely
simplified specification of an ‘entanglement’ leads to potentially
interesting conclusions, but the authors themselves are reluctant to
predict the effect of entanglements in a real network.

Irreversible effects

The case for attributing the deviations to irreversible effects
(hysteresis) has been strongly argued by Ciferri and Flory (1959),
but the supporting evidence is inconclusive. These authors also fail
to consider that any such general explanation should apply equally
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to all types of strain (e.g. should include uniaxial compression, for
which the deviations are non-existent). It is interesting to note,
however, that Kraus and Moczvgemba (1964) found that networks
prepared from carboxy-terminated polybutadienes, which contain
no ‘loose ends’ of the type encountered in conventional vulcani-
zates, and which should therefore experience less obstruction in the
attainment of equilibrium, showed almost perfect agreement with
the statistical theory. A similar effect is obtained by the cross-
linking of natural rubbers in solution (Price et al. 1970). On the
other hand, Krigbaum and Roe (1965), in a careful review of the
evidence on the subject, point out that certain rubbers still show
significant deviations from the statistical theory even when precau-
tions are taken to avoid all irreversible effects.

Non-random packing effects

The frequently made suggestion that non-random packing of
chains could modify the expression for the entropy of deformation
in such a way as to lead to the observed deviations is plausible,
though as in the case of entanglements, difficult to quantify. The
interested reader is referred to the work of Di Marzio (1962) on this
subject, and also to a recent paper by Schwarz (1973). The latter
author considers the orientation of links in the chain to be modified
by that of neighbouring links in other chains; as a result the chains of
lowest M, values (and hence of highest link orientation) will tend to
increase the orientation of surrounding links. The treatment
appears to give a plausible explanation of the observations in
extension and compression represented in Fig. 10.1.

Conclusion

In contrast to the original spectacular success of the statistical
theory, the failure to secure any very significant understanding of
the relatively rather small deviations from the theory, despite
repeated attempts over a period of 30 years, is disappointing. In a
sense, perhaps, there are too many available explanations, and too
few critical data by which they may be tested. The importance of the
study of the form of the general strain-energy function is that it
provides a much more detailed basis for the critical examination of
theoretical ideas than can be obtained from the consideration of any
single type of strain in isolation.
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ALTERNATIVE FORMS OF
STRAIN-ENERGY FUNCTION

11.1. Survey of alternative proposals

IN this chapter some of the more recent developments bearing on
the question of the form of the strain-energy function for rubber will
be examined. The aim of these developments is essentially to find
the most appropriate general method of characterizing the proper-
ties of a rubber for engineering applications or similar purposes, any
possible interpretation in molecular terms of such methods being
either irrelevant or purely incidental.

A number of authors have attempted to expand the Rivlin type of
formulation, as represented by eqn (10.10) (p. 216), so as to include
higher-order terms in I, —3 and L, — 3. For reasons which were fully
discussed in the last chapter a critical evaluation of such formulae
requires the consideration of types of strain other than simple
extension, which in some cases is the only type of strain taken into
account by the authors concerned. Ideally, for a complete evalua-
tion, general biaxial strain data covering the widest possible range
of strain should be used, but if such data are not available a fair
assessment can usually be made on the basis of certain widely
different types of strain, e.g. simple extension and equi-biaxial
extension (uniaxial compression). For purely practical reasons these
may even be advantageous, particularly if the interest is in the
high-strain (non-Gaussian) region, since they usually cover a wider
range of deformation than it has yet proved possible to attain in the
general biaxial strain test used by Rivlin and Saunders, which is
limited to principal extension ratios of about 3.

In the present context little would be gained by a detailed
presentation of the various formulae which have been proposed,
and we shall content ourselves with a reference to a small number of
examples by way of illustration. For a more detailed review the
reader is referred to papers by Hart-Smith (1966) and Alexander
(1968). Our main interest will be in those developments which
involve distinctive features of general interest, particularly where
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these depart from the original formulation of Rivlin. In this connec-
tion, the theories proposed by Ogden (1972) and by Valanis and
Landel (1967) will be expounded in some detail.

Among the multi-term Rivlin proposals may be mentioned that
of Isihara, Hashitsume, and Tatibana (1951) which as indicated in
the previous chapter is based on their development of the non-
Gaussian network theory. This contained a term in (I,—3)?, in
addition to the first-order terms in I, and I, i.c.

W=C1()(Il_'3)+ C01(12_3)+C20(Il_3)2. (11.1)

Alexander (1968) has shown that this formula gives inconsistent
results when applied to the author’s data (Treloar 1944) for uniaxial
extension and equibiaxial extension (Figs 5.4 (p. 87 and 5.5 p. 89).
The four-term expression

W= Cm(]l ”‘3)+ COI([I _3)+ CZO(II —3)2+ C30(Il _3)3 (112)

put forward by Biderman (1958) is, according to Alexander, open to
a similar criticism. More elaborate formulae of a similar type have
been derived by Tschoegl (1971), who showed that the complete
force—extension curve for a carbon-reinforced natural rubber vul-
canizate in simple extension could be accurately represented by the
equation :

W= Cio(l;=3)+ Coi(I,—3)+ Ci:(I, =3)(I,—3), (11.3)

which contains a product term in addition to the two Mooney terms.
For a butadiene—styrene ‘pure gum’ rubber the best fit was obtained
with the formula

W = Cio(I; = 3) + Cor (I, —3) + Cyo(1, —3)2(12 - 3)2. (11.3a)

Curve-fitting procedures of this kind may clearly be carried out to
any desired degree of accuracy. The elaboration, however, is mis-
leading for the reasons emphasized in the previous chapter, namely,
that in the case of simple extension to which these results refer the I,
and I, are not independent variables, but are both functions of the
single variable A. Thus all the information which can properly be
deduced from such experiments can be represented in terms of an
algebraic function of A alone.

A more realistic formula, which accounts to a fair degree of
approximation for the general strain data of Rivlin and Saunders
(1951) has been put forward by Gent and Thomas (1958). This,
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which also yielded results substantially similar to those deduced
from the theory of Thomas (1955) and referred to on p. 228, was of
the form

W=Ci(I,-3)+k In (I,/3), (11.4)

in which the second term replaces the unknown function in the
equation (10.24) of Rivlin and Saunders. This form was chosen
chiefly on the grounds of mathematical simplicity. Differentiation of
(11.4) yields

h%% aw k'
of, 7 oL, L’ (11.5)
corresponding to a non-linear dependence of dW/dl, on I,. The
difference from the linear dependence provisionally indicated
experimentally (Fig. 10.8, p. 224) is probably not significant.

In the region of high extensions the rapid increase of stress which
occurs as the limiting extensibility of the network is approached
cannot be satisfactorily reproduced by a small number of terms in
I,—3 and I, 3. For this reason some authors have preferred to
incorporate non-Gaussian type terms directly into the strain-energy
function. Thus Hart-Smith (1966) has suggested the three-constant
formula

W Gk,

IW
L _Gexplha(l,-3; 2=
6[1 exp{ 1( 1 3) }3 aIZ I2 ]

(11.6)

to explain a variety of data on the inflation of balloons (equi-biaxial
extension). Using this equation he was also able to fit the general
strain data of Rivlin and Saunders (1951). By a further elaboration
of this type of approach, Alexander (1968) arrived at the more
complicated five-parameter expression

n (@%am—z’),

(11.7)

W=C_C J exp{k(l,—-3)*}dL+ G

which was found to give good agreement with his experimental data
for polychloroprene rubber in simple extension and equi-biaxial
extension.
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11.2. Ogden’s formulation

The complexity of some of the formulae referred to above arises
partly from the attempt to cover the region of very high strains,
where the first-order terms in I, and I, in Rivlin’s formulation are
quite inadequate. However, if we are concerned with a purely
formal representation of the elastic properties of a rubber, it is
possible to argue that the introduction of the strain invariants I; and
I, may itself be an unnecessary complication, and that a formulation
in terms of principal extension ratios or other more direct measures
of strain may have advantages in mathematical simplicity as well as
in the not unimportant matter of ready intelligibility. We have
already seen (p. 215, footnote) that the arguments advanced by
Rivlin in support of the restriction of the strain-energy function to
even powers of the extension ratios have no necessary basis in
physical reality; the question of the representation of the properties
in terms of the strain invariants I, and I, is therefore one of
convenience rather than logical necessity.

An important new departure was made by Ogden (1972), who
dispensed with the restriction to even powers of the extension ratios
and wrote the strain-energy function for an incompressible rubber
in the form of the series

w=y 5 0rtaprar-3), (11.8)
in which the a, may have any values, positive or negative, and are
not necessarily integers, and the u, are constants. It will be noted
that the statistical theory is a special case of this formula, with
a, =2, while the Mooney equation contains two terms, correspond-
ing to a; =2, a, =—2. The principal stresses corresponding to the
strain-energy function (11.8) are of the form

L= uA—p  (1=1,2,3), (11.9)

where p is an arbitrary hydrostatic stress. As in the statistical theory,
the indeterminacy associated with the arbitrary pressure p is a
consequence of the assumption of incompressibility and does not
appear -in the equations for the differences of principal stresses.
These are of the form

h—t=) Ha(AT"— A7) (11.10)
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Simple extension

For the case of simple extension A, =A; = )\1’%, t,=1t;=0. Hence
from (11.10) the tensile stress is given by

tl—tzzt1:ZMn(A‘;"—'A1~a"/2). (11.11)

The corresponding nominal stress fi, or force per unit unstrained
area, is

fi=t/A =Y p (AT = A2, (11.11a)

Equi-biaxial extension
Putting A, = A5> = A3%, , =15, t; = 0, the stress in the plane of the
sheet (¢, or ;) is given by

tz“'tl:'tzzz }Ln(/\;"_/\z‘hln). (11.12)
The corresponding force per unit unstrained area then becomes

f2=tz/A2=ZI.Ln(Alzx"_1A2_2a"—l) (11.123)

Pure shear

For a pure shear produced by principal stresses t; and f,, with
=0, we have A;=A7', A, =1, and hence

h—L=hL= Z (AT —AT™),
(11.13)
L—th=1= Z ’Ln(l _A;a").
The corresponding forces per unit unstrained area are
fx = t1/)\1 = Z Mn (/\ llx"_lAl_a"_l),
" (11.132)

fz =f.
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Application to experimental data

The utility of the Ogden formulation must be judged by its ability
to represent the experimental data for rubber under all possible
types of strain, preferably (though this is not a primary requirement)
with the use of a relatively small number of terms. The above
equations have been applied by Ogden to the author’s data for

6:0r
© Simple extension °
e Equi-biaxial extension
+ Pure shear o

S (N mm~?)

0-0 1 ] ] ) 1
1 2 3 4 5 6 7

i

F1G. 11.1.-Representation of data for simple extension, equibiaxial extension, and
pure shear by Treloar (1944) on basis of eqns (11.11a), (11.12a), and (11.13a).
(Ogden 1972.)
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simple extension, equi-biaxial extension, and pure shear, previously
given in Figs 5.4 (p. 87), 5.5 (p. 89), and 5.8 (p. 92), respectively.
For simple extension and pure shear a two-term formula was found
to be effective, but for the representation of all three types of strain
three terms were required. The degree of agreement attained is
shown in Fig. 11.1, the force f for each of the curves being that
corresponding to the major axis of the strain ellipsoid, as rep-
resented by eqns (11.11a),(11.12a), and (11.13a). The agreement is
very satisfactory, except at the highest values of strain (A >7-0),
where a significant deviation begins to occur. The values of the six
constants involved are as follows (w in kg cm™):

a;=1-3, a, =50, a;=—2-0;

(11.14)
w =63, w2 =0-012, w3 =—0-1

Although the number of independent constants to be determined

is rather large the method, considered from the purely empirical

standpoint, has a certain simplicity combined with generality in that

all the terms are of identical type, and no prior judgment concerning

the expected form of the strain-energy function is involved. Any

possible influence of the form of representation on the conclusions

derived is thereby eliminated. The fact that the terms are all of the

same type also has advantages in further mathematical operations

involving inhomogeneous strains, since in effect all such operations

are performed on a single representative term into which appro-

priate numerical values may then be introduced for numerical
computation.

11.3. The Valanis-Landel hypothesis

Valanis and Landel (1967) have put forward the hypothesis that
the strain-energy function should be capable of representation as
the sum of three separate functions of the three principal extension
ratios, i.e. by an equation of the form

W=w(A)+w(A)+w(As), (11.15)

in which, from symmetry considerations, the separate functions
w(A;) are of identical form. Though there is no general physical
basis for this assumption, it is pointed out by the authors that it is
satisfied by the Gaussian network theory and the Mooney equation
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(egn (10.1)), and also by the simplest form of non-Gaussian net-
work theory, i.e. that of James and Guth, in which the chains lying in
the directions of the principal axes of strain are treated as indepen-
dent of each other (p. 114); it therefore has a strong a priori
plausibility. It may also be noted that the later theory of Ogden
(1972) referred to above is consistent with this hypothesis. Its
validity in any given case, however, must rest ultimately on experi-
mental evidence. If it should prove to be applicable, the problem of
defining the elastic properties of a rubber over the whole range of
available strains is reduced from a complex problem in three
dimensions to the comparatively simple problem of finding the form
of the function w(A) of the single variable A.

The Valanis—Landel hypothesis not only has far-reaching
theoretical implications, but has also provided a fresh stimulus to
experimental work on the most general type of strain, indicating
new approaches both to the methods of experimentation and to the
presentation of the resulting data which hold out the promise of
improved accuracy and more direct mental appreciation.

The principal stresses corresponding to the strain-energy func-
tion (11.15), in accordance with eqn (11.9), are given by

tizAi——p:/\i———p_ (11.16)

Writing w'(A) for dw/dA, we have then
ti:AiW’(A,')_p, (11.163)

where p is an arbitrary hydrostatic stress. The principal stress
differences then become

tl—t2=/\1W’(A1)—)(2W'(A2), etc. (11.17)

This equation will apply to a general biaxial strain experiment
involving the measurement of the two principal stresses ¢, and ¢, in
the directions of A, and A,, with zero stress in the direction A,. Itis to
be noted that if, in such an experiment, A, is held constant while A, is
varied, the second term on the right-hand side of eqn (11.17) is
constant; hence the variation of A;w'(A;) may be directly deter-
mined. Valanis and Landel considered in particular the case when
A, =1, corresponding to a pure shear. For this case eqn (11.17) may
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be written
(ti— )1 =AW (M) —c, (11.18)

where c is a constant, equal to w'(1). Such an experiment therefore
enables the form of the function w'(A) to be determined, subject
only to an unknown additive constant. On substituting back into
eqns (11.17) to obtain the principal stress differences for any other
state of strain the additive constant disappears. This derivation is
restricted in its application to the range of A; covered by the
experiment, which of course implies values of A greater than unity.
However, the corresponding function for A <1 may be obtained
from the equation

t3_t2=A3W’(I\3)_/\2W,(A2). (1119)
Putting ¢, = 0, and remembering that A, = A7, this yields
—L=A7"w (A7) —c (11.20)

The function w'(A) is thus readily determined over a wide range of
A, both greater than and less than unity.

It is concluded from this analysis that the form of w'(A), and
hence the stress—strain relations for any type of strain, may be
predicted on the basis of a single experiment in pure shear.

Actually, this conclusion is not restricted to the case of pure shear
(A,=1) but applies equally for any experiment at constant A,,
whatever the value of A,, as can be seen by retracing the foregoing
argument. In practice, by working with other values of A,, the range
of A over which the function w’(A) is determined may be extended
to lower values of A than would be possible from a pure shear
experiment alone.

11.4. Experimental examination of Valanis-Landel hypothesis

The above theory has been applied by Valanis and Landel to a
variety of experimental data by other authors. For this purpose
previously unpublished experimental data of Becker and Landel for
pure shear were used to provide the basic form of w'(1), and a scale
factor or modulus 2 was introduced to render the rubbers used by
different authors comparable. Thus by plotting the relevant (¢, ~
t;)/2u for any given type of strain against the corresponding
{Aw'(A1) = A,w'(A;)/2u derived from the pure shear experiment, in
accordance with eqn (11.17), a straight line of unit slope should
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FiG. 11.2. Representation of various stress—strain data on basis of eqn (11.19), using
form of w'(A) obtained from experiments of Becker and Landel in pure shear. (From
Valanis and Landel 1967.)

result. Fig. 11.2 shows this relationship to apply with remarkable
accuracy.

With regard to the form of w’'(A), as derived from the pure shear
experiment, Valanis and Landel (1967) claimed that the logarithmic
relation

wA)=2uIn A (11.21)

was approximately valid over the range A =0-35 to A =2-5. This,
however, was based on the incorrect assumption that the constant ¢
in eqns (11.18) and (11.20) could without loss of generality be put
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equal to zero. The correct interpretation of their data would yield
wA)=2ulnA+c/A (11.22)

in place of eqn (11.21).7

A more systematic examination of the applicability of eqn (11.17)
has been undertaken by Obata, Kawabata, and Kawai (1970), who
carried out experiments on the general homogeneous strain of a

t,—t; (N mm™2)

0-0 < o
0-5 1-0 1'5 2:0 2-5

s

F1G. 11.3. Plot of t,—¢, against A, for different values of A,. (From Obata,
Kawabata, and Kawai 1970.)

sheet of rubber under conditions such that one of the principal
extension ratios (in this case A,) was held constant, while the other
(A2) was varied. The test piece was similar to that used by Rivlin and
Saunders, but the test machine employed enabled the sample to be

T The issue is further confused by the fact that the curve for 2uln A in Fig. 2 of
Valanis and Landel (1967) is incorrectly drawn (Landel, private communication).
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extended continuously up to any predetermined values of A; and A,.
According to eqn (11.17) the curves representing the relation
between t; —t, and A, for different (constant) values of A, are then all
of the same form but are displaced vertically with respect to one
another by amounts corresponding to the different values of the
constant A,w'(A;). By suitable vertical displacement they should
therefore all be superposable on to a single curve, e.g. that for pure
shear (A; =1). Fig. 11.3 shows the data of Obata et al. for various
values of A; plotted in this way; each of these curves (except that for
A1 =3-0) covers the range A= ALt (simple extension) to A, =A;
(equi-biaxial extension). The curves are all of similar form, and may
be brought into coincidence with the curve for pure shear by
appropriate vertical displacement (Fig. 11.4).

t,—t, (N mm~2)

0-5

0-0 1 ]
05 1-0 1-5 2-0 2-5
Az

F1G. 11.4. Superposition of data shown in Fig. 11.3 on curve derived from pure shear
experiment. (From Obata et al. 1970.)

These results demonstrate the validity of the Valanis-Landel
hypothesis over the range of strain covered by the experiments, and
justify the conclusion that the stress—strain relations for any type of
strain may be deduced from a single experiment in pure shear.
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11.5. Form of the function w'(A)

Obata et al. follow Valanis and Landel in taking ¢ =0 in eqns
(11.18) and (11.20) in order to calculate w'(A), but their results are
not consistent with the logarithmic formula (11.21), or more cor-
rectly (11.22). They do not, however, suggest any alternative for-
mula to represent their data.

Experiments similar to those of Obata et al. have been carried out
by Jones and Treloar (1975) using the method of Rivlin and
Saunders (1951). Their data for t,—t, (eqn (11.18)) and —¢, (eqn
(11.20)) for different values of the parameter A, are shown in Fig.
11.5. (This figure is inverted with respect to Fig. 11.3 due to the
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F1G. 11.5. Plot of t,—t, and —t, against A, for different values of A,. (Jones and
Treloar 1975.)

interchange of A; and A,.) The individual curves were superposed by
vertical displacement so as to coincide with the curve for pure shear
(A2 =1) at the point A, =1 (zero strain), as shown in Fig. 11.6. The
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F1G. 11.6. Superposition of data shown in Fig. 11.5 for various values of A,, to
coincide with pure shear curve at A, = 1. (Jones and Treloar 1975.)

variations between the curves were in all cases within the experi-
mental error. Since no special significance is attached to the case
A>=1, the best values of the function Aw’(A) were considered to be
given by the mean of all these curves, including that for A, = 1; these
values are reproduced in Fig. 11.7. The function Aw'() is of course
indeterminate to the extent of the unknown constant c.

Application of Ogden formula

Since, as noted above, Ogden’s formulation (eqn (11.8)) is consis-
tent with the Valanis-Landel hypothesis, the analysis of the form of
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F1G. 11.7. Mean experimental values of Aw’(A) from data of Fig. 11.6 compared with
relation (11.25). The broken line corresponds to the Gaussian network theory (eqn
(11.26)). (Jones and Treloar 1975.)

the experimentally derived function Aw’(A} in terms of an Ogden
series is an obvious possibility. Comparing eqns (11.17) and (11.19)
we may write

Hh— = /\1W,(I\1)_/\2W,(/\2) :Z an(/\(lx"_A;"). (1123)
The curve for pure shear (A, = 1) thus becomes
(tl_tz)xz=1=)l1W’(A1)—C =Z IJm(/\‘ll"_l)- (11-24)

The data from Fig. 11.6 were found to be fitted by a three-term
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expression of the type (11.24), namely,

AW'(A)—c=0-69(A'7 = 1)+0-010(A*°~1)—0-0122(x *°—1),
(11.25)

in which the w; are given in Newtons per square millimetre. This
function is represented by the continuous curve in Fig. 11.7. It will
be noted that the numerical values of the «, are very similar to those
found by Ogden (eqns (11.14)).

It is interesting to compare the results obtained in this way with
the Gaussian network theory. For the latter we have, from eqn
(4.9a) (p. 64), w(A) =3GA” and hence dw/dA = GA. This gives

Aw'(A) = GA®. (11.26)
For pure shear this yields the parabolic relation
h—L=Aw'A)—w' (1)=G(A*—1). (11.27)

This function is plotted in Fig. 11.7, the value of G being adjusted to
give the same slope at A = 1, i.e. the same small-strain modulus, as
eqn (11.25). The comparison brings out very clearly the difference
of form between the two functions, particularly (and rather surpris-
ingly) in the region A <1.

The interpretation of these results must be treated with some
caution. In particular, any tendency to translate the function Aw’(A)
directly to the molecular system must be avoided. It would be
unwise at this stage, for example, to attach any special molecular
significance to the rather sharp increase in the slope of this function
in the region below A = 0-5. A further reservation, which applies to
this, as to any other phenomenological representation, is that the
above conclusions regarding the applicability of the Valanis-Landel
hypothesis cannot be extrapolated to values of A outside the range
covered in these experiments. Indeed, it would be expected on
molecular grounds that at sufficiently high values of A the
hypothesis will cease to apply, as can be seen by considering the
limiting case in which the chains are fully extended in one direction
and are therefore incapable of any extension in the transverse
directions. It is suspected that the Valanis-Landel postulate is
closely connected with the property of the Gaussian network that it
is equivalent to three independent sets of Gaussian chains parallel
to the coordinate axes, a property which is itself derived from the
Gaussian probability function for the single chain (cf. p. 48). This
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property of the Gaussian network, though assumed to apply also in
the simple model of the non-Gaussian network (p. 113) must
become increasingly inapplicable with increasing values of the
strain. At present, however, this suggestion must be regarded as
purely speculative.

11.6. Re-examination in terms of strain invariants
The analysis of Obata, Kawabata, and Kawai

The recent work of Obata et al. (1970) and of Jones and Treloar
(1975) has also included a re-examination of the form of the
strain-energy function in terms of the strain invariations I; and I,
which leads to a slight modification of the conclusions tentatively
derived from the experiments of Rivlin and Saunders (1951) on the
general homogeneous strain.

T T T T
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F1G. 11.8. Dependence of d W/daI, and 8 W/3al, on I, for various values of I,. (Obata
etal. 1970.)

Fig. 11.8 represents the results deduced from the data of Obata et
al. by the method referred to in § 11.4 above in terms of the
variation of dW/al, and dW/al, with I,, at various values of I,.
Whereas Rivlin and Saunders found that  W/aI, was substantially
constant, these more recent results indicate that with increasing I,
dW/al, at first decreases but subsequently tends towards a constant
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value. It is also seen that, for a given value of I,, dW/aI, increases
with increasing I;. The behaviour of d W/31, is directly opposite; this
quantity increases with increasing I, (in contrast to the results of
Rivlin and Saunders) and decreases with increasing I;.

These apparent discrepancies from the earlier work are probably
not as important as might appear at first sight. In the first place, they
refer mainly to much lower strains. In the plots of Rivlin and
Saunders’ data (Fig. 10.8, p. 224), the lowestvalues of I, and I, were
5-0; in Fig. 11.8, the values range from about 3-3 to 8, and the most
marked variations occur in the region of I, and I, below 5-0.
Unfortunately, this is the region where the values of dW/dI, and
aW/al,, as calculated from eqns (10.23), are most seriously affected
by experimental errors. Secondly, there may be compensating
effects between changes in dW/dI, and d W/al, with strain, and the
precise total effect on the stress can be deduced only by detailed
consideration of any particular type of strain. Thirdly, it is to be
noted that the ratio of dW/aI, to dW/aI, shown in Fig. 11.8 is always
small, ranging from about 0-1 to 0-3. In this respect, therefore,
these data are in agreement with those of Rivlin and Saunders.

In the case of simple extension, Obata et al. have attempted to
estimate the contributions of the separate terms in dW/al, and
aW/al, to the total force. As pointed out in the preceding chapter,
these terms cannot be obtained by a direct analysis of the simple
extension data. Obata et al. therefore estimated their values by
extrapolation of their pure homogeneous strain data to the values of
I, and I, corresponding to simple extension. Their results are
reproduced in Fig. 11.9, which gives the estimated contributions of
the two component terms to the total force, as represented by the
equation

f <aW law>

—_— — __+_ —_—
A_l/Az 6[1 A 6[2

From this it is apparent that the contribution of the d W/al, term is
always small (10 per cent or less). This result differs from the
conclusion drawn by Rivlin and Saunders only in that the deviations
from the statistical theory are associated with changes in both
aW/al, and dW/3l,, and are not attributed solely to changes in
oW/al,.

More recently Kawabata (1973) has studied the temperature
dependence of dW/al, and dW/dl,, as determined from biaxial

(11.28)
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F1G. 11.9. Contributions of the d W/aI, and a W/al, terms to the total force in simple
extension. (Obata et al. 1970.)

strain experiments. His results (Fig. 11.10) indicate that at tempera-
tures not too close to the transition temperature the temperature
dependence of dW/3I, is in approximate accord with the simple
kinetic theory, as indicated by the dotted line, while d W/a1, appears
to be substantially independent of temperature over the whole
range —20 °C to +100 °C. These results were not dependent on the
time under load. This gives some support to the view that the
aW/aI, term is closely associated with the network properties, while
dW/alI, has some quite different origin.

The analysis of Jones and Treloar

The advantage of the Valanis—Landel form of analysis is that the
function Aw'(A), obtained by superposition of the curves corre-
sponding to different values of A,, automatically smoothes out the
experimental errors attached to individual points, with the conse-
quence that the magnification of experimental errors associated
with the calculation of dW/aI, and dW/JI, from isolated measure-
ments of ¢; and t, through the application of eqns (10.23) no longer
occurs. The calculation of these quantities is further facilitated by
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the use of the Ogden type of formula to represent the function
AW'(A).

Jones and Treloar (1975) used their curve for Aw'(A), as rep-
resented by the expression (11.25), to calculate values of ¢, and £,
and hence of dW/aI, and 9 W/a1,, for the particular pairs of values of
A, and A,, corresponding to I, = constant and I, = constant, respec-
tively. Their results, reproduced in Fig. 11.11, are thus directly
comparable with those of Rivlin and Saunders (Fig. 10.8, p. 224),
discussed in the preceding chapter. These later results suggest that
neither dW/oI, nor dW/al, are strictly constant, but that each may
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F1G. 11.10. Temperature dependence of dW/dl, and aW/al, (at I, = I, = 6-0) for
natural rubber, various loading times. (Kawabata 1973.)
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depend on both I, and I,. The variations in 8 W/dI, are, however,
relatively much less important than the variations in dW/dl,, the
extreme variations amounting only to about 10 per cent in the case
of 9 W/al,, compared with about 70 per cent for 9 W/alI,. There is no
clear evidence that 8 W/al, is any less dependent on I, (at constant
L) than on I, (at constant I,).

It appears from these results, as well as from those of Obata et al.
(1970), that the conclusions arrived at by Rivlin and Saunders, and
embodied in the tentative equation (10.24) for the strain-energy
function, require some modification in detail. In particular, it would
appear that the deviations from the statistical theory cannot be
represented simply by an additional term in the strain-energy
function, as they originally suggested.
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LARGE-DEFORMATION THEORY:
SHEAR AND TORSION

12.1. Introduction: components of stress

In the preceding chapters our principal concern has been with the
problem of defining the properties of a rubber under the most
general type of strain, and we have seen that these properties may
conveniently be represented in terms of the strain-energy W per
unit volume of the material for a pure homogeneous strain. A
knowledge of the form of the strain-energy function is all that is
required for the treatment of more complex problems in which the
strains are not homogeneous but vary from point to point in the
deformed body, the analysis of such problems being purely a
question of mathematics.

There are, however, a number of effects deduced from the
application of large-deformation theory to practical problems such
as, for example, shear and torsion, which are peculiar to large elastic
deformations and are not to be anticipated on the basis of the
classical small-strain theory. These effects are quite general and are
not dependent for their existence on any particular form of strain-
energy function. Thus, though the full treatment of the mathemati-
cal analysis of problems of this kind would not be appropriate to the
present work, some indication of the important conclusions derived
from the study of typical relatively simple systems, and of the way in
which these conclusions are arrived at, is of considerable signifi-
cance for the understanding of the phenomena of rubber elasticity.

Analysis of strain

In a pure homogeneous strain, lines which are originally parallel
to the three principal extensions remain unchanged in direction in
the strained state. These three directions are the directions of the
principal axes of the strain ellipsoid. If, however, the state of strain
is inhomogeneous. the axes of the strain ellipsoid vary both in
magnitude and in direction from point to point in the strained body.
In this case it is desirable to refer the strain at any point not to the
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local axes of strain but to a system of coordinate axes fixed in space.
The strain is then defined by the partial derivatives of the displace-
ment of a representative point with respect to the fixed coordinate
system. Thus, if the point initially defined by the coordinates (x, y, z)
is displaced to the new position (x+u, y+uv, z+w), the local
strain is determined by the quantities du/dx, ou/dy, du/dz,dv/ax . . .,
etc.

Components of stress

In dealing with pure homogeneous strains we have been con-
cerned only with the three principal stresses, which act normally on
surfaces perpendicular to the three principal axes of the strain
ellipsoid. In the more general case the stress acting across any plane
section through the body can be resolved into three components,
one normal and two tangential to the surface. For the purpose of
definition it is sufficient to consider only planes normal to the
coordinate axes. For the plane x = constant, the components of
stress may be written ¢, t,., t., of which the first is the normal
component and the remaining two are the tangential components in
the y and z directions, respectively. Similar considerations apply for
the planes y = constant and z = constant. There are thus altogether
nine components of stress. For the maintenance of equilibrium,
however, it is readily shown that

txy = tyx, tyz - tzy; tzx = txz’

and hence the number of independent components is reduced to six,
of which three are normal and three tangential.

12.2. Stress components in simple shear
Geometry of strain

The relation between pure shear and simple shear was considered
in Chapter 5, where it was shown that a simple shear was equivalent
to a pure shear plus a rotation. For either type of strain the principal
extension ratios are given by

AZ:I/AI’ A3:1. (12.1)
For simple shear the shear strain vy is given by

Y:Al—l/Al- (12.2)
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Consider a sphere of unit radius deformed by simple shear in the
(x, y)-plane to the form of an ellipsoid, whose section in the plane of
shearing is an ellipse of semi-axes A, and 1/A; (Fig. 12.1). The

l

F1G. 12.1. Inclination of principal axes in simple shear.

inclination y of the major axis to the direction of shearing, i.e. to the
x-axis, is given by
cot y = A, (12.3)

and is equal to 45° for small values of the shear strain (A, =1), in
accordance with the classical theory.

Components of stress

To examine the components of stress let us consider for simplicity
that the statistical theory applies, the principal stresses being given
by eqns (4.18) (p. 67). Putting t, = 0, the principal stresses ¢, and ¢, in
the plane of the shear are given by

t=GAi-1), L=G(1/Ai-1). (12.4)

To obtain the tangential and normal components of stress on any
plane it is necessary to sum the components due to ¢, and ¢, using the
standard formulae for the resolution of stresses. From eqn (12.3) we
have sin® y =1/(1+A7) and cos® x = Ai/(1+A}). Making use of
these relations the tangential component of stress on the plane Oy is
given by

A
by =1t, =(ti— 1) sin Y cos x = G{()\f— 1)—(;1%— )}l—fl\?

which, with (12.2), yields
ty = G(A,—1/A1) = G. (12.5)
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For the normal component of stress on the plane Ox (normal to the
y-axis)

: 1 1 A2
ty =t sin’ x +1,cos’ x = G(AT— 1)1 I G(F—l)l+)\2
or
ty =0, (12.6)

while for the normal component of stress on the plane Oy (normal
to the x-axis)

Ad 1 1
b = 2y +tsin’ y = { 2 < ~) }
t, cos® xy + 1, sin” y = G{ (A1 1)1+)\2 2 1 oY
or

t = GA1—1/4,)% = Gy~ (12.7)

Taking t,, =t =0 there are no stresses in the z direction; the
complete set of stress components thus becomes

=Gy, ty=t.=0;
Ly =t = Gy; tyy =ty = by =, =0.

(12.8)

These components of stress are represented diagrammatically in
Fig. 12.2, in which the paraliclogram ABCD is deformed by simple
shear to the square A'B'CD.

I yy I yx
A AR B -
'rxx 1
[ - ,
Xy [9) ‘ C P g
Z
1 .f}.x Y r}’)’

X

0O

F1G. 12.2. Components of stress in simple shear. ABCD, unstrained state; A'B'CD,
strained state.

From the results represented by eqns (12.8) we see that whereas
the tangential components of stress t,, and t,, are proportional to
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the corresponding shear strain, in accordance with the classical
theory, the normal component t,, is proportional to the square of
the strain, and has no counterpart in the classical theory. This
represents an entirely new effect, associated only with the presence
of large elastic deformations.

The component of stress t,, represents a normal tensile stress
acting in the direction of shearing. If this stress is not applied, there
will be a contraction in this direction, with corresponding expan-
sions in the lateral directions. We thus arrive at the important
conclusion that a large shear strain cannot be produced by a shear
stress acting alone, but requires in addition the application of a
normal stress on at least one pair of free surfaces as in Fig. 12.2.

Although the above result has been derived on the basis of the
statistical theory, similar conclusions are reached whatever the form
of strain-energy function. In terms of the general strain-energy
function W, Rivlin (1948) has derived the following equations for
the companents of stress corresponding to a simple shear in the

(x, y)-plane:

ty, = 2v{(06W/al,) + (dW/oL,)},
b =1 =0,
te = 2{(1 + y*)(@W/3I,) — (aW/aL,)} + p, (12.9)
t,, = 2{(dW/al,) — (1 + y*)(aW/al,)} + p,
t. = 2{(6W/al,) — (dW/al,)} +p,
in which p is an arbitrary constant. If we take ,, =0 the normal
components of stress become

txx = 2')'2(6 W/all)’ tyy - _272(6 W/aIZ)a tZZ :O'
(12.10)
Alternatively the p may be eliminated by taking differences between
the normal stress components, i.e.
txx - tzz = 272(6 W/aI )7
‘ (12.11)
tyy -1, = — 2‘)’2(6 W/BI;_)

The precise dependence of the normal stress components on the
shear strain y will depend on the form of W. In the case when both
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oW/al, and dW/al, are independent of strain (Mooney equation)
they will be proportional to y*; in other cases this form of depen-
dence will require some modification. However, unless d W/aI, or
dW/al, show a very strong dependence on strain, the corresponding
differences of normal stress components, represented by eqns
(12.11), will be approximately proportional to the square of the
shear strain, in contrast to the shear stress t,,, which will be
approximately proportional to the first power of the shear strain.

Origin of normal stress components

The existence of the normal stress components in a large simple
shear 1s associated primarily with the lack of symmetry of the
principal stresses. This is reinforced by the peculiar features of the
strain geometry, as will now be shown.

In a small shear strain vy the principal axes of the strain ellipsoid
are equal to 1+vy/2 and 1—+/2, and are inclined at £45° to the
direction of shearing (x-axis). The corresponding principal stresses
are +¢ (tensile) and —t (compressive), as shownin Fig. 12.3, where ¢

3

F1G. 12.3. Principal stresses in case of small shear straint, = —t, = 1.

is numerically equal to the shear stress (Love, 1934). The resultant
of these stresses normal to the plane Ox is therefore

. L. =tcos’ x —tsin’ y =0, (12.12)
since )
cos® y =sin® y =3.
In the case when v is large, however, the numerical values of the
principal stresses ¢, and ¢, are no longer equal, the tensile stress (¢;)
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in the direction of the major axis A, increasing while the compres-
sive stress (—1,) in the perpendicular direction diminishes with
increasing strain (eqns (12.4)). This difference is accentuated by the
decrease in x with increasing strain, in accordance witheqn (12.3).

12.3. Torsion of a cylinder

The production of a state of homogeneous simple shear is not
easily achieved experimentally, and direct measurements of the
predicted normal stress components have not been carried out.
There are, however, other types of strain which are more readily
produced in which the effects of these normal stresses are directly
manifested and may be quantitatively studied. The simplest of these
is the torsion of a cylinder, in which the element of the body is in a
state of simple shear.

To define the problem we consider a circular cylinder of radius a
and height ! which is twisted in such a way that the top surface is
rotated through an angle 6 = ¢l with respect to the lower surface,
the height ! remaining unchanged. (Fig. 12.4). This problem was

F1G. 12.4. Torsion of solid cylinder.

first treated by Rivlin (1948, 1949), who showed that the specified
deformation can be maintained by forces applied to the end surfaces
only. Since the state of strain is not homogeneous, but varies with
the radial position r of the element considered, the corresponding
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distribution of the stress on the end surfaces is similarly non-
uniform. To describe this stress distribution we make use of a
cylindrical coordinate system (r, 6, z), in which the z-coordinate
coincides with the axis of the cylinder. For simplicity we will assume
the form of strain-energy function given by the statistical theory to
apply in discussing the solution to this problem. The shear strain in
an element at the radial position r being ¢r, the corresponding shear
stress is represented by the stress components t,, and t,, given by

tOz = z6 = G'l/r’ (12.13)

where G is the shear modulus. The corresponding normal compo-
nents of stress, t,, s, and £, in the radial, circumferential, and axial
directions, respectively, are obtainable from eqns (12.8), i.e.

tee — t.. = GY*r*, t,—t,=0. (12.14)

If we consider a cylindrical shell of thickness dr, the circumferential
stress t, (Fig. 12.5) is equivalent to a hoop stress, which for

F1G. 12.5. Components of stress in cylindrical shell.

equilibrium must be balanced by an excess internal compressive
stress. It follows that the radial component of (tensile) stress ¢, will
be negative, and will increase in numerical value on proceeding
towards the axis. The condition for equilibrium is represented by
the differential equation

dtn _ tBG - tn
dr r

= Gy’r. (12.15)

Integration of this equation, subject to the boundary condition that



260 LARGE-DEFORMATION THEORY:

t.=0 when r=a, gives t,. Noting that t,=1t, (eqns(12.14)) the
result becomes

L, =t,= J Gy’rdr= —3Gy*(a’*—r?). (12.16)

These components of stress therefore have a maximum value at the
axis (r = 0) and decrease to zero at the outer surface of the cylinder
(r=a).

The above analysis implies that the specified state of strain can be
maintained by stresses applied to the end surfaces of the cylinder
only, these stresses being distributed in accordance with eqns
(12.13) and (12.16). It will be seen that the tangential stress f,, is
proportional to the torsional strain ¢, and is identical in form to that
given by the classical theory of elasticity for a material of shear
modulus G. The normal stress t,,, however, which varies as the
square of the torsion, has no analogue on the classical theory.

The stress components represented by eqns (12.13) and (12.16),
when integrated over the surface, correspond respectively to a
couple M about the axis, and a normal tensile force N in the axial
direction. Their values are as follows:

M= j 27rt,,r dr = 27TG![JI r’*dr
or ° ° (12.17)
M =i7Gya®,

and

N= j 2art,, dr = — wGy? j r(a*—r’)dr
or ° ° (12.18)
N = —iwGy’a’.

The normal force N, being negative, is equivalent to an axial
compressive force or thrust. If this thrust is not applied, the cylinder
will elongate in the axial direction.

12.4. Generalization of preceding results

The preceding treatment, based on the statistical theory, may
readily be generalized to the case of a strain-energy function W of
any desired form. The tangential and axial components of stress
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then become (Rivlin 1956)

to. = 2!,[”(6 W/aIl +6W/612),
(12.19)

"W d
zz:2 2<J’ —r’— 3
t, W ) raI1 dr—r oL,

leading to the following expression for the total couple and axial
load,

M= 47r¢j r*(@W/al,+oW/al,) dr,
b (12.20)
N = —2my? J r’O@W/al, +2 oW/alL,) dr.

0

In order to integrate these equations, it is necessary to know the
form of W, since 9 W/al, and d W/al, will, in general, be functions of
strain, and hence of r. For the particular case of the Mooney
equation, for which 6W/dI, and dW/al, are both constants, the
solution to (12.19) and (12.20) becomes

te. =2yr(Ci + (), M = mpa’(C,+ C), (12.21)
and

t. = —y¢{(C,—2C)a’*—r})+2a*C,}, (12.22a)

N = —imp*a*(C,+ C,). (12.22b)

Eqns (12.21) correspond to the classical solution for a material of
shear modulus 2(C; + ;). Eqn (12.22a) represents a normal stress
component which depends on the square of the torsional strain, and
has no analogue on the classical theory. The form of distribution of
this component is shown in Fig. 12.6(b). Since the axial and radial

A1\
77N

(a) (b) (c)

F1G. 12.6. Distribution of pressure over end of cylinder in torsion. (a) Statistical
theory; (b) Mooney equation; (c) combined extension and torsion.
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components of stress are not in this case equal (cf. eqns (12.11)), the
vanishing of the radial stress component t, at the surface of the
cylinder, required by the boundary conditions, does not require that
the axial stress ¢,, should also vanish at this point; in fact, for positive
values of C; and C,, it remains finite up to the edge (r = a). Itis only
for the special case C, =0, corresponding to the statistical theory,
that both components vanish simultaneously, and the distribution
reduces to the simple parabolic form (Fig. 12.6(a)).

12.5. Experimental verification
Rivlin’s experiment

Experiments confirming the existence and form of distribution of
the axial stress in torsion were originally carried out by Rivlin
(1947). A cylinder of vulcanized rubber was bonded on to metal end
plates into which holes had been drilled at five different radial
distances from the centre. On twisting the cylinder, while keeping
the end plates at their initial distance apart, the rubber was observed
to bulge out into the holes, thus indicating the development of an
internal pressure. The height d of the bulge, which was assumed to
be proportional to the pressure, was found to be proportional to the

10~

10°d | #? (mm deg™?)

1 1 | | L J
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F1G. 12.7. Pressure distribution over end of cylinder in torsion. (From Rivlin 1947.)
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square of the angle of rotation 6, for each value of r, in agreement
with eqn (12.22a). Moreover, a plot of the ratio d/§* against a*—r?
yielded a straight line, as shown in Fig. 12.7. This result is consistent
with eqn (12.22a), and from the values of the slope and intercept on
the vertical axis the ratio C,/ C; was estimated to be equal to about 3.

The experiments of Rivlin and Saunders

In a further more exact study of the torsion of a cylinder Rivlin
and Saunders (1951) measured simultaneously both the total couple
M and the total axial thrust — N required to keep the axial length
constant. The principle of their method is indicated in Fig. 12.8. The

F1G. 12.8. Measurement of torsional couple and normal load on twisted cylinder.
(Rivlin and Saunders 1951.)

rubber cylinder A, of length 1in (2-54 cm) and diameter 1 in, was
bonded to metal end pieces which were rigidly attached to the metal
discs B and P. In carrying out the experiment the lower disc B was
fixed in a horizontal plane and the weight of the upper disc counter-
balanced by the load L connected to the supporting rod R via the
cord S. Under these conditions the rubber specimen was unstrained.
A known torque was then applied by means of weights W, causing a
rotation of the upper disc and a slight increase in the axial length of
the specimen. The latter was compensated by adjustment of the
load L so as to restore the original length; the reduction in L was
then equal to the normal thrust —N. Figs 12.9 and 12.10 show
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FIG. 12.9. Relation between torsional couple and amount of torsion, for cylinder of
diameter 2-54 cm. (Rivlin and Saunders 1951.)

respectively the variation of torsional couple M with the amount of
torsion ¢ and the variation of —N with °. These results confirm
very beautifully the predictions of the theory, as represented by
eqns (12.21) and (12.22b). The slopes of the lines in the figures give
respectively (C, + ;) and (C, + 2C,); from the data shown the ratio
C,/C, was found to be 3.

It should perhaps be noted that the interpretation of these data in
terms of the Mooney equation is not inconsistent with the general
criticisms of this equation advanced in Chapter 10, where it was
argued that over a limited range of I, and I, the quantities 6 W/dI,
and dW/aI, could be regarded as approximately constant. In the
experiment of Rivlin and Saunders the maximum shear strain at the
surface of the cylinder (¢r) was less than 0-6, corresponding to
A =135, giving I, =1,=3-37, approximately. Over this small
range of I, and I, i.e. from 3-0 to 3-37, consistency with the
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FiG. 12.10. Relation between normal load and square of torsion. (Rivlin and
Saunders 1951.)

Mooney equation is to be expected. The ratio C,/C; derived from
the torsional data is also consistent with the ratio
(0W/al,)/(6W/al;) obtained from the pure homogeneous strain
data of Fig. 10.8 (p. 224) in this range of strain.

12.6. Further problems in torsion

Combined torsion and extension

Rivlin (1949) has also considered the problem of torsion com-
bined with axial extension (or compression) of a circular cylinder.
This state of strain can also be maintained by forces applied to the
end surfaces only. For the particular case of the Mooney strain-
energy function the corresponding tangential and normal compo-
nents of stress at the radial position r (in the unstrained state) are
given by

for = 2003 (C + Cy)
(12.23)
tzz = 2(/\2— 1//\)(C1 + Cz/A) - l/fz{/\cl(az" r2) +2r2C2},

where A is is the axial extension ratio. The corresponding total
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couple and normal (tensile) load are
M= W¢a4(cl + C,/A)

(12.24)
N =2ma’(A = 1/ACi+ C,/A) —3mp*a*(C + 2C/A).

Eqns (12.23) show the normal stress to be derived from two
independent terms. The first term is a function of A alone and is
positive for A; > 1. This corresponds to the ordinary tensile stress
which, being independent of r, is uniform over the whole surface.
The second term is proportional to the square of the torsion, and is
negative (compressive); it corresponds to a parabolic distribution of
pressure of the type represented in Fig. 12.6(b). The combination of
these two terms may result in a reversal of the sign of the normal
stress on proceeding from the axis to the edge of the cylinder (Fig.
12.6(c)). For sufficiently high values of A the stress eventually
becomes tensile at all points on the surface.

Torsion and extension of hollow cylinder

In the preceding torsional problems the specified state of strain
could be maintained by forces applied to the end surfaces of the
cylinder only. In the case of a hollow cylinder subjected to torsion,
or to torsion plus axial extension, it is necessary in addition to apply
forces to either the internal or external curved surfaces. These
forces are necessitated by the radial stress component ¢,. Thus, for
example, for the Mooney type of strain-energy function, a state of
combined torsion and axial extension in a cylinder of external and
internal radii @, and a, may be maintained by the application of a
compressive stress to the inner surface of amount

—t, =¢’AC(al—dd) (12.25)

with zero stress on the outer surface, together with stresses t,, and ¢,,
(Fig. 12.11) identical in form to the corresponding stresses in a solid
cylinder of radius a,, as given by eqns (12.21) and (12.22a). If the
internal compressive stress is not applied, the cylinder will contract
radially by an amount which, to a first approximation, is propor-
tional to the square of the torsion.

Gent and Rivlin (1952) carried out experiments on tubes of
vulcanized rubber subjected to combined extension and torsion.
Means were provided for measuring the total couple, the internal
pressure required to maintain the internal volume constant during
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F1G. 12.11. Torsion of hollow cylinder.

the application of the torsion, and the change of internal volume
which took place when no internal pressure was applied. They
showed that the internal pressure required to maintain a constant
volume was accurately proportional to the square of the torsion, as
was also the change of volume in the absence of internal pressure.

12.7. Simultaneous extension, inflation, and shear of cylindrical
annulus

Rivlin (1949) has also considered the successive application of the
following strains to a tube of external and internal radii a, and a;:

(1) auniform simple extension parallel to the axis of the tube, in
the ratio A;

(2) a uniform inflation or radial expansion in which the length
remains constant and the external and internal radii change
to w1a; and w.a,;

(3) asimple shear of the tube about its axis, in which each point
rotates through an angle ¢ dependent only on its radial
position;

(4) asimple shear of the tube in which each point moves parallel
to the axis through a distance w which depends on its radial
position.
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F1G. 12.12. Mlustrating deformation of cylindrical annulus in combined torsion and
shear.

The resultant form of the deformed tube is illustrated in Fig.
12.12. If the axis of the tube is in the z direction, the coordinates of a
pointinitially at (r, 6, z) become (p, 8, Az) by the transformations (1)
and (2), (p, 8 + ¢, Az) by (3), and (p, 8 + ¢, Az +w) by (4), the values
of p, ¢ and w being functions of r only. The precise form of the
strain distribution, which is inhomogeneous, will depend on the
form of the strain-energy function, and is worked out for the
particular case of the Mooney form of strain-energy function. For
this case the forces which have to be applied to the curved surfaces
are:

(a) normal tensile forces R, and R, respectively on the outer

and inner surfaces, per unit unstrained length of axis;

(b) an axial couple M (per unit unstrained axial length) acting

on each of the curved surfaces;

(c) alongitudinal tangential force L (per unit unstrained axial

length) acting on each of the curved surfaces.

These forces are given by the following expressions:

R: =27a:\[(2/Ap {Ci+ (ui+ A% Co+ piapal,
R, =2ma[(2/Ap:){Ci+ (nz+A%)} G + p2Ape],
M =47(C+ A C)Kd/A,

L =87wo(C, + C,/A),

(12.26)

in which
K=ai(Api~1)=aj(Aui-1)
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and

(Cl + ,uiCz)ai
7 — l , 4 — ,
o= o/In (p2/ p1) Wo wo_—(G +uiC)al
¢o and w, being the values of ¢ and w at the outer boundary r = a,.
In addition, there are surface forces to be applied to the end surfaces
of the tube which will not be considered here; these determine the
values of p; and p..

12.8. Application of Ogden formulation

The alternative formulation of the strain-energy function pro-
posed by Ogden (eqn (11.8)) may also be applied to problems.
involving torsion. This application has advantages in view of the
restricted range of validity of the Mooney formula discussed in
Chapter 10 and the difficulty of representing the actual properties of
a rubber by any simple mathematical formula based on the use of
the strain invariants I, and L,. Applications to simple torsion of a
cylinder and to combined torsion and axial extension have been
worked out by Ogden and Chadwick (1972), who have also com-
pared the stress distributions obtained on the basis of the three-
term expression (11.25) with those derived from the Mooney
equation.

Further problems treated on the basis of the Ogden formulation
include the combined inflation and extension of a tube (Chadwick
and Haddon 1972) and combined axial and torsional shear (Ogden,
Chadwick, and Haddon 1973).
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THERMODYNAMIC ANALYSIS OF
GAUSSIAN NETWORK

13.1. Introduction

THE general significance of the thermodynamic study of the process
of elastic deformation in rubberlike materials has already been
discussed in Chapter 2, in which it was shown that from experiments
on the temperature dependence of the stress in the extended state it
is possible to derive the separate contributions due to the changes of
internal energy and of entropy associated with the deformation
process. The statistical theory in its elementary form attributes the
elastic stress solely to the changes in configurational entropy of the
molecular network; on this basis, therefore, the internal energy
contribution to the stress should be zero. In practice, this expecta-
tion is not fully realized, there being in addition to the expected
negative entropy contribution a significant contribution due to the
internal energy changes. On the basis of the general thermodynamic
treatment of Gee (1946a) and of Elliott and Lippmann (1945) it was
further shown that the observed internal energy changes could
plausibly be attributed to the changes of volume which accompany
the application of the tensile stress to the rubber. As a corollary it
was predicted that in an experiment carried out under constant
volume conditions the internal energy contribution to the stress
should be zero.

Two important developments, one experimental and the other
theoretical, have necessitated a complete reappraisal of the situa-
tion. On the experimental side, Allen, Bianchi, and Price (1963)
carried out the difficult task of actually measuring the internal
energy changes accompanying an extension at constant volume, and
showed that these were definitely not zero, but amounted to
approximately 20 per cent of the total stress. On the theoretical
side, Flory and his co-workers drew attention to the role of internal
energy barriers to rotation about bonds within the single chain, and
showed that these could lead to a significant contribution to the total
free energy of deformation, even in the absence of volume changes
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(Flory, Ciferri, and Hoeve 1960). Flory (1961) also developed a
more rigorous theory of the Gaussian network, taking into account
both volume changes and intramolecular internal energy effects,
and thus provided a molecular or structural basis for the interpreta-
tion of the observed thermodynamic and thermoelastic effects
under either constant volume or constant pressure conditions.

13.2. Force—Extension relation for Gaussian network

The case of simple extension, which is the most important from
the practical standpoint, will first be considered. In the elementary
theory the force—extension relation is of the form

f=NKT(A—-1/r%), (13.1)

where f is the force per unit unstrained area corresponding to the
extension ratio A referred to the unstrained length [, and N is the
number of chains per unit volume. The derivation of this formula, as
given in Chapter 4, makes use of the following assumptions:

(1) that the volume of the system is constant; .

(2) that the mean-square chain vector length r; in the
unstrained state is the same as the mean-square vector
length r3 of a corresponding set of free chains, the latter
being given by r; =3b*, where b” is the parameter in the
Gaussian distribution formula (3.3) (p. 47)

The more accurate analysis of the Gaussian network takes
account of the small volume changes which accompany the applica-
tion of a stress. Under these conditions it becomes necessary to
specify the extension ratio more precisely. The total deformation is
made up of a uniform dilatation, corresponding to the change of
volume, together with a distortional strain, or change of shape. Itis
convenient to define the extension ratio a with respect to the
undistorted state of volume V, representing the volume in the final
stressed state, i.e.

a=1[/1 (13.2)

where [ is the length in the strained state and [ the length in the
undistorted state at the volume V. (It is important to note that /; is
not the unstrained length of the specimen.)

It is also necessary to replace N, the number of chains per unit
volume, by »/V, where v is the total number of chains in the
specimen, and V the volume.
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These changes are purely geometrical in character, and are
introduced as a direct consequence of the relaxation of the restric-
tion implied by the first of the above two assumptions. The second
of these assumptions, however, raises a more fundamental ques-
tion. We have already seen from the discussion in Chapter 4 that
this assumption lacks any firm theoretical basis. Of more impor-
tance for the present purpose, however, is the recognition that if the
internal rotation about bonds within the molecule is not entirely
free but is restricted by hindering potentials arising from steric
interactions or other sources, the mean-square length of the free
chains will itself be a function of temperature. It is therefore
necessary to incorporate separately into the network theory the
quantity r2, defined as the mean-square length of the chains in the
undistorted state of the network at volume V, and the independent
quantity 3, representing mean-square length of the corresponding
set of free chains at a specified temperature 7. The modified
formula, which takes account of this distinction, as well as of the
above considerations concerning the volume, is

kT r? 1
ALJTI_E(“-_), (13.3)
i Io

a

where f is the total force and A, the undistorted cross-sectional area
corresponding to the final volume V. Putting A; = V/I, this may be
written in the alternative form (Flory et al. 1960)

fzﬂz(a _i>, (13.3a)

l,' r(?i a2

13.3. Stress—temperature relations

In order to derive the dependence of force on temperature under
any specified conditions (e.g. constant volume or constant pres-
sure), eqn (13.3a) must be expressed in terms of the observable
quantity / rather than the extension ratio a. Introducing eqn (13.2)
we therefore write

va7%<1 12.-)
SEALILY ) ) (13.4)
f L 2\ P
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In this expression rj is a function of temperature but is independent
of the volume of the specimen. On the other hand, % is a function of
the volume of the specimen, but does not depend directly on
temperature. Since the chain vector lengths for the cross-linked
network in the undistorted state are proportlonal to the lmear
dimensions of the specimen it is clear that r? is proportional to 1%
We have then, for a small change driduetoa change of volume d V,

dr/r=%dV/V),
and hence

7 2 21 2
dinr) 1dri 21dV_2, (13.5)
dT  #dT 3 VdT 3

where B is the volume expansion coefficient of the unstrained
rubber.

The above considerations enable the required force-temperature
relations to be obtained. For a variation of temperature at constant
length and constant volume the only quantities on the right-hand
side of eqn (13.4) which vary are T and rj. Taking logarithms and
differentiating we obtain

{alna(;/T)}w _ _i(lif_lTE (13.6)
or
B, AE o

In a similar manner, the differentiation of eqn (13.4) at constant
length and constant pressure, i.e. under conditions permitting free
expansion of volume, yields, in conjunction with eqn (13.5) and
insertion of 31n /8T = B/3,

aln(f/T)| _ dlnr(, B
{ oT },,,* AT &*—1 (13.7)

or

(), H0-rE ) s
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From (13.6a) and (13.7a) the difference between the temperature
coefficients of the force at constant volume and at constant pressure

becomes
7)., Go, o 139)

13.4. Internal energy and entropy changes
Constant volume

The changes of internal energy and entropy associated with the
deformation are obtainable from the above equations by the use of
the general thermodynamic relations given in Chapter 2. Thus, for a
constant-volume deformation,

), @), -] s

al oT T dT

8U> (aS) dinr?

) =mm(2) = . 13.10
(al V. T f 81 VvV, T T dT ( )

It is convenient to denote the internal energy contribution to the
force, at constant volume, by the symbol f.. The relative or frac-
tional contribution due to internal energy then becomes

L -I(¥) _qdnth

f o fl\eT/y, © dT

The interpretation of this result is that the internal energy con-
tribution to the force, in a deformation at constant volume, arises
simply from the temperature dependence of the mean-square vec-
tor length of the free chains. Only in the case when the chain
dimensions are independent of temperature, as is implicitly
assumed in the elementary network theory, does this contribution
vanish.

Conversely, the result provides a basis for the experimental
determination of the temperature dependence of the mean-square
chain dimensions.

(13.11)

Constant pressure

For a constant pressure experiment the corresponding expres-
sions for the changes of entropy and heat content on deformation
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are

(%)ﬂ: _<a_f> - _i<1_ 74 1“’_‘2’_af3__T), (13.12)

oT T dT 1
aH) <as> <d1nr_?, B )
(al T f+T al/ ,r T dT o’-1/ (13.13)

Comparing eqn (13.13) with the corresponding eqn (13.10) for
the internal energy change at constant volume, we obtain the
difference

i v = R

which is directly related to the corresponding difference in the
stress—temperature coefficients (eqn (13.8)). In the usual case when
p is the atmospheric pressure, dH (which is equal todU +p dV) is
effectively identical with dU. Eqn (13.14) thus gives the difference
between the internal energy changes in experiments at constant
pressure and at constant volume, respectively. This difference,
which involves the expansion coefficient B, is due simply to the
change of volume which accompanies the deformation under con-
stant pressure conditions.

Eqn (13.14) provides a basis for the derivation of the internal
energy changes at constant volume from experiments carried out at
constant pressure. Combining eqns (13.8), (13.10), and (13.11) and
putting (aU/al)y,r = f., we obtain

(13.15)

Constant extension ratio

It is of interest to consider the temperature coefficient of tension
at constant pressure and constant extension ratio. On the basis of
general thermodynamics, Gee (1946a) derived the approximate

relation
(7)., 1316
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(where A is the extension ratio referred to the unstrained dimen-
sions at the temperature T), from which eqn (2.14) (p. 35)
immediately follows.

From eqn (13.3a) it is possible to obtain the more accurate

relation
.-,k o

Since (3f/aT),.. will differ from (8f/8T),, to only a negligible extent,
the additional term in (13.17) represents the error involved in Gee’s
approximate formula (13.16). The discrepancy arises from the fact
that Gee assumed the rubber to be isotropically compressible under
the action of a hydrostatic pressure in the strained state; this
condition is represented by eqn (2.15) (p. 37), which may be written
in the alternative form

alnl>
=1. .18
3(8]!’1 |4 T.f (13 )

This relation, as he realized, is strictly valid only in the limit of zero
strain (A —1-0, f-0), in which case the two expressions (13.16)
and (13.17) become equivalent. The quantitative evaluation of the
anisotropy of compressibility can only be carried out on the basis of
a specific structural model. The Gaussian network model, as rep-
resented by eqn (13.3a), may be shown to yield the result

alnl> 3
= . 13.19
3(3]11 \% T.f a’+2 ( 3 )

This formula was originally obtained by Khazanovitch (1959) and
subsequently confirmed by Flory (1961).

13.5. Measurements at constant volume

With the advent of the theoretical developments discussed above,
the direction and objectives of later experimental work became
somewhat modified. It was seen that the most significant question
from the theoretical standpoint was the evaluation of the tempera-
ture dependence of the mean-square chain dimensions, and that
this was related directly to the internal energy contribution to the
stress at constant volume through eqn (13.10). The latter quantity
can be obtained either by direct measurements under constant
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volume conditions, or alternatively from measurements under con-
stant pressure conditions, interpreted in the light of the theoretical
relations (13.14) or (13.15). While most of the experimental work
reported has been under the normal constant pressure conditions,
particular interest is attached to the pioneer work of Allen and his
associates, to which reference has already been made, on the direct
measurement of internal energy changes under constant-volume
conditions. Since these involve no theoretical assumptions, they are
of the utmost value in establishing the validity of the theoretical
relations between constant-volume and constant-pressure con-
ditions arrived at on the basis of the Gaussian network theory.
Allen et al. (1963) measured the temperature dependence of the
tension on a sample held at constant length whose volume was also
held constant by the superposition of a hydrostatic pressure to
counteract the normal expansion. Their apparatus is shown dia-
grammatically in Fig. 13.1. The rubber cylinder B, of length 6 in

|

- | —J

F1G. 13.1. Apparatus used for measurement of stress—temperature coefficient at
constant volume (see text). (Allen, Bianchi, and Price, 1963.)



278 THERMODYNAMIC ANALYSIS

(15-24 cm), was bonded to stainless steel end pieces C attached at
the top to a stiff spring E and at the bottom to a connecting rod A
(whose length could be chosen to give any required extension), the
whole being mounted on an Invar frame. By suitable choice of the
length of the end pieces the residual expansion of the frame was
practically eliminated, the resultant changes of length of the sample
during the measurements being no more than 0-01 per cent. The
stress was determined from the deflection of the spring, as measured
by the transducer F, which was sensitive to a displacement of
0-015 pm. The whole assembly was contained in a steel pressure
vessel capable of withstanding pressures up to 150 atm. The immer-
sion liquid for the rubber was mercury, but for insulation purposes
the steel strip and transducer were immersed in transformer oil
floated on the mercury.

The value of the pressure required to maintain constancy of
volume for the measurement of (3f/3T),, was obtained from sub-
sidiary measurements of the ‘thermal pressure coeflicient’ at con-
stant length, (dp/aT)y, at various values of the extension ratio.

04
[ ]
03} x
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Ll Y g .
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+ o 275-325°C
G % 3076
v 35-40°C
o 45-50 °C
x  55—60 °C
i | 1 | B 1 i
% 12 1-4 16 18 2:0

Extension ratio

FIG. 13.2. Relative internal energy contribution to the tensile force (f./f) from
measurements at constant volume. (Allen, Bianchi, and Price 1963.)
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These experiments were carried out in a dilatometer. For complete-
ness, measurements were also made of the bulk expansivity at
constant length V™(9V/aT),,. Neither of these coefficients showed
any significant dependence on the extension ratio. The measure-
ment of (8f/dT)v, involved the variation of T in steps 8T while the
specimen was held at constant length, and the corresponding
adjustment of p by an amount 8p = (dp/dT)y, 8T at each step. The
results obtained in this way for natural rubber are represented in
Fig. 13.2 in terms of the relative internal energy contribution to the
force at constant volume. Despite the considerable scatter, these
results indicate that the internal energy contribution differs signifi-
cantly from zero, the ratio f./f being of the order of 0-2.

The relation between the stress—temperature coefficients at con-
stant volume and at constant pressure was also checked by indepen-
dent measurements of (3f/9T),, and of the coefficients (3f/dp)+; and
(0p/aT)v, These quantities are connected through the exact gen-
eral thermodynamic relation

%) d d )
(7). -GG GR), a0
T/ vy \oT/p \op/1r\oT/ v,
The values calculated in this way are compared with the directly

measured values in Table 13.1. In all cases the difference is within
the experimental error.

TaBLE 13.1
Direct and indirect determination of (3U/dl)v,r at 30 °C (Allen et al.
1963)
(8U/al)vr @U/al)v.r
calculated from directly

f eqn (13.20) measured

A (kgcm™) (kgem™3) (kgem™?)
1-690 3-56, 0-86; 0-91,
1:43, 2-65, 0-52, 0-52,

1-18, 1-42, 0-16, 0-20

1-03, 031, 0-09, 011,

Since eqn (13.20) is based on exact thermodynamic relations of a
quite general character, this agreement has no bearing on the
specific molecular model used in deriving eqn (13.14), which gives
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the explicit form of the relation between the internal-energy con-
tributions to the stress at constant pressure and at constant volume,
respectively. The measurements of Allen et al. (1963), however,
may be used also to examine this relationship. The results are
represented in Fig. 13.3, in terms of the difference between the

0-02
|_

(N mm~2 deg™)

~0:01

P

— (8f/eT)

@ Direct measurements
O From eqn (13.20)

(ef, faT)”

000 1 g
1-0 1-5 20
A
Fi1G. 13.3. Comparison of difference between (3f/aT).,, and (3f/aT),, with theoreti-
cal formula (13.8), represented by continuous curve. (Allen, Bianchi, and Price
1963.)

corresponding stress—-temperature coefficients. The continuous
curve represents the theoretical relationship (13.8) and the experi-
mental points were obtained either directly from the respective
stress—temperature coefficients, or indirectly from the constant-
pressure data together with the measured values of (3f/dp)r, and
(@p/dT)v,, in conjunction with eqn (13.20). In either case the
predicted theoretical dependence on « is substantially verified.
Later work by Allen, Kirkham, Padget, and Price (1971), incor-
porating improvements in experimental accuracy has, however,
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suggested a possible slight discrepancy between those estimates of
f./f based on the one hand on constant volume measurements or
the equivalent exact relation (13.20), and on the other hand the
values derived indirectly from constant pressure measurements
through the use of eqn (13.15), the mean value obtained by the
former method being 0-123 +0-022, compared with 0-18 £0-03 by
the latter. This difference, though barely outside the experimental
error, seems to be confirmed by later work referred to in § 13.13
and may possibly be connected with the deviations from the form of
the force—extension curve predicted by the Gaussian network
theory, discussed in Chapter 5. Against this, however, it is to be
noted that these authors’ directly measured values of f./f for
various cross-linked rubbers in either the dry or swollen state
showed no significant correlation with the deviations from the
theoretical form of force—extension relation, as represented by the
ratio C,/C, of the constants in the Mooney equation.

13.6. Values of f./f

The quantity f./f, being related to the temperature dependence
of the statistical length of the molecule through eqn (13.11), has a

TaBLE 13.2
Values of f./ f for natural rubber by different methods

Author Method f./f
Allen et al. (1971) Constant V 0-12+£0-02
Allen et al. (1971) Constant p 0-18+0-03
Roe and Krigbaum (1962) Constant p 0-25-0-11
depending on strain
Ciferri (1961) Constant p 0-18
Barrie and Standen (1967) From (8l/8T),, 0-18
Shen (1969) From (3G/aT), 0-15
Shen (1969) From (91/3T),, 0-18+0-02
Wolf and Allen (1974) From (81/3T),, 0:18+0-2
Extension and
compression
Boyce and Treloar (1970) Torsion (M,/ M) 0:126+0-16
Gent and Kuan (1973) Torsion (M./M) 0-17
Allen, Price, and Yoshimura (1975) Calorimetry, 0-19+0-02
extension
Allen et al. (1975) Calorimetry,

torsion 0-20,+0-01,
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characteristic value for any given polymer. Most of the data in the
literature have been based on measurements of stress—-temperature
coefficients at constant pressure, using eqn (13.13), these being of
course much more easily carried out than direct measurements at
constant volume or their thermodynamic equivalent. A selection of
data for a number of polymers is given in Table 13.2.

Possible dependence on strain

A number of authors have found the apparent values of f./f
derived from constant-pressure data to be a function of the strain
(Fig. 13.4). At very high extensions (A >3) the strong downward
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© Smith, Greene, and Ciferri (1964)
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e Shen er al. (1967)
—02
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1-0 2:0 30 4-0 5-0
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F1G. 13.4. Apparent dependence of f./f on strain. (From Shen et al. 1967.)
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tendency, corresponding to a negative internal energy contribution
to the stress, can reasonably be ascribed (in the case of natural
rubber) to the incidence of strain-induced crystallization (cf. Fig.
2.9, p. 36). The sharp rise in f./f as the strain approaches zero, on
the other hand, is not to be expected on theoretical grounds, and is
almost certainly to be attributed to experimental difficulties,
associated with the lack of perfect reversibility of the rubber (creep,
etc.). This lack of reversibility makes an unambiguous definition of
the unstrained length /, of the sample and hence of the strain
parameter a in eqn (13.15) practically unattainable. Any errorin [,
has an exaggerated effect on the resulting value of f./f since the last
term in eqn (13.15) tends to infinity as the strain (a —1) tends to
zero, whereas the preceding term tends to infinity as the stress tends
to zero. If the zero of strain does not coincide exactly with the zero
of stress errors of unlimited magnitude inevitably occur. The
method is thus inherently unsatisfactory in the region of small
strains.

13.7. Alternative experimental methods

Various indirect methods have been proposed in order to avoid
the necessity for an accurate determination of the unstrained length
inherent in the use of eqn (13.15) for the derivation of f./f from
constant-pressure data. Shen (1969) recognized that the essential
problem was the determination of the temperature coeflicient of the
modulus. He therefore plotted values of the force f, derived from
force-temperature data at constant length, against A —1/A%, for
different values of the temperature. Over the range of A covered
these plots were found to be linear, as illustrated in Fig. 13.5,
indicating that the temperature dependence is not a function of the
strain. The results were analysed on the basis of the equation

f=GAxA—V/V,d?) (13.21)
in which G is equivalent to the shear modulus and is defined by

_ kT

G .
V() r(2)

(13.22)

These equations are equivalent to (13.3) but are expressed in terms
of the extension ratio A referred to the stress-free state of volume
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F1G. 13.5. Plotsof f vs A —1/A% at 60 °C and 10 °C for rubber swollen with 33-6 per
cent hexadecane. (From Shen 1969.)

V, and area A,. The equivalent expression for f./f then becomes

fe din G BT
f—l inT 3 (13.23)
The advantage of this method is that the last term in the above
equation, namely, — BT/3, is not dependent on strain, in contrast to
the corresponding term in (13.15).
A second alternative adopted by Shen involved the measurement
of the change of length with temperature, at constant force, i.e.
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(8l/8T),,. For this Shen derives the relation?

3
l(_a_l_) 1(alo> A —1{dln G+ 2 (610) } (13.24)
INoT/ ,; 1,\oT/,; A’+20 dT  3L,\oT/,,
in which [, is the unstrained length at temperature T, so that
[5'(31,/3T),, is the linear expansivity in the unstrained state, and G
is defined by eqn (13.22) above. Eqn (13.24) enables the tempera-
ture coefficient of shear modulus to be obtained, from which the
value of f./f is then derived, using eqn (13.23).
According to eqn (13.24) a.plot of [7'(8l/0T),, against (A
1)/(A*+2) would be expected to be linear, the slope corresponding

to —d In G/dT. The data for natural rubber in both dry and swollen
states (Fig. 13.6) were found to be consistent with this relation, and
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F1G. 13.6. Plot of I7(3!/aT),, against (A*>—1)/(A*+2) for unswollen rubber (0), and
for rubber containing various percentages of hexadecane. (Shen 1969.)

T Shen uses the symbol B, for [7'(3{/8T),,. In the present chapter this is liable to
confusion with the volume expansivity at constant length, denoted by @, Similar
considerations apply to the use of the symbol 8, by Wolf and Allen (1975).
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yielded a mean value of 0-18 for f./f, in close agreement with the
mean value obtained from direct measurements of dIn G/dT,
namely 0-15. It is considered, however, that the former result is the
more reliable.

Wolf and Allen (1975) have investigated the strain dependence of
f./f, as derived from constant pressure measurements, for both
uniaxial compression (A < 1) and simple extension (A > 1), using an
apparatus which involved no discontinuity in the transition from
compression to extension. They have also discussed the effect of
deviations from the Gaussian theory and of experimental errors on
the resultant values of f./f deduced from different forms of analysis.
They show that the effect of deviations from the Gaussian theory
involved in the application of eqn (13.15) is most serious at small
strains but becomes unimportant for A > 1-10. The effect was shown
to be most satisfactorily avoided as in Shen’s experiments, by the
measurement of the variation of length with temperature at con-
stant force [7(3l/dT),;. The value of f./f was then obtained from
the relation

beverfl) A, ol s

in which B; is the bulk expansion coefficient at constant force (which
is not significantly different from B). The value of B; is obtained
from the measured linear expansivity at f =0, thus avoiding any
indeterminacy in the second term within the square brackets in eqn
(13.25) as A - 1. For higher values of extension either of the

equations
Loy X2y BT
f—l T, NV Va1 (13.26)

which is essentially identical to (13.15) or

Gererl(f), 3 oA

were preferred. In these equations B, is the bulk expansion co-
efficient at constant length (which again does not differ significantly
from B).

The consistency in the values of f./f obtained by these different
methods is shown in Fig. 13.7, which indicates that this quantity is
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FIG. 13.7. Values of f./f in extension and uniaxial compression. (From Wolf and
Allen 1975.)

independent of strain over the range of strain covered by the
experiments. The mean value of f./f was 0-18+0-02, in close
agreement with the earlier work of Allen et al. (1971).

The methods of Shen and of Wolf and Allen are devices for
eliminating the special significance of the absolute value of the
strain either by utilizing functions which are not sensitive to the
measurement of [, or by ensuring that the various equations
containing terms involving [, are self-consistent. The results
obtained for natural rubber by these various methods, together with
others, are included in Table 13.2.

13.8. Theoretical analysis of torsion

Types of deformation which at first sight might be expected to
circumvent the difficulties associated with volume changes are
simple shear and the closely related torsion of a cylinder. As early as
1946 Meyer and van der Wyk subjected a sample of rubber con-
tained in the annulus between concentric cylinders of metal to
simple shear, and showed that the shear stress was approximately
proportional to the absolute temperature, in accordance with the
elementary statistical theory. However, as Flory et al. (1960) have
pointed out, the simple interpretation of this result is misleading,
and a more accurate analysis would require the inclusion of terms



288 THERMODYNAMIC ANALYSIS

related to volume changes, which are normally neglected in the
classical theory of elasticity.

The full analysis of the problem of torsion, first given by the
author (Treloar 1969b), shows, however, that the effects of volume
changes, though still significant, are quantitatively of a lower order
of magnitude in this type of strain than in the case of simple
extension (or compression). Experiments involving torsion there-
fore offer inherent advantages in the degree of accuracy attainable,
compared with the more usual simple extension experiments. Apart
from this, they provide a means of checking the important theoreti-
cal conclusion derived by Flory (1961) that the temperature co-
efficient of the stress, at constant volume, is directly related to the
temperature dependence of the mean-square chain dimensions,
whatever the type of strain—a conclusion which is illustrated in the
case of simple extension by eqn (13.6a).

Let us consider a cylinder of unstrained radius a, subjected to
combined axial extension and torsion about the axis of amount
given by

=/l (13.28)

where ¢ is the angle of rotation of the top surface with respect to the
base of the cylinder, and [ is the axial length in the strained state.
This state of strain can be maintained by an axial load N together
with a couple M about the axis. According to the accurate Gaussian
network theory the latter is given by

7 VkT?f_

M= I
2 V, rd

Yao, (13.29)

where v is the total number of chains, V, is the unstrained volume at
temperature T and rj and r? have their previous significance (Tre-
loar 1969b). This equation is derived on essentially the same basis as
the corresponding equation (13.3) for simple extension, but incor-
porates the unstrained volume V, rather than the strained or final
volume V. It is to be noted that.the value of the couple M (on the
Gaussian theory) is independent of the axial extension.

For practical purposes the analysis may be restricted to the case
when the length / is held constant while the temperature is varied. In
this case the work done on the sample in a change of angular twist
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do is
dW=Md¢—pdV.

For a deformation at constant volume the couple may be expressed
as the sum of internal energy and entropy components, i.c.

oU as
M= (—) - T(*) , 13.30
ad) v,I. T a¢ viT ( )
where, by analogy with the case of simple extension
), ()
64) V.. T aT V.i¢ ' )
and
10} > (BS ) (aM )
— =M+T\|— =M-T|— .
(a¢ var 56/ vir o) v 1332
For an experiment at constant pressure the corresponding rela-
tions are
a8 > <<9M )
— =—~{—= 13.33
<a¢ PAT 0T/ pie ( )
and
oH M
(&) -m-1(%) (13.34)
(9(1') plT oT ple

The values of 0M/aT corresponding to the Gaussian network
theory are obtained by differentiation of eqn (13.29) under appro-
priate conditions. For constant /, constancy of ¢ is equivalent to
constancy of . Under constant volume conditions it follows that a,
and r? are also constant; we therefore obtain

aM) (aM) M( din ?5)
Y () ==Z(1-T . 13.35
<6T Vi aT v,i¢ T dT ( )

Putting (6U/d¢)v,,r = M., the relative internal energy contribution
to the couple is then obtained from (13.32) in the form

M, dlnr?
=T =—"° 36
o T (13.36)
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which is precisely similar to the corresponding expression (13.11)
for the case of simple extension, in accordance with Flory’s general
conclusion, referred to above. .

For the case of constant pressure we note that r; is proportional to
V3 while agis proportional to V3 the temperature dependence of M
is then given by

aM) M( dlnr_?,)
— | ==(1+B8T- i
(aT » ~(1+BT-T— 7). (13.37)

where 8 is the volume expansion coefficient.

In order to obtain the value of M./M from an experiment
conducted under constant pressure conditions eqns (13.36) and
(13.37) may be combined to give

~1-L —~) +BT. (13.38)
ply

Comparison with simple extension

Comparing the result represented by eqn (13.38) with the corre-
sponding expression (13.15) for the case of simple extension, we see
that all the terms in (13.38) remain finite as the torsional strain, and
hence the couple M, approach zero. The evaluation of M./M is
therefore not sensitive to the precise measurement of the
unstrained dimensions, as is the evaluation of f./f from eqn (13.15).
Thus, while a correction is still necessary to enable the internal
energy change at constant volume to be derived from the stress—
temperature coefficient measured under constant pressure con-
ditions, this correction is much less critical, since it is independent of
the magnitude of the strain.

From the physical standpoint this difference between the two
types of strain may be understood very simply. In simple extension,
under constant pressure conditions, the variation of temperature at
constant length leads to a change in the strain, which in the case
when the strain is small may be of the same order of magnitude as
the strain itself. This therefore has a first-order effect on the
stress—temperature coefficient, and is responsible, as we saw in
Chapter 2, for the thermoelastic inversion phenomenon. In the case
of torsion, on the other hand, a change of temperature has no affect
on the torsional strain and affects the couple only through its affect
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or the radial dimension. The effect is therefore comparatively slight
and is of the same relative magnitude for all values of the torsion. In
particular, the sign of the stress-temperature coefficient is indepen-
dent of strain, i.e. there is no thermoelastic inversion effect.

13.9. Experimental data for torsion

The above conclusions are fully borne out experimentally. Fig.
13.8 shows the relation between the torsional couple M and the
temperature for a cylinder of rubber maintained at constant axial
length and constant torsion ¢ (Boyce and Treloar 1970). The
quantity (1/M)(0M/3T),,, derived from the slopes of these lines
was found to be independent of the torsional strain, to within the
accuracy of the experiment. It follows that the relative internal
energy contribution to the stress is similarly independent of strain.
The mean value of M./M obtained from these experiments was
0-126+0-016, which may be compared with the value
0-123 +0-022 obtained by Allen etal. (1971) for f./f from constant-
volume measurements.

Gent and Kuan (1973) have applied the torsional method to
natural rubber, trans-isoprene and cis-butadiene polymers and
high-density polyethylene in both the dry and swollen states. For
the first three of these the values of M./M were unaffected by
swelling, in agreement with earlier results. Polyethylene gave an
anomalously high (negative) value, which though decreased by
swelling, was still not in accord with the values given in Mark’s
review (Mark 1973). A more disturbing feature of their data,
however, was the apparent reduction of M./M for the other three
polymers with increasing axial extension. In the case of natural
rubber, for example, the value of M./M fell linearly from about
0-17 at A =1 to about 0-07 at A =3-5.

In considering these observations, it must be remembered that
the equations used to calculate M./M are based on the Gaussian
network theory. The authors consider that the observed strain
dependence might be attributed to non-Gaussian (finite chain
extensibility) effects. It could also possibly arise from stress-
relaxation effects, in view of the fact that the measured couple is
associated with the tangential stress component on a plane inclined
at an angle less than 90° to the major stress axis and will therefore be
sensitive to changes in the inclination of the stress ellipsoid which
might occur as a result of stress relaxation.
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F1G. 13.8. Stress—temperature relations for torsion for various values of torsion
parameter ¥a,. (Boyce and Treloar 1970.)
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The values for M./M reproduced in Table 13.2 refer to the
smallest values of axial strain employed in these experiments.

13.10. Volume changes due to stress

Theoretical derivation

Since the original work of Gee (1946a) the question of the
changes of volume which accompany the application of a stress,
under constant pressure conditions, has been one of the central
issues in the interpretation of the observed internal energy changes.
It will be recalled (Chapter 2) that Gee attributed these internal
energy changes entirely to the accompanying changes of volume,
and endeavoured to confirm this relation by direct observations of
volume changes. This approach, as we have seen, is inadequate and
ignores the contribution to the total internal energy change arising
from intramolecular forces, which is present even when the defor-
mation takes place under the condition of constancy of volume.
From this it follows immediately that the change of volume in a
deformation at constant pressure should be related not to the total
internal energy change, but to the difference between the internal
energy changes at constant pressure and at constant volume,
respectively, as given by eqn (13.14).

In the more refined treatment of the Gaussian network by Flory
(1961) the total free energy is derived from two essentially indepen-
dent terms, the first of which (A*) is associated with the forces
between the polymer molecules, considered as in the uncross-linked
state, and the second (A.) with the conformations of the cross-
linked network. The first term is a function of volume and tempera-
ture only, and is independent of the network distortion; the second
term is a function of the network deformation and of the tempera-
ture. The total stress on the system similarly consists of a component
of hydrostatic pressure p* arising from the term A *, together with a
three-dimensional stress system of the most general kind associated
with the elastic deformation of the network. This model enables the
volume change to be determined as a function of the strain. This is
expressed by Flory, in the case of a simple extension, in terms of the
‘dilation coefficient’ (7)) defined as

aln vV
n=( 1 ) , (13.39)
T.p

dlnl
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whose value is given by the expression

vkT( VP 1
=K——(——) c=, 13.4
n Ty Ve o (13.40)
in which K is the bulk compressibility at constant length and VO isa a
‘reference’ volume defined as that for which the equality r?=r}
would apply. The V,, whose value is not determinable, may be

eliminated by making use of eqn (13.4) to give

T 1 Kfl
nzK,l’k—':—z—L. (13.41)

V ria Vi’—1)

The total volume change AV is obtained by integration from the
unstrained length [, to the final length [. The result may be expressed
in the alternative forms (Flory 1961; Christensen and Hoeve 1970):

A kT 1
AV _g¥kTrn (1*_) (13.42)
\% \% r() o
and
AV kit

V Vl+a+a?) (13.42a)

An alternative treatment of volume changes, based on exactly the
same physical model, has been given by the author (Treloar 1969a).
In this the equations are presented in terms of the actual unstrained
volume V,. This enables the pressure component p* to be expressed
directly in terms of the volume, and gives the principal stresses
t, L, tina plire homogeneous strain in the form

- TP
VoV, vk ’—(,\2 ) (=1,2,3). (13.43)

KV V r

=

For the case of simple extension eqn (13.43) reduces to a form
which is substantially identical to (13.42) above.

13.11. Experimental examination

The above theoretical predictions have been tested both in the
differential form (eqn (13.41)) by Allen and his associates, and in
the integrated form (eqn (13.42a) by Christensen and Hoeve. Allen
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et al. (1971), in the work already referred to, obtained the dilation
coeflicient from their measurements of (3f/3p),r, making use of the
thermodynamic relation

(%) -(2) (13.44)

For natural rubber vulcanizates the experimental values of dilation
coefficient exceeded the theoretically predicted values by amounts
which increased with increasing extension, the discrepancy being of
the order of 100 per cent at the highest extension employed
(a =2-0). Only in the limit of zero strain (a = 1-0) was agreement
with the theory obtained. Christensen and Hoeve (1971) obtained
the total volume change directly by stretching the sample in a
dilatometer by means of an electromagnetic device; in their case
also the values were considerably in excess of the theory (Fig. 13.9).

o Observed
16 - -== Calculated from eqn (13.42a)
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-
-
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F1G. 13.9. Change of volume on extension. (Christensen and Hoeve 1970.)

Later measurements of dilation coefficient by Price and Allen
(1973) yielded quantitatively similar deviations from the theory for
both natural rubber and cis-polybutadiene rubber; for butyl rubber
the data were inconclusive, since only relatively small values of
extension (a = 1-4) were attained.
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It must be concluded, therefore, that the Gaussian theory, in the
form developed, does not in general provide a satisfactory quantita-
tive basis for the interpretation of the volume changes on extension.
As noted by Price and Allen, this conclusion is not altogether
surprising, in view of the important deviations of the force-
extension curve from the theoretical form discussed in detail in
Chapter 11. Price and Allen have considered the possibility of
modifying the theory by incorporating the Mooney form of force—
extension relation; unfortunately, however, this means abandoning
the Gaussian formula for the anisotropy of compressibility (eqn
(13.19)) and reversion to the assumption of isotropic compressibil-
ity in the strained state (eqn (13.18)). The formula obtained in this

way, namely,
Bln V) (Cl a3+2 Cz)
=Ki\ 0 —5+— 13.45

(801 T N3 o o/ (13.45)

in which C, and C; are the Mooney constants and K; is the volume
compressibility at constant f, was found to give a satisfactory
representation of the experimental data.

A simpler alternative formula derived on a purely empirical basis,
which was found to be equally satisfactory, was the following:

(6 In V)
da
13.12. Volume changes in torsion

In connection with the use of torsion as an alternative to simple
extension for the experimental investigation of the internal energy
component of the stress, it is of interest to examine theoretically the
corresponding changes in volume in this type of strain. The treat-
ment of this problem has been given by the author (Treloar 19695).
For a cylinder of unstrained radius a, subjected to an axial exten-
sion in the ratio B; together with a torsion ¢ about the axis, referred
to the length in the strained state, the expression for the relative
volume change AV/V, is found to be

AV r
——=K”ka_—'{(1—i)—§ 3¢2a5}, (13.47)
Vu Vu r(2) B3

where K is the compressibility and V,, the volume in the unstrained
state.

=Kl<%+ Cz). (13.46)

p,
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Itis seen that this expression is made up of two independent terms
of which the first (obtained by putting ¢ = 0) represents the increase
of volume due to the simple extension, and is equivalent to Flory’s
equation (13.41), while the second, which is necessarily negative,
corresponding to a reduction of volume, represents the effect of the
superimposed torsion. This second term, being proportional to the
square of the torsion, has no analogue in the classical theory of
elasticity.

The change of volume due to the torsion is thus seen to be a
second-order effect. It may be regarded as having its origin in the
normal components of stress which are present in simple shear or in
torsion, and which are likewise proportional to the square of the
corresponding strain (cf. Chapter 12). The total change of volume,
in a combined extension and torsion, may be either positive or
negative, depending on the relative magnitudes of the two compo-
nents.

It is because the change of volume in torsion is of the second
order, while that in extension is of the first order, that the differ-
ences of internal energy between a constant-pressure and a
constant-volume deformation are also of a lower order in the case
of torsion. It may in fact be proved explicitly, on the basis of general
thermodynamics, that the calculated volume change leads exactly to
a difference of internal energy of the form derived from the stress—
temperature relations (13.35) and (13.37), respectively (Treloar
1969b). This analysis therefore confirms in detail the general deduc-
tion of Flory et al. (1960), referred to in § 13.8, concerning the
inadequacy of the classical theory as a basis for thermoelastic
analysis. It is remarkable, however, that even for infinitesimal
strains, where the volume changes are negligible (in relation to the
torsional strains), their relative contribution to the internal energy
remains finite. '

13.13. Calorimetric determination of internal-energy contribution
to stress

The fundamental relation (for a system at constant pressure)
AH=AQ+AW, (13.48)

where AQ is the heat absorbed by the system and AW the work
performed by the external force, provides the basis for an alterna-
tive method of determining the internal energy change AH in the
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process of deformation by the direct measurement of AQ and AW.
The method has not attracted much attention because of the
difficulty of obtaining rcliable calorimetric measurements on a
system which may take several hours to attain mechanical equilib-
rium.

Recently, however, Allen, Price, and Yoshimura (1975) have
studied both simple extension and torsion by this method, using for
the purpose a Calvet micro-calorimeter, which measures the elec-
trical energy input to a reference cell required to balance the heat
output of the system being studied. After a preliminary high-
temperature relaxation at the highest state of strain (tensile or
torsional) the sample was cooled to the operating temperature
(30°C) and the deformation reduced by successive steps to zero,
sufficient time being allowed at each stage for the system to reach
thermal equilibrium.

In the torsional experiments the couple was substantially linear
with respect to the torsion (y); the work W was therefore propor-
tional to ¢*. Correspondingly the heat absorbed was proportional to
¢ (Fig. 13.10). From these two sets of data the quantity
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F1G. 13.10. Heat absorbed (g) on untwisting of cylinder from torsion i to unstrained

state, plotted against ¢/>. (Allen et al. 1975.)
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(0H/dd),., where ¢ =, was directly obtained. From this the
value of (0U/d¢)v..r (or M,) was then derived by the application of
the equation (equivalent to (13.38))

M. 1(

M- M\ed MT+BT. (13.49)
The mean value of M./M (for natural rubber) obtained in this way
was 0-20,£0-01,.

The simple extension data could not be so simply treated, since
the relation between AH and « was not of any simple mathematical
form, and the direct evaluation of f./f from the tangent at any point
was rather inaccurate. The authors therefore used an indirect
method which involved the dilation coefficient 7, the details of
which will not be reproduced here. The resulting values depended
upon the formula employed to represent 7, as shown in Table 13.3.
The figures give some indication that the use of the Gaussian theory
to convert constant-pressure data to constant-volume data may be
subject to a slight error, but in view of the smallness of the
differences obtained, and the somewhat insecure basis of eqns
(13.45) and (13.46), a final judgement on this matter is hardly
possible at present. The more important conclusion is that the direct
calorimetric method provides an independent general confirmation
of the results obtained from the more usual analysis of stress—
temperature data.

TaBLE 13.3
Formula for dilation coefficient f./f
Gaussian (eqn (13.41)) 0-19+0-02
Eqn (13.45) 0-13+0-02
Eqn (13.46) 0:-14+0-02

The calorimetric method has recently been applied by Price,
Allen, and Yoshimura (1975) to cis-polybutadiene) rubber. For
extension they obtained f./f =0-11, while for torsion the corre-
sponding value was 0-14, giving a mean of 0-12s.

13.14. Temperature dependence of chain dimensions

From the experimentally determined value of the relative inter-
nal energy contribution to the stress f./f, at constant volume, the
temperature dependence of the statistical chain length r, for the free
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molecule follows immediately from eqn (13.11). Numerical values
for this quantity for selected polymers are given in the accompany-
ing table (for a more comprehensive list see Mark (1973)).

It will be seen that for natural rubber the temperature coefficient
of rj is positive, which implies that energetic interactions within the
chain act so as to reduce the mean-square length; i.e. a shorter
length has a lower internal energy. For polythene, on the other
hand, the temperature coefficient is negative, indicating that the
extended (trans-) conformation of the chain is energetically
favoured. Butyl rubber (polyisobutylene) also shows a small affect
in the same sense.

TABLE 134
Values of f-/f and d In ro/d T for various polymers

10°dIn r3/dT

Polymer f/f (K™ Reference

Natural rubber 0-12 0-38 Allen et al. (1971)
trans-polyisoprene 0-17 0-53 Barrie and Standen (1967)
Butyl rubber —0-08 —-0:26 Allen et al. (1968)
Silicone rubber 0-25 0-82 Allen et al. (1969)
cis-polybutadiene 0-10 0-31 Shen, Chen, Cirlin,

and Gebhard (1971)
cis—polybutadiene 0-124 0-41 Price et al. (1975)
Polyethylene —-0-42 —-0-97 Ciferri, Hoeve, and

Flory (1961)

It is of interest to compare the thermoelastic estimates of the
temperature dependence of r; with estimates derived from solution
viscosities. Such a comparison has been made, in the case of
polyethylene, by Ciferri, Hoeve, and Flory (1961). For solvents
which have no specific effect on the statistical form of the polymer
molecule (the so-called ‘8-solvents’) values of 10° d In ro/dT in the
range (—1:1+0-5)K™" have been obtained in this way. This figure
may be compared with the same authors’ thermoelastic data, which
gave —0-97 K" for polythene in the unswollen state and —1-01 K™
and —1-16 K™ for the swollen state, using two different solvents
(see Table 13.4).

13.15. Conclusion

From the material presented in this chapter it will be seen that the
conclusions derived from the application of thermodynamics to the
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analysis of the elastic deformation of rubber are wide-ranging in
their implications, and spread far beyond the rather limited objec-
tives of earlier studies in this field.

The most important conclusion is that the deformation of the
chain is not purely entropic, but also involves significant changes in
the intramolecular energy. It follows that any detailed quantitative
treatment of the statistical properties of real molecules must take
account of the effect of energetic interactions between neighbour-
ing groups along the chain. This is in itself a large subject, which
cannot be elaborated here; the interested reader is referred to the
monograph by Flory (1969). In the case of a network, this
intramolecular internal energy is revealed in its simplest form when
the deformation is carried out at constant volume. In the more usual
constant-pressure type of deformation there will be an additional
contribution to the internal energy arising from the small but
significant change in volume of the system.

The more recent developments of the Gaussian network theory,
particularly by Flory, have enabled the change in volume to be
predicted, and have provided a more accurate basis for the interpre-
tation of constant-pressure data. While there is evidence that the
predictions of the theory, particularly with respect to the changes of
volume due to the stress, are not wholly in accord with experiment,
there is in general a fair degree of consistency between thermoelas-
tic results obtained under different conditions (constant pressure
and constant volume) and by the use of different types of strain
(extension, compression, torsion, etc.), when these are interpreted
on the basis of the theory. Finally, the independent estimation of
internal energy changes from the direct calorimetric measurement
of the heat of deformation provides a very significant check on the
basic soundness of the rather elaborate thermodynamic reasoning
involved in the thermoelastic studies.
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modulus and cross-linking, 160 fF.
Mooney,
equation, 95 f.; theory, 212 f.

network theory, 12;
Gaussian, 59ff.,
Gaussian, 259, 265
normal stresses in shear, 254; in torsion,
259, 265

2711f.; non-

Ogden’s theory, 233
optical anisotropy, 203 ff;
of chain, 175 ff.; of random link, 205;
temperature dependence of, 209;
of strained network, 178, 182; of
bonds, 203 ; of monomer units, 204

photoelasticity,
statistical theory, 175ff.; stress-
optical coefficient, 180; effect of
swelling, 182; experimental, 189 ff.
polarizability, see optical anisotropy

refractive index and polarizability, 174
resilience, rebound, 15

statistical theory,
of long-chain molecules, 42ff.,
101 ff.; of Gaussian network, 59 ff.;
of non-Gaussian network, 113 ff.;
value of modulus, 77; of swelling,
136 ff.; deviations from, 95 ff., 227
strain-energy function, 211 ff., 230 ff;
Mooney, 212; Rivlin’s formulation
of, 214; Ogden, 233; Valanis-
Landel form of, 236
strain invariants, 215, 224, 231, 246 ff.
stress—optical coefficient, 180;
dependence on cross-linking, 195 ff.;
for rubber, 196; for gutta-percha,
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196; for polythenes, 198; effect of
swelling on, 206
stress-strain relations,
simple extension, 86; equi-biaxial
extension, 88; compression, 88;

shear, 90; general strain, 67,
219 ff.; for swollen rubber, 68
swelling

thermodynamics of, 128 ff.; and vap-
our pressure, 130; Flory-Huggins
theory of, 136ff.; of cross-linked
polymers, 140ff.; and modulus,
142; experimental study of, 144ff ;
cohesive-energy density, 147; solu-
bility parameter, 148; effect of
strain on, 150fF.; and stress—optical
coeflicient, 206

thermodynamics
of extension, 24 ff., 270 ff.; of volume
changes, 34, 293; of internal

energy changes, 32 ff., 274 ff.; of
entropy changes, 31 ff., 274 ff.; of
Gaussian network, 271; of torsion,
287; thermal effects, 37, 297

thermoelastic inversion, 26

torsion,

of cylinder, 258 fI.; swelling under,

158; thermodynamics of, 287 ff.;
normal stresses in, 260; volume
changes in, 293; of hollow cylinder,
266

Valanis-L.andel hypothesis, 236



