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ABSTRACT

The dynamics of cross-linked polymers under stress, such as those that

make up rubber, are still not well understood. A combination of coherent xray

homodyne and heterodyne techniques is used in order to measure fluctuations

of the system when stretched. The combination of both techniques allows for

the measurement of flow patterns, as well as the random nature of the system.

After data analysis, the results show that the measurements successfully captured

this flow information. The flow velocity was discovered to have a time-dependent

nature similar to that of the stress-strain curve. After the flow velocity was

extracted, the random nature of the system was analysed. This random motion

was discovered not to be dominated by conventional diffusion, but some slower

random process.
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ABRÉGÉ

La dynamique de polymères réticulés de stress, telles que celle qui compose

le caoutchouc, n’est pas encore bien comprise. Une combinaison de techniques

homodynes et hétérodynes de rayons x coherentes est utilisé pour mesurer les

fluctuations du système, une fois étiré. La combinaison des deux techniques permet

la mesure des régimes d’écoulement, ainsi que le caractère aléatoire du système.

Après l’analyse des données, les résultats montrent que les mesures ont réussi à

capturer cet information. La vitesse d’écoulement a été découverte de contenir une

nature en fonction du temps semblable à celle de la courbe contrainte-déformation.

Après la vitesse d’écoulement a été extraite, la nature aléatoire du système a été

analysé. Ce movement a été découvert de ne pas être dominé par la diffusion

classique, mais de certains processus aléatoires plus lents.
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CHAPTER 1

Introduction

1.1 Motivation

Xrays were discovered by W.C. Röntgen in 1895. Ever since their discovery,

they have been used for many applications, such as to probe the atomic structure

of matter. Some of the earliest applications included measuring crystal structures

and the positions of atoms. As brighter and brighter xray sources are being devel-

oped, such as synchrotron radiation sources, applications are steadily increasing.

One example is the ability to measure ferromagnetic magnetization density from a

weak magnetic coupling between xrays and ferromagnetic samples [1]. The increase

of computational power and storage has also enabled more interesting analysis of

scattering by xrays. An example of this is the newer generation CAT scans that

analyze scattering from xray images above and below the K-absorption threshold

of iodine injected into a patient prior to the measurement [2].

With the advent of undulators in third generation synchrotron sources, xray

beams have become more coherent. This has opened a new branch of experiments

taking advantage of this coherence under the name of xray intensity fluctuation

spectroscopy (XIFS) measurements. Just as a hologram uses the coherence of

visible light to add depth to an image, XIFS measurements can use this coherence

to gain previously inaccessible information about the fluctuations of a sample.
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An example of this is using XIFS to measure the dynamics of block copolymer

micelles [3].

However, due to the nature of the experiments, using these more coherent

sources to make interesting measurements also requires creativity and innovation

as well as computational and technical skills. An example of this is a technique

called heterodyning. Heterodyning is a technique where a reference beam is

introduced to interfere with the scattered beam in a sample. The successful

application of this technique allows the measurement of the flow of colloids[4].

An interesting application of this technique is to study cross-linked polymers.

Cross-linked polymers are long chains of molecules interconnected to each other

at a certain number of sites. They make up a wide range of materials such as

those used in plastic packaging and rubber tires. The reaction of these polymers

under stresses and strains is still not well understood, nor do we have a theory

to describe them. New experimental measurements would help us to better

understand how these materials work.

I discuss in this thesis the analysis of heterodyne XIFS measurements on

a carbon black cross-linked ethylene-propylene polymer, a type of rubber. The

rubber is stretched, and the sample is measured by homodyne and heterodyne

XIFS alternatively, for over an hour. This is repeated for several stretches.

Homodyne measurements were done to complement the heterodyne data. Their

analysis is also discussed in this thesis.
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Figure 1–1: Coordinate system of the experimental setup. The gray sphere is a
sphere of radius q. The independent coordinates q, θ′ and φ are the polar coor-
dinates of the system with the base of the ~q vector being the center. These are
the conventional xray scattering coordinates with the angle 2θ representing the
physical location of the detector (or a pixel of it).

1.2 Speckle

To understand the XIFS measurements, one must first understand an impor-

tant concept called speckle. A speckle pattern is an interference pattern produced

by the radiation emanating from different sources all coherent with one another.

The best way to visualize it is to start looking at the experimental data.

Imagine the usual xray scattering experiment. An incoming beam scatters

off a sample into multiple directions. A CCD camera measures the intensity for

different ~q as can be seen in figure 1–1.

A sample speckle pattern from the measurements carried out here can be seen

in figure 1–2. The black box is the shadow of the beam stop. The speckle can be

seen at small angles near the beam stop. Because the sample is fluctuating, this

interference pattern changes with time. One can see an example of the speckle

pattern for the same measurement observed at a portion of the CCD camera for

3
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Figure 1–2: Sample speckle pattern from the measurements. The black box at the
upper right corner represents the shadow of the beam stop.

different times in figure 1–3. It is clearly seen that the speckle pattern is changing.

By measuring this change, one can actually determine small movements of the

particles, which cannot be done using incoherent radiation. If one averages the

speckle pattern in time, one would see a smooth image. This is what conventional

xray diffraction would measure. One can see such a comparison in figure 1–4.

1.3 Coherence

One learns from high school physics courses that light is a wave. Yet, if light

is a wave, one should expect interference effects. Why is it then that we rarely see

interference patterns from, let’s say, your conventional street lights? The answer

to this question, of course, is that every day light sources are not coherent. What

then is coherence?
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Figure 1–3: Here is a sample of a portion of the speckle pattern of homodyne data
zoomed in time. Moving clockwise from the top left, each intensity image was
taken 250s after the one before, consecutively. Black indicates that the pixel was
not selected. The units are in ADUs, which is related to the photon count.
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Figure 1–4: Comparison of an image of a speckle pattern from homodyne data
with its average image averaged over 750s. Although there still appear to be some
speckle due to the finite time average, the features are greatly reduced. The inten-
sity is again measured in ADUs.

Before any definitions are made, the concept of coherence must be well

understood, as the rest of the thesis will depend on this understanding. Therefore

the goal of the following explanation is to give the reader an idea as to what

exactly coherence is, without all the mathematical rigor (which will come later).

Consider the usual Young’s two-slit experiment in figure 1–5.

The interference pattern recovered will be the intensity (which is the time-

average of the Poynting vector)[5]:

I = 〈S〉 = ǫ0c
1

2
〈| ~E|2〉 = 1

2
ǫ0c

(

〈| ~EA|2〉+ 〈| ~EB|2〉+ 2〈 ~EA · ~EB〉
)

=
1

2
ǫ0c

(

|EA|2 + |EB|2 + 2|EA||EB|〈cos δAB〉
)

(1.1)

=
1

2
ǫ0c

(

|EA|2 + |EB|2 + 2|EA||EB| cos δAB

)

. (1.2)
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a

D

A

B

P

Figure 1–5: Young’s Two Slit Experiment. A sample interference pattern from a
two-slit experiment. The oscillations depend on the phase difference between the
incoming waves. Constants chosen were arbitrary.

This formula can be broken down into two important quantities. The first two

terms are the intensity of each beam, and the second term is an interference term.

The interference term can be anywhere in between ±2|EA||EB| depending on what

the phase difference between the two points, δAB is. Saying that the two-slits are

illuminated by a coherent source is just another way of saying that knowing the

distance between the slits one can determine what this phase δAB will be. This

phase δAB will then just depend on the difference in path lengths from points A

and B to point P.

1.3.1 Spatial Coherence

Realistically, a source is generally not point sized in nature but finite in size.

By the Huygens-Fresnel principle, the source may be viewed as an infinite number
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2LT

∆θ
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Figure 1–6: Depiction of spatial coherence

of infinitesimal point sources along the wave front1 [7]. Each point source will

emit radiation spherically.

Such a source is drawn in figure 1–6. The waves from the top and bottom

contributions are represented by their wavefronts. Now imagine at the point P the

two waves are in phase. Moving along the wave front of contribution from point

source A, it is clear that the wave fronts no longer coincide. This same idea is

applied to all the intermediate points. It can be deduced that these points being

closer to A will have wavefronts that go out of phase at a larger distance.

This is quantified by defining a transverse coherence length LT . This quantity

is characterized by the length at which the wave fronts between the furthest two

points of the slit (A and B) are out of phase. As soon as this distance is reached,

the subsequent intermediate points will also begin to go out of phase. Thus any

1 The concept of infinite is not completely true, for an infinite number of radi-
ating point sources produces no radiation. This is known as the evanescent wave
phenomenon. Analysis of this can be found in reference [6], pages 50 and 51.
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interference effects wash out beyond this point. Then 2LT characterizes the length

over which the wave fronts from points A and B stay in phase. From geometry,

2LT∆θ = λ, which is one wave length. Since ∆θ ≈ a
D
, then:

LT =
λ

2

D

a
. (1.3)

This is the definition of a transverse coherence length. Any measurement involving

samples with dimensions smaller than this coherence length will be said to undergo

coherent scattering. A measurement involving samples a few coherence lengths

long will be said to undergo partially coherent scattering.

Thus the longer D and the smaller the source, the longer the coherence length

LT . Generally, in experiments, spatial coherence is obtained by simply placing the

sample at a far enough distance. If the source is intense enough, then the intensity

drop by this extra distance should not matter. This is generally not the case

from chaotic sources, which emit radiation with a large angle spread. However,

this is the case for xray synchrotrons, including the one at Argonne used for this

experiment, thanks to the help of undulators[8]. Another interesting thing to note

is that at smaller wavelengths (so higher energies), long coherence lengths are

harder to obtain.

1.3.2 Longitudinal Coherence

Transverse spatial coherence is not the only type of coherence for a beam.

If the beam is not monochromatic, it can be imagined to be a superposition of

waves with frequencies characterized by a central frequency ω0 and a width ∆ω.

Since these waves are not of the same wavelength, they will interfere constructively

9



λ−∆λ

λ+∆λ

2LL

Figure 1–7: Example of temporal (longitudinal) coherence.

and destructively at different points. Imagine the wave fronts of the wave with

the longest and shortest wavelengths λ ± ∆λ
2
, as in figure 1–7. The longitudinal

coherence length is defined to be the length at which these waves completely

cancel one another (are out of phase). After this point, waves with intermediate

frequencies will also begin to cancel one another. So 2LL characterizes the distance

waves can be considered in phase. From this, LL can be easily calculated. This

length is when:

(N + 1)(λ− ∆λ

2
) = N(λ +

∆λ

2
). (1.4)

This means that N = λ
∆λ
− 1

2
≈ λ

∆λ
, provided that ∆λ

λ
<< 1. The longitudinal

coherence length is then just:

2LL = N(λ +
∆λ

2
) =

λ2

∆λ
+ λ ≈ λ2

∆λ
, (1.5)

assuming that the spread in wavelengths ∆λ is very small. Thus the longitudinal

coherence length is related to LL = 1
2

λ2

∆λ
.
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Generally, longitudinal coherence is obtained by the use of a monochromator,

which filters the spectrum. A Germanium monochromator crystal is used in these

experiments for such purposes [9].

1.3.3 Temporal Coherence

Another way to describe longitudinal coherence is in terms of the time Tc it

takes for the source to traverse the distance LL, or Tc =
LL

c
. In the measurements,

Tc needs to be much smaller than the correlation times of the sample. This will be

explained later, but arises from the idea that the fluctuations of the beam need to

be independent of those of the sample.

1.3.4 Partial Coherence

If a beam is coherent, then it will create an interference pattern dependent on

the positions of the scatterers. To see things in a simpler perspective, the two-slit

thought experiment is re-examined. Using

Iavg =
1

2
ǫ0c

(

〈|EA|2〉+ 〈|EB|2〉
)

(1.6)

δI = ǫ0c|EA||EB| cos(δAB), (1.7)

equation 1.1 simplifies to:

〈I〉 = Iavg + δI. (1.8)

Iavg is the average intensity of the source if the phase difference δAB was com-

pletely random. δI is the interference term.

First it is assumed that the two slits are the same size, and close enough

together such that the scattered electric field |EA| = |EB|. It follows that δI varies
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between ±Iavg . This in turn means that the intensity ranges from 0 to twice the

average intensity.

Now imagine a beam is not completely coherent, but partially coherent. This

is another way of saying that δAB is not completely determined, and has a small

spread that must averaged over. The effect of this is to reduce the δI term. Let us

name this reduction term
√
β, for notation purposes (chapter 3 of reference [10]).

In this case, it is related to

√

β =
1

cos δAB

1

N

N
∑

i=1

cos δi, (1.9)

where the sum is on a range of random phases δi. As N gets large enough, β

approaches zero, and the interference term dies off. Thus, for a partially coherent

beam, the intensity is approximated to be:

〈I〉 = Iavg +
√

βδI. (1.10)

It turns out that the general result for an arbitrary sample considered here, follows

the same idea with appropriate approximations (chapter 3 of reference [10]).

1.4 Heterodyning

An interference pattern resulting from the scattering of multiple sources only

depends on the relative path differences between the sources. As a result of this, it

turns out that a mass movement of all the sources does not change the interference

pattern. A good example of this is the fact that the Bragg peaks of a crystal do

not change under a translation. This is rather troublesome for measuring flow

velocities.
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Figure 1–8: Example of how heterodyning works. Imagine three sources all moving
the same speed initially at some initial time (red) and some final time (black).
The interference pattern left will not change as the sources move, as the relative
difference in phase between them remains constant. Now imagine that the bottom
source stays still. The interference pattern will change now. Heterodyning involves
adding some new “stationary source”.

So how can flow be measured? There actually is a way around this. Basically,

it is known that in order to measure any movement, it must be relative to another

element in the scattering volume. Another way to think of this is in terms of the

usual two slit experiment. Imagine two slits moving together. The interference pat-

tern between them does not change. Now imagine a third slit is added that does

not move relative to the laboratory frame, and keep the two moving slits. The

interference pattern should now be changing, and it will be related to the relative

movement between the two slits and the laboratory frame slit. A visualization of

this idea is provided in figure 1–8. The “slits” are replaced with point sources for

simplicity.

This technique is called heterodyning. Instead of slits, a reference sample

is used. It is also required that the radiation scattered from the reference be
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comparable in amplitude to the radiation scattered from the sample measured.

This reference sample does not move with respect to the laboratory frame, and

for intents and purposes is randomly configured. The theory behind this will be

discussed further in the next chapter. Conversely, the absence of such a reference

sample is referred to as homodyning. The previously shown speckle from figure 1–4

is a result of a homodyning experiment.

1.5 Elastomers

The samples used belong to a wide classification of matter called elastomers.

Therefore it is important to describe what exactly an elastomer is. An elastomer

is a loose term for any synthetic material whose mechanical properties are similar

to natural rubber. Natural rubber is typically known for its highly non-linear

stress-strain curve (i.e. it does not obey Hooke’s Law)[11].

Now how is an elastomer typically formed? It is usually a network of cross-

linked polymers with filler particles mixed within this network. A polymer is a

long chain of molecules. Polymers that are cross-linked are polymers that are

linked to each other at random sites along their chain. The cross-linking of the

polymers are what give it it’s “rubber-like” behaviour. A filler particle is just an

atom or molecule bound to certain sites in a polymer. The filler particles add

rigidity by making it more difficult to strain the rubber. The reader is referred to

reference [11] for more information on rubber and elasticity.
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CHAPTER 2

Theory and Experiment

The measurements of the rubber system are done by XIFS. In order to

understand the results of the experiment, it is important to fully understand

what the measurements mean. More specifically, what is measured is the intensity

of xrays scattered at different angles defined by the vector ~q and at different

times. To understand this, it is important to know how the dynamics of the

sample relates to the intensity measured by the detector. This will require an

understanding of how xrays scatter as well as the role the coherence of the beam

plays. This chapter aims for two goals. One is to fully derive and explain the

intensity-intensity correlation function, a result of the measurement. The other

is to explain how the dynamics of the system link to the intensity-intensity

correlation function measurements.

2.1 Coherent Xray Scattering

The general scattering setup is shown in figure 2–1, where |~kin| = |~kout|. This

figure is the same as figure 1–1 and has been reproduced here for ease of viewing.

What is actually measured in the CCD camera is an intensity. Thus a theory

relating the scattering of the incoming radiation in terms of an intensity is needed.

The intensity, again is the time-average of the Poynting vector. For xrays in air,

this gives:

I = 〈S〉 = ǫ0c〈| ~Es|2〉, (2.1)
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Figure 2–1: Coordinate system of the experimental setup. The gray sphere is a
sphere of radius q. The independent coordinates q, θ′ and φ are the polar coor-
dinates of the system with the base of the ~q vector being the center. These are
the conventional xray scattering coordinates with the angle 2θ representing the
physical location of the detector (or a pixel of it). This figure is reproduced from
Chapter 1 for ease of referral.
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where ~Es is the scattered electric field[1]. Knowing the intensity means knowing

how the sample scatters, which depends on its dynamics. Thus a theory linking

scattered electric field and intensity would be linking the dynamics of the system

with the scattered intensity measured.

To begin with, the direction of ~E is ignored for two reasons. The first is that

the radiation from the source comes from undulators, which produce linearly

polarized radiation[8]. Thus the incoming beam may be assumed to point the same

direction. The second is the fact that the scattering volume transverse lengths are

much smaller than the distance from the sample to the detector. This means that

the scattered field from each point source contribution may also be assumed to

point the same direction. The vector superscript is dropped from now on because

of these reasons.

Because the wavelength of the xrays are smaller than the size of an individual

atom, the scattering is in the Thomson scattering regime, and the outgoing electric

field is (chapter 3 of reference [10]):

Es(~R, t) =
r0

R
ei(

~ks·~R−ω0t)

∫

V

ei~q·~rδρ(~r, t)Ei(~r, t+
~ks · ~r
ω0

)d3~r (2.2)

Here ~R refers to the vector pointing from the center of the sample to the detector.

The deviation of density from the average, δρ = ρ − 〈ρ〉, is used instead of ρ

because there is no scattering from a uniform sample.

The system measured contains more interesting information in its fluctuations

rather than its average quantities. In statistical mechanics, observing fluctuations

is the same thing as calculating higher order moments of measured quantities.
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The measured quantity here is the scattered intensity as a function of ~q. It

turns out that calculating the second order moment is enough to describe the

system here. This is because the statistics of the scattered field are Gaussian (by

virtue of the central limit theorem). Any system governed by Gaussian statistics is

completely described by its first and second order moments ([12]).

What is measured is the intensity for some time t. It is desired to calculate

the intensity-intensity correlation function to compare different times t1 and t2.

However, it turns out that since the intensity is the square modulus of the electric

field, it is then a second order moment of the electric field. Thus an intensity-

intensity correlation function is a fourth order moment of the electric field, and

because this field is Gaussian, the fourth order moment can be written in terms

of the first and second moments. For a completely coherent beam, using Wick’s

theorem[13](suppressing the ~q dependence):

G2(~q, τ) = 〈I(~q, t)I(~q, t+ τ)〉 = (ǫ0c)
2 〈E∗(t)E(t)E∗(t+ τ)E(t + τ)〉

= (ǫ0c)
2
(

〈E∗(t)E(t)〉〈E∗(t + τ)E(t + τ)〉+ 〈E∗(t)E(t + τ)〉〈E(t)E∗(t+ τ)〉

+〈E∗(t)E∗(t + τ)〉〈E(t)E(t+ τ)〉
)

(2.3)

= 〈Is〉2 + (ǫ0c)
2|〈E∗(t)E(t+ τ)〉|2 (2.4)

= 〈Is〉2(1 + |g1(τ)|2)

where

g1(τ) =
G1(τ)

〈Is〉
(2.5)

G1(τ) = ǫ0c〈E(t)∗E(t + τ)〉. (2.6)
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Equation 2.5 defines the normalized electric field correlation function. The

succeeding equation is referred to as the electric field correlation function1 .

The scattered intensity, 〈Is〉 can be computed from the scattering cross section,

〈Is〉 = dσ
dΩ
〈Ii〉. The last term in equation 2.3 is zero because the complex phase

e−iω0t averages to zero. Equation 2.4 is commonly referred to as the Siegert

relation [14], (chapter 3 of reference [10]). Looking more closely at the electric field

correlation and using the Born approximation (eq. 2.2):

〈E∗(t)E(t+ τ)〉 = e−iω0τ
(r0

R

)2
∫

V

ei~q·(~r2−~r1)〈δρ(~r1, t)δρ(~r2, t+ τ)〉

〈Ei(~r1, t+
~ks · ~r1
ω0

)Ei(~r2, t+ τ +
~ks · ~r2
ω0

)〉d3~r1d3~r2, (2.7)

where the fact that the average of a product of independent parts is the product of

their averages is used. Here, the correlation times of the electric field are assumed

much shorter than that of the sample, so this is true.

Rewriting equation 2.7, one gets that:

〈E∗(t)E(t + τ)〉 = e−iω0τ
(r0

R

)2
∫

V

ei~q·(~r2−~r1)〈δρ(~r1, t)δρ(~r2, t+ τ)〉

Γi(~r1, ~r2, t+
~ks · ~r1
ω0

, t+ τ +
~ks · ~r2
ω0

)d3~r1d
3~r2, (2.8)

where:

Γi(~r1, ~r2, t1, t2) = 〈E∗i (~r1, t1)Ei(~r2, t2)〉. (2.9)

1 Notice the convention: Capital “G” used for a non-normalized function and
lowercase “g” is used for a normalized correlation funciton
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This function is also referred to as the mutual coherence function. For a perfectly

coherent beam, the electric field is perfectly correlated in time and space. Thus

the mutual coherence function becomes Γi = 〈Ei〉2 = 〈Ii〉
ǫ0c

, where Ii is the incident

intensity. With the extra assumption that the overall amplitude of the field varies

slowly compared to τ , this gives:

〈E∗(t)E(t + τ)〉 = e−iω0τ
〈Ii〉
ǫ0c

(r0

R

)2
∫

V

e−i~q·(~r2−~r1)

〈δρ(~r1, t)δρ(~r2, t+ τ)〉d3~r2d3~r2 (2.10)

= e−iω0τ
〈Ii〉
ǫ0c

(r0

R

)2

S2(−~q, ~q, τ) (2.11)

where:

S2(~q1, ~q2, τ) =

∫

V

e−i(~q1·~r1+~q2~r2)〈δρ(~r1, t)δρ(~r2, t+ τ)〉d3~r2d3~r2. (2.12)

This means that the correlation function g1(τ) is:

g1(τ) =
e−iω0τ 〈Ii〉

(

r0
R

)2

〈Is〉
S2(−~q, ~q), (2.13)

= e−iω0τS2(−~q, ~q, τ) (2.14)

where 〈Ii〉 and 〈Is〉 are the intensity incident on and scattered off the sample,

respectively. The substitution for Thomson scattering, 〈Is〉 = 〈Ii〉
(

r0
R

)2
is

made in the last step[5]. In this equation, the g1 function is related to a Fourier

transform of a density-density correlation. This in turn gives information about

the fluctuations of the system.
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2.2 Partially Coherent Xray Diffraction

The scattering of coherent xrays off of a sample give information related to a

Fourier transform of a density-density correlation function. However, what if the

xrays are not perfectly coherent over the scattering region considered?

It turns out that useful information may still be obtained. First of all, the

integral of equation 2.10 can be collapsed into a three-dimensional integral. Here is

a nice argument to explain this idea.

The system measured is disordered. Thus each piece of the system has no

correlation with another piece of the system. A molecule will then correlate with

only itself. Therefore, δρ(~r1, t)δρ(~r2, t + τ) will only be finite at some region

proportional to the volume it occupies. In what is measured, particles are moving

in some correlated fashion (such as flow and shear velocities), and then in some

other random fashion (thermal motion, etc.). Therefore, the volume the particles

that were scattering at an earlier time has moved at a later time due to the

correlated movement. Assuming the particles are moving slow enough and that

there are a lot of them, this integral may be approximated over different volumes.

The first integral is over the scattering volume, and the second is over the new

volume that the molecules scattering the radiation occupy. Because the velocity of

the particles is very small, the limits of this integral may be changed. This then

causes the dynamics to now be translationally invariant.
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Evoking this translational invariance, the equation becomes:

〈E∗(t)E(t+ τ)〉 ≈ e−iω0τ
(r0

R

)2
∫

V1

∫

V2

ei~q·(~r2−~r1)〈δρ(0, t)δρ(~r2 − ~r1, t+ τ)〉

Γi(~r1, ~r2, t+
~ks · ~r1
ω0

, t + τ +
~ks · ~r2
ω0

)d3~r1d
3~r2, (2.15)

where V1 and V2 are the old volume and new volume respectively.

This approximation only remains correct if the effective mean volume dis-

placement of the scattering is a very small fraction of the scattering volume. One

can quantify this approximation as a time scale. The time scale τv is defined to

be the time when a significant amount of the particles have exited the scattering

volume. Further examination of this time scale will require understanding the

dynamics of the system, which will be described in the next chapter.

The next part to solving this formula is to notice that the coherence function

is actually also translationally invariant. If the coherence length is much smaller

than the beam size, one can often approximate Γ by (chapter 3 of reference [10]):

Γ(~r1, ~r2, 0, τ) =
1

ǫ0c
I(
~r1 + ~r2

2
)µ(~r2 − ~r1, τ), (2.16)

where

µ(~r2 − ~r1, τ) =
Γ(0, ~r2 − ~r1, 0, τ)

Γ(0, 0, 0, 0)
. (2.17)

This equation is the same as saying that the coherence function is related to the

product of a slowly varying intensity which depends on the absolute position and

a slowly varying coherence factor which only depends on the relative distance.

This makes sense, as coherence between two points from a close to parallel beam
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should be translationally invariant. The intensity is also slowly varying enough

that it can be taken to depend on the coordinate ~r1+~r2
2

, to make the Jacobian of

the coordinate transformation one.

Evaluating the integral gives:

〈E∗(t)E(t+ τ)〉 = e−iω0τ
(r0

R

)2
∫

V

I(~u)

ǫ0c
d3~u

∫

V

ei~q·~v〈δρ(0, t)δρ(~v, t+ τ)〉µ(~v, τ)d3~v (2.18)

= e−iω0τ
(r0

R

)2

V
〈Ii〉
ǫ0c

∫

V

ei~q·~v〈δρ(0, t)δρ(~v, t+ τ)〉µ(~v, τ)d3~v, (2.19)

where ~u = ~r1+~r2
2

and ~v = ~r2 − ~r1. The correlation between a particle and itself

at a later time varies on a much shorter length scale than the mutual coherence

function, µ(~v, τ). This is then pulled out of the integral to give:

g1(~q, τ) = ǫ0c
〈E∗(t)E(t+ τ)〉

〈Is〉
= ǫ0c

〈E∗(t)E(t+ τ)〉
〈Ii〉

(

r0
R

)2 (2.20)

=
√

βe−iω0τV

∫

V

ei~q·~r〈δρ(0, t)δρ(~r, t+ τ)〉d3~r (2.21)

where:
√

β = µ(0, τ). (2.22)

Partial coherence adds a new factor β to the original correlation function. It is 1

for full coherence and 0 for no coherence. Generally, it makes more sense to remove

the coherence factor β from the correlation and define g1 to be:

g1(~q, τ) = e−iω0τV

∫

V

ei~q·~r〈δρ(0, t)δρ(~r, t+ τ)〉d3~r (2.23)
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From equation 2.4, the correlation function G2 becomes:

〈I(~q, 0)I(~q, τ)〉 = G2(~q, τ) = 〈Is〉2(1 + β|g1|2) (2.24)

Where g1 is defined in 2.23.

2.3 Solving g1 for First Order Flow

There is one last piece to solve for in equation 2.23. This is the Fourier

transform of the density-density correlation function:

∫

V

ei~q·~r〈δρ(0, t)δρ(~r, t+ τ)〉d3~r. (2.25)

To solve for this, the dynamics of the system are broken into two parts: the

random movement due to thermal vibrations (diffusion), and general flow. A

general flow ~V may be approximated by the expansion2 :

~V (~r + d~r) = ~U +
←→
Γ · d~r +O(dr2), (2.26)

where:

Γij =
∂Vi

∂xj

. (2.27)

Terms of order |d~r|2 and higher are neglected. The term of order d~r represents

the velocity gradient. The simple case explained here is a linear shear in the

plane perpendicular to the incoming beam. This linear shear is described by two

2 Note: The shear matrix
←→
Γ is NOT to be confused with the coherence func-

tion, which is also Γ but is not a matrix.
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Figure 2–2: Vector field representation of the velocity in terms of its shear term
(first figure) and its flow term (second figure). Velocities along lines parallel to the
drawn vectors are assumed to be the same and are not drawn for simplicity. The
full velocity is the vector sum of the two terms.

parameters: the magnitude γ and the direction αs of the shear gradient. This can

be seen in figure 2–2.

Then
←→
Γ becomes:

←→
Γ = γ













cosαs sinαs − cos2 αs 0

sin2 αs − sinαs cosαs 0

0 0 0













, (2.28)

where the proof is in Appendix A.

For particles undergoing diffusion with an average velocity ~̄V = ~U +
←→
Γ · ~r,

a paper by G.G. Fuller[15], gives g1 to be:

g1(~q, t) = e−{
∫ t

0
[Dq′2(t′)+i~U ·~q′(t′)dt′}

∫ ∫ ∫

d3xI(~x)e−i
∫ t

0
dt′ ~q′(t′)·←→Γ ·~x (2.29)
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d~q′

dt
= −ΓT · ~q′, ~q′(0) = ~q (2.30)

where D is the diffusion constant,
←→
Γ is the shear velocity gradient and I(~x) is the

intensity of the incoming beam. Following Appendix A, the g1 function becomes:

g1(~q, t) = e−
t
τ eiqUt cos(φ−αs)sinc(ωst sinαs)sinc(ωst cosαs) (2.31)

ωs = qγ
a

2
sin(φ− αs) (2.32)

τ = (Dq2)−1 (2.33)

where a is the scattering volume transverse length. Consequently, γ a
2
is the

difference in velocity between the center and one of the edges of the scattering

volume.

2.4 Homodyne and Heterodyne Correlation Functions

2.4.1 The Homodyne Correlation Function

What is measured eventually in the CCD detector is the number of photons

received from the scattering, which is the intensity (time-average of Poynting

vector). Computing an intensity-intensity correlation function is interesting. This

gives(from equation 2.24):

G2(τ) = 〈Is(t)∗Is(t+ τ)〉 = 〈Is〉2
(

1 + β|g1|2
)

. (2.34)

Then by using equation 2.31:

G2(τ) = 〈Is〉2
(

1 + βe−
2t
τ sinc2(ωst sinαs)sinc

2(ωst cosαs)
)

. (2.35)
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This is called the homodyne correlation function. Typically, the scattered intensity

〈Is〉 can be computed by an average in time and space. Dividing this last equation

by the scattered intensity squared, the result is:

g2(τ) = 1 + βe−
2t
τ sinc2(ωst sinαs)sinc

2(ωst cosαs). (2.36)

This is called the normalized homodyne correlation function3 . It is important to

notice that this equation no longer depends on the flow velocity ~U . This is due to

the fact that the flow velocity is a complex phase factor lost on squaring.

2.4.2 The Heterodyne Correlation Function

The previous section showed that the homodyne correlation function gives no

information about the flow velocity. However, the flow velocity can provide useful

information about a system’s dynamics. Clearly, it is a physical quantity that does

affect the field in some way so there must be a way to measure it.

Looking again at equation 2.31, the complex phase is related to the Doppler

shift of the frequency of the scattered electromagnetic wave. This appears as a

phase in the representation of the electric field:

~Es = A(r) ~Eie
−i~q·~Ut, (2.37)

where ~U is the flow velocity and A(r) represents the fraction of the field being

scattered. The subscripts s and i refer to the scattered and incoming fields,

3 Note the convention: capital “G” and lower case “g” is used for a non-
normalized and normalized correlation function, respectively.
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respectively. Having N scatterers close together all moving with the same flow

velocity ~U yields, by the superposition principle:

~Es = NA(r) ~Eie
−i~q·~Ut. (2.38)

A measurement of the intensity of this field would show it to be:

〈I〉 ∼ | ~Es|2 ∼ N2| ~Ei|2. (2.39)

It is clear that for such a system, there is a loss of the phase information through

the measurement of the intensity.

This can be circumvented with the following idea. Suppose that half of the

sample moved with some velocity ~U and the other half remained still relative to

the laboratory. The field would then be:

~Es =
N

2
~Eie
−i~q·~Ut +

N

2
~Ei. (2.40)

The intensity of the field would then be:

〈I〉 ∼ | ~Es|2 = 2

(

N

2

)2

| ~Ei|2 +
(

N

2

)2

|Ei|2
(

ei~q·
~Ut + e−i~q·

~Ut
)

= 2

(

N

2

)2

| ~Ei|2 + 2

(

N

2

)2

| ~Ei|2 cos(~q · ~Ut). (2.41)

Clearly, by simply adding a reference beam, information about the phase in the

electromagnetic wave can be obtained through a correlation function in time.
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Now what happens by the addition of a reference sample? An easy way to see

what happens is to go back to equation 2.5:

g1(~q, τ) =
〈E∗(t)E(t+ τ)〉

〈Is〉
. (2.42)

The scattered electric field is broken up as a contribution from the reference and

the sample:

E(t) = Er(t) + Es(t). (2.43)

The correlation function g1 becomes:

g1(~q, τ) =
1

〈Is〉
〈(Es(t) + Er(t))

∗(Es(t+ τ) + Er(t+ τ))〉 (2.44)

=
1

〈Is〉
(〈E∗s (t)Es(t+ τ)〉 + 〈E∗s (t)Er(t + τ)〉+ 〈E∗r (t)Es(t+ τ)〉+ 〈E∗r (t)Er(t + τ)〉)

=
1

〈Is〉
(〈E∗s (t)Es(t+ τ)〉 + 〈E∗r (t)Er(t + τ)〉) .

Here, the terms 〈E∗s (t)Er(t + τ)〉 and 〈E∗r (t)Es(t + τ)〉 yield zero due to the fact

that there are no correlations between both samples. Let 〈Is〉 = 〈Is,ref + Is,sam〉,

where 〈Is,ref〉 and 〈Is,sam〉 are the the scattered intensity from the reference and

the sample, respectively. Also, define:

x(~q) =
〈Is,sam〉(~q)

〈Is,ref〉(~q) + 〈Is,sam〉(~q)
. (2.45)
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Using equation 2.23 and noticing now that for the reference and the sample, the

normalization factor is 〈Is,ref〉 and 〈Is,sam〉, respectively, the equation becomes4 :

g1(~q, τ) = (xg1s(~q, τ) + (1− x)g1r(~q, τ)) (2.46)

where g1s and g1r are the g1 functions of the scattering of an experiment assuming

that the sample or the reference were occupying the whole scattering volume,

respectively.

By using equation 2.24 to get the heterodyne G2 function5 :

G2(~q, τ) = 1 + β|g1|2

= 1 + β {(xg∗1s + (1− x)g∗1r)(xg1s + (1− x)g1r)}

= 1 + β
{

x2|g1s|2 + {x(1 − x)g∗1sg1r + (x(1− x)g∗1sg1r )
∗}+ (1− x)2|g1r|2

}

= 1 + β
{

x2|g1s|2 + 2x(1− x)Re (g∗1sg1r) + (1− x)2|g1r|2
}

.

In the experiments described here, the reference sample is static over the measure-

ment time, therefore the correlation function vanishes to some constant number.

The G2 correlation function then simplifies to [16]:

G2(~q, τ) = 1 + β
(

(1− x)2 + 2x(1− x)Re (g1s(~q, τ)) + x2|g1s(~q, τ)|2
)

(2.47)

4 From now on, the ~q dependence of x will be supressed

5 Note, β is assumed to be the same for both the sample and reference. This
approximation applies to the experiments done here but is not necessarily true (i.e.
the integrals are carried over different portions of the scattering volume where β

may change).
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The importance of this equation cannot be over-emphasized. If one remembers

from previous derivations, the intensity-intensity correlation function of only the

sample is related to the modulus squared of the electric field correlations. However,

by introducing a reference sample, the new intensity-intensity correlation function

now depends in part on the electric field correlation function directly. This is

a really powerful technique. This means that inserting a known reference and

making x small enough (but not zero) provides a direct measurement of the real

part of the electric field correlation functions.

Recalling what the electric field correlation function of the sample is and

taking the real part:

Re[g1(~q, t)] = e−
t
τ cos(qUt cos(φ− αs))sinc(ωst sinαs)sinc(ωst cosαs). (2.48)

One can see that if the frequency qUt cos(φ− αs) is large enough that this function

is an oscillatory function enveloped by a decay. The frequency is related to the

uniform flow velocity. Thus by just counting the number of oscillations in a time

period provides an estimate of the flow velocity.

2.5 Speckle Statistics and Averaging

The experiments here do not have infinite time over which to do the averag-

ing. Therefore it is necessary to examine the statistics of the time average more

carefully.
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2.5.1 Simple Time Average

The Fourier transform of the intensity at one pixel is:

I(t) =

∫

eiωtIωdω. (2.49)

Now what happens when the average 〈I∗(t)I(t+ τ)〉t is taken? This gives:

〈I(t)I(t+ τ)〉t = 〈
∫ ∞

−∞

∫ ∞

−∞
ei(ω−ω

′)te−ωτI∗ωIω′dωdω〉t (2.50)

=

∫ ∞

−∞

∫ ∞

−∞
δ(ω′ − ω)e−iωτI∗ωIω′dωdω′

=

∫ ∞

−∞
e−iωτ |Iω|2dω, (2.51)

where the last equation is the Wiener Khinchin theorem [7]. From this equation,

it is apparent that averaging over the intensity-intensity correlation function over

enough time results in a delta function. Given finite time however, this is not the

case and must be examined further. Fortunately, by understanding better how

the errors arise from these averages, tricks may be used to improve the results.

However, before understanding the errors, speckle must be well understood.

2.5.2 Speckle

As was seen from chapter 1, interference effects can be observed by coherent

radiation. In general, it was seen that partially coherent radiation also provides

interference effects, but where amplitude of this interference is now “damped” by a

factor
√
β. More specifically, at any point in a detector, the intensity can be seen

as a sum of two parts:

I(~q, t) = Iavg(~q) +
√

βδI(~q, t) (2.52)
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The first term in this equation is the average intensity that would be observed if

the beam was completely incoherent and the second term is the interference term

δI times the coherence factor
√
β ( 0 >

√
β > 1 for partial coherence). From

the first chapter, it was seen that the interference term δI(~q, t) fluctuates between

±Iavg(~q). To understand speckle better, a new variable is defined:

δs(~q, t) =
δI(~q, t)

Iavg(~q, t)
. (2.53)

This term δs is the contribution of the speckle. It varies from -1 (completely

destructive interference) to 0 (no interference) to 1 (completely constructive

interference). It is now seen that the intensity at any time t is:

I(~q, t) = Iavg(~q)
(

1 +
√

βδs(~q, t)
)

(2.54)

This will aid in the analysis of the calculation of the averages.

2.5.3 Introducing The Spatial Average

Now that speckle is understood, the averaging method can be explained in

simple terms. The intensity-intensity correlation function is rewritten in terms of

equation 2.54:

〈I(~q, t)I(~q, t+τ)〉t = I2avg

(

1 +
√

β (〈δs(~q, t) + δs(~q, t+ τ)〉t) + β〈δs(~q, t)δs(~q, t+ τ)〉t
)

(2.55)

Now, as the system measured changes configurations, the speckle term δs fluctu-

ates in time t for a pixel at ~q. Thus the terms involving 〈δs(~q, t)〉t should vanish
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when averaged over a long enough time, and one should be left with:

〈I(~q, t)I(~q, t+ τ)〉t = I2avg (1 + β〈δs(~q, t)δs(~q, t+ τ)〉t) . (2.56)

However, if the system is not observed over a long enough time, two things occur.

Firstly, the 〈δs(~q, t)〉t terms do not vanish. Secondly, the second term of equation

2.56 will have a non-negligible error. This can be fixed by adding in a spatial

average.

One can perform the average over a small area ∆qx∆qy provided that the

average intensity Iavg(~q) and the speckle dynamics do not vary too much. By

looking at the results obtained, one can see if this assumption makes sense.

Averaging over slightly different ~q’s is then equivalent to averaging over different

speckle patterns. The average then looks as follows:

〈I(~q, t)I(~q, t+τ)〉~q,t = I2avg

(

1 +
√

β (〈δs(~q, t) + δs(~q, t+ τ)〉~q,t) + β〈δs(~q, t)δs(~q, t+ τ)〉~q,t
)

,

(2.57)

where the average is now done over many ~q values.

2.5.4 Error Analysis

As both these averages are finite, this introduces some error. It is important

to note that this error is not due to the intensity measurements (which is of a

much higher accuracy), but due to the simple fact that the average involves a

small number of points. The best way to understand this error is to view it in

terms of speckle. Speckle is loosely defined to be regions of local maxima, which is

due to strong constructive interference. According to Sutton’s review on XIFS[17],

this error is proportional to 1√
Ns
, where Ns is the number of speckles observed. As
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speckle is easily observed and counted in the CCD camera, this error can easily be

observed and estimated. The error can be seen easier by rewriting equation 2.57

as:

〈I(~q, t)I(~q, t+ τ)〉t = I2avg

(

1 + β

(

1√
β
(〈δs(~q, t) + δs(~q, t+ τ)〉~q,t) + 〈δs(~q, t)δs(~q, t+ τ)〉t

))

.

As the error in the 〈δs(~q, t′)〉t terms is 1√
Ns
, this means that the correlation

function, which really measures 〈δs(~q, t)δs(~q, t + τ)〉~q,t will be slightly too high

or too low by an order of 1√
βNs

. In the experiments here, β is on average 0.3 and

visual analysis shows Ns to range from 100 to 1000. This means that the error in

the correlation function should be expected to be from 6% to 18%. It is important

to note that this error comprises of an error constant in time τ and another error

changing in time τ . The constant error will cause analysis over different portions of

the data to differ by this error. However, the error changing in time τ is correlated

with the last term in eq 2.58 and is a bit more complicated to figure out. However,

further analysis of this error is beyond the scope of this thesis, and will not be

discussed here. The importance of this conclusion relevant to this research is to

justify the appearance of strange correlated errors, which will be seen later on in

this thesis.

2.5.5 The Spatial Average: The Two-Time Correlation Function

Recalling from equation 2.57, before obtaining the correlation function, a

spatial average and time average need to be carried out. The spatial average is
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Figure 2–3: Sample two-time correlation matrix from 60% ↑ 1 heterodyne 3 and
homodyne 3 data (see appendix C for measurement nomenclature), respectively
from left to right. Color indicates height.

computed as follows:

G2(~q0, t1, t2) ≈
1

Nq

∑

~qi

I∗(~qi, t1)I(~qi, t2), (2.58)

where Nq is the number of points averaged over.

This intermediate step is what is called the two-time correlation function. It is

important to recognize that it is a matrix of the products of intensities at different

times t1 and t2 averaged over space. Two example two-time correlation matrices

from the data are shown in figure 2–3. The axes represent the times t1 and t2. The

time difference axis τ = t2 − t1 and the average time t = t2+t1
2

are marked in black

to aid the eye.

Aside on the error

Looking at figure 2–3, one can see bumps along the diagonal for the hetero-

dyne two-time correlation matrix. The bumps are not apparent in the homodyne
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Figure 2–4: Sample two-time correlation matrix and its corresponding g2(~q, τ) for
a measurement. More specifically, this two-time correlation matrix is calculated for
a portion of a measurement of 0% ↓ 1 , homodyne mode 2 (See Appendix C for
measurement details).

data because they occur on a larger time scale. This is the correlated error dis-

cussed in equation 2.58. This will cause each of the computations of the g2(τ)

functions to be consistently off by some parameter.

2.5.6 The Time Average

Time Invariant System

Following the spatial average, is the time average. This average consists of

averaging over points with the same value τ . This is the same as summing up all

points along lines parallel to the t1 = t2 diagonal (or t axis as seen in figure 2–3),

for each τ . Mathematically, the following sum is taken:

G2(~q, τ) =
1

Nt

∑

ti

G2(~q, ti, ti + τ), (2.59)

where Nt is the number of points summed. An example of such a sum is demon-
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Figure 2–5: Example of a two-time correlation matrix of time-dependent data.
This is from the same data, but taken over larger frames.

strated in figure 2–4.

Time-Dependent System: Limiting the Time Window

One problem encountered in this research is that the system is not in equilib-

rium. An example of a two-time correlation function that does not change in time

is shown in figure 2–5. By eye, one can easily notice that lines of constant t2 − t1

have more than some oscillatory behaviour described in equation 2.50. This is due

to the fact that the system is changing in time, and that the intensity-intensity

correlation function is no longer time invariant. However, the system is chang-

ing slowly enough that it may be assumed to be time invariant for small enough

times. This time interval is referred to as the window, and is represented by the

variable ww, as can be seen in figure 2–6. From this same reasoning, one can also

reason that any value of τ over large values of ww will not be able to describe the

dynamics of the system sufficiently.
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Figure 2–6: The two-time correlation matrix with a region selected. The height
along t2 is denoted as ww. The dimension along t1 is denoted as r1. The lower left
hand corner of the selection’s t1 coordinate is known as toff

One can imagine solving this problem as follows. Although the system is not

in equilibrium, it is varying slowly enough that at each instant t0, it is in quasi-

equilibrium between times t0 − ww
2

and t0 +
ww
2
. Thus computing the correlation

function for this small range of time produces an intensity-intensity correlation

function describing the dynamics of the system as a function of t0. This can now

provide information about the time-evolution of the system!

To develop this into a computation algorithm, one can define one more

variable, r1, which is the range of τ which to average over. Now, instead of doing

an average over all times t in the equation 2.50, an average from times t0 − ww
2

to

t0 +
ww
2

for times 0 < τ ≤ r1 will be done. The area now averaged over in the two

time correlation function is the window that seen again in figure 2–6.

This method gives good results for slowly varying non-equilibrium dynamics.
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2.6 Experimental Details

2.6.1 Setup

The experiment is set up at the origin of the coordinate system and can

be seen in figure 2–1. The rubber sample was placed in a home-made stress-

strain device which could stretch and hold the rubber at a desired constant

elongation[18]. The apparatus was brought to the Advanced Photon Source

(APS) at Argonne National Laboratory (Argonne, IL, USA). The beam size is

15µm × 15µm and was collimated by polished slits 0.68 m from the sample. A

deep-depletion CCD camera (PI 1152 × 1242, 22.5 µm resolution) was placed 2.8

m from the sample. The wavelength of the source is 1.62 Å. The monochromator

used was a Ge(111) crystal, with energy contrast δλ
λ

= 3.2× 10−4.

From equation 1.3, the transverse coherence length of the beam is LT ≈ 3.5

µm. The transverse beam size is 15 µm, as mentioned above. This means that the

transverse lengths of the scattering volume is approximately 4 times the transverse

coherence length, and some resolution in speckle should be lost.

From equation 1.3.2, the longitudinal coherence length of the beam is LL ≈

0.25 µm. However, for scattering at small angles and a sample thickness e,

(2θ < 10−4rad) the maximum path length difference of the scattered waves is

2eθ2[9]. The sample’s thickness is less than 2 mm. This leaves the maximum wave

path length difference to be < 0.04 nm. This is much smaller than the longitudinal

coherence length. So no decrease in the amplitude of the speckle is expected.

In total, this means that the total scattering volume is 4 coherence volumes

in size. The coherence factor, β scales as the inverse of the coherence volumes
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[17]. This is equal to 0.3 in the experiments here. This says that the scattering

volume is a little bigger than the size of 3 coherence volumes, which agrees with

the estimate here.

The static reference sample used for the heterodyne signal is a powder of

fumed silica (Aerosil R©200), 1 mm thick, placed immediately upstream of the

sample. The reader is referred to reference [9] for more details on the experimental

setup.

2.7 The Measurements

The measurements were organized in terms of stretches. The rubber is

stretched at different elongations (strains): 20%, 40%, and 60% its initial length

and allowed sufficient time to reach equilibrium during each elongation. The

sample is held together with clamps 25 mm apart in length. While holding the

rubber fixed, the clamps were then displaced symmetrically to 30, 35, and 40

mm consecutively (i.e. increments of 20% the initial length). A strain gauge

simultaneously took readings of the strain of the sample, which were logged. To

reach each elongation, a machine either stretched or relaxed the rubber to the

desired strain. Elongations resulting from a stretch from a smaller elongation or

a relaxation from a longer elongation are referred to as ↑ (“up”) and ↓ (“down”)

stretches respectively. A repeated stretch will be succeeded by the number 2. For

example, the second 40% “up” stretch will be referred to as 40% ↑ 2. At each

elongation, six different measurements were taken, alternating in homodyne and

heterodyne mode for different exposure times. Each measurement for a particular

stretch is referred to by the measurement type and the scan number of the
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measurement. For example, the third heterodyne measurement for 20% ↓ refers

to the last heterodyne measurement for that stretch. During each measurement,

the time elapsed is referred interchangeably as frames or time in seconds. A frame

is a snapshot in time of the speckle. Each frame was taken 2.1s after the other in

the homodyne mode, and 2.5s after the other in heterodyne mode. A summary of

everything described here can be found in Appendix C for quick reference.

2.8 Summary

In summary, the tools necessary to examine the data from the measurement

have been explained. In homodyne mode, one should expect an intensity-intensity

correlation of the form equation 2.36. In heterodyne mode, one should expect

an intensity-intensity correlation function of the form 2.47. Due to the time-

dependent nature of the sample, the correlation function is averaged over a small

number of times. In order to increase the accuracy of the calculations, an average

over wave vectors is also calculated. It should not change the correlation function

so long as the intensity-intensity correlation function does not vary too much over

the wave vectors averaged.
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CHAPTER 3

Results & Analysis

To recapitulate from the last chapter, a theory linking the measurement

and the dynamics of the system was derived. It was shown that some minor

modifications and adjustments are necessary before obtaining the correlation

function. The first is to include an average of the intensity-intensity correlation

function over pixels to help compensate for the fact that the averaging is done over

a small times. The second is to limit the average of this correlation function over

time.

The heterodyne data is analysed with these modifications, and its fits are

described in full detail. As a supplemental section, fits of the homodyne data are

also described. Before moving on to the heterodyne data, the partitioning of the

data for the averaging needs to be described more thoroughly.

3.1 Partitioning and Selecting Pixels

Before computing the actual correlation functions, an initial analysis of how to

partition the data is described. Initial analysis shows that the correlation functions

from equations 2.36 and 2.47 do not vary significantly over a small enough area

of the detector. As was seen before, it is necessary to average over a few pixels

in order to have a better resolution of the g2 correlation functions. Therefore,

the pixels are classified into appropriate bins. To make these bins, the scattering
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Figure 3–1: 30× 30 Partition Map of the Pixels. The black box represents a mask.

Figure 3–2: Coordinate system of the experimental setup. The gray sphere is a
sphere of radius q. The independent coordinates q, θ′ and φ are the polar coordi-
nates of the system with the base of the ~q vector being the center. These are the
conventional xray scattering coordinates with the angle 2θ representing the physi-
cal location of the detector (or a pixel of it). This figure is again reproduced from
Chapter 1 ease of referral.
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vector ~q is divided into spherical coordinates1 ~|q|, φ and θ′. The scattering

geometry is again included in this chapter and can be seen in figure 3–2. Again,

this figure is the same as in the first chapter and has been reproduced for ease of

viewing. In the small angle scattering (SAXS) region, θ′ is close to zero, and may

be ignored. The coordinates are then reduced to 2 dimensional polar coordinates, q

and φ. By trial and error, it was decided to break up this whole area into a 30× 30

grid of q and φ coordinates. These are the bins.

Each of the 30 mean q values and mean φ values are then given a unique

number 1-30 to distinguish them, in order of increasing values. This means that

each bin is represented by a pair of numbers representing which mean q and φ is

being referred to. A schematic representation of the bins can be seen in figure 3–1.

Each white area in the grid represents a selection of pixels from the CCD camera.

For example, the third ring of white pixels contains equal numbers of q vectors

whose magnitude varies from 3.61 · 10−3 Å
−1

< |~q| < 4.54 · 10−3 Å
−1
, so the

mean q value of this q ring would be the average of the extremes, or 4.07·10−3 Å−1.

The intensity-intensity correlation functions are then averaged over these bins.

A representation of the number of pixels per bin can be seen in figure 3–3. Each

bin has a mean q and φ value. The horizontal axis is the corresponding q number

for each bin, and the vertical axis is the corresponding φ number for the same

bin. For simplicity, the q and φ values have been numbered 1 through 30. The

color of each square in the grid represents the value of the number of pixels at the

1 The angle θ′ is used here to distinguish this angle from the scattering angle 2θ
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Figure 3–3: A color representation of the number of pixels per bin. The horizontal
axis represent the radial component of ~q in figure 3–1. The vertical axis repre-
sents the angular component of the same figure. A region in white means that the
corresponding value of q and φ is not in the detector.

corresponding bin. A value of white signifies that such a combination of q and φ

values does not appear in the detector. For example, one can see that for the first

ring of q in figure 3–1, about less than half of the possible φ values are not blocked

by the mask. This is reflected by the fact that less than half of the squares in the

row for the first q value in figure 3–3 are non-white. Also, one sees that the areas

of the bins seem to increase as q increases. This is reflected again in figure 3–3 by

the fact that the value for the number of pixels are increasing for each bin (see

legend for values).

This number of partitions is chosen for two reasons. The first is that the

correlation functions were estimated not to change appreciably over the ranges of q

and φ averaged over. The second reason is that the areas were still big enough to

obtain an accurate average to obtain the correlation function, as described in the
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previous chapter. Some bins had very few pixels and could not be appropriately

analyzed. What was done is to remove those bins with less than 1000 pixels from

the analysis.

3.2 The Heterodyne Correlation Function

To recapitulate, the heterodyne correlation function, for the case of an

exponential correlation function, looks like this:

g2(~q, τ)− 1 =
〈I(~q, t)I∗(~q, t+ τ)〉

〈I〉2 − 1 (3.1)

g2(q, φ, t)− 1 = β(1− x)2 + x2βsinc2(ωst cosαs)sinc
2(ωst sinαs)e

− 2t
τ (3.2)

+2x(1− x)β cos(ωf t)sinc(ωst cosαs)sinc(ωst sinαs)e
− t

τ

ωf = ~q · ~U (3.3)

ωs = qγ
a

2
sin(φ− αs) (3.4)

τ =
1

Dq2
(3.5)

In the experiments, x is typically about 0.1, which means that x2 ≈ 10−2 and

x(1 − x) ≈ 9 ∗ 10−2. Thus the x2 term is 1 order of magnitude lower than the

x(1− x) term, so it is ignored.

The heterodyne correlation function then becomes:

g2(q, φ, t) = 1 + β(1− x)2 (3.6)

+2x(1− x)β cos(ωf t)sinc(ωst cosαs)sinc(ωst sinαs)e
− t

τ , (3.7)

where again, the values ωf , τ , and ωs are described in the previous equations.

Before proceeding with any analysis, it is important to observe the effect of each
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term of the function. The terms are plotted in figure 3–4. There are three time
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time(sec)

Heterodyne Function Components

g2

Figure 3–4: The heterodyne function fit components. The red is the curve with
just the diffusion component. The green is the cosine component multiplied with
the diffusion component. The blue is the sinc component multiplied with the dif-
fusion component. The black is the full g2 correlation function. The parameters
used: β(1− x)2 = 0.35, 2x(1− x)β = 0.05, ωf = π

40
, ωs =

51π
100

, τd = 200, αs = 0.

constants to worry about here: τd, the diffusion time constant, τf = π
ωf

the period

of the term due to flow, and τs = π
ωs

period of the term due to shear. All three

terms depend on the position in the detector in the following manner:

τd ∼
1

q2
(3.8)

τf ∼
1

q cosφ
(3.9)

τs ∼
1

q cosφ
(3.10)
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This means that as q increases, the g2 correlation function decays more rapidly,

due to the diffusion and the shear terms. However, at small q, the oscillatory

behaviour of the function becomes too slow to measure. It turns out that in this

case, the shear time constant is small enough that it can be neglected in the

heterodyne data. However, it is not negligible in the homodyne data, which will be

briefly described near the end of this chapter.

3.3 Simple Example: 60% ↑, Heterodyne 3

Before proceeding with fits for the whole data set, a portion of 60% ↑ het-

erodyne 3 is analysed. Recalling how the measurements were taken from the last

chapter, this means that the rubber was stretched from its previous elongation

of 40% to 60%, and sat there for a little over an hour as data was collected. As

this is the third heterodyne measurement, this measurement starts a long time

after the last stretching occurred. Thus it is expected that the rubber is reaching

equilibrium and that the dynamics should not be too fast. However the stress

strain curve is still changing with time, which signifies that the system is not yet

in equilibrium. This implies the presence of flow. It turns out it was successfully

measurable which is described here.

Figure 3–5 demonstrates a sample two-time correlation matrix for a portion of

measurement 60% ↑ heterodyne 3. The velocity is rather constant, which makes it

a good example to start with. With a simple fitting routine, the data is fit to the

following function:

g2(q, φ) = A+Be−
t
τ cos(ωt) (3.11)
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Figure 3–5: A portion of the two-time correlation matrix for measurement 60% ↑
heterodyne 3 at coordinates q(10) = 0.010747Å

−1
, φ(15) = 216.5◦

for each q and φ combination. The exponential function is added to account for a

decay of the correlation function to allow for better fits.

What is done next is to apply a fitting routine for q-ring 10. The fitting

routine is done using a non-linear least squares fit, which minimizes a χ2. A few

sample fits in figure 3–6 are shown for q-ring 10 (q(10) = 1.07 × 10−2Å
−1 ± 9.3 ×

10−4Å
−1
). As can be seen from the figure, the fits reproduce the data very well.

Since there are thousands of fits during the course of this thesis, the χ2 will not be

discussed in detail as this would detract from explaining the nature of the results.

Next, it is observed that the fitted ω parameter should follow the simple relation:

ω = ~q · ~U = qU cos(φ− αf ) (3.12)

where ~U is the flow velocity and ~q is the usual scattering vector. Thus, plotting

ω(φ) should give a cosine function, which is what is measured. The frequency, ω(φ)
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Figure 3–6: Fits for the g2 correlation functions at q(10) = 1.07 ∗ 10−2Å. The value
φ increases from left to right, top to bottom from 173◦ to 285◦. The black line is
the data and the red curve is the fitted curve. The horizontal axis specifies the
time difference τ and the vertical axis is the intensity-intensity correlation func-
tion. Each g2 is obtained from an average in t of a specific two-time correlation
matrix, as seen in figure 3–5.
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Figure 3–7: Fit results for a sample fit of the ω parameter for constant q. It is
clear that it obeys a cos(φ − φ0) behaviour. The black curve points are the fitted
omega parameters and the red curve is the fit of the black curve to equation 3.11
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Figure 3–8: Fit results of a sample fit of the ω parameter for constant φ. A nice
linear relationship is obtained which supports equation 3.13
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can be seen in figure 3–7. The black curve is the data and the red curve is the

data fit to:

A cos(φ− φ0) (3.13)

where: A = |~q|U , q = 1.07 ∗ 10−2Å−1, U ≈ 27.1 Å
s
and φ0 = 261◦.

In the same way that plotting ω(φ) should give a cosine function, a linear

function is expected by plotting ω(q). This can be seen in figure 3–8, for φ = 185◦.

Here, the red curve is just the linear function:

Aq (3.14)

where A = 16.62
radians

(Å · frame)
= 6.65

rad

Å · s
.

Using the fact that A should be A = U cos(φ− φ0) and that φ0 = 260.9◦ (from

the previous fit), the flow velocity becomes:

U =
A

cos(φ− φ0)
≈ 65.98

Å

frame
= 26.4

Å

s

which is in pretty good agreement with equation 3.3, with a 2.6% difference. In

conclusion, a flow velocity of 26.7± 5% Å
s
has been successfully measured.

Again, looking at equation 3.12, one can notice a potential problem. The

maximum frequency (when φ = φ0) ωmax = ω(q, αf) increases with increasing q.

Thus there will be regimes where either the oscillation frequency will be too fast

or too slow to measure. The low regime is when the oscillation frequency reaches a

frequency faster than π rad
frame

= 1.3s−1. The upper regime (assuming the data are

only valid for 25 frames) is π rad
25frames

= 5.0 ∗ 10−2s−1. Consequently, data outside of

this range are disregarded.
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Figure 3–9: Two-time correlation matrix for measurement 60% ↑ heterodyne 3

Since q ranges between 4.0 · 10−3Å−1 < q < 3.0 · 10−2Å−1, flow velocities are

measurable in the range of:

2
Å

s
< U < 5000

Å

s
. (3.15)

3.4 Beginning A Full Scale Fit

The last fit procedure was carried out over a small range of frames to compute

a flow velocity. One can repeat this procedure over different sets of times to obtain

a flow velocity for each time. This iterative procedure is carried out for the whole

60% ↑ 1 data.

Figure 3–9 shows the full two-time correlation function for one bin of mea-

surement 60% ↑ heterodyne 3. One can notice by eye that the dynamics of the

system have a time-dependent nature. This is due to the fact that the oscillation

period changes as the time t1 increases. The same procedure was done to fit the

flow velocities and angles as described before for g2 correlation functions averaged
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Figure 3–10: Time dependent flow velocities for measurement 60% ↑ heterodyne 3

over different portions of the two-time correlation matrix. The results of the flow

velocity and flow angles can be seen in figures 3–10 and 3–11. One can see that the

flow velocity (figure 3–10) has a rather bumpy nature.

3.5 The Full Scale Fits

Using the method described in the last section, one can obtain the flow

velocities for the whole data set. This can be seen in figure 3–12. Some fits in

figure 3–12(e) were omitted due to problems in the automated fitting procedure,

which weren’t worth fixing. The times with no data represent the fact that the

measurement was in homodyne mode, so that no flow velocity could be measured.

Consequently, the segment in time with no flow data is the second homodyne

measurement, and lasts about 420 seconds. The other two segments represent

55



1.10 1.15

 200

 250

 300

time  (104 s)

an
gl

e 
(d

eg
re

es
)

Figure 3–11: Time dependent flow angle for measurement 60% ↑ heterodyne 3

heterodyne modes 2 and 3, from left to right. This same explanation carries on for

the next two figures in this section.

The same fit for the flow angle parameter can be seen in figure 3–13. This is

an interesting result. The curve suggests that the flow does not change appreciably

in direction in time. This would agree with a stable flow pattern. To supplement

the data, the strain gauge data for the same measurements and times are included

in figure 3–14. One can see that the flow measurements agree with the strain

gauge data. As the strain rate of change slows down, so does the flow. This makes

sense as the flow is a response to the strain. Another thing to note is that the

smaller bumps in the flow data are not visible in the strain gauge data. This

suggests that these bumps are related to a local phenomenon.
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Figure 3–12: A map of the flow velocity for the whole rubber set for each stretch.
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Figure 3–13: Map of the flow angle for the whole rubber data set.
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Figure 3–14: The strain gauge data for the same measurements.
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Another interesting feature to notice is the large bumps in the strain gauge

data. They occur during the switching of modes (from homodyne to heterodyne

or vice versa). This is also noticed in the flow curves which suggests this is a

real phenomenon and not a glitch in the strain gauge reading. One possible

explanation is that it may be due to the change in intensity of the xray beam on

the sample from the switching of modes. This result is out of the scope of this

thesis and will not be discussed, but should be taken into consideration in future

experiments.

3.6 Supplemental: Homodyne Fits

Looking closely at the formula for the heterodyne g1, there is also a shear

term. Unfortunately, the shear term is a bit difficult to observe due to a com-

bination of factors. One of them is the fact that the time-dependence of the

function added by the velocity term would not allow for averaging over a large

time window, leading to noisier data. On the other hand, looking at the homodyne

data, much less of this time dependence is observed. This makes it much easier to

extract the shear.

This is seen by observing the dependence of the homodyne g2 function on

the direction of the scattering ~q vector. A way to see this is to plot for bins of

the same average ~q value but different φ values one on top of the other (after

normalizing). Such a figure can be seen in figure 3–15. Clearly, as φ changes, the

g2 function also changes. To recap, the g2 homodyne correlation function looks as

follows:

g2(q, φ, t) = 1 + βe
−2 t

τd sinc2(ωs cos(αs)t)sinc
2(ωs sin(αs)t). (3.16)

60



 20  40  60  80  100

0.4

0.6

0.8

1.0

217.571217.571

150.143

200.714

251.286

301.857

150.143

167

183.857

200.714

217.571

234.429

251.286

268.143

285

301.857

150.143

167

183.857

200.714

217.571

234.429

251.286

268.143

285

301.857

tau

g2

Figure 3–15: This is an example of a g2 while varying φ for q-ring 12. The color
bar on the right indicates to which φ each color belongs to.

It turns out that upon initial analysis, the system is not undergoing exactly

diffusion. A paper from Cipelletti discussing the non-diffusive slow dynamics of

soft matter systems finds that a more appropriate approximation is that of a

compressed exponential [19]. The equation was then modified to:

g2(q, φ, t) = 1 + βe
−2

(

t
τd

)µ

sinc2(ωs cos(αs)t)sinc
2(ωs sin(αs)t), (3.17)

where µ = 2 is taken. The importance of this analysis is to extract the φ depen-

dence of the g2 correlation function, and the approximation does not change the

results.

For these data, plotting the g2 functions as a color contour plot would give

easier comparison. An example of such a figure can be seen in figure 3–16. As φ

changes for constant q, the homodyne correlation function changes.
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Figure 3–16: Here is an example of a g2 image for q-ring 12. The g2 functions
are being plotted side by side. The color indicates height. Regions of the same
color indicate the g2 functions have the same value at those points. A frame is 2.1
seconds here.

Equation 3.16 is used to fit the data in figure 3–16. Figure 3–17 compares

data to theory. Observing by eye, it is clear that the trends agree well. The shear

parameter is around 3 Å
s
, with an angle close to the flow angle for this data set.

After the φ dependence is extracted, the original g2 functions are re-plotted for

stretch 20% ↑ 2 homodyne 2 as shown in figure 3–18. The extraction of the φ

dependence involves dividing the g2 function by the φ dependent function fitted to.

The compressed exponential term (e−(
2t
τ )

µ

) from equation 3.17 is ignored. What

this then shows is the φ independent decay term, regardless of the initial fit guess

of the compressed exponential term.

A comparison of the fits for q values 5 through 12 can be seen in figure 3–19,

showing the efficacy of this simple shear theory. The parameter β in equation 3.17

was also allowed to vary for each bin slightly (about 10%), due to the low number
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Figure 3–17: Comparison of some measured g2’s versus fitted g2’s.

 20  40  60  80  100
0.4

0.6

0.8

1.0

173

197.824

222.647

247.471

272.294

tau

g2
/s

he
ar

te
rm

Figure 3–18: A plot of the g2 functions on top of each other for q-ring 18, with the
fitted shear term divided out. The color bar on the right indicates the correspond-
ing φ for each g2.
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Figure 3–19: A plot of the original g2 and it’s shear-extracted version plotted side-
by-side in sequence from q-ring 5 to 12. The horizontal axis is the time delay τ .
The color scale indicates the angle for the respective q-ring. It is clear in these fig-
ures that the decay is not a simple exponential in t. The decay time also decreases
for high q.
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of speckles averaged over, as was explained in chapter 2. What is interesting here

is that only a few parameters, τd, αs, γ and β were used to fit gigabytes of data2 .

The results show that the φ dependence is adequately removed by use of these

parameters, and allows the examination of this φ independent decay term. From

the plots in figures 3–18 and 3–19, it is clear that the decay is not exponential.

One indicator is the fact that the slope of the function is zero at zero time. Not

only is the flow velocity gradient well described with this theory, it paves the

path for further analysis into the random component of the data. This is rather

powerful, as it has allowed for the filtering of gigabytes of data into two distinct

phenomena: flow and randomness.

On the flow side, these data show that there’s a difference of 3
Å

s
from the

center of the scattering volume to the edges. The velocity for this stretch (20% ↑

homodyne 2) can be inferred from the following heterodyne measurement. The

velocities for these different stretches ranged from close to zero to near 80
Å

s
. A

shear velocity gradient of 3
Å

s
is comparable in size to the flow velocity and shows

that it is important for the measurements.

2 Again, β was allowed to vary due to the fact of the low number of speckles
sampled. Its value varies in a random manner, fluctuating near 10% of its mean
value for each q ring as expected.
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Figure 3–20: Contour lines of hyperbolic flow

For the randomness, the data demonstrate that the randomness is isotropic

(not φ dependent). Furthermore, it cannot be simple diffusion, which is repre-

sented by a simple exponential in equation 3.16 but rather a compressed expo-

nential as in equation 3.17. This is an interesting conclusion signifying that the

physics of the random motion of these materials needs to be revisited.

The data results now give enough information as to guess a location where

the scattering volume is, with respect to the nominal center of the flow pattern.

One would expect hyperbolic flow from the measurements, and a schematic rep-

resentation of such flow is given in figure 3–20. Figure 3–21 shows an example of

the simple shear with the flow pointing along the x-axis of the graph and the shear

velocity pointing the same direction, along the y-axis. The flow measured points

on average at 260◦. This suggests that for a hyperbolic flow, the scattering volume
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Figure 3–21: A sample flow pattern for flow and shear in the x-direction.

must be in the upper right quadrant or the lower left quadrant of the sample,

closer to the horizontal axis, according to figure 3–20. This is in accordance with

the measurements, which estimate that the scattering volume was close to the

center of the sample.

Another interesting thing is that the random motion is better approximated

by a compressed exponential, as mentioned in the earlier section. This means

that the sample is not undergoing conventional diffusion. This is interesting in

the respect that it is believed that samples such as this involve random processes

called jamming [20]. The time scale of this process is longer than the time scales

analysed here. It would be interesting to continue measurements on systems such

as these for longer time scales.
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CHAPTER 4

Analysis and Conclusion

The dynamics of an ethylene-propylene cross-linked polymer were analyzed

through xray scattering from a partially coherent beam. Xray scattering was

chosen due to the opaque nature of the sample, and the small length scales at

which the dynamics occur. Two techniques were demonstrated. One, homodyne

XIFS, measured the coherent scattering from the sample to study the intensity-

intensity correlation function. The other, heterodyne XIFS, probed the electric

field correlation function. The homodyne XIFS allowed for the measurement

of the velocity gradient, as well as the diffusive nature of the elastomer. The

heterodyne XIFS allowed for the measurement of a uniform velocity. The analysis

of the two techniques worked on here opens two interesting branches of study: the

measurement of flow patterns and the random behaviour of soft matter systems

with strong dynamics.

The homodyne and heterodyne data were both necessary in order to measure

the flow patterns. The uniform flow velocity was extracted from the heterodyne

data. It was necessary to modify the analysis of the data in order to be able to use

a time-independent theory to measure time-dependent flow velocities. Fit results of

the velocity showed it to have a strong time-dependent nature, as expected. It also

changed in the same manner as the stress-strain curve. Fit results of the flow angle

showed it to stay constant, near the same angle, implying a constant flow pattern.
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The homodyne data provided information on the velocity gradient. Fit results of

the shear velocity showed it to vary the flow velocity an appreciable amount over

the window observed. They also showed that the type of shear occurring is simple

shear.

What is interesting here is that the analysis showed that the measurements

and analysis can obtain information about flow velocities. Furthermore, it also

showed that the analysis can extract the time dependence of these velocities. This

opens up the possibility of a wide range of experiments involving measuring the

flow velocity of fluids, as well as their gradients. These experiments can even

involve the most opaque of fluids, unlike traditional light scattering experiments.

One possible experiment, which will be the focus of my PhD studies, is the

measurement of flow velocities along boundary walls. Currently, the boundary

conditions of the flow velocity along channels is still not known. This technique

would provide a method of addressing this question. The information of these

boundary conditions becomes more important as the effective size of the channels

where the fluids flow gets smaller and smaller. This is especially important in

nanofluidic devices, which are widely used in biochemistry[21].

There is another interesting branch of study that these techniques pave the

way to. It is the analysis of the random motion in these types of systems. Further

analysis of the homodyne data demonstrated that the flow velocity profile of

the system can be separated from the random diffusive nature of the elastomer.

This necessitated a good understanding of the type of velocity gradient observed,

and to what order it contributed to the overall correlation function. With the

69



gradient understood, a simple division of its contribution to the homodyne

correlation function from the data allowed for the probing into another important

phenomenon: the randomness of the particles in the elastomer. The random

motion was shown to be isotropic and dependent upon a time scale longer than

that of the velocity gradient (shear). Further analysis of the data on longer time

scales will help to better understand the phenomenon.

This is interesting in the respect that the random dynamics of soft matter

systems are still not well understood. Evidence suggests that these systems

undergo what is called “non-diffusive behaviour” [19]. This term is characterized

by a deviation from usual Brownian motion of particles. Such deviations can occur

in densely packed systems where the motion of particles are partially impeded by

their neighbors. An example of this is jamming, where, as the particles diffuse,

they get into configurations that keep them from moving further([20], [22]). Such

an idea can be seen for example, in arched bridges made of bricks, where the

bricks at the center of the bridge are kept from falling due to the fact that they

are “locked” by the surrounding bricks. These “locked” configurations can persist

over time scales longer than the diffusion time and can be observed by the longer

range order in time of the correlation function. Currently, these dynamics are not

well understood and under active study. Two examples can be seen in references

[23], and [24], where the shape of the intensity-intensity correlation function is

examined for colloidal particles. Another example can be seen in reference [25],

where jamming is observed through the examination of stress-strain experiments.
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This behaviour can be observed by the examination of the intensity-intensity

correlation functions from coherent radiation. What generally happens is that the

correlation function no longer has a simple exponential decay shape, but rather, a

“compressed exponential” [19]. In the measurements here, this is what is observed,

as was seen in the last chapter. The separation of the correlation function into a

part due to shear velocity gradients and another part due to the random motion

helped better observe this phenomenon. Although the system was not measured

over enough time to determine what kind of random motion is occurring, the

evidence remains conclusive that the elastomer is not undergoing regular Brownian

motion. These are exciting results which pave a way to further study and better

understanding these materials.

This analysis successfully demonstrated that it can be applied to two distinct

and important branches of study: flow patterns and random behaviour of particles

in viscoelastic materials. Both branches are equally powerful in their own right. As

was seen, they open the possibility of a new set of experiments to be done to help

further understand the inner workings of materials. As xray synchrotron sources

are becoming more and more coherent, these results will become easier and easier

to measure.

71



APPENDIX A

Shear Velocity

Figure A–1 demonstrates simple shear. The shear velocity points in the y

direction. The velocity increases linearly as x increases.

The shear velocity is then:

~v(x) = γxŷ, (A.1)

where γ is some arbitrary constant. This shear velocity can then be represented as

the following matrix:

←→
Γ = γ













0 0 0

1 0 0

0 0 0













. (A.2)

Suppressing the matrix notation for simplicity, this leaves the shear velocity to be:

V = ΓX, (A.3)

where V is the velocity, X is the position and Γ is the shear tensor.

Now, the shear velocity does not necessarily point in the ŷ direction in the

experiments. A rotation of the coordinate axes must be permitted. This rotation

can be seen in figure A–2 and is represented by a rotation matrix1 .

1 Note that the axes have been relabeled. The non-prime coordinate system is
the laboratory coordinate system
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Figure A–1: Figure of simple shear.
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Figure A–2: Representation of simple shear along a plane which has an angle αs

with respect to the x axis.
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To change to this new reference frame, the following transformations are made

(again suppressing matrix notation):

X ′ = RX (A.4)

V ′ = RV, (A.5)

where:

R =













cosαs sinαs 0

− sinαs cosαs 0

0 0 1













(A.6)

This brings the shear equation to be:

V ′ = Γ′X ′ (A.7)

RV = Γ′RX (A.8)

V = R−1Γ′RX, (A.9)

where now:

Γ = R−1Γ′R (A.10)

Γ =













− cosαs sinαs − sin2 αs 0

cos2 αs cosαs sinαs 0

0 0 0













(A.11)

One can see this is correct by examining the simple cases when αs is 0,
π
2
etc. A

plot for αs = 25◦ is shown as well, just to be convinced this is correct.
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Figure A–3: Plot of the shear for 25◦.
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APPENDIX B

The g1 function

For a particle undergoing diffusion with an average velocity ~̄V = ~U +
←→
Γ · ~r,

a paper by G.G. Fuller[15], gives g1 to be:

g1(~q, t) = e−{
∫ t

0
[Dq′2(t′)+i~U ·~q′(t′)dt′}

∫ ∫ ∫

d3xI(~x)e−i
∫ t

0
dt′~q′(t′)·←→Γ ·~x (B.1)

d~q′

dt
= −ΓT · ~q′, ~q′(0) = ~q (B.2)

where D is the diffusion constant,
←→
Γ is the shear velocity gradient and I(~x) is the

intensity of the incoming beam. So to get the heterodyne correlation function, the

following must be solved:

d~q′

dt
= −←→Γ T · ~q′ (B.3)

= γ













cosαs sinαs − cos2 αs 0

sin2 αs − cosαs sinαs 0

0 0 0













· ~q′ (B.4)

which yields:

dq′x
dt

= γ(cosαs sinαsq
′
x − cos2 αsq

′
y) (B.5)

dq′y
dt

= γ(sin2 αsq
′
x − sinαs cosαsq

′
y) (B.6)

dq′z
dt

= 0 (B.7)
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with:

~q′(0) = (qx, qy, qz) (B.8)

By noticing that:

dq′x
dt

(tanαs) =
dq′y
dt

(B.9)

And taking the derivative with respect to time of equations B.5 and B.6, substitut-

ing in B.9, it follows that:

d2q′x(t)

dt2
= 0 (B.10)

d2q′y(t)

dt2
= 0 (B.11)

This means that:

q′x = C1xt+ qx (B.12)

q′y = C1yt + qy (B.13)

q′z = qz (B.14)

by substituting eq B.12 into the eq B.5 and eq B.9, two equations with two

unknowns are obtained:

C1x(tanαs) = C1y (B.15)

C1x = γ(cosαs sinαs(C1xt+ qx)− cos2 αs(C1yt+ qy)) (B.16)
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Substituting eq B.15 into eq B.16 yields a simple equation (time dependence

cancels as should be expected):

C1x = γ(cosαs sinαsqx − cos2 αsqy) (B.17)

= qγ cosαs sin(αs − φ) (B.18)

Carrying out the same procedure for y produces a similar result:

C1y = γ(sin2 αsqx − cosαs sinαsqy) (B.19)

= qγ sinαs sin(αs − φ) (B.20)

(Where the simplification qx = q cosφ and qy = sinφ has been made) Finally, the

solution looks as follows:

~q′ = ~qsγt+ ~q (B.21)

where

~qs = q













cosαs sin(αs − φ)

sinαs sin(αs − φ)

0













(B.22)

~q =













qx

qy

qz













(B.23)

To solve the space integral of eq 2.8 it is necessary to calculate:

∫ t

0

dt′~q′(t′) · ←→Γ · ~x =

∫ t

0

dt′(~qsγt+ ~q) · ←→Γ · ~x (B.24)
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On calculating the first term:

~qsγt ·
←→
Γ · ~x = qγt













cosαs sin(αs − φ)

sinαs sin(αs − φ)

0













T

·γ













− cosαs sinαs − sin2 αs 0

cos2 αs cosαs sinαs 0

0 0 0













·













x

y

z













= qγ2t













cosαs sin(αs − φ)

sinαs sin(αs − φ)

0













T

·













− cosαs sinαsx− sin2 αsy

cos2 αsx+ cosαs sinαsy

0













= qγ2t[(cosαs sin(αs − φ))(− cosαs sinαsx− sin2 αsy)

+(cosαs sin(αs − φ))(cosαs sinαsx+ sin2 αsy)]

= 0
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By refactoring the expression, it is clear that it yields zero. Calculating the second

term gives:

~q · ←→Γ · ~x = q













cosφ

sinφ

0













T

· γ













− cosαs sinαs − sin2 αs 0

cos2 αs sinαs cosαs 0

0 0 0













·













x

y

z













(B.25)

= qγ













cosφ

sinφ

0













T

·













− cosαs sinαsx− sin2 αsy

cos2 αsx+ sinαs cosαsy

0













(B.26)

= qγ[− cos φ cosαs sinαsx− cosφ sin2 αsy

+ sinφ cos2 αsx+ sinφ sinαs cosαsy] (B.27)

= qγ sin(φ− αs)(x cosαs + y sinαs) (B.28)

= qγ~r · n̂⊥ cos(φ− αs) (B.29)

= q|~vs| sin(φ− αs) (B.30)

= ~q · ~vs (B.31)

Where ~vs is the shear velocity and π
2
+ αs − φ is the angle between ~q and ~vs (see

figure). (The last few steps were just to verify that eq B.28 leads to the correct

result). Solving for eq B.24:

∫ t

0

dt′~q′(t′) · ←→Γ · ~x =

∫ t

0

dt′qγ sin(φ− αs)(x cosαs + y sinαs) (B.32)

= qγt sin(φ− αs)(x cosαs + y sinαs) (B.33)
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The spatial integral in eq B.33 is then:

∫ a
2

− a
2

∫ a
2

− a
2

∫ d
2

− d
2

dxdydzIe−i(qγt sin(φ−αs)(x cosαs+y sinαs)) (B.34)

= Ida2sinc(ωst sinαs)sinc(ωst cosαs) (B.35)

ωs = qγ
a

2
sin(φ− αs) (B.36)

Where a top-hat shape was assumed for the intensity I (constant intensity in the

volume considered and that the volume integrated on is a square with sides a and

depth d) The full heterodyne scattering function is then:

G1(~q, t) = e−
∫ t
0
[Dq′2(t′)+i~U ·~q′(t′)]dt′Ida2sinc(ωst sinαs)sinc(ωst cosαs) (B.37)

d~q′

dt
= −ΓT · ~q′, ~q′(0) = ~q (B.38)

Now what is the ~U · ~q term?

~U · ~q′ = ~U · (~qsγt+ ~q) (B.39)

= U













cosαf

sinαf

0













·













γt













− sinαs cos(φ− αs)

cosαs cos(φ− αs)

0













+ ~q













(B.40)

= Uq[γt sin(αf − αs) cos(φ− αs) + cos(αf − φ)] (B.41)

This then gives:

−i
∫ t

0

dt′~U · ~q′ = −i
∫ t

0

dt′Uq[γt sin(αf − αs) cos(φ− αs) + cos(αf − φ)](B.42)

= −iqUt[γ
t

2
sin(αf − αs) cos(φ− αs) + cos(αf − φ)] (B.43)
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Assuming the shear is negligible:

q′2 = ~q′ · ~q′ = q2sγ
2t2 + γt~qs · ~q + q2 (B.44)

= q2 +O(γt) (B.45)

The diffusion term in the scattering function is just:

∫ t

0

Dq2dt′ = Dq2t (B.46)

This then leaves the whole g1 function to look like (g1(τ) =
G1(τ)
G1(0)

):

g1(~q, t) = e−
t
τ eiqUtA(αf ,αs,φ,t)sinc(ωst sinαs)sinc(ωst cosαs) (B.47)

A(αf , αs, φ, t) = [γ
t

2
sin(αf − αs) cos(φ− αs) + cos(αf − φ)] (B.48)

ωs = qγ
a

2
sin(φ− αs) (B.49)

τ = (Dq2)−1. (B.50)

In general, the effect of the shear is negligible compared to the effect of the flow

velocity, so A can be approximated to be:

A(αf , αs, φ, t) ≈ cos(αf − φ). (B.51)

This gives the g1 correlation function to be:

g1(~q, t) = e−
t
τ eiqUt cos(αf−φ)sinc(ωst sinαs)sinc(ωst cosαs) (B.52)
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APPENDIX C

Rubber Information

The type of material measured was ethylene-propylene rubber (EPR, Buna

AP 301). This is a synthetic material and was created in a lab under controlled

conditions. The filler used for the rubber was carbon black N330 (Sid Richardson).

The cross-linking agent is dicumyl peroxide [26]. The rubber was stretched at

different intervals. Here is a table of describing the measurements of the elastomer:
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Stretch # % Elongation Name
1 0% 0%
2 20% 20% ↑ 1
3 40% 40% ↑ 1
4 60% 60% ↑ 1
5 40% 40% ↓ 1
6 20% 20% ↓ 1
7 0% 0% ↓ 1
8 20% 20% ↑ 2
9 40% 40% ↑ 2
10 60% 60% ↑ 2

Table C–1: A list of the elongations per stretch number

Table C–2: Measurement types for each frame in a stretch

Frames Type Time Per Frame
1 - 100 Heterodyne 1 2.5s
100 - 110 Dark 2.5s
111 -210 Homodyne 1 2.1s
211 - 220 Dark 2.1s
221 - 420 Heterodyne 2 2.5s
421 - 430 Dark 2.5s
431 - 630 Homodyne 2 2.1s
631 - 640 Dark 2.1s
641 - 1140 Heterodyne 3 2.5s
1141 - 1150 Dark 2.5s
1151 - 1650 Homodyne 3 2.1s
1651 - 1660 Dark 2.1s
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