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PREFACE

This book is the result of my teaching efforts during the last ten years at the Royal Institute of Technology.
The purpose is to present the subject of polymer physics for undergraduate and graduate students, to focus
the fundamental aspects of the subject and to show the link between experiments and theory. The intention
is not to present a compilation of the currently available literature on the subject. Very few reference citations
have thus been made. Each chapter has essentially the same structure: starting with an introduction, continuing
with the actual subject, summarizing the chapter in 300-500 words, and finally presenting problems and a
list of relevant references for the reader. The solutions to the problems presented in Chapters 1~12 are given
in Chapter 13. The theme of the book is essentially polymer science, with the exclusion of that part dealing
directly with chemical reactions. The fundamentals in polymer science, including some basic polymer chemistry,
are presented as an introduction in the first chapter. The next eight chapters deal with different phenomena
(processes) and states of polymers. The last three chapters were written with the intention of making the
reader think practically about polymer physics. How can a certain type of problem be solved? What kinds
of experiment should be conducted?

This book would never have been written without the help of my friend and adviser, Dr Anthony Bristow,
who has spent many hours reading through the manuscript, criticizing the content, the form and the
presentation. 1 also wish to thank my colleagues at the Department, Maria Conde Brafia, Kristian Engberg,
Anders Gustafsson, Mikael Hedengvist, Anders Hult, Jan-Fredrik Jansson, Hakan Jonsson, Joanna Kiesler, Sari
Laihonen, Bengt Ranby, Patrik Roseen, Fredrik Sahlén, Marie-Louise Skyff, Bengt Stenberg, Bjém Terselius,
Toma Trinkner, Goran Wiberg and Jens Viebke, who have provided help of different kinds, ranging from
riticism of the manuscript to the provision of micrographs, etc. Special thanks are due to Dr Richard Jones,
Cavendish Laboratory, University of Cambridge, UK, who read through all the chapters and made some very
constructive criticisms. 1 also want to thank friends and collat from other d
Profs Richard Boyd, University of Utah, USA; Andrew Keller, University of Bristol, UK; Davld Bassett,
University of Reading, UK; Clas Blomberg, Royal Institute of Technology, Sweden; Josef Kubat, Chalmers
University of Technology, Sweden; Torbjorn Lagerwall, Chalmers University of Technology, Sweden, and
Mats Ifwarson, Studsvik Material AB, Sweden. I wish to emphasize, however, that I alone have responsibility
for the book's shortcomings.

Iam also indebted to Chapman & Hall for patience in waiting for the manuscript to arrive and for performing
such an excellent job in transforming the manuscript to this pleasant shape. More than anything, I am grateful
to my family for their support during the almost endless thinking and writing process.

UIf W. Gedde
Stockholm






A BRIEF INTRODUCTION TO POLYMER

SCIENCE

1.1 FUNDAMENTAL DEFINITIONS

Polymers consist of large molecules, i.e. macromol-
ecules. According to the basic IUPAC definition
(Metanomski 1991):

A polymer is a substance composed of molecules
characterized by the multiple repetition of one or
more species of atoms or groups of atoms (constitu-
tional repeating units) linked to each other in
amounts sufficient to provide a set of properties
that do not vary markedly with the addition of one
or a few of the constitutional repeating units.

The word polymer originates from the Greek words
‘poly’ meaning many and ‘mer’ meaning part.
Figure 1.1 shows the structure of polypropylene, an
industrially important polymer. The constitutional
repeating units, which are also called simply ‘repeat-
ing units’, are linked by covalent bonds, and the
atoms of the repeating unit are also linked by
covalent bonds. A molecule with only a few constitu-
tional repeating units is called an oligomer. The
physical properties of an oligomer vary with the

H cHy
Monomer l!J=C
H OH
HoomfH cHlH ol
Polymer H—é—(I) é—«': é—(‘)—H
ol bl b
= 10001000000

Figure 1.1 The structure of a monomer (propylene) and a
polymer (polypropylene). The constitutional repeating unit
is shown between the brackets.

addition or removal of one or a few constitutional
repeating units from its molecules. A monomer is the
substance that the polymer is made from, which in
the case of polypropylene is propylene (propene) (Fig.
1.1). The process that converts a monomer to a
polymer is called polymerization.

The polymers dealt with in this book are exclus-
ively organic carbon-based polymers. Other common
elements in the organic polymers are hydrogen, oxy-
gen, nitrogen, sulphur and silicon. Table 1.1 presents
some typical bond energies and bond lengths of
different covalent and secondary bonds. When assess-
ing the stability of primary and secondary bonds,
these energies are compared with the thermal energy,
ie. RT, where R is the gas constant and T is the
absolute temperature given in kelvin. The thermal
energy is approximately 2.5 kj mol~* at 300K and
approximately 4 kj mol ™" at 500 K.

The large difference in dissociation energy and
bond force constant ('stiffness’) between the cova-
lent bonds (so-called primary bonds) and the weak
secondary bonds between different molecules is of
great importance for polymer properties. The identity
of the molecules, i.e. the entities linked by covalent
bonds, is largely preserved during melting. There are
many examples of polymers that degrade early at low
temperatures but that involve only a few of the
existing primary bonds. Melting involves mainly the
rupture and re-establishment of a great many second-
ary bonds.

Polymer crystals show very direction-dependent
(anisotropic) properties. The Young's modulus of

|

p ylene at room temp is app a
300 GPa'in the chain-axis direction and only 3 GPa
in the transverse directions (Fig. 1.2). This considerable

difference in modulus is due to the presence of two
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Table 1.1 Dissociation energy and le

ngth of different bonds

Bond type Energy (k] mol ') Bond length (nm)
Covalent bond 300-500 0.15 (C-C; C-N; C-0)
0.11 (C-H)
0.135 (C=C)
van der Waals bond 10 04
Dipole-dipole bond >10 04
Hydrogen bond 10-50 03

types of bond connecting the different atoms in the
crystals: strong and stiff bonds along the chain axis
and weak and soft secondary bonds acting in the
transverse directions (Fig. 1.2). A whole range of other
propertis, e the refracive index, aso show strong

The of the

two different stereoforms (configurational base units)
for each constitutional repeating unit (Fig. 1.3). The
following convention is adapted to distinguish
between the two stereoforms. One of the chain ends
is first selected as the near one. The selected
carbon atom (the one with the attached

polymer molecules in a material is enormously
important. The Young's modulus of a given polymer
can be changed by a factor of 100 by changing the
degree of chain orientation. This is an important topic
discussed in Chapter 9.

1.2 CONFIGURATIONAL STATES

The term configuration refers to the ‘permanent’
stereostructure of a polymer. The configuration is
defined by the polymerization method, and a polymer
preserves its configuration until it reacts chemically.
A change in configuration requires the rupture of

chemical bonds. Different exist in

X atom (group of atoms) should be pointing upwards.
The term d form is given to the arrangement with
the X group pointing to the right (from the observer
at the near end). The | form is the mirror-image of
the d form, i.e. the X group points in this case to the
left. This convention is, however, not absolute. If the
near and far chain ends are reversed, ie. if the chain
is viewed from the opposite direction, the d and |
notation is reversed for a given chain. When writing
asingle chain down on paper, the convention is that
the atoms shown on the left-hand side are assumed
to be nearer to the observer than the atoms on the
right-hand side.

Tacticity is the orderliness of the succession of
I base units in the main chain of a

polymers with stereocentres (tacticity) and double
bonds (cis and trans forms). A polymer with the
constitutional repeating unit ~CH,~CHX~ exhibits

E,=300 GPa

polymer molecule. An isotactic polymer is a regular
polymer consisting only of one species of configura-
tional base unit, i.e. only the d or the I form (Fig, 1.4).

covalent (strong) bond

secondary (weak) bond

——® £=3 GPa

Figure 1.2 Schematic representation of a polymer crystal illustrating its anisotropic nature. The moduli for polyethylene

parallel () and transverse (F,) to the chain axis are shown.
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d (right-hand) form

1(left-hand) form

Figure 1.3 Configurational base units of a polymer with the constitutional repeating unit —CH,~CHX~. The "X" is an

atom or a group of atoms different from hydrogen.

Isotactic chain

Syndiotactic chain

HHHHHHH

Figure 1.4 Regular tactic chains of [~CH,CHX-],, where X is indicated by a filled circle.

These can be converted into each other by simple
rotation of the whole molecule. Thus, in practice there
is no difference between an all-d chain and an all-l
chain. A small mismatch in the chain ends does not
alter this fact. A syndiotactic polymer consists of an
alternating sequence of the different configurational
base units, ie...dldIdldldldl... (Fig. 1.4). An atactic
polymer has equal numbers of randomly distributed
configurational base units.

Carbon-13 nuclear magnetic resonance (NMR) is
the most useful method of assessing tacticity. By C-13
NMR it is posible to assess the different sequential

i of adjacent configurational units that are
called dyads, triads, tetrads and pentads. The two
possible dyads are shown in Fig. 1.5. A chain with
100% meso dyads is perfectly isotactic whereas a
chain with 100% racemic dyads is perfectly
syndiotactic. A chain with a 50/50 distribution of
meso and racemic dyads is atactic.

Triads express the sequential order of the
configurational base units of a group of three adjacent
constitutional repeating units. The following triads are
possible: mm, mr and rr (where meso=m;
racemic = ). Tetrads include four repeating units and
the following six sequences are possible: mmm, mmr,

mrm, mir, rmr and rrr. Sequences with a length of up
to five constitutional repeating units, called pentads,
can be distinguished by C-13 NMR. The following
ten different pentads are possible: mmmm, mmmr,
mmrm, mmer, mrrm, rmme, rmm, meer, mrr and e,
Polymers with double bonds in the main chain, .g,
polydienes, show different stereostructures. Figure 1.6
shows the two stereoforms of 1,4-polybutadiene: cis
and trans. The double bond is rigid and allows no
torsion, and the cis and trans forms are not transferable
into each other. Polyisoprene is another well-known
example: natural rubber consists almost exclusively
of the cis form whereas gutta-percha is composed of
the tans form. Both polymers are synthesized by

b *

meso o

racemic ?

:

Figure 1.5 Dyads of a vinyl polymer with the con-
stitutional repeating unit ~CH,~CHX-, where the X group
is indicated by a filled circle.
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Trans

Figure 1.6 Stereoforms of 1,4-polybutadiene showing only the constitutional repeating unit with the rigid central double

bond.

‘nature’,

A | state refers to the stereostructure

and this shows that gularity was
achieved in nature much earlier than the discovery of
coordmahon polymerization by Ziegler and Natta.
The of diene ma;
involve different addition reactions (Fig. 1.7). 1,2
addition yields a polymer with the double bond in
the pendant group whereas 1,4 addition gives a
polymer with the unsaturation in the main chain.
Vinyl polymers (~CH,~CHX-) may show different
configurations with respect to the head (CHX) and tail
(CH,): head-to-head, with ~CHX bonded to CH,~ and
head-to-head-tail-to-tail, with —CHX bonded to
—CHX followed by ~CH, bonded to —CH, (Fig. 1.8).
The configurational state determines the low-

temperature physical structure of the polymer. A

of a molecule defined by its sequence of bonds and
torsion angles. The change in shape of a given
molecule due to torsion about single (sigma) bonds
is referred to as a change of conformation (Fig. 1.9).
Double and triple bonds, which in addition to the
rotationally symmetric sigma bond also consist of one
or two rotationally asymmetric pi bonds, permit no
torsion. There are only small energy barriers, from a
few to 10 k) mol™ ", involved in these torsions. The
conformation of polymers is the subject of Chapter
2. The multitude of conformations in polymers is very
important for the behaviour of polymers. The rapid
change in conformation is responsible for the sudden
extension of a rubber polymer on loading and the

polymer with an irregular confi e.g. an atactic
polymer, will never crystallize and freezes to a glassy
structure at low temperatures, whereas a polymer with
aregular configuration, e.g. an isotactic polymer, may
crystallize at some temperature to form a semicrystal-
line material. There is a spectrum of intermediate cases
in which crystallization occurs but to a significantly
reduced level. This topic is further discussed in
Chapters 5 and 7.

[elej oo}
14 addition: R = CHy=CH-CH=CHy = R-CHy CH=CH-CHy;
@
1.2 addition: R = CHy=CH-CH=CHy——* R-CHy-CH-CH=CHy,

Figure 1.7 Different additions of butadiene.

ily high ultimate bility of the
network. This is the topic of Chapter 3. The high
segmental flexibility of the molecules at high
and the low flexibility at low
temperatures is a very useful signature of a polymer.

temperatures

Figure 1.8 Head-to-tail configuration (upper chain) and a
chain with a head-to-head junction followed by a tail-to-tail
sequence (lower chain).
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Figure 1.9 Examples of conformational states of a few
repeating units of a polyethylene chain. The right-hand form
is generated by 120° torsion about the single bond indicated
by the arrow.

13 HOMOPOLYMERS AND COPOLYMERS

A homopolymer consists of only one type of
constitutional repeating unit (A). A copolymer, on
the other hand, consists of two or more constitutional
repeating units (A, B, etc). Several classes of
copolymer are possible: block copolymers, altema-
ting copolymers, graft copoly and
copolymers (Fig. 1.10).

The different copolymers with constitutional
repeating units A and B are named according to the
follows: un-

source-based nomenclature rules as
specified type, poly(A-co-B); statistical copolymer,
poly(A-stat-B); alternating copolymer, poly(A-alt-B);
graft copolymer, poly(A-graftB). Note that the
constitutional repeating unit of the backbone chain of
the graft copolymer is specified first.

Homopolymer

Block copolymer

Graft copolymer

Alternating copolymer

Statistical copolymer

Homopolymers and copolymers 5

A random copolymer s a special type of statistical
copolymer. The probability of finding a given
constitutional repeating unit at any given site in a
random copolymer is independent of the nature of
the adjacent units at that position. A statistical
copolymer may, however, obey known statistical
laws, e.g. Markovian statistics. The term ‘random
copolymer’ is occasionally used for polymers with
the additional restriction that the constitutional
repeating units are present in equal amounts. The
notation for a random copolymer is poly(A-ran-B).

Copolymerization provides a route for making
polymers with special, desired property profiles. A
statistical copolymer consisting of units A and B, for
instance, has in most cases properties in between those
of the homopolymers (polyA and polyB). An
important deviation from this simple rule arises if
either polyA or polyB is semicrystalline. The statistical
copolymer (polyA-stat-B)) is for most compositions
fully amorphous. Block and graft copolymers form in
most cases a two-phase morphology and the different
phases obey properties similar to those of the
respective homopolymers.

Di-block (A-B) and tri-block (A-B-A) copolymers
are made by so-called living polymerization (section
17). These polymers have found applications as

I and as p to
increase the adhesion between the phases in polymer
blends.

Terpolymers consist of three different repeating
units: A, B and C.

000059039000I000000I000IIIIIID

D000D00000000000006005000000II3)

4 ...0'

Jﬂ""' o
D500000gO000833500000000

Dﬂ)"“‘.“. Sooe,
e .....

00600080076007660600)606007000)

D00800000006005007)00 0007077080

Figure 1.10 Homopolymers and different classes of copolymers. Unit A: O unit B: @.
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1.4 MOLECULAR ARCHITECTURE

Molecular architecture deals with the shape of a
polymer molecule. Examples of polymers with
different molecular architecture are shown in Fig, 1.1,
A short-chain branch has an oligomeric nature
whereas a long-chain branch is of polymeric length.
A network polymer consists of many interconnected
chain segments and many different molecular paths
exist between any two atoms. A dendrimer or
hyperbranched polymer, not shown in Fig. 111,
consists of a constitutional repeating unit including a
branching group. The number of branches increases
thus according to a power law expression with the
number of the ‘generation” of the polymer.

The molecular architecture is important for many
properties. Short-chain branching tends to reduce
crystallinity. Long-chain branches have profound
effects on rheological properties. Typical of ladder
polymers is a high strength and a high thermal
stability. Hyperbranched polymers consist of mol-
ecules with an approximately spherical shape, and it
has been shown that their melt viscosity is
significantly lower than that of their linear analogue
with the same molar mass. Crosslinked polymers are
thermosets, ie. they do not melt. They also show
little creep under constant mechanical loading.

Linear T T

T

S
/@DJ/C\

Short-chain branched

Long-chain branched

Ladder

Star-branched

Network

/
4

Figure 1.1 Schematic representation of structures of
polymers with diferent molecular architecture.

1.5 COMMON POLYMERS

A list of common polymers with their constitutional
repeating units is presented in Table 1.2. Most
polymers are named polyx. If ‘x’ is a single word,
the name of the polymer is written out directly, as in
the case of polystyrene, However, if ‘x’ consists
of two or more words, parentheses should be used,
as in the case of poly(methyl methacrylate). There are
two different systems for naming polymers. The
structure-based names are rigorous but seldom used
in practice. They are simply given as poly(constitu-
tional repeating unit) and the rules of nomenclature
for the constitutional repeating unit are no different
from those of any other organic substance. The
source-based names attach ‘poly’ to the name of
the monomer. Polystyrene is a source-based name. Its
structure-based is poly(1-phenylethylene).
Polyethylene (source-based name) is denoted poly-

methylene according to the structure-based system.
The names of polymers treated in this book are almost
exclusively related to the source-based system. Most
polymers have abbreviated names, which are also
presented in Table 1.2. It is clearly acceptable to use
abbreviations in scientific papers and technical reports,
but the full name of the polymer should be given the
first time it appears in the text. There are numerous
other names of polymers used frequently. ‘Nylon’,
‘Kevlar' and ‘Vectra' are a few well-known
examples. The source-based or structure-based names
are preferred over these truly trivial names.

1.6 MOLAR MASS

The enormous size of polymer molecules gives them
unigue properties. Figure 1.12 shows the influence of
molar mass on the melting point of polyethylene. Low
molar mass substances (oligomers) show a strong
increase in melting point with increasing molar mass,
whereas a constant melting point is approached in the
polymer molar mass range. Other polymers show a
similar behaviour.

Other properties such as fracture toughness and
Young's modulus show a similar molar mass
dependence, with constant values approached in the
high molar mass region. Polymer properties are often
obtained in the molar mass range from 10000 to
30000 g mol~'. Rheological properties such as melt
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Melting point (°:C)
@
g

50
100 1000 10 000
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100000

Figure 1.12 Molar mass dependence of the equilibrium
melting point of oligo- and polyethylene. Drawn after data
collected by Boyd and Phillips (1993).

viscosity show a progressive strong increase with
increasing molar mass even at high molar masses (see
Chapter 6). High molar mass polymers are therefore
difficult to process but, on the other hand, they have
very good mechanical properties in the final products.
There is currently no polymerization method
available that yields a polymer with only one size of
molecules. Variation in molar mass among the
different molecules is characteristic of all synthetic
polymers. They show a broad distribution in molar
mass. The molar mass distribution ranges over three
to four orders of magnitude in many cases. The full
representation of the molar mass distribution is
currently only achieved with size exclusion chroma-
tography, naturally with a number of experimental
limitations. Other methods yield different averages.
The most commonly used averages are defined as
follows. The number average is given by:
YNM;
= Tk =Y nM,

(L1)

where N; is the number of molecules of molar mass
M, and n; is the numerical fraction of those molecules.

The mass or weight average is given by:

WM,

LNM;

= SNm YwM, (12)

Molar mass 9

where W, is the mass of the molecules of molar mass
M, and w, is the mass fraction of those molecules.
The Z average is given by:

YN M

== (13)
LNM
while the viscosity average
ZN’M‘V ;r va
e (1.4)
LNM,

where 4 is a constant that takes values between 0.5
and 0.8 for different combinations of polymer and
solvent. The viscosity average is obtained by
viscometry. The intrinsic viscosity is given by:

i = Iim<’1 - "")
cso\ Mo

where ¢ is the concentration of polymer in the
solution, 7, is the viscosity of the pure solvent and
1 is the viscosity of the solution. The viscosities are
obtained from the flow-through times (t and o) in the
viscometer:

and the intrinsic viscosity is converted to the viscosity
average molar mass according to the Mark-Houwink
(1938) viscosity equation:

1) = KM s

where K and a are the Mark-Houwink parameters.
These constants are unique for each combination of
polymer and solvent and can be found tabulated in
the appropriate reference literature. The Mark—
Houwink parameters given are in most cases based on
samples with a narrow molar mass distribution. If eq.
(1.5) is used for a polymer sample with a broad molar
mass distribution, the molar mass value obtained is
indeed the viscosity average.

All these averages are equal only for a perfectly
monodisperse polymer. In all other cases, the averages
are different: M, < M, < M,, < M,. The viscosity
average is often relatively close to the weight average.
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Let us now show that the mass average is always
greater than the number average:

Y NM, = My =0 (1.6a)

S NM 4 Y NM =2 Y NMM, 20 (1.6b)

If eq. (1.6b) is divided by YN, the following
expression is obtained:

YNM 2Y NMM,

St

=0

.

S

and thus

A a7

The following simplifications lead to the desired
result:

YN M YNM YN
[N v ALV v
yN a2 M TN Tam T
and

M, = M, (1.8)

Equality occurs only when a sample is truly
monodisperse, i.e. when all molecules are of the same
molar mass. It can be shown that the breadth of the

molar mass distribution, expressed as its standard

deviation (0), is related to the ratio M, /M,
(polydispersity index) as follows:
7 M,
— -1 (19
M, M,

The standard deviation takes the value zero for
V,/M, = 1. The polydispersity index takes a high
value for a sample with a broad molar mass
distribution, i.e. a high o value.

A wide range of methods can be used for the
assessment of molar mass (Table 1.3). Some of the
methods require no calibration and may be referred
to as absolute, whereas other methods are relative.
The latter require calibration with samples of known
molar mass.

The concentration of end groups ina given sample
provides direct information about the number of
polymer molecules per gram, ie. the molar mass.
Infrared spectroscopy, NMR and titration of acid end
groups in polyesters have been used for end-group
analysis. One drawback of these methods is that they
can only be used on low molar mass polymers.

Colligative properties are those properties of a
solution which depend only upon the number of solute
species present in a certain volume, and not on the
nature of the solute species. It is thus logical that
measurement of the colligative properties makes
determination of M, possible. The important
colligative effects that are used for molar mass
determination are boiling point elevation (ebullio-
metry), freezing point depression (cryoscopy) and

Table 1.3 Experimental techniques for molar mass determination

Method Result Comments.
End-group analysis M, Absolute method,

restricted to low molar mass
Colligative methods: M, Absolute methods,
ebulliometry, cryoscopy ebulliometry/cryoscopy,
and osmometry restricted to low molar mass
Light scattering M, Absolute method
Viscometry M, Relative method,

Size exclusion
chromatography (SEC)

Molar mass distribution

easy to use
Relative method,
requires calibration




osmotic pressure (membrane osmometry). Ebullio-
metry and cryoscopy are restricted to samples with
low molar masses, typically less than 10000 g mol ~*.
The number average molar mass is obtained according
to the following general equation:

(AT‘> VRT3 1
‘ A<0'<AHR)XMH
where AT, is the change in transition temperature
(freezing point or boiling point), ¢ is the concentration
of polymer in the solution, V, is the molar volume
of the solvent, R i the gas constant, Ty is the transition
temperature for the pure solvent and AH, is the
transition enthalpy. Membrane osmometry is useful
for samples of M, < 100000 gmol~', and the
number average molar mass is obtained from the

(1.10)

following expression:

()%

where [T is the osmotic pressure.

Size exclusion chromatography (SEC), often
referred to as gel permeation chromatography (GPC),
gives the whole molar mass distribution. A dilute
solution of the polymer is injected into a gel column.
The flow-through times of the different molar mass
species depend on their hydrodynamic volumes, i.e.
on the size of the molecular coil. Large molecules have
little accessibility to the pores of the gel and they are
eluated after only a short period of time. Smaller
molecules can penetrate into a much larger volume
of the porous gel, and they remain in the column for
alonger period of time. The concentration of polymer
passing through the column is recorded continuously

(1.11)

as a function of time by measurement of refractive
index or infrared light absorption. SEC is a relative
method. Calibration with narrow molar mass fractions
of the polymer studied is necessary. It is also possible
to use standards of another polymer and then by
calculation, using the Mark-Houwink parameters of
the polymers, to convert the molar mass scale of the
calibrant polymer to that of the polymer studied. This
procedure is known as ‘universal calibration’.
The hydrodynamic volume is proportional to the
product [g]M. Tf calibration is done with polymer
(calibrant index 2), the universal calibration procedure

Molar mass 11

Mass fraction per log X

1 10 100 1000

Degree of polymerization
Figure 1.13 Theoretical chain length distribution curves

based on: @ the Schultz distribution; O the Schultz—Flory
distribution. Both distributions have X,, = 50.

is carried out according to eq. (1.12), derived as
follows:

M, = [nl: M,
KMt = KM

K, Uit
M, = |:7“ M}*”‘] (L12)
K

where index 1 refers to the polymer studied.
Details of the light scattering method are given in
Chapters 2 and 12.
An alternative way of describing the molecular size
is by using the degree of polymerization (X) which
is related to the molar mass (M) as follows:

X=—-

(1.13)
My,

where M, is the molar mass of the constitutional
repeating unit. It is useful to define the same kind of
averages for X as are used for molar mass. Different
polymerization methods yield polymers with different
molar mass distributions. A few illustrative examples
are shown in Fig 1.13. The following chain-length
distribution was originally derived by Flory for
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step-growth polymerization (section 1.7):

1( 1>"'
n==(1-=
X X,

where ,is the number fraction of molecules of X = i
and X, is the number average of the degree of
polymerization. This distribution is called the most
probable (or Schultz—Flory) distribution. For chain-
growth rachcal polymerization (section 1.7) with
re lusively through recombi the
X distribution is described by the Schultz distribu-
tion:

(1.14)

4 !
R e
4 4

"=

1.7 POLYMERIZATION

The polymerization process can in simple terms be
divided into step-growth and chain-growth poly-
merization.

A typical example of step-growth polymerization
is the formation of a polyester from a hydroxy-
carboxylic acid:

2 HO-R-COOH =
HO-R-CO-O-R-COOH + H,0

HO-R-COOH + HO-R-CO-O-R-COOH ==
HO-R-CO-O-R-CO-O-R-COOH + H,0
etc.
The kinetics of polymerization is not affected by the
size of the reacting species. The number of reactive
groups, in this case hydroxyl groups and acid groups,
decreases with increasing length of the molecules. At
any given moment, the system will consist of a
mixture of growing chains and water. One difficult
problem is that all reactions are reversible, with an
equilibrium being established for each reaction. The
consumption of reactive groups and the formation of
a high molar mass polymer requires the removal of
water from the system. The degree of polymerization
X, is equal to 1/(1 — p), where p is the degree of
consumption of reactive groups (yield). As yield
varies, the following X, values are obtained:

Yield | 0.10 09 | 0.99 0.999 | 0.9999

Xy L1 10 | 100 | 1000 | 10000

n AR-B

w-A-R-B-A-R-B-A-RB-.......

nARA + nBRB —= __ ARABRBARA-...

A
R

4
B B

1
3n/2 AR-A + nBRB—> ... ARABRBARA-....

Figure 1.14 Different molecular architectures arising from
different combinations of monomers of different functionali-
ties.

Step-growth polymerization is involved in the for-
mation of, e.g., polyesters and polyamides. Different
techniques are available for obtaining a high yield and
high molar mass. If an acid chloride is used instead
of the carboxylic acid, HCl is formed instead of water.
The former is more easily removed from the system,
and higher yields and molar masses are obtained. The
long reaction time necded to reach a high yield is a

d with step-growth polymer-
ization. Polymers with different molecular archi-
tectures can be made using monomers of different
functionality (Fig. 1.14). Tri-functional monomers
yield branched and ultimately crosslinked polymers.

Chain-growth polymerization involves several
consecutive stages: initiation, propagation and

Each chain is individually initiated and
grows very rapidly to a high molar mass until its
growth is terminated. At a given time, there are
essentially only two types of molecule present:
monomer and polymer. The number of growing
chains is always very low. Chain-growth polymeriza-
tion is divided into several subgroups depending on
the mechanism: radical, anionic, cationic or coordina-
tion polymerization. A generalized scheme for radical
polymerization is shown below.

The initiation is accomplished by thermal or
UV-initiated degradation of an organic peroxide or
similar unstable compound (initiator). Free radicals are
generated which attack the double bond of the
unsaturated monomer (typically a vinyl monomer:
CH,=CHX) and the radical centre is moved to the
end of the ‘chain’.

ROOR - 2 RO-
RO: + M — ROM-




Propagation is a chain reaction involving very rapid
addition of monomer to the radicalized chain.

ROM: + M — ROMM-"
ROMM: + M — ROMMM:*
etc.

It is possible that a radicalized chain abstracts a
hydrogen from an adjacent polymer molecule and that
the reactive site is then moved from one molecule to
another (chain transfer). This leads in most cases to
the formation of a molecule with a long-chain branch.
‘The chain transfer reaction may also be intramolecular,
which is a well-known mechanism giving branches in
high-pressure polyethylene.

X X
R,~CH. ! ~CH, l
~CH,~C_+ R,-CH,-C-R, —

H H

X X

| |
R;~CH,~C-H + R,~CH,~C-R,
| :

H

X X
|
R,~CH,~C-R,

|
—™M, R,-CH,~C-R,
Ry
The propagation is stopped either by combina-
tion or by disproportionation

RM* + ‘MR, = R,MMR, (combination)

X X
| |
R,-CH,~C- + -C—CH,R, -
| |
H H
X X

| |
R;~CH,~C-H + C=CH-R,
| |

(disproportionation)

H

Both anionic and cationic polymerization include
both initiation and chain-wise propagation but with
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in neither case is there any natural termination
reaction. In both cases it is possible to achieve the
conditions for living polymerization, where all chains
are constantly growing until all monomer is consumed
and the molar mass distribution of the resulting
polymer is narrow. It is also possible to add a new
monomer and to prepare exact block copolymers. The
presence of small traces of an impurity, eg. water,
leads to chain transfer reactions and a termination of
the growing polymer chains.

Coordination polymerization was discovered in the
19505 by Ziegler (1955) and Natta (1959). This
technique makes it possible to produce stereoregular
polymers such as isotactic polypropylene and linear
polyethylene. A Ziegler-Natta catalyst requires a
combination of the following substances: () a
transition metal compound from groups IV=VIII; (i)
an organometallic compound from groups I-IIl; and
(iii) a dry, oxygen-free, inert hydrocarbon solvent.
Commonly used systems have involved aluminium
alkyls and titanium halides. The polymerization is
often rapid and exothermic, requiring external cooling.
The polymer normally precipitates around the catalyst
suspension. The initial work of Ziegler and Natta
involved unsupported catalysts, whereas much of the
commercial polymer made by coordination polymer-
ization is achieved by supported catalysts. From a
mechanistic point of view they are of the same class
as the Ziegler—Natta catalysts. The pioneering work
was due to Hogan and Banks using activated chromic
oxides on silica supports. This development led to
the pol: of linear polyethylene and linear

I pol of ethylene

low-density polyett

p
and higher 1-alkenes).

1.8  THERMAL TRANSITIONS AND PHYSICAL
STRUCTURES

It is useful to divide the polymers into two main
classes: the fully amorphous and the semicrystal-
line. The fully amorphous polymers show no sharp,
crystalline Bragg reflections in the X-ray diffracto-
grams taken at any temperature. The reason why these
polymers are unable to crystallize is commonly their
irregular chain structure. Atactic polymers, statistical
copolymers and highly branched polymers belong to
this class of polymers (Chapter 5).

The semicrystalline polymers show crystalline
fecti ) |

one important difference from radical poly

Bragg perimposed on an amorph
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background. Thus, they always consist of two
components diffring in degree of order:  crystalline

d of thin (10 nm) lamella-shaped
crystals and an amorphous component. The degree
of crystallinity can be as high as 90% for certain low
molar mass polyethylenes and as low as 5% for
polyvinlychloride. Chapters 7 and 8 deal with the
semicrystalline polymers.

A third, recently developed group of polymers, is
the liquid-crystalline polymers showing orienta-
tional order but not positional order. They are thus
intermediates between the amorphous and the
crystalline polymers. A detailed discussion of liquid
crystalline polymers is given in Chapter 6.

The differences in crystallinity lead to differences
in physica propertis. Figure 115 shows, for example
the p e of the relaxation modulus
for different polystyrenes. The relaxation modulus is
defined as the stress divided by the strain as recorded
after 105 of constant straining, a so-called stress
relaxation experiment.

At 100°C, the fully amorphous polystyrenes
show a drop in modulus by a factor of 1000,
This
Al fully amorphous polymers show a similar

‘transition’ is called the glass transition.
modulus-temperature curve around the glass transi-

tion temperature (T,). The material is said to be

10
Semicrystalline
8
Kl
&
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»
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N . .
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Temperature (‘C)

Figure 1.15 The logarithm of the relaxation modulus (10 s)

as a function of temperature for semicrystalline nwmm)
and fully h (atactic) polys

lhros ‘versions”: low molar ma uncumlmked and hu,h

molar mass uncrosslinked and crosslinked. Drawn after data

from Tobolski (1960, p. 75).

‘glassy” at temperatures below T, (region I). Under
these conditions, they are hard plastics with a modulus
close to 3 GPa. The glassy polymer is believed to
show very little segmental mobility. Conformational
changes are confined to small groups of atoms. The
deformation is predominantly due to stretching of
secondary bonds and bond angle deformation
(‘frozen spaghetti deformation’).

The glass transition shows many kinetic peculiar-
ities and it is not a true thermodynamic phase
transition like melting of a crystal. This is one of the
subjects of Chapter 5. In region II, the transitional
region, the polymer shows damping. Such materials
are referred to as ‘leatherlike’.

At temperatures above T,
rubber-like with a modulus of a few megapascals
(region 11I). Above the glass transition temperature
relatively large groups of atoms, of the order of 100

the materials are

main chain atoms, can change their conformation.
Crosslinked materials show elastic properties in this
temperature region. The rate at which the conforma-
tional changes occur is so high that the strain response
to a step stress is instantaneous. This rubber elastic
behaviour is treated in Chapter 3. Uncrosslinked
polymers show a pronounced drop in modulus at
higher temperatures. The temperature region at which
the modulus remains practically constant, the so-called
rubber plateau, is much longer for the high molar
mass material than for the low molar mass material
(Fig. 1.15). This indicates that the low modulus
characteristic of materials in region V is due to sliding
motions of molecules which occur more readily in low
molar mass polymers with few chain entanglements.
Crosslinked polymers show no region V behaviour
because the crosslinks prevent the sliding motion.
Semicrystalline polystyrene shows a weak glass
transition at 100°C (Fig. 1.15), due to a softening
of the amorphous component of this two-phase
polymer. The fraction of crystalline component
was reported by Tobolski, but it
probably about 20%. The crystalline component

not was
remains unchanged by the glass transition. The
crystallites act as crosslinks and the rubber
modulus of the amorphous component is higher
than that of the wholly amorphous polystyrene.
The glass transition is hardly visible in high-crystalline
polymers such as polyethylene. The pronounced drop



in modulus occurring at 230°C is due to the melting
of the crystalline component. The melting and
aystallization of semicrystalline polymers is an
important part of polymer physics and is treated in
Chapters 7 and 8.

19 POLYMER MATERIALS

It is common to divide plastic materials into
h and th Thermopl are
composed of linear or branched polymer molecules,
and for that reason they melt. Thermoplastics are first
synthesized and then at a later stage moulded.
Thermosets are crosslinked polymers that do not melt.
Anuncrosslinked prepolymer is given the desired final
shape and the polymer is crosslinked at a later stage
while it is kept in the mould.

The properties of a polymer material are determined
by the structure of the polymers used, the additives

and the processing methods and conditions. It is
possible to make an extremely stiff and strong fibrous
material from polyethylene. Conventionally processed
polyethylene has a stiffness of only about 1 GPa,
whereas fibrous polyethylene may exhibit a longi-
tudinal modulus of 100 GPa. Some polymer materials
are almost pure with only a small content of additives,
whereas others consist of predominantly non-
polymeric ~ constituents. Composites consist of
reinforcing fibres and the function of the polymer is
merely to provide the shape of the product and to
transfer forces from one fibre to another. The
reinforcing fibres give the material its high strength
and stiffness.

This book deals primarily with the polymers, but
nevertheless additives play an important role.
Polymers would not be used to the extent they are
if it were not for the additives. Some polymers such
as polyethylene may only contain a small portion of
antioxidant to prevent the polymer from oxidizing.
Other polymers, particularly for rubbers, contain both
large numbers and large amounts of additives, e.g.
antioxidants, carbon black, oil, fillers, reinforcing fibres,
initiators, an accelerator for vulcanization, and an
inhibitor in order to avoid early crosslinking. An
increasingly important field is the prevention of fire
without the use of halogen-containing polymers. This
is accomplished with the use of small-molecule fire
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retardants. Some polymers such as polyvinylchloride
are used with plasticizers, i.e. miscible low molar mass
liquids. Numerous polymeric materials contain large
fractions of fillers. The purpose of using fillers can be
cost reduction, reduced mould shrinkage, promotion
of nucleation and imp of mechanical
properties. The list of additives used in polymers is
extended but, for our purposes, the list presented here
is sufficient.

1.10 A SHORT HISTORY OF POLYMERS

It is intended in this section to give only a very short
presentation of the development of polymer materials
and ideas in polymer science. A detailed presentation
of this field is given by Morawetz (1985).

The first polymers used were all obtained from
natural products. Natural rubber from Hevea trees was
being used by the American Indians when Columbus
arrived in 1492. Cellulose in different forms, starch
and collagen in leather are other examples of natural
polymers used. Modification of native polymers
started in the mid-nineteenth century and the first
wholly synthetic polymer was made at the beginning
of the twentieth century. The science of polymers
began in the 1920s.

The development of polymer and
technology has occurred primarily during the last
60-70 years and the commercial introduction of new
polymers has proceeded through three time stages
giving rise to three generations of polymers.

The first generation was introduced before 1950
and includes polystyrene, polyvinylchloride, low-
density polyethylene, polyacrylates, polymethacry-
lates, glass-fibre reinforced polyesters, aliphatic
polyamides, styrene-butadiene rubber and the first
synthetic paints (alkyds).

The second generation of polymers was introduced
during 1950-65 and includes a number of engineering
plastics such as high-density polyethylene, isotactic
polypropylene, polycarbonates, polyurethanes, epoxy
resins, polysulphones and aromatic polyesters, also
used for films and fibres. New rubber materials, acrylic
fibres made of polyacrylonitrile and latex paint were
also introduced.

The third generation, introduced since 1965,
consists mainly of speciality polymers with a more

science
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complex chemical structure. These polymers were
characterized by very high thermal and chemical
stability and high strength/stiffness. Examples are
poly(phenylene sulphide) (Ryton®), polyarylether-
ketone (PEEK™), polyimides (Kapton™), aromatic
polyesters (Ekonol" and Vectra"), aromatic poly-

solution was related to the molar mass of the
polymer.

1934 : The statistical mechanical theory for rubber
elasticity was first qualitatively formulated by
Werner Kuhn, Eugene Guth and Herman Mark. The
entropy-driven elasticity was explained on the basis

amides (Nomex™ and Kevlar™), and fl
polymers (Teflon™ and Viton™). Parallel to this
development of new polymers, existing polymers such
as polyethylene have undergone significant improve-
ment. Crosslinked polyethylene and new fracture-
tough thermoplastic polyethylenes are examples of
the more recently introduced materials.

A ‘polymer calendar’ is presented below with
the important breakthroughs indicated. Many impor-
tant accomplishments have been omitted to keep the
list reasonably short.

1844: Charles Goodyear discovered that sulphur-
containing natural rubber turned elastic after heat
treatment. Vulcanization was discovered and
utilized.

1862: Alexander Parks modified cellulose with nitric
acid to form cellulose nitrate and, by mixing this
polymer with a plasticizer, he made a material
named Parkesine. A few years later, a similar
material named celluloid (cellulose nitrate plasti-
cized with camphor) was patented by John and
Isaiah Hyatt.

1905: Leo Baekeland made Bakelite, the first wholly
synthetic polymer. Bakelite is a thermoset made
from phenol and formaldehyde.

of | states. The initial theory dealt
only with single molecules, but later development
by these pioneers and by other scientists formulated
the theory also for polymer networks. The first
stress—strain equation based on statistical mechanics
was formulated by Eugene Guth and Hubert James
in 1941.

1930s: Wallace Carothers, a research chemist at
DuPont, USA, studied polycondensation reactions,
synthesizing first aliphatic polyesters, and later and
more importantly polychloroprene and polyamid
6,6 (Nylon). Carothers's research not only
supported the macromolecular concept but also
showed the industrial importance of synthetic
polymers.

1930s: Paul Flory derived and experimentally
confirmed the Gaussian molar mass distribution for
polymers made by step-growth polymerization.
Later Flory showed that polymers made by anionic
polymerization adapted to the narrower Poisson
distribution of chain lengths. Flory also postulated
the existence of chain-transfer reactions in
chain-growth polymerization, Flory received the
Nobel Prize for chemistry in 1974 for these and
later fundamental achievements in the physical

chemistry of macromolecules.

1920: The macromolecular concept was
by Hermann Staudinger. The idea had been
presented by Staudinger at a lecture in 1917.
However, the concept of large molecules was not
new at that time. Peter Klason, a Swedish chemist,
had reported in 1897 that lignin in wood was
formed mainly from coniferyl alcohol units
connected to ‘large molecules’, mainly by ether
bonds. During the 19205 the macromolecular idea
was under debate with Staudinger in favour and a
relatively large group of scientists against the new
idea. Staudinger received the Nobel Prize in 1953,

1930s: Werner Kuhn, Herman Mark and Eugene
Guth found evidence that polymer chains in
solution were flexible and that the viscosity in

1933: Sty butadiene rubber was made in Ger-
many.

1936: Epoxy resins were made by Pierre Castan
(Switzerland).

1938: Silicone rubbers were made by Eugene Rochow
(USA).

1939: Polytetrafluoroethylene (Teflon™) was made
by Roy Plunkett (USA).

1942; Paul Flory and Maurice Huggins presented,
independently, the thermodynamics theory for
polymer solutions.

1940s: Flory was very active in many areas during
this decade. He made his contribution to rubber
elasticity together with Rehner, developed a theory
for gelation by which the gel point can be predicted



from the degree of ‘conversion’, and developed
atheory for the excluded volume effect of polymer
molecules in solution. Flory introduced the theta
solvent concept. Under theta conditions, the
polymer molecules have unperturbed dimensions.
Flory also predicted that the shape of molecules in
a pure melt should be the same as under theta
conditions.

1940s: Low-density polyethylene was made by
Eric William Fawcett (UK).

1940s: Glass-fibre reinforced polyester was made in
Germany.

1950s: Karl Ziegler (Germany) and Guilio Natta
(Italy) discovered that polymerization in the
presence of certain metal-organic catalysts yielded
stereoregular polymers. Both were awarded the
Nobel Prize for chemistry in 1963. Their work led
to the development of linear polyethylene and
isotactic polypropylene. This discovery of Ziegler
and Natta's was, however, preceded by the
preparation of isotactic polypropylene by Paul
Hogen (Phillips Petroleum Co., USA) and linear
polyethylene at DuPont, USA.

1949-56: Theories for liquid crystals of rod-like
polymers were proposed by Lars Onsager in 1949
and by Paul Flory in 1956.

1956: Michael Szwarc, USA, discovered living
anionic polymerization. This technique permitted
the preparation of narrow molar mass fractions and
‘exact’ di- and tri-block copolymers. Thermo-
plastic elastomers, such as Kraton™ (Shell Chemical
Co. USA), are prepared by living anionic
polymerization.

1957: Andrew Keller, Bristol, UK, found that polymer
molecules were folded at the large surfaces of
lamella-shaped single crystals of polyethylene. The
general shape of the single crystals and the chain
axis orientation (but not the explicit expression
for chain folding) was also reported by Erhart
Fischer and Paul Till in 1957. The first suggestion
of chain folding goes, however, back to Keith Storks
in 1938 dealing with gutta-percha but it passed
largely unnoticed by the scientific society.

1960: Polyoxymethylene (Delrin™) was made by
DuPont, USA.

1961: Aromatic polyamide (Nomex™) was made by
DuPont, USA.
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1962: Blends of poly(phenylene oxide) (PPO) and
polystyrene with the commercial name Noryl™
(General Electric Co.,, USA) were first made.

1970-85: Ultra-oriented polyethylene with mech-
anical properties approaching those of metals was
made by solid-state processes, in some cases
combined with solution processes. A number of
scientists were active in the field: lan Ward (UK),
Roger Porter (USA), Albert Pennings and Piet
Lemstra (Netherlands). The pioneering work of

lucidating the mech. of from
the isotropic to the fibrous polymer is due to Anton
Peterlin (USA).

1971: Pierre-Gilles de Gennes, a French physicist,
who was awarded the Nobel Prize for physics in
1992, presented the reptation model which
describes the diffusion of chain molecules in a
matrix of similar chain molecules. The reptation
model was later further developed by Masao Doi
and Sam Edwards.

1972~ : The first melt-processable (later categorized
as thermotropic liquid-crystalline) polymer, based

on p-hydroxybenzoic acid and biphenol tereph-
thalate, was reported by Steven Cottis in 1972. This
polymer is now available on the market as Xydar™.
In 1973, the first wellcharacterized thermotropic
polymer, a copolyester of p-hydroxybenzoic acid
and ethylene terephthalate, was patented by
Herbert Kuhfuss and W. Jerome Jackson (Eastman-
Kodak Co., USA). They reported the discovery of
liquid-crystalline behaviour in this polymer in 1976.
At the beginning of the 1980s, the Celanese
Company developed a family of processable
thermotropic liquid crystalline polymers based on
hydroxybenzoic acid and hydroxynaphthoic acid,
later named Vectra™.

Mid-1970s— : Theories for the crystallization of
polymers were introduced by John Hoffman and
coworkers, and later in the 1980s by David Sadler,
University of Bristol (UK).

1977: Stefanie Kwolek and Paul Morgan, research
chemists at DuPont, reported that solutions of
poly(phenylene terephthalamide) could be spun to
superstrong and stiff fibres. They showed that the
solutions possessed liquid-crystalline order. The
fibres were later commercialized under the name
Kevlar".
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1977: The first electrically conductive polymer was
prepared by doping of polyacetylene by Alan
MacDiarmid, Alan Heeger and Hideka Shirikawa.

1978: The German scientists Heino Finkelmann,
Michael Happ, Michael Portugall and Hellmut
Ringsdorf suggested that a decoupling of the main
chain and the mesogen motions was possible
through the insertion of a flexible spacer in
side-chain liquid-crystalline polymers. Since this
breakthrough, an abundance of side-chain polymers
have been synthesized and the combinations of
main chains, spacers and mesogens appear to be
infinite.

1980s: The molecular interpretation of relaxation
processes in polymers developed strongly using
molecular mechanics modelling particularly due to
the work of Richard Boyd, USA. David Bassett and
associates at the University of Reading (UK)
introduced the permanganic etching technique,
which led to a strong development in the
understanding of the morphology of polymers.

1.11 SUMMARY

This chapter should be considered as a basic
introduction to polymer science necessary for the
understanding of the following chapters. Fundamental
concepts are introduced. The difference between
configuration and conformation is explained. Polymer
synthesis is briefly described. Molar mass averages
are defined and the methods used for their
measurement are briefly presented. The properties of
polymer materials are determined not only by their
polymer constituents but also by the low molar mass
additives and by the processing methods used. The
major thermal transitions are briefly described. The
use of (native) polymers is many thousands of years
old, but it took until the beginning of the twentieth
century for the first wholly synthetic polymer
(Bakelite) to be made. The history of polymer science
began in 1917 with Staudinger's introduction of the
macromolecular concept. Finally, a list of important
subsequent accomplishments in polymer science and
technology is presented.

1.12 EXERCISES

1.1 When was the first synthetic polymer made?
What polymer was it?

1.2. Write the constitutional repeating unit structures
of the following polymers: PE, PP, PMMA and
PA 8.

13, Explain briefly the difference between the
concepts of configuration and conformation.

1.4. Why cannot atactic polystyrene crystallize?

1.5. What are the main differences between step-
growth and chain-growth polymerization?

16, Is it possible to make isotactic polystyrene by
radical polymerization?

1.7. What is the name of the technique that reveals
the entire molar mass distribution?

1.8, Explain why measurement of colligative prop-
erties yields the number average molar mass.
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A polymer molecule can take many different shapes
(conformations) primarily due its degree of freedom
for rotation about G bonds. Studies of the heat
capacity of ethane (CH,~CH,) indicate that the bond
linking the carbon atoms is neither completely rigid
nor completely free to rotate. Figure 2.1 shows the
different rotational positions of ethane as viewed
along the C—C bond. The hydrogen atoms repel each
other, causing energy maxima in the eclipsed
position and energy minima in the stable staggered
position, The torsion angle may be defined as in Fig.
21, ¢ = 0 for the eclipsed position and ¢ > 0 for
dlockwise rotation round the further carbon atom.
Some authors set ¢ = 0 for the staggered position.

conformational energy ‘map” of n-butane is shown in
Fig. 2.4. The energy difference between the trans and
gauche states is 2.1 + 0.4 k] mol~*. Calculations and
experiments have shown that there is an angular
displacement by 5-10° of the gauche states from their
120° angle towards the trans state, ie. the gauche
states are located at 110-115° from the trans state.
The energy barrier between the trans and the gauche
states is 15 k] mol . The energy barrier between the
two gauche states is believed to be very high, but its
actual value is not precisely known.

Normal pentane has two rotational bonds and
hence potentially nine combinations, but only six of
them are distinguishable: TT, TG, TG', GG, G'G’
and GG The conformations GT, G'T and G'G
are identical with TG, TG and GG'. Two pairs

In both cases, the value of ¢ is independent of the
viewing direction (turning the whole molecule round).

of ges are present, namely TG and
TG and GG and G'G. The energy for the
e

Figure 2.2 shows the « 1 energy
plotted as a function of the torsion angle and the
energy difference between the stable staggered
position. The energy barrier (eclipsed) is equal to
11.8kJ mol~! which may be compared with the
thermal energy at room temperature, RT ¥ 8.31 x
300 Jmol ' & 2.5 k] mol .

The alkane with additional two carbon atoms,
wbutane (CH,~CH,~CH,~CH,), has different stable
conformational states, referred to as trans (T) and
gauche (G and G'), as shown in Fig. 2.3. The

Staggered position
(most stable)

Eclipsed position
(least stable)

GG’ is much greater than predicted
from the data presented in Fig. 2.4 because of strong
steric repulsion of the two CH, groups separated by
three CH, groups (Fig. 2.5). The dependence of the
potential energy of one o bond on the actual torsion
angle of the nearby bonds is referred to as a
second-order interaction.

The rotational isomeric state approximation,
which is a convenient procedure for dealing with the
conformational states of polymers, was introduced by
Flory. Each molecule is treated as existing only in

¢

Intermediate position,
definition of torsion angle (¢}

Figure 2.1 Rotational isomers of ethane from a view along the C—C bond: carbon — shaded; hydrogen — white.
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Energy (kJ mol'l)
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Figure 2.2 Conformational energy of ethane as a function
of torsion angle.

discrete torsional angle states corresponding to the
potential energy minima, i.e. to different combinati

Energy (kJ mol'))

0 | L L |

120 180 240 300 360

Torsion angle (degrees)
Figure 2.4 Conformational energy of n-butane as a
function of torsion angle of the central carbon—carbon bond.

The outer carbon—carbon bonds are assumed to be in their
minimum energy states (staggered positions)

three rotational states T, G and G'. The number of
different following this simple scheme

of T, G and G Fluctuations about the minima
are ignored. This approximation means that the
continuous ~ distribution over the torsional angle
space ¢ is replaced by a distribution over many
discrete states. This approximation is well established
for those bonds with barriers substantially greater
than the thermal energy (RT).

Let us now consider an alkane with n carbons. The
question is how many different conformations. this
molecule can take. The molecule with n carbons has
n — 1 ¢ main-chain bonds. The two end bonds do not

ibute to different whereas each
of the other carbon-carbon bonds is in one of the

iy

Gauche (G)

Trans (T) Gauche (G)
Figure 2.3 Conformational states of n-butane. Note that
the views of the gauche conformers are along the middle
carbon-carbon bond. Carbon — shaded; hydrogen — white.

is 3" 2. A typical polymer molecule may have 10 000
carbons and thus 3% & 10*”7° conformations, i.e. an
enormously large number of states. However, this
treatment is oversimplified. First, due to symmetry,
the number of distinguishable conformations is less
than 3°”7, although it is correct in order of magnitude.
Second, the energy of certain conformations is very
high, e.g. those containing GG/, giving them a very
low statistical weight. The energy map shown in Fig.
24 is of limited applicability for predicting the
probability of conformations in polyethylene. The

peee

Figure 2.5 llustration of the steric repulsion in the
high-energy GG’ conformer in n-pentane: carbon — shaded;
hydrogen - white.



interdependence of the torsion angle potentials, as
demonstrated in the high-energy GG’ sequence,
has to be considered. These higher-order inter-
actions are discussed later in this chapter.

Polymer chains exhibit in several cases a random
chain conformation, i.e. a random distribution of trans
and gauche states. Figure 2.6 illustrates the idea of a
random (so-called Gaussian) chain. Random macro-
molecular chains are found in solutions of polymers
in good solvents, in polymer melts and probably also
in glassy amorphous polymers. Crystalline polymers,
on the other hand, consist of long sequences of bonds
with a regular arrangement of energetically preferred
chain conformations interrupted by chain folds or by
statistical sequences.

The first part of this chapter deals with the statistics
of the Gaussian chain. Expressions for the characteris-
tic dimension of the random chain (average
end-to-end distance or radius of gyration) are
derived as a function of molar mass, chain flexibility
and temperature.

The particularly simple relationships between the
average end-to-end distance of the random coil and
the chain length that are derived in section 2.4 are
valid under the ideal solution conditions referred to
as theta conditions. The dimension of the unperturbed
polymer chain is only determined by the short-range
effects and the chain behaves as a ‘phantom’ chain
that can intersect or cross itself freely. It is important
to note that these conditions are also met in the pure
polymer melt, as was first suggested by Flory (the
so-called Flory theorem) and as was later experiment-
ally confirmed by small-angle neutron scattering.

The statistical variation of the end-to-end distance
is considered in so-called random flight analysis. This

Figure 2.6 Gaussian chain.
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analysis forms the basis for one of the most prominent
theories in polymer physics, the theory of rubber
elasticity, which s presented in Chapter 3. The second
part of Chapter 2 introduces the concept of ‘preferred
chain conformation’, i.e. the state of the molecule in
a crystal.

It is essential to understand that an ensemble of
random chains can only be described by means of a
spatial distribution function. Two different measures
of the random chain are commonly used: (a) the
end-to-end distance (r); and (b) the radius of gyration
(s). The former is simply the distance between the
chain ends. The radius of gyration is defined as the
root-mean-square distance of the collection of atoms
from their common centre of gravity:

X mift

&=

2.1

where T; is the vector from the centre of gravity to
atom i. Debye showed many years ago that for large
values of n, ie. for polymers, the following
relationship holds between the second moment of the
mean values:

(2.2)

Random coils can thus be characterized by either of
the two dimensions, the average end-to-end distance
or the radius of gyration. The average end-to-end
distance is used in the rest of this chapter to
characterize the random chain.

2.2 EXPERIMENTAL DETERMINATION OF
DIMENSIONS OF CHAIN MOLECULES

The size of random chain coils, predominantly in
solutions of polymers, can be obtained by several
experimental techniques. The size of the molecular
coil of a particular polymer is dependent on the
solvent (Fig. 2.7). A good solvent expands the coil.
A poor solvent, on the other hand, causes shrinkage.
In between these two extremes, so-called theta
solvents are found (see Chapter 4). Typical of these
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Good solvent:

Theta solvent:
a=1

Poor solvent:
a

Figure 2.7 Random coils in solvents of different solvent
power; a is the linear coil expansion factor which according
to the definition is equal to 1 in a theta solvent.

are that intermolecular and intramolecular interac-
tions are similar in magnitude. The further discussion
of chain dimensions refers to theta conditions. Light
scattering and viscometry are probably the two most
commonly used methods for determining the coil size.
The scattering of light is caused by the difference in
refractive index between solvent and solute (polymer)
and its angular dependence is a function of coil size.
The viscosity is sensitively dependent on the
hydrodynamic volume of the coil, and is briefly
presented. The arrangements of macromolecules in
concentrated solutions or in the solid state have more
recently been studied by means of small-angle
neutron scattering (SANS). The conformation, i.e. r or
5, of deuterated polymer chains in host protonated
chains is determined by SANS.

The following equation describes the scattering of
light by solutions of polymers as a function of the
size of the random coil, described here by the average
of the square of the end-to-end distance (1) and the
mass average molar mass (M,,):

Ke 1 116 r 0
=4 = n‘<,,>sin1- +2Ac (2.3)
Ry M, M,3 oF 2
where
Ay (On (vertical
N,\_).; ac ,/ polarization)

(horizontal
polarization)

AT (01 cost 0
NpZg \dc /71

amnd [ on 1+ cos* 00
—- f{ ——— )Junpolarized)
Nadg\de/q 2

1y is the refractive index of the solvent, ¢ is the
concentration of polymer, Ny is the Avogadro
number, 4, is the wavelength in vacuo, A is the
wavelength in the medium, 0 is the scattering angle,
fis a correction factor, A, is a constant and Ry is the
reduced scattered intensity defined as

Ro=""

I

where r is the distance between the sample and the
point at which the intensity I is recorded and I, is
the intensity of the incoming light.

Equation (2.3) permits the separate determination
of M,, and {*) which is schematically shown in the
so-called Zimm plot (Fig. 2.8). They are obtained
simply from:

K 1
lim == —- + 24 (2.4)
00 Ry -
and
K 1 1 16 r 0
m =g L0 <<> sin® — (25)
coRy M, M, 3 oF

The viscometry relies on the relationship:
DAY —1
s (" ). o
M ¢ Jewo

where [} is the limiting viscosity number with 7,
being the relative viscosity. @ is a constant which is
the same for all systems; an experimental and
theory-based value for near-theta conditions is
@ =26 x 10* with r in centimetres and [y} in
dig™".

lnt

sin2(812) + be

Figure 2.8 Schematic Zimm plot.



2.3 CHARACTERISTIC DIMENSIONS OF
‘RANDOM COIL’ POLYMERS

The dimensions of different polymer chains depend
strongly on the type of environment and temperature.
A good solvent expands the coil. A poor solvent, on
the other hand, causes shrinkage. Between these two
extremes, so-called theta solvents are found (illus-
trated in Fig. 2.7; see Chapter 4). Typical of these is
that intermolecular and intramolecular interactions are
similar in magnitude. All polymers dissolved in theta
solvents adapt to the following equation:
(P, = Cnl?

where the subscript signifies theta

2.7)

dif and
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where C, and C, are constants:
(P = O™ (P = Con*n = Cyr* (2.10)

ie. roc n’”. These arguments provide an exponent
which is very close to the experimental values
reported for solutions of polymers in good solvents,
roc v It must be stressed that at T =0,
(P> = (), and the latter shows a molar mass
dependence according to eq. (2.7). At this tempera-
ture, the enthalpic and entropic contributions from
solvent—polymer and polymer-polymer interactions
do not appear. The volume expansion caused by the
long-range polymer—polymer interactions is exactly

p d for by the sol

Cis a constant which depends on the nature of the
polymer. It is possible to make a distinction between
short-range and long-range interactions. The short-
range interaction is described by the examples
presented in section 2.1, where (), is determined
only by the short-range effects. The long-range in-
tramolecular interaction, illustrated in Fig. 2.9, causes
expansion of the coil, which can be expressed by a
linear expansion factor a:

Py =2y,
The expansion factor (@) is also affected by
temperature and type of solvent. It has been shown
both theoretically and experimentally that o is a
function of the molar mass in good solvents:

o — o= ij/ﬁ(l - g_)

where C is a polymer-related constant, i is the
interaction entropy (see Chapter 4) and 0 is the theta
temperature or Flory temperature. At theta conditions
(T=0), « becomes 1, whereas in a good solvent
(T > 6), o is proportional to #''*°. By combining eqs
(28) and (2.9), the following expression is obtained,

28)

2.9

Figure 2.9 Steric interference between two chain segments
widely separated in sequence along the chain.

under theta conditions. The segments of a molecule
under theta conditions are arranged in a way which
indicate that they do not ‘sense’ the other segments
of the same molecule. The molecules behave like
‘ghosts’ or ‘phantoms’ and are sometimes also
referred to as phantom chains.

Flory proposed that the polymer molecules in the
molten state are unperturbed (phantom-like) as they
are in a theta solvent and that the same simple
equation, eq. (2.7) relating {r*», with chain length (),
should hold also for molten polymers. Small-angle
neutron scattering data were available many years
later, and indeed they support the Flory theorem. A
particularly elegant reasoning explaining the Flory
theorem is found in de Gennes (1979). Consider a
dense system of identical chains. One of the chains
is focused. Let us call this molecule M1. The repeating
units of MI are subjected to a repulsive potential
(denoted U) created by the excluded volume
(long-range) effects from its own repeating units. This
potential would lead to an expansion of the coil of
M1 from the unperturbed molecule size if it were
not for the surrounding identical molecules M2, M3,
etc. The latter generate a counteracting, attractive
potential acting inward on molecule M1 of exactly
the same size as the repulsive potential. Chain M1 is
thus subjected to no net force and
unperturbed.

Table 2.1 presents data for polymers under theta
conditions and it turns out that polymers with flexible
backbones exhibit low C values. The flexible ether
groups in polyethyleneoxide and the bulky pendant
phenyl groups of polystyrene explain the shifts in C

remains
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Table 2.1 C values for some polymers under
theta conditions

Polymer C (M= o)
Polyethylene 67
Polyethyleneoxide 40
Polystyrene, atactic 100

Source: Flory (1989)
* See eq. (27).

value of these polymers with respect to that of
polyethylene.

The temp . of the unp
chain dimensions d(In{r*)o)/dT is preferably de-
termined by measuring the force in a sample of a
lightly crosslinked network polymer as a function of
| at different temp . The fund. I
theoretical aspects are explored further in Chapter 4.
Table 2.2 presents data collected by Mark (1976).

The decrease in coil dimension with increasing
temperature found for polyethylene is expected; for
computational details, see the first part of section
243, The high-energy gauche states are more
populated at higher temperatures than at low
temperatures, causing a decrease in end-to-end

bed

distance with increasing temperature. Atactic poly-
styrene exhibits expanding coils with increasing
temperature The bulky phenyl group causes the
extended all-trans conformation to be less energetic-
ally favourable than angular states and the ‘extended”
states become more populated at elevated tempera-
tures. The preferred conformation of poly(dimethyl
siloxane) is the all-trans state. This conformation is,
however, not extended because the Si-O-Si and
O-5i-O bond angles are different. More extended
conformations are obtained by inclusion of gauche
states along the chain. The latter are more frequent
at higher temperatures.

2.4 MODELS FOR CALCULATING THE
AVERAGE END-TO-END DISTANCE FOR
AN ENSEMBLE OF STATISTICAL CHAINS

2.4.1 THE FREELY JOINTED CHAIN

Figure 2.10 illustrates the model: a chain consisting
of n segments (main-chain bonds), each bond having
a length | The end-to-end vector (F) is the sum of
the individual bond vectors according to:

(211)

(2.12)

Equation 2.12 is valid for any polymer chain
regardless of structure. We have to consider an
ensemble of N chains each comprising 7 segments.
The average of the squared end-to-end distance, ('),
is equal to:

=iy A=Y@y ¥ G
(EE) + EE) + 0+ (D +
o)+ nh) + o+ nn) +

I IO N

+
i)

EED + (i) + 0+
(2.13)

The first term Y& is the sum of the diagonal
elements in the square array, whereas

T Y

Table 2.2 T coefficients of bed chain di

Polymer Temp. ('C) 10° dIn{FH)/dT (K')
null

Polyethylene 140-190 1.1

Atactic polystyrene 120-170 +03

Polydimethylsiloxane 40-100 +0.8

Source: Mark (1976).
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Figure 2.10 Definition of quantities in a jointed-chain
model.

constitutes the sum of the elements above the
diagonal of the array.
The scalar product of the arbitrary segment vectors
Foand T is:
G = 1 cos 0,)

where 0 is the angle between the two bond
vectors. The following relationship is obtained by
combining eqs (2.13) and (2.14):

(2.14)

P
Py =nl* 422y Y {cos 0,
[
I + 1%cos 0,,) + - + I*Ccos 0, +
1*{cos 0> + IS + 00+ 1*cos 0,,) +
+

1cos 0,0 + I*cos O,,) + -+ I
(2.15)

Equation (2.15) is still a general formulation and is
valid for any continuous polymer chain.

The freely jointed chain consists of a chain of
bonds: the orientation of the different bonds is
completely uncorrelated. No- direction is preferred.

2.11 Three different
generated by torsion about bond i. If the three states are
equally populated, the average vector of bond i + 1 has no
component perpendicular to a vector parallel to the ith bond.

Figure rotational isomers are

Thus, insertion of (cos 0;» =0 for i #j in eq.
(2.15) leads to:
Py =nl? (2.16)

The molar mass dependence of the end-to-end
distance follows a square-root law.

242 THE FREELY ROTATING CHAIN

The model of the freely rotating chain assumes that
the bond angle () is constant. No particular chain
conformation is preferred and the average projection
of bond i + 1 along a direction perpendicular to bond
iiis zero (Fig. 2.11). In this case, (cos 0,5 # 0 also
fori # j, and

(BE > =17 cos(180 — 1)
() =17 cos’(180 — 1)
(EE,) = I[cos(180 — 1))

which after combination with egs (2.13) and (2.15)
gives:

(Y =l 4217 "i Z [cos(180 — 7))’ "

e
I + 17 cos(180 — 7) + -+ + I*[cos(180 — T)]' ' +
IFeos(180 — 1) + 2 + -+ Plcos(180 — 1}~ +
- | @
+
Pleos(180 — 1) " + r
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The summation can be performed over a single conformation of polymethylene is more extended
variable (k) by substituting j — i by k: than s predicted by eq. (2.19).

Initially, an exp for a chain with indep

= ”,;[1 25 e kw‘] (215 torsion angle potentials is derived, e.g. only firt-order

n i, interactions are considered. In order to derive a

relationship between the second moment of the

d

where o = cos(180 — 1). end-to-end vector and molar mass, it is useful to
Equation (2.18) can be simplified as follows: consider the individual bonds as different Cartesian
. coordinate systems (CS) - see Fig. 2.12.
= ,,,z[l N k)a":| The following equation can be used to transform
= a vector V expressed in CS; ., to its representation
V' in CS;:

(2.20)

-t g -t
=nlzl:[+l Y-Sy ka(":|
k=1 oy

wlz[‘ e Ax—o) 2 (a(l

where T, is the following second-order Cartesian

)] tensor:
11—
i 0

1o - cos 6, i),
| 2w 201 — ) T,=|sin0,cos ¢, —cosO,cosd, sindb;
=l 14 1-a nd-w sin0;sing, —cos;sin¢, —cos ¢,

2.21
For infinitely long chains (1 = 00): @21
The transformation tensor can be understood by

= n,l[ - Il“ ] _ ”“[i + ﬁ] considering that the unit vector along x, ., has the
—a

—a following coordinates in CS;:

11[1 + cos(180 — n:| 219 x C(;’s 0; .
=nlf - . y, | = sin 0; cos ¢,
1 — cos(180 — 1) . an 0, sin

Insertion of the bond angle (1) value for an sp" e following notation in CS, is valid for (0, 1,0)
hybnd:zed carbon of 110° gives the following  ng (0.0, 1) in C5, .

d f-pol d d of a methyl-
ene chain with free rotation: % sin 0,
\ v | =1 —cos 0,cos §, for (0, 1, 0)
Py x il 2 —cos 0, sin ¢,
X
243 THE CHAIN OF HINDERED ROTATION vi|=| sing for (0,0, 1)
z, —cos ¢,

Chain with independent torsion angle potential .0 ecior V= (o, 0,09 in CS,., has the
2 Oy ) :

The freely rotating chain is a good approximation for ~ following coordinates in CS;:
a real polymer chain at high temperatures when the
energy difference between trans and gauche states is
small compared to RT. At lower temperatures, the v, = v, sin 0, cos ¢, — v, cos 0, cos §; + v. sin ¢,
low-energy states become more populated than the .
high-energy states, which for a polyethylene chain

leads to a decrease in the low-energy trans population ~ that is to say

with increasing temperature. The low-temperature V=TV

v, = v, cos 0, + v, sin 0, + 0.0

v, sin 0, sin ¢, — v, cos 0, sin ¢, — v, cos $,
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Figure 2.12 Definition of CS, and CS,. ,; the torsion angle
¢ is set to zero for the planar trans conformation. Axis y,
is in the plane of bonds i and i — 1, and z, completes the
right-handed Cartesian coordinate system.

The scalar product F,f; can be strictly formulated
using the following matrix notations:

Br, =T, T, ), (222)
where
B =(100
and
1
L={o
0,

The scalar product FF, thus becomes:
=TT, ),
where the subscript denotes the (1, I)th element of
the product tensor. For a chain with free rotation

(Ceos $> =0 and (sin ¢) = 0), the average T,
tensor is simplified to:

cosf, sinf, o
Tr=| o 0o 0 (2.23)
0 0o 0
The scalar product F,F, becomes:
L5 = (T T )0 = Pleos )7 (2.24)

which was derived in section 2.4.2. A chain with
restricted rotation has a preference for certain
rotational isomers, eg. a polyethylene chain prefers
the trans state (¢ =0 according to the earlier
definition). For a symmetric molecule, it may be
argued that isomers of torsion angle ¢ = +x are of
the same population as those of ¢ = —z which

implies that ~ {sin ¢;>) = 0. The transformation

matrix becomes:

T =
cos 0 sin 6 0
sin 0¢cos @) —cos O¢cos ¢ 0
o 0 —<cos ¢

(2.25)

We may then use eq. (2.25) and implement the
matrices in the following eguation:

B2y S GEd

[
n—1 1
=nl*+ 2141, 0, o;[ Y on— k)Tf‘] 0
k=1 0

(2.26)

This series of matrices can be treated as scalar
quantities and the series converges just as was shown
for scalar quantities (see eq. (2.19)) to:

E+ (T
<ﬁ>=n1‘[ < >] (2.27)
E—(T)
where E is the unit matrix:
10 0
E=[0 1 0 (2.28)
00 1

By combining eqs (2.25), (227) and (2.28), an
expression valid for a chain with hindered rotation
with independent torsion angle potentials is obtained:

PN 1 + cos(180 — 1) [1 + {cos d)>]
=n e
"1 = cos(180 — 1) JL 1 — (cos ¢
(2.29)
The dep e of () tes from

P
the temperature dependence of {cos ¢), as may
be illustrated by the following example. It is here
assumed that the concentrations of the three possible
rotational isomers T, G and G’ of the polyethylene
chain are dependent only on the energy levels of
the three rotational isomers and that the energy
level of the rotational state of a certain bond is
not influenced by the torsion angles of the sur-
rounding bonds, ie. only first-order interactions
are considered.
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The rotational partition function z is a measure
of the number of rotational states which the system
can adopt at the temperature of interest, which at
T=0K is equal to 1 and increases with increasing
temperature. For n-butane it is equal to the sum of
the statistical weights (,, see definition in eq. 2.36)
of the possible conformations, i.e.:

z=1+0+0=1+20 (2.30)

where
o =e BT (2.31)
E, being the energy difference between the

gauche and the trans states. Provided that the
rotational potential of the bonds is independent of
the actual torsion angles of the nearby bond, the
average {f) of any function f(¢) is given by

T f ()
fy =" (232)
z
which may be applied to cos ¢:
Y u,cos b,
(cos ¢y =" N
_ 1+ 0cos(120°) + o cos(—120%)
1+o+o0
1-0
= (2.33)
1420
which is inserted in eq. (2.29) to give:
1 180 — 1) | 2
Py = nl"[ o+ coxl I)][ ﬂ] 2.34)
1 —cos(180 — 1) | 30

At 140°C, using E, = 2.1kJmol ™!, 0 = 0.54; the
second moment of the end-to-end distance becomes:
(ry =nl* x 2 x 2O
3% 054

which is lower than the experimentally obtained
(6.7 + 0.1)n* (Table 2.1). Agreement with experi-
mental data is obtained by also considering
higher-order interactions. Flory showed that an
analysis using second-order interactions brings the
predicted data closer to the experimental data.

Equation (2.34) predicts that the end-to-end
distance is a function of both chain flexibility
(controlled by E,) and the temperature (T). The last
factor in eq. (2.34) approaches unity at high
temperatures, and eq. (2.34) then becomes identical
with eg. (2.19). Polyethylene with an extended
low-energy state becomes increasingly more coiled
with increasing temperature. Figure 2.13 shows that
the end-to-end distance predicted from eq. (2.34) of
polyethylene (F, = 2.1kl mol™") decreases with
increasing temperature and approaches the value of
the chain of free rotation. It is also shown in the same
graph that the end-to-end distance increases with
increasing energy difference between the trans and
gauche states.

Figure 2.14 demonstrates the disordering of the
polymer chain which occurs at elevated temperatures.
Figure 2.15 illustrates the effect of a change in the
energy difference between trans and gauche states on
the chain conformation, i.e. the static chain flexibility.
A novel type of polymer, the liquid-crystalline

Figure 2.13 Normalized end-to-end distance {¥)/nl* as a function of temperature and energy difference between G

and T (E)



Average end-to-end distance for an ensemble of statistical chains 29

s &

150 K

10 K

Figure 214 Simulated polyethylene chains (E, =
21K mol™’; n = 200; temperature as shown in figure 1
using software developed by Nairn (1990)).

Tl

25 kJ mol'!

400 K

5 kI mol! 16 kI mor't
Figure 2.15 Simulated chains (T = 300 K; n = 200) using
software developed by Nairn (1990). Energy difference
values between straight and angular states are given in
graph

polymers, consists of very rigid segments exhibiting
very low chain flexibility. The rigid-rod molecules
self-align locally along a certain common director at
certain temperatures and/or certain polymer con-
centrations. These polymers are isotropic overall
provided that no external, aligning field has been
applied.

Chain with interdependent bonds: statistical
weight matrices and end-to-end distances for
interdependent bonds

This presentation essentially follows Flory’s (1989)
treatment. The conformation of a chain with r bonds,
each bond having three possible torsion angles, may
be specified by n — 2 components according to:

2113131...

It is here assumed that the potential of a given bond
i depends only on the states of the adjacent bonds
i~ Tand i + 1. The total conformation energy of this
chain sequence is then:

E{g} =E + By + B+ B+ By + Eyy
B

which can be expressed in more general terms as:

E{¢} = i E(d, 0 $) = ”f E,, (235

where { is the state of bond i — 1 and 1 is the state
of bond i. The first term is indexed by # only. The
interaction between bonds i and i + 1 is taken into
consideration in the next term.

A few important aspects of eq. (2.35) should be
noted. The energy E.,, is determined by the
preceding bond being i its assigned state, ¢, and the
succeeding bond being tentatively in its trans state.
Thus interactions due to bonds i — 1 and i + I, these
being in states ¢ and ¢; (energy = 0), are included
in the term E., ,. The effect of the procedure of setting
bond i + 1 to its trans state, is removed when the
next term of the series is evaluated. Adoption of this
procedure makes E,,, =0 if # is trans, irrespective
of .

For polyethylene, the following energies are
obtained:

Ey=0for {=T,G G

Erg = Ere = Eg, = Egg = 2.1 k) mol ™!

Eee = Ege = 124 kJ mol ™’

The following problem demonstrates the method.
The problem is to calculate the conformational energy
(in kilojoules per mole) for conformations of
n-pentane.

E=Y By =E,+Ey,

TLE=E, +Eq,=04+0=0
TG:E=Ep, + Ergy=0+21=21
TG E=Fr, + Egu=0+21=21
GG E=Eg, + Egcy=21+21=142
GGiE=FEc,+ Ecoy =204 21=42
GGME=Eg, + Egoy =21 4 124 = 145

The statistical weight u;, , corresponding to the
energy E.,, of a certain conformation (i is defined
by:

w,, = exp(—E;

o/ RT)

(2.36)

The statistical weights of the nine states originating
from the rotation about two adjacent bonds are

ly expressed in the weight

matrix
U, = [u), (237)

with states { for bond i — 1 indexing rows and 1 for
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bond i indexing columns. The statistical weight matrix
of polyethylene is:

T G ¢
T[1 o
= 2.3
u clt ¢ o (2.38)
Glt o ¢

The statistical weight exp(—Ece/RT) is approx-
imated by zero. Generalization to describe any
symmetric chain, i.e. a chain containing no asymmetric
carbons, with a three-fold rotational symmetry gives
the following statistical weight matrix:

1 o o
Uu=[1 o) oo (2.39)
1 oo oy

where @y describes the GG (or G'G') interaction
and g describes the GG’ (or G'G) interaction.

The symmetry of the chain requires that:

i = Ui My = oy = My oy = Uy
If all succeeding bonds are in a trans state:
Upp = My = gy

Are higher-order interactions important? GG'G has a
very serious steric overlap but since it contains
GG’ its low frequency is considered in the
‘two-bond model’ GGG'G' is also a 'bad’ conforma-
tion with steric overlap, but again it contains the GG’
pair.

The statistical weight of a certain conforma-
tion in the chain molecule is:

Q= ” W

and the conformation partition function for a
chain with n bonds is:

(2.40)

Z= % Q=2 1 i

10) i=2

(2.41)

This evaluation of Z by summing all possible
conformations is a gigantic task and can only be
accomplished for very short chains. Other methods
must be used. Matrix multiplication and a treatment
which was used for the Ising ferromagnet can be used.
Let us consider a chain with n bonds, each in two
rotational states (x or ). The statistical matrices

become:
w, 0
U, = [ ] (242)
0wy
U= [“:x ’41/[:| (2.43)
Hpx g,

The partition function is the sum of all elements in
the product tensor, ie.

=1, JU,U" !
= [1, 1]U; 1

The same result is obtained if U is rewritten as

(2.44)

w, oy
U, = (2.45)
0 0
and
1
Z =1, 0lU,U" )[1] (2.46)
which can be simplified to
=
Z=11,0U"" ‘LJ (2.47)

In a more general form, with more rotational states

per bond:
- [ﬁ u,]l

(2.48)

where

J=m1 o Ofand J = (2.49)

1
For a chain with only one type of bond, this
equation simplifies to

Z=]U"7 (2.50)

This expression can be simplified and converted to
an algebraic expression by the similarity expression,
by which U is transformed to the diagonal tensor A
with eigenvalues 4, of U as elements:

b0 o0
0 4 0
0o 0 i

ATUA= =A (2.51)
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This equation may be rewritten as
BUA = A (252)

where B = A", the two matrices being related as:
1 00
AB=[0 1 0

0 0 1

=E (253)
If eq. (2.52) is premultiplied by A:
ABUA = AA
EUA = AA
UA = AA
The latter can be separated into three vector
equations:

(2.54)

UA, =A/, k=123 (2.55)
where A, are the column eigenvectors of U:
A
Ar=| Ay k=123 (256)
As
Ifeq. (2.52) is postmultiplied by B:
BUAB = AB
BUE = AB (2.57)
BU = AB
which can be written in the form
BjU = 4B} (2.58)

where B} = [By,, B, By} are the eigenrows of U.
= E, we can write:

B'A; = dy (2.59)
where 8, is the Kronecker delta (equal to 1 for j = k
and equal to 0 for j # k). Equation (2.55) can be
rewritten as:

(U— LBA, =0 (2.60)

which has solution
|U— X4E| =0 (2.61)
The expressions
BUA = A
ABUABU = AAB
EUE = AAB

U = AAB

can be combined with eg. (2.50) to yield:
Z =J'AA"~*BJ

or

Z=AKT Ak

The partition function can be written:

7-¥ T

where (2.63)

which for large values of n can be approximated by

Z=TA

(2.64)
where 2, is the largest eigenvalue.

At even larger 1 values, eq. (2.64) simplifies to:

Zx (2.65)

Conformation partition function for chains of three-fold
symmelry
If the statistical weight matrix U is inserted in eq.
(2.61):

1 0 o
U=|1 o) ow
1 ow oy

The following expression is obtained:

A — o — w)]
X 22— M1 + o +0w) + oy + @ — 2)
=0

with solutions:

(2.66)
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with the eigenvector A and eigenrow matrices
B = A" equal to:

1—h —Gy—1) 0
A=l 1 1 -1 (2.67)
1 1 1

Combination of egs (2.63), (2.67) and (2.60) yields:

1—2 A1
z=|-= I ,v -1 (2,
[’»- - AzJM LL - }Jl_ @6

It is interesting to compare the gauche and trans
contents based on interdependent torsion angle
potentials with those based on independent torsion
angles.

Independent forsion angles: AE, = 2.1 kjmol ™!, T =
413K (section 2.4.3.1). p, = 0/(1 + 20) = 0.54/
(1 + 2 X 0.54) = 0.260; py = 1 — 0.260 % 2 =
0.480.

Interdependent torsion angles: o = 0.54; W = 1; ¢
0.03 (12.4 kJ mol ™) inserted in eqs (2.66)-(2.69):
po=062: P, = 0.19.

The first model underestimates the trans content
because it does not consider the two bond interactions
GG’ (G'G).

Flory derived an expression for the second
moment of the end-to-end distance but, due to
the significant mathematical complexity, the deriva-
tion is not presented here. The statistical weights of
the conformations @, are introduced in eq. (2.26),
which is repeated here:

n—t 1
Py =l + 211, 0, n)l Y - k)1',‘:| 0
k=1 0

and, after complex matrix mathematics, an expression

of the following type is obtained:

(*y = CUml* (2.70)

where C is a constant for a given polymer that
depends on the statistical weight matrix (U). Flory
was able to fit eq. (2.70) to experimental data,
(C = 6.7 £ 0.2) using realistic values in U.

244 THE EQUIVALENT CHAIN

The close resemblance between the experimentally
established relationship (eq. (2.7)) and the various
derived equations indicates that the ideas imple-
mented in the analysis are basically correct. The
proportionality constant C is due to short-range
interactions. Flexible polymers have only short
sequences of bonds with orientational dependence
whereas stiff polymers have significantly longer
segments of correlated bonds. Hence, a real chain of
sufficient length may be represented by an equivalent
chain comprising ' hypothetical bonds each of
length I connected by free joints (Fig. 2.16). The
values of n’ and I are obtained by considering that

fowe = 11 (2.71)

oy =l
Thus, for polyethylene with r,, = 0.83n/ and
Py, = 6.7nl (Table 2.1), it follows that n/n’ x 10
real bonds per equivalent segment.

(2.72)

245

The theoretical analysis presented has
considered only short-range interaction, involving

LONG-RANGE INTERACTION

above

Figure 2.16 Schematic representation of the equivalent
chain,



only the spatial, energetic limitations arising from
torsions about two adjacent bonds. This simplification
is valid, as was pointed out in section 2.3, under theta
conditions.

The long-range interactions become apparent in
good solvents. Flory showed early that the
experimental molar mass dependence of the second
moment of the end-to-end distance, () oc n°¥, can
be derived according to the following scheme.

The repulsive energy (H,,) is proportional to the
volume of the molecular sphere and the number of
pairs of bonds:

2 7
:[ﬁ"r’:c,}:}:c, 5

H -

rep (2.73)
where ¢, is a constant and ¢ is the concentration of
polymer. The conformational entropy (S) is given by:
7

S=c— -

o

(2.74)

where ¢, and ¢, are constants. The free energy (G)
becomes:

w I
G=H-Ts=c| ")+ 1" )+e @75
v 3

where ¢, is a constant. If the minimum of G is
sought by conventional methods, the following
equilibrium radius (%) is obtained:

o n® (2.76)

25 RANDOM-FLIGHT ANALYSIS

In section 2.4 expressions were derived for the
average end-to-end distance. Random-flight analysis
yields an expression for the distribution of the
end-to-end distance.

It is assumed here that the polymer chain takes
discrete steps in three dimensions. For simplicity it is
assumed that only fwo types of step exist in each
direction: forward and backward. The first task is to
determine the average step length. The origin of the
chain segment is located in the centre of the sphere
shown in Fig. 2.17. The other end of the segment is
located on the surface of the sphere and it is assumed
that the chain segment may have any direction. Al
parts of the sphere are equally probable. If we cut the
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Figure 2.17 The distribution of bonds in real space: x
coordinate.

sphere in the middle and consider the probability

(P() that the segment takes a step in the x direction

with a length of ,:
_amlsing)ldy

P, s =
2l

_ (1 @k
\2) kil
: 2

By = j/iml,)dl‘ = J I cost Y sin  dy

sin dy (277)

o o

(2.78)
By substitution in eq. (278) of = cosy and
dt = —siny dy
-1
I3
D=0r| —fd=-
@yt [ rast
I = (2.79)

The average forward (and backward) step length
in any direction (x, y or z) is I/\/3. The next task is
to derive the statistics of positive and negative steps.
The end-to-end distance is proportional to the net
balance of forward (+) and backward (—) steps. In
one dimension (x):

x=(1, —n.)— (2.80)

V3
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where n, and n_ are respectively the number of
forward and backward steps. The probability of the
occurrence of a certain combination of n . /n_ is
binomially distributed:

A ) N onl
n,, n)=|~
M z) ny il

The difference between forward and backward
steps is denoted m, where m = n, —n_:

(2.81)

P m) = C) (H ; m)”& - m) @28

2 2

The maximum probability occurs for m = 0

L)

This equation can be simplified by applying
Stirling’s approximation (x! & r'e’/2n2):

1 we /2
Pn, 0) & ( ™

I

2
= (2.83)
™

n g =
Ve

Substitution of n and m in eq. (2.82) according to

2k=n and x=m/2 leads to the following
expression:
) (1 . (284)
o=(c) .
\2, (k + )ik — 2!

The maximum probability (Py; for x = 0) is given

by:
1\ 2kt
Fo= (Z) kiki

The ratio of Pk, x) to Py is:

(2.85)

Pk, x) kikt
Py kol — 0!
k= Dk =2 k=24 1)
k+ Dk +2 ..+

(I %)(I 7%)(1 ,(L—k_n>
<1 +%>(1 +f)(1 “%“)(1 +§>
)

()

Taking the logarithm of eq. (2.86):

o= E ()= )

x

(2.86)

=

(2.87)
The Maclaurin expansion,
n
I+ xz =t —‘;zz (ifz < 1)
is applied to eq. (2.87);
[mk,xi]
In|
Py
N (i
-Z(-i)-20)
= - +
k (.Z. ' z )
1
= @2k kATt

2 x
=—;<l+2+3+4+'“+r—1+2)

_ (=D« e
B k K)ok

Combining egs (2.83) and (2.87) gives:

(2.88)

2
Pn, m) = \/ exp(—m*/2n) (2.89)
n

The step length in the x-direction is 21/\/3 since
when n, increases by one, n_ has to decrease by one.
The relationship between P, m) and Plx) becomes:

P(n, m) = Px)Ax



where Ax=2///3 and m=/3%/1 which are
inserted in eq. (2.89) giving:

p(,)dxz\/zn (\/,1>exp —32/2n)dx (2.90)

The same types of expression can be derived for
the distribution function in both the y and z directions.
Itis here assumed that the actual location of the chain
end in, for instance, y space does not affect the
location of the chain end in the other two dimensions,
ie. Py = f(x) only. The probability of finding the
chain end in the point (x, v, 2) in a chain originating
at the origin with the other chain end is given by:

Px, y, 2)dx dy dz

3\
= (lnnl‘)

X exp(—3( + y* + 2%)/2nl}dx dy dz
(2.91)

An alternative way of writing eq. (2.91) is:

A
Pey, drdy dz = (Z{ml)

x exp(—37/2nl)dx dy dz (2.92)

P, y, 2) decreases monotonically with increasing r.
The most likely occurrence is to find the other chain
end at the starting point. By considering that the
second moment of the end-to-end distance for a freely
jointed chain is equal to nl*, eq. (2.92) may also be
rewritten in the form:

Pz, y, z)dx dy dz

7( N )
~and,

X exp(—3r/2(Py)dr dy d=  (2.93)
This equation can be applied to any real polymer
under theta conditions considering rhat any such
chain can be rep dbyah

chain with " freely jointed links, cach link being
of length I (section 2.4.4). Equation (2.93) is,
according to the Flory theorem, also applicable
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Figure 2.18 Schematic representation of distribution
functions: P(x, y, z) and Pr)

to molecules in a molten polymer and to
molecules in a rubber polymer. This is important
and the basis for the statistical mechanical theory of
rubber elasticity presented in Chapter 3.

The radial distribution function P(r) is obtained
by multiplying P(x, y, z) with the area of the surface
of the sphere with radius r:

4 = dr dv d 4nr dr
Pndr = Plx, y, z)dx dy s

s
n/<2n<r1> ) exp(—3r/2{PYodr
(2.94)

Figure 2.18 shows the shape of the distribution
functions. The radial distribution function, P(r), is the
product of the monotonically falling P(x, v, z) and the
parabolic function 7.

2.6 CHAINS WITH PREFERRED
CONFORMATION

Polymer molecules are found in a preferred

conformational state in crystals. The experimental
for d the preferred conf

tion are mainly X-ray and electron difraction. The

difficult determination of the crystal unit cell must be

followed by further molecular mechanical modelling
to establish the exact chain conformation.
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Figure 2.19 Isotactic polypropylene in all-trans conforma-
tion showing the steric problem associated with the pendant
methyl groups.

Polyethylene obviously shows the simplest
polymer structure. The all-trans conformation is
energetically the most stable conformation and has
been established by numerous di i

For polymers with pendant side groups, e.g. isotactic
polypropylene (iPP) and isotactic polystyrene (PS),
the extended all-trans conformation is of high energy
due to steric repulsion of the side groups (Fig. 2.19).

For iPP, two sequences, /TG/TG/TG/TG/ and
/GT/G'T/G'T/G'T/, have the same minimum
conformational energy. Both conformations produce
helices. Three polymer repeating units produce a
repeating unit in one turn of the helix. This kind of
helix is denoted 3,. The two conformations have
different pitches. A view along the helical axis is
shown in Fig. 2.20. Other isotactic polymers, e.g. iPS,
also prefer the 3, TG helix for the same reason as
does iPP.

Polyoxymethylene (POM) has no large side
groups. The repeating unit of POM is [~CH~O-}.
The all-
gauche or

lowest-energy ~ conformation is  an

sequence, e ...GGGGG

Figure 2.20 View along helical axis of 3, helix of isotactic
polypropylene. The cross-section of the backbone part of
the molecule is triangular and the pendant methyl groups
are directed out from the comers of the triangle.

Figure 2.21 View along helical axis of POM (2, helix)
carbon - shaded; hydrogen - white; oxygen - dotted

..GGCGCGCGG .
two repeating units complete one helical period in
exactly one turn. The conformation of POM is not

 This generates a 2, helix, i.c

exactly all-gauche; the conformation is somewhat
distorted from G and the helix is 9/5 (9 repeating
units in 5 tums). Figure 2.21 shows the view along
the helical axis of POM.

The reason why G is preferred over T in POM is
not fully understood but it is related to the polar
character of the C-O bond. In the eclipsed position,
the electrostatic attractions between the positive
carbon and the negative oxygen are at a maximum.
This should contribute to the stabilization of the
gauche state over the trans state. The energy
difference between T and G is 7 kJ mol ~" which is
greater than expected from the electrostatic attraction.

2.7 SUMMARY

A polymer molecule can adopt many different shapes

primarily due to its degree of freedom for torsion

about o bonds. These states are referred to as

conformations. A polymer molecule in a solution, in

the molten state and probably also in the glassy,
phous state, can be cf

coil.

d as a random

It has been experimentally shown that the second
moment of the end-to-end distance ({*)) of
unperturbed polymer chains, which only appear under
so-called theta conditions, is proportional to the



number of bonds () and the square of the length of
each bond (1):

(= Cnl* (2.95)

where C is a constant, which depends on the
segmental flexibility of the polymer.

This kind of relationship can be derived on the
basis of very simple models. For polyethylene, the
values for C are for a freely jointed chain C = 1, for
a freely rotating chain C = 2, and for a chain with
hindered rotation C > 2. Flory showed that it was
sufficient to consider the energetics of the torsion
about two nearby bonds to obtain agreement
between predicted and experimental values (C = 6.8
at 410K for polyethylene in the theta state).

The unperturbed state, ie. the state of a polymer
under theta conditions, is characterized by the absence
of long-range interactions. The segments of a
molecule under theta conditions are arranged in a way
which indicates that they do not ‘sense’ the other
segments of the same molecule. The molecules behave
like “ghosts’ or ‘phantoms’ and are sometimes also
referred to as phantom chains. Flory proposed that
the spatial extension of polymer molecules in the
molten state is the same as in the theta solvent and
that the same simple equation (eq. (2.95)) between
(P, and chain length () should hold. Small-angle
neutron scattering data were available many years
later and supported the Flory theorem. In good
solvents where, in addition to short-range interac-
tions, long-range interactions also play a role, the
perturbed state can be described by the following
equation:

Py o

The phantom (unperturbed) polymer chain can be
represented by a hypothetical chain with 1’ = n/C

(2.96)

freely jointed segments each of length I' = CL If n
and | are replaced by #' and I in the equation for the
freely jointed chains, eq. (2.95) is obtained.

For phantom chains the distribution function of the
end-to-end distance is Gaussian, taking the form:

3 sz
Plx, y, 2)dxdy dz = (—ZW >a>

x exp(—3r/2(rYodx dy dz
(2.97)
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This Gaussian expression is fundamental to the
statistical mechanical theory of rubber elasticity.

Polymer chains in crystals take their preferred
conformation, ie. their low-energy state. Linear
polymers with small pendant groups, eg. poly-
ethylene, exhibit an extended all-trans conformation.
Isotactic polymers with the repeating unit ~CH,~
CHX= exhibit a helical structure if the X group is
sufficiently large (i. if X is a methyl group or larger).
Even linear polymers with no large pendant group
may, due to electrostatic repulsion between nearby
dipoles, form a helical structure. Polyoxymethylene
belongs to this category.

2.8 EXERCISES

2.1. Calculate the average end-to-end distance for
polyethylene with M =10"gmol ™’ at 140°C
under theta conditions. Compare this value with
the contour length of these molecules.

22. Write the different, distinguishable conforma-
tions of n-hexane. Calculate the conformational
energy of each of them and calculate their
statistical weights at 20, 100 and 400 K.

2.3. Compare n-pentane in the GG’ state with
isotactic PP in an all-trans conformation. Build

the molecules using a molecular model and
make the comparison.
24, Build the preferred conformation of iPP

and POM. Use a molecular model.

25. Calculate the trans and gauche contents in
PE at 20, 100, 200, 300, 400 and 600 K. First,
consider only first-order interaction, i.e. independent
torsion angle energies. Then consider second-order
interactions as well, i.e. the interdependence of torsion
about two adjacent bonds. Calculate for each case the
constant C in the equation (>, = Cnl’.

2.6. Crystalline polymers consist of alternating thin
lamellar crystals, typically of a thickness of 10~20 nm,
and amorphous interlayers. What is the consequence
of the fact that all chains leaving the crystals perform
a random walk in the amorphous interlayer before
re-entering the crystals?

2.7. Size exclusion chromatography (SEC) is used to
determine the molar mass distribution of polymers.
SEC is not an absolute method. It requires calibration.
Narrow molar mass fractions of atactic polystyrene
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are commonly used for calibration. The time for a
given molecular species to flow through the column
is dependent on the hydrodynamic volume of the
molecule. Tt has been shown that the hydrodynamic
volume is proportional to the product of the intrinsic
viscosity [} and the molar mass M. The
Mark-Houwink equation relates the two quantities
according to:

= K-M*
where K and a are constants unique for a given
combination of polymer, solvent and temperature.
Derive the relationship between the molar masses of

(2.98)

the polymer studied and of atactic polystyrene for a
given eluation time.
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3.1 INTRODUCTION

Natural rubber is obtained as a latex from a tree called
Hevea Braziliensis. It consists predominantly of cis-1,4-
polyisopropene (Fig. 3.1). The word ‘rubber” is de-
rived from the ability of this material to remove marks
from paper, which was noted by Priestley in 1770.
Rubber materials are not, however, restricted to natur-
al rubber. They include a great variety of synthetic
polymers of similar properties. An elastomer is a
polymer which exhibits rubber elastic properties, i.e.
amaterial which can be stretched to several times its
original length without breaking and which, on release
of the stress, immediately returns to its original
length. That is to say, its deformation is reversible.

A very illuminating experiment is to subject a
rubber band to about 100% strain by hanging a dead
load on to it and then heat the rubber band. The
elongation of the rubber band will suddenly decrease
when it is heated. This may first seem anomalous, but
dter reading this chapter you will understand the
Teason.

Figure 3.1 Repeating unit of cis-1,4-polyisoprene: car-
bons — shaded; oxygen — white; shaded bond indicates a
double bond. 1.

Metals or other highly crystalline materials exhibit
Hookean elastic behaviour at strains typically less
than 0.2%. Their elasticity is dominantly energy-
driven. The displacement of the atoms in the lattice
accompanying the stress causes an increase in internal
energy (Fig. 3.2). The entropy remains approximately
constant. If entropic effects are neglected, the elastic
force causing the displacement of the atoms from their
equilibrium states is equal to the slope in the plot of
potential (L) against displacement (r) (Fig. 3.2). The
potential exhibits the following approximate r de-
pendence near the equilibrium point:

U=Cr—r)? (€3]

where C is a constant and r, is the equilibrium bond
length. The elastic force is:

f= %1 =2C(r —ro) 3.2
The stress (0) is:
2C
o= A (r—r) =Ee (3.3)

where E = 2CRy/A, A is the cross-sectional area
and ¢ is the strain. Equation (3.3) is Hooke's law.
Rubbers exhibit predominantly entropy-driven
elasticity. This was discovered by Gough (1805) and
later by Lord Kelvin (1857) and Joule (1859) through
measurements of force and specimen length at
different temperatures. They discovered the thermo-
elastic effects: (a) that a stretched rubber sample
subjected to a constant uniaxial load contracts
reversibly on heating; and (b) that a rubber sample
gives out heat reversibly when stretched. These
observations were consistent with the view that the
entropy of the rubber decreased on stretching. The
molecular picture of the entropic force originates from
Meyer, von Susich and Valko (1932), Kuhn (1934)
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Figure 3.2 Energy-driven elasticity typical of crystalline solids.

and Guth and Mark (1934), who suggested that the
covalently bonded polymer chains were oriented
during extension. The theoretical development during
the 1940s was due to James and Guth (1942), Wall
(1942, 1943), and Flory and Rehner (1943) who
suggested, in slightly different theoretical forms, that
the elastic force was due to changes in the
conformational entropy. This view that the long chain

molecules are stretched out to statistically less
favourable states still prevails (Fig. 3.3). The force
acting on the rubber network is equal to the slope of
the plot of free energy (G) against displacement. The
instantaneous deformation occurring in rubbers is due
to the high segmental mobility and thus rapid changes
in chain conformation of the molecules. The energy
barriers between different conformational states must

Str
—~— —

Entropy (S)

= A-TAS)r

Elongation (r)

Figure 3.3 Entropy-driven elasticity of rubber materials.



therefore be small compared to the thermal energy
(RT).

Analogies can be found between rubbers and gases.
An increase in the chaotic state of the molecules
(increase in entropy) occurs in both cases with
increasing  temperature. As a result, the rubber
decreases in length (extension) with increasing
temperature under a constant load. The same trend is
indeed obtained in a compressed gas, the latter
expanding (deformation = (volume)~!) when the
temperature is increased. The pressure of the gas is
predominantly entropically driven and so is the stress
in the rubber. The
deformation is a consequence of the fact that rubbers
are lightly crosslinked materials (Fig. 3.4). The
crosslinks prevent the chains from adopting ‘new’
positions relative to their neighbouring chains in the
unstressed state. The length of the chains between

reversible character of the

adjacent crosslinks is typically several hundred main
chain atoms. The crosslinks can be permanent, i.e. the
crosslinks are covalent bonds.

From a historical perspective, the accomplishment
by Charles Goodyear in 1839 of a method to vulcanize
natural rubber with sulphur was a crucial break-
through.  Sulphur links attached to the cis-1,4-
polyisoprene molecules formed the network structure
which is a prerequisite for obtaining elastic properties
(Fig. 3.5).

Later develop has
involved peroxide crosslinking and thermoplastic
elastomers. The latter consist of block copolymers
with hard segments (physical crosslinks) and flexible
segments (Fig. 3.6). The crosslink domains are either
glassy amorphous or crystalline. These materials can

of vulcanizati hnol

be processed by conventional thermoplastic process-

Figure 3.4 Crosslinked rubber. The crosslinks are indicated
by filled circles.
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Figure 3.5 Sulphur bridges linking cis-1,4-polyisoprene.

Soft domain with
flexible segments

Hard domains with
stiff segments

Figure 3.6 Structure of thermoplastic elastomers.

ing techniques at temperatures above the glass
transition temperature or above the crystal melting
point of the hard segment domains.

3.2 THERMO-ELASTIC BEHAVIOUR AND
THERMODYNAMICS: ENERGETIC AND
ENTROPIC ELASTIC FORCES

Figure 3.7 shows the classical data of Anthony, Caston
and Guth from the 1940s. At small strains, typically
less than 4 = L/L, < 1.1, the stress at constant strain
decreases with increasing temperature, whereas at 4
values greater than 1.1, the stress increases with
increasing temperature. This change from a negative
to a positive temperature coefficient is referred to as
thermo-elastic inversion. The reason for the
negative coefficient at small strains is the positive
thermal expansion and that the curves are obtained
at constant length. An increase in temperature causes
some thermal expansion (increase in L, and also a
corresponding length extension in the perpendicular
directions) and consequently a decrease in the true 4
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Figure 3.7 Stress at constant length (shown adjacent to
each line is a strain value referring to this length, assuming
constant Ly) as a function of temperature for natural rubber.
Drawn after data from Anthony, Casta and Guth (1942)

at constant L. The effect would not appear if L, were
measured at each temperature and if the curves were
taken at constant 7 (relating to L, at the actual
temperature). The positive coefficient is typical of
entropy-driven elasticity.

The reversible temperature increase which occurs
when a rubber band is deformed can be sensed with
your lips, for instance. It is simply due to the fact that
the internal energy remains relatively unchanged on
deformation, i.e. dQ = —dW (when dE = 0), where
Qs heat and W is work. If work is performed on the
system, then heat is produced, leading to an increase
in temperature. The temperature increase under
adiabatic conditions can be substantial. Natural rubber
stretched to 4 = 5 reaches a temperature which is
5-10 K higher than that prior to deformation. When
the external force is removed and the specimen returns
to its original, unstrained state, an equivalent
temperature decrease occurs.

The stress acting on a crosslinked rubber causes
orientation of the chain segments which may lead to
changes in the intramolecular-related internal energy.
In addition, small changes in volume occur which also
lead to an increased internal energy. The following
thermodynamic ~ treatment yields an expression

differentiating between the entropic and energetic
contributions to the elastic force.

According to the first and second laws of
thermodynamics, the internal energy change (dE) in
a system exchanging heat (dQ) and work (dW)
reversibly is given by:

dE=TdS—pdV +fdL (3.4)

where d5 is the differential change in entropy, p dV
is the pressure—volume work and f dL s the work done
by deformation.
The Gibbs free energy (G) is defined as:
G=H—TS=E+pV—TS (3.5)
where His the enthalpy. Differentiating eq. (3.5) gives:
dG=dE +pdV+ Vdp — TdS —SdT (3.6)
Insertion of eq. (3.4) in eq. (3.6) gives:
dG =fdlL+ Vdp—SdT (3.7

The partial derivatives of G with respect to L and T

are:
(&)
—_— (3.8)
L)y
-5 (3.9

G\
)y,

G is a function of state, which means that the order
of derivation is unimportant:

(). ()., o
ot \oL i)y NLNOT), )00

(3.8)~(3.10),
expression is obtained:

G
o), \at),,

The partial derivative of G with respect to L at
constant p and constant T (from eq. (3.5) is:

By combining egs the following

3.11)

DG> <0H> (:75)
= -7 (3.12)
L)1 oL/, L), 1
Combining egs (3.11) and (3.12) gives:
f= o +T0f (3.13)
S\l o1/, ’



The derivative of H with respect to L at constant
p and constant T (from eq. (3.5)) is:

().~ ()
)y o), T P\oL),,

Experiments show that the volume is approx-
imately constant during deformation, (3V/dL), % 0.

Hence,
(2),-()
aj)r \o),r
oF o
(< (2
! (BL>,T+ (M),,L

The first term, (JE/OL),7, is associated with the
change in internal energy accompanying deformation
at constant pressure and temperature. The other term

(3.14)

(3.15)
and

(3.16)

originates from changes in entropy (degree of order)
by deformation; note that (3f/0T), , = —(dS/dL), 7.
Figure 3.8 shows schematically the partition of the
force into energetic and entropic parts.

It should be noted that the entropy- and
energy-related parts of the elastic force are not only
associated with chain orientation. An additional and
important contribution originates from a change in
volume:

) (), (%) () o
o),y \oLry \ov/r\oL),r

(OE/IL)
T

Temperature

Figure 3.8 Energetic (CE/CL), 1 and entropic T(0f/CT),
components of the elastic force.
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Typical of rubbers is that the volume remains approx-
imately constant on deformation, ie. (@V/dL), 1 is
small. The change in intemal energy which
accompanies a change in volume, on the other
hand, is substantial, i.e. (JE/QV)y, is very large.

An analogous expression can be derived for
constant volume conditions:

() o2
=) .

This equation is difficult to verify experimentally.
A hydrostatic pressure has to be adjusted in order to
keep the volume constant to counteract changes in

(3.18)

volume caused by the stress—strain work. Flory

showed that
().~
L)z \0T),.s

where J = L/L,, L, being the length for zero stress
at temperature T. Combining egs (3.18) and (3.19)

i3 of
/= (7) * T(a’r)

Equation (3.20) is very useful: by measuring the
force (f) as a function of temperature (L, has to be
determined at each temperature) at constant pressure
and elongation (4) the change in internal energy and
entropy at constant volume can be obtained. The latter
refer to the changes in the quantities caused by
orientation (directional preference of the chains)
alone. Figure 3.9 presents data for natural rubber
indicating that the entropic part constitutes 80-85%
of the elastic force. According to eq. (3.18), the
energetic force component (£,) under constant volume
conditions is given by:

fe _I(ﬁ)
TRV

(3.19)

gives:

(3.20)

3.21)

Under constant pressure conditions the following
equation holds:

f,e:lﬁZ(ﬂ) P
f et/ T r -1

where f is the thermal expansion coefficient of the

(3.22)
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Figure 3.9 The fraction of the elastic force with energetic
origin as a function of strain for natural rubber at room
temperature. Drawn after data from Wolf and Allen (1975).

rubber. Flory showed that
o T(dan<ﬁ>o>
f T

These equations can be understood in terms of the
fact that a deformation of the network causes a change

(3.23)

in conformational energy which is an intramolecular
effect. Table 3.1 shows results from experiments on
a number of polymers, some of them diluted with
swelling agents. Both negative and positive values of
f./f have been found.

Polyethylene shows a negative value (—0.42),
which is expected since the extended all-trans

conformation is of lower energy than the random coil
conformation. Stretching molten and crosslinked PE
causes a decrease in both entropy and cnergy.

Other polymers such as natural rubber and
poly(dimethyl siloxane) exhibit positive values, i.e. the
extended conformation is of higher energy than the
unstrained structure. The preferred conformation of
poly(dimethyl siloxane) is all-trans, but this gives the
chain a non-extended form, in this case due to the
difference in bond angles along the chain, ie. for
0-5i-O and Si-O-Si. Swelling of the polymers in
various solvents causes no systematic change in f,/f,
demonstrating the intramolecular nature of the
energetic force component (Table 3.1).

3.3 THE STATISTICAL MECHANICAL THEORY
OF RUBBER ELASTICITY

The early molecular-based statistical mechanics theory
was developed by Wall (1942) and Flory and Rehner
(1943), with the simple assumption that chain
segments of the network deform independently and
on a microscopic scale in the same way as the whole
sample (affine deformation). The crosslinks are
assumed to be fixed in space at positions exactly
defined by the specimen deformation ratio. James and
Guth (1943) allowed in their ‘phantom network
model’ a certain free motion (fluctuation) of the
crosslinks about their average affine deformation
positions. These two theories are in a sense ‘limiting
cases’, with the affine network model giving an upper

Table 3.1 Energetic stress ratio of a few polymers ~

Polymer Diluent v, fof

Polyethylene none 100 042
Polyethylene 1-CioHe 050 —064
Polyethylene 1-CyyHee 030 —0.50
Natural rubber none oo 017
Natural rubber 1-CyoHye 0.34-0.98 0.18
Natural rubber decalin 0.20 0.14
Poly(dimethy! siloxane) none 1.00 0.25
Trans (1,4-polyisoprene) none 1.00 —0.10
Trans (1,4-polyisoprene) decalin 0.18 —0.20

Source: Mark (1984),

* Volume fraction of polymer in network



bound modulus and the phantom network model
theory the lower bound.

Figure 3.10 shows schematically the difference
between the affine network model and the phantom
network model. The affine deformation model assumes
that the junction points (i.e. the crosslinks) have a
specified fixed position defined by the specimen
deformation ratio (L/L,, where L is the length of the
specimen after loading and L, is the length of the
unstressed specimen). The chains between the junction
points are, however, free to take any of the great
many possible conformations. The junction points of
the phantom network are allowed to fluctuate about
their mean values (shown in Fig. 3.10 by the points
marked with an A) and the chains between the
crosslinks to take any of the great many possible
conformations.

The starting point here is the affine network model
which is founded on the following assumptions:

o The chain segments between crosslinks can be
represented by Gaussian statistics of phantom
(unperturbed) chains.

® The network consists of N-chains per unit
volume, The entropy of the network is the sum of
the entropies of the individual chains.

o Al different conformational states have the same

energy.
Undeformed network
Figure 3.10 Sct I of the d
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® The deformation on the molecular level is the same
as that on a macroscopic level, i.e. deformation is
affine.

® The unstressed network is isotropic.

@ The volume remains constant during deformation.

The distribution of the end-to-end vectors is as follows

(section 2.5):

3

5n<%>a>
]dx dy dz

[ A 4y 4+
X exp|
(3.24)

2(r
where (23, is the average end-to-end distance of the
phantom chains. Boltzmann's entropy relationship
(5= kInP) is useful here:

S =k In(P(x, y, 2)dx dy dz)

()
2 \2r(r),

(g(f +y 42

Pl v, Ddxdy dz = (

) + In(dr dy d:)) (3.25)

20,
which after simplification becomes
37
S=C—k— (3.26)
2(r),

Affine network model (L/Lo= 2)

Neaes

A

Phantom network model (L/Lo= 2)

of a network according to the affine network model (upper)

and the phantom network model (lower). The points marked with an A indicate the position of the crosslinks assuming affine

deformation.
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Figure 3.11 Deformation of a random chain from un-
stressed state 7, to stressed state 7.

where C is a constant. The unstressed state is
characterized by the end-to-end vector T, = (%, Vo,
z), shown in Fig. 3.11. The end-to-end vector
P =(xy 2 corresponding to the stressed state is
related to F, through the deformation matrix
(34, 2y, A) according to:

x= A% Y =Aye 2= Az

The entropies of the chain before (S;) and after (S)
the stress have been applied are:

2o g
Sy =C— k(s( 2 ;i"; Z")) (3.27)
o
S22 4 Ay 4 A
s=c- A( b +Z<;y>" * ‘”)) (3.28)
o

and the difference in entropy between the two
states is:

AS=5-35,
_ 731(((“ = DR+ (- Dyd + (4 — n@)
26,
(3.29

The change in entropy for the network (ASy) is
the sum of the contributions of all chain segments of
the network. It is here assumed that deformation is
affine, i.e. matrix (4;) is the same for all chain

It is also assumed that the original system i
isotropic, i.:

(3.31)

where # is the number of Gaussian chain segments

in the system. Insertion of eq. (3.31) into eq. (3.30)

gives:
ASy =
AG =

— Ink(A} + 23+ 21— 3)
—TASy = WkT(i3 + 43 + 43— 3)
(3.32)

Equation (3.32) is general and is not restricted to
any particular state of stress. Let us derive a
stress—strain equation for a rubber specimen subjected
to a constant uniaxial stress. The deformation along
the stress is denoted 4. It may also be assumed that
the transverse deformations are equal; 4, = 4. The
assumption that the volume remains constant during
deformation can be formulated as follows:

Jakhy =1 (3.33)

Insertion of 4, =4 and 4, = A, = 4 in eq. (3.33)
gives:

Mi=1

NZ

Hence, the following deformation matrix is obtained:
(4, 174/, 1/4/4). The force (f) is obtained by using

ASy =3 As= -3k
.

FE-DYR+ RNy +B-1DY

(3.30)
26r'



eq (3.32) and 4 = L/Ly:

<a(AG)> amc;) (az)
v\ 4 Jp oLy
e ( 2Nt
"5(‘ HEES 3)) i (L)
nkT(;_})
L, 72
(AD> NRT(A
f=o = )=——(4~-
\ 4 Lo

where @ is the real stress, A, is the original

(3.34)

cross-sectional area, L, is the original length of the
sample parallel to the stress, N is the number of moles
of Gaussian chain segments and R is the gas constant.

After simplification, the following stress-strain
equation is obtained:
NRT 1
o=— (- 7) (3.35)
Vo A

where Vs is the volume of the system. Equation (3.35)
contains two system-size-dependent quantities which
are removed by considering that:

N /NN, <ma> 1 P
v \Uve Am) T\ ) T
M, is the number average molar mass of the Gaussian

chain segments and p is the density. The true stress-
extension equation becomes:

_ PRT ( P

M, A
The ‘modulus’, pRT/M,, increases in a linear manner
with increasing temperature. This is typical of
entropy-elastic materials. The other important aspect
of eg. (3.36) is that the modulus is inversely
proportional to M,. Rubbers with a high crosslinking
density, i.e. low M,, behave stiffly. Figure 3.12 shows
the thermoelastic behavmur of the ideal entropy-
elastic rubber material. All lines meet at the origin at
0K. Any deviation from the origin, positive or
negative, indicates an energetic contribution to the
elastic force.

(3.36)
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Figure 3.12 Stress—temperature relationships (constant 4)
for an ideal entropy-elastic material.

Equation (3.36) may also be written:

1
o= N,RT(A'Z - )
2

where N, is the molar number of chain segments per
unit volume: N, = N/V, = p/M,.
The number of crosslinks (v) is proportional to the

(3.37)

number of chain segments and inversely proportional
to the functionality of the crosslink (i, which denotes
the number of chains emanating from the junction
point):

y =

1

which may be inserted into eq. (3.37) to give:

_ YYRT <zl B 1)
2 2,

The phantom network model of James and Guth
predicts a different free energy-deformation expres-
sion (cf. eq. (3.32)):

(3.38)

2\ nkT
AG = (1 - w—) Ez A+ B+B-3 (339

which, when applied to the uniaxial constant stress
case, yields the following stress—strain equation:

_ 2\ YWRT 1
(D) e



48 The rubber elastic state

For a network with a crosslink functionality () of
4, the phantom network model predicts a modulus
which is 1/2 of the modulus predicted by the affine
network model.

3.4 SWELLING OF RUBBERS IN SOLVENTS

Rubbers may swell considerably in good solvents. The
swelling leads to isotropic extension of the network
(Fig. 3.13).

The deformation matrix becomes:

14
Dby = =y
Vo
)~|=;~:=}~;: ) (3.41)

7=/,
The volume expansion factor 4, = 1/0,, where v,

is the volume fraction of polymer component in the
swollen gel, is inserted into eq. (3.41):
A=o; (3.42)
which leads to an increase in free energy for the
network expansion (AG,) (eq. 3.32):
3pRT

AGy ==
2M,

=1 (3.43)
The free energy for the network expansion (eq.
(3.43)) can be converted to the molar free energy
(AG, ) of dilution by substituting 1/v, = 1 + n,V,,
where n, is the mole fraction of the solvent and V,
is the molar volume of the solvent, and by taking the
partial derivative with respect to n,:

PRT

AG, 4= o Voy? (3.44)

Figure 3.13 lsotropic swelling of a network polymer.

IJ2"

Figure 3.14 Schematic demonstration of the relationship
between equilibrium swelling (v3) and the average molar
mass of the chain segments of the network (M,).

A detailed presentation of the thermodynamics of
polymer solutions is given in Chapter 4; here only
the final Flory-Huggins equation (eq. (3.45)) is
presented. The decrease in free energy comes from
the mixing enthalpy and entropy and the molar free
energy of mixing (AG, ) becomes:

1
AG,, = R1 <ln(l — )+ (1 - >ru + Xvi)
x

& RTUn(1 — v)) + v, + 70} (3.45)

where 7 is the Flory-Huggins interaction para-
meter. Equilibrium is obtained when AG, = AG, , +
AG,, =0

PV,

In(1 — v}) + v} + 3 + T vyt =0

(3.46)
The equilibrium degree of swelling, represented by
o5, is described by eq. (3.46) and the type of
relationship between v} and M, is shown in Fig.
3.14.

3.5 DEVIATIONS FROM CLASSICAL
STATISTICAL THEORIES

In the classical theory, it is assumed that the network
is infinite, i.e. that no loose chain ends exist. Loose
chain ends transfer the stress less efficiently than the
other parts of the chain and it may be assumed that



Figure 3.15 Crosslinking of a polymer with finite molar
‘mass indicating the formation of loose chain ends.

they do not contribute to the elastic force. Figure 3.15
illustrates the fact that the number of loose chain ends
present in a crosslinked polymer is the same as the
number of chain ends in the polymer prior to
aosdlinking. Hence, the concentration of loose chain
ends is solely determined by the molar mass of the
uncrosslinked polymer.

Loose chains which do not contribute to the elastic
force reduce the number of load-carrying chain
segments (N,) to:

N,
N, =2y, = zn,(l - —">
Yo

where v, is the number of crosslinks of which only
v, are effective, and N, is the number of original
molecules prior to crosslinking in a polymer of molar
mass M. It is here assumed that the functionality of
thelinks s 4. In a unit volume of uncrosslinked rubber:

(3.47)

PNA
M

(3.48)

where N, is the Avogadro number. In a unit volume

of crosslinked rubber, the number of chain segments
(effective and non-effective) is:

N,

2w, = PR

M,

(3.49)
where M, is the average molar mass of the chain

segments between the crosslinks. The number of
dfective chains can be derived by combining egs

(347(3.49):
( ZMC>
N,=2v|[1—
M

(3.50)
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which can be used to modify the stress—strain
relationship of a uniaxially stressed rubber:

ZPRT (MY, T
o= 7 <1 v )(/1 A) (3.51)

Other types of network defect also exist: physical
crosslinks and closed loops (Fig. 3.16). Physical
crosslinks may be permanent with a locked-in
conformation (Fig. 3.16(a)) of temporary by entangle-
ment. The presence of the latter type leads to
visco-elastic behaviour, ie. to creep and stress
relaxation. Intramolecular crosslinks decrease the
interconnectivity and reduce the number of load-
carrying chains.

Figure 3.17 demonstrates that the simple statistical
mechanical theory involving only a single materials
constant correctly describes the properties of a real,

X §
(@) ®)

Figure 3.16 “Chain defects’ in networks: (a) permanent
physical crosslink; (b) temporary physical crosslink; (c)
intramolecular crosslink.

(©

—" Experimental

" Theoretical

Nominal stress (MPa)

Figure 3.17 Nominal stress (force per unit unstrained area)
of crosslinked NR (pRT/M, = 0.39 MPa) as a function of
the extension ratio A = L/L,. Drawn after data presented

in Treloar (1975).
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unfilled rubber to a first approximation. The positive
curvature of the experimental data appearing at high
extension ratios, above A= 4, has two possible
causes: first, the segment vectors do not follow
Gaussian statistics when the rubber is highly stretched,
ie. the probability of having the vector at any x and
v values (P(x) and P(y)) is a function of the z value of
the particular bond vector; and second, crystallization
may occur in the rubber. The deviation appearing at
more moderate extension values is not presently
understood.

The classical statistical theory assumes that the
end-to-end chain vectors (F) obey Gaussian statistics.
Figure 3.18 illustrates the concepts ‘Gaussian’ and
‘non-Gaussian” in two dimensions. Gaussian statistics
in this case means that the probability distribution
function P(y) is not affected by the x value, ie.
Py) = f(y), whereas in the non-Gaussian case
Ply) = fly, x). Gaussian statistics is a good approxima-
tion only if ()" is considerably smaller than the
contour length (nl) of the chain. Experiments have
shown that the marked upturn in the curve of nominal
stress (f) against extension (4) is due to a transition
from Gaussian to non-Gaussian behaviour. The
non-Gaussian statistical treatment takes into account
the finite extensibility of the chain, and thus leads to
a more realistic form of distribution function which is
valid over the whole range of r values up to the fully
extended length. Another consequence of this

Gaussian statistics

-

Figure 3.18 lllustration of Gaussian and non-Gaussian
statistics.

reasoning is that the Gaussian approximation becomes
increasingly inadequate with increasing crosslink
density. For very short chains, eg. n < 5, the mean
chain extension even in the unstrained state already
exceeds that for which the Gaussian approximation
is valid. For networks of such short chains, a
non-Gaussian treatment is essential for the accurate
representation of the behaviour even at the smallest
strains.

We may retum to Fig. 3.18 and note that
non-Gaussian statistics predicts fewer conformations
in the extended state (high x value) than the Gaussian
statistics. Qualitatively this means that the entropy
change and the elastic force are predicted to be higher
according to the non-Gaussian theory than according
to the classical Gaussian treatment.

The full derivation of the nominal stress (f)-strain
relationship for a chain obeying non-Gaussian
statistics is complicated. The final equation as derived
by Kuhn is:

kT r kT r 9(r\
L ()-F() 2
! <1> \n1> t[ﬂ’rs i
207 (r\' 1539 (1Y
+ 7 + L R
175 \nl 875 \nl
where L™ '(/nl) is the inverse Langevin function of

(#/nl), which is expanded in series form in eq. (3.52).
The Langevin function is defined as:

(3.52)

1
L(x) = coth x —
x

A chain obeying Gaussian statistics adapts to the

following equation:
kT r>>
— 3
1\

It may be noted that egs (3.52) and (353) are
identical for chains with r <« nl. Figure 3.19 compares
the stress—strain curves derived under the two
conditions (egs (3.50) and (3.51)). The strong upturn
in stress experimentally verified can only be obtained
by the non-Gaussian equation. X-ray diffraction on
natural rubber has shown that the initial upturn in the
load—extension curve is a genuine non-Gaussian effect,
unrelated to crystallization. At higher extension

(3.53)
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Figure 3.19 Force against extension (r/nl) relation for a
random chain. Schematic curves.

values, crystallization was, however, observed in
aystallizable polymers, e.g. in natural rubber.

Itis also important to note that a whole family of
non-Gaussian statistical treatments is reported in the
literature. Treloar (1975, section 3.10) presents an
excellent review on this topic.

3.6 SMALL-ANGLE NEUTRON SCATTERING
DATA

Small-angle neutron scattering (SANS) of labelled
(deuterated) amorphous samples and rubber samples
detects the size of the coiled molecules and the
response of individual molecules to macroscopic
deformation and swelling. It has been shown that
uncrosslinked bulk amorphous polymers consist of
molecules with dimensions similar to those of theta
solvents in accordance with the Flory theorem
(Chapter 2). Fernandez et al. (1984) showed that
chemical crosslinking does not appreciably change the
dimensions of the molecules. Data on various
deformed network polymers indicate that the
individual chain segments deform much less than the
affine network model predicts and that most of the
data are in accordance with the phantom network
model. However, definite SANS data that will tell
which of the affine network model and the phantom
network model is correct are still not available.

3.7 THE THEORY OF MOONEY AND RIVLIN

Mooney (1940, 1948) and Rivlin (1948) derived eq.
(3.54) on the basis that the rubber was incompressible
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and isotropic in its unstrained state and that the
material behaves as a Hookean solid in simple shear.
This equation is valid for a uniaxially stressed
specimen. The coefficients C, and C, are different for
different materials and can in that sense be considered
as material constants. The equation shows a striking
resemblance to the equations derived from the
statistical theory.

- AT
r=c+§)#-1)

It is interesting to compare eq. (3.54) with the
expressions obtained from the statistical theories (Fig.
3.20). According to both the affine network model
and the phantom network model of James and Guth,
the reduced stress remains constant and independent
of strain, which is not the case for the Mooney—Rivlin
equation.

According to Flory, the coefficient C, is related to
the looseness with which the crosslinks are embedded
within the structure. This is supported by the fact that
C, has been found to decrease with increasing solvent
content in swelled rubbers. At a polymer content of
v, = 0.2, C, approaches zero.

(3.54)

3.8 SUMMARY

The elasticity of rubbers is predominantly entropy-
driven which leads to a number of spectacular
phenomena. The stiffness increases with increasing
temperature. Heat is reversibly generated as a
consequence of an applied elastic force and stretching.

Affine

S
= -

ol (A2

Phantom

1A

Figure 3.20 Reduced stress, 0/(A* — 4"), as a function of
the reciprocal strain.
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The elastic force can be thought of as consisting
of an entropic and an elastic part. The energetic
contribution to the elastic force is generally small and
is controlled by intramolecular factors, the energetic
state of the extended conformation. Polymers such as
polyethylene, with an extended conformation as their
low-energy state, exhibit a negative energetic force
contribution, whereas in other cases (eg. natural
rubber) the energetic elastic force is positive.

The affine network model assumes that the network
consists of phantom Gaussian chains, that all network
changes are entropical, that deformation is affine and
that the volume remains constant during deformation,
and yields the following expression for the free energy
change accompanying the deformation (4, 4y, 4,):

AG = INRT(A? + 22 + A2 —3)  (3.55)
For the case of a rubber specimen subjected to a
constant uniaxial stress, the following true stress
(0)-strain (4) expression can be derived:

o= pRT(ll —)
N, i

where p is the density, R is the gas constant, T is
the temperature (in kelvin), and M, is the number
average molar mass of the chains between the

(3.56)

crosslinks. The modulus pRT/M, is proportional to
the absolute temperature and increases with increasing
crosslink density, i.e. with decreasing M,.

A dlosely related theory was developed by James
and Guth for the so-called phantom network, in which
the positions of the junctions were allowed to fluctuate
about mean positions prescribed by the affine
deformation ratio. They derived an expression very
similar to eq. (3.56):

pRT ( N
=\ T l)
The transection of the chain segment in the
phantom network leads to a fall by a factor of 2 in
the apparent modulus compared with that predicted
by the affine network model.

None of these theories is, however, adequate to
describe the stress—strain behaviour at large strains, a
typical upper strain limit for the validity of the
Gaussian theories being A ~ 4 for natural rubber of

(3.57)

normal crosslink density. Expressions derived from
non-Gaussian statistics of chain segments yield the
right type of upturn in stress—strain behaviour at
higher strain levels. Loose chain ends, temporary and
chain { lecul
lmkmg, mechanical- and oxidation-induced network
degradation are complications not directly addressed
by the classical statistical mechanics theory.
Swelling equilibrium in a network polymer can be
predicted by the Flory-Rehner equation, derived on
the basis of the affine network model and the
Flory-Huggins expression for polymer solutions.
The theory of Mooney and Rivlin, which is based
on continuum mechanics, yields the following
expression for a uniaxially stressed rubber:
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where C, and C, are constants. Equation (3.58)
shows a close resemblance to the equations derived
from statistical mechanics (egs (3.56) and (3.57)).

cross-

(3.58)

3.9 EXERCISES

3.1. The rubber in a blown-up balloon is stretched in
a biaxial fashion. Derive the force-strain relationship
under the assumption that the rubber follows the
Gaussian statistical theory of rubber elasticity.

3.2. Derive the relationship between the internal
pressure (p) and the degree of expansion of the balloon
(= D/D,). Assume that the ideal gas
(pV = nRT) is valid.

3.3. At what o value is maximum internal pressure
attained?

3.4. Suppose the balloon has a small nose. Is it
possible to get the nose to expand to the same degree
as the rest of the balloon?

3.5. Many rubber materials exhibit a time dependence
in their mechanical properties (see Fig. 3.21). Make a
list of possible reasons.

3.6. Polyethylene can be linked by d

tion of organic peroxides, hydrolysis of vinyl-silane
grafted polyethylene or by high-energy (8 or 7)
irradiation. Design a suitable experiment to determine
the crosslink density and present the relevant
equations.

law
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Figure 3.21 Results from measurements of continuous

stress relaxation of nitrile rubber (low network density).
Data from Bjork (1988).

37. Calaulate from the Kuhn model equation the
moduus at room temperature of natural rubber
(p % 970 kg m ) crosslinked with n molar fraction of
organic peroxide. Assume that each peroxide molecule
results in one crosslink.

38 Calculate the temperature increase occurring in
natural rubber with M, = 5000 g mol™" when it is
stretched to 2 =5 at room temperature. Use the
following data: p ~ 970kg m™, ¢, = 1900 J kg ="

=
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POLYMER SOLUTIONS

41 INTRODUCTION

A solution is any phase containing more than one
component. It may be a gas, liquid or a solid. The
thermodynamics of polymers in solutions is one of
the major topics in the science and technology of
polymers. The usefulness of a polymer in a specified
environment may be limited by its physical and
chemical stability. Mild, local swelling in a stressed
polymer may lead to a very pronounced decrease in
fracture toughness, a phenomenon referred to as
environmental stress cracking. The swelling by
solvents of higher solvent power is more extensive
and may lead to softening and ultimately to
dissolution. Solutions of polymers are used in several
important applications, e.g. adhesives and coatings.
The dlassical analyses of polymers are conducted on
dilute solutions, e.g. size exclusion chromatography,
osmometry, viscometry and light scattering. Much of
the knowledge about polymers has been obtained by
work conducted on solutions.

From a thermodynamic point of view, a condition
for miscibility is given by the following expression:

AGpy = AH, — TAS,, <0

where AG,, is the free energy of mixing, AH,,
is the enthalpy of mixing and AS, is the entropy
of mixing. It can be stated that AG,, <0 is a
necessary but not sufficient condition for miscibil-
ity. If the graph of AG,,(x,), where x, is the molar
fraction of component 1, is concave with no inflection
point, miscibility is complete over the entire
composition range. If the equation shows two or more
inflection points, then miscibility is limited to the
compositions ‘outside’ the two compositions with
common tangent, the so-called binodal points. Blends
of di te into two
solutions.

h.
P P! P:

This chapter deals only with fully amorphous
polymers. Crystalline polymers constitute a more
complex case, since the separation of the polymer
molecules in the solvent matrix needs to be preceded
by melting of the crystals. This subject is treated in
Chapter 8.

We shall in section 4.2 deal with regular
solutions of small-molecule substances. The construc-
tion of phase diagrams from the derived equations is
demonstrated. The Flory-Huggins mean-field theory
derived for mixtures of polymers and small-molecule
solvents is dealt with in section 4.3. It turns out that
the simple Flory-Huggins theory is inadequate in
many cases, The scaling laws for dilute and
semi-dilute solutions are briefly presented. The
inadequacy of the Flory-Huggins approach has led to
the development of the equation-of-state theories
which s the fourth topic (section 4.6) Polymer—
polymer mixtures are particularly complex and they
are dealt with in section 4.7.

4.2 REGULAR SOLUTIONS

The first attempt to treat theoretically the change in
enthalpy and entropy when two liquids are mixed
was made in 1910 by von Laar. The molecules are
placed in a regular lattice and the mixing enthalpy
(always positive) is calculated from nearest-neighbour
interaction. Volume is assumed to be invariant. The
idea of regular solution was introduced in-
dependently by Hildebrand and Wood (1932) and
Scatchard (1931) and can be viewed as an
improvement on van Laar's theory. Similar theories
were independently proposed by Wood and Scatchard
in the early 1930s. The regular solution theory is a
useful theory for the description of mixtures of
non-polar small-molecule liquids with positive or zero
mixing enthalpy.
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The volume of the regular solution is equal to the
sum of the volumes of its components, i.e. there is
no change in volume on mixing the components. It
is convenient to think about regular solution in terms
of a regular lattice with positions that can be occupied
by either of the components. The entropy and
enthalpy changes on mixing are calculated separately.

Let us now consider a binary mixture. The mixing
entropy is determined by the number of possible ways
(P) of arranging the mixture of two low molar mass
components, denoted 1 and 2, it being assumed that
each molecule occupies only one lattice position, as
shown in Fig. 4.1, P is given by:

n!
p=
nylny!

.1

where n is the total number of lattice positions
present, , is the number of molecules of type 1
and n, is the number of molecules of type 2.
Boltzmann's entropy law (S = kIn P) may then be
applied to obtain:

ASy = Kinnt — In n,t — In oy

and, using Stirling’s approximation (Inx! ~ xlnx —
), the following equation is obtained:

Ay = Kt = n =, T, 1, — iy Iy o)

which can be simplified, since 1 = n, + 1y:
ASpy = Kot I — iy Iy =y In )
= kO, + nlnn =y dnony = g Iy

= kin(In n — In ) + mln 0 — In ny)
= —kn, Inx, + my In ) (4.2)
O000000O00O0
[N XeXoXoXoNeoN JNeXe!
[OXCXoNeX JoNeXeXoXe)
[OX oo JoNeXeNoXe)
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Figure 4.1 Lattice of a binary mixture of two low molar
mass components.

where x; and x, are the molar fractions of
components 1 and 2, respectively. Equation (4.2) can
be rewritten using quantities in molar terms:

ASix

"= —R(; Inx, + 1, Inx;) (4.3)
where N is the number of moles of the two
components, ie. N =N, + N,.

The enthalpy of mixing (AH,,;,) can be calculated
from the interaction energies of the contacting atoms
(1-1, 2-2 and 1-2 contacts):

AH,
f = (JAE, — JAE i, = Brx, (44)

where AE, and AE, are the energies of vaporization
of components I and 2. Equation (4.4) is strictly valid
only for solutions consisting of components of equal
size in the absence of specific interaction such as
hydrogen bonding.

The free energy of mixing (AG,) for a regular
solution is obtained by inserting the entropic and
enthalpic components into the equation AG,, =
AH . = TAS,;:

AG,
——= = Br;x, + RT(x; Inx, + 1, In x;) (4.5)

Figure 4.2 shows the effect of increasing the B value
on the free energy—composition relationship. Curves
a—c are concave, indicating full miscibility at all
compositions. Curves d and e show two symmetrically
placed minima, two symmetrically placed inflection
points and a central maximum. Figure 4.3 shows the
same features in more detail.

The inflection points, given by (d*(AG,,/N)/dx})
=0, are the so-called spinodal points, which define
the thermodynamic limits of metastability. Within this
concentration region, i.e. between the concentrations
associated with spinodal points, the second derivative
of AG,, with respect to x, is negative, resulting in
an unstable system with respect to any fluctuation in

and temp . Spinodal d i
tion refers to the process that occurs inside the

spinodal region by which a homogeneous blend phase
separates. Concentration gradients develop driven by
the free energy. Diffusion is ‘negative’ in the sense
that the net flow is in the direction of increasing
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The so-called binodal points have a common
tangent in the plot of AGy,, against r,. The equilibrium
(binodal) points fulfil the condition that the chemical
potential (i, = (dG/dn)7,,,, is equal for both
components in both phases (Fig. 4.3):

M= = — (4.6)

and

= =y — @n
where the primes and double primes denote the
different phases.

The calculation of the chemical potentials of the

0 0.25 0.5

e
Ed

1

Figure 4.2 The free energy of mixing at 300 K according
to eq. (4.5) for the following B values: (a) B=0; (b)
B=2000)mol; (c) B=4000]mol'; (d) B
mol ™" (e) B = 8000 J mol ~ 1.

Spinodal  decomp has no
nucleation free energy bartier. A binary system within

p can be done by the intercept method
which is graphically shown in Fig. 4.3. It relies on the
d | thermod

AG,, o o
S E ) n —) we)

xodpy + 1 dp, =0 4.9)

Equation (4.9) is known as the Gibbs-Duhem
equation. The Tollowing two equations can be derived
from eqgs (4.8) and (4.9):

the spinodal region forms initially a fine bicontinuous o AG,, dAG,,/N)
hology  (both . form o=y )
phases). The morphology gradually coarsens with !
" AG, d(AG,,,/N)
time and at the later stages one of the components o= B dBCwN)
forms a discontinuous phase.
AGmix/N
0 0
N B S s B o
Horhg - ‘ T R i “o o e
Stable Meta] ~ Unstable | Meta-| Stable
bl stable,
1B ¥18 18 1B
*1

Figure 4.3 Free energy as a function of composition (x,) according to the regular solution model showing binodal
(B) and spinodal (S) concentrations. The chemical potentials of the two binodal points obtained by the intercept method

are shown.
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In these symmetrical cases (Figs 4.2 and 4.3), the
binodal points are given by the two minima. The
binodal curve is the equilibrium curve differentiating
stable one-phase ~systems from heterogeneous
systems. In the concentration range between the
binodal and spinodal points, the free energy curvature
is positive and the solution is metastable towards
composition flutuations. Nucleation and growth are
associated with the phase separation and only one of
the components forms a continuous phase.

Let us now instead vary the temperature and keep
the enthalpic term (B) constant (Fig. 4.4). At low
temperatures where the entropy term is small, phase

paration dominates, whereas at temp above
350 K miscibility occurs at all compositions.

The binodal and spinodal data of Fig. 4.4 are
presented in the temperature—composition phase
diagram in Fig. 4.5. This kind of phase diagram is
typical of mixtures of small-molecule substances and
also in many cases of mixtures of polymers and
small-molecule substances. The spinodal and binodal
curves meet in the so-called upper critical solution
temperature (UCST). At temperatures greater than
the UCST mi