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Preface

If you have picked up this book, it is either because you want to understand rheology or
because you want to know what rheology is. To respond to the latter possibility, rheology is
the study of deformation and flow. To be more precise, it is typically the study of the flow
of complex fluids such as polymers, pastes, suspensions, and foods. Simpler fluids, such as
water and air, have their own well-defined field, called fluid mechanics.

I am most interested in addressing those of you who have picked up this volume
for the first reason—you would like to understand rheology. It would seem that learning
about rheology is straightforward since there are many books that address the subject [61,
162, 26, 238]. In my experience with studying rheology, I find that most books assume an
understanding of either mathematics or fluid mechanics that is greater than that which I
possessed when I entered the field. In teaching the subject, I also have found that most of
my students arrive in my class without these prerequisite skills.

Therefore what I set out to create was a workbook/textbook with which engineers,
scientists, and others could teach themselves rheology. This book is aimed at the same time
at the many technology professionals who end up having to teach themselves this subject
on the job, as well as at advanced undergraduates interested in the subject. It is deliberate
that this book is more detailed than the average monograph. I hope that this will be the
kind of book that students talk about and recommend to their friends as the one book that is
totally clear on the subject. As a result of trying to be clear on the mechanics of this subject,
this book lacks breadth. I fully admit this flaw and invite accomplished rheologists to skip
this book and to proceed immediately to the many fine texts that cover the field of rheology
more completely [26, 27, 61, 238, 220, 162, 138]. My goal in this text is to make easier the
entry of newcomers into the field of rheology.

This book is an outgrowth of a quarter-long course in introductory rheology I have
taught 9 times to undergraduates and first-year graduate students in chemical engineering
and mechanical engineering (with a few chemists thrown in) at Michigan Technological
University. For 7 years the text for that course was Dynamics of Polymeric Liquids, volume 1,
by Bird, Armstrong, and Hassager, Chapters 1–5, 10 [26]. The order of the topics addressed
in the current text as well as the approach taken were strongly influenced by that book. For
two years I used drafts of Chapters 1–8 in the classroom, and I devised many improvements
as a result. I twice taught the material in Chapter 9 in a 10-week graduate course on advanced
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xii PREFACE

rheology. In that course the text I used was Constitutive Equations for Polymer Melts and
Solutions [138], by Larson, along with supplementary material.

As I stated above, I have included in this book all the background material I consider
necessary for an advanced engineering or science undergraduate to learn rheology. Depend-
ing on the reader or class using the text, some of this material may be omitted. Chapter
1 is intended to orient the reader, particularly a reader engaged in self-study of rheology.
Chapter 2 may be assigned for self-study or review and Chapter 3 may be omitted for
chemical and mechanical engineers (although I never omitted it in my classes). The next 5
chapters contain the core of the material on rheology, including standard flows for rheology,
material functions, and experimental data. The data discussed in Chapter 6 predominately
concern polymer systems, revealing my bias toward polymer rheology. For students with a
background in polymer science this material may be familiar, and for those readers Chapter
6 may be skimmed or assigned for self-study. The next three chapters concern constitutive
equations, moving from the simplest (Chapter 7), to more complex (Chapter 8), finishing
with the genuinely advanced (Chapter 9). Chapter 10 is a stand-alone chapter on rheological
measurements that, depending on the background of the reader, may be read out of sequence,
for example first, or immediately after Chapters 3, 5, 6, or 8. Many problems are included
with each chapter, including some challenging flow problems, marked with an asterisk. A
solutions manual is available to instructors.

In a 10-week quarter I never covered more than Chapters 1–8 (up to generalized linear
viscoelastic fluids) with a little bit of Chapter 10 squeezed in. In a 12- to 15-week semester
course it would be appropriate to cover all of that material plus a few of the topics in
Chapter 9 and to do a thorough treatment of the rheometry chapter, Chapter 10.

One comment on nomenclature is needed. I have departed from standard practice in
using the symbol ς̇ (t) for shear rate in the definition of shear flow in Chapter 4. I have done
this to emphasize ς̇ (t) is a function we specify in the context of a standard flow. While it
is true that ς̇ (t) = γ̇ )21(t), this fact is presented as a conclusion, arrived at by applying
the definition of the rate-of-deformation tensor γ̇ to the velocity field of shear flow. I have
found this approach to be helpful to students who are new to the subject. All symbols used
are identified in Appendix A to aid the reader. In addition, Appendix B contains definitions
of rheological terms, including many expressions not used in this text that the reader will
encounter in the rheological literature.

I have included several appendixes intended to aid the reader’s study of rheology includ-
ing Appendix C, which contains detailed mathematical explanations and hints, Appendix
D, which summarizes the predictions of the most common nonlinear constitutive equations,
and Appendix E, an extensive background chapter on optics to help the newcomer to rheo-
optics. The final appendix includes some supplementary data for problems in Chapters 7
and 8 (Appendix F).

I would like to thank Michigan Technological University for supporting this project,
including the award of Faculty Development grants in 1997 and 1999. Parts of this text
were written while I was on sabbatical at 3M Company, St. Paul, MN, and I am grateful for
the support and environment provided by 3M. My thanks go to all my current and former
students who helped this book grow within me; particular thanks go to Kathleen Barnes,
Srinivas Uppuluri, and Parag Karmarkar; to Forbes Robertson who drafted early versions
of some figures; and to several students who read an early draft and made suggestions,
Debabrata Sarkar, Mike Sieroki, Bryan Vogt, and Tsung-Hsweh Wu. Several colleagues
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gave me very useful feedback on later drafts, and the text was much improved by having
their input. Thanks go to Susan Muller, who gave extensive feedback and who also provided
sources for some material, Ronald Larson, Wesley Burghardt, Jeff Giacomin, Gerry Fuller,
Scott Chesna, Mike Solomon, Douglas Devans, Scott Norquist, Robert Ginn, Saad Khan,
Madhukar Vable, Kathleen Feigl, Xina Quan, David Malkus, and Robert Kolkka. I owe a
significant debt to my husband, Tomas Co, who encouraged me to write this and has long
been my best friend and a tireless supporter. I greatly appreciate his help in clarifying some
of the mathematics contained in the book.

For their love and encouragement, I would like to thank my family, especially my
parents, Frances P. Morrison and Philip W. Morrison, my siblings and in-laws, and many
friends, especially Susan Muller, Pushpalatha Murthy, David and Beth Odde, Karen Hub-
bard, Jim and Sally Brozzo, Connie Gettinger, Denise Lorson, Yannis Nikolaidis, and Selen
Ciftci. I would also like to thank some inspirational math teachers, John Checkley and
Doris Helms, who helped me grow my love of mathematics, and a talented English teacher,
Judith Smullen, who taught me to write. Thanks also to Jeff Koberstein who taught me that
research is fun and to Jay Benzinger for demonstrating how to teach.

This book is dedicated to the memory of Professor Davis W. Hubbard, mentor,
colleague, friend, and, to this day, a source of great inspiration to me.

F. A. M.
Houghton, Michigan
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C H A P T E R

1
Introduction
How Much Do I Need to Learn
about Rheology?

Rheology is the study of the deformation and flow of matter. This field is dominated
by inquiry into the flow behavior of complex fluids such as polymers, foods, biological
systems, slurries, suspensions, emulsions, pastes, and other compounds. The relationships
between stress and deformation for these types of materials differ from Newton’s law of
viscosity, which describes the shear behavior for normal liquids. Newton’s law is the only
stress–deformation relationship considered in most introductory fluid-mechanics courses.
Complex fluids also do not follow Hooke’s law of elasticity, the relationship between stress
and deformation that is used for metals and other elastic materials. Engineers and scientists
must know something about rheology when neither Newton’s law nor Hooke’s law suffice
to explain the fluid behavior they encounter in their work.

When one is exploring a new field, there is always the question, how deep should I
go? Since rheology is a subject that can involve a great deal of mathematical and physical
analysis, the reader is immediately faced with a choice between pursuing a qualitative
or a quantitative understanding of rheology. In scanning the library shelf of books on
rheology, you will find that there are books available that approach rheology from a mostly
descriptive point of view (see [11], and for polymer viscoelasticity specifically see [75, 3]),
as well as books that involve mathematical analysis without introducing tensor calculus
[61], and books that employ vector/tensor calculus [61, 26, 162, 238, 220, 138]. The choice
then is between a descriptive understanding of rheology and a more thorough, and hence
mathematical, understanding.

To help the reader make this choice, we begin here with a discussion of the kinds of
effects that distinguish rheologically interesting materials (non-Newtonian fluids) from the
more conventional (Newtonian fluids). If after reading this chapter you believe that it is
worth your while to invest some time in understanding rheology in mathematical detail,
the rest of the text is laid out to assist you. In this text we follow an explicit, step-by-step
approach, which will allow you to master the background material that you will need to study
rheology, including vector and tensor mathematics, Newtonian fluid mechanics, rheological
standard flows, and rheological material functions. By reading this text and taking the time
to master each topic, you will find that understanding rheology is straightforward.

1



2 INTRODUCTION

1.1 Shear-Thinning and Shear-Thickening

Viscosity is the most commonly sought after rheological quantity, and viscosity is a
qualitatively different property for Newtonian and non-Newtonian fluids. Several devices
that are used to measure viscosity are limited to use with Newtonian fluids, for example,
the Cannon–Fenske and some versions of the Brookfield viscometer [36]; see Figure 1.1.
There are devices suitable for both Newtonian and non-Newtonian fluids, but without
an understanding of non-Newtonian effects, the measurements can be confusing. The
situation discussed next demonstrates the difficulties encountered if non-Newtonian effects
are neglected.

Figure 1.1 (a) Cannon–Fenske viscometer, which measures viscosity for Newtonian fluids using
gravity as a driving force. The viscosity is related to the time interval for the fluid meniscus to pass
from one mark on the tube to another. (b) Simple type of Brookfield viscometer, in which a mandrel
is made to rotate in a drum of fluid. The viscosity of Newtonian fluids is related to the torque required
to turn the mandrel.

EXAMPLE
Determine the viscosity of a solution used in a coating process by your employer, Acme
Adhesive Associates. The information will be used to design process equipment.

SOLUTION

In the laboratory next to yours there is an instrument for measuring the viscosity of silicon
oils and other Newtonian fluids (see Figure 1.2). The equation for the analysis of the flow
is given in the operations manual:

viscosity = πPR4

8QL
(1.1)

where R and L are the radius and length of a tube through which the solution flows in the
viscometer (R = 1.0 mm and L = 30 mm are given in the manual), and P and Q are
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Air at a controlled
pressure is used to drive
the flow

Temperature-controlled
section containing a tube of

known radius and length

Tank
containing
fluid to be
measured

Flow rate is measured
by weighing the

outflow over a fixed
time interval

Figure 1.2 Rheometer that could be used for measuring viscosity as described in the example. Air is
used to drive the fluid at a specified pressure. The flow rate of the fluid is measured by the pail-and-scale
method.

the measured pressure drop and volumetric flow rate for the fluid of interest. You consult
coworkers who have used the instrument and learn that for their fluids they usually use
P = 15 psi because that gives a reasonable flow rate.

With the help of your coworkers, you carry out the measurement of flow rate forP = 15
psi and calculate the viscosity of your coating fluid to be 4.2 centipoise. On a hunch, you
also measure flow rate for a driving pressure drop of P = 20 psi, and you find a viscosity
of 0.1 centipoise! Repeated attempts verify that your results are accurate, and you conclude
that the viscosity of the coating fluid depends on the driving pressure. You discuss your
results with your coworkers, but they have never noticed a dependence of viscosity on
driving pressure for the fluids they have examined.

You report viscosity as a function of driving pressure to your supervisor. The viscosity
varies over two orders of magnitude, depending on the pressure. It is not clear how to proceed
with the equipment design, since although the usual design equations take viscosity into
account, no variation in viscosity is mentioned in the equations.

In this example we encounter the most common non-Newtonian effect, shear thinning.
Shear thinning is the tendency of some materials to decrease in viscosity when they are
driven to flow at high rates, such as by higher pressure drops. Some materials show the
opposite effect, that is, they exhibit higher viscosity when they are made to flow at high rates;
this is called shear-thickening. Both shear-thinning and shear-thickening can be modeled
effectively by the equations discussed in Chapter 7. The solution to the design problem
posed in the preceding example is to examine more thoroughly the rheological properties
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of the coating fluid and then to modify the design equations using the results. Rheological
properties are measured using the techniques in Chapter 10, which are based on standard
flows (Chapter 4) and standard material functions (Chapter 5).

1.2 Yield Stress

Yield stress is a complex rheological effect that we can easily observe in the kitchen. Yield
is the tendency of a material to flow only when stresses are above a threshold stress. This
is a non-Newtonian effect—Newtonian fluids will always flow when a stress is applied,
no matter how small the stress. For example, honey is a food that has a high viscosity,
but which is nonetheless Newtonian. When you serve yourself from a jar of honey, you
disturb the flat surface of the honey. If you check the honey jar a small time later (maybe 2
minutes), the fluid surface will have returned to its original, level shape under the (small)
force of gravity.

Mayonnaise, on the other hand, behaves quite differently (Figure 1.3). While digging
out some mayonnaise from the jar to make a sandwich, you disturb the mayonnaise surface,
much as we did when serving honey. Ten minutes later, the mayonnaise surface is still
disturbed. Looking in the jar a week or even a year later, we see that the mayonnaise surface
has the same shape—mayonnaise does not flow and form a level surface under gravity.
Mayonnaise is a yield-stress fluid (discussed more in Chapter 7), which will flow easily if
a high stress is imposed (as you spread it with a knife, for example), but which will sustain
a small stress such as that due to gravity. When processing yield-stress fluids, which in
addition to many foods include slurries, pastes, and paint, the existence of the yield stress
means that larger stresses are required to cause fluid flow, and care must be taken to maintain
the stress above the yield stress to sustain flow. One industrially important class of yield-
stress fluids is road asphalt. Rheological measurements are used during its compounding to
ensure that the resulting mixture will have properties that are known to be compatible with
existing pavement, paving methods, and equipment. Designing such equipment requires
detailed understanding of the rheological properties of asphalt.

Figure 1.3 Mayonnaise is a yield-stress
fluid. It can stay on the spoon indefinitely,
and the surface of the mayonnaise in the jar
also remains disturbed indefinitely. Honey is
a Newtonian fluid. It will flow, even under
the mild force imposed by gravity. After
just seconds, the honey surface is level and
smooth.
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1.3 Elastic / Viscoelastic Effects

The most spectacular non-Newtonian effects are exhibited by polymers or their mixtures.
These effects differ qualitatively from the behavior of Newtonian fluids, and we may be
familiar with some of these effects from our experiences in the kitchen or from playing with
popular toys like Silly Putty. We can appreciate these effects without studying rheology
in mathematical detail. To understand the origin of the effects or to model a system
that exhibits these effects, then once again we must seek a more detailed understanding
of rheology.

1.3.1 THE WEISSENBERG EFFECT

Flour is a naturally occurring polymer, and concentrated mixtures of flour and water are non-
Newtonian. A striking non-Newtonian effect can be demonstrated with a standard kitchen
mixer. When water or other Newtonian fluids such as corn oil or syrup are mixed at high
speeds, the fluid is flung away from of the mixing blades due to inertia; that is, the effect
of accelerating the fluid particles in a circle is to make the fluid flow outward, toward the
bowl walls (Figure 1.4a). This effect is described by Newton’s first law, the principle that
a body in motion tends to remain in motion unless an outside force acts upon it.

Figure 1.4 (a) A Newtonian fluid, such
as a dilute mixture of flour, water, and
food coloring, moves away from the
mixing blades when it is stirred at a
high rate. (b) A non-Newtonian, more
concentrated flour–water dough climbs
the mixing blades.

(a)

(b)
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Non-Newtonian doughs formed of flour and water, however, do not flow to the outer
walls of the bowl when stirred at high speeds; they climb the mixing blades (Figure 1.4b).
This effect is called the Weissenberg effect or rod-climbing effect, and it cannot be explained
through the relationships that govern Newtonian fluids. Coping with the Weissenberg effect
is essential in the design and operation of many types of food-processing equipment, as
well as in the processing of polymeric solutions. To predict the axial forces generated by
the Weissenberg effect as a function of blade rotational speed, or to predict the shape of
the free surface in flows of these types of materials, we must use rheological constitutive
equations that correctly capture nonlinear effects.

1.3.2 FLUID MEMORY

The intriguing thing about Silly Putty and materials like it is that it is deformable, bounce-
able, but it is ultimately a liquid. This latter fact is often discovered by unsuspecting parents
when a child leaves a ball of Silly Putty on the carpet, and over time the liquid seeps into the
carpet, making a mess that is difficult to clean up. That materials like Silly Putty are liquids
can be seen clearly by allowing a ball of such a mixture to relax on a wide-mesh screen
(Figure 1.5). The mixture flows through the screen over a matter of hours. Yet this liquid
appears to hold its own shape like a solid if we examine it over a time period of seconds
or minutes, and it has elasticity like a solid rubber ball, bouncing when thrown to the floor
and partially retracting when pulled and then released.

Figure 1.5 A ball of fluid resembling Silly
Putty is placed on a mesh and allowed to
flow, which proves that it is a liquid. The
other material is a solid and does not flow.
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Mixtures like Silly Putty are viscoelastic liquids, and the effects described are due to
partial or fading memory. When Newtonian fluids like water or oil are subjected to stress,
they deform (and flow), and when the stress is removed, the deformation stops instantly,
and the liquid is at rest. Viscoelastic fluids subjected to stress also deform, but when stress
is removed, the stress inside the viscoelastic fluid does not instantly vanish. For these
types of fluids the internal molecular configuration of the fluid can sustain stress for some
time. This time, called relaxation time, varies widely among materials. Moreover, because
a viscoelastic fluid has internal stresses, the fluid will deform on its own even after the
external stress has been removed. Thus, a viscoelastic fluid like Silly Putty, when deformed
and released, will retract—deform in the opposite direction—producing a flow that reduces
internal stress in the fluid.

Fading memory is exhibited by most long-chain polymers, and it impacts polymer
manufacturing processes since trapped stresses (and frozen-in molecular orientation) can
weaken or strengthen a part made of polymers (plastics). A qualitative understanding of
fluid memory is helpful in handling polymer flows and in designing molds and other
equipment in which polymers flow in the molten state. To do more in-depth analysis
of polymer-processing operations, the study of more advanced constitutive equations is
required (Chapter 9).

1.3.3 DIE SWELL

When plastic products are made by extrusion into air, so-called profile extrusion, the final
product shape depends on orifice shape through which the polymer is forced, but it also
depends on many details of the extrusion process [236]. This is because polymers exhibit die
swell, that is, as the liquid polymer exits a die, the diameter of the liquid stream increases by
up to an order of magnitude (Figure 1.6). Die swell is caused by the relaxation of extended

Figure 1.6 Partial memory of past configurations causes a viscoelastic fluid to swell as it exits from a
die into air. The amount of swelling can be significant, as shown in these photos of aqueous solutions
of polyvinyl alcohol and sodium borate. Newtonian fluids such as water actually contract slightly
(∼15%) when exiting a die. Photos: Courtesy Dr. Andrew Kraynik.
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polymer coils as the stress in a polymeric liquid reduces from the high, flow-producing
stresses present within the die to the low stresses associated with the extruded stream moving
through ambient air. Predictions of die-swell ratios can be made using advanced constitutive
equations (such as those discussed in Chapter 9), and calculations using these constitutive
equations can be used to design profile dies so that the desired extrudate shape is obtained.

1.4 Rheology as Spectroscopy

In many applications the rheological response of a material is important to the functioning
or processing of the system. Rheology is often used to monitor material properties and can
be used in quality control or as a way to categorize an unknown material [61]. For this
application, a detailed mathematical understanding of rheology is not necessary.

EXAMPLE
After much searching and experimenting, your company, Fjord Automotive, has found the
perfect resin for producing specialized clips that secure wires inside its automobiles. You
are assigned to develop a product-testing procedure that will ensure that every batch of the
resin that is purchased has the desired rheological properties. How will you address this?

SOLUTION

If the material were Newtonian, measuring its viscosity would be sufficient to characterize
its flow properties. Because it is a plastic resin, however, it has both viscous properties and
elastic properties. We therefore need to find a test that captures both viscous and elastic
characteristics. One common way of characterizing polymeric materials is to measure their
linear-viscoelastic moduli, G′(ω) and G′′(ω) (Chapter 5). The G′(ω) and G′′(ω) curve
shapes are sensitive to changes in polymer molecular weight, molecular-weight distribution,
chemical composition (in case the resin is a blend or a copolymer), and just about every
other material variable. Ferry’s book [75] gives a particularly complete discussion of
the effects of many material characteristics on linear-viscoelastic behavior, and there is
a shorter discussion of this topic in this text (Chapter 6). Measurements of these moduli are
straightforward and are easily incorporated into a quality-control procedure. If keeping track
of a high-strain property is more appropriate for a particular application (if flows are rapid,
for example), steady shear viscosity and normal stresses could be measured, or the industry
involved may develop its own industry-specific tests like the melt-flow index or a slump test
(see Glossary). To use rheology in this manner does not require an extensive understanding
of the details of rheological analysis, provided accurate data are obtained and compared.

EXAMPLE
In the previous example we proposed that the linear-viscoelastic moduli G′(ω) and G′′(ω)
be measured and monitored for quality control of a resin at Fjord Automotive. You have
implemented this strategy. A sales representative from a new potential supplier has called
and is proposing a replacement resin for your application. How can you evaluate the new,
proposed resin?
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SOLUTION

Although linear-viscoelastic properties are sensitive to details of material composition, it
is not true that two materials with the same linear-viscoelastic properties will necessarily
behave in the same way in other flows. The quality control proposed in the last example
is effective because you are always testing similar materials. Under these circumstances,
small changes in G′(ω) and G′′(ω) can be interpreted in a fairly accurate way to reflect
subtle structural changes.

When comparing two completely different resins for a possible application, however,
you need to examine your application and determine which characteristics make the process
or the product successful. You must then measure these characteristics for the two materials,
test the two materials in the process, and decide. This more detailed analysis best involves
an experienced rheologist with an in-depth understanding of the field.

In the two examples mentioned we saw that the amount of detailed understanding that
is required in using rheology for materials analysis depends on the type of questions being
asked. As with most technological questions, sometimes a cursory examination is sufficient,
while at other times a more complete understanding is required.

1.5 Process Modeling

Modern computing techniques allow engineers to make detailed calculations of critical
quantities such as the maximum temperature experienced by the heat-shield tiles on the
U.S. space shuttle as it reenters the Earth’s atmosphere. The accuracy of these calculations
depends on the accuracy of tile material data, such as heat capacity and thermal conductivity,
and also on the model that indicates the amount of viscous heating in the Earth’s atmosphere
generated by the rapidly moving space vehicle.

Similar methods can be applied to calculate flow fields, temperature fields, and stress
fields in polymer-processing equipment such as injection molders, extruders, and blow
molders. The accuracy of these calculations depends critically on selecting an appropriate
non-Newtonian rheological model, as illustrated in the next example.

EXAMPLE
You are a new engineer who has been hired in a polymer-processing group. You have
experience in running finite-element computer calculations on turbulent flows and in using
other types of simulation packages. You are asked to learn a polymer-flow simulation
package and to work with a team to solve problems in your company’s molding operations.
The task of producing computer simulations of complex systems is familiar to you, but
to start the simulation you must choose a stress–deformation law to use in modeling your
material. You have the following choices: power law, Cross model, Ellis model, truncated
power law, linear viscoelastic fluid, upper convected Maxwell model, Oldroyd B model,
and Leonov model. How will you choose?
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SOLUTION

The choice of stress–deformation law or constitutive equation is critical to making accurate
simulations of polymer-processing problems. If the problem involves a constant pressure
gradient, then a generalized Newtonian model (power law, Cross, Ellis, truncated power
law; see Chapter 7) suffices. If the flow rate is slowly changing, then the generalized linear-
viscoelastic model may be appropriate (Chapter 8), whereas to obtain information about
nonlinear effects such as normal stress effects, instabilities due to normal stresses, and die
swell, a more complex model such as the upper convected Maxwell, Oldroyd B, or Leonov
models (Chapter 9) is required. The effort needed to carry out the calculation increases if
these nonlinear models are used. Also, the number of parameters that must be obtained
from experimental data is higher for more complex models. We must consider these types
of tradeoffs when making the decision.

If you are faced with a dilemma like the engineer in the preceding example, it will
be worthwhile to learn about rheology. Although simulation packages greatly simplify the
process of making process simulations, the accuracy of the results depends critically on
the assumptions and model choices input to the program. To make these choices, you must
understand rheology.

There are more examples of interesting, non-Newtonian phenomena shown in Fig-
ures 1.7 and 1.8. In summary, if we wish to measure rheological properties or to make
engineering predictions involving the flow of non-Newtonian fluids, we must have a

Figure 1.7 The tubeless-siphon effect. In (a) the normal siphon effect occurs when liquid is sucked
into a tube held below the liquid surface. When the tube is raised above the liquid level, air is drawn into
the tube, and the suction breaks (b). For some non-Newtonian fluids, however, when the tube is raised,
the liquid continues to siphon, even as the tube is raised several centimeters above the liquid surface (c).
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Figure 1.8 Photographs of an elastic instability occurring in a viscous fluid flowing in the gap between
two cylinders; the inner cylinder is turning. In this flow geometry, called Taylor–Couette flow, there is
an instability at high Reynolds numbers (Re) to stationary cells in the shape of doughnuts stacked in
the gap. Here, the fluid has a high viscosity, making the Reynolds number small, well below the critical
Reynolds number for the inertially driven Taylor instability, yet there is an instability in this flow as
well [186]. Below each view of the whole flow cell there is a space–time plot of an axial slice through
the image, with the axial dimension increasing from left to right and time increasing from top to bottom.
At low Reynolds numbers and low Deborah numbers (De), a dimensionless group that accounts for
the effects of elasticity, the vortices are stationary, and the space–time plots show vertical stripes. At
higher De the vortices become nonaxisymmetric, with a well-defined azimuthal wavenumber. As De
increases further, the vortices become increasingly disordered. Photo: Courtesy Dr. Susan Muller.

quantitative understanding of rheology. This book is designed to help the reader acquire
a quantitative understanding of rheology through the presentation of background material,
detailed derivations and explanations, practice exercises, additional problems at the ends of
chapters, and extensive appendixes. One who masters the material in this text will be well
prepared to take and interpret rheological measurements, tackle non-Newtonian simulation
software, decipher the rheological literature, and deepen one’s understanding of rheology
through the study of more advanced texts [27, 138, 238, 220].
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2
Vector and Tensor Operations

We will focus our discussion of rheology on isothermal flows. The isothermal flow behavior
of either conventional or complex fluids is determined by two physical laws, mass conser-
vation and momentum conservation, plus the stress constitutive equation, a relationship that
describes how a fluid responds to stress or to deformation. Mass conservation is a scalar
equation, momentum conservation is a vector equation, and the constitutive equation is an
equation of still higher mathematical complexity, a tensor equation.

To make fluid mechanics comprehensible to third-year chemical and mechanical
engineering students, the vector and tensor nature of the subject is often given a light
treatment in introductory courses. In these classes, emphasis lies with solving the vector
momentum equation in the form of three scalar equations (conveniently tabulated in several
coordinate systems). To relate the shear stress and the velocity gradient, the students
incorporate the appropriate scalar component of the Newtonian constitutive equation,
usually the 21-component, often called Newton’s law of viscosity.

It is then straightforward to solve for the velocity and pressure fields and other quantities
of interest. The scalar presentation of fluid mechanics works fine until, for example, shear-
induced normal stresses are encountered or until one wishes to understand polymer die swell
or memory effects. To describe such phenomena, more complex constitutive equations
are required, and while these more complex constitutive equations may be expressed in
scalar form, the scalar form will usually include six nontrivial equations. Furthermore,
the forms of these six scalar equations will depend on the coordinate system in which
the problem is written. This enormous increase in complexity can be understood and
managed quite effectively if we employ the mathematical concept of a tensor. The tensor
is thus a time-saving and simplifying device, and in studying rheology it is well worth
the effort to learn tensor algebra. In fact, after taking the time to understand tensors, we
will see that some aspects of Newtonian fluid mechanics become easier to understand
and apply.

In this text we use tensor notation extensively. We assume no prior knowledge of
tensors, however, and we begin in this chapter with a comprehensive review of scalars
and vectors (Figure 2.1). This review is followed by the introduction of tensors and by the
derivation of the conservation equations in vector/tensor format in Chapter 3. The review
of Newtonian fluid mechanics in Chapter 3 provides an opportunity to work with tensors
and with the conservation equations. The study of non-Newtonian constitutive equations is
prefaced with three chapters that are needed to catalog non-Newtonian rheological behavior.

12
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Math and fluids
background

Organizing and describing
rheological behavior

Non-Newtonian
constitutive equations

Rheological
measurements

Chapter 10: Rheometry
Appendix E: Birefringence

Chapter 4: Standard Fluids
Chapter 5: Material Functions
Chapter 6: Experimental Data

Chapter 2: Vectors and Tensors
Appendix C: Math Appendix
Chapter 3: Newtonian Fluids

Chapter 7: Generalized Newtonian Fluids
Chapter 8: Memory Effects – GLVE

Chapter 9: Advanced Constitutive Equations

Figure 2.1 Organizational structure of this book.

In Chapter 4 we define and discuss the characteristics of standard flows used in rheology,
and in Chapter 5 we define the material functions that are used to describe non-Newtonian
behavior. We also provide in Chapter 6 a summary of the observed rheological behavior for
many fluids. The rest of the text is dedicated to understanding and applying several simple
non-Newtonian constitutive equations.

As stated before, first we will establish a common vocabulary of mathematics and fluid
mechanics on which to build an in-depth understanding of rheology. There are some tools to
help the reader in the appendixes, including a detailed table of nomenclature and a glossary.
We begin, then, with scalars, vectors, and tensors. Readers familiar with vector and tensor
analysis and Newtonian fluid mechanics may wish to skip ahead to Chapter 4.

2.1 Scalars

Scalars are quantities that have magnitude only. Examples of scalars include mass, energy,
density, volume, and the number of cars in a parking lot. When we do ordinary arithmetic,
we are dealing with scalars. Scalars may be constants, such as c, the speed of light
(c = 3.0 × 1010 cm/s), or scalars may be variables, such as your height h(t) over the
course of your lifetime, which is a function of time t , or the density of an ideal gas ρ(T , P ),
which is a function of temperature T and pressure P . The magnitude of a scalar has units
associated with it since, for example, the numerical magnitude of your mass will be diffeent
if it is expressed in kg or lbs.

Three scalars, for example, α, β, and ζ ,1 may be manipulated algebraically according
to the following laws of scalar multiplication:

1 Greek letters are used often in the text. They and all other symbols used are identified in Appendix
A, Table of Nomenclature.
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Allowable algebraic
operations of

scalars with scalars

⎧⎨⎩
commutative law αβ = βα
associative law (αβ)ζ = α(βζ )
distributive law α(β + ζ ) = αβ + αζ

2.2 Vectors

Vectors are quantities that have both magnitude and direction. Examples of vectors that
appear in fluid mechanics and rheology are velocity v and force f . The velocity of a body is
a vector because two properties are expressed: the speed at which the body is traveling (the
magnitude of the velocity |v|) and the direction in which the body is traveling. Likewise
we can understand why force is a vector since to fully describe the force on, for example, a
table (Figure 2.2), we must indicate both its magnitude |f | and the direction in which the
force is applied. The same magnitude of force applied to the top of the table and to the side
of the table will have different effects and must be treated differently. As with magnitudes
of scalars, magnitudes of vectors have units associated with them.

In this text, most vectors will be distinguished from scalars by writing a single bar
underneath vector quantities; vectors of unit length will be written without the underbar
and with a caret (ˆ) over the symbol for the vector, as will be discussed. An important vector
property is that both the magnitude and the direction of a vector are independent of the
coordinate system in which the vector is written. We will return to this property shortly.

Since a vector has two properties associated with it, we can examine these two properties
separately. The magnitude of a vector is scalar valued. The magnitude a of a vector a is
denoted as follows:

Vector magnitude |a| = a (2.1)

The direction of a vector can be isolated by creating a new vector, such as â, that points in
the same direction as the original vector but has a magnitude of one. Called a unit vector,
this is written as shown in Equation (2.2)

Figure 2.2 Schematic representation of forces
acting on a table. If the same magnitude of force
f is applied in different directions, the vectors
describing those forces differ too (f , f̃ ).
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â = a

a
(2.2)

|â| = 1 (2.3)

As stated before, we will distinguish unit vectors from general vectors with a caret (ˆ).
A special vector is the zero vector 0, which has zero magnitude and whose direction is
unspecified.

2.2.1 VECTOR RULES OF ALGEBRA

The rules of algebra for vectors are not the usual laws of scalar arithmetic, since when
manipulating two vectors both the magnitude and the direction must be taken into account.
The rules for the addition and subtraction of vectors are reviewed in Figure 2.3.

The operation of multiplication with vectors takes on several forms since vectors may
be multiplied by scalars or by other vectors. Each type of multiplication has its own rules
associated with it. When a scalar (α) multiplies a vector (a), it only affects the magnitude
of the vector, leaving the direction unchanged,

b = αa (2.4)

|b| = |αa| = α|a| = αa (2.5)

b̂ = b

|b| = αa

αa
= â (2.6)

Since multiplication of a scalar with a vector only involves scalar quantities (the scalarα and
the magnitude a), this type of multiplication has the same properties as scalar multiplication:

Allowable algebraic
operations of

scalars with vectors

⎧⎨⎩
commutative law αa = aα
associative law (αa)β = α(aβ)
distributive law α(a + b) = αa + αb

Figure 2.3 Pictorial representation of
the addition and subtraction of two
vectors.
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Two types of multiplication between vectors are the scalar product and the vector
product. These are also called the inner (or dot) product and the outer (or cross) product.
Their definitions are

Scalar product a · b = ab cos ψ (2.7)

Vector product a × b = ab sin ψ n̂ (2.8)

where n̂ is a unit vector perpendicular to a and b subject to the right-hand rule (Figure 2.4),
and ψ is the angle between a and b. When a vector b is dotted with a unit vector â, the
scalar product yields the projection of b in the direction of the unit vector â:

Projection of b
in direction â

b · â = (b)(1) cos ψ = b cos ψ (2.9)

Also, when two vectors are perpendicular (ψ = π/2), the dot product is zero [cos (π/2) =
0], and when two vectors are parallel (ψ = 0), the dot product is just the product of the
magnitudes (cos 0 = 1). The rules of algebra for the dot and cross products are:

Laws of algebra for
vector dot product

⎧⎨⎩
commutative a · c = c · a
associative not possible

distributive a · (c + w) = a · c + a · w

Laws of algebra for
vector cross product

⎧⎨⎩
not commutative a × c �= c × a
associative (a × c)× w = a × (c × w)
distributive a × (c + w) = a × c + a × w

Performing the dot product is a convenient way to calculate the magnitude of a vector,
as shown in Equations (2.10) and (2.11)

2 y

1 x

3 z

3

1

2

a–

b–

a b– –�

Figure 2.4 Definition of a right-handed co-
ordinate system.
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Figure 2.5 Pictorial representation
of the multiplication of two vectors.
(a) Scalar product. (b) Vector prod-
uct.

a · a = a2 (2.10)

and therefore

|a| = abs
(√
a · a) (2.11)

where abs( ) denotes the absolute value of the quantity in parentheses. By convention the
magnitude of a vector is taken to be positive. The graphical interpretations of the two types
of vector products are shown in Figure 2.5.

2.2.1.1 Coordinate Systems

When we introduced vectors we mentioned that an important vector property is that its
magnitude and direction are independent of the coordinate system in which it is written.
We now would like to elaborate on this concept, which will be important in understanding
rheology.

Vectors, such as those that describe the forces on a body, exist independently of how
we describe them mathematically. Imagine, for example, that you are leaning against a
wall (Figure 2.6). Your hips are exerting a force on the wall. The vector direction in which
you are exerting this force makes some angle ψ with the wall. This force has a magnitude
(related to your weight and the angle ψ), and it has a direction (related to how exactly you
are positioned with respect to the wall). All of this is true despite the fact that we have yet
to describe the vector force with any type of mathematical expression.

If we wish to do a calculation involving the force you are exerting on the wall, we must
translate that real force into a mathematical expression that we can use in our calculations.
What we would typically do is to choose some reference coordinate system, probably
composed of three mutually perpendicular axes, and to write down the coefficients of the
force vector in the chosen coordinate system. If we write down all the forces in a problem
in the same coordinate system, we can then solve the problem.
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Direction
perpendicular
and into wall

Vector
indicating

force on wall

Direction
parallel
to wall

ψ

Figure 2.6 Schematic of the vector force exerted by a leaning figure, as discussed in text.

Now we ask, what is a coordinate system? Can any vectors be chosen as the bases of the
coordinate system? Must they be mutually perpendicular? Must they be unit vectors? We
will answer these questions by laying down two rules for coordinate systems, also called
coordinate bases (Table 2.1).

The coordinate system with which we are most familiar is the Cartesian coordinate
system, usually called î, ĵ , and k̂, or alternatively êx , êy , and êz or ê1, ê2, and ê3 (Figure 2.7).
In the Cartesian coordinate system the basis vectors are three mutually perpendicular unit
vectors (orthonormal basis vectors), and î = êx = ê1 points along the x-axis, ĵ = êy = ê2

points along the y-axis, and k̂ = êz = ê3 points along the z-axis. These basis vectors are
constant and therefore point in the same direction at every point in space. Although the
Cartesian system is the most commonly used coordinate system, we see from the rules
listed in Table 2.1 that a coordinate system need not be composed of either unit vectors or
mutually perpendicular basis vectors. We will use bases in which the basis vectors are not
mutually perpendicular when we consider advanced rheological constitutive equations in
Chapter 9.

One requirement of all coordinate systems is that the basis vectors be noncoplanar, i.e.,
that the three vectors not all lie in the same plane. This requirement can be understood by

TABLE 2.1
Rules for Coordinate Bases

1. In three-dimensional space, any vector may be expressed as a linear combination of three nonzero,
noncoplanar vectors, which we will call basis vectors.

2. The choice of coordinate system is arbitrary. We usually choose the coordinate system to make the problem
easier to solve. The coordinate system serves as a reference system, providing both units for magnitude and
reference directions for vectors and other quantities.
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y

x
z

ĵ

k̂ ı̂

â

Figure 2.7 Cartesian coordinate system (x, y, z) and
Cartesian basis vectors (î, ĵ , k̂). The vector â is in the
xy-plane, as discussed in text.

imagining that we choose î and ĵ as two of our basis vectors, and then as the third basis
vector we choose a vector â = (1/√2)î + (1/√2)ĵ , which is parallel to the sum of î and
ĵ (Figure 2.7). Note that â is a unit vector and that all three proposed basis vectors lie
in the same plane. The problem arises when we try to express a vector such as k̂ in our
chosen coordinate system. Since k̂ is perpendicular to all three of the vectors in our chosen
coordinate system, there is no combination of î, ĵ , and â that will produce k̂.

Mathematically the requirement that the three basis vectors be noncoplanar is the same
as saying that the three vectors must be linearly independent. The requirement of being
linearly independent means that the linear combination of the three vectors, here a, b, and
c, can be made to be zero, that is, the vectors can be added together with scalar coefficients
α, β, and ζ , such that

αa + βb + ζc = 0 (2.12)

if and only if α = β = ζ = 0. If scalars α, β, ζ can be found so that Equation (2.12) is
satisfied but where one or more of these coefficients (α, β, ζ ) is nonzero, then a, b, and c
are linearly dependent, coplanar, and may not form a set of basis vectors.

Once a set of appropriate basis vectors is chosen (such as a, b, and c), we know that
any vector may be expressed as a linear combination of these three vectors. This means that
for an arbitrary vector v we can find three scalars ṽ1, ṽ2, and ṽ3, such that

v = ṽ1a + ṽ2b + ṽ3c (2.13)

Note that for the chosen basis of a, b, c, the scalar coefficients ṽ1, ṽ2, ṽ3 are unique. Thus if
we choose a different basis (oriented differently in space, or with different angles between
the basis vectors, or composed of vectors with lengths different from those of the original
basis vectors), different coefficients will be calculated. For example, for the orthonormal
Cartesian basis ê1 = î, ê2 = ĵ , ê3 = k̂, v can be written as

v = v1ê1 + v2ê2 + v3ê3 (2.14)

and in general, v1 �= ṽ1, v2 �= ṽ2, and v3 �= ṽ3.
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EXAMPLE
Write the vector that describes the force f on the string on the right in Figure 2.8a. Express
it in the three different coordinate systems: êx, êy, êz; êx̄ , êȳ , êz̄; and êx̃ , êỹ , êz̃.

SOLUTION

In the êx , êy , êz coordinate system there are components of f in both the x- and y-directions.
We can work these out in terms of the magnitude of the vectorf using the usual trigonometric
relations (Figure 2.9):

f = f cos ψ êx + f sin ψ êy (2.15)

The magnitude f = |f | can be found from a force balance between gravity affecting the
mass m and the upward component of f for each string,

2f sin ψ = mg (2.16)

f = mg

2 sin ψ
(2.17)

Figure 2.8 (a) Schematic for
example problem showing a
weight hanging between two
walls. (b) Coordinate systems
referred to in example.

êy

êx

f
�

f

f ψcos

f ψsin

ψ

Figure 2.9 Relationship between f and the unit vectors êx
and êy .
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Therefore f may be written as

f = mg

2 sin ψ

(
cos ψ êx + sin ψ êy

)
(2.18)

This same vector can be expressed in the êx̄ , êȳ , êz̄ and êx̃ , êỹ , êz̃ coordinate systems by
following the same procedure. Alternatively, we can write the new basis vectors in terms
of the êx, êy, êz basis vectors and substitute into Equation (2.18). For example, êx , êy , and
êz are related to êx̃ , êỹ , and êz̃ as follows:

êx = êx̃ êy = −êỹ êz = −êz̃ (2.19)

Using either procedure, the results for the two alternate coordinate systems are

f = mg

2 sin ψ
(cos ψ êx̃ − sin ψ êỹ) (2.20)

f = mg

2 sin ψ
êx̄ (2.21)

EXAMPLE
Express the vector force f from the previous example (Figure 2.8) in the two coordinate
systems shown in Figure 2.10 (that is, with respect to the bases a, b, êz and êy , êȳ , êz). Note
that a and b are not unit vectors, and êy , êȳ , and êz are not mutually perpendicular.

SOLUTION

In the previous example we found that f could be written in the êx , êy , êz coordinate
system as

f = f cos ψ êx + f sin ψ êy (2.22)

where f = mg/(2 sin ψ). First we must express f using the following basis vectors, which
are mutually orthogonal but not of unit length:

Figure 2.10 Schematic of the two coordinate systems referred to in example problem.
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a = 2êx, b = 1.5êy, êz (2.23)

Solving expressions (2.23) for êx and êy in terms of a and b, we can substitute the results
into Equation (2.22) and obtain the answer:

f = f cos ψ êx + f sin ψ êy (2.24)

=
(
f cos ψ

2

)
a +

(
f sin ψ

1.5

)
b (2.25)

= mg

2 sin ψ

(
cos ψ

2
a + sin ψ

1.5
b

)
(2.26)

We can use the same technique to write f in terms of the second coordinate system,
êy , êȳ , êz (see Figure 2.10), in which the basis vectors are all of unit length but not mutually
orthogonal. First we must write êȳ in terms of êx and êy . Then we will solve for êx in
terms of êy and êȳ , substitute the result into Equation (2.22), and simplify. Referring to
Figure 2.10,

êȳ = − sin ψ êx + cos ψ êy (2.27)

Solving for êx and substituting,

êx = − 1

sin ψ

(
êȳ − cos ψ êy

)
(2.28)

f = f cos ψ êx + f sin ψ êy (2.29)

= −f cos ψ

sin ψ
êȳ + f cos 2ψ

sin ψ
êy + f sin ψ êy (2.30)

= mg

2 sin ψ

(− cotψ êȳ + secψ êy
)

(2.31)

In the previous example, where we were working with orthonormal bases, it was easier to
express vectors. The right angles in orthonormal bases allow us to relate vectors to their
components directly, using trigonometric functions. When the basis vectors are not mutually
orthogonal unit vectors (as in these last examples), we must do more work to get the final
results. As we will see, vector multiplication is also much easier to carry out when the
vectors are written with respect to orthonormal coordinate systems.

2.2.1.2 Vector Addition

We want to express vectors in a common coordinate system so that we can manipulate them.
The advantage of expressing vectors in this way can be shown when we add two vectors.

Consider the addition of two vectors v and u to producew. We may write each of these
vectors with respect to the Cartesian coordinate system êi (i = 1, 2, 3) as follows:

u = u1ê1 + u2ê2 + u3ê3 (2.32)

v = v1ê1 + v2ê2 + v3ê3 (2.33)
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w = w1ê1 + w2ê2 + w3ê3 (2.34)

Adding u and v and factoring out the basis vectors yields

w = u+ v = (u1 + v1)ê1 + (u2 + v2)ê2 + (u3 + v3)ê3 (2.35)

Thus by comparing Equations 2.35 and 2.34 we see that the coefficients of the vectorw are
just the sums of the coefficients of the two other vectors:

w1 = u1 + v1 (2.36)

w2 = u2 + v2 (2.37)

w3 = u3 + v3 (2.38)

If we know what set of basis vectors we are using, it is a bit easier not to write the
basis vectors each time. Thus the Cartesian version of the vector v can be written in one of
two ways—as written in Equation (2.33) or by writing just the coefficients, v1, v2, and v3

and understanding that the Cartesian coordinate system is being used. A convenient way of
writing these coefficients is in matrix form:

v =
⎛⎝ v1

v2

v3

⎞⎠
123

= ( v1 v2 v3 )123 (2.39)

We write the subscript 123 on the matrix version of v to remind us what coordinate system
was used to define v1, v2, and v3. Since we are using the matrix notation only to hold the
vector coefficients, it is arbitrary whether we write these vectors as column or row vectors.

EXAMPLE
In the previous two examples we wrote the force on a string (see Figure 2.8) with respect
to five different coordinate systems. Write each of these representations of the vector f in
matrix notation.

SOLUTION

The five different representations of the vector f are

f =
⎛⎝ mg cotψ

2
mg

2

0

⎞⎠
xyz

(2.40)

f =
⎛⎝ mg cotψ

2

−mg

2

0

⎞⎠
x̃ỹz̃

(2.41)

f =
( mg

2 sin ψ
0
0

)
x̄ȳz̄

(2.42)
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f =
⎛⎝ mg cotψ

4
mg

3

0

⎞⎠
abz

(2.43)

f =
⎛⎝ mg

2 sin 2ψ
−mg cos ψ

2 sin 2ψ

0

⎞⎠
yȳz

(2.44)

We see then that the coefficients associated with a vector will vary as the vector is expressed
with respect to different coordinate systems. The magnitude and direction of the vector do
not change, however. To completely describe a vector, both the identity of the basis vectors
and the coefficients of the vector with respect to that basis are needed.

2.2.1.3 Vector Dot Product

Taking the dot product of two vectors is particularly easy when they are written with respect
to the same orthonormal basis. For an example, we can take the dot product of the vectors
v and u:

v · u = (v1ê1 + v2ê2 + v3ê3) · (u1ê1 + u2ê2 + u3ê3) (2.45)

Using the distributive and commutative rules for the dot product we get

v · u = v1u1ê1 · ê1 + v2u1ê2 · ê1 + v3u1ê3 · ê1 + v1u2ê1 · ê2

+ v2u2ê2 · ê2 + v3u2ê3 · ê2 + v1u3ê1 · ê3 + v2u3ê2 · ê3 + v3u3ê3 · ê3 (2.46)

Because the basis vectors are orthonormal, however, when two like basis vectors are
multiplied (e.g., ê1 · ê1) the answer is one (cos 0 = 1), whereas when two unlike unit
vectors are multiplied (e.g., ê1 · ê2), the answer is zero (cos (π/2) = 0). Thus expression
(2.46) simplifies to

v · u = v1u1 + v2u2 + v3u3 (2.47)

This answer is a scalar, as required [see Equation (2.7)], that is, none of the basis vectors
appears. We see that if we know two vectors with respect to the same orthonormal basis,
we can easily calculate the dot product by multiplying the components term by term and
adding them.

When we introduced the dot product of two vectors, we noted that the projection of a
vector in a certain direction could be found by dotting the vector with a unit vector in the
desired direction. For an orthonormal basis, the basis vectors themselves are unit vectors,
and we can solve for the components of a vector with respect to the orthonormal basis by
taking the following dot products:

v1 = v · ê1 (2.48)

v2 = v · ê2 (2.49)

v3 = v · ê3 (2.50)
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This may also be confirmed by dotting Equation (2.33) with each of the unit vectors in turn
and remembering that we are taking the three basis vectors êi (i = 1, 2, 3) to be mutually
perpendicular and of unit length. For example,

ê1 · v = ê1 · (v1ê1 + v2ê2 + v3ê3) (2.51)

= v1 (2.52)

EXAMPLE
Evaluate the dot product f · êx for the vectors f and êx shown in Figure 2.8. First use f
expressed in the x, y, z coordinate system. Then calculate the same dot product first with
f expressed in the x̄, ȳ, z̄ system and then with f expressed in the y, ȳ, z system.

SOLUTION

In x, y, z-coordinates the dot product is straightforward to carry out since x, y, z is an
orthonormal coordinate system and êx is one of the basis vectors of this system:

f · êx = (fxêx + fyêy + fzêz) · êx (2.53)

= fx = mg cotψ

2
(2.54)

where fx was obtained from Equation (2.40). Alternatively, we can write out the calculation
using column-vector notation:

f · êx =
⎛⎝ mg cotψ

2
mg

2

0

⎞⎠
xyz

·
⎛⎝ 1

0

0

⎞⎠
xyz

(2.55)

= mg cotψ

2
(2.56)

To carry out this calculation in x̄, ȳ, z̄ coordinates, we must first determine the
coefficients of f and êx in that system. Once the x̄, ȳ, z̄ coefficients are obtained, the
procedure matches that employed before since x̄, ȳ, z̄ coordinates are orthonormal. The
result is, of course, the same,

f · êx = (fx̄ êx̄ + fȳ êȳ + fz̄êz̄) · êx (2.57)

=
⎛⎝ mg

2 sin ψ

0

0

⎞⎠
x̄ȳz̄

·
⎛⎝ cos ψ

− sin ψ

0

⎞⎠
x̄ȳz̄

(2.58)

= mg cotψ

2
(2.59)

The basis vectors of the y, ȳ, z system are not mutually orthogonal. This complicates
any calculation carried out in this coordinate system. First we write f in the y, ȳ, z
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coordinate system, and then we carry out the dot product using the distributive rule of
algebra,

f = fyêy + fȳ êȳ + fzêz (2.60)

f · êx = (fyêy + fȳ êȳ + fzêz) · êx (2.61)

= fy(êy · êx)+ fȳ(êȳ · êx)+ fz(êz · êx) (2.62)

Since êx , êy , and êz are mutually perpendicular, the first and last terms vanish. We are left
with one dot product:

f · êx = fȳ(êȳ · êx) (2.63)

where fȳ is the ȳ coefficient of f when that vector is written in the y, ȳ, z coordinate system
[see Equation (2.44)],

fȳ = −mg cos ψ

2 sin 2ψ
(2.64)

We can evaluate the vector dot product on the right side of Equation (2.63) by recalling the
definition of dot product (Equation (2.7)]:

êȳ · êx = |êȳ ||êx | cos

(
angle between

two vectors

)
(2.65)

= (1)(1) cos
(π

2
+ ψ

)
= − sin ψ (2.66)

where we have used Figure 2.10 and a trigonometric identity to evaluate the cosine function.
Substituting this result into Equation (2.63), we obtain the correct answer:

f · êx = fȳ(êȳ · êx) (2.67)

= mg cos ψ

2 sin ψ
(2.68)

This last example, which dealt with evaluating a dot product for a vector written with
respect to a nonorthonormal basis, was simplified by the orthogonality of êx with two of the
basis vectors (êy and êz). In the general case of calculating a dot product with vectors written
with respect to nonorthonormal bases, there would be six independent dot products among
the basis vectors to evaluate geometrically or trigonometrically [see Equation (2.46); recall
that the dot product is commutative]. This is why we prefer to carry out vector calculations
by writing the vectors with respect to orthonormal bases.

2.2.1.4 Vector Cross Product

Cross products may also be written simply using an orthonormal basis [239]. For the basis
vectors, any cross products of like vectors (e.g., ê1 × ê1) vanish since sin ψ = 0 [Equa-
tion (2.8)]. For unlike vectors, following the right-hand rule (Figure 2.7) we can see that

ê1 × ê2 = ê3 (2.69)
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ê2 × ê3 = ê1 (2.70)

ê3 × ê1 = ê2 (2.71)

ê3 × ê2 = −ê1 (2.72)

ê2 × ê1 = −ê3 (2.73)

ê1 × ê3 = −ê2 (2.74)

Notice that êi × êj = +êk when ijk are permutations of 123 that are produced by
removing the last digit and placing it in front. This is called a cyclic permutation. Likewise
êi × êj = −êk when ijk are cyclic permutations of 321.

For the cross product of arbitrary vectors we write each vector in terms of an orthonor-
mal basis and carry out the individual cross products. Remember that the cross product of
parallel vectors is zero.

v × u = (v1ê1 + v2ê2 + v3ê3)× (u1ê1 + u2ê2 + u3ê3) (2.75)

= v1u1ê1 × ê1 + v1u2ê1 × ê2 + v1u3ê1 × ê3 + v2u1ê2 × ê1

+ v2u2ê2 × ê2 + v2u3ê2 × ê3 + v3u1ê3 × ê1 + v3u2ê3 × ê2 (2.76)

+ v3u3ê3 × ê3

= ê1(v2u3 − v3u2)− ê2(v1u3 − v3u1)+ ê3(v1u2 − v2u1) (2.77)

This operation can be summarized using the matrix operation of taking a determinant,
denoted by enclosing a square array in vertical lines and defined for a 3 × 3 matrix:

det|Z| =
∣∣∣∣∣∣
Z11 Z12 Z13

Z21 Z22 Z23

Z31 Z32 Z33

∣∣∣∣∣∣ (2.78)

= Z11(Z22Z33 − Z23Z32)− Z12(Z21Z33 − Z23Z31)

+ Z13(Z21Z32 − Z22Z31) (2.79)

To carry out the cross product of two arbitrary vectors, we construct a 3 × 3 matrix using
the basis vectors and the coefficients of the vectors as follows:

v × u =
∣∣∣∣∣∣
ê1 ê2 ê3

v1 v2 v3

u1 u2 u3

∣∣∣∣∣∣ (2.80)

= ê1(v2u3 − v3u2)− ê2(v1u3 − v3u1)+ ê3(v1u2 − v2u1) (2.81)

=
(
(v2u3 − v3u2)

(v3u1 − v1u3)

(v1u2 − v2u1)

)
123

(2.82)

which is the same result as before. Again the subscript 123 denotes that this 3 × 1 array
holds the coefficients of the vector v × u with respect to the basis vectors ê1, ê2, and ê3.
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When using this kind of mathematics in rheology we will often be generating even
more complex expressions than those shown. To take advantage of the order in this chaos
of letters and subscripts, we use a short-hand called Einstein notation.

2.2.2 VECTOR EINSTEIN NOTATION

Einstein notation, also called summation convention, is a way of writing the effects of
operations on vectors in a compact and easier-to-read format. To use Einstein notation most
effectively, the vectors must be written with respect to orthonormal basis vectors. We begin
with the basic expression for a vector written with respect to an orthonormal basis:

v = v1ê1 + v2ê2 + v3ê3 (2.83)

This can be written more compactly as

v =
3∑
i=1

vi êi (2.84)

A further simplification can be made by leaving out the summation sign and understanding
that when an index (i in the example) is repeated, a summation from 1 to 3 over that index
is understood,

v = vi êi (2.85)

The power of Einstein notation is harnessed when expressing the results of the multiplication
of vectors and, later, tensors. Consider the dot product of two vectors v and u, which was
carried out in detail in Equation (2.46). This becomes

v · u = vi êi · uj êj = viuj êi · êj (2.86)

Remember that the summation signs over indices i and j are understood since these are
repeated. If we expanded Equation (2.86) by reinstating the summations, the result would be

v · u =
3∑
i=1

3∑
j=1

viuj êi · êj (2.87)

Also note that we used different indices for the two vectors. This is important since there
are two summations in this expression—one for each vector. If we use the same index (e.g.,
i) for both summations, we incorrectly reduce the number of summations to one.

Now, to carry out the dot product it is helpful to use the Kronecker delta δij :

Kronecker
delta

δij ≡
{

1 i = j
0 i �= j (2.88)

This quantity expresses exactly the result of êi · êj , where êi and êj are any of the three
orthonormal basis vectors,
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êi · êj = δij (2.89)

Note that the subscripts i and j can take on any of the values 1, 2, or 3. When the Kronecker
delta appears in an expression, it tells us that the two indices associated with the delta are
now redundant as a result of some action. In the example outlined [Equation (2.89)], the
indices are made redundant as a result of dot multiplication of orthonormal basis vectors.
To simplify an Einstein expression in which the Kronecker delta appears, we replace the
two subscript indices with a single index and drop the delta:

v · u = vi êi · uj êj (2.90)

= viuj êi · êj (2.91)

= viuj δij (2.92)

= viui (2.93)

Note that the choice of the index i for the final scalar result of this operation is completely
arbitrary. We could just as well have written vjuj or vmum. Remember that the indices serve
to remind us that a summation is required, and they identify which terms change as the
summation is performed; the specific letter used as the index is arbitrary. The final result in
Equation (2.93) is the same result we derived in Equation (2.47):

v · u = viui (2.94)

=
3∑
i=1

viui (2.95)

= v1u1 + v2u2 + v3u3 (2.96)

The vector cross product (v× u) can also be expressed in Einstein notation. To do this
we must use a new expression, the epsilon permutation symbol εijk:

Epsilon
permutation symbol

εijk ≡
⎧⎨⎩

1 ijk = 123, 231, or 312

−1 ijk = 321, 213, or 132

0 i = j, j = k, or k = i
(2.97)

The combinations of indices that give +1 are called even permutations of 123, and the
combinations that give −1 are called odd permutations of 123. Using this function, the
cross product can be written in Einstein notation as

v × u = vpêp × usês (2.98)

= vpus êp × ês (2.99)

= vpusεpsj êj (2.100)

Remember that summing of repeated indices (p, s, and j in this case) is assumed; thus there
are three summations understood in Equation (2.100). The reader can verify that this result
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is the same as that obtained by the determinant method described in Section 2.2.1.4. As
with all aspects of Einstein notation, this method of expressing the dot and cross products
is limited to orthonormal bases.2

2.3 Tensors

Now that we have reviewed scalar and vector operations, we move on to the more complex
quantities called tensors. A tensor is a mathematical entity related to vectors, but it is not
easy to represent a tensor graphically. A tensor is better explained first by mathematical
description and then by showing what it does.

A tensor is an ordered pair of coordinate directions. It is also called the indeterminate
vector product. The simplest tensor is called a dyad or dyadic product, and it is written as
two vectors side by side,

Tensor A = a b (2.101)

As you see, in our notation tensors will appear with two underbars. This indicates that they
are of higher complexity, or order, than vectors. The tensors we are discussing are second
order tensors, and we will have more to say about tensor order in Section 2.3.4. While
scalars and vectors are physical entities (magnitude, magnitude and direction), tensors are
operators (magnitude and two or more directions). We will discuss this in more detail after
we familiarize ourselves with the algebraic rules for second-order tensors.

2.3.1 TENSOR RULES OF ALGEBRA

To understand tensors,3 we must first know their rules of algebra. The indeterminate vector
product that forms a tensor is not commutative, although it is associative and distributive:

Laws of algebra
for indeterminate
vector product

⎧⎪⎪⎪⎨⎪⎪⎪⎩
not commutative a b �= b a
associative (a b)c = a(b c)
distributive a(b + c) = a b + a c

(a + b)(c + d) = a c + a d + b c + b d
Scalar multiplication of a tensor follows the same rules as scalar multiplication of a vector,
such as αa b = a(αb) = (αa)b.

2.3.1.1 Tensor Addition

Adding and subtracting tensors is also possible, but unlike the case of adding vectors, it is
not possible to graphically illustrate these. As we will show, the easiest way to carry out
the addition of two tensors is to write them with respect to a common basis and to collect
terms, as we did when adding two vectors.

2 See Chapter 9 for a discussion of nonorthonormal bases.
3 Throughout the text we will use the term tensor to mean second-order tensor.
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Recall that any vector may be expressed as the linear combination of any three basis
vectors. If we express two vectors this way and then take the indeterminate vector product
to make a tensor (following the rules of algebra outlined earlier), we see that to express a
tensor in the most general form we need a linear combination of nine pairs of coordinate
basis vectors:

A = u v (2.102)

= (u1ê1 + u2ê2 + u3ê3)(v1ê1 + v2ê2 + v3ê3) (2.103)

= u1v1ê1ê1 + u1v2ê1ê2 + u1v3ê1ê3 + u2v1ê2ê1

+ u2v2ê2ê2 + u2v3ê2ê3 + u3v1ê3ê1 + u3v2ê3ê2 + u3v3ê3ê3 (2.104)

where we have used an orthonormal basis for convenience. Since the indeterminate vector
product is not commutative, the coefficients of the terms ê1ê2 and ê2ê1 cannot be combined
and must remain distinct. Thus, for any chosen coordinate system we can always express a
tensor as a linear combination of nine ordered pairs of basis vectors, as outlined before and
shown here:

A = A11ê1ê1 + A12ê1ê2 + A13ê1ê3 + A21ê2ê1 + A22ê2ê2

+ A23ê2ê3 + A31ê3ê1 + A32ê3ê2 + A33ê3ê3 (2.105)

To add two tensors we write each out with respect to the same basis vectors and add,
grouping like terms:

C = A+ B (2.106)

= A11ê1ê1 + A12ê1ê2 + A13ê1ê3 + A21ê2ê1 + A22ê2ê2

+ A23ê2ê3 + A31ê3ê1 + A32ê3ê2 + A33ê3ê3

+ B11ê1ê1 + B12ê1ê2 + B13ê1ê3 + B21ê2ê1 + B22ê2ê2

+ B23ê2ê3 + B31ê3ê1 + B32ê3ê2 + B33ê3ê3 (2.107)

= (A11 + B11)ê1ê1 + (A12 + B12)ê1ê2 + (A13 + B13)ê1ê3

+ (A21 + B21)ê2ê1 + (A22 + B22)ê2ê2 + (A23 + B23)ê2ê3

+ (A31 + B31)ê3ê1 + (A32 + B32)ê3ê2 + (A33 + B33)ê3ê3 (2.108)

As was the case when adding vectors, when two tensors are expressed with respect to the
same coordinate system, they may be added by simply adding the appropriate coefficients
together.

Nine coordinates are unwieldy, and it is common to write the nine coefficients of a
tensor in matrix form:

A =u v (2.109)

= u1v1ê1ê1 + u1v2ê1ê2 + u1v3ê1ê3 + u2v1ê2ê1

+ u2v2ê2ê2 + u2v3ê2ê3 + u3v1ê3ê1 + u3v2ê3ê2

+ u3v3ê3ê3 (2.110)
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=
⎛⎝ u1v1 u1v2 u1v3

u2v1 u2v2 u2v3

u3v1 u3v2 u3v3

⎞⎠
123

(2.111)

More generally,

A =
⎛⎝A11 A12 A13

A21 A22 A23

A31 A32 A33

⎞⎠
123

(2.112)

where the subscripts of each coefficient indicate which two basis vectors are associated
with the scalar coefficient and in what order. Because tensors are made of ordered pairs,
A12 will not generally be equal to A21, and so on. Further, in the convention used here and
followed throughout the text, the first index indicates the row in which the coefficient is
placed, and the second index indicates the column.

2.3.1.2 Tensor Dot Product

There exists a dot product between two dyads. This is carried out by dotting the two vectors
that are closest together:

Tensor

dot product

a b · c d = a(b · c) d
= (b · c)a d

(2.113)

Since scalar multiplication is commutative and (b · c) is a scalar, we can move this quantity
around to the front, as shown in Equation (2.113). We can also see from the example that the
dot product of two tensors is a tensor, but the overall magnitude of the resulting tensor differs
from the magnitude of either of the original tensors (since the magnitude now involves b ·c),
and only certain vector directions (a and d in the example) are preserved [the directions of
b and c do not appear in Equation (2.113)].

Similarly we may dot a vector with a tensor:

a · b c = (a · b)c ≡ w (2.114)

The result w is a vector pointing in a direction that was part of the original tensor (parallel
to c), but the magnitude of w differs from the magnitudes of any of the original vectors (a,
b, and c above). Neither the dot product of two tensors nor the dot product of a vector with
a tensor is commutative. Both are associative and distributive, however,

Laws of algebra
for tensor

dot product

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

not commutative a b · c d �= c d · a b
A · B �= B · A

associative (a b · c d) · f g = a b · (c d · f g)
(A · B) · C = A · (B · C)

distributive a b · (c m+ n w) = (a b · c m)+ (a b · n w)
A · (D +M) = A ·D + A ·M
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Laws of algebra for
vector dot product

with a tensor

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

not commutative b · c d �= c d · b
b ·M �= M · b

associative a · (c d · w) = (a · c d) · w
a · (B · w) = (a · B) · w

distributive d · (c m+ n w) = (d · c m)+ (d · n w)
d · (A+ C) = d · A+ d · C

In the previous section we started to use matrix notation for writing tensor and vector
components. It may seem like shaky ground to begin to use matrix notation for these
new entities called tensors. After all, in linear algebra courses, properties and techniques
associated with matrices are taught, and we have yet to show whether these properties and
techniques are appropriate for matrices composed of vector and tensor coefficients.

To address this concern, consider the multiplication of a vector v and a tensor A. To
calculate the new vector that results from this multiplication, we first write out the two
quantities in terms of their coefficients with respect to an orthonormal basis, ê1, ê2, ê3:

v · A = (v1ê1 + v2ê2 + v3ê3) · (A11ê1ê1 + A12ê1ê2 + A13ê1ê3+
A21ê2ê1 + A22ê2ê2 + A23ê2ê3 + A31ê3ê1 + A32ê3ê2 + A33ê3ê3) (2.115)

Now we use the distributive rule of the dot product to multiply. Recall that every time the
indices of the orthonormal basis vectors match, their dot product is one (e.g., ê1 · ê1 = 1);
when the indices of two dotting basis vectors differ, their dot product is zero (e.g., ê1·ê2 = 0).
This allows us to simplify this complex expression. Recall that we will dot the unit vector
from v with the first (leftmost) unit vectors in the tensor dyads.

v · A = v1(A11ê1 + A12ê2 + A13ê3)+ v2(A21ê1 + A22ê2 + A23ê3)

+ v3(A31ê1 + A32ê2 + A33ê3) (2.116)

= (v1A11 + v2A21 + v3A31)ê1 + (v1A12 + v2A22 + v3A32)ê2

+ (v1A13 + v2A23 + v3A33)ê3 (2.117)

This final expression follows the rules of matrix multiplication if we write v and A as
follows:

w = v · A (2.118)

= ( v1 v2 v3 )123 ·
⎛⎝A11 A12 A13

A21 A22 A23

A31 A32 A33

⎞⎠
123

(2.119)

= ( w1 w2 w3 )123 (2.120)

where

w1 = v1A11 + v2A21 + v3A31 (2.121)
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w2 = v1A12 + v2A22 + v3A32 (2.122)

w3 = v1A13 + v2A23 + v3A33 (2.123)

Thus, using matrix algebra to carry out the dot product on components of vectors with
tensors written with respect to orthonormal bases is correct. Similarly, we can show that
the dot product of two tensors also follows the rules of matrix multiplication.

2.3.1.3 Tensor Scalar Product

There is a scalar product of two tensors, which is defined as follows:

Tensor
scalar product

a b : c d = (b · c)(a · d) (2.124)

This amounts to dotting the two closest vectors (the inner pair) and then dotting the two
remaining vectors (the outer pair),

a

b·c︷︸︸︷
b · c d︸ ︷︷ ︸
a · d

The rules of algebra for the scalar product of two tensors are summarized as follows:

Laws of algebra

for tensor

scalar product

⎧⎨⎩
commutative a w : n d = n d : a w

associative not possible

distributive b a : (m n+ w d) = b a : m n+ b a : w d

2.3.2 TENSOR EINSTEIN NOTATION

The Einstein summation convention can be used to simplify the notation that goes along
with tensor multiplication. A tensor in the summation notation requires a double sum:

A =
3∑
i=1

3∑
j=1

Aij êi êj (2.125)

In Einstein notation this becomes

A = Aij êi êj (2.126)

Using i and j as the dummy indices is completely arbitrary. Each of the following
expressions is equivalent:

A = Aij êi êj = Ampêmêp = Ars êr ês (2.127)

What is important in these expressions is that the first index on the symbol A matches the
index on the first unit vector; the second index on the symbol Amatches that on the second
unit vector. An example of a different tensor, related to A, is the transpose of A, written as

AT . This is a tensor that has the same coefficients asA, but they are associated with different
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ordered pairs of basis vectors. In coefficient matrix notation, AT is the mirror image of A

across the main diagonal, that is, to obtain the matrix of coefficients of AT , interchange the
rows and the columns of A:

A =
⎛⎝A11 A12 A13

A21 A22 A23

A31 A32 A33

⎞⎠
123

(2.128)

AT =
⎛⎝A11 A21 A31

A12 A22 A32

A13 A23 A33

⎞⎠
123

(2.129)

In the Einstein expression for AT , the first index of Apk is associated with the second basis
vector in the basis vector dyad:

A = Apkêpêk (2.130)

AT = Apkêkêp (2.131)

Again, since the letters used to indicate the implicit summations (in this case p and k) are
arbitrary, AT can be written any number of ways. In particular, note the difference between
the first two examples:

AT = Aji êi êj = Aij êj êi = Asr êr ês (2.132)

Since tensors are written in terms of vectors, the methods outlined earlier for vector
multiplication with the Einstein convention works just as well for the multiplication of two
tensors or the multiplication of a vector with a tensor. When preparing to multiply tensors
in Einstein notation, all different letters (e.g., i, j , p, or k) must be used for indexing the
implicit summations.

A · B = Aij êi êj · Bpkêpêk (2.133)

= AijBpk êi êj · êpêk (2.134)

= AijBpk êiδjpêk (2.135)

= AipBpk êi êk (2.136)

The Kronecker delta in Equation (2.135) tells us that one index, j or p, is redundant. We
therefore replace all of the j ’s with p’s (we could have replaced p’s with j ’s or both p and
j with a third letter) to arrive at Equation (2.136).

In the final result there are three summations, two of which involve the unit vectors,
and one that does not. To clarify the answer obtained, we can carry out the summation that
does not involve the unit vectors, the summation over p:

AipBpkêi êk =
3∑
i=1

3∑
p=1

3∑
k=1

AipBpkêi êk (2.137)
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=
3∑
i=1

3∑
k=1

(Ai1B1k + Ai2B2k + Ai3B3k)êi êk (2.138)

Now the result of the multiplication of A and B looks more like a usual tensor. Each
coefficient term (Ai1B1k + Ai2B2k + Ai3B3k) contains only two unknown subscripts that
are associated with the basis dyad (êi êk). This coefficient expression is more complicated
than a basic tensor in that the coefficients each consist of the sum of three scalars, but we
can see that the tensor is still composed of a double sum of scalar coefficients multiplying
nine unique pairs of basis vectors.

Multiplication of a vector with a tensor can be carried out no matter whether the vector
comes first (v ·A) or the tensor comes first (A · v), but in general the answers in these two
cases differ:

v · A = vi êi · Ars êr ês (2.139)

= viArs êi · êr ês (2.140)

= viArsδir ês (2.141)

= vrArs ês (2.142)

A · v = Ampêmêp · vj êj (2.143)

= Ampvj êmêp · êj (2.144)

= Ampvj êmδpj (2.145)

= Ampvpêm (2.146)

= vpAmpêm (2.147)

To convince yourself that these two answers differ, note that the index that is on the surviving
unit vector is not in the same place on the tensor coefficientAij in the two final expressions.

EXAMPLE
What is the 2-component of A · v?

SOLUTION

From the example in the text we know thatA·v = vpAmpêm. Expanding that into summation
and then into vector matrix notation, we obtain

A · v =
3∑
p=1

3∑
m=1

vpAmpêm (2.148)

=
3∑
p=1

vpA1pê1 +
3∑
p=1

vpA2pê2 +
3∑
p=1

vpA3pê3 (2.149)
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=
⎛⎜⎝
∑3
p=1 vpA1p∑3
p=1 vpA2p∑3
p=1 vpA3p

⎞⎟⎠
123

(2.150)

=
⎛⎝ v1A11 + v2A12 + v3A13

v1A21 + v2A22 + v3A23

v1A31 + v2A32 + v3A33

⎞⎠
123

(2.151)

The 2-component of A · v is the coefficient of ê2 in Equation (2.151), that is, v1A21 +
v2A22 +v3A23. Equation (2.151) is a vector (note the + signs between the terms). The three
scalar components of this vector are long and spread out; do not confuse such vectors with
tensors.

2.3.3 LINEAR VECTOR FUNCTIONS

We have been concerned, thus far, with familiarizing ourselves with tensors and with tensor
algebra. We saved the discussion of what tensors are for until now. In rheology we use
tensors because they are a convenient way to express linear vector functions. Linear vector
functions arise naturally in the equations describing physical quantities such as linear and
angular momentum, light traversing a medium, and stress in a body. We will now show
how a tensor expresses a linear vector function through a simple calculation.

We are familiar with functions such as y = f (x). This is a scalar function because it
takes a scalar variable x and transforms it into a scalar variable y. A vector function, for
example, f (b), behaves analogously, transforming a vector b to another vector a,

a = f (b) (2.152)

A function, as described, is a general transformation. We can further qualify the type of
function we are talking about by describing its mathematical properties. An important type
of function is a linear function. A function is linear if for all vectors a, b and scalars α, the
following properties hold:

Definition of
a linear function

f (a + b) = f (a)+ f (b)
f (αa) = αf (a)

(2.153)

To show that a tensor embodies the properties of a linear vector function, consider the
function f (b) and expand the vector b with respect to an orthonormal basis,

a = f (b) (2.154)

= f (b1ê1 + b2ê2 + b3ê3) (2.155)

Since f is a linear function, we can expand Equation (2.155) as follows:

a = f (b1ê1 + b2ê2 + b3ê3) (2.156)
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= b1f (ê1)+ b2f (ê2)+ b3f (ê3) (2.157)

We know that when f operates on a vector, a new vector is produced. Thus each of the
expressions f (ê1), f (ê2), and f (ê3) is a vector. We do not know what these vectors are,
but we can call them v, u, and w,

v ≡ f (ê1) (2.158)

u ≡ f (ê2) (2.159)

w ≡ f (ê3) (2.160)

Thus,

a = b1v + b2u+ b3w (2.161)

= vb1 + ub2 + wb3 (2.162)

where we have used the commutative rule of scalar multiplication in writing the second
expression.

The three scalars b1, b2, and b3 are just the coefficients of b with respect to the
orthonormal basis ê1, ê2, ê3, and thus we can write them as [see Equations (2.48)–(2.50)]

b1 = ê1 · b (2.163)

b2 = ê2 · b (2.164)

b3 = ê3 · b (2.165)

Substituting these expressions into Equation (2.162) gives

a = v ê1 · b + u ê2 · b + w ê3 · b (2.166)

Factoring out b by the distributive rule of the dot product gives us

a = (v ê1 + u ê2 + w ê3) · b (2.167)

The expression in parentheses is the sum of three dyadic products and thus is a tensor. If
we call this sumM , then our final result is

M ≡ v ê1 + u ê2 + w ê3 (2.168)

a = f (b) = M · b (2.169)

We see that the linear vector function f acting on the vector b is the equivalent of dotting
a tensor M with b. We will often use tensors in this manner, taking advantage of Einstein
notation to simplify the calculations.

2.3.4 ASSOCIATED DEFINITIONS

As we study rheology we will have use for some specialized definitions that relate to
tensors. We have already encountered the transpose of a tensor. Some other definitions are
summarized next.
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Identity tensor I:

I ≡ ê1ê1 + ê2ê2 + ê3ê3 (2.170)

= êi êi (2.171)

=
⎛⎝ 1 0 0

0 1 0

0 0 1

⎞⎠
123

(2.172)

This tensor has the same properties as the identity matrix that it resembles. For example,
I · v = v · I = v and I · B = B · I = B, where v is any vector and B is any tensor. I is
written as in Equation (2.172) for any orthonormal basis. Any tensor proportional to I is an
isotropic tensor. The linear vector function represented by an isotropic tensor has the same
effect in all directions.

Zero tensor 0: The zero tensor is a quantity of tensor order that has all coefficients equal
to zero in any coordinate system. It is a linear vector function that transforms any vector to
the zero vector

0 ≡
⎛⎝ 0 0 0

0 0 0

0 0 0

⎞⎠ (2.173)

Magnitude of a tensor |A|:

|A| ≡ +
√
A : A

2
(2.174)

The magnitude of a tensor is a scalar that is associated with a tensor. The value of the
magnitude does not depend on the coordinate system in which the tensor is written.

Symmetric and antisymmetric tensors: A tensor is said to be symmetric if

A = AT (2.175)

In Einstein notation this means that Asm = Ams . An example of the matrix of coefficients
of a symmetric tensor is ⎛⎝ 1 2 3

2 4 5

3 5 6

⎞⎠
123

(2.176)

A tensor is said to be antisymmetric if

A = −AT (2.177)

In Einstein notation this means thatAsm = −Ams . An example of the matrix of coefficients
of an antisymmetric tensor is
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⎛⎝ 0 2 3

−2 0 4

−3 −4 0

⎞⎠
123

(2.178)

The diagonal elements of an antisymmetric tensor are always zeros.

Invariants of a tensor: Tensors of the type we have been discussing so far have three scalar
quantities associated with them that are independent of the coordinate system. These are
called the invariants of the tensor. Combinations of the three invariants are also invariant
to change in a coordinate system, and therefore how the three invariants are defined is not
unique (see Appendix C.6). The definitions of the tensor invariants that we will use are
shown here for a tensor B [26]. These definitions in terms of tensor coefficients are only
valid when the tensor is written in an orthonormal coordinate system. Tensor invariants are

IB ≡
3∑
i=1

Bii (2.179)

IIB ≡
3∑
i=1

3∑
j=1

BijBji = B : B (2.180)

IIIB ≡
3∑
i=1

3∑
j=1

3∑
k=1

BijBjkBki (2.181)

The magnitude |B| of a tensor (defined previously) is equal to +
√
IIB/2.

Trace of a tensor: The trace of a tensor, written trace(A), is the sum of the diagonal
elements,

A = Apj êpêj (2.182)

=
⎛⎝A11 A12 A13

A21 A22 A23

A31 A32 A33

⎞⎠
123

(2.183)

trace(A) = Amm (2.184)

= A11 + A22 + A33 (2.185)

The first invariant, defined by Equation (2.179), is the trace of the tensor written with respect
to orthonormal coordinates. The second and third invariants may also be written as traces:

IIB = trace(B · B) (2.186)

IIIB = trace(B · B · B) (2.187)
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Order of a tensor: The types of tensors we have been dealing with so far are called second-
order tensors. Second-order tensors are formed by the indeterminate vector product of two
vectors. Higher order tensors may be formed by taking the indeterminate vector product of
more than two tensors,

third-order tensor v u w

fourth-order tensor v u w b

In addition, a vector may be considered to be a first-order tensor, and a scalar may be
considered to be a zero-order tensor. The number of components in three-dimensional space
required to express a tensor depends on the order ν, as summarized in Table 2.2. The order
of a mathematical quantity is important to know when performing algebraic manipulations.
Since scalars have magnitude only, while vectors denote magnitude and direction, scalars
cannot equal vectors. Likewise, vectors cannot equal tensors, which are of higher order.
When writing an equation, the rule is that each term must be of the same order. Examples
of scalar, vector, and tensor equations used in engineering and physics are

Scalar equation Q = mCp(T1 − T2)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Q = heat transferred

m = mass

Cp = heat capacity

T1, T2 = temperatures

Scalar equation f1 = ê1 · f
⎧⎨⎩
f = force vector

f1 = scalar component of f

ê1 = unit vector

Vector equation f = ma
⎧⎨⎩
f = force vector

m = mass

a = acceleration vector

Vector equation

(see Appendix E)
D = ε · E

⎧⎨⎩
D = electric displacement vector

ε = dielectric tensor

E = electric field vector

Tensor equation

(see Chapter 3)
τ = −μγ̇

⎧⎪⎨⎪⎩
τ = stress tensor

μ = Newtonian viscosity

γ̇ = rate-of-deformation tensor

The net effect of vector–tensor operations on the order of an expression is summarized in
Table 2.3 [28].

Inverse of a tensorA−1: The inverseA−1 of a tensorA is a tensor that when dot multiplied
by A gives the identity tensor I,

A · A−1 = A−1 · A = I (2.188)
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TABLE 2.2
Summary of the Orders of Vector and Tensor Quantities and Their Properties

Number of
Associated Number of

Order ν Name Directions Components Examples

0 scalar 0 30 Mass, energy, temperature
1 vector 1 31 Velocity, force, electric field
2 2nd-order tensor 2 32 Stress, deformation
3 3rd-order tensor 3 33 Gradient of stress
ν νth-order tensor ν 3ν

TABLE 2.3
Summary of the Effect of Various Operations on the Order of an Expression

Operation Order of Result Example

No symbol
∑

orders αB, order = 2
× ∑

orders −1 w × C, order = 2
· ∑

orders −2 u · A, order = 1
:

∑
orders −4 B : C, order = 0

Notes:
∑

orders is the summation of the orders of the quantities in the expression.

Source: After [28].

An inverse does not exist for a tensor whose determinant is zero. It is straightforward to
show that the determinant of A [written det|A| and defined in Equation (2.79)] is related to
the tensor invariants of A as follows:

det|A| = 1

6

(
I 2
A − 3IAIIA + 2IIIA

)
(2.189)

The determinant of a tensor is invariant to any coordinate transformation.

2.4 Differential Operations with Vectors and Tensors

The rheologically important equations of conservation of mass and momentum are differ-
ential equations, and thus we must learn how to differentiate vector and tensor quantities. In
vector and tensor notation, differentiation in physical space (three dimensions) is handled
by the vector differential operator ∇, called del or nabla. In this section we will cover the
operation of ∇ on scalars, vectors, and tensors.

To calculate the derivative of a vector or tensor we must first express the quantity with
respect to a basis. Differentiation is then carried out by having a differential operator, for
example, ∂/∂y, act on each term, including the basis vectors. For example, if the chosen
basis is the arbitrary basis ẽ1, ẽ2, ẽ3 (not necessarily orthonormal or constant in space), we
can express a vector v as

v = ṽ1ẽ1 + ṽ2ẽ2 + ṽ3ẽ3 (2.190)
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The y-derivative of v is thus

∂v

∂y
= ∂

∂y
(ṽ1ẽ1 + ṽ2ẽ2 + ṽ3ẽ3) (2.191)

= ∂

∂y
(ṽ1ẽ1)+

∂

∂y
(ṽ2ẽ2)+

∂

∂y
(ṽ3ẽ3) (2.192)

= ṽ1
∂ẽ1

∂y
+ ẽ1

∂ṽ1

∂y
+ ṽ2

∂ẽ2

∂y
+ ẽ2

∂ṽ2

∂y
+ ṽ3

∂ẽ3

∂y
+ ẽ3

∂ṽ3

∂y
(2.193)

Note that we used the product rule of differentiation in obtaining Equation (2.193). This
complex situation is simplified if for the basis vectors ẽi we choose to use the Cartesian
coordinate system êx , êy , êz. In Cartesian coordinates, the basis vectors are constant in
length and fixed in direction, and with this choice the terms in Equation (2.193) involving
differentiation of the basis vectors ẽi are zero; thus half of the terms disappear.

Since vector and tensor quantities are independent of the coordinate system, any vector
or tensor quantity derived in Cartesian coordinates is valid when properly expressed in any
other coordinate system. Thus, when deriving general expressions, it is most convenient
to represent vectors and tensors in Cartesian coordinates. Limiting ourselves to spatially
homogeneous (the directions of the unit vectors do not vary with position), orthonormal basis
vectors (the Cartesian system) allows us to use Einstein notation for differential operations,
as we shall see. This is a distinct advantage. There are times when coordinate systems
other than the spatially homogeneous Cartesian system are useful, and we will discuss two
such coordinate systems (cylindrical and spherical) in the next section. In addition, there
are times when nonorthonormal bases are preferred to orthonormal systems. This will be
discussed in Chapter 9. Remember that the choice of coordinate system is simply one of
convenience, since vector and tensor expressions are independent of the coordinate system.

In Cartesian coordinates (x = x1, y = x2, z = x3) the spatial differentiation operator
∇ is defined as

∇ ≡ ê1
∂

∂x1
+ ê2

∂

∂x2
+ ê3

∂

∂x3
(2.194)

In Einstein notation this becomes

∇ = êi ∂
∂xi

(2.195)

∇ is a vector operator, not a vector. This means that it has the same order as a vector, but it
cannot stand alone. We cannot sketch it on a set of axes, and it does not have a magnitude
in the usual sense. Also, although ∇ is of vector order, convention omits the underbar from
this symbol.

Since ∇ is an operator, it must operate on something. ∇ may operate on scalars, vectors,
or tensors of any order. When ∇ operates on a scalar, it produces a vector,

∇α =
(
ê1
∂

∂x1
+ ê2

∂

∂x2
+ ê3

∂

∂x3

)
α (2.196)

= ê1
∂α

∂x1
+ ê2

∂α

∂x2
+ ê3

∂α

∂x3
(2.197)
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= êi ∂α
∂xi

(2.198)

=
⎛⎜⎝

∂α
∂x1

∂α
∂x2

∂α
∂x3

⎞⎟⎠
123

(2.199)

The vector it produces, ∇α, is called the gradient of the scalar quantity α.
We pause here to clarify two terms we have used, scalars and constants. Scalars are

quantities that are of order zero. They convey magnitude only. They may be variables,
however, such as the distancex(t)between two moving objects or the temperatureT (x, y, z)
at various positions in a room with a fireplace. Multiplication by scalars follows the rules
outlined earlier, namely, it is commutative, associative, and distributive. When combined
with a ∇ operator, however, the position of a scalar is quite important. If the position of a
scalar variable is moved with respect to the ∇ operator, the meaning of the expression has
changed. We can summarize some of this by pointing out the following rules with respect
to ∇ operating on scalars α and ζ :

Laws of algebra
for ∇ operating

on scalars

⎧⎨⎩
not commutative ∇α �= α∇
not associative ∇(ζα) �= (∇ζ )α
distributive ∇(ζ + α) = ∇ζ + ∇α

The first limitation, that ∇ is not commutative, relates to the fact that ∇ is an operator:
∇α is a vector whereas α∇ is an operator, and they cannot be equal. The second limitation
reflects the rule that the differentiation operator (∂/∂x) acts on all quantities to its right until
a plus, minus, equals sign, or bracket ((), {}, []) is reached. Thus, expressions of the type
∂(ζα)/∂x must be expanded using the usual product rule of differentiation, and ∇ is not
associative,

∂(ζα)

∂x
= ζ ∂α

∂x
+ α ∂ζ

∂x
(2.200)

The term “constant” is sometimes confused with the word “scalar.” Constant is a word
that describes a quantity that does not change. Scalars may be constant [as in the speed
of light c (= 3 × 108 m/s) or the number of cars sold last year worldwide], vectors may
be constant (as in the Cartesian coordinate basis vectors êx , êy , and êz), and tensors may
be constant (as in the isotropic pressure 2 m below the surface of the ocean). The issue of
constancy only comes up now because we are dealing with the change operator ∇. Constants
may be positioned arbitrarily with respect to a differential operator since they do not change.

Another thing to notice about the ∇ operator is that it increases the order of the
expression on which it acts. We saw that when ∇ operates on a scalar, a vector results.
We will now see that when ∇ operates on a vector, it yields a second-order tensor, and
when ∇ operates on a second-order tensor, a third-order tensor results. Note that since the
Cartesian basis vectors ê1, ê2, ê3 are constant (do not vary with x1, x2, x3), it does not matter
where they are written with respect to the differentiation operator ∂/∂xj in the Einstein
summation convention. However, the order of the unit vectors in the final expression [as
shown in Equation (2.203)] and in the original expansion into Einstein notation must match.
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∇w = êp ∂
∂xp

(wkêk) = êp ∂(wkêk)
∂xp

(2.201)

= êp êk ∂wk
∂xp

(2.202)

= ∂wk

∂xp
êp êk (2.203)

=
⎛⎜⎝
∂w1
∂x1

∂w2
∂x1

∂w3
∂x1

∂w1
∂x2

∂w2
∂x2

∂w3
∂x2

∂w1
∂x3

∂w2
∂x3

∂w3
∂x3

⎞⎟⎠
123

(2.204)

∇B = êi ∂
∂xi

(Brs êr ês) = êi ∂(Brs êr ês)
∂xi

(2.205)

= êi êr ês ∂Brs
∂xi

(2.206)

= ∂Brs

∂xi
êi êr ês (2.207)

There are 27 components (33) associated with the third-order tensor ∇B, and we will not
list them here. This is left as an exercise for the interested reader. ∇w is called the gradient
of the vector w,4 and ∇B is called the gradient of the tensor B.5

The rules of algebra for ∇ operating on nonconstant scalars (∇ is not commutative, not
associative, but is distributive) also hold for nonconstant vectors and tensors as outlined:

Laws of algebra for
∇ operating on

vectors and tensors

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

not commutative ∇w �= w∇
∇B �= B∇

not associative ∇(a b) �= (∇a)b
∇(a · b) �= (∇a) · b
∇(a × b) �= (∇a)× b
∇(B C) �= (∇B)C
∇(B · C) �= (∇B) · C

distributive ∇(w + b) = ∇w + ∇b
∇(B + C) = ∇B + ∇C

4 Note that in the convention we follow [138, 26] the unit vector that accompanies ∇ is the first unit
vector in the tensor ∇w, and the unit vector from the vector being operated upon is the second
unit vector. Thus ∇w = (∂wj/∂xi)êi êj . The opposite convention is also in wide use, namely,
∇̃w = (∂wi/∂xj )êi êj [162, 9, 205, 166, 61, 238, 179]. When reading other texts it is important
to check which convention is in use (see Tables D.1 and D.2).
5 The fact that ∇w and ∇B are tensors, that is, frame-invariant quantities that express linear vector
(or tensor) functions, should not simply be assumed. By examining these quantities under the action
of a change in basis, however, both of these gradients as well as the gradients of all higher order
tensors can be shown to be tensors [7].
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A second type of differential operation is performed when ∇ is dot-multiplied with a
vector or a tensor. This operator, the divergence ∇·, lowers by one the order of the entity on
which it operates. Since the order of a scalar is already zero, one cannot take the divergence
of a scalar. The following operations are defined.

Divergence of a vector:

∇ · w = ∂

∂xi
êi · wmêm (2.208)

= êi · êm ∂wm
∂xi

(2.209)

= δim ∂wm
∂xi

(2.210)

= ∂wm

∂xm
(2.211)

= ∂w1

∂x1
+ ∂w2

∂x2
+ ∂w3

∂x3
(2.212)

The result is a scalar [no unit vectors present in Equation (2.211)].

Divergence of a tensor:

∇ · B = ∂

∂xp
êp · Bmnêmên (2.213)

= êp · êmên ∂Bmn
∂xp

(2.214)

= δpmên ∂Bmn
∂xp

(2.215)

= ∂Bpn

∂xp
ên (2.216)

=

⎛⎜⎜⎝
∂Bp1

∂xp

∂Bp2

∂xp

∂Bp3

∂xp

⎞⎟⎟⎠
123

=

⎛⎜⎜⎝
∑3
p=1

∂Bp1

∂xp∑3
p=1

∂Bp2

∂xp∑3
p=1

∂Bp3

∂xp

⎞⎟⎟⎠
123

(2.217)

=
⎛⎜⎝
∂B11
∂x1

+ ∂B21
∂x2

+ ∂B31
∂x3

∂B12
∂x1

+ ∂B22
∂x2

+ ∂B32
∂x3

∂B13
∂x1

+ ∂B23
∂x2

+ ∂B33
∂x3

⎞⎟⎠
123

(2.218)

The result is a vector [one unit vector is present in Equation (2.216)]. The rules of algebra
for the operation of the divergence ∇· on vectors and tensors can be deduced by writing
the expression of interest in Einstein notation and following the rules of algebra for the
operation of the differentiation operator ∂/∂xp on scalars and vectors.
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One final differential operation is the Laplacian, ∇ ·∇ or ∇2. This operation leaves the
order of its object unchanged, and thus we may take the Laplacian of scalars, vectors, and
tensors as shown next.

Laplacian of a scalar:

∇ · ∇α = ∂

∂xk
êk · ∂

∂xm
êmα (2.219)

= êk · êm ∂
∂xk

∂α

∂xm
= δkm ∂

∂xk

∂α

∂xm
(2.220)

= ∂

∂xk

∂α

∂xk
= ∂2α

∂x2
k

(2.221)

= ∂2α

∂x2
1

+ ∂2α

∂x2
2

+ ∂2α

∂x2
3

(2.222)

The result is a scalar. Although k appears only once in Equation (2.221), it is a repeated
subscript with respect to Einstein notation since we have used the usual shorthand notation
∂
∂xk

∂
∂xk

=
(
∂2

∂x2
k

)
for twice differentiating with respect to xk .

Laplacian of a vector:

∇ · ∇w = ∂

∂xk
êk · ∂

∂xm
êm wj êj (2.223)

= êk · êm êj ∂
∂xk

∂wj

∂xm
= δkmêj ∂

∂xk

∂wj

∂xm
(2.224)

= ∂

∂xk

∂wj

∂xk
êj = ∂2wj

∂x2
k

êj (2.225)

=

⎛⎜⎜⎜⎝
∂2w1

∂x2
1

+ ∂2w1

∂x2
2

+ ∂2w1

∂x2
3

∂2w2

∂x2
1

+ ∂2w2

∂x2
2

+ ∂2w2

∂x2
3

∂2w3

∂x2
1

+ ∂2w3

∂x2
2

+ ∂2w3

∂x2
3

⎞⎟⎟⎟⎠
123

(2.226)

The result is a vector. The same procedure may be followed to determine the expression for
the Laplacian of a tensor.

Correctly identifying the quantities on which ∇ operates is an important issue, and the
rules are worth repeating. The differentiation operator ∂/∂xi acts on all quantities to its
right until a plus, minus, equals sign, or bracket ((), {}, []) is reached. To show how this
property affects terms in a vector/tensor expression, we now give an example.

EXAMPLE
What is ∇ · a b?

SOLUTION

We begin with Einstein notation:
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∇ · a b = ∂

∂xm
êm · apêp bnên (2.227)

Here, as always, we use different indices for the various implied summations.
Since the coefficients of both a and b are to the right of the ∇ operator, they are both

acted upon by its differentiation action. The Cartesian unit vectors are also affected, but
these are constant.

∇ · a b = ∂

∂xm
êm · (apêp bnên) (2.228)

= êm · êp ên ∂(ap bn)
∂xm

= δmp ên ∂(ap bn)
∂xm

(2.229)

= ên ∂(am bn)
∂xm

(2.230)

To further expand this expression, we use the product rule of differentiation on the quantity
in parentheses,

∇ · a b = ên ∂(am bn)
∂xm

(2.231)

= ên
(
am
∂bn

∂xm
+ bn ∂am

∂xm

)
(2.232)

This is as far as this expression may be expanded. One can write these two terms in vector
(also called Gibbs) notation,

∇ · a b = am ∂bn
∂xm

ên + ∂am

∂xm
bnên (2.233)

= a · ∇b + (∇ · a)b (2.234)

The equivalence of the last two equations may be verified by working backward from
Equation (2.234). If the differentiation of the product had not been carried out correctly, the
first term on the right-hand side would have been omitted.

2.5 Curvilinear Coordinates

Until now we have used (almost exclusively) the Cartesian coordinate system to express
vectors and tensors with respect to scalar coordinates. Since vector and tensor quantities are
independent of the coordinate system, we have chosen to use the Cartesian system, which is
orthonormal and constant in space, to derive vector/tensor relations. This choice allows us to
use Einstein notation to keep track of vector/tensor operations. The Cartesian system is also
a natural choice when solving flow problems if the flow boundaries are straight lines, that
is, if the boundaries coincide with coordinate surfaces (e.g., at x = B, v = V ). When the
boundaries are curved, however, as, for example, in flow in a pipe or flow around a falling
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sphere, it is mathematically awkward to use the Cartesian system. To solve problems with
cylindrical and spherical symmetry we will choose to use coordinate systems that share
these symmetries (see Figures 2.11 and 2.12).

The cylindrical and spherical coordinate systems, jointly called curvilinear coordinate
systems, allow for considerable simplification of the analysis of problems for which the
boundaries are coordinate surfaces of these systems, that is, problems for which the
boundaries are cylindrical or spherical (see Chapter 3 for worked-out examples). The
disadvantage of these systems, however, is that for both the cylindrical and the spherical
coordinate systems the basis vectors vary with position, as we will demonstrate in the next
section. Hence, the differential operator ∇ is more complicated in curvilinear systems, and
care must be taken to use the correct form of vector and tensor quantities involving ∇.
Also, Einstein notation is inconvenient to use in curvilinear systems when ∇ is involved,
since ∇ must be made to operate on the (spatially varying) basis vectors as well as
on the vector and tensor coefficients. We will discuss both of these concerns in the
next section.

2.5.1 CYLINDRICAL COORDINATE SYSTEM

The coordinates and unit vectors that are used for the cylindrical and spherical coordinate
systems are shown in Figures 2.11 and 2.12. In cylindrical coordinates (Figure 2.12a), the
three basis vectors are êr , êθ , and êz. The vector êz is the same as the vector of the same
name in the Cartesian coordinate system. The vector êr is a vector that is perpendicular to
the z-axis and makes an angle θ with the positive x-axis of the Cartesian system. The last
vector, êθ , is perpendicular to êr , resides in an xy-plane of the Cartesian system, and points
in the direction counterclockwise to the x-axis, that is, in the direction of increasing θ . Note
that this is an orthonormal basis system.

In cylindrical coordinates the vector êz remains constant in direction and in magnitude
no matter what point in space is being considered. Both êr and êθ vary with position,
however. To convince yourself of this, consider two points in the xy-plane, (1, 1, 0) and (−1,
−1, 0) (Figure 2.13). We can write the vectors êr and êθ with respect to Cartesian coordinates

PP

zz

z

yy

θ

θ

r

r

φ

xx
( )a ( )b

Figure 2.11 Geometries of (a) cylindrical and (b) spherical coordinate systems.
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Figure 2.12 Pictorial representation of the basis vectors associated with (a) cylindrical and (b) spher-
ical coordinate systems.
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y

x–x

–y

êθ

êθ

êr

êr

(1,1,0)

(–1,–1,0)
θ π= –

4

θ π= ––5
4

Figure 2.13 Variation of the basis vectors êθ
and êr in cylindrical coordinates.

for each point. The vector êr is a unit vector pointing in the direction of increasing r , that
is, in the direction of a line from the origin to the point of interest. The unit vector êθ points
from the point of interest in the direction of increasing θ . For the point (1,1,0), êr and êθ are

êr
∣∣
(110) =

⎛⎜⎝
1√
2

1√
2

0

⎞⎟⎠
xyz

(2.235)

êθ
∣∣
(110) =

⎛⎜⎝− 1√
2

1√
2

0

⎞⎟⎠
xyz

(2.236)

where the subscript xyz emphasizes that the vectors are written in the Cartesian, x, y, z,
coordinate system. For (−1,−1,0), êr and êθ are

êr
∣∣
(−1,−1,0) =

⎛⎜⎝−
√

2
2

−
√

2
2

0

⎞⎟⎠
xyz

(2.237)

êθ
∣∣
(−1,−1,0) =

⎛⎜⎝
√

2
2

−
√

2
2

0

⎞⎟⎠
xyz

(2.238)

The vectors êr and êθ clearly differ at the two points. For an arbitrary point at coordinates
x, y, z or r, θ, z, the cylindrical basis vectors are related to the Cartesian basis vectors as
follows:

êr = cos θ êx + sin θ êy (2.239)
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êθ = − sin θ êx + cos θ êy (2.240)

êz = êz (2.241)

The cylindrical coordinate variables r , θ , and z are related to the Cartesian coordinate
variables x, y, and z as follows:

x = r cos θ (2.242)

y = r sin θ (2.243)

z = z (2.244)

The fact that the cylindrical basis vectors vary with position impacts the use of the ∇
operator in this coordinate system. The ∇ operator in cylindrical coordinates may be derived
from the Cartesian expression by making use of the chain rule ([239] and Chapter 9) and
the relations between x, y, and z and r , θ , and z. The result is

∇ = êr ∂
∂r

+ êθ 1

r

∂

∂θ
+ êz ∂

∂z
(2.245)

We will now operate ∇ on a vector v, writing both ∇ and the vector v in cylindrical
coordinates and following the rules of algebra outlined earlier in this chapter,

∇v =
(
êr
∂

∂r
+ êθ 1

r

∂

∂θ
+ êz ∂

∂z

)
(vr êr + vθ êθ + vzêz) (2.246)

= êr ∂
∂r
(vr êr + vθ êθ + vzêz)+ êθ 1

r

∂

∂θ
(vr êr + vθ êθ + vzêz) (2.247)

+ êz ∂
∂z
(vr êr + vθ êθ + vzêz)

= êr
[
∂(vr êr )

∂r
+ ∂(vθ êθ )

∂r
+ ∂(vzêz)

∂r

]
+ êθ 1

r

[
∂(vr êr )

∂θ
+ ∂(vθ êθ )

∂θ
+ ∂(vzêz)

∂θ

]
+ êz

[
∂(vr êr )

∂z
+ ∂(vθ êθ )

∂z
+ ∂(vzêz)

∂z

]
(2.248)

Each of the derivatives operates on a product of two quantities that vary in space, the
coefficient of v and the basis vector. When we operated in the Cartesian coordinate system,
since the basis vectors are not a function of position, they could be removed from the
differentiation. For the cylindrical (and spherical) coordinate systems, which have variable
unit vectors, this is not possible. One correct way to calculate ∇v in cylindrical coordinates
is to write r , θ , z, êr , êθ , and êz with respect to the constant Cartesian system and then carry
out the appropriate differentiations. The results are shown in Table C.7 in Appendix C.2.

2.5.2 SPHERICAL COORDINATE SYSTEM

In the spherical coordinate system, all three basis vectors vary with position (Figure 2.12b).
The three unit vectors are êr , êθ , and êφ . The vector êr emits radially from the origin toward
a point of interest. The vector êθ , which lies in the plane formed by the point of interest and



2.6 Vector and Tensor Integral Theorems 53

the Cartesian z-direction, is perpendicular to êr , and points in the direction that rotates away
from the positive z-axis. The vector êφ lies in a Cartesian xy-plane, is perpendicular to the
projection of êr in the Cartesian xy-plane, and points counterclockwise from the x-axis.
Note that the definitions of êr and êθ in cylindrical and spherical coordinates differ.

The spherical coordinate variables r , θ , andφ and basis vectors êr , êθ , and êφ are related
to their Cartesian counterparts as follows:

x = r sin θ cos φ (2.249)

y = r sin θ sin φ (2.250)

z = r cos θ (2.251)

êr = (sin θ cos φ)êx + (sin θ sin φ)êy + (cos θ)êz (2.252)

êθ = (cos θ cos φ)êx + (cos θ sin φ)êy + (− sin θ)êz (2.253)

êφ = (− sin φ)êx + (cos φ)êy (2.254)

The ∇ operator for spherical coordinates is also calculated from the chain rule (see
Chapter 9),

∇ = êr ∂
∂r

+ êθ 1

r

∂

∂θ
+ êφ 1

r sin θ

∂

∂φ
(2.255)

The extra difficulty caused by using the curvilinear coordinates is offset by the math-
ematical simplifications that result when cylindrically or spherically symmetric flow prob-
lems are expressed in these coordinate systems. To simplify the use of these coordinate
systems, the effects of the ∇ operator on scalars, vectors, and tensors in the cylindrical and
spherical coordinate systems are summarized in Tables C.7 and C.8 in Appendix C.2. We
will often refer to these tables when we solve Newtonian and non-Newtonian flow problems
in curvilinear coordinates.

2.6 Vector and Tensor Integral Theorems

Upon completion of this chapter on mathematics review, we will move on to define and
to derive the governing equations of Newtonian and non-Newtonian fluid mechanics. We
will need some theorems and formulas from vector mathematics, and these are presented
here without proof. The reader is directed to textbooks on advanced mathematics for a more
detailed discussion of these subjects [100].

2.6.1 GAUSS–OSTROGRADSKII DIVERGENCE THEOREM

The Gauss–Ostrogradskii divergence theorem6 relates the change of a vector property b,
taking place in a closed volume V , with the flux of that property through the surface S that
encloses V [100, 7] (Figure 2.14). The theorem is shown in Equation (2.256)

6 Also known as Green’s theorem or simply as the divergence theorem; see Aris [7].
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Figure 2.14 Arbitrary volumeV enclosed by a sur-
face area S. Each particular piece of the surface dS
is characterized by the direction of its unit normal
n̂. b represents any vector property associated with
dS.

Gauss–Ostrogradskii
divergence theorem

∫
V

∇ · b dV =
∫
S

n̂ · b dS (2.256)

where n̂ is the outwardly pointing unit normal of the differential surface element dS
(Figure 2.14). The volume V is not necessarily constant in time. Use of the Gauss–
Ostrogradskii divergence theorem allows us to convert an integral over a volume into a
surface integral (or vice versa) without loss of information. This is handy when it is more
intuitive to write part of an expression as a surface integral but all other terms of the equation
as volume integrals.

2.6.2 LEIBNITZ FORMULA

The Leibnitz formula interprets for us the effect of differentiating an integral [100]. Most
simple integrals encountered by beginning students involve integrals over fixed limits. For
example, a quantity J (x, t) is defined as the following integral:

J (x, t) =
∫ β

α

f (x, t) dx (2.257)

where α and β are constants, and f is a function of x and t . When it is desired to take the
derivative of J , the procedure is straightforward:

dJ (x, t)
dt

= d

dt

[∫ β

α

f (x, t) dx

]
(2.258)

=
∫ β

α

∂f (x, t)

∂t
dx (2.259)

This is actually a simplified version of the Leibnitz formula, which tells us how to carry out
this differentiation if the limits are not constant but rather are functions of t . The Leibnitz
formula is given.
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J (x, t) =
∫ β(t)

α(t)

f (x, t) dx (2.260)

dJ (x, t)
dt

= d

dt

[∫ β(t)

α(t)

f (x, t) dx

]
(2.261)

Leibnitz formula
(single integral)

dJ (x, t)
dt

=
∫ β(t)

α(t)

∂f (x, t)

∂t
dx + f (β, t)dβ

dt
− f (α, t)dα

dt
(2.262)

There are two versions of the Leibnitz formula that we will use, the preceding one for
differentiating single integrals, and a second version for differentiating in three dimensions.7

For a time-varying volume V (t), enclosed by the moving surface S(t), J is defined as

J (x, y, z, t) =
∫
V (t)

f (x, y, z, t) dV (2.263)

The derivative of J is given by the three-dimensional Leibnitz formula:

Leibnitz formula
(volume integral)

dJ
dt

=
∫
V (t)

∂f

∂t
dV +

∫
S(t)

f (v surface · n̂) dS (2.264)

The meaning of n̂ is the same as in the Gauss–Ostrogradskii divergence theorem (see
Figure 2.14), and v surface is the velocity of the surface element dS (the surface is moving).
If the volume is fixed in space, the second term goes to zero because v surface is zero.

2.6.3 SUBSTANTIAL DERIVATIVE

In fluid mechanics and rheology, we often deal with properties that vary in space and also
change with time. Thus we must consider the differentials of multivariable functions.

Consider such a multivariable function f (x1, x2, x3, t) associated with a particle of
fluid, where x1, x2, and x3 are the three spatial coordinates and t is time. This might be, for
example, the density of flowing material as a function of time and position. We know that
the differential of f is given by

df = ∂f

∂t
dt + ∂f

∂x1
dx1 + ∂f

∂x2
dx2 + ∂f

∂x3
dx3 (2.265)

If we divide this expression through by dt we get

df

dt
= ∂f

∂t
+ ∂f

∂x1

dx1

dt
+ ∂f

∂x2

dx2

dt
+ ∂f

∂x3

dx3

dt
(2.266)

The terms dxi/dt are just the velocity components of the particle vi :

7 Also known as Reynolds’ transport theorem [7,148].
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df

dt
= ∂f

∂t
+ ∂f

∂x1
v1 + ∂f

∂x2
v2 + ∂f

∂x3
v3 (2.267)

Equation (2.267) may be written in Einstein notation and in vector (Gibbs) notation as
follows:

df

dt
= ∂f

∂t
+ ∂f

∂xi
vi (2.268)

Substantial
derivative

df

dt
= Df

Dt
= ∂f

∂t
+ v · ∇f (2.269)

This expression is called the substantial derivative and is often written asDf/Dt . It indicates
the rate of change of the function f as observed from a particle of fluid moving with
velocity v.

The mathematical techniques discussed in this chapter will be used extensively through-
out the text. In the next chapter we will apply them to deriving conservation equations for
mass and momentum.

2 . 7 P R O B L E M S

2.1 What is the magnitude of a = î + ĵ = ê1 + ê2?

2.2 Show that when a vector is dotted with an arbitrary
unit vector, the scalar product yields the projection
of the vector in the direction of the unit vector.

2.3 What is the unit vector parallel to v =
⎛⎝ 2

3
6

⎞⎠
xyz

?

2.4 What vector goes between the points (1, 0, 3) and (0,
2, 1)?

2.5 What is a unit vector perpendicular to v =⎛⎝ 1
3
6

⎞⎠
xyz

?

2.6 Show that u = aî + bĵ + ck̂ is perpendicular to the
plane ax + by + cz = α.

2.7 For a general vector v,

v = v1ê1 + v2ê2 + v3ê3

show that

v1 = v · ê1
v2 = v · ê2
v3 = v · ê3

2.8 Do the following vectors form a basis? If yes, write
the vector w = 2êx + 3êy + êz in the basis. Prove
your answers.

(a)

⎛⎝ 2
1
0

⎞⎠
xyz

,

⎛⎝ 0
1
4

⎞⎠
xyz

,

⎛⎝ 1
1
2

⎞⎠
xyz

(b)

⎛⎝ 1
1
0

⎞⎠
xyz

,

⎛⎝ 2
1
0

⎞⎠
xyz

,

⎛⎝ 1
0
1

⎞⎠
xyz

2.9 (a) Show that the vectors u, v, and w form a basis:

u =
⎛⎝ 1

1
0

⎞⎠
xyz

, v =
⎛⎝ 0

2
3

⎞⎠
xyz

, w =
⎛⎝ 1

−2
3

⎞⎠
xyz

(b) Write the vector t with respect to the basis u, v,
w:

t =
⎛⎝−1

0
−2

⎞⎠
xyz

2.10 What is the difference between a 3 by 3 matrix and
a 2nd-order tensor?

2.11 In Cartesian coordinates (ê1, ê2, ê3) the coefficients
of a tensor A are given by
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A =
⎛⎜⎝ 3 0 0

0 2 0

0 0 1

⎞⎟⎠
123

What are the coefficients of A written with respect
to the basis vectors a, b, and c given below?

a = 1

2
ê1 + 1

2
ê2

b = 1

2
ê1 − 1

2
ê2

c = ê3
2.12 How are a × b and b × a related?

2.13 How can we simplify (BT )T ? Use Einstein notation.

2.14 Express A · B in Einstein notation.

2.15 Expand (a b)T using Einstein notation.

2.16 What is the component of (v · A · b c) in the 2-
direction?

2.17 Using Einstein notation, show that A · AT is sym-
metric.

2.18 Using Einstein notation, show that AT + BT =
(A+ B)T .

2.19 Using Einstein notation, show that (A · B · C)T =
CT · BT · AT .

2.20 Using Einstein notation, show that the tensorA+AT
is symmetric. Show that A− AT is antisymmetric.

2.21 Does a · B = B · a in general? Show why or why
not using Einstein notation.

2.22 Show that A : AT > 0. Use Einstein notation.

2.23 The magnitude of a tensor A is defined by

∣∣∣A∣∣∣ = abs

⎛⎝√
A : A

2

⎞⎠
What is the magnitude of the tensor A given below?

A = 5ê1ê1 + 3ê1ê2 − 3ê1ê3 − ê2ê1 − ê2ê2 + 2ê2ê3
− 3ê3ê1

2.24 What is the Laplacian of a tensor B in Einstein
notation? What is the order of this quantity?

2.25 What are the rules of algebra for taking the diver-
gence of a vector (e.g., ∇ · w) and for taking the

divergence of a tensor (e.g., ∇ · B)? Show that your
rules hold by working out the expressions in Einstein
notation.

2.26 Prove that the following equality holds:

∂f

∂t
+ ∂f

∂xi
vi = ∂f

∂t
+ v · ∇f

2.27 Using Einstein notation, show that for a symmetric
tensor A:

A : ∇v = ∇ · (A · v)− v · (∇ · A)

2.28 For the vector x = x1ê1 + x2ê2 + x3ê3, what is
∇(x · x)? Write your final answer in Gibbs notation.

2.29 Prove that the following equality holds:

∇ · a b = a · ∇b + (∇ · a)b

2.30 For v =
⎛⎝ ax2

bx1 + x2
2

cx3

⎞⎠
123

, what is ∇ · v?

2.31 Expand ∇ · (αv), where α is a scalar but is not
constant. Write your answers in Einstein notation
and vector form.

2.32 Using Einstein notation, show that ∇ · v w = v ·
∇w + w(∇ · v).

2.33 What is ∇ · aI? Express your answer in Einstein
notation and in vector form.

2.34 Simplify the expression I : ∇v.

2.35 What is the x2-component of ∇ · ∇v?

2.36 The trace of a tensor is the sum of the elements on
the diagonal, as shown below:

A =
⎛⎝ a b c

d e f

g h i

⎞⎠
xyz

trace
(
A
)

= A11 + A22 + A33 = a + e + i

Show that the trace of ∇v is equal to ∇ · v.

2.37 What are the orders of the following quantities?
Prove your answers using Einstein notation.
(a) A : B

(b) (A · b) · v
(c) a b · C
(d) ∇2A

(e) (a · B)× c
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2.38 Are the following equations valid? Explain.

(a) a · b + λb = v
(b) a b + ∇b = C
(c) a : b + ∇ · b = α

2.39 Calculate the invariants of the tensor B =⎛⎝ 1 0 3
2 1 −1
1 4 0

⎞⎠
xyz

.

2.40 Show that

IB ≡
3∑
i=1

3∑
j=1

BijBji = trace(B · B)

2.41 Show that

IIIB ≡
3∑
i=1

3∑
j=1

3∑
m=1

BijBjmBmi = trace(B · B · B)

2.42 Show that the cross product written as

v × u = vpusεpsj êj
is equivalent to the cross product carried out with the
determinant method [Equation (2.80)].

2.43 Show that the θ -derivative of the cylindrical unit
vector er is given by ∂êr/∂θ = êθ .

2.44 What is ∂êθ /∂θ equal to in the cylindrical coordinate
system? Derive your answer.

2.45 Calculate ∂êr/∂φ, ∂êθ /∂φ, and ∂êφ/∂φ for the
spherical coordinate system. Your final answer will
be in terms of êr , êθ , and êφ .

2.46 For the points listed below in Cartesian coordinates
x1, x2, x3, write the cylindrical system unit vectors
at that point, êr , êθ , and êz. Express the unit vectors
with respect to the 123 Cartesian coordinate system.
Sketch the results in the x1x2-plane.

(a)

⎛⎝ 1
2
0

⎞⎠
123

(b)

⎛⎝ 0
1
0

⎞⎠
123

2.47 Consider the steady flow of a fluid of density ρ in
which the velocity at every point is given by the
vector field v(x, y, z). What is the mass flow rate
(mass/time) through a surface of area A located at
point P ? The unit normal to the surface considered
is given by the unit vector n̂ (Figure 2.15).

Figure 2.15 Flow considered in Problem
2.47.
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3
Newtonian Fluid Mechanics

It is now helpful to recall the big picture of what we are trying to accomplish. The purpose
of this text is to help the reader to understand rheology. Our goal is to be able to take
knowledge of material properties and interest in a flow situation and to be able to predict
stresses, strains, velocities, or any other variable of interest that will result from the ensuing
flow or deformation. Once material properties and the flow situation are supplied, certain
stresses, strains, and so on, will be produced because some physical laws are known to hold
when matter flows. The physical laws form mathematical constraints on the variables in the
problem and allow only particular solutions, that is, once we decide on the material and the
flow situation, a particular, nonarbitrary value of the stress, for example, will be produced.

The two physical laws governing the isothermal deformation of matter are the law
of conservation of mass and the law of conservation of linear momentum.1 To obtain the
conservation equations in a form compatible with the mathematics we have discussed so far,
we will derive equations for both of these laws. These two equations are sometimes called
the equations of change. After this we will introduce the Newtonian constitutive equation,
which captures, mathematically, how simple fluids respond to stresses and deformation. We
spend the latter half of this chapter solving flow problems for Newtonian fluids.

The goal of this chapter, then, is to introduce Newtonian fluid mechanics as a stepping-
off point for the study of non-Newtonian fluid mechanics in the remainder of the text. If you
are already familiar with Newtonian fluid mechanics, you may wish to skip this chapter.

We begin now by deriving the equations of change.

3.1 Conservation of Mass

The usual engineering problem-solving procedure for applying the principle of conservation
of mass is to choose a system (a mixer, for example), identify the streams passing into and
out of the system, and set up an equation where

mass in − mass out = 0

1 A third conservation law is conservation of energy, and it is essential in solving nonisothermal
problems; see [26]. A fourth conservation law, conservation of angular momentum, will be invoked
in our discussion of the stress tensor.

59
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We will use this procedure to derive a microscopic mass-balance equation for a tiny piece
of fluid.

To solve flow problems, we need a mass conservation equation that is applicable at any
point in a flowing fluid. Therefore we choose as our system an arbitrary, fixed volume V ,
located in a flowing stream (Figure 3.1). The surface ofV is of arbitrary shape (unspecified),
and it has a total surface area we will call S. The volume V is chosen to be fixed in space,
and its size does not change, that is, both V and S are constant.

Since V is located in a flowing stream, mass is passing through it, and the total amount
of mass enclosed by V may be changing. The latter statement may cause some confusion
if you think in terms of water or of some other incompressible fluid—a fluid with constant
density. The change in mass in a fixed volume V comes from changing density, as in a gas,
for example.

Our next task is to write the net amount of mass leaving the volume V . Since the
specifics of our volume element are arbitrary and unspecified, we must write the mass
balance in terms of an integral in the most general terms. Consider a differential surface
element dS, where the local velocity through dS is equal to v (see Figure 3.1). The velocity
vector, which indicates the fluid velocity in the vicinity of dS, does not necessarily point
such that it is perpendicular to dS. The vector v may be resolved into two components,
one that runs parallel to dS, which does not contribute to flow through dS, and another
component perpendicular to dS, which causes fluid to pass through dS. To calculate the
volumetric flow through dS we must isolate only the component normal to dS. To do this
we use the dot product and the unit normal to dS, which we will call n̂,⎛⎜⎝

local volumetric
rate of flow
through dS

due to v

⎞⎟⎠ = n̂ · v dS (3.1)

We choose n̂ to be the outwardly pointing normal, and thus expression (3.1) is positive for
outward flow and negative for inward flow.

Figure 3.1 (a) Schematic of an arbitrary volume, V , used for deriving the equations of change. (b)
A particular choice for V , a cylindrical shape.
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To calculate the local mass flow rate, we must incorporate the density ρ into this
expression, ⎛⎜⎝

local mass
rate of flow

out through dS
due to v

⎞⎟⎠ = ρ(n̂ · v) dS (3.2)

= n̂ · (ρv) dS (3.3)

The net rate of outward mass flow is then calculated by integrating this expression over the
entire surface S that bounds V ,( net mass rate

of outward flow
through S

)
=

∫
S

n̂ · (ρv) dS (3.4)

For non-steady-state conditions, a net outflux of mass results in a decrease in mass in
V . The mass in a small differential volume element of V can be written as ρ dV , and the
total mass in V is the integral of this quantity over V . Thus, the net decrease in mass in V
is given by (

net decrease
in mass in V

)
= − d

dt

(∫
V

ρ dV

)
(3.5)

The negative sign is added to make the expression reflect the decrease rather than the
increase in mass.

Putting these two expressions together we get the mass conservation equation,(
net decrease
in mass in V

)
=

( net mass rate
of outward flow

through S

)
(3.6)

− d
dt

(∫
V

ρ dV

)
=

∫
S

n̂ · (ρv) dS (3.7)

To simplify this, we must change both terms to be integrals over V . We can apply
the Gauss–Ostrogradskii divergence theorem to the surface integral to accomplish this (see
Chapter 2),

0 = d

dt

(∫
V

ρ dV

)
+
∫
S

n̂ · (ρv) dS (3.8)

= d

dt

(∫
V

ρ dV

)
+
∫
V

∇ · (ρv) dV (3.9)

We want to move both integrals under the same integral sign. First we use the Leibnitz rule
to differentiate the integral in the first term. Since V is fixed, vsurface = 0, and the second
term of the Leibnitz formula [Equation (2.264)] is zero,

0 = d

dt

(∫
V

ρ dV

)
+
∫
V

∇ · (ρv) dV (3.10)
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=
∫
V

∂ρ

∂t
dV +

∫
V

∇ · (ρv) dV (3.11)

Finally we combine the two terms under a common integral sign,

0 =
∫
V

[
∂ρ

∂t
+ ∇ · (ρv)

]
dV (3.12)

We have arrived at an equation for the conservation of mass over an arbitrary volume
V in our flowing stream. Since that volume is arbitrary, however, this equation must hold
over every volume we choose. The only way that this can be true is if the expression
within the integral sign is zero at every position in space. Note that it is unusual that one
may conclude that an integral being zero implies that the integrand must therefore be zero
everywhere. To convince yourself of this, consider the function y = sin x. While we
know that ∫ 2π

0
sin x dx = 0 (3.13)

we also know that sin x �= 0 at every point. What makes this integral equal to zero is
the choice of limits. In our derivation, the limits of the integral are the boundaries of V ,
which are arbitrary. It is the arbitrariness of V that implies that the integrand must be zero
at every point.

We have arrived at the following scalar differential equation for the mass balance:

Continuity
equation

0 = ∂ρ

∂t
+ ∇ · (ρv) (3.14)

which holds at every point in a flowing fluid. This equation is known as the continuity
equation, and it expresses the physical law that mass is conserved. This equation can be
worked out in Cartesian components by using the Einstein summation convention. To write
the continuity equation in cylindrical and spherical components, we can evaluate ∇ · ρv
using expressions in Tables C.7 and C.8 of Appendix C.2.

3.2 Conservation of Momentum

To derive a vector equation that expresses the physical law of linear momentum conservation
in a flowing fluid, we can follow a procedure resembling that used in the last section to
derive the continuity equation. The law of momentum conservation is Newton’s second law
of motion, which is commonly

f = ma (3.15)

where f is the force on a body of mass m, and a is the acceleration experienced by the
mass. When there are multiple forces f

(i)
, and the mass of the body may be changing, the

more complete way of writing Newton’s law of motion is
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∑
all forces i

on body

f
(i)

= d(mv)

dt
(3.16)

When the mass is constant and there is a single force, the original expression is recovered.
Newton’s second law tells us that forces bring about changes in momentum, that is,

forces are a type of momentum flux. We can rearrange Newton’s law as

0 =
∑

all changes in
momentum i

d(mv)i

dt
(3.17)

where the forces are included in the terms accounting for changes in momentum. This way
of writing Newton’s second law emphasizes that momentum is conserved or that there is
no net loss or net gain of momentum in a chosen system, only exchanges of momentum
between different parts of the system.

For us to apply this principle to a portion of a flow we must account for all of the forces
that act on the flow, and we must account for any types of momentum flow that occur due to
the transfer of mass through the boundaries of a chosen system in the flow. Since momentum
is conserved, the net effect of these momentum flows and forces will be to change the state
of momentum of the system.

Momentum balance equation:( rate of increase
of momentum in a

fixed volume V

)
=

( net inward
flow of

momentum

)
+
( net force

acting on
volume

)
(3.18)

( rate of decrease
of momentum in a

fixed volume V

)
=

( net outward
flow of

momentum

)
−
( net force

acting on
volume

)
(3.19)

The left side of the momentum balance equation is straightforward as it follows the pattern
of the left side of the mass balance:( rate of decrease

of momentum in a
fixed volume V

)
= − d

dt

(∫
V

ρv dV

)
(3.20)

= −
∫
V

∂(ρv)

∂t
dV (3.21)

We have used the Leibnitz rule in going from the first equation to the second. Again, since
V is fixed in space, vsurface = 0, the second term of the Leibnitz rule [Equation (2.264)]
is zero.

There are three contributions to the right side of the momentum balance [Equa-
tion (3.19)] in a flowing fluid: momentum flow by convection and two types of forces,
molecular and body forces. We will account for how each affects our volume V and then
combine them in Equation (3.19) to obtain the momentum balance for an arbitrary volume
in a flowing fluid.



64 NEWTONIAN FLUID MECHANICS

3.2.1 MOMENTUM FLUX BY CONVECTION

In accounting for the net convection of momentum out of V , we will be following the same
procedure used when we wrote the convection of mass out of V . Consider a differential
surface element dS, where the local fluid velocity through dS is v. Again, the velocity
vector v does not necessarily point such that it is perpendicular to dS. The local rate of flow
of momentum due to v equals( local rate of flow

of momentum through
dS due to v

)
=

(
momentum

volume flow

)(
volume

time

)
(3.22)

= (ρv)(n̂ · v dS) (3.23)

where on the right side the first term in parentheses is the momentum per unit volume, and
the second term is the volumetric flow rate through dS. Since ρ and n̂ · v are scalars, we
can rearrange this expression to be( local rate of flow

of momentum through
dS due to v

)
= n̂ · (ρv v) dS (3.24)

The dyad v v is an indeterminate vector product, that is, tensor, and it has appeared naturally
in the development of the momentum balance. The net rate of outward flow of momentum
is then calculated by integrating this expression over the entire surface S,( net rate of outward flow

of momentum from V
due to flux through S

)
=

∫
S

n̂ · (ρv v) dS (3.25)

Recall that this is the net outward flow because we choose to use the outwardly pointing
normal n̂. Using the divergence theorem to convert this to a volume integral we obtain( net rate of outward flow

of momentum from V
due to flux through S

)
=

∫
V

∇ · (ρv v) dV (3.26)

This expression will be substituted into Equation (3.19).

3.2.2 MOMENTUM FLUX BY MOLECULAR FORCES

The second term in the general momentum balance [Equation (3.19)] has to do with forces
on V , and we break these into two types: molecular forces, which occur because of the
collisions or interactions among molecules and parts of molecules, and body forces, which
are external forces due to, for example, gravity or an electromagnetic field. First, we examine
molecular forces.

The nature of molecular forces varies greatly with the type of material being studied.
In fact, the complexity of rheology is due in large part to our limited understanding of
molecular forces. We seek here to derive a general expression that will allow us to describe
molecular forces, and thus to account for their effects in the momentum balance, without
having to specify the origin of these forces.
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We begin with our arbitrary volume V and examine the small surface element dS
centered around a point on the surface (Figure 3.1). The surface element dS has an outward
unit normal vector n̂, which has already been discussed. The quantity we are trying to
express is the force on the surface dS due to molecular forces. We will call this force f ,
which we can write in Cartesian coordinates as follows:

f = fi êi = f1ê1 + f2ê2 + f3ê3 (3.27)

We would now like to calculate the coefficients of f in terms of a general expression
that keeps track of the state of stress in the fluid at every point. Recall that stress is force
per unit area. If we can write a vector expression for the stress on dS, we can calculate f
from the relation

f =
(

stress on dS
at point P

)
dS (3.28)

Our first task is therefore to examine the state of stress at an arbitrary point. We will use the
Cartesian coordinates ê1, ê2, ê3.

To describe the state of stress in a fluid at an arbitrary point consider three mutually
perpendicular planes passing through a pointP , as shown in Figure 3.2. On each plane there
is a stress (force per unit area). The stress on each plane can be described by a vector. This
vector will not, in general, point in any special direction; for instance, it will not necessarily
be perpendicular to the plane. To derive a general expression for the stress at P , we will
make no assumptions about the directions of the stress vectors on the three planes.

The three stress vectors that describe the state of stress atP will be called a, b, and c and
will be taken to act on surfaces whose unit normal vectors are ê1, ê2, and ê3, respectively.
We begin by examining a in the Cartesian coordinate system:

a = a1ê1 + a2ê2 + a3ê3 (3.29)

Note that a1 is the stress on a 1-plane (i.e., on a plane whose unit normal is ê1) in the 1-
direction. We now define a scalar quantity�11 to be equal to a1. By writing the coefficients
of a (and subsequently b and c) in terms of these double-subscripted scalars, we can organize
all of the different stress components that exist at point P :

Figure 3.2 Schematic of the state of
stress at point P in a flowing system.
The vectors shown indicate the stresses
on three mutually perpendicular planes
passing through P .
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�11 = a1 =
( stress at point P

on a 1-surface
in the 1-direction

)
(3.30)

�12 = a2 =
( stress at point P

on a 1-surface
in the 2-direction

)
(3.31)

�13 = a3 =
( stress at point P

on a 1-surface
in the 3-direction

)
(3.32)

a = (stress on a 1-surface)

= �11ê1 +�12ê2 +�13ê3 (3.33)

= �1i êi (3.34)

Following the same logic for b and c we obtain:

�21 = b1 =
( stress at point P

on a 2-surface
in the 1-direction

)
(3.35)

�22 = b2 =
( stress at point P

on a 2-surface
in the 2-direction

)
(3.36)

�23 = b3 =
( stress at point P

on a 2-surface
in the 3-direction

)
(3.37)

b = (stress on a 2-surface)

= �21ê1 +�22ê2 +�23ê3 (3.38)

= �2i êi (3.39)

c = (stress on a 3-surface)

= �31ê1 +�32ê2 +�33ê3 (3.40)

= �3i êi (3.41)

In general then, �ik is the stress on an i-plane in the k-direction. There are nine stress
quantities �ik .

We turn now to the question of calculating the stress vector on dS, an arbitrarily
chosen differential piece of the surface enclosing V , in terms of the nine stress quantities
we have defined and organized. Since dS is oriented arbitrarily in space, we need to find
a way to relate the stress on dS with the stresses on the three mutually perpendicular
planes we considered earlier. We defined the vector f , which is the force (not stress)
on dS:

f = f1ê1 + f2ê2 + f3ê3 (3.42)
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The coefficient of ê1 is f1, which is the force on dS in the 1-direction. Examining the �ik
we see that there are three �ik that describe stresses in the 1-direction:

�11 =
( stress at point P

on a 1-surface
in the 1-direction

)
(3.43)

�21 =
( stress at point P

on a 2-surface
in the 1-direction

)
(3.44)

�31 =
( stress at point P

on a 3-surface
in the 1-direction

)
(3.45)

These three quantities all contribute to the final stress on dS directed along ê1 (Figure 3.3).
The areas over which each of these stresses acts differ, however. �11 is the stress on a
1-surface in the 1-direction, and thus it acts on the projection of dS in the 1-direction.�21

is the stress on a 2-surface in the 1-direction, and thus it acts on the projection of dS in
the 2-direction. The projection in a coordinate direction êi of a surface of area A, with unit
normal vector n̂, is given by (see Appendix C.3)(

projection of A
in direction of êi

)
= n̂ · êi A (3.46)

Figure 3.3 Effect of stresses in the ê1-direction as acting on dS.
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Thus, the area over which�11 acts is n̂ · ê1 dS, and likewise the areas over which�21 and
�31 act are n̂ · ê2 dS and n̂ · ê3 dS, respectively. Now we can write an expression for f1 in
terms of the �i1:( force on dS

in the
ê1-direction

)
=

3∑
i=1

⎡⎢⎣
⎛⎜⎝

stress acting
in the ê1-

direction on an
i-surface

⎞⎟⎠(
area of an
i-surface

)⎤⎥⎦ (3.47)

f1 = �11(n̂ · ê1) dS +�21(n̂ · ê2) dS +�31(n̂ · ê3) dS (3.48)

This can be simplified and rearranged as:

f1 = dS (
n̂ · ê1�11 + n̂ · ê2�21 + n̂ · ê3�31

)
(3.49)

= dS n̂ · (ê1�11 + ê2�21 + ê3�31
)

(3.50)

We can follow the same logic to arrive at expressions for f2, the force on dS in the 2-
direction, and f3, the force on dS in the 3-direction:

f2 = dS n̂ · (ê1�12 + ê2�22 + ê3�32
)

(3.51)

f3 = dS n̂ · (ê1�13 + ê2�23 + ê3�33
)

(3.52)

We can now combine these expressions for the scalar coefficients off and write the complete
expression for f [Equation (3.42)]:

f = f1ê1 + f2ê2 + f3ê3 (3.53)

= dS n̂ · (ê1�11 + ê2�21 + ê3�31
)
e1

+ dS n̂ · (ê1�12 + ê2�22 + ê3�32
)
e2

+ dS n̂ · (ê1�13 + ê2�23 + ê3�33
)
e3 (3.54)

= dS n̂ · (ê1ê1�11 + ê2ê1�21 + ê3ê1�31

+ ê1ê2�12 + ê2ê2�22 + ê3ê2�32

+ ê1ê3�13 + ê2ê3�23 + ê3ê3�33
)

(3.55)

This final expression is a scalar (dS) multiplied by the dot product of a vector (n̂) with a
tensor (� ≡ sum of dyads). The terms of � are not in the usual order we take when we
write a tensor in matrix form, but all the terms are there. Rearranging, we obtain

f = dS n̂ · (ê1ê1�11 + ê1ê2�12 + ê1ê3�13

+ ê2ê1�21 + ê2ê2�22 + ê2ê3�23

+ ê3ê1�31 + ê3ê2�32 + ê3ê3�33
)

(3.56)

= dS n̂ ·
(
�11 �12 �13

�21 �22 �23

�31 �32 �33

)
123

(3.57)
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Force on a surface
with unit normal n̂

f = dS n̂ ·� (3.58)

The tensor � is called the total stress tensor. As we have shown, � contains all the
information about the state of stress at a point. To calculate the force acting on a particular
surface, we must simply dot the unit normal to the surface with� and multiply by the area
of the surface [Equation (3.58)]. Comparing the preceding with Equation (3.28) we see in a
fluid whose state of stress is characterized by the total stress tensor� that the stress vector
acting on an area dS with normal n̂ is given by n̂ ·�.

It should be clear now that tensors are useful in fluid mechanics and rheology. The
final expression, Equation (3.58), is simple and nicely does the bookeeping associated with
expressing the state of stress of a fluid at a point. Experimental studies on � have shown
that it is symmetric for the vast majority of fluids, and it can be shown rigorously to be
symmetric for nonpolar fluids [7] or for fluids with no body moments2 to couple stresses
[247, 148]. We will always take � to be symmetric.

One last unresolved issue is the sign of the stress tensor �. Note that n̂ · � gives
the stress vector on a surface. Surfaces have two sides, however, and we need to choose
a convention for whether the stress is positive in the ê1-, ê2-, ê3-directions or positive in
the −ê1-, −ê2-, −ê3-directions. In this text we follow Bird et al. [28, 26] and choose that
�ik > 0 for forces in the positive êk-direction. This convention implies that the forces
generated by our volume V will be positive, and forces acting on V will be negative. This
convention affects any expression that contains �.3

We return now to our original goal, which was to write the term in the momentum
balance that accounts for the effects of molecular forces on the volume V . We now have an
expression for the molecular forces on dS. It remains only to integrate over S:

2 Body moments are torques experienced by particles of fluid due to some intrinsic property of the
fluid, that is, not due to the usual body forces (gravity) or surface forces (molecular action at the
surface of the particle). Ferrofluids, which are suspensions of magnetic particles, experience body
moments when they flow in the presence of a magnetic field [148]. For these fluids it is inappropriate
to assume that the stress tensor is symmetric.
3 A warning to the reader: most texts in mechanical engineering take the opposite convention [179].
The choice is arbitrary, and there are good reasons for both choices. We choose�ik > 0 for forces in
the positive êk-direction so that Newton’s law of viscosity takes this form:

τki = −μ ∂vi
∂xk

(3.59)

For the opposite convention, the minus sign does not appear, and Newton’s law of viscosity reads that
positive momentum flux occurs up a gradient in velocity. This is not a desirable convention, since
it does not match the other transport laws, Fourier’s law (positive heat flux is down a temperature
gradient) and Fick’s law (positive mass flux occurs down a concentration gradient). We refer you
to Bird et al. [28] for a complete discussion of their reasons for choosing this convention. Also,
in some texts [179] the meaning of the subscripts of � are reversed from what we are using, that
is, in some texts �rs is the stress on an s-plane in the r-direction. The latter is not as common as
the one we are using, but when reading other sources it is important to note which convention is
being followed.
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(molecular force
acting on

surface dS

)
= −n̂ ·� dS (3.60)

( net molecular force
acting on

total surface S

)
= −

∫
S

n̂ ·� dS (3.61)

( net molecular force
acting on

total volume V

)
= −

∫
V

∇ ·� dV (3.62)

We used the Gauss–Ostrogradskii divergence theorem in arriving at the last equation. The
negative sign is required due to our convention for the sign of the total stress tensor.

3.2.3 MOMENTUM FLUX BY BODY FORCES

The final contribution to the momentum balance comes from body forces; these are due to
external fields. The only body force we will be considering is generated by the gravity field
g, but other types of fields such as electric and magnetic fields may have an influence in
flows of special materials such as polar fluids [7] and charged suspensions [29].

Gravity acts on the mass in dV , and thus the force due to gravity is (mass)(acceleration)
= (ρ dV )(g), where ρ is the fluid density. The total effect of the gravity body force is
therefore ( total force on

V due to body
forces

)
=

∫
V

ρg dV (3.63)

3.2.4 EQUATION OF MOTION

We now have all the pieces of the momentum balance, and we can assemble the final
equation:( rate of decrease

of momentum in a
fixed volume V

)
=

( net outward
flux of

momentum

)
−
( net force

acting on
volume

)
(3.64)

−
∫
V

∂(ρv)

∂t
dV =

∫
V

∇ · (ρv v) dV +
∫
V

∇ ·� dV −
∫
V

ρg dV (3.65)

0 =
∫
V

[
−∂(ρv)

∂t
− ∇ · (ρv v)− ∇ ·�+ ρg

]
dV (3.66)

The same arguments used earlier to derive the continuity equation apply here, namely, since
the volume V is arbitrary, this integral over V can be zero for all possible choices of V
if and only if the integrand itself is zero. Thus we arrive at the equation of motion, which
expresses conservation of linear momentum in a flowing fluid:
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Equation
of motion

∂(ρv)

∂t
= −∇ · (ρv v)− ∇ ·�+ ρg (3.67)

This equation is valid for compressible and incompressible fluids of all types, Newtonian
and non-Newtonian.

We can use the continuity equation (mass conservation equation) to simplify the
equation of motion. First we expand the first term on the right side using Einstein notation:

∇ · (ρv v) = ∂

∂xm
êm · (ρ vj êj vpêp) (3.68)

= ∂(ρvjvp)

∂xm
êm · êj êp = ∂(ρvjvp)

∂xm
δmj êp (3.69)

= ∂(ρvmvp)

∂xm
êp (3.70)

To further expand this expression we must use the product rule to differentiate the terms in
parentheses. Since we are considering a general fluid, ρ is not necessarily constant, and we
must treat ρ and the two vector coefficients as variables:

∇ · (ρv v) = ∂(ρvmvp)

∂xm
êp (3.71)

=
{
ρ

[
∂(vmvp)

∂xm

]
+ vmvp ∂ρ

∂xm

}
êp (3.72)

= ρvm ∂vp
∂xm

êp + ρvp ∂vm
∂xm

êp + vmvp ∂ρ
∂xm

êp (3.73)

= ρvm ∂vp
∂xm

êp + ρ(vpêp)(∇ · v)+ (vpêp)vm ∂ρ
∂xm

(3.74)

The quantity vpêp is just the vector v, and the first and third terms in Equation (3.74) may
be written as follows (verify using Einstein notation):

ρvm
∂vp

∂xm
êp = ρv · ∇v (3.75)

vpêpvm
∂ρ

∂xm
= v(v · ∇ρ) (3.76)

If we also expand the time derivative on the left side of Equation (3.67) (using Einstein
notation and then reverting to Gibbs notation after differentiating) and combine that equation
with Equations (3.74), (3.75), and (3.76), the equation of motion becomes

ρ
∂v

∂t
+ v ∂ρ

∂t
= −ρv · ∇v − vρ(∇ · v)− v(v · ∇ρ)− ∇ ·�+ ρg (3.77)

ρ

(
∂v

∂t
+ v · ∇v

)
= −v

[
∂ρ

∂t
+ ρ(∇ · v)+ v · ∇ρ

]
− ∇ ·�+ ρg (3.78)
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If we look back at the continuity equation [Equation (3.14)] and expand the term ∇ · (ρv),
we can see that the terms in square brackets in Equation (3.78) sum to zero due to mass
conservation. Thus, the microscopic momentum equation for general fluids becomes

Equation of motion
(compressible or

incompressible fluids)
ρ

(
∂v

∂t
+ v · ∇v

)
= −∇ ·�+ ρg (3.79)

and

ρ
Dv

Dt
= −∇ ·�+ ρg (3.80)

3.3 Newtonian Constitutive Equation

The equation of motion is a powerful tool. It must hold at every point in a flowing fluid
since momentum is conserved at every point. Since we have said almost nothing about the
nature of the molecular forces described by the stress tensor�, the equation is general. To
actually use the equation of motion, however, we must specify �.

There are two major contributions to the total stress tensor �: the thermodynamic
pressure p and a second portion that originates in the deformation of the fluid. The
thermodynamic pressure is familiar to us from the study of chemistry, and it is given by an
equation of state such as the ideal gas law:

Ideal gas
law

pV̂ = RT (3.81)

where V̂ is the specific volume (volume/mole), R is the ideal gas constant, and T is
the temperature. For nonideal gases more complex functions of the same variables give
thermodynamic pressure. Thermodynamic pressure is an isotropic force, that is, it is a force
that acts equally in every direction. Also, the pressure acts only normally (perpendicularly)
to a surface. These two properties of pressure, isotropy and perpendicular action, can be
captured mathematically by writing the pressure portion of � as a tensor proportional to
the identity tensor I: ( pressure

contribution
to �

)
=

(
p 0 0
0 p 0
0 0 p

)
123

= pI (3.82)

The pressure tensor has the same form in all orthonormal bases.
The portion of� that is not thermodynamic pressure is τ , called the extra stress tensor:

Extra stress
tensor

τ = �− pI (3.83)

Since both� and pI are symmetric tensors, the extra stress tensor τ is also symmetric. The
tensor τ contains the contributions to stress that result from fluid deformation. When the
fluid is at rest, � becomes pI, the hydrostatic pressure.
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An equation that specifies τ for a fluid is called a stress constitutive equation for that
fluid. The particular nature of the stresses described by τ depends on the type of fluid being
studied. A great deal of current research in rheology is focused on developing accurate stress
constitutive equations for non-Newtonian fluids [138]. The constitutive equation expresses
the molecular stresses generated in the flow in terms of kinetic variables such as velocities,
strains, and derivatives of velocities and strains. Once a constitutive equation is decided
upon, τ = τ(v,∇v, etc.), it may be inserted into the equation for � [Equation 3.83)] and
subsequently into the equation of motion [Equation (3.67)] (Figure 3.4). The equation of
motion may then be solved, along with the continuity equation, for the velocity field or
for other flow variables. Note also that since τ is a tensor, constitutive equations are tensor
equations.

In this section we will introduce you to the simplest constitutive equation, that for a
Newtonian fluid. There are two versions of the Newtonian constitutive equation, one for
compressible and a second for incompressible fluids. Next we will show how the equation
of motion simplifies for an incompressible Newtonian fluid, and finally we demonstrate
how to solve Newtonian flow problems. Although most readers will already be familiar
with Newtonian fluid mechanics, we use the Newtonian case to provide the reader with
practice in dealing with the tensor nature of continuum mechanics. This will help us later
when we deal with non-Newtonian fluid mechanics, that is, rheology.

3.3.1 COMPRESSIBLE FLUIDS

The Newtonian constitutive equation was originally an empirical equation when the basic
principles were described by Newton in 1687 [190]. An empirical equation is one that
is deduced from experimental observations rather than being derived from a fundamental
principle. Newton conducted experiments in sliding (shear) flow on incompressible fluids
and found that the shear stress τ21 was directly proportional to the gradient of velocity
(Figure 3.5).

Figure 3.4 Schematic of how the equations derived for momentum and mass balance combine with
the constitutive equation to allow us to solve flow problems.
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Figure 3.5 Newton conducted experi-
ments on various fluids in shear flow by
confining the fluids between two plates
and measuring the amount of force re-
quired to move the upper plate at various
speeds. The relationship he observed be-
tween shear stress (force/area) and shear
rate (velocity/gap) is called Newton’s law
of viscosity.

shear force

area
= V

H
(3.84)

Newton’s
law of viscosity

τ21 = −μdv1

dx2
(3.85)

This scalar equation gives the relationship between shear stress and velocity in one particular
kind of flow. A constitutive equation, however, is a complete expression of how a fluid
responds to any kind of flow. The complete Newtonian constitutive equation was deduced
later, and modern molecular modeling work [110] also gives the same result [107]. The
Newtonian constitutive equation for compressible fluids is [7]

Newtonian
constitutive equation

(compressible)
τ = −μ [∇v + (∇v)T ] +

(
2

3
μ− κ

)
(∇ · v)I (3.86)

where μ is the Newtonian shear viscosity and κ is the dilatational viscosity. The shear
viscosity is the coefficient that describes the resistance of a fluid to sliding motion, and this
is the primary material parameter with which we will be concerned in this chapter. The
dilatational or bulk viscosity κ is a coefficient that describes an isotropic contribution to
stress that is generated when the density of a fluid changes upon deformation. When the
density changes, a stress is produced in all directions that is due to the density change.
Since the density change comes about because of the flow, this contribution to the stress is
zero when the flow stops. We can see that this requirement is reflected in Equation (3.86)
since the term with κ goes to zero when v goes to zero. The dilatational viscosity is only of
concern when suspensions and polyatomic gases are being considered [13] (κ = 0 for an
ideal monatomic gas).

The Newtonian constitutive equation may seem like a handful, but there are some
straightforward insights we can get from it. Note that the Newtonian constitutive equation
is a tensor equation, as required. It consists of two parts, both symmetric. The first term
has been made explicitly symmetric by the addition of the tensor ∇v to its transpose before
multiplying it by the viscosity (verify using Einstein notation). The second term is an
additional isotropic stress that affects the diagonal of the stress tensor. This term, which
accounts for stresses generated by bulk compressibility, is also symmetric. Both terms
depend on v, as expected, since τ is the part of � that depends on the flow field.
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As we stated earlier, most known fluids generate a symmetric stress tensor. Although
there are some specialty fluids described in the research literature that are characterized by
nonsymmetric stress tensors [55], we will always take τ to be symmetric.

3.3.2 INCOMPRESSIBLE FLUIDS

For a fluid of constant density (an incompressible fluid, that is, ρ is not a function of space
or time), the equation of conservation of mass becomes

∂ρ

∂t
+ ∇ · (ρv) = 0 (3.87)

Continuity equation
for incompressible liquids

∇ · v = 0 (3.88)

This equation allows us to simplify the general expression for the Newtonian constitutive
equation [Equation (3.86)]. Thus, for an incompressible Newtonian fluid,

τ = −μ [∇v + (∇v)T ] (3.89)

The tensor in square brackets is called the rate-of-strain tensor and is given the symbol γ̇ ,

Rate-of-strain
tensor

γ̇ ≡ ∇v + (∇v)T (3.90)

Using this notation, the constitutive equation for an incompressible Newtonian fluid is

Newtonian
constitutive equation

(incompressible)
τ = −μγ̇ (3.91)

Equation (3.91) applies to all flow situations, and, as we will see in this chapter and later in
Chapter 4, it contains Newton’s law of viscosity as a special case when shear flow is con-
sidered. We will demonstrate the use of Equation (3.91) in the later sections of this chapter.

3.4 Navier–Stokes Equation

Most of the terms in the equation of motion are composed of expressions involving the
quantities v, ρ, ∇, and P , all of which are straightforward to relate to flow problems. The
exception is the term ∇ · �, which contains the unknown linear vector function �, the
stress tensor. With a constitutive equation in hand, we now know the total stress tensor,
� = pI + τ , for one class of materials, Newtonian fluids. Thus, for the two Newtonian
cases outlined (compressible and incompressible), we can simplify the equation of motion
and use it to solve flow problems.

The equation of motion (microscopic conservation of momentum equation) is

ρ

(
∂v

∂t
+ v · ∇v

)
= −∇ ·�+ ρg (3.92)
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For � we now substitute � = pI+ τ ,

ρ

(
∂v

∂t
+ v · ∇v

)
= −∇ · (pI+ τ)+ ρg (3.93)

Examining the first term on the right side,

−∇ · (pI+ τ) = −∇ · pI− ∇ · τ (3.94)

= −∇p − ∇ · τ (3.95)

The equality between ∇ · pI and ∇p can be verified in a straightforward manner using
Einstein notation. Substituting this into the equation of motion, we obtain

Equation of motion
(in terms of τ )

ρ

(
∂v

∂t
+ v · ∇v

)
= −∇p − ∇ · τ + ρg (3.96)

ρ
Dv

Dt
= −∇p − ∇ · τ + ρg (3.97)

For Newtonian fluids we can proceed further since we know the constitutive equation.
We will confine our discussion to incompressible fluids, that is, those for which τ = −μγ̇ .

The expression −∇ · τ then becomes

−∇ · τ = μ∇ · γ̇ (3.98)

= μ∇ · [∇v + (∇v)T ] (3.99)

= μ∇2v + μ∇ · (∇v)T (3.100)

The second term on the right of Equation (3.100) can be simplified using Einstein notation:

∇ · (∇v)T = ∂

∂xj
êj ·

(
∂

∂xp
êp vmêm

)T
(3.101)

= ∂

∂xj
êj · ∂
∂xp
vm êmêp = ∂

∂xj

∂vm

∂xp
êj · êmêp = ∂

∂xj

∂vm

∂xp
δjmêp (3.102)

= ∂

∂xm

∂vm

∂xp
êp = ∂

∂xp

(
∂vm

∂xm

)
êp = ∂

∂xp
(∇ · v)êp (3.103)

= 0

where we have used the continuity equation for incompressible fluids (∇ ·v = 0) in the final
step. Returning to the equation of motion and incorporating Equation (3.100), we obtain

Navier–Stokes
equation

ρ

(
∂v

∂t
+ v · ∇v

)
= −∇p + μ∇2v + ρg (3.104)

ρ
Dv

Dt
= −∇p + μ∇2v + ρg (3.105)
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This is the well-known Navier–Stokes equation. It is the microscopic momentum
balance (equation of motion) for an incompressible Newtonian fluid. We used the continuity
equation for an incompressible fluid in the derivation of the Navier–Stokes equation, and this
explains the restriction of this equation to incompressible fluids. For incompressible, non-
Newtonian fluids or compressible fluids Equation (3.96) is appropriate, and the constitutive
equation must be known to evaluate τ .

We have derived the two physical laws that govern fluid mechanics, conservation of
mass (the continuity equation) and conservation of momentum (the equation of motion).
Now we wish to apply them to flow situations to calculate flow patterns.

We close out the chapter with several example flow problems. This will conclude our
review of vector/tensor mathematics and Newtonian fluid mechanics. After this we will
move on to defining standard flows for examining non-Newtonian fluids in Chapter 4.

3.5 Flow Problems: Incompressible Newtonian Fluids

3.5.1 DRAG FLOW BETWEEN INFINITE PARALLEL PLATES

An incompressible Newtonian liquid is confined between two infinitely wide, parallel
plates, separated by a gap ofH . The top plate moves at a velocityV in the x1-direction.
Calculate the velocity profile, the flow rate per unit width, and the stress tensor τ .
Assume that the flow is fully developed and at steady state.

This is the classic problem of drag flow. First we choose our coordinate system. As
shown in Figure 3.6, we have chosen a Cartesian coordinate system, ê1, ê2, ê3, with flow
occurring in the e1-direction, and x2 = 0 at the bottom of the channel. To solve for the
velocity profile, we must apply the two conservation equations (mass, momentum) for
incompressible Newtonian fluids.

First we examine mass conservation:

0 = ∇ · v (3.106)

= ∂vp

∂xp
(3.107)

= ∂v1

∂x1
+ ∂v2

∂x2
+ ∂v3

∂x3
(3.108)

Figure 3.6 Drag flow in an infinite slit.
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Since the flow is only in the ê1-direction, the ê2- and ê3-components of v are zero:

v =
⎛⎝ v1

0

0

⎞⎠
123

(3.109)

Thus, the continuity equation gives us

∂v1

∂x1
= 0 (3.110)

In words this means that in an incompressible fluid, for a flow to take place where there is
only motion in the ê1-direction (v2 = v3 = 0), the value of the velocity in the 1-direction
must not change with the coordinate in the flow direction (x1).

Momentum conservation is given by the equation of motion, which for an incompress-
ible Newtonian fluid is

ρ

(
∂v

∂t
+ v · ∇v

)
= −∇p + μ∇2v + ρg (3.111)

To proceed further we must write the Navier–Stokes equation in component form with
respect to the chosen coordinate system. Since we have chosen a Cartesian coordinate
system, we will use Einstein notation, working term by term.

ρ
∂v

∂t
=

⎛⎜⎝ ρ
∂v1
∂t

ρ ∂v2
∂t

ρ ∂v3
∂t

⎞⎟⎠
123

(3.112)

ρv · ∇v = ρvpêp · ∂
∂xk
êk vmêm (3.113)

= ρvp ∂vm
∂xp

êm (3.114)

= ρ
3∑
p=1

vp
∂vm

∂xp
êm (3.115)

= ρ
⎛⎜⎝ v1

∂v1
∂x1

+ v2
∂v1
∂x2

+ v3
∂v1
∂x3

v1
∂v2
∂x1

+ v2
∂v2
∂x2

+ v3
∂v2
∂x3

v1
∂v3
∂x1

+ v2
∂v3
∂x2

+ v3
∂v3
∂x3

⎞⎟⎠
123

(3.116)

−∇p =
⎛⎜⎝

− ∂p

∂x1

− ∂p

∂x2

− ∂p

∂x3

⎞⎟⎠
123

(3.117)

μ∇2v = μ ∂

∂xm
êm · ∂

∂xj
êj vs ês (3.118)
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= μ ∂

∂xm

∂vs

∂xm
ês (3.119)

=

⎛⎜⎜⎜⎝
μ∂

2v1

∂x2
1

+ μ∂2v1

∂x2
2

+ μ∂2v1

∂x2
3

μ∂
2v2

∂x2
1

+ μ∂2v2

∂x2
2

+ μ∂2v2

∂x2
3

μ∂
2v3

∂x2
1

+ μ∂2v3

∂x2
2

+ μ∂2v3

∂x2
3

⎞⎟⎟⎟⎠
123

(3.120)

ρg =
⎛⎝ ρg1

ρg2

ρg3

⎞⎠
123

(3.121)

We know several things that can be used to simplify these terms. We know that
v2 = v3 = 0, and we know from the continuity equation that ∂v1/∂x1 = 0. We can
now cancel all terms involving v2, v3, or spatial derivatives of v1 with respect to x1. The
terms remaining are

ρ
∂v

∂t
=

⎛⎝ ρ ∂v1
∂t

0

0

⎞⎠
123

(3.122)

ρv · ∇v =
⎛⎝ 0

0

0

⎞⎠
123

(3.123)

−∇p =
⎛⎜⎝

− ∂p

∂x1

− ∂p

∂x2

− ∂p

∂x3

⎞⎟⎠
123

(3.124)

μ∇2v =
⎛⎜⎝μ

∂2v1

∂x2
2

+ μ∂2v1

∂x2
3

0

0

⎞⎟⎠
123

(3.125)

ρg =
⎛⎝ 0

−ρg
0

⎞⎠
123

(3.126)

We have taken gravity to be pointing in the negative x2-direction.
Putting these together, we obtain for the equation of motion for this problem (all terms

written in the 123 coordinate system)⎛⎝ ρ ∂v1
∂t

0

0

⎞⎠ +
⎛⎝ 0

0

0

⎞⎠ =
⎛⎜⎝

− ∂p

∂x1

− ∂p

∂x2

− ∂p

∂x3

⎞⎟⎠ +
⎛⎜⎝μ

(
∂2v1

∂x2
2

+ ∂2v1

∂x2
3

)
0

0

⎞⎟⎠ +
⎛⎝ 0

−ρg
0

⎞⎠ (3.127)
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Written this way, we can see that the Navier–Stokes equation, since it is a vector
equation, can be thought of as three equations. The coefficients of ê1 form one equation,
and the coefficients of ê2 and ê3 form two other equations. The equation formed by the
coefficients of ê3 is particularly simple:

− ∂p

∂x3
= 0 (3.128)

indicating that there is no variation of pressure in the x3-direction. The equation tells us that
this conclusion is required by conservation of momentum, given the assumptions we have
made in the problem so far. The ê2-component of the Navier–Stokes equation is

∂p

∂x2
= −ρg (3.129)

We see that the only pressure gradient in the ê2-direction is due to the weight of the fluid.
The component of the Navier–Stokes equation that tells us about the motion of the fluid

is the ê1-component.

ρ
∂v1

∂t
= − ∂p

∂x1
+ μ

(
∂2v1

∂x2
2

+ ∂2v1

∂x2
3

)
(3.130)

We can simplify this expression a bit more by noting that because the flow is at steady state,
the time derivative on the left side is zero. Also, because the plates are infinite in width, we
can assume that there is no variation of any properties in the ê3-direction. Finally, there is
no imposed pressure gradient in the 1-direction, and therefore ∂p/∂x1 = 0. Thus, we obtain

0 = μ∂
2v1

∂x2
2

(3.131)

and the solution is

v1 = C1x2 + C2 (3.132)

where C1 and C2 are constants of integration. To evaluate C1 and C2 we need boundary
conditions. We can assume that at the boundaries the velocity of the solid walls and of the
fluid match. This is the no-slip boundary condition [28]. Writing this condition at both walls
gives us the needed boundary conditions on velocity:

x2 = 0 v1 = 0 (3.133)

x2 = H v1 = V (3.134)

The solution for v1 is then (Figure 3.7)

v1 = V x2

H
(3.135)

To obtain the flow rate Q, we must integrate the expression for velocity over the cross-
sectional area.
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Figure 3.7 Velocity profile calcu-
lated for the drag flow of a New-
tonian fluid confined between two
infinite sliding plates.

dQ = v1 dA (3.136)

Q =
∫
A

v1 dA (3.137)

Taking the slit width to beW , the differential area perpendicular to the velocity at x2 is just
dA = Wd x2, and we obtain

Q = W
∫ H

0
v1(x2) dx2 (3.138)

= WVH

2
(3.139)

The flow rate per unit width is

Flow rate,
drag flow

Q

W
= VH

2
(3.140)

The average velocity can be calculated as the flow rate divided by the cross-sectional area:

vav = Q

A
=

∫
A

v1 dA∫
A

dA

(3.141)

We can now go back and examine the stress tensor for this flow. Since we are considering
an incompressible Newtonian fluid, τ = −μγ̇ ,
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τ = −μγ̇ (3.142)

= −μ [∇v + (∇v)T ] (3.143)

We have solved for v, and we can therefore evaluate τ :

v =
⎛⎝ v1

0

0

⎞⎠
123

=
⎛⎝ V x2

H

0

0

⎞⎠
123

(3.144)

∇v =
⎛⎜⎝
∂v1
∂x1

∂v2
∂x1

∂v3
∂x1

∂v1
∂x2

∂v2
∂x2

∂v3
∂x2

∂v1
∂x3

∂v2
∂x3

∂v3
∂x3

⎞⎟⎠
123

(3.145)

=
⎛⎝ 0 0 0
∂v1
∂x2

0 0

0 0 0

⎞⎠
123

=
⎛⎝ 0 0 0
V
H

0 0

0 0 0

⎞⎠
123

(3.146)

γ̇ = ∇v + (∇v)T (3.147)

=
⎛⎜⎝ 0 dv1

dx2
0

dv1
dx2

0 0

0 0 0

⎞⎟⎠
123

=
⎛⎝ 0 V

H
0

V
H

0 0

0 0 0

⎞⎠
123

(3.148)

τ =
⎛⎜⎝ 0 −μdv1

dx2
0

−μdv1
dx2

0 0

0 0 0

⎞⎟⎠
123

=
⎛⎝ 0 −μV

H
0

−μV
H

0 0

0 0 0

⎞⎠
123

(3.149)

Notice in the equation for τ that there are only two nonzero components, τ21 = τ12 =
−μdv1/dx2. This is just Newton’s law of viscosity. We can see from this example that for
incompressible Newtonian fluids, one simple scalar equation (Newton’s law of viscosity)
is adequate for describing stress in a simple shearing flow such as drag flow. The tensor
version of the constitutive equation gives additional information, however. The constitutive
equation tells us explicitly that no normal stresses are predicted (τ11 = τ22 = τ33 = 0) and
that the only shear stresses are τ21 and τ12, which are equal (τ13 = τ31 = τ23 = τ32 = 0). We
will see in Chapter 5 that shear normal stresses are nonzero for many non-Newtonian fluids.

In this example we followed a procedure that can be used quite generally to solve for
velocity fields for Newtonian fluids. We can write the procedure as follows.

Problem-Solving Procedure

1. Sketch the problem and locate the flow domian.

2. Choose a coordinate system. The choice of coordinate system should be made so that
the velocity vector and the boundary conditions are simplified. Locate and orient the
coordinate system conveniently within the flow domain.
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3. Apply the continuity equation (scalar equation) in the chosen coordinate system and
simplify.

4. Apply the equation of motion (vector equation) and simplify.

5. Solve the resulting differential equation.

6. Write down the boundary conditions and solve for the unknown constants of integration.

7. Solve for the velocity field and for the pressure field.

8. Calculate τ , vav, orQ if desired.

An important step in the procedure described is to identify the boundary conditions.
This step is sometimes a challenge when problems of this sort are first attempted. The
number of boundary conditions that are used in fluid mechanics and rheology is relatively
small, however, and we list the most common ones here.

Common Boundary Conditions in Fluid Mechanics

1. No slip at the wall. This boundary condition says that the fluid in contact with a wall will
have the same velocity as the wall. Often the walls are not moving, so the fluid velocity
is zero. In drag flows, like the previous example, the velocity of one wall is finite, and
in that case the fluid velocity is equal to the wall velocity:

vp|at boundary = Vwall (3.150)

2. Symmetry. In some flows there is a plane of symmetry. Since the velocity field is the
same on either side of the plane of symmetry, the velocity must go through a minimum
or a maximum at the plane of symmetry. Thus, the boundary condition to use is that the
first derivative of the velocity is zero at the plane of symmetry:

∂vp

∂xm

∣∣∣∣
at boundary

= 0 (3.151)

3. Stress continuity. When a fluid forms one of the flow boundaries, the shear stress is
continuous from one fluid to another. Thus for a viscous fluid in contact with an inviscid
(zero or very low viscosity fluid), this means that at the boundary, the shear stress in
the viscous fluid is the same as the shear stress in the inviscid fluid. Since the inviscid
fluid can support no shear stress (zero viscosity), this means that the shear stress is zero
at this interface. The boundary condition between a fluid such as a polymer and air, for
example, would be that the shear stress in the polymer at the interface would be zero:

τjk
∣∣
at boundary = 0 (3.152)

Alternatively if two viscous fluids meet and form a flow boundary, as in coextrusion for
example, this same boundary condition would require that the shear stress in one fluid
equal the shear stress in the other at the boundary:

τjk(fluid 1)
∣∣
at boundary = τjk(fluid 2)

∣∣
at boundary (3.153)

4. Velocity continuity. When a fluid forms one of the boundaries of the flow as described,
the velocity is also continuous from one fluid to another:
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vp(fluid 1)
∣∣
at boundary = vp(fluid 2)

∣∣
at boundary (3.154)

5. Finite velocity and stress. Occasionally an expression is derived that predicts infinite
velocities or stresses at a point. An example would be an equation that includes 1/r , for
a flow domain where r = 0 is included. A possible boundary condition to use in this
instance is the requirement that the velocity or the stress be finite throughout the flow do-
main. This boundary condition appears occasionally in flows with cylindrical symmetry.

Other flow boundary conditions can be found in standard texts on fluid mechanics [13,
28, 148].

In the next section we use the symmetry boundary condition, and, knowing that this
boundary condition applies, we choose our coordinate system to make best use of this
boundary condition. This problem is solvable with other choices of coordinate system,
although the algebra is a bit more complex.

3.5.2 POISEUILLE FLOW BETWEEN INFINITE PARALLEL PLATES

Calculate the velocity profile, flow rate, and stress tensor τ for pressure-driven flow
of an incompressible Newtonian liquid between two infinitely wide, parallel plates,
separated by a gap of 2H . The pressure at an upstream point is P0, and at a point a
distance L downstream, the pressure is PL. Assume that the flow between these two
points is fully developed and at steady state.

This is the classic problem of Poiseuille flow, and to solve it we follow the same
procedure as in the previous example. First we choose our coordinate system. As shown
in Figure 3.8, we will use a Cartesian coordinate system, ê1, ê2, ê3, with flow occurring
in the e1-direction, and x2 = 0 at the center of the channel. We choose the zero location
of the x1-axis such that at x1 = 0, p = P0, and at x1 = L, p = PL. To solve for the
velocity profile, we must apply the two conservation equations (mass, momentum) for
incompressible Newtonian fluids.

We begin with mass conservation:

0 = ∇ · v (3.155)

= ∂v1

∂x1
+ ∂v2

∂x2
+ ∂v3

∂x3
(3.156)

Since the flow is only in the ê1-direction, the ê2- and ê3-components of v are zero:

Figure 3.8 Poiseuille flow in an infinite slit.
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v =
⎛⎝ v1

0

0

⎞⎠
123

(3.157)

The continuity equation then gives us the same result as in the case of drag flow:

∂v1

∂x1
= 0 (3.158)

Momentum conservation is given by the equation of motion for an incompressible Newton-
ian fluid, the Navier–Stokes equation:

ρ

(
∂v

∂t
+ v · ∇v

)
= −∇p + μ∇2v + ρg (3.159)

We now simplify this using the given information. We begin by writing each term out in
component form in the chosen coordinate system:

ρ
∂v

∂t
=

⎛⎜⎝ ρ
∂v1
∂t

ρ ∂v2
∂t

ρ ∂v3
∂t

⎞⎟⎠
123

(3.160)

ρv · ∇v = ρ
⎛⎜⎝ v1

∂v1
∂x1

+ v2
∂v1
∂x2

+ v3
∂v1
∂x3

v1
∂v2
∂x1

+ v2
∂v2
∂x2

+ v3
∂v2
∂x3

v1
∂v3
∂x1

+ v2
∂v3
∂x2

+ v3
∂v3
∂x3

⎞⎟⎠
123

(3.161)

−∇p =
⎛⎜⎝

− ∂p

∂x1

− ∂p

∂x2

− ∂p

∂x3

⎞⎟⎠
123

(3.162)

μ∇2v =

⎛⎜⎜⎜⎝
μ∂

2v1

∂x2
1

+ μ∂2v1

∂x2
2

+ μ∂2v1

∂x2
3

μ∂
2v2

∂x2
1

+ μ∂2v2

∂x2
2

+ μ∂2v2

∂x2
3

μ∂
2v3

∂x2
1

+ μ∂2v3

∂x2
2

+ μ∂2v3

∂x2
3

⎞⎟⎟⎟⎠
123

(3.163)

ρg =
⎛⎝ ρg1

ρg2

ρg3

⎞⎠
123

(3.164)

We can now cancel all terms involving v2, v3, or spatial derivatives of v1 with respect
to x1. Putting the terms together, we obtain for this problem (all terms written in the 123
coordinate system)⎛⎝ ρ ∂v1

∂t

0

0

⎞⎠ +
⎛⎝ 0

0

0

⎞⎠ =
⎛⎜⎝

− ∂p

∂x1

− ∂p

∂x2

− ∂p

∂x3

⎞⎟⎠ +
⎛⎜⎝μ

(
∂2v1

∂x2
2

+ ∂2v1

∂x2
3

)
0

0

⎞⎟⎠ +
⎛⎝ 0

−ρg
0

⎞⎠ (3.165)
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The equation formed by the coefficients of ê3 is simple:

− ∂p

∂x3
= 0 (3.166)

indicating that there is no variation of pressure in the x3-direction. The ê2-component of
the Navier–Stokes equation is

∂p

∂x2
= −ρg (3.167)

We see, as was true in the previous example of drag flow, that the only pressure gradient in
the ê2-direction is due to the weight of the fluid.

The component of the Navier–Stokes equation that tells us about the flow is the ê1-
component:

ρ
∂v1

∂t
= − ∂p

∂x1
+ μ

(
∂2v1

∂x2
2

+ ∂2v1

∂x2
3

)
(3.168)

We can simplify this expression a bit more by noting that because the flow is at steady
state, the time derivative on the left side is zero. Also, because the plates are infinite in
width, we can assume that there is no variation of any properties in the ê3-direction. Finally
we obtain

0 = −∂p(x1, x2)

∂x1
+ μ∂

2v1

∂x2
2

(3.169)

This equation is difficult to solve since the pressure field is two-dimensional,p = p(x1, x2).
The variation ofp in the x2-direction, however, is extremely slight, since it is only caused by
gravity, and the thickness being considered (2H ) is small. Thus, if we neglect the variation
of pressure in the x2-direction, that is, neglect gravity, p is a function of x1 only, and we
can solve Equation (3.169) by separation of variables, as we will now show.

If we examine the simplified x3-component of the Navier–Stokes equation,

μ
∂2v1(x2)

∂x2
2

= dp(x1)

dx1
(3.170)

we see that the left side is only a function of x2, (∂v1/∂x1 = 0 from continuity and we have
neglected x3-variations in v1) and the right side is only a function of x1 (pressure is not a
function of x3 from the 3-component of the equation of motion, and we have neglected the
x2-variation due to gravity). Since the two sides of this equation equate for all values of
these independently changing variables, each side must be independently equal to a constant
that we will call λ [34]:

dp

dx1
= λ (3.171)

μ
d2v1

dx2
2

= λ (3.172)
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Note that we have changed partial to regular derivatives in the velocity expression since
v1 = v1(x2) only. These two differential equations can now be solved independently using
the appropriate boundary conditions. On pressure, the problem statement and our choice of
coordinate system give us the boundary conditions at x1 = 0 and x1 = L:

x1 = 0 p = P0 (3.173)

x1 = L p = PL (3.174)

We can use one of these to solve for the integration constant and the the other to solve for
lambda. On velocity, we can assume that the velocity of the solid walls and the velocity of
the fluid match at the boundaries. This is the no-slip boundary condition described earlier
[28]. Further, halfway between the planes is a plane of symmetry, which means that v1 must
go through a maximum or a minimum at this plane, that is, the derivative of v1 with respect
to x2 must be zero at this plane. We can choose any two of these conditions to evaluate the
two integration constants that arise when we solve Equation (3.172).

x2 = 0
dv1

dx2
= 0 (3.175)

x2 = ±H v1 = 0 (3.176)

The symmetry boundary condition is particularly desirable to use since it simplifies the
evaluation of the integration constants. The choice of coordinate system with x2 = 0 at
the centerline of the channel is well matched with the boundary conditions. The resulting
solutions are (Figure 3.9)

p = − (P0 − PL)
L

x1 + P0 (3.177)

v1 = H 2(P0 − PL)
2μL

[
1 −

(x2

H

)2
]

(3.178)

To obtain the volumetric flow rateQ, we must integrate the expression for velocity. Taking
the slit width to beW , we obtain

Q = W
∫ H

−H
v1(x2) dx2 (3.179)

= 2W
∫ H

0
v1(x2) dx2 (3.180)

Substituting v1(x2) from Equation (3.178) yields the result for flow rate per unit width:

Flow rate,
Poiseuille flow

in a slit

Q

W
= 2H 3(P0 − PL)

3μL
(3.181)
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Figure 3.9 Velocity and pressure profiles calculated for Poiseuille flow (pressure-driven flow) of a
Newtonian fluid in a slit.

Since we now know v1(x2), we can calculate the stress τ from the constitutive equation:

v =
⎛⎝ v1

0

0

⎞⎠
123

=
⎛⎜⎝
H 2(P0−PL)

2μL

[
1 − (

x2
H

)2
]

0

0

⎞⎟⎠
123

(3.182)

∇v =
⎛⎜⎝
∂v1
∂x1

∂v2
∂x1

∂v3
∂x1

∂v1
∂x2

∂v2
∂x2

∂v3
∂x2

∂v1
∂x3

∂v2
∂x3

∂v3
∂x3

⎞⎟⎠
123

(3.183)

=
⎛⎝ 0 0 0
∂v1
∂x2

0 0

0 0 0

⎞⎠
123

=
⎛⎝ 0 0 0

− (P0−PL)x2
μL

0 0

0 0 0

⎞⎠
123

(3.184)

γ̇ = ∇v + (∇v)T (3.185)

=
⎛⎜⎝ 0 dv1

dx2
0

dv1
dx2

0 0

0 0 0

⎞⎟⎠
123

=
⎛⎜⎝ 0 − (P0−PL)x2

μL
0

− (P0−PL)x2
μL

0 0

0 0 0

⎞⎟⎠
123

(3.186)
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τ =
⎛⎜⎝ 0 −μdv1

dx2
0

−μdv1
dx2

0 0

0 0 0

⎞⎟⎠
123

=
⎛⎜⎝ 0 (P0−PL)x2

L
0

(P0−PL)x2
L

0 0

0 0 0

⎞⎟⎠
123

(3.187)

We see that for this flow most of the coefficients of τ are zero, except τ21 = τ12 =
(P0 − PL)x2/L. The nonzero terms are the shear stresses, and these vary linearly with
x2. Also τ21 is positive, indicating that momentum moves in the positive x2-direction, that
is, down the velocity gradient, as it should, given our convention on the sign of stress. A
quantity that could be measured in this flow is the shear stress at the wall. This is given by

τ21(H) = (P0 − PL)H
L

(3.188)

The next section concerns the same type of flow (pressure-driven), but now it is carried
out in a cylindrical geometry.

3.5.3 POISEUILLE FLOW IN A TUBE

Calculate the velocity profile, flow rate, and stress tensor τ for downward, pressure-
driven flow of an incompressible Newtonian liquid in a tube of circular cross section.
The pressure at an upstream point is P0, and at a point a distance L downstream the
pressure is PL. Assume that the flow between these two points is fully developed and
at steady state.

Figure 3.10 Poiseuille flow in a tube.
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Since the tube is round, we will be working in cylindrical coordinates. To get all the
terms right, we will refer to Table C.7 in Appendix C.2 to translate the vector equations
into scalar component notation.

The mass conservation equation is

0 = ∇ · v (3.189)

= 1

r

∂(rvr)

∂r
+ 1

r

∂vθ

∂θ
+ ∂vz

∂z
(3.190)

Since the flow is only in the z-direction, the r- and θ -components of v are zero:

v =
⎛⎝ vrvθ
vz

⎞⎠
rθz

=
⎛⎝ 0

0

vz

⎞⎠
rθz

(3.191)

Thus, the continuity equation gives us the result

∂vz

∂z
= 0 (3.192)

The equation of motion for an incompressible Newtonian fluid is the Navier–Stokes
equation, derived in this chapter,

ρ

(
∂v

∂t
+ v · ∇v

)
= −∇p + μ∇2v + ρg (3.193)

In cylindrical coordinates the terms become (see Table C.7)

ρ
∂v

∂t
=

⎛⎜⎝ ρ
∂vr
∂t

ρ ∂vθ
∂t

ρ
∂vz
∂t

⎞⎟⎠
rθz

(3.194)

ρv · ∇v = ρ

⎛⎜⎜⎝
vr
∂vr
∂r

+ vθ
(

1
r
∂vr
∂θ

− vθ
r

) + vz ∂vr∂z
vr
∂vθ
∂r

+ vθ
(

1
r

∂vθ
∂θ

+ vr
r

) + vz ∂vθ∂z
vr
∂vz
∂r

+ vθ
(

1
r

∂vz
∂θ

)
+ vz ∂vz∂z

⎞⎟⎟⎠
rθz

(3.195)

−∇p =
⎛⎜⎝ − ∂p

∂r

− 1
r

∂p

∂θ

− ∂p

∂z

⎞⎟⎠
rθz

(3.196)

μ∇2v =

⎛⎜⎜⎝
μ ∂
∂r

[
1
r
∂
∂r
(rvr)

] + μ 1
r2
∂2vr
∂θ2 + μ∂2vr

∂z2 − 2μ
r2
∂vθ
∂θ

μ ∂
∂r

[
1
r
∂
∂r
(rvθ )

] + μ 1
r2
∂2vθ
∂θ2 + μ∂2vθ

∂z2 + 2μ
r2
∂vr
∂θ

μ 1
r
∂
∂r

(
r
∂vz
∂r

)
+ μ 1

r2
∂2vz
∂θ2 + μ∂2vz

∂z2

⎞⎟⎟⎠
rθz

(3.197)
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ρg =
⎛⎝ ρgrρgθ
ρgz

⎞⎠
rθz

(3.198)

Substituting in what we already know about v, we obtain

ρ
∂v

∂t
=

⎛⎝ 0

0

ρ
∂vz
∂t

⎞⎠
rθz

(3.199)

ρv · ∇v =
⎛⎝ 0

0

0

⎞⎠
rθz

(3.200)

−∇p =
⎛⎜⎝ − ∂p

∂r

− 1
r

∂p

∂θ

− ∂p

∂z

⎞⎟⎠
rθz

(3.201)

μ∇2v =
⎛⎜⎝ 0

0
μ

r
∂
∂r

(
r
∂vz
∂r

)
+ μ

r2
∂2vz
∂θ2

⎞⎟⎠
rθz

(3.202)

ρg =
⎛⎝ 0

0

ρg

⎞⎠
rθz

(3.203)

Gravity is in the flow direction. Combining the terms we obtain (all terms are written in the
r, θ, z coordinate system)⎛⎝ 0

0

ρ
∂vz
∂t

⎞⎠ +
⎛⎝ 0

0

0

⎞⎠ =
⎛⎜⎝ − ∂p

∂r

− 1
r

∂p

∂θ

− ∂p

∂z

⎞⎟⎠ +
⎛⎜⎝ 0

0
μ

r
∂
∂r

(
r
∂vz
∂r

)
+ μ

r2
∂2vz
∂θ2

⎞⎟⎠ +
⎛⎝ 0

0

ρg

⎞⎠ (3.204)

In addition, since the problem asks for the steady-state solution, ∂vz/∂t = 0.
Examining the r- and θ -components of the Navier–Stokes equation, we see that

∂p

∂r
= 0 (3.205)

∂p

∂θ
= 0 (3.206)

This tells us that the pressure is only a function of z. The z-component of the Navier–Stokes
equation is

dp

dz
= μ

r

∂

∂r

(
r
∂vz

∂r

)
+ μ

r2

∂2vz

∂θ2
+ ρg (3.207)



92 NEWTONIAN FLUID MECHANICS

This equation contains θ - and r-derivatives of vz; vz definitely varies with r since it is
zero at r = R and nonzero in the center (r = 0). Now we examine the possibility of θ
variation of vz. We see from Equation (3.206) that the pressure does not vary in the θ -
direction. Although we have not found any restriction on the θ variation of the velocity vz,
with no flow in the θ -direction and no pressure variation, it is reasonable to assume that
there are no variations of vz in the θ -direction, that is, the flow should be symmetric with
respect to θ . On these physical arguments, we will take ∂vz/∂θ = 0. Thus Equation (3.207)
simplifies to

dp(z)

dz
− ρg = μ

r

∂

∂r

[
r
∂vz(r)

∂r

]
(3.208)

Since by continuity vz is not a function of z, and by the preceding assumption it is also
not a function of θ , vz is a function of r alone. From the discussion concerning the r- and
θ -components of the Navier–Stokes equation we found that p = p(z). Thus, the left-hand
side of Equation (3.208) is a function of z only, the right-hand side is a function of r only,
and the differential equation is separable. We can solve Equation (3.208) following the
same method as used on the example in Section 3.5.2. For simplicity we will combine the
pressure and gravity terms as follows:

dp

dz
− ρg = μ

r

d

dr

(
r
dvz

dr

)
(3.209)

dP
dz

= μ

r

d

dr

(
r
dvz

dr

)
(3.210)

where P ≡ p − ρgz. P is called the equivalent pressure (see Glossary).
The boundary conditions for this problem are analogous to those in the slit problem:

z = 0 p = P0 (3.211)

z = L p = PL (3.212)

r = 0
dvz

dr
= 0 (3.213)

r = R vz = 0 (3.214)

The resulting pressure and velocity profiles are (Figure 3.11)

P = −P0 − PL
z

+ P0 (3.215)

vz = (P0 − PL)R2

4μL

[
1 −

( r
R

)2
]

(3.216)

In nondimensional form, the pressure and velocity curves for this problem have the same
shapes as those for the previous example, Poiseuille flow in a slit (Figure 3.9).

The solution for the flow rateQ is the well-known Hagen–Poiseuille law:
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Figure 3.11 Velocity and pressure profiles calculated for Poiseuille flow (pressure-driven flow) of a
Newtonian fluid in a tube.

Q =
∫
A

vz dA (3.217)

=
∫ R

0

∫ 2π

0
vz(r)r dθ dr (3.218)

Substituting vz(r) from Equation (3.216) we obtain

Hagen–Poiseuille law Q = π(P0 − PL)R4

8μL
(3.219)

As with the previous example problems, now that we know v, we can calculate
τ = −μγ̇ :

v =
⎛⎝ vrvθ
vz

⎞⎠
rθz

=
⎛⎝ 0

0

vz

⎞⎠
rθz

=
⎛⎜⎝ 0

0
(P0−PL)R2

4μL

[
1 − (

r
R

)2
]
⎞⎟⎠
rθz

(3.220)

∇v =
⎛⎜⎝

∂vr
∂r

∂vθ
∂r

∂vz
∂r

1
r
∂vr
∂θ

− vθ
r

1
r

∂vθ
∂θ

+ vr
r

1
r

∂vz
∂θ

∂vr
∂z

∂vθ
∂z

∂vz
∂z

⎞⎟⎠
rθz

(3.221)
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=
⎛⎝ 0 0 ∂vz

∂r

0 0 0

0 0 0

⎞⎠
rθz

=
⎛⎝ 0 0 − (P0−PL)r

2μL

0 0 0

0 0 0

⎞⎠
rθz

(3.222)

γ̇ = ∇v + (∇v)T (3.223)

=
⎛⎝ 0 0 ∂vz

∂r

0 0 0
∂vz
∂r

0 0

⎞⎠
rθz

=
⎛⎝ 0 0 − (P0−PL)r

2μL

0 0 0

− (P0−PL)r
2μL 0 0

⎞⎠
rθz

(3.224)

τ =
⎛⎝ 0 0 −μ∂vz

∂r

0 0 0

−μ∂vz
∂r

0 0

⎞⎠
rθz

=
⎛⎝ 0 0 (P0−PL)r

2L

0 0 0
(P0−PL)r

2L 0 0

⎞⎠
rθz

(3.225)

Once again the only nonzero stress is the shear stress, τrz = τzr , and the shear stress
is positive, indicating that the flux of momentum is in the positive r-direction as expected
(down the velocity gradient). In this flow the quantity that is measurable is the shear stress
at the wall given by (see also Chapter 10)

τrz(R) = (P0 − PL)R
2L

(3.226)

We will discuss this flow for general fluids in Chapter 10.
Although this flow was solved in cylindrical rather than Cartesian (x1, x2, x3) coordi-

nates, we see that the shear stress is still given by an expression having the same form as
Newton’s law of viscosity adapted for the cylindrical coordinate system:

τrz = −μ∂vz
∂r

(3.227)

For the three examples discussed thus far, v · ∇v has been zero. This will always be the
case for unidirectional flow, as can be shown using Einstein notation. For flows such as
rotational flows, where the velocity varies in direction, the quantity v · ∇v will not vanish,
as we see in the next section.

3.5.4 TORSIONAL FLOW BETWEEN PARALLEL PLATES

In a torsional parallel-plate viscometer (Figure 3.12) a fluid is placed between two round
plates, and one plate is rotated. For an incompressible Newtonian fluid, calculate the velocity
field, the stress tensor τ , and the torque required to turn the plate at steady state at an angular
velocity �. To simplify the problem, assume that vθ (r, θ, z) = zf (r), where f (r) is an
unknown function of r for which we will solve.

Torsional flow between parallel plates is used in some types of rheometers to measure
viscosity, as discussed in Chapter 10. Here we solve for the Newtonian case. This problem
is worked in cylindrical coordinates, and we again use Table C.7 to evaluate the terms in
the continuity equation and the equation of motion.
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Figure 3.12 Torsional flow be-
tween parallel plates.

The equation of mass conservation is:

0 = ∇ · v (3.228)

= 1

r

∂(rvr)

∂r
+ 1

r

∂vθ

∂θ
+ ∂vz

∂z
(3.229)

The flow is only in the θ -direction, and therefore the r- and z-components of v are zero:

v =
⎛⎝ vrvθ
vz

⎞⎠
rθz

=
⎛⎝ 0

vθ

0

⎞⎠
rθz

(3.230)

The continuity equation therefore gives

1

r

∂vθ

∂θ
= 0 (3.231)

The equation of motion for an incompressible Newtonian fluid is the Navier–Stokes
equation:

ρ

(
∂v

∂t
+ v · ∇v

)
= −∇p + μ∇2v + ρg (3.232)

The terms of the Navier–Stokes equation were written in cylindrical coordinates in Sec-
tion 3.5.3 [Equations (3.194)–(3.198)]. Substituting what we know already about v from
this problem, we obtain

ρ
∂v

∂t
=

⎛⎝ 0

ρ ∂vθ
∂t

0

⎞⎠
rθz

(3.233)

ρv · ∇v = ρ
⎛⎜⎝− v2

θ

r

0

0

⎞⎟⎠
rθz

(3.234)
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−∇p =
⎛⎜⎝ − ∂p

∂r

− 1
r

∂p

∂θ

− ∂p

∂z

⎞⎟⎠
rθz

(3.235)

μ∇2v =
⎛⎝ 0

μ ∂
∂r

[
1
r
∂
∂r
(rvθ )

] + μ∂2vθ
∂z2

0

⎞⎠
rθz

(3.236)

ρg =
⎛⎝ 0

0

−ρg

⎞⎠
rθz

(3.237)

Note that gravity is in the negative z-direction. The flow should be symmetric in the θ -
direction, and therefore terms with θ -derivatives will also be zero. With this assumption and
putting the terms together we obtain (all terms are written in the r, θ, z coordinate system)⎛⎝ 0

ρ ∂vθ
∂t

0

⎞⎠ +
⎛⎜⎝− ρv2

θ

r

0

0

⎞⎟⎠ =
⎛⎝− ∂p

∂r

0

− ∂p

∂z

⎞⎠ +
⎛⎝ 0

μ ∂
∂r

[
1
r
∂
∂r
(rvθ )

] + μ∂2vθ
∂z2

0

⎞⎠ +
⎛⎝ 0

0

−ρg

⎞⎠ (3.238)

Since the problem asks for us to calculate the steady-state solution, ∂vθ/∂t = 0. Note that
v · ∇v is not zero in this flow since the flow is not unidirectional.

The z-component of the Navier–Stokes equation is simple and tells us that the pressure
gradient in the z-direction is due to gravity:

∂p

∂z
= −ρg (3.239)

The r-component of the equation of motion indicates that there is a radial pressure gradient
due to centrifugal force:

∂p

∂r
= ρv2

θ

r
(3.240)

The θ -component of the Navier–Stokes equation tells us about the torsional flow:

μ
∂

∂r

[
1

r

∂

∂r
(rvθ )

]
+ μ∂

2vθ

∂z2
= 0 (3.241)

The velocity vθ in this example is a function of both r and z, as can be seen by considering
the values of velocity at various positions between the plates: at the bottom and top plates
(z = 0, H ) the velocity is 0 and nonzero; thus vθ is a function of z. At the radial center
and rim (r = 0, R) the velocity is zero and nonzero, and again we can conclude that
vθ is a function of r . Because vθ = vθ (r, z) we cannot solve Equation (3.241) with the
same separation of variables technique we used in the last two examples. Conveniently
we were told in the problem statement to assume vθ = zf (r). With this information,
Equation (3.241) simplifies:
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d

dr

[
1

r

d(rf )

dr

]
= 0 (3.242)

which we can solve to obtain

f (r) = C1r

2
+ C2

r
(3.243)

where C1 and C2 are the usual constants of integration.
The boundary conditions for this problem are no slip at the plates and finite velocity

everywhere:

z = 0 vθ = 0 (3.244)

z = H vθ = r� (3.245)

for all z, at r = 0 vθ = 0 (3.246)

for all r vθ = finite (3.247)

This is too many boundary conditions for the simple ordinary differential equation we are
trying to solve, but these conditions were used in formulating the guess [vθ = zf (r)] that we
used to solve the problem. As a result, there are no contradictions between these boundary
conditions and our solution. Writing vθ = zf (r), using Equation (3.243), and applying the
boundary conditions, we obtain the velocity field:

f (r) = r�

H
(3.248)

vθ = zr�

H
(3.249)

To calculate the torque T required to turn the plate, we apply the definition of torque
and integrate.4

T = (lever arm)(force) (3.250)

=
∫ R

0
r [−τzθ (r)](2πr dr) (3.251)

The stress τzθ in Equation (3.251) is calculated from the constitutive equation.

τ = −μγ̇ = −μ[∇v + (∇v)T ] (3.252)

4 Note that our sign convention for stress requires that stress be positive when it is transporting
momentum from high-velocity regions to low-velocity regions. Because the top plate is causing a
flux of momentum in the negative z-direction, the stress τzθ is negative. To obtain a positive torque,
a negative sign is included.
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∇v =
⎛⎜⎝

∂vr
∂r

∂vθ
∂r

∂vz
∂r

1
r
∂vr
∂θ

− vθ
r

1
r

∂vθ
∂θ

+ vr
r

1
r

∂vz
∂θ

∂vr
∂z

∂vθ
∂z

∂vz
∂z

⎞⎟⎠
rθz

(3.253)

=
⎛⎜⎝ 0 ∂vθ

∂r
0

− vθ
r

0 0

0 ∂vθ
∂z

0

⎞⎟⎠
rθz

(3.254)

γ̇ =
⎛⎜⎝ 0 ∂vθ

∂r
− vθ

r
0

∂vθ
∂r

− vθ
r

0 ∂vθ
∂z

0 ∂vθ
∂z

0

⎞⎟⎠
rθz

(3.255)

τ =
⎛⎜⎝ 0 −μ ( ∂vθ

∂r
− vθ

r

)
0

−μ ( ∂vθ
∂r

− vθ
r

)
0 −μ∂vθ

∂z

0 −μ∂vθ
∂z

0

⎞⎟⎠
rθz

(3.256)

From the preceding and the solution for vθ (r, z) [Equation (3.249)] we can see that

τ =
⎛⎜⎝ 0 0 0

0 0 −μr�

H

0 −μr�

H
0

⎞⎟⎠
rθz

(3.257)

and substituting τzθ into Equation (3.251) and integrating, we obtain

T = πR4μ�

2H
(3.258)

We will discuss this flow for general fluids in Chapter 10.
From these examples we see how mass and momentum conservation are used to solve

Newtonian flow problems. The material information needed in these solutions is limited
to two scalar constants, the density ρ and the viscosity μ. Non-Newtonian behavior is
considerably more complex, as we will discuss beginning in the next chapter.

3 . 6 P R O B L E M S

3.1 What are the mass flow rates through each of
the surfaces described below and shown in
Figure 3.13?

(a) A circular surface of area A with unit normal
n̂ = 1/

√
2(ê1 + ê2).

(b) A circular surface of area A with unit normal
n̂ = ê2.

(c) A circular surface of area A with unit normal
n̂ = ê1.

(d) A hemisphere whose cross-sectional area is A
with unit normal n̂ = ê1.

(e) A sphere whose cross-sectional area isA, that is,
its radius is

√
A/π .

3.2 What does the continuity equation reduce to for
incompressible fluids?

3.3 Using Einstein notation, rearrange the continuity
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( )a

( )c

( )e

( )b

( )d

ê2

ê1

v V e– = ˆ1

ê3

Figure 3.13 Surfaces for Problem 3.1.

equation so that it contains the substantial derivative
term Dρ/Dt . Do not assume constant density.

3.4 Write the continuity equation using cylindrical and
spherical coordinates.

3.5 What assumptions are necessary to derive the Na-
vier–Stokes equation from the general momentum
balance?

3.6 Starting from the vector equation given below and
using Einstein notation, work out the x1-component
of the Navier–Stokes equation.

ρ

(
∂v

∂t
+ v · ∇v

)
= −∇p + μ∇2v + ρg

3.7 Show that the equation of motion for compressible
Newtonian fluids is given by [64]

ρ

(
∂v

∂t
+ v · ∇v

)
= −∇p + μ∇2v

+
(

1

3
μ+ κ

)
∇(∇ · v)+ ρg

where ρ is the density, μ is the viscosity, and κ is
the dilatational viscosity. The equivalent pressure P
is defined as the sum of pressure p and the potential
energy due to gravity, � = ρgh, where h is the
height of a fluid particle above a reference plane (see
glossary).

P = p + ρgh

An alternative definition of equivalent pressure use-
ful for compressible fluids is given as [64]:

P̃ ≡ p + ρgh−
(

1

3
μ+ κ

)
(∇ · v)

(a) How does the Navier–Stokes equation for com-
pressible fluids simplify if P̃ is incorporated?

(b) For incompressible fluids, how are P and P̃
related?

3.8 Write velocity or stress boundary conditions for the
flows depicted in Figure 3.14.

3.9 Show that the solutions for the pressure distribution
and velocity distribution for Poiseuille flow in a
slit [Equations (3.177) and (3.178)] result from the
solution (with the appropriate boundary conditions)
to the differential equation (3.170 ):

μ
∂2v1

∂x2
2

= dp

dx1

3.10 The Hagen–Poiseuille law gives the flow rate of an
incompressible Newtonian fluid in pressure-driven
flow in a pipe. For a horizontal pipe this law is

Q = π(P0 − PL)R4

8μL

Why is density ρ absent from this expression?

3.11 Using a computer, plot the velocity profile for Poise-
uille flow of a Newtonian fluid in a tube. Calculate
the volumetric flow rate.

3.12 (a) Show that v · ∇v = 0 for unidirectional flow
(flow in a straight line, no curves) of an incom-
pressible fluid.

(b) Give an example of a flow for which v · ∇v is
not zero. Show that this is the case.

3.13 In the text we said that thermodynamic pressure
could be cast in tensor form by writing pI, where p
is the pressure and I is the identity tensor. Show that
this expression correctly reflects the fact that thermo-
dynamic pressure acts with the same magnitude in
every direction and acts normally (perpendicularly)
to any surface.

3.14 Flow Problem: Flow of a Newtonian fluid down
an inclined plane.

(a) Find the velocity profile at steady state for an
incompressible Newtonian fluid flowing down
an inclined plane. The upper surface of the fluid
is exposed to air. The fluid film has a constant
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Figure 3.14 Flows for Problem 3.8.

height H at steady state. The plane makes an angle
ψ with the vertical. Be sure to explain the fate of
each term of the Navier–Stokes equation.

(b) Calculate the maximum velocity, the average
velocity, and the flow rate of the fluid.

(c) Plot the velocity profile.

3.15 Flow Problem: Pressure-driven flow of a Newto-
nian fluid in a slit that is tilted upward. Calculate
the velocity profile and flow rate for pressure-driven
flow of an incompressible Newtonian liquid between

two infinitely wide parallel plates separated by a gap
of 2H . The slit is inclined to the horizontal by an
angle α. The pressure at an upstream point is P0,
and at a point a distance L downstream the pressure
is PL. Assume that the flow between the plates is
fully developed and at steady state.

3.16 Flow Problem: Combined pressure and drag of
a Newtonian fluid in a slit. Calculate the velocity
profile and flow rate for combined pressure-driven
and drag flow of an incompressible Newtonian liquid
between two infinitely wide parallel plates separated
by a gap of 2H . The pressure at an upstream point
is P0, and at a point a distance L downstream the
pressure is PL. The upper plate is driven such that
its velocity is V , and the lower plate is stationary.
Assume that the flow between the plates is fully
developed and at steady state.

3.17 Flow Problem: Drag flow of a Newtonian fluid in a
slit that is tilted with respect to horizontal. Calcu-
late the velocity profile and flow rate for drag flows
of an incompressible Newtonian liquid between two
infinitely wide, tilted parallel plates separated by a
gap H as shown in Figure 3.15. The upper plate is
driven such that its velocity is V, and the lower plate
is stationary. Assume that the flow between the plates
is well developed and at steady state.

Figure 3.15 Problem 3.17: drag flow of a
Newtonian fluid in a slit that is tilted.

3.18 Flow Problem: Tangential annular flow of a
Newtonian fluid. Calculate the velocity and pressure
profiles for tangential annular flow of an incompress-
ible Newtonian fluid between concentric cylinders
when the inner cylinder is turning (Figure 3.16). The
pressure at the inner cylinder is P0. Also calculate
the torque required to turn the cylinder. The outer
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Figure 3.16 Problem 3.18: tangential annular flow of a Newtonian fluid.

Figure 3.17 Problem 3.19: axial annular drag flow of a Newtonian fluid.

cylinder has a radius R, and the inner cylinder has
a radius κR and is moving with an angular velocity
�. The gap between the two cylinders is small.

3.19 Flow Problem: Axial annular drag flow of a New-
tonian fluid. Axial annular drag flow is shown
schematically in Figure 3.17. The inner cylinder is
moving in the z-direction with a velocityV , and there
is no pressure gradient in the z-direction. Calculate

the steady-state velocity profile and the correspond-
ing flow rate for an incompressible Newtonian fluid.

3.20 Flow Problem: Radial flow of a Newtonian fluid
between parallel plates. Calculate the velocity and
pressure profiles for an incompressible Newtonian
fluid flowing radially outward from between parallel
disks. The flow is slow and steady. Neglect the com-
plications at the center of the flow where the fluid
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enters the parallel-plate region (Figure 3.18). The
pressure at r = κR is PκR and at r = R, P = PR .

3.21 Flow Problem: Squeeze flow of a Newtonian fluid.

(a) Calculate the velocity field v and the pressure
field p for an incompressible Newtonian fluid in
slow squeeze flow between two circular, parallel
plates separated by a gap of 2h (Figure 3.19).
The upper and lower plates are approaching one
another at speed V . The pressure at the edges
of the plates is atmospheric, and the flow is
two-dimensional (two nonzero components of
velocity).

(b) Calculate the force on each plate required to
maintain the motion.

(c) Calculate the plate separation as a function of
time h(t) if the applied force is constant.

3.22 *Flow Problem: Start-up flow of a plate in a semi-
infinite Newtonian fluid [28]. A semi-infinite in-
compressible Newtonian fluid at rest is bounded on
one side by an infinite plate (Figure 3.20). At t = 0
the plate is set in motion at a constant velocity V .
Calculate the velocity field in the fluid as a function
of time. Plot your results as velocity as a function of
distance for several values of time.

3.23 *Flow Problem: Oscillating plate in a semi-
infinite Newtonian fluid. An incompressible
Newtonian fluid of viscosity μ and density ρ is
bounded on one side by an infinite flat plate [26]
at y = 0. The flate plate is oscillating in the x-
direction with a frequency ω and a velocity vx(y =
0) = V cos ωt = �{V eiωt }. What is the steady-
state velocity profile in the fluid? Solution steps:

Figure 3.18 Problem 3.20: radial flow of a Newtonian fluid from between parallel disks.

Figure 3.19 Problem 3.21: squeeze flow of a Newtonian fluid between parallel disks.
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Figure 3.20 Problem 3.22: start-up flow of a plate in a semi-infinite Newtonian fluid.

(a) Show how the Navier–Stokes equation simpli-
fies to a simple, scalar, nonseparable differential
equation. Indicate the boundary conditions on y.

(b) Postulate a solution of the form vx(y, t) =
�{v∗(y)eiωt } and obtain an equation for v∗. Us-
ing the appropriate boundary conditions, solve

for v∗(y). Answer: v∗(y) = V e−(1+i)
√
ωρ
2μ y .

(c) Calculate the velocity vx(y, t) and plot your
results for ωt = π

3 ,
2π
3 , π,

4π
3 ,

5π
3 , 2π .

(d) (Messy algebra) Consider now that the fluid
is bound at y = H by a second stationary
wall. What are the new boundary conditions?
Using the new boundary conditions show that
for

√
ρω/2μH 	 1 the velocity profile is nearly

linear. Hint: ex = 1+x+· · · , e−x = 1−x+· · ·.
3.24 *Flow Problem: Helical flow of a Newtonian fluid.

Calculate the steady-state velocity profile for an
incompressible Newtonian fluid subjected to com-
bined tangential annular flow and axial pressure-
driven flow. The fluid is confined between concentric
cylinders and the inner cylinder is turning (Fig-
ure 3.21). The axial pressure gradient is constant.

Also calculate the torque required to turn the cylin-
der. The outer cylinder has a radius R, and the inner
cylinder has a radius κR and is moving with an an-
gular velocity�. The gap between the two cylinders
is small. Plot your answers.

3.25 *Flow Problem: Poiseuille flow in a rectangular
duct. Calculate the velocity field and flow rate for
steady, well-developed, pressure-driven flow in a
duct of rectangular cross section (Poiseuille flow
in a duct; see Figure 3.22). The duct is not wide,
and therefore variations in the y-direction may not
be neglected. Thus the velocity is two-dimensional,
that is, vz = vz(x, y). Upstream the pressure is P0
while a distance L downstream the pressure is PL.
Solution steps:

(a) Show how the Navier–Stokes equation simpli-
fies to a simple, scalar, separable differential
equation. Indicate the boundary conditions.

(b) Solve for the pressure profile.

(c) Solve for the velocity vz(x, y). Note: The solu-
tion is a series involving hyperbolic trigonomet-
ric functions [263].
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Figure 3.21 Problem 3.24: helical flow of a Newtonian fluid.

Figure 3.22 Problem 3.25: Poiseuille flow in a rectangular duct.



C H A P T E R

4
Standard Flows for Rheology

Having established a common background of mathematics and Newtonian fluid mechanics,
we now embark on our true subject, rheology.

We cannot study non-Newtonian constitutive relations until we are familiar with the
non-Newtonian effects that these equations are trying to describe. Experimental rheologists
have recorded a vast literature of observations on non-Newtonian fluids, organized around
a small set of standard flows. We begin in this chapter by describing the standard flows that
are commonly used to study non-Newtonian fluids. In Chapter 6 we devote some space
to a brief catalog of experimental observations. To do this we define material functions
in Chapter 5 that can be measured by subjecting a fluid to a standard flow or that can be
predicted from a constitutive equation. After these background chapters, we move on to
non-Newtonian constitutive equations in Chapters 7 through 9.

4.1 Introduction

How do we classify a material as non-Newtonian? Generally speaking, any material that
exhibits behavior not predicted by the Newtonian constitutive equation, Equation (3.86)
or Equation (3.91), is non-Newtonian. This approach only tells us what the fluid is not,
however. To understand a fluid, we must concentrate on what it is, that is, how it behaves.

To describe a fluid’s rheology, we must poke it and prod it in a variety of ways and
see how it responds, to see what stresses are generated and how the material flows. One
approach would be to specify a deformation to impose on the fluid and then measure the
stresses generated by the flowing fluid. For example, we could pull on a polymer sample
and measure the force required to stretch it at a certain rate (Figure 4.1a). Alternatively
we could rapidly pull a sample to a specified length and measure the time-dependent force
needed to hold the deformed sample in that position. A second approach is to impose a stress
on a fluid and measure the velocity or deformation fields that are produced as a result. For
example, we could hang a weight on a polymer sample and measure the change in sample
length with time, or we could rotate a rod in a cup of fluid at a certain torque level and count
how many turns per minute the rod makes as a function of torque (Figure 4.1b). Any of
these approaches will yield information about the flow behavior (and hence the constitutive
relationship) for the fluid. We could then compare how different materials respond to the
imposed flows and organize fluids by their types of responses.

105
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Figure 4.1 Schematics of the kinds of tests that could yield rheological information about non-
Newtonian fluids. (a) Tensile-testing machine. (b) Rotational viscometer.

The choice of the flow situation (the kinematics) used for probing non-Newtonian
behavior is arbitrary, and the number of choices is infinite. If everyone interested in rheology
were to choose different flows, however, the advancement of the study of rheology would
be slow, since researchers could not compare their results. The rheological community has
therefore settled on a small number of standard flows. The choice of standard flows is
driven by two considerations: first, the flow should be sufficiently simple that the missing
ingredient–either the velocity profile or the stress field–can be readily calculated with
proposed constitutive equations; second, the flow should be realizable by experimentalists.

These two requirements are often at odds. A test that is easy for an experimentalist to
perform (stretching a piece of polymer film, for instance) can be extremely complicated to
describe mathematically (e.g., for a tensile experiment, the effects due to the clamps holding
the sample at the ends are very difficult to model accurately). Conversely, a test that compu-
tationalists favor because it differentiates constitutive equations that are otherwise similar
(steady stretching or elongational flow, described in Section 4.3.1) may be nearly impossible
to achieve experimentally (e.g., in steady stretching flow, fluid elements separate exponen-
tially in time, and this is very difficult to accomplish experimentally; see Chapter 10).

The two flows described in this chapter, shear and elongation, may be thought of as the
classic flows used in rheological measurements. The list of standard flows is not closed–new
ones are proposed on a regular basis. Whether or not a flow becomes a standard is based
entirely on whether a large number of rheologists use it in calculations or in experiments.

4.2 Simple Shear Flow

Shear flow is the most common type of flow discussed in rheology. Figure 4.2 shows a two-
dimensional schematic of the velocity profile in simple shear flow. In this flow, layers of fluid
slide past each other and do not mix. The flow is rectilinear, and the velocity only varies in one
direction, the direction x2 in this diagram. Particle path lines in simple shear flow are straight



4.2 Simple Shear Flow 107

Figure 4.2 Flow field in simple shear.
(a) Velocity profile. (b) Particle path lines.

parallel lines. Simple shear flow can be produced by sandwiching material between two
parallel plates and then causing one plate to move at a constant velocity in some unchanging
direction. Recall the drag flow example in Section 3.5.1, which was simple shear. For many
practical rheometers, this flow is only achieved approximately in the limit of narrow gaps,
small angles, and relatively slow flows (see Chapter 10).1 In processing equipment shear
flow occurs near walls (Figure 4.3). Sketches of actual experimental devices used to produce
or to approximate shear flow are shown in Figure 4.4.

The velocity profile for simple shear flow is defined in Cartesian coordinates as
follows [26]:

Definition
of shear flow

v =
⎛⎝ v1

v2

v3

⎞⎠
123

=
⎛⎝ ς̇ (t)x2

0

0

⎞⎠
123

(4.1)

Shear flow may be produced in many ways, and it is standard practice to call the flow
direction of shear flow in Cartesian coordinates the 1-direction, with the 2-direction reserved
for the direction in which the velocity changes (the gradient direction), and the 3-direction
called the neutral direction, since flow neither occurs in this direction nor changes in this
direction (Figure 4.5). The function ς̇ (t),2 which equals the derivative ∂v1/∂x2, is often
denoted by the symbol γ̇21(t) because it is equal to the 21-component of the shear-rate
tensor γ̇ for this flow [Equation (4.2)].

1 See Bird et al. [26] Section 3.7 for a discussion of the classification of shear flows that are not simple
shear flow. As discussed there, a more general class of shear flows can also be used for measuring
the material functions we will define in Chapter 5 for simple shear flow.
2 The symbol ς is a variation of σ (sigma), the Greek letter s. This version appears at the ends of
words in written Greek. The symbol ς̇ is referred to as sigma dot.
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Figure 4.3 Even in complex mixed
flows such as that shown schemati-
cally on the right, the flow near the
walls is shear flow.
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Figure 4.4 Geometries used to produce shear flow in commercial and research rheometers. (a) Rec-
tilinear parallel plate. (b) Rectilinear double parallel plate. (c) Torsional parallel plate or parallel disk.
(d) Torsional cone and plate. (e) Couette or cup and bob. (f) Double-walled Couette.
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Gradient
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x2

x1
x3

Flow direction

Neutral
direction

Figure 4.5 Standard coordinate system used
for describing shear flow.

γ̇ ≡ ∇v + (∇v)T (4.2)

=
⎛⎜⎝
∂v1
∂x1

∂v2
∂x1

∂v3
∂x1

∂v1
∂x2

∂v2
∂x2

∂v3
∂x2

∂v1
∂x3

∂v2
∂x3

∂v3
∂x3

⎞⎟⎠
123

+
⎛⎜⎝
∂v1
∂x1

∂v1
∂x2

∂v1
∂x3

∂v2
∂x1

∂v2
∂x2

∂v2
∂x3

∂v3
∂x1

∂v3
∂x2

∂v3
∂x3

⎞⎟⎠
123

(4.3)

=
⎛⎝ 0 0 0

ς̇ (t) 0 0

0 0 0

⎞⎠
123

+
⎛⎝ 0 ς̇ (t) 0

0 0 0

0 0 0

⎞⎠
123

(4.4)

=
⎛⎝ 0 ς̇ (t) 0

ς̇ (t) 0 0

0 0 0

⎞⎠
123

(4.5)

γ̇21(t) = ς̇ (t) (4.6)

v =
⎛⎝ γ̇21x2

0

0

⎞⎠
123

(4.7)

The magnitude of γ̇ for shear flow is called the shear rate or rate of strain and is denoted

by the symbol γ̇ (t). Applying the definition of tensor magnitude from Equation (2.174)
we obtain

γ̇ (t) =
∣∣∣γ̇ (t)∣∣∣ =

+√
γ̇ : γ̇

2
(4.8)

= |ς̇ (t)| = ±ς̇ (t) (4.9)

The magnitude of a tensor is always positive, and thus γ̇ is always a positive number,
whereas ς̇ (t) = γ̇21 may be positive or negative. From this we see that for shear flow
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written in the Cartesian coordinate system, the rate of strain γ̇ and γ̇21 are equal or differ
only by sign. In other coordinate systems or for flows other than simple shear, however, the
deformation rate γ̇ = |γ̇ | and the 21-component of γ̇ may be quite different. Notice also

that the shear rate [γ̇ = |ς̇ (t)|] is independent of position (not a function of x1, x2, or x3)
for simple shear flow as defined by the velocity field in Equation (4.1). A flow for which the
rate of deformation is independent of position is called a homogeneous flow. Homogeneous
flows may be functions of time [γ̇ = γ̇ (t)].

One reason shear flow is used as a standard flow is that γ̇ for shear flow is simple,

γ̇ =
( 0 γ̇21(t) 0
γ̇21(t) 0 0

0 0 0

)
123

(4.10)

Recall that we first encountered γ̇ in the Newtonian constitutive equation:

τ = −μγ̇ (4.11)

For shear flow as defined here, the stress tensor predicted by the Newtonian constitutive
equation is also simple:

τ =
⎛⎝ τ11 τ12 τ13

τ21 τ22 τ23

τ31 τ32 τ33

⎞⎠
123

(4.12)

= −μγ̇ =
⎛⎝ 0 −μγ̇21 0

−μγ̇21 0 0

0 0 0

⎞⎠
123

(4.13)

For a Newtonian incompressible fluid in shear flow only two of the nine Cartesian com-
ponents of the stress tensor are nonzero, and these two components are equal. Thus, shear
flow for an incompressible Newtonian fluid reduces to one simple scalar equation:

τ21 = τ12 = −μγ̇21 = −μς̇(t) (4.14)

= −μ∂v1

∂x2
(4.15)

This equation is the familiar Newton’s law of viscosity [85]. We see now that Newton’s
law of viscosity is a simplification of the full, tensorial Newtonian constitutive equation,
τ = −μγ̇ . Newton’s law of viscosity only describes material response for shear flow.

A second reason that shear flow is a standard rheological flow is that it is a simple version
of a sliding flow. Because shear is in one direction and only varies in the 2-direction, planes
of constant x2 move together in the flow direction, sliding over one another but never mixing
(Figure 4.6). Two fluid particles that lie in the same ê2-plane (a plane whose unit normal is
ê2) a distance r apart will always be a distance r apart. When two fluid particles are located
at different values of x2, however, they will get farther apart in steady shear. Sliding flows
occur near most boundaries in processing flows.
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Figure 4.6 Schematic of shear planes
sliding over each other during steady
shear flow, ς̇ (t) = γ̇21(t) = γ̇0.

To clarify the sliding nature of shear, consider two fluid elements undergoing a steady
shear flow (Figure 4.7). The two pointsP1 andP2 are initially separated by a distance l0. For
simplicity we choose these two elements to be in the same ê3-plane and initially at the same
value of x1. If we choose our coordinate system such that the particles are on the x2-axis, then
at time t = 0 the coordinates of the particles areP1(0, l1, 0) andP2(0, l2, 0), with l2−l1 = l0.
After experiencing shear flow for some time, the two fluid particles will have separated
because the particle located at the larger value of x2 will move faster than the other particle.
The new separation distance l can be calculated by noting that the ê1-component of velocity,
given by Equation (4.7), is just the rate of change of the particle position x1 with time,

v1 = dx1

dt
= ς̇ (t)x2 (4.16)

For steady shear flow ς̇ (t) = constant ≡ γ̇0, and this equation is easy to evaluate for each
particle. For the particle at P1,

dx1

dt
= γ̇0 l1 (4.17)

x1 = γ̇0 l1t + C1 (4.18)

x1 = γ̇0 l1t (4.19)

C1 is an integration constant, and in arriving at the last equation we have used the initial
condition, t = 0, x1 = 0. Likewise for the second particle, x1 = γ̇0l2t .

The final separation distance can be calculated to be (see Figure 4.7)

l =
√
l20 + (γ̇0 l0t)2 (4.20)

= l0
√

1 + (γ̇0 t)2 (4.21)

As the flow continues, l gets very large, and we can take the limit as t goes to infinity,

l = lim
t−→∞

[
l0
√

1 + (γ̇0t)2
]

≈ l0 γ̇0t (4.22)
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Figure 4.7 Separation by shear flow of two fluid particles that lie in the same e3-plane but start at
different values of x2.

l

l0
= γ̇0t (4.23)

Thus, in shear flow the relative distance between two fluid elements in different shear planes
increases linearly with time. In other words, the longer you shear, the distance separating
particles increases in proportion to the shearing time. Although this result was derived for
two particles on the same vertical axis, it can be shown that it is equally valid for any pair
of particles not in the same shear plane. This characteristic, that particles separate linearly
with time, makes shearing flow a rather mild flow in terms of particle separation. The next
flows we discuss, simple shear-free flows, are much more dramatic in the kind of particle
separations they produce.

4.3 Simple Shear-Free (Elongational) Flows

We have divided the standard flows into shear and shear-free flows. Shear flows in general,
including simple shear discussed in Section 4.2, are flows that include nonzero off-diagonal
components to the rate-of-strain tensor γ̇ and the stress tensor τ . Elongational flow is a
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shear-free flow, that is, one with no nonzero, off-diagonal components in γ̇ or τ , as we

shall see. The diagonal components of τ are called the normal stresses since they represent
stresses acting perpendicularly to a surface. The off-diagonal components of τ are called
the shear components.

There are three types of simple, shear-free flows that are commonly discussed in
rheology, and, like shear flow, they are defined in terms of their velocity profiles. In
describing these flows we follow the nomenclature of Bird, Armstrong, and Hassager [26].

4.3.1 UNIAXIAL ELONGATIONAL FLOW

The choice of uniaxial elongational flow as a standard flow is based on the importance of this
type of flow in polymer-processing operations such as fiber spinning and injection molding
[236, 179]. Near the centerline of the flow in fiber spinning, for example, fluid particles
are stretched uniformly (Figure 4.8). The idealized version of this stretching flow is called
uniaxial extensional flow or uniaxial elongational flow and is defined by the following
velocity profile:

Definition of
uniaxial

elongational flow
v =

⎛⎝ v1

v2

v3

⎞⎠
123

=
⎛⎜⎝− ε̇(t)

2 x1

− ε̇(t)

2 x2

ε̇(t)x3

⎞⎟⎠
123

, ε̇(t) > 0 (4.24)

The function ε̇(t) is called the elongation rate, and for uniaxial elongational flow ε̇(t) is
positive. The flow pattern that this velocity profile describes is three-dimensional, with a
strong stretch occurring in the x3-direction and contraction occurring equally in the x1- and
x2-directions. Representing the velocity field of uniaxial elongational flow graphically is
more difficult than representing shear, as can be seen in Figure 4.9. The particle path lines
for uniaxial elongational flow are shown in Figure 4.10. Uniaxial elongational flow is a more

Figure 4.8 In fiber-spinning, a poly-
meric fluid is forced through a cir-
cular channel and emerges into the
atmosphere. The fluid fiber is pulled
by an external take-up reel, which
stretches the fluid elements in the
fiber. Following one fluid element as
it passes out into the atmosphere, we
see that the particles are stretched
uniaxially as they are convected
along with the flow. The stretching
flow is uniaxial extension.
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Figure 4.9 Two-dimensional representations of the velocity field in uniaxial elongational flow. At
each point the vector indicates the direction of the flow at the point at which the vector is centered,
and the length of the vector is proportional to the velocity at that point. (a) The velocity field is the
same in the x3x1- and x3x2-planes as indicated. In fact, it is the same in every plane that includes the
x3-axis. (b) Velocity field in the x1x2-plane, which is perpendicular to the main flow direction and
includes the stagnation point at the origin.

x3 x2

x1x x1 2,

( )a ( )b

Figure 4.10 Particle path lines in uniaxial elongational flow. (a) The particle path lines are the same
in the x3x1- and x3x2-planes. (b) Particle path lines in the x1x2-plane, which is perpendicular to the
flow direction and includes the stagnation point at the origin.

complicated flow than shear flow since the velocity components are nonzero in all three
directions for most points. Only on the coordinate axes is one of the velocity components
zero. The only point not moving at all in elongational flow is the particle located at (0, 0,
0); this is called the stagnation point. By contrast, in shear flow the flow is unidirectional,
v2 = v3 = 0 for all points, and points at x2 = 0 are not moving. In the lab, elongational flow
is approximated by such devices as shown schematically in Figure 4.11a–c. This important
flow is very difficult to realize, and researchers are actively pursuing the design of better
instruments for producing elongational flow.
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Figure 4.11 Geometries used to produce shear-free flows in commercial and research rheometers.
(a) Uniaxial stretching by a pulling device. (b) Uniaxial extension in an opposed-nozzle suction
device. (c) Uniaxial extension by filament stretching of polymer solutions. (d) Biaxial extension
through lubricated squeezing [162].
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We can consider the characteristics of this flow more closely by examining Equa-
tion (4.24). All three components of the velocity for elongational flow are a function of
position. Further, the x1-direction velocity v1 is a function of x1, the x2-direction velocity
is a function of x2, and the x3-direction velocity is a function of x3. We can see then that a
fluid particle originally at position x10 will move in the x1-direction with velocity v1(x10),
and this will move the fluid to a new x1-position, x11 . At this new position, however, the
velocity of the fluid will be different; it will be v1(x11). Thus, in elongational flow the
velocities of fluid particles are continuously changing as the flow progresses. This is in
stark contrast to shear flow, v = ς̇ (t)x2ê1. In shear flow, the only nonzero velocity is in the
x1-direction; it does not vary with x1 but rather with x2. Fluid particles in shear flow move
along in planes of constant x2. Thus the velocities of fluid particles are constant in time
when ς̇ (t) = γ̇21(t) is constant. For elongational flow, even when ε̇(t) = ε̇0 is constant,
the velocity of a fluid particle is not constant since v1 = − (ε̇0/2) x1, v2 = − (ε̇0/2) x2,
v3 = ε̇0x3, and x1, x2, and x3, the coordinate positions of the fluid particle, are continuously
changing as the fluid flows.

Shear and elongation also differ qualitatively in the form of the rate-of-strain tensor γ̇ ,

as we see by constructing γ̇ for this flow:

γ̇ = ∇v + (∇v)T (4.25)

=
⎛⎜⎝− ε̇(t)

2 0 0

0 − ε̇(t)

2 0

0 0 ε̇(t)

⎞⎟⎠
123

+
⎛⎜⎝− ε̇(t)

2 0 0

0 − ε̇(t)

2 0

0 0 ε̇(t)

⎞⎟⎠
123

(4.26)

=
⎛⎝−ε̇(t) 0 0

0 −ε̇(t) 0

0 0 2ε̇(t)

⎞⎠
123

(4.27)

This tensor is diagonal when written in this Cartesian coordinate system and thus has no
shear components. Looking at their rate-of-strain tensors, we see that elongational flow is
qualitatively different from shear flow in a mathematical sense.The magnitude of γ̇ can be

calculated in a straightforward manner:

γ̇ =
∣∣∣γ̇ ∣∣∣ (4.28)

= +

√√√√√1

2

⎛⎝−ε̇(t) 0 0

0 −ε̇(t) 0

0 0 2ε̇(t)

⎞⎠
123

:

⎛⎝−ε̇(t) 0 0

0 −ε̇(t) 0

0 0 2ε̇(t)

⎞⎠
123

(4.29)

= |ε̇(t)| √3 (4.30)

In the previous section we used the Newtonian constitutive equation to calculate the
stress tensor generated by a Newtonian fluid subjected to steady shear flow. This calculation
showed us that Newton’s law of viscosity is predicted by the Newtonian constitutive
equation in simple shear flow. Now we can examine what the Newtonian constitutive



4.3 Simple Shear-Free (Elongational) Flows 117

equation predicts for the stress tensor in steady uniaxial elongational flow. We begin with
the Newtonian constitutive equation for incompressible fluids,

τ = −μγ̇ (4.31)

For steady elongational flow, ε̇(t) = ε̇0 = constant. Substituting this into γ̇ for elongational

flow, we obtain for the stress tensor for a Newtonian fluid in steady elongational flow,

τ = −μ
⎛⎝−ε̇0 0 0

0 −ε̇0 0

0 0 2ε̇0

⎞⎠
123

(4.32)

=
⎛⎝με̇0 0 0

0 με̇0 0

0 0 −2με̇0

⎞⎠
123

(4.33)

There is little about this equation for stress to remind us of shear flow. There are three
nonzero terms out of nine, two of which are equal. There are no off-diagonal elements, and
thus Newton’s law of viscosity, τ21 = −μ ∂v1/∂x2, is not at all relevant in this flow. The
limitations of thinking about even simple Newtonian fluid response purely in terms of that
scalar law are now apparent.

Equation (4.33) predicts that if we subject a Newtonian fluid to steady, uniaxial
elongational flow, stresses will be generated such that τ11 = τ22 = − 1

2τ33 = με̇0. We
can define a different “law of viscosity” for this flow, define a new material function,
perhaps an elongational viscosity, and set about studying material response in this type
of flow. We would expect that we would observe some materials that will follow the
Newtonian predictions (Newtonian fluids) and others that do not (non-Newtonian fluids).
This is precisely the case. The definitions of various types of material functions for both
shear and shear-free flows will be addressed in Chapter 5.

In addition to being different from shear flows in the predictions of the Newtonian
constitutive equation, elongation flow is also qualitatively different from shear flow in how
the fluid particles move apart. In the discussion on shear flow in the previous section, we
found that at long times two fluid particles in different shear planes move apart linearly in
time. Now we can calculate how two material particles move apart in elongational flow.

We choose to look at two elements originally on the x3-axis, separated by a distance
l0 (Figure 4.12). The origin of the Cartesian coordinate system is midway between the two
fluid elements, and thus the coordinates of the two fluid elements under consideration are
(0, 0, l0/2) and (0, 0, −l0/2). Since our particles are on the x3-axis, the velocity that is
experienced by these two fluid elements is

v =
⎛⎜⎝− ε̇0

2 x1

− ε̇0
2 x2

ε̇0x3

⎞⎟⎠
123

=
⎛⎝ 0

0

ε̇0x3

⎞⎠
123

(4.34)

Recalling that v3 = dx3/dt , we can solve for the positions of the particles at some time t
in the future,
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Figure 4.12 Separation of two fluid particles in simple uniaxial elongational flow.

v3 = dx3

dt
(4.35)

dx3

dt
= ε̇0x3 (4.36)

dx3

x3
= ε̇0dt (4.37)

ln x3 = ε̇0t + C1 (4.38)

Applying the initial conditions for each particle to solve for C1 we obtain

x3 (particle 1) = l0

2
eε̇0t (4.39)

x3 (particle 2) = − l0
2
eε̇0t (4.40)

The distance l separating the two particles is the difference between these two coordinate
positions,

l

l0
= eε̇0t (4.41)

Thus, as was the case for steady shear flow, as time increases, the separation of the two
particles increases, but unlike steady shear flow, the separation is not linear in time, but rather
exponential. This is quite a bit more rapid than in steady shear flow (see Problem 4.14),
and this difference shows up in the stresses that are generated in elongational flow. This
rapid particle separation results from the fact that as particles on the x3-axis move in
the x3-direction, they accelerate. Remember that acceleration a is ∂v/∂t , and for steady
elongational flow,
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a steady
elongation

=
⎛⎜⎝− 1

2 ε̇0
∂x1
∂t

− 1
2 ε̇0

∂x2
∂t

ε̇0
∂x3
∂t

⎞⎟⎠
123

=
⎛⎜⎝− 1

2 ε̇0v1

− 1
2 ε̇0v2

ε̇0v3

⎞⎟⎠
123

=
⎛⎜⎝

1
4 ε̇

2
0x1

1
4 ε̇

2
0x2

ε̇2
0x3

⎞⎟⎠
123

(4.42)

and thus the particles will accelerate in a linearly increasing fashion in all three coordinate
directions. Again we can contrast this flow behavior with steady shear flow where the
acceleration is zero:

a steady
shear

=
⎛⎝ ∂(γ̇0x2)

∂t

0

0

⎞⎠
123

=
⎛⎝ γ̇0v2

0

0

⎞⎠
123

=
⎛⎝ 0

0

0

⎞⎠
123

(4.43)

Because of the linear acceleration of particles in elongational flow, an acceleration that
results in particle separation that increases exponentially in time, elongational flow is
considered a strong flow in terms of deformation.

4.3.2 BIAXIAL STRETCHING FLOW

The second type of shear-free flow that we study is biaxial stretching. This flow has the
same form of velocity profile as uniaxial elongational flow [Equation (4.24)], but ε̇(t) is
always negative for this flow. Biaxial stretching may be produced by squeezing a sample
between two lubricated surfaces (see, for example, Figure 4.11d), or by inflating a film
(Figure 4.13):

Definition of
biaxial

elongational flow
v =

⎛⎝ v1

v2

v3

⎞⎠
123

=
⎛⎜⎝− ε̇(t)

2 x1

− ε̇(t)

2 x2

ε̇(t)x3

⎞⎟⎠
123

, ε̇(t) < 0 (4.44)

Since the flows are the same except for flow direction, the comments of the previous
section on the severity of deformation in uniaxial elongation apply to biaxial stretching

Air under
pressure

P

Figure 4.13 Testing configuration that produces biax-
ial flow. A sheet of material to be tested is clamped over
a hole. A gas is then pumped through the hole, inflating
the film. The pressure of the gas can be related to the
stress in the film. The deformation can be measured by
marking a grid on the film in the rest state and noting
the shape of the grid in the inflated state.



120 STANDARD FLOWS FOR RHEOLOGY

as well. In practice biaxial flows are carried out to lesser extensional strains than uniaxial
elongational flows. The conceptual differences between uniaxial elongational flow and
biaxial stretching may be described by looking at the deformation experienced by fluid
elements in the two flows. In uniaxial elongational flow, in one direction (ê3, the primary
flow direction) the fluid elements are stretched, while contraction occurs in the other two
directions. Thus, if we look at a cube of incompressible fluid undergoing simple, uniaxial
elongational flow, after some time the cube would be distorted to a rectangular solid with
one side being, for example, twice as long as it was initially, while the other two sides would
have compressed by a factor of 1/

√
2 (Figure 4.14a). For uniaxial elongational flow of an

incompressible fluid then,

Figure 4.14 Schematics of the deformation (shape change) produced by (a) uniaxial elongational
flow, (b) biaxial stretching flow, and (c) planar elongational flow.
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volume before = a3 = volume after

a3 = (2a)
(
a√
2

)(
a√
2

)
(4.45)

By comparison, in biaxial stretching (or biaxial extension as it is sometimes called) the flow
is considered to occur in the 1- and 2-directions at the same rates, while contraction occurs
in the 3-direction. Thus, a cube of fluid experiencing biaxial stretching to twice its original
length would be distorted as shown in Figure 4.14b and would contract by a factor of 4 in
the 3-direction:

volume before = a3 = volume after

a3 = (2a)(2a)
(a

4

)
(4.46)

Two flows in which biaxial stretching occurs are film blowing, a process used to manufacture
plastic bags, and blow molding, a process that is used to create plastic bottles and other
hollow parts [236, 179].

4.3.3 PLANAR ELONGATIONAL FLOW

The final type of shear-free flow that we will discuss is planar elongational flow, defined by
the following velocity profile:

Definition of
planar

elongational flow
v =

⎛⎝−ε̇(t)x1

0

ε̇(t)x3

⎞⎠
123

, ε̇(t) > 0 (4.47)

In planar elongational flow, no deformation is allowed in the 2-direction (v2 = 0). The
deformation experienced by a cube of incompressible fluid in planar elongation is shown
in Figure 4.14c. If the side of the cube is stretched to twice its length in the flow direction
(3-direction), then the cube must contract by a factor of 2 along the 1-direction to satisfy
conservation of mass:

volume = a3 = (2a)(a)
(a

2

)
This flow has gained the attention of experimentalists since constraining one direction of
the flow makes the experiment a bit easier.3 Planar elongation occurs in cross-channel dies
like the one shown in Figure 4.14c.

All three shear-free flows mentioned, along with many others, can be described by a
single expression for the velocity profile [26]. The different flows are produced by different
values for the two parameters ε̇(t) and b. In the Cartesian coordinate system these shear-free
flows can be written as follows:

3 This flow is also called pure shear [155]. It can be shown by using the methods of Appendix C.6
that this flow is equivalent to a shear flow without rotation of the principal axes. For more discussion
of principal axes see Appendix C.6 and [155].
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TABLE 4.1
Summary of Parameters Defining Standard Shear-Free Flows

Elongational flow b = 0, ε̇(t) > 0

Biaxial stretching flow b = 0, ε̇(t) < 0

Planar elongational flow b = 1, ε̇(t) > 0

v =
⎛⎝ v1

v2

v3

⎞⎠
123

=
⎛⎜⎝− 1

2 ε̇(t)(1 + b)x1

− 1
2 ε̇(t)(1 − b)x2

ε̇(t)x3

⎞⎟⎠
123

(4.48)

For the flows we have discussed, the values and ranges of the parameters b and ε̇(t) are listed
in Table 4.1. The parameter b in the velocity profile affects the way that the streamlines of
the flow change with rotations around the flow direction [26].

4.4 Forms of the Stress Tensor in Standard Flows

We have presented several flows that are accepted as standard flows for the study of the
rheology of fluids. The velocity fields that define the flows are simple and lead to simple
rate-of-strain tensors γ̇ . This is one argument for adopting these flows as standard flows.

There is another compelling reason to concentrate on these flows. The aim of much of
the study of rheology is to determine the stress tensor τ :

τ =
⎛⎝ τ11 τ12 τ13

τ21 τ22 τ23

τ31 τ32 τ33

⎞⎠
123

(4.49)

Since this tensor has, in general, six unknown coefficients (for a symmetric stress tensor),
this is a rather daunting task. Both shear flow and elongational flow are highly symmetric,
however. The symmetry of a velocity field places simplifying constraints on the stress
tensor, as we shall see.

4.4.1 SIMPLE SHEAR FLOW

For simple shear flow, the mathematical description of the velocity field is completely
unchanged by a 180° rotation of the coordinate system around the neutral direction, as
we will now show (Figure 4.15). Since the stress tensor depends on the velocity field, the
symmetry of the velocity field implies something about τ . To demonstrate the implications
of symmetry in shear flow, we can write the flow in two different coordinate systems, one
rotated 180° around ê3 from the other. As we will see, in order for τ to be invariant to this
rotation, several of its components must be zero.

Consider a shear flow described in our usual Cartesian coordinate system, with ê1 being
the flow direction, ê2 the gradient direction, and ê3 the neutral direction (Figure 4.15). The
three space variables are x1, x2, and x3. The velocity field is shown in Equation (4.50)
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Figure 4.15 The symmetry axis for
shear flow. The velocity and stress
fields are unaffected by a 180° rota-
tion around ê3.

v =
⎛⎝ v1

v2

v3

⎞⎠
123

=
⎛⎝ ς̇ (t)x2

0

0

⎞⎠
123

(4.50)

v = ς̇ (t)x2ê1 = γ̇21(t)x2ê1 (4.51)

by definition of shear flow. Now we can also write the velocity field in a different coordinate
system, one we will call the ē system, defined by

ē1 = −ê1 (4.52)

ē2 = −ê2 (4.53)

ē3 = ê3 (4.54)

This is a Cartesian coordinate system arrived at by rotating the original coordinate system
by 180° around ê3. The spatial variables in this coordinate system are x̄1 = −x1, x̄2 = −x2,
and x̄3 = x3. The coefficients of v in this coordinate system we will write as

v = v̄1ē1 + v̄2ē2 + v̄3ē3 (4.55)

=
⎛⎝ v̄1

v̄2

v̄3

⎞⎠
1̄2̄3̄

(4.56)

To distinguish between the expressions written in the two different coordinate systems, we
will indicate the coordinate system being used by writing 123 or 1̄2̄3̄ at the lower right of
a matrix of coefficients, as appropriate.

We can also write v in the ē coordinate system by substituting the appropriate expres-
sions for ê1 and x2 into Equation (4.51),

v = ς̇ (t)x2ê1 (4.57)

= ς̇ (t)(−x̄2)(−ē1) = ς̇ (t)x̄2ē1 (4.58)
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=
⎛⎝ ς̇ (t)x̄2

0

0

⎞⎠
1̄2̄3̄

(4.59)

Thus, the velocity vector written with respect to the two different coordinate systems is

v =
⎛⎝ ς̇ (t)x2

0

0

⎞⎠
123

=
⎛⎝ ς̇ (t)x̄2

0

0

⎞⎠
1̄2̄3̄

(4.60)

We see from the foregoing that simple shear flow written in these two different coordinate
systems has the exact same form: a scalar function ς̇ (t), multiplied by the coordinate
variable in the 2-direction. Consider two points that have the same numerical coefficients in
the two different systems, for example, (3, 1, 0)123 and (3, 1, 0)1̄2̄3̄ (see Figure 4.15). From
Equation (4.60) fluid particles located at these two points will have the same velocities
since the values of x2 and x̄2 are equal. This is true for all pairs of points with common
coefficients expressed in the two coordinate systems. Further, because the velocities are
equal, any function of v that we could write (stress, for example) must have the same
numerical values of stress coefficients in the two coordinate systems. Again, at points that
look the same in the two coordinate systems, for example, (3, 1, 0)123 and (3, 1, 0)1̄2̄3̄, the
stress coefficients are equal: τpk at point (3,1,0) in the ê-system equals τ̄pk at point (3, 1, 0) in
the ē-system, where τpk are the coordinates of the stress tensor written in the 123 coordinate
system, and τ̄pk are the coordinates of the stress tensor written in the 1̄2̄3̄ coordinate system.

This has important implications. The extra stress tensor τ , written in both coordinate
systems, is

τ = τpkêpêk (4.61)

= τ11ê1ê1 + τ12ê1ê2 + τ13ê1ê3

+ τ21ê2ê1 + τ22ê2ê2 + τ23ê2ê3

+ τ31ê3ê1 + τ32ê3ê2 + τ33ê3ê3 (4.62)

τ = τ̄pkēpēk (4.63)

= τ̄11ē1ē1 + τ̄12ē1ē2 + τ̄13ē1ē3

+ τ̄21ē2ē1 + τ̄22ē2ē2 + τ̄23ē2ē3

+ τ̄31ē3ē1 + τ̄32ē3ē2 + τ̄33ē3ē3 (4.64)

By the symmetry arguments made, τpk = τ̄pk for all p and k,

τ11 = τ̄11 τ21 = τ̄21 τ31 = τ̄31

τ12 = τ̄12 τ22 = τ̄22 τ32 = τ̄32

τ13 = τ̄13 τ23 = τ̄23 τ33 = τ̄33

(4.65)

We can now substitute the relationships between the ê and the ē vectors, that is,
ê1 = −ē1, and so on, into the expression for τ in Equation (4.62) to obtain another
relationship between τpk and τ̄pk:
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τ = τpkêpêk (4.66)

= τ11ê1ê1 + τ12ê1ê2 + τ13ê1ê3

+ τ21ê2ê1 + τ22ê2ê2 + τ23ê2ê3

+ τ31ê3ê1 + τ32ê3ê2 + τ33ê3ê3 (4.67)

= τ11ē1ē1 + τ12ē1ē2 − τ13ē1ē3

+ τ21ē2ē1 + τ22ē2ē2 − τ23ē2ē3

− τ31ē3ē1 − τ32ē3ē2 + τ33ē3ē3 (4.68)

Note that in Equation (4.68) the coefficients are in terms of the 123 coefficients of τ (no bar)

and the vectors are now the 1̄2̄3̄ vectors. Finally we compare Equations (4.68) and (4.64).
For these two expressions to equate (as they must since they both express τ , and like all
tensors, τ does not depend on a coordinate system), the coefficients of like dyads must be
equal. After careful comparison and using Equation (4.65), the symmetry conditions, we
see contradictions for τ̄13, τ̄23, τ̄31, and τ̄32:

τ̄13 = −τ̄13 (4.69)

τ̄23 = −τ̄23 (4.70)

τ̄31 = −τ̄31 (4.71)

τ̄32 = −τ̄32 (4.72)

This contradiction is only resolved if τ̄23 = τ23 = τ̄32 = τ32 = τ̄13 = τ13 = τ̄31 = τ31 = 0.
This important conclusion points out a significant reason for choosing shear flow as a

standard flow in rheology. Since we have determined that four of the nine stress components
are zero from the start (due to the symmetry of the flow), there are only five stress components
to be measured. This is a tremendous advantage from both experimental and computational
points of view.

For simple shear flow then, even for the most complex fluid, we can write

Total stress tensor
in shear flow

(general fluid)
� = pI+ τ =

⎛⎝p + τ11 τ12 0

τ21 p + τ22 0

0 0 p + τ33

⎞⎠
123

(4.73)

The stress tensor in shear flow has five nonzero components, but two are equal (τ21 = τ12),
leaving four unknowns. Compared to six unknown coefficients in the general symmetric
stress tensor, this is a worthwhile simplification.

4.4.2 ELONGATIONAL FLOW

The kinematics of elongational flow were also chosen because of their symmetry and the
consequent simplicity of the stress tensor for this flow. Looking back at the sketch of elonga-
tional flow in Figure 4.9 and examining the velocity field for this flow [Equation (4.24)], we
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see that the velocity field is unchanged for 180° rotations around any of the three Cartesian
axes (ê1, ê2, ê3). This high degree of symmetry may be used to show that the stress tensor
for simple elongational flow of a general fluid can be written as

Total stress tensor in
elongational flow

(general fluid)
� = pI+ τ =

⎛⎝p + τ11 0 0

0 p + τ22 0

0 0 p + τ33

⎞⎠
123

(4.74)

The procedure for showing this is analogous to that followed in Section 4.4.1 for shear.
Elongational flow is thus simpler in one way than shear since there are only three nonzero
components of τ for this flow.

4.5 Measuring Stresses in Standard Flows

Our final topic in this chapter concerns the relationship between pressure and flow-induced
normal stresses and a complication that crops up in the study of incompressible fluids. When
measuring stresses on a surface, it is the total stress, � = τ + pI, that is sensed by any
measuring device:

� =
⎛⎝p + τ11 τ12 τ13

τ21 p + τ22 τ23

τ31 τ32 p + τ33

⎞⎠
123

(4.75)

In the case of normal stresses, there are two parts to each �ii , the pressure and the extra
stress. In gases, pressure is related to other thermodynamic variables through an equation
of state. For example, for ideal gases the equation of state is the ideal-gas law

pV̂ = RT (4.76)

where V̂ is the specific volume of the gas (volume/moles), T is the temperature, and R is
the ideal-gas constant. The pressure is related to the density of the gas by

p = ρRT

M
(4.77)

whereM is the molecular weight (molar mass) of the fluid, or the average molecular weight
if it is a mixture. Thus, for a gas we can calculate the two contributions to the total stress,
p and τii separately. First we measure temperature and density to deduce pressure using
the equation of state; second we measure �ii and calculate the extra normal stress from
τii = �ii − p. This procedure will work for any compressible fluid for which an equation
of state is known.

For incompressible and nearly incompressible fluids, however, it is problematic to
make an independent measurement of p. If we plot density ρ versus p for an ideal gas
and for an incompressible fluid (Figure 4.16), we see the problem immediately. For the
ideal gas, density is a known linear function of pressure given by the ideal-gas law; if the
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gas is not ideal, the density as a function of pressure is given by an appropriate equation
of state. For the incompressible fluid, however, pressure does not affect the fluid density
since, by definition, the density of an incompressible fluid does not change. For polymers,
although density is a function of pressure, it is a weak function, and very little change
in density is observed over the widest range of pressures encountered. In addition, if the
pressure portion of �ii were sought for a polymer melt flow, an independent and highly
accurate measurement of density would be required. Thus we encounter a difficulty: we
cannot separate the measured quantity �ii into τii and p for incompressible (or nearly
incompressible) non-Newtonian fluids in shear flow. Note that this problem with pressure
is not encountered for Newtonian fluids in shear flow (e.g., water in a pipe) because the
normal stresses τ11, τ22, τ33 are zero [see Equation (4.13)]. For a Newtonian fluid in shear
flow a sensor on a pipe (transducer, manometer) measures just p.

Without the ability to measure p independently, it is impossible to separate p from
normal-stress measurements for general incompressible fluid flow. This is not a problem
in calculating momentum flux and solving flow problems, however, because it is only the
divergence of the stress (∇ ·� = ∇p + ∇ · τ ) that appears in the equation of motion; the
absolute magnitude of τ is not needed. It is a problem when considering measurements of
the stress tensor, however, since we cannot measure all five nonzero components of τ in
shear flow nor all three nonzero components of τ in elongational flow.

There is a way around this problem. The approach taken by rheologists is to consider
normal-stress differences instead of normal stresses. In simple shear flow, for example,
the five nonzero stress components are the shear stresses, τ21 = τ12, and the three normal
stresses τ11, τ22, and τ33. The shear stress can be measured directly, and for the normal
stresses two differences of normal stresses can be measured:

First normal-
stress difference

N1 ≡ �11 −�22 = τ11 − τ22 (4.78)

Figure 4.16 Density versus pres-
sure for an ideal gas, an incompress-
ible fluid, and a typical polymer
melt.
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Second normal-
stress difference

N2 ≡ �22 −�33 = τ22 − τ33 (4.79)

By considering differences in normal stresses rather than raw normal stresses, the issue of
the indeterminacy of pressure for incompressible fluids is avoided. The same philosophy
holds for measurements of elongational flow.

In summary, for shear flow there are three nonzero, unique stress quantities that
are measured, the shear stress, the first normal-stress difference, and the second normal-
stress difference. For elongational flow, there are two stress quantities to be measured for
incompressible fluids, τ33 − τ11 and τ22 − τ11. These quantities are not usually named.

We have now completed most of the work needed to understand how rheologists classify
fluids. What remains are the formal definitions of the material functions. These formal
definitions are based on the stress quantities defined in this chapter and include kinematic
functions from the flow fields used, that is, ς̇ (t) and ε̇(t). Material functions will be the
subject of the next chapter.

4 . 6 P R O B L E M S

4.1 Compare and contrast shear and shear-free flows.

4.2 Do the fluid particles experience acceleration in
steady shear flow? in steady uniaxial elongational
flow? Explain your answers.

4.3 Sketch the flow field in simple shear and in uniaxial
elongational flow.

4.4 What are the characteristics of shear and uniaxial
elongational flow that makes them appealing choices
for standard flows in rheology? How does the stress
tensor simplify for these flows?

4.5 Show that the third invariant of γ̇ , IIIγ̇ , is equal to

zero for simple shear flow. (See Section 2.3.4 for the
definition of tensor invariants.)

4.6 What is the rate-of-deformation tensors, γ̇ , for shear

flow and for uniaxial elongational flow? The velocity
fields for each of these flows are given.

shear: v =
⎛⎝ ς̇ (t)x2

0
0

⎞⎠
123

uniaxial: v =
⎛⎜⎝

−ε̇(t)
2 x1

−ε̇(t)
2 x2

ε̇(t)x3

⎞⎟⎠
123

4.7 What are the values for the three invariants (see
definitions in Section 2.3.4) of γ̇ for steady uniaxial

elongational flow?

4.8 What is the magnitude of the rate-of-deformation
tensor γ̇ ≡ |γ̇ | for biaxial extension? planar elonga-

tion? uniaxial extension?

4.9 Classify the following flows as elongational, biaxial
stretching, or planar elongational flows.

(a) v =
⎛⎝−4x1

0
4x3

⎞⎠
123

(b) v =
⎛⎝−6x1

−6x2

12x3

⎞⎠
123

(c) v =
⎛⎝ 3x1

3x2

−6x3

⎞⎠
123

4.10 Show that simple shear and the three shear-free flows
satisfy continuity for incompressible fluids.

4.11 We showed in steady shear flow (v = γ̇0x2ê1) that
as t goes to infinity, the separation l between two
particles not in the same shear plane follows the
following equation:

l = l0 γ̇0t

where the two particles are initially separated in the
y-direction by a distance l0 and t is time. This result
was derived for two particles in thex1x2-plane. Show
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that the equation above is equally valid for particles
not in the same x1x2-plane.

4.12 What is γ̇ ≡ |γ̇ | for a flow with the following

velocity field?

v (cm/s) =
⎛⎜⎝ 3x1

2x1 + x2

0

⎞⎟⎠
123

Recall that γ̇ ≡ ∇v + (∇v)T .

4.13 For the velocity field v (cm/s) =
⎛⎜⎝ 10x2

5x1 + 5x2

−5x3

⎞⎟⎠
123

(a) What is γ̇ = |γ̇ |? Recall that γ̇ = ∇v+ (∇v)T .

(b) Is the fluid compressible or incompressible?
Prove your answer.

4.14 Consider the points in a fluid with the Cartesian
coordinates given below (Figure 4.17):

A(0, 0, 0) B(1, 0, 0) C(1, 1, 0)
D(0, 1, 0) E(0, 0, 1)

D

C

x
z

B

A

E

y

Figure 4.17 Flow domain for Problem 4.14.

(a) At t = 0 a shear flow given by v below is
imposed on the flow domain above:

v (cm/s) =
⎛⎜⎝ 3y

0

0

⎞⎟⎠
xyz

Where will points A, B, C, D, and E be after 10
seconds?

(b) Where would the points be after 10 seconds
if instead the following elongational flow were
imposed at t = 0?

v =
⎛⎜⎝−x

−y
2z

⎞⎟⎠
xyz

(c) Calculate the rate-of-deformation tensor γ̇ and

the magnitude of the rate-of-deformation tensor
γ̇ ≡ |γ̇ | for each of the above flows.

(d) Comment on the similarities and differences be-
tween these two flows.

4.15 By performing 180° rotations of the coordinate sys-
tem around the basis vectors, show that the stress
tensor for uniaxial elongational flow simplifies to

τ =
⎛⎜⎝ τ11 0 0

0 τ22 0

0 0 τ33

⎞⎟⎠
123

4.16 Draw the particle paths [x = x(x0, y0, z0, t)] for
the following flow fields using a computer program.
Label axes quantitatively. Draw the flow fields in the
xy, xz, and yz planes.

(a) v (cm/s) =
⎛⎜⎝ 6y

0

0

⎞⎟⎠
xyz

(b) v (cm/s) =
⎛⎜⎝−3x

−3y

6z

⎞⎟⎠
xyz

4.17 Consider the coordinate systems shown in Figure
4.18.

(a) Write v =
⎛⎜⎝ 6x2

0

0

⎞⎟⎠
123

= 6x2ê1 in the x̄i coor-

dinate system shown above for ψ in general and
for ψ = 30°.
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x2

x1
ê1

ê2
ē2

ē1

ψ

e eˆ ¯3 3,
x3

Figure 4.18 Coordinate systems for Problem 4.17.

(b) Write τ =
⎛⎜⎝ 3 4 0

4 2 0

0 0 1

⎞⎟⎠
123

in the x̄i coordinate

system for ψ in general and for ψ = 30°.

(c) Write I ≡
⎛⎜⎝ 1 0 0

0 1 0

0 0 1

⎞⎟⎠
123

in the same two

coordinate systems.

4.18 The velocity field of a flow is given in one Cartesian
coordinate system (x̄, ȳ, z̄) as

v = (ȳ − √
2x̄)

⎛⎜⎝
1√
2

1

−
√

3
2

⎞⎟⎠
x̄ȳz̄

You are told that the flow is steady, simple shear in
some other Cartesian coordinate system.

(a) Find the unit vectors êx , êy , êz for the coordinate
system in which this flow has the classic form
[ς̇ (t) = constant = γ̇0]

v =
⎛⎜⎝ γ̇0y

0

0

⎞⎟⎠
xyz

= γ̇0yêx

Express the unit vectors êx , êy , and êz in the x̄,
ȳ, z̄ coordinate system.

(b) What is ς̇ (t) = γ̇o for this flow?
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5
Material Functions

For incompressible Newtonian fluids, flow properties are governed by the continuity
equation (conservation of mass), the equation of motion (conservation of momentum),
and the Newtonian constitutive equation:

∇ · v = 0 (5.1)

ρ

(
∂v

∂t
+ v · ∇v

)
= −∇p − ∇ · τ + ρg (5.2)

τ = −μ[∇v + (∇v)T ] (5.3)

There are two material parameters that appear in these equations, the density ρ and the
viscosity μ. The values of these two material constants are all the material information that
is needed to predict the behavior of incompressible Newtonian fluids.

For incompressible non-Newtonian fluids, the continuity equation and the equa-
tion of motion remain the same, but a different constitutive equation is needed, τ =
f (∇v, v,material information, etc.). Material information in this case is contained in ρ,
in the format of the constitutive equation, and in material-based information contained in
the unknown constitutive equation. For polymers and other non-Newtonian fluids, τ is a
much more complicated function of material properties than for Newtonian fluids, and it
is an important challenge in the field of rheology to find appropriate constitutive equations
for non-Newtonian fluids.

To find constitutive equations, experiments are performed on materials using standard
flows. There are numerous standard flows that may be constructed from the two sets of
flows (shear and elongational flows) presented in Chapter 4. The differences are arrived at
by varying the functions ς̇ (t) and ε̇(t), and in the case of shear-free flows, the parameter b.
When the flow field is established on a fluid of interest, three stress-related quantities can be
measured in shear flow (τ21, τ11 −τ22 = N1, and τ22 −τ33 = N2), and two stress differences
can be measured in elongational flow (τ33 − τ11 and τ22 − τ11). The stress responses that are
observed depend on what material is studied and the type of flow imposed on the material.
The responses will, in general, be functions of time, strain, or strain rate (or other kinematic
parameters related to flow) and will depend on the chemical nature of the material.

We see, then, that it is quite a bit more complicated to characterize non-Newtonian
fluids than Newtonian fluids. For Newtonian fluids, when we impose shear flow, for
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example, we measure a single stress τ21, the only nonzero component of τ for this flow
[see Equation (4.13)]. From τ21 and the imposed deformation rate ς̇ = dv1/dx2, we can
calculate the viscosity μ = −τ21/(dv1/dx2), which is all the material information we need
to specify the constitutive equation. For non-Newtonian fluids, the process is much more
involved. First of all, since we do not know the form of the constitutive equation, we do
not know what experiments to conduct. If, following the Newtonian example, we choose
to impose shear flow on a non-Newtonian fluid, we will measure the three nonzero stress
quantities τ21, N1, and N2, and we will usually find that −τ21/(dv1/dx2) is a function
of dv1/dx2, rather than being constant as for the Newtonian case. Thus, for fluids that
are not Newtonian, we find ourselves observing a wide variety of material properties
to be functions of kinematic parameters such as γ̇ = |dv1/dx2|, rather than constants.
The functions of kinematic parameters that characterize the rheological behavior of fluids
are called rheological material functions. The standardized material functions defined in
this chapter provide a common language and framework for measuring and predicting the
rheological behavior of non-Newtonian fluids.

If you are a bit confused about material functions so far, do not be alarmed. Until one
is familiar with non-Newtonian fluid response, no amount of careful explanation ahead of
time (such as was attempted here) will make the subject crystal clear. We recommend that
you read this entire chapter and perhaps push on through the next two chapters, and later,
when the subject material is more familiar, you can revisit the meaning and importance of
material functions.

5.1 Introduction and Definitions

In this chapter we define the material functions that are most commonly used in rheological
investigations of non-Newtonian fluids. They are equally valid for Newtonian fluids, as we
will see. In all cases, the definitions of a material function will consist of three parts, as
outlined next:

1. Choice of flow type, i.e., shear or elongation. We will only consider material functions
based on flows of these two types.

2. Details of the functions ς̇ (t) or ε̇(t) and the parameter b that appear in the definitions
of the flows. Since shear flow is defined as

v =
⎛⎝ ς̇ (t)x2

0
0

⎞⎠
123

(5.4)

and elongation as

v =
⎛⎜⎝

− 1
2 ε̇(t)(1 + b)x1

− 1
2 ε̇(t)(1 − b)x2

ε̇(t)x3

⎞⎟⎠
123

(5.5)
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we must choose the actual functional forms of ς̇ (t) or ε̇(t) and b in order to fully specify
the flow. These functions may be constants, in which case we are considering steady
flows, or they may be time varying (unsteady flows).

3. Material function definitions. The material functions themselves will be based on the
measured stress quantities τ21, N1, and N2 in shear flow, and τ33 − τ11 or τ22 − τ11 for
elongational flows.

Material functions are either predicted or measured. If we are predicting material
functions, we will use the kinematics [the type of flow and the chosen form of the
functions ς̇ (t) or ε̇(t)] and the constitutive equation to predict the stress components and
subsequently calculate the material function. If we are measuring material functions, we
will impose the kinematics on a material in a flow cell and measure the stress components.1

When choosing a constitutive equation to describe a material, we need both to measure
material functions on the fluid in question and to predict these material functions for
a variety of constitutive equations. The constitutive equation that is found to predict a
fluid’s actual measured material functions most closely is the most appropriate constitutive
equation to use when modeling flows of that material. Material functions are also used in
qualitative rheological analysis, such as in quality control applications and the evaluation
of new materials (Figure 5.1) [61]. When dealing with the rheological properties of

Figure 5.1 Role of material functions in rheological analysis.

1 An exception to this order of operation is creep, where the stress is prescribed rather than the
function ς̇ (t) or ε̇(t); see Sections 5.2.2.3 and 5.3.2.2.
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non-Newtonian fluids one must have a framework for the discussion; material functions
form this framework.

5.2 Shear Flow

Recall that the velocity field given here defines simple shear flow:2

v =
⎛⎝ ς̇ (t)x2

0

0

⎞⎠
123

(5.6)

The different types of shear-flow material functions are defined for different shear-rate
functions ς̇ (t). We pause here to reiterate the difference between γ̇ = |γ̇ | and ς̇ (t) = γ̇21(t).

For shear flow, the quantity γ̇ (t) has the same magnitude as ς̇ (t) = γ̇21(t); the quantity γ̇ ,
however, is always positive, since it is defined as the magnitude of a tensor. On the other
hand, ς̇ (t) = γ̇21(t) may be positive or negative, depending on the direction of flow and
the coordinate system being used. It is the quantity ς̇ (t) that appears in the definitions we
are going to give here. The reason for this is that when the direction of flow changes, the
sign on the shear stress also changes. For material functions (such as viscosity) to remain
positive quantities independent of the direction of shear, we define them such that both
the numerator and the denominator change sign when the direction of flow changes. When
we plot material functions as a function of deformation rate, however, we use |ς̇ | = γ̇ as
the independent variable so that we are plotting the positive material function3 versus a
positive quantity.

5.2.1 STEADY SHEAR

For steady shear flow, ς̇ (t) = γ̇0 is a constant, that is, the flow is at steady state:

Kinematics for
steady shear

ς̇ (t) = γ̇0 (5.7)

This flow is typically produced in a rheometer where the fluid is forced through a capillary at
a constant rate, and the steady pressure required to maintain the flow is measured. Another
common method is to use a cone-and-plate or parallel-plate geometry and to rotate the cone
or plate at a constant angular velocity while measuring the torque generated by the fluid
being tested (see Chapter 10 and Figure 4.4).

2 We will only discuss simple shear. See footnote 1 in Chapter 4 for more on nonsimple shear flows
for which the shear material functions defined here are equally valid.
3 Material functions are usually defined so that they are positive. One exception to this is the shear
normal-force material function �2; for polymers, this is usually negative. In addition, there are
materials for which some usually positive material functions become negative. For example, for most
polymers the normal-force material function�1 is positive; for polymer liquid crystals, however,�1

can be positive or negative.



5.2 Shear Flow 135

For the case of steady-state flow, the stress tensor is constant in time, and three constant
stress quantities are measured, τ21, N1, and N2. There are three material functions that are
defined with these three stress quantities, namely:4

Viscosity η(γ̇ ) ≡ −τ21

γ̇0
(5.8)

First normal-
stress coefficient

�1(γ̇ ) ≡ −N1

γ̇ 2
0

= −(τ11 − τ22)

γ̇ 2
0

(5.9)

Second normal-
stress coefficient

�2(γ̇ ) ≡ −N2

γ̇ 2
0

= −(τ22 − τ33)

γ̇ 2
0

(5.10)

where γ̇0 may be positive or negative, depending on the flow direction and the choice of
coordinate system.

We now see that the viscosity η is defined for any fluid subjected to steady shear flow
as the ratio of the steady-state shear stress to the constant shear rate γ̇0. For Newtonian
fluids this is the same meaning as before (recall Newton’s law of viscosity), and η = μ is
independent of the shear rate, γ̇ = |γ̇0|. For non-Newtonian fluids, the quantity −τ21/γ̇0 = η
will be a function of the shear rate, η = η(γ̇ ). The zero-shear viscosity η0 is defined as

lim
γ̇−→0

η(γ̇ ) ≡ η0 (5.11)

The material functions�1 and�2 are also functions of γ̇ in general; both functions are zero
for Newtonian fluids (see the example that follows). For most polymers�1 is positive, and
�2 is small and negative (�2 ≈ −0.1�1 [26]). Examples of η(γ̇ ), �1(γ̇ ), and �2(γ̇ ) for
various polymeric systems are presented and discussed in more detail in Chapter 6.

EXAMPLE
Calculate η(γ̇ ), �1(γ̇ ), and �2(γ̇ ) for an incompressible Newtonian fluid.

SOLUTION

These material functions are defined with respect to the following kinematics:

v =
⎛⎝ ς̇ (t)x2

0

0

⎞⎠
123

(5.12)

4 The Society of Rheology has official nomenclature for shear and elongational material functions
[60], and, for the most part, we have adhered to this adopted nomenclature. There are some exceptions,
however, such as our τ21 versus their σ for shear stress, where we have chosen to follow instead the
widely used nomenclature of Bird, Armstrong, and Hassager [26]. There are also some instances of
newer material functions where no nomenclature has officially been adopted. In these cases we have
defined symbols that follow the pattern of The Society of Rheology system of nomenclature.
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ς̇ (t) = γ̇0 = constant (5.13)

The stress for an incompressible Newtonian fluid is given by its constitutive equation:

τ = −μγ̇ (5.14)

From these kinematics, the rate-of-deformation tensor γ̇ can be calculated as follows:

γ̇ = ∇v + (∇v)T (5.15)

=
⎛⎝ 0 0 0

ς̇ (t) 0 0

0 0 0

⎞⎠
123

+
⎛⎝ 0 ς̇ (t) 0

0 0 0

0 0 0

⎞⎠
123

(5.16)

=
⎛⎝ 0 ς̇ (t) 0

ς̇ (t) 0 0

0 0 0

⎞⎠
123

(5.17)

Since ς̇ (t) = γ̇0 is a constant, the tensor γ̇ is a constant, and we can calculate τ for all times

for an incompressible Newtonian fluid in steady shear flow:

τ =
⎛⎝ 0 −μγ̇0 0

−μγ̇0 0 0

0 0 0

⎞⎠
123

= constant (5.18)

Turning to the definitions of the material functions η, �1, and �2 we can now calculate
these quantities for an incompressible Newtonian fluid:

η ≡ −τ21

γ̇0
= μ (5.19)

�1 ≡ −(τ11 − τ22)

γ̇ 2
0

= 0 (5.20)

�2 ≡ −(τ22 − τ33)

γ̇ 2
0

= 0 (5.21)

5.2.2 UNSTEADY SHEAR

Most polymers differ not only in their steady-state responses to shear flow but also
in their unsteady-state responses. Non-steady-state measurements are made in the same
geometries as steady-state measurements, that is, capillary flow, torsional cone-and-plate
flow, and so on. The pressures and torques measured are functions of time when the flow
is unsteady.

There are many different types of time-dependent shear flows, several of which we will
discuss next. Shear-flow material functions are compared and summarized in Figure 5.2.
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Figure 5.2 Summary of prescribed shear rate ς̇ (t), strain γ21(0, t), and shear stress τ21 in various
shear-flow material functions. The shear strain is defined in Section 5.2.2.3.

5.2.2.1 Shear-Stress Growth

Measurements of the viscosity are the most common rheological measurements, and these
are carried out in steady-state flow. Before steady state is reached, however, there is a start-
up portion to the experiment in which the stress grows from its zero at-rest value to the
steady-state value. This start-up experiment is one time-dependent shear-flow experiment
that can be carried out easily.

The unsteady shear flows we are discussing only differ in the function ς̇ (t) used in the
definition of v for shear flow, v = ς̇ (t)x2ê1. For steady-state flow (Figure 5.2a), ς̇ (t) = γ̇0 =



138 MATERIAL FUNCTIONS

constant at all time. The function ς̇ (t) that is used in the stress-growth experiment is (see
Figure 5.2b)

Kinematics for
shear-stress growth

ς̇ (t) =
{

0 t < 0

γ̇0 t ≥ 0
(5.22)

where again γ̇0 may be positive or negative. This function implies that there is no flow for
time before t = 0; at t = 0 a constant shear rate γ̇0 is imposed on the fluid.

The response of a general fluid to this flow will be measured as three time-dependent
stress quantities, τ21(t, γ̇ ),N1(t, γ̇ ), andN2(t, γ̇ ). The three material functions defined are

Shear-stress
growth coefficient

η+(t, γ̇ ) ≡ −τ21

γ̇0
(5.23)

First normal-stress
growth coefficient

�+
1 (t, γ̇ ) ≡ −(τ11 − τ22)

γ̇ 2
0

(5.24)

Second normal-stress
growth coefficient

�+
2 (t, γ̇ ) ≡ −(τ22 − τ33)

γ̇ 2
0

(5.25)

In general, all of these material functions depend on time and the magnitude of the applied
shear rate γ̇ , as indicated. Note that these definitions closely resemble the material functions
for steady shear flow, except that the stresses depend on time. At steady state these material
functions become the steady-state functions:

lim
t−→∞ η

+(t, γ̇ ) = η(γ̇ ) (5.26)

lim
t−→∞�

+
1 (t, γ̇ ) = �1(γ̇ ) (5.27)

lim
t−→∞�

+
2 (t, γ̇ ) = �2(γ̇ ) (5.28)

EXAMPLE
Calculate η+(t, γ̇ ), �+

1 (t, γ̇ ), and �+
2 (t, γ̇ ) for an incompressible Newtonian fluid.

SOLUTION

Whenever we seek to calculate a material function we begin with the kinematics. For the
material functions η+(t, γ̇ ), �+

1 (t, γ̇ ), and �+
2 (t, γ̇ ) the kinematics are given by

v =
⎛⎝ ς̇ (t)x2

0

0

⎞⎠
123

(5.29)
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ς̇ (t) =
{

0 t < 0

γ̇0 t ≥ 0
(5.30)

The stress for an incompressible Newtonian fluid is τ = −μγ̇ , and in the same manner as

in the last example, we can calculate γ̇ from the given kinematics:

γ̇ = ∇v + (∇v)T (5.31)

=
⎛⎝ 0 ς̇ (t) 0

ς̇ (t) 0 0

0 0 0

⎞⎠
123

(5.32)

For this flow ς̇ (t) is not constant, and thus γ̇ and τ are not constant either but vary with

time. For t < 0, ς̇ (t) = 0, and therefore γ̇ and the stress tensor τ are both the zero tensor,

τ = 0 t < 0 (5.33)

For time greater than or equal to zero, ς̇ (t) = γ̇0 = constant, and γ̇ and τ are given by

γ̇ =
⎛⎝ 0 γ̇0 0

γ̇0 0 0

0 0 0

⎞⎠
123

t ≥ 0 (5.34)

τ =
⎛⎝ 0 −μγ̇0 0

−μγ̇0 0 0

0 0 0

⎞⎠
123

t ≥ 0 (5.35)

Turning to the definitions of the material functions η+(t, γ̇ ), �+
1 (t, γ̇ ), and �+

2 (t, γ̇ )

[Equations (5.23)–(5.25)] we obtain

η+ ≡ −τ21(t)

γ̇0
= −1

γ̇0

{
0 t < 0

−μγ̇0 t ≥ 0
(5.36)

=
{

0 t < 0
μ t ≥ 0

(5.37)

�+
1 (t) ≡ − [τ11(t)− τ22(t)]

γ̇ 2
0

= −1

γ̇ 2
0

{
0 t < 0
0 t ≥ 0

(5.38)

= 0 (5.39)

�+
2 (t) ≡ − [τ22(t)− τ33(t)]

γ̇ 2
0

= −1

γ̇ 2
0

{
0 t < 0
0 t ≥ 0

(5.40)

= 0 (5.41)

We see that no nonzero normal stresses, transient or otherwise, are predicted by
the Newtonian constitutive equation. The shear-stress growth coefficient η+ is nonzero,
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η t+( )

t

μ

Figure 5.3 Stress growth function predicted by the Newtonian
constitutive equation. �+

1 (t, γ̇ ) and �+
2 (t, γ̇ ) are both zero and

η+ is independent of the shear rate γ̇ .

however, and is given by a function that jumps instantaneously from zero to the steady
value of viscosityμ at t = 0, the time at which the flow is imposed on the fluid (Figure 5.3).
This instantaneous stress response is a signature of Newtonian fluids. Note also that η+ is
not a function of the shear rate γ̇ .

5.2.2.2 Shear-Stress Decay
Some information about the relaxation properties of non-Newtonian fluids may be obtained
by observing how the steady-state stresses in shear flow relax when the flow is stopped.
The cessation of steady shearing in the experiment corresponds to a shear flow with the
function ς̇ (t, γ̇ ) defined as follows (Figure 5.2c):

Kinematics of
shear-stress decay

ς̇ (t) =
{
γ̇0 t < 0
0 t ≥ 0

(5.42)

The time-dependent material functions for shear-stress decay after cessation of steady shear
are defined analogously to the stress growth material functions; in general they also vary
with γ̇ .

Shear-stress
decay coefficient

η−(t, γ̇ ) ≡ −τ21

γ̇0
(5.43)

First normal-stress
decay coefficient

�−
1 (t, γ̇ ) ≡ −(τ11 − τ22)

γ̇ 2
0

(5.44)

Second normal-stress
decay coefficient

�−
2 (t, γ̇ ) ≡ −(τ22 − τ33)

γ̇ 2
0

(5.45)

Calculating η−, �−
1 , and �−

2 for a Newtonian fluid is straightforward.
While Newtonian fluids relax instantaneously when the flow stops (stress is propor-

tional to the rate of deformation), for many non-Newtonian fluids relaxation takes a finite
amount of time. The time that characterizes a material’s stress relaxation after deformation
is called the relaxation time λ. A dimensionless number that is used to characterize
the importance of relaxation time in the analysis of a flow is the Deborah number De,
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which is the ratio of the material relaxation time scale to the time scale of the flow
being studied:

De ≡ material relaxation time

flow time scale
(5.46)

= λ

tflow
(5.47)

The Deborah number can help predict the response of a system to a particular deformation.
For example, if De is large, material relaxation determines the response. If De is small
or zero, the flow time scale determines the system response. The Deborah number is
therefore important in determining whether material relaxation effects dominate in a given
application [215].

5.2.2.3 Shear Creep

An alternative way of producing steady shear flow is to drive the flow at constant stress
τ0, rather than at constant shear rate γ̇0. This can be done in a capillary flow by imposing a
constant-pressure driving stress or in a torsional cone-and-plate or parallel-plate rheometer
by driving the plate with a constant-torque motor. Another way to produce a constant driving
force is to use a weight attached through a pulley [37] to drive the flow (Figure 5.4). This
method had widespread use in the early days of rheological testing [37]. Since both the
stress and the shear rate are constant at steady state, whether we drive the flow at a constant
stress or at a constant shear rate, the same steady state results.

The unsteady response to shear flow when a constant stress is imposed is necessarily
different from the response when a constant strain rate is imposed. In the constant-strain-rate
experiment, the buildup in stress is measured in the start-up experiment (as discussed in
Section 5.2.2.1), whereas in the constant-stress experiment, the time-dependent deformation
of the sample is measured during the transient flow. The unsteady shear experiment where
the stress is held constant is called creep. In creep, rather than prescribing the shear-rate

Oven Mass

Samples

Figure 5.4 In this apparatus [37] a
shear flow is created in two samples
situated on either side of a moving
centerpiece. The force of gravity
on a weight connected to a pulley
drives the flow. This flow geometry
produces a constant driving stress
in the shear flows in the two sam-
ples. Source: Physical Properties
of Polymers, F. Bueche, Copyright
© 1962 by Wiley Interscience. Re-
printed by permission of John Wiley
& Sons, Inc.
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function ς̇ (t), as we have been doing up until now (and will do for all material functions
other than creep), we will prescribe the shear stress (Figure 5.2d):

Prescribed
stress function

for creep
τ21(t) =

{
0 t < 0

τ0 = constant t ≥ 0
(5.48)

What is measured in creep is the deformation of a sample, that is, how the sample changes
shape over some time interval as a result of the imposition of the stress τ0. To understand
the measurement of deformation we need to spend time at this point discussing in some
detail the concept of strain.

To measure deformation in shear we use a quantity called the shear strain. Strain is
a measure of the change of the shape of a fluid particle, that is, how much stretching or
contracting a fluid experiences. Shear strain is denoted by γ21(tref , t), in which the subscript
21 identifies the strain that results from a shear flow in which ê2-planes (planes with unit
normal ê2) slide over each other in the 1-direction. There are two arguments of γ21 because
strain measures shape at a particular time with respect to the shape of the fluid particle
at some other time. The expression γ21(tref , t) refers to the strain at time t relative to the
configuration of the fluid at time tref . In the discussion that follows the reference time tref

is often taken to be tref = 0. The shear strain γ21(tref , t) may be abbreviated as γ21(t), or
simply γ (t), where shear flow and tref = 0 are understood.

Although the concept of strain is straightforward—a measure of the deformation of
fluid particles in a flow—the formal definition is somewhat involved since it is important
to use a deformation measure that is applicable to all flows. For now we will discuss strain
in shear flow only. For short time intervals, shear strain is defined as

Shear strain
(small deformations)

γ21(tref , t) ≡ ∂u1

∂x2
(5.49)

where u1 = u1(tref , t) is called the displacement function in the x1-direction (Figure 5.5).
The displacement function gives the position of a particle in a flow at time t relative to its
position at time t = tref . In general, let r(tref) be a vector that indicates the position of a
fluid particle at time tref , and let r(t) be the same vector at time t . Then the displacement
function u(tref , t) is

r (tref) =
⎛⎝ x1(tref)

x2(tref)

x3(tref)

⎞⎠
123

(5.50)

r(t) =
⎛⎝ x1(t)

x2(t)

x3(t)

⎞⎠
123

(5.51)

and

Displacement
function

u(tref , t) ≡ r(t)− r(tref) (5.52)
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Particle path

Flow

x3

x2

x1

r t– ref( )

u t t– ref( , )

r t– ( )

P t( )ref P t( )

Figure 5.5 Definition of the displacement function u(tref , t), which gives the position of a particle
P at time t relative to its position at tref . The displacement function is a vector, which in the x1, x2,
x3 coordinate system has components u1, u2, and u3. In shear flow, u2 = u3 = 0.

The x1-direction displacement function u1 is just the 1-component of u; u1(tref , t) =
x1(t)− x1(tref).

A physical understanding of the definition of shear strain can be gained from Figure 5.6.
For two points P1 and P2, which at time tref are on the x2-axis in a shear flow, the
displacement functions u(tref , t) will be lines parallel to the x1-axis, u = u1ê1. Since point
P2 is located in the part of the flow with higher velocity, u1 for point P2 will be longer than
u1 for point P1 for the time interval t − tref . We see from Figure 5.6 that the shear strain
γ21(tref , t) = ∂u1/∂x2 ≈ �u1/�x2 is the inverse of the slope of the side of the deformed
particle. Thus strain is related to the change in shape of a fluid particle in the vicinity of points
P1 andP2, and the formal definition of shear strain [Equation (5.49)] matches our qualitative
understanding that strain is a measure of the deformation of fluid particles in a flow.

Returning to the formal definition of strain, we can now relate γ21(0, t) to γ̇0, the shear
rate in steady shear flow. For steady shear flow over short time intervals, the particle position
vector r(t) is

Figure 5.6 Physical interpretation of shear strain.
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r =
⎛⎝ x1(t)

x2(t)

x3(t)

⎞⎠
123

=
⎛⎝ x1(tref)+ (t − tref)γ̇0x2

x2(tref)

x3(tref)

⎞⎠
123

(5.53)

where r(tref) is the initial particle position, and the velocity is v = γ̇0x2ê1. With r now
written for any particle in the shear flow, we can calculate the strain in the flow using
Equation (5.49). For steady simple shear flow over a short time interval from 0 to t then,
we calculate the displacement function and strain as

u1(tref , t) = (t − tref) γ̇0x2 (5.54)

and

Strain in steady shear
over short interval

γ21(0, t) = ∂u1

∂x2
= γ̇0t (5.55)

Recall that we are interested in strain at this point in the text because we need a way
to describe sample deformation in the creep experiment, since for creep, stress is imposed
and deformation is measured. The deformation in the creep experiment occurs over a long
time interval, and therefore Equation (5.49), which gives the strain over short intervals, is
not sufficient for calculating strain in this flow. We can, however, break a large strain into
a sequence of N smaller strains:

γ21(0, t) = γ (0, t1)+ γ (t1, t2)+ · · · + γ (tp, tp+1
) + · · · + γ [(N − 1)�t, t] (5.56)

where tp = p�t and �t = t/N . The total strain from 0 to t is then the sum of all the
smaller strains. For each of the small strains, Equation (5.49) may be used along with the
displacement function in Equation (5.54). We will try the calculation first for steady flow. In
terms of the variables defined here, the steady shear-flow displacement function u1(tp, tp+1)

[Equation (5.54)] is given for short even intervals �t by

u1
(
tp, tp+1

) = �t γ̇0 x2 (5.57)

Therefore, for each small-strain interval,

γ (tp, tp+1) = ∂u1

∂x2
= �t γ̇0 (5.58)

which is independent of time. Therefore, the total strain over the entire interval from 0 to t
is given by

γ21(0, t) =
N−1∑
p=0

γ21(tp, tp+1) (5.59)

= N�t γ̇0 = t γ̇0 (5.60)

This is the same as the result we obtained earlier for short time intervals [Equation (5.55)],
and it is valid in steady shear flow.
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For unsteady shear flows (creep is unsteady), the relationship between γ21(0, t) and
the measured shear rate γ̇21(t) is a bit more complicated since γ̇21 varies with time. The
displacement function [Equation (5.57)] is the same, except that the constant shear rate γ̇0

is replaced by the measured time-dependent shear-rate function γ̇21(t) (the only nonzero
component of the rate-of-deformation tensor γ̇ ). We will now consider the general case

of strain between two times t1 and t2. First we break up the interval into N pieces of
duration �t :

tp = t1 + p�t, p = 0, 1, 2, . . . , N − 1 (5.61)

u1
(
tp, tp+1

) = �t γ̇21
(
tp+1

)
x2 (5.62)

The strain for each interval is calculated using Equation (5.49):

γ21
(
tp, tp+1

) = ∂u1

∂x2
= �t γ̇21

(
tp+1

)
(5.63)

which varies with time because of the time dependence of γ̇21(tp+1). Thus, for unsteady
shear flow, a large strain between times t1 and t2 is given by

γ21 (t1, t2) =
N−1∑
p=0

γ21
(
tp, tp+1

) =
N−1∑
p=0

�t γ̇21
(
tp+1

)
(5.64)

In the limit that �t goes to zero, Equation (5.64) becomes the integral of γ̇21(t
′) between

t1 and t2:

γ21 (t1, t2) = lim
�t−→0

⎡⎣N−1∑
p=0

�t γ̇21
(
tp+1

)⎤⎦ (5.65)

and

Strain at t2
with respect to

fluid configuration at t1
in unsteady shear flow

γ21 (t1, t2) =
∫ t2

t1

γ̇21(t
′) dt ′ (5.66)

This expression for strain is valid in unsteady shear flows such as creep.
From Equation (5.66) we see that the shear strain in the creep experiment may be

obtained by measuring the instantaneous shear rate γ̇21(t) as a function of time and
integrating it over the time interval. The quantity γ̇21(t) can be measured in a straightforward
manner in the torsional cone-and-plate or parallel-plate geometries by recording the time-
dependent angular velocity of the cone (or plate) (see Chapter 10).

Now that we have a measure for sample deformation in shear flow, we are ready to
proceed with the definitions of material functions for shear creep. In the creep experiment,
because the stress is prescribed rather than measured, the material functions relate the
measured sample deformation (strain) to the prescribed (constant) stress τ0. The material
function that is defined for creep is called the creep compliance J (t, τ0):
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Shear creep
compliance

J (t, τ0) ≡ γ21(0, t)

−τ0
(5.67)

γ (0, t) is obtained from a measurement of γ̇21 and Equation (5.66). The creep compliance
curve J (t, τ0) has many features, and several other material functions are defined that are
related to J (t, τ0) (see Figure 5.7). At long enough times, the strain becomes linear with
time, that is, the flow reaches steady state, and the slope of J (t, τ0) is the steady-state
shear rate, dγ21/dt = γ̇∞ = constant, divided by the imposed stress −τ0. This ratio is just
the inverse of the steady shear viscosity. The steady-state compliance Js is defined as the
difference between the compliance function at a particular time at steady state and t/η, the
steady-flow contribution to the compliance function at that time:

Steady-state
compliance

Js(τ0) ≡ J (t, τ0)|steady state − t

η(γ̇∞)
(5.68)

Js(τ0) may be calculated by extrapolating the linear portion of J (t, τ0) back to time t = 0
(Figure 5.7).

Also commonly measured in the creep experiment is something called the creep
recovery. After the creep deformation has reached steady state, the shear stress is suddenly
removed (set to zero) at time t ′ = 0. When the driving stress is removed, elastic and
viscoelastic materials will spring back in the direction opposite to the initial flow direction,
and the amount of strain that is recovered is called the steady-state recoverable shear strain
or recoil strain γr(t ′). Note that in the shear recovery experiment, the flowing sample is
constrained so that no recovery may take place in the x2-direction.

γr(t) ≡ γ21(0, t2)− γ21(0, t) (5.69)

=
∫ t2

0
γ̇ (t ′′) dt ′′ −

∫ t

0
γ̇ (t ′′) dt ′′ (5.70)

=
∫ t2

0
γ̇ (t ′′) dt ′′ −

[∫ t2

0
γ̇ (t ′′) dt ′′ +

∫ t

t2

γ̇ (t ′′) dt ′′
]

(5.71)

Figure 5.7 Relationships among the
various material functions in the shear
creep experiment. All properties are in
general a function of the imposed shear
stress τ0.
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= −
∫ t

t2

γ̇ (t ′′) dt ′′ (5.72)

In terms of t ′, the time scale that starts at the beginning of the recovery experiment, we have

γr(t
′) = −

∫ t ′

0
γ̇ (t ′′) dt ′′ = −γ21(0, t

′) (5.73)

From the recoil strain, the material function recoverable compliance Jr(t ′, τ0) is defined.
The recoverable compliance is also called the recoil functionR(t ′, τ0) (see Figure 5.7) [60]:

Recoverable
creep compliance

Jr(t
′, τ0) ≡ γr(t

′)
−τ0

(5.74)

Recoil function R(t ′, τ0) = Jr(t ′, τ0) (5.75)

The recoverable shear γ∞ is the ultimate strain recovered after the recoiling sample has
come to rest, and it is used to define the ultimate recoil function R∞(τ0):

Recoverable shear γ∞ ≡ lim
t ′−→∞ γr(t

′) (5.76)

Ultimate recoil function R∞(τ0) ≡ lim
t ′−→∞R(t

′, τ0) = γ∞
−τ0

(5.77)

For τ0 not too large (linear viscoelastic limit, see Chapter 8) the strain at all times
γ (t) is just the sum of the strain that is recoverable γr , as defined, and the strain that
is not recoverable, that is, the strain due to steady viscous flow at γ̇∞, calculated from
Equation (5.60) (Figure 5.8):

Nonrecoverable shear strain
due to steady shear flow

γ̇∞t (5.78)

where γ̇∞ is the shear rate attained at steady state in the creep experiment. Thus, in the
linear viscoelastic limit,

γ (t) = γr(t)+ t γ̇∞ (5.79)

and dividing by −τ0, we obtain

J (t) = R(t)+ t

η0
(5.80)

where we have made the substitution η0 = −τ0/γ̇∞. Equation (5.80) can be used to calculate
R(t) in experiments in which the linear viscoelastic compliance J (t) and the zero-shear
viscosity η0, are obtained. Finally, we had previously defined the steady-state compliance
Js(τ0), which for the linear viscoelastic limit may be written as J 0

s [see Equation (5.68)]:
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J t( )

J 0
s R J0 0

s∞ =
R t( )′

t ′ , Recovery

t2

t2

– t2

η0

η0
Constant slope = 1

0

0

t, Creep

Figure 5.8 Relationships among the
various material functions in the shear
creep experiment in the linear visco-
elastic limit. All properties are indepen-
dent of the imposed shear stress τ0, and
the steady-state compliance equals the
ultimate recoil function J 0

s = R0∞.

J (t)|steady state = J 0
s + t

η0
(5.81)

By comparing this with Equation (5.80) we see that in the linear viscoelastic limit (denoted
by superscript 0), the ultimate recoil is equal to the steady-state compliance:

R(t)|steady state = R0
∞ (5.82)

R0
∞ = J 0

s (5.83)

There are some important advantages to creep flow compared to a shear-rate-controlled
flow, including a more rapid approach to steady state. In addition, the creep-recovery
experiment gives important insight into elastic memory effects [211]. Another advantage
of creep is that complex materials are often sensitive to the applied stress levels rather than
to applied shear-rate levels. In the creep experiment, stress is maintained constant, and it
is straightforward to determine any critical stresses. In a rate-controlled shear experiment
[ς̇ (t) = γ̇21(t) controlled] the effects of critical stresses are often buried in complex,
transient stress and rate responses that are difficult to interpret.

EXAMPLE
Calculate the shear creep compliance J (t) for an incompressible Newtonian fluid.

SOLUTION

We begin, as usual, with the kinematics:

τ21(t) =
{

0 t < 0

τ0 t ≥ 0
(5.84)

v =
⎛⎝ γ̇21(t)x2

0

0

⎞⎠
123

(5.85)
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The case of creep differs from the other shear material functions we discuss in that
ς̇ (t) = γ̇21(t) is not specified as part of the defined kinematics, rather τ21(t) is prescribed.
For a Newtonian fluid in shear flow, τ is given by

τ = −μγ̇ (5.86)

= −μ [∇v + (∇v)T ] (5.87)

=
⎛⎝ 0 −μγ̇21(t) 0

−μγ̇21(t) 0 0

0 0 0

⎞⎠
123

(5.88)

We can calculate γ̇21(t) for an incompressible Newtonian fluid in creep from the 21-
component of τ :

τ21 = −μγ̇21(t) = τ0 (5.89)

γ̇21(t) = −τ0

μ
= constant t ≥ 0 (5.90)

The definition of shear creep compliance J (t) includes the strain γ21(0, t), which can
be calculated from γ̇21(t) using Equation (5.66):

γ21(0, t) =
∫ t

0
γ̇21(t

′) dt ′ (5.91)

=
∫ t

0

−τ0

μ
dt ′ = −τ0

μ
t (5.92)

Compliance is then calculated from its definition:

J (t) ≡ γ21(0, t)

−τ0
= 1

μ
t t ≥ 0 (5.93)

This result is sketched in Figure 5.9.
The recoverable compliance or recoil function is calculated from Equation (5.80). Note

that for a Newtonian fluid η0 = μ and therefore,

Jr(t) = R(t) = J (t)− t

η0
= 0 (5.94)

Figure 5.9 Shear creep compliance J (t) for an incompressible
Newtonian fluid of viscosity μ.



150 MATERIAL FUNCTIONS

We see that there is no recovery upon cessation of shearing of a Newtonian fluid. This is
because Newtonian fluids generate a shear stress based on the value of the instantaneous
strain rate, which is zero when flow stops.

5.2.2.4 Step Shear Strain

The three sets of unsteady shear material functions that we have described so far (startup,
cessation, creep) have all been variations of basic steady shearing flow. There are also
important material functions that have been defined for shear deformations that have little
to do with steady shear flow. The step-strain experiment discussed in this section falls into
that category.

One of the interesting properties of polymers and other viscoelastic materials is that
they have partial memory, that is, the stresses generated in viscoelastic materials do not
relax immediately but rather decay over time. The time for the decay to occur is a kind
of memory time or relaxation time for the fluid. To investigate relaxation time, one of the
most commonly employed experiments is the step-strain experiment in shear flow. In this
experiment, a sample at rest between parallel plates is suddenly disturbed by the imposition
of a constant, large, shear rate, but only for a small time ε (see Figure 5.2e). In a cone-and-
plate or parallel-plate instrument this is accomplished by rotating the plate rapidly through a
set angle. The time-dependent stress generated by this action is then recorded. This flow can
also be generated in a sliding-plate rheometer by displacing one plate rapidly by a desired
distance and measuring the shear stress with a flush-mounted transducer [88, 89, 61].

The shear-rate function for the step-strain experiment is

Kinematics of
step shear strain

ς̇ (t) = lim
ε−→0

⎧⎨⎩
0 t < 0

γ̇0 0 ≤ t < ε
0 t ≥ ε

γ̇0ε = constant

(5.95)

The limit expresses that the shearing should occur as rapidly as possible. The condition
γ̇0ε = constant relates to the magnitude of the shear strain imposed, as will be discussed next.

In the previous discussion of creep, we defined shear strain as

γ21 (tref , t) = ∂u1

∂x2
(5.96)

Further we saw that for a general shear flow (steady or unsteady):

γ21 (tref , t) =
∫ t

tref

γ̇21(t
′) dt ′ (5.97)

If we take the time derivative of both sides of this equation and apply the Leibnitz rule, we
obtain

Relationship between
strain and strain rate

in shear

dγ (tref , t)

dt
= γ̇21(t) (5.98)
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Thus, the shear-rate component γ̇21(t) is just the time derivative of the strain γ21(tref , t).
Further, we can now see that the dot nomenclature used in writing the shear rate γ̇21(t),
which is notation familiar from differential equation courses to represent time derivatives,
has this same meaning in the nomenclature for strain and strain rate in rheology.

For the step-strain experiment, the integral in Equation (5.97) is quite simple. The
reference time is taken to be tref = −∞.5 For time t less than zero, the strain is zero since
no flow has yet occurred, and the integral for strain is zero. For times greater than zero, the
integral gives nonzero values:

γ21(t) =
∫ t

−∞
γ̇21(t

′) dt ′ (5.99)

=
∫ 0

−∞
0 dt ′ +

∫ ε

0
γ̇0 dt

′ +
∫ t

ε

0 dt ′ (5.100)

= γ̇0ε ≡ γ0 (5.101)

We see why this is called the step-strain experiment: this flow involves a fixed strainγ0 ≡ γ̇0ε

applied rapidly to a test sample at time t = 0.
The prescribed shear-rate function ς̇ (t) for the step-strain experiment can be written

in terms of γ0 as follows:

ς̇ (t) = lim
ε−→0

⎧⎨⎩
0 t < 0

γ̇0 0 ≤ t < ε
0 t ≥ ε

(5.102)

= γ0 lim
ε−→0

⎧⎨⎩
0 t < 0
1
ε

0 ≤ t < ε
0 t ≥ ε

(5.103)

The function multiplying γ0 is a standard math function, an asymmetric impulse or delta
function δ+(t) [129]:

Asymmetric delta function δ+(t) ≡ lim
ε−→0

⎧⎨⎩
0 t < 0
1
ε

0 ≤ t < ε
0 t ≥ ε

(5.104)

and ∫ ∞

−∞
δ+(t) dt = 1 (5.105)

Thus we can write

ς̇ (t) = γ0δ+(t) (5.106)

5 The choice of tref = −∞ versus tref = 0 is immaterial here since no flow occurs for t < 0. It is
useful from a mathematical point of view to have tref = −∞ for the step-strain experiment, as we
will see in Chapter 8.
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The strain function γ21(−∞, t) can also be written in terms of a standard math function,
the Heaviside unit step function H(t):

γ21(−∞, t) =
∫ t

−∞
γ0δ+(t ′) dt ′ (5.107)

=
{

0 t < 0

γ0 t ≥ 0
(5.108)

= γ0H(t) (5.109)

and

Heaviside step function H(t) ≡
{

0 t < 0

1 t ≥ 0
(5.110)

The response of a non-Newtonian fluid to the imposition of a step strain is a rapid
increase in shear and normal stresses (if the material produces normal stresses) followed
by a relaxation of these stresses. The material functions for the step-strain experiment are
based on the idea of modulus rather than viscosity. Modulus is the ratio of stress to strain
and is a concept that is quite useful for elastic materials. We will discuss elastic modulus
in more detail in the next section and in Chapter 8.

The material functions for the step shear strain experiment are given next. In general γ0

could be positive or negative, depending on the coordinate system chosen. We will choose
the coordinate system so that γ0 is positive.

Relaxation
modulus

G(t, γ0) ≡ −τ21(t, γ0)

γ0
(5.111)

First normal-stress
step shear relaxation

modulus
G�1(t, γ0) ≡ −(τ11 − τ22)

γ 2
0

(5.112)

Second normal-stress
step shear relaxation

modulus
G�2(t, γ0) ≡ −(τ22 − τ33)

γ 2
0

(5.113)

G�2(t, γ0) is seldom measured since it is small and requires specialized equipment [199,
127]. Note that the material functions for the step-strain experiment are functions of time
and of the strain amplitude of the step γ0. For small strains, G(t, γ0) and G�1(t, γ0) are
found to be independent of strain; this limit is called the linear viscoelastic regime. In the
linear viscoelastic regimeG(t, γ0) is written asG(t), and often high strain data are reported
relative to G(t) through the use of a material function called the damping function h(γ0):

h(γ0) ≡ G(t, γ0)

G(t)
(5.114)

This function is only reported when the resulting function h(γ0) is independent of time (see
Section 6.2.2).
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5.2.2.5 Small-Amplitude Oscillatory Shear

The final set of unsteady shear material functions that we wish to introduce are very
widely used to characterize complex fluids by chemists, chemical engineers, and materials
scientists. The flow is again shear flow, and the time-dependent shear-rate function ς̇ (t)
used for this flow is periodic (a cosine function) (see Figure 5.2f ). This flow is called
small-amplitude oscillatory shear (SAOS):

Kinematics
for SAOS

v =
⎛⎝ ς̇ (t)x2

0
0

⎞⎠
123

ς̇ (t) = γ̇0 cos ωt

(5.115)

The frequency of the cosine function is ω (rad/s), and γ̇0 is the constant amplitude of the
shear-rate function. This flow is almost always carried out in a cone-and-plate or parallel-
plate torsional rheometer (see Figure 4.4), although the concentric-cylinder (Couette)
geometry is also used (see Chapter 10).

From the strain we can calculate the wall motion required to produce SAOS in, for
example, the cone-and-plate apparatus. We saw in Section 5.2.2.3 and Figure 5.6 that small
shear strains can be written as

γ21 = �u1

�x2
(5.116)

If we call b(t) the time-dependent displacement of the upper plate and h the gap between
the plates, then for small strains

γ21(0, t) = b(t)

h
(5.117)

Thus b(t) is related to the strain, which we can calculate from the strain rate using
Equation (5.97):

γ21(0, t) =
∫ t

0
γ̇21(t

′) dt ′ (5.118)

=
∫ t

0
γ̇0 cos ωt ′ dt ′ = γ̇0

ω
sin ωt (5.119)

= γ0 sin ωt (5.120)

where γ0 = γ̇0/ω is the strain amplitude. Note that zero was chosen as the lower limit
of the integral, that is, the reference state for the strain was taken to be t = 0. Thus the
motion of the wall, b(t) = hγ0 sin ωt , is a sine function (Figure 5.10). Moving the wall of
a shear cell in a sinusoidal manner does not guarantee that the shear-flow velocity profile
[Equation (5.115)] will be produced, but one can show (see Problem 5.17) that a linear
velocity profile will be produced for sufficiently low frequencies or high viscosities.

When a sample is strained in this way at low strain amplitudes, the shear stress that is
produced will be a sine wave of the same frequency as the input strain wave. The shear stress,
however, usually will not be in phase with the input strain. We can write this as follows:
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Figure 5.10 Schematic of how small-ampli-
tude oscillatory shear is produced.

− τ21(t) = τ0 sin (ωt + δ) (5.121)

where the quantity δ [not to be confused with the asymmetric impulse function δ+(t)] gives
the phase difference between the strain wave and the stress response.

The material functions for SAOS are defined based on this sinusoidal shear-stress
output. We can expand the preceding expression by using trigonometric identities.

−τ21(t) = τ0 sin (ωt + δ) (5.122)

= τ0(sin ωt cos δ + sin δ cos ωt) (5.123)

= (τ0 cos δ) sin ωt + (τ0 sin δ) cos ωt (5.124)

By splitting up the shear stress in this way, we see that there is a portion of the stress wave
that is in phase with the imposed strain (i.e., proportional to sin ωt) and a portion of the
stress wave that is in phase with the imposed strain rate (proportional to cos ωt).

To appreciate the significance of this observation, recall that for Newtonian fluids, the
shear-stress response is proportional to the imposed shear rate:

τ21 = −μγ̇21 (5.125)

For elastic materials, discussed in more detail in Chapter 8, shear stress is proportional to
the imposed strain:

Hooke’s law
(shear only)

τ21 = −Gγ21 (5.126)

This latter observation is called Hooke’s law for elastic solids, and it is an empirical, scalar
rule much like Newton’s law of viscosity. It serves as a definition of the elastic modulusG
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and describes the stress of a limited class of solids that are called elastic. For elastic materials
the stress generated is directly proportional to the strain, that is, to the deformation. This
is similar to the response of mechanical springs, which generate stress that is directly
proportional to the change in length (deformation) of the spring (Figure 5.11). The stress
response in SAOS described by Equation (5.124) contains both a part that is Newtonian-like
(proportional to γ̇21) and an elastic part (proportional to γ21). Thus the SAOS experiment
is ideal for probing viscoelastic materials, defined as materials that show both viscous and
elastic properties.

The material functions for SAOS are the storage modulusG′(ω) and the loss modulus
G′′(ω), and they are defined as follows:

SAOS
material functions

−τ21

γ0
= G′ sin ωt +G′′ cos ωt (5.127)

Storage modulus G′(ω) ≡ τ0

γ0
cos δ (5.128)

Loss modulus G′′(ω) ≡ τ0

γ0
sin δ (5.129)

G′ is equal to the amplitude of the portion of the stress wave that is in phase with the
strain wave divided by the amplitude of the strain wave. G′′ is defined analogously as the
amplitude of the portion of the stress wave that is out of phase with the strain wave, divided
by the amplitude of the strain wave.

Figure 5.11 Hooke’s law for elastic fluids resembles the force–deformation relationship of linear
springs, which is also called Hooke’s law. The spring-restoring force is f , f1 is the 1-component of
f , �x1 is the change in length of the spring, and k is the force constant of the spring.
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For a Newtonian fluid in SAOS, the response is completely in phase with the strain
rate,G′ = 0, and η′ = G′′/ω = μ. This can be shown by using the Newtonian constitutive
equation and specifying the SAOS kinematics. For an elastic solid that follows Hooke’s law
(a Hookean solid), the shear-stress response in SAOS is completely in phase with the strain,
G′ = G andG′′ = 0. For viscoelastic materials bothG′(ω) andG′′(ω) are nonzero and are
generally functions of frequency. Some experimental data for G′ and G′′ for polymers are
shown in Section 6.2.1.

Several other material functions related to G′ and G′′ are also used by the rheological
community, although they contain no information not already present in the two dynamic
moduli already defined. These other material functions are summarized in Table 5.1.G′ and
J ′ (see Problem 5.12) are called the storage modulus and storage compliance, respectively,
because they are related to elastic energy storage by the material. G′′ and J ′′ are called the
viscous loss modulus and viscous loss compliance, respectively, since they are related to
the viscous response of the fluid. An in-depth presentation of experimental results for all
the SAOS material functions is contained in Ferry [75].

In the next section we show how complex number notation can also be used to describe
SAOS. Many of the definitions of the ancillary material functions (η∗, η′, η′′, etc.) make
more sense when complex notation is applied.

5.2.2.6 Small-Amplitude Oscillatory Shear—Complex Notation

An alternative way of expressing a periodic function is to use complex notation. When
doing complex algebra recall that the conjugate x(∗) of a complex number x

x = a + bi (5.130)

is given by

x(∗) = a − bi (5.131)

TABLE 5.1
Definitions of Material Functions for Small-Amplitude Oscillatory Shear
(SAOS) in Terms of Storage Modulus G′ and Loss Modulus G′′

Complex modulus magnitude |G∗| = √
G′2 +G′′2

Loss tangent tan δ = G′′
G′

Dynamic viscosity η′ = G′′
ω

Out-of-phase component of η∗ η′′ = G′
ω

Complex viscosity magnitude |η∗| = √
η′2 + η′′2

Complex compliance magnitude |J ∗| = 1
|G∗|

Storage compliance J ′ = 1/G′
1+tan2 δ

Loss compliance J ′′ = 1/G′′
1+(tan2 δ)−1
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where6

a = �(x) (5.134)

b = �(x) (5.135)

�(x) denotes the real part of x, and �(x) denotes the imaginary part of x. The magnitude
of x, |x|, is calculated from

|x| = +
√
x x(∗) = +

√
a2 + b2 (5.136)

If we write eix in series form and compare the result to the series for sin x and cos x,
we can see that the following relationships, called Euler’s formulas [239], hold:

Euler’s formulas
eiα = cos α + i sin α

e−iα = cos α − i sin α
(5.137)

From Euler’s formulas we can deduce that

cos α = eiα + e−iα
2

(5.138)

sin α = eiα − e−iα
2i

(5.139)

Using Euler’s formulas we see that the strain rate, strain, and stress for SAOS can be
written as

γ̇21(t) = γ̇0 cos ωt = �
(
γ̇0e

iωt
)

(5.140)

γ21(t) =
∫ t

−∞
γ̇21(t

′) dt ′ = �

(∫ t

−∞
γ̇0e

iωt ′dt ′
)

(5.141)

= �

(
γ̇0

iω
eiωt

)
= �

(−iγ0e
iωt
)

(5.142)

= γ0 sin ωt (5.143)

Recall that γ0 = γ̇0/ω. For stress we write,

−τ21(t) = τ0 sin (ωt + δ) = �
(−iτ0e

i(ωt+δ)) (5.144)

6 When taking the real part of an algebraically complex expression, one must always rearrange the
expression into the forma+bi, and thena is the real part andb is the imaginary part. For example [232],

a + bi
c + di = (a + bi)

(c + di)
(c − di)
(c − di) =

(
ac + bd
c2 + d2

)
+
(
bc − ad
c2 + d2

)
i (5.132)

�

(
a + bi
c + di

)
= ac + bd
c2 + d2

(5.133)



158 MATERIAL FUNCTIONS

= �
(−iτ0e

iδeiωt
)

(5.145)

= �
(−τ̃0e

iωt
)

(5.146)

where τ̃0 = τ̃0(ω) = iτ0e
iδ is the complex coefficient of the stress wave. The phase

difference between τ12 and γ̇21 is represented by the complex nature of the prefactor τ̃0.
From here on we will drop the � notation except where we explicitly wish to call the
reader’s attention to the action of taking the real part.

The material function for SAOS is the complex modulus G∗, defined in complex
notation as follows:

G∗(ω) ≡ −τ21(t)

γ21(t)
= −τ̃0e

iωt

−iγ0eiωt
(5.147)

= τ̃0(ω)

iγ0
(5.148)

= τoe
iδ

γ0
= τ0

γ0
(cos δ + i sin δ) (5.149)

= G′ + iG′′ (5.150)

where G′ and G′′ have the same definitions as before [compare with Equations (5.128)
and (5.129)]. The complex viscosity η∗(ω) and the complex compliance J ∗(ω) are defined
as follows:

η∗(ω) ≡ −τ21(t)

γ̇21(t)
(5.151)

= −τ̃0e
iωt

γ̇0eiωt
= −τ̃0

γ̇0
= −iτ0e

iδ

γ0ω
(5.152)

= G∗

iω
= η′ − iη′′ (5.153)

J ∗(ω) ≡ γ21(t)

−τ21(t)
(5.154)

= −iγ0e
iωt

−τ̃0eiωt
= γ0e

−iδ

τ0
= 1

G∗ (5.155)

= γ0

τ0
(cos δ − i sin δ) (5.156)

= J ′ − iJ ′′ (5.157)

Using complex notation we see that the material functions in SAOS are defined
analogously to other shear material functions: complex viscosity is the ratio of a shear
stress to a shear rate, complex modulus is the ratio of a shear stress to a shear strain, and
complex compliance is the ratio of a shear strain to a shear stress. Because these functions are
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complex, they have both real parts [denoted by a prime, i.e.,G′, η′, J ′] and imaginary parts
[denoted by a double prime, i.e., G′′, η′′, J ′′). The magnitudes of complex quantities are
found by multiplying a complex number by its complex conjugate and taking the square root:

|G∗| = √
(G′ + iG′′)(G′ − iG′′) (5.158)

=
√
G′2 +G′′2 (5.159)

|η∗| = √
(η′ + iη′′)(η′ − iη′′) (5.160)

=
√
η′2 + η′′2 (5.161)

|J ∗| = √
(J ′ − iJ ′′)(J ′ + iJ ′′) (5.162)

=
√
J ′2 + J ′′2 (5.163)

These expressions correspond to the definitions given in the previous section.
SAOS is the last of the shear-flow kinematics that we will discuss. Next is a discussion

of the elongational-flow material functions.

5.3 Elongational Flow

All elongational-flow material functions are based on the velocity field shown here and
discussed in Chapter 4:

v =
⎛⎜⎝− 1

2 ε̇(t)(1 + b)x1

− 1
2 ε̇(t)(1 − b)x2

ε̇(t)x3

⎞⎟⎠
123

(5.164)

Differences among the flows are achieved by varying the function ε̇(t) and the parameter b.
As pointed out earlier, only two stress-related quantities can be measured for elon-

gational flow of incompressible fluids, τ33 − τ11 and τ22 − τ11. Elongational flow is very
difficult to produce, and, in addition, stress measurements are very challenging to make
in the elongational geometries. In some geometries one can measure directly the stress to
drive the flow, for example, the force on the end of a stretching sample. In the opposing jets
device (see Figure 4.11b) the force is measured by the deflection of the nozzle creating the
jet. In many elongational measurements flow birefringence is used. Flow birefringence is
an optical property that is proportional to stress, and it is exhibited by many polymers; see
Chapter 10 and Appendix E. Measurements of elongational strain are sometimes made by
videotaping marker particles in the flow and analyzing the images using computer software.

5.3.1 STEADY ELONGATION

Steady-state elongational flows [uniaxial, biaxial, planar; see Equation (4.48) and Table 4.1]
are produced by choosing the following kinematics:
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Kinematics of
steady elongation

ε̇(t) = ε̇0 = constant (5.165)

For these flows, constant stress differences are measured. The material functions defined
are two elongational viscosities based on the measured normal-stress differences. For both
uniaxial and biaxial extension, the elongational viscosity based on τ22 − τ11 is zero for all
fluids; planar elongational flow has two nonzero elongational viscosities.

Uniaxial elongation (b = 0, ε̇0 > 0):

v =
⎛⎜⎝− 1

2 ε̇0x1

− 1
2 ε̇0x2

ε̇0x3

⎞⎟⎠
123

ε̇0 > 0 (5.166)

Uniaxial elongational
viscosity

η̄(ε̇0) ≡ −(τ33 − τ11)

ε̇0
(5.167)

Biaxial elongation (b = 0, ε̇0 < 0):7

v =
⎛⎜⎝− 1

2 ε̇0x1

− 1
2 ε̇0x2

ε̇0x3

⎞⎟⎠
123

ε̇0 < 0 (5.168)

Biaxial elongational
viscosity

η̄B(ε̇0) ≡ −(τ33 − τ11)

ε̇0
(5.169)

Planar elongation (b = 1, ε̇0 > 0):

v =
⎛⎝−ε̇0x1

0

ε̇0x3

⎞⎠
123

ε̇0 > 0 (5.170)

First planar
elongational viscosity

η̄P1(ε̇0) ≡ −(τ33 − τ11)

ε̇0
= η̄P (ε̇0) (5.171)

Second planar
elongational viscosity

η̄P2(ε̇0) ≡ −(τ22 − τ11)

ε̇0
(5.172)

7 We have followed Bird et al. [26] in our notation here. Note that biaxial and uniaxial elongational
flows are identical, except for the sign of the stretch rate. This convention draws on the fact that both
flows are axisymmetric, and axisymmetric flows are usually analyzed in the cylindrical coordinate
system with the flow in the z- or x3-direction. If uniaxial and biaxial extension are defined so that the
elongation rate in each case is positive, of magnitudes ε̇ and ε̇B , respectively, and in the x1-direction,
then ε̇ = −2ε̇B , and the definition of extensional viscosity looks a little different in both cases (see
Problem 5.18).
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Steady elongational flow is difficult to achieve because of the rapid rate of particle de-
formation that is required (see Section 4.3.1). Very few reliable data are available for this
important flow.

The strain ε in elongational flow is defined analogously to the shear strain as the integral
of the deformation rate between two times:

Elongational strain ε(tref , t) ≡
∫ t

tref

ε̇(t ′) dt ′ (5.173)

For steady elongational flow where ε̇(t ′) = ε̇0 we can carry out the integral from time
tref = 0 to the current time t , obtaining

Hencky strain ε = ε̇0t = ln
l

l0
(5.174)

where we have used Equation (4.41) in obtaining the last result. The strain as defined here
is called the Hencky strain to distinguish it from the extension ratio l/ l0, which is used to
measure strain in studies of metals and other solid materials [78].

EXAMPLE
Calculate the planar elongational viscosities η̄P1 and η̄P2 for an incompressible Newtonian
fluid.

SOLUTION

The kinematics for steady, planar elongation are given by

v =
⎛⎝−ε̇0x1

0

ε̇0x3

⎞⎠
123

ε̇0 > 0 (5.175)

where ε̇0 is a constant. The planar elongational viscosities are defined as

η̄P1(ε̇0) ≡ −(τ33 − τ11)

ε̇0
(5.176)

η̄P2(ε̇0) ≡ −(τ22 − τ11)

ε̇0
(5.177)

We need to calculate the stress tensor τ for a Newtonian fluid subjected to the kinematics
given:

τ = −μ[∇v + (∇v)T ] (5.178)

= −μ
⎡⎣⎛⎝−ε̇0 0 0

0 0 0

0 0 ε̇0

⎞⎠
123

+
⎛⎝−ε̇0 0 0

0 0 0

0 0 ε̇0

⎞⎠
123

⎤⎦ (5.179)
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=
⎛⎝ 2με̇0 0 0

0 0 0

0 0 −2με̇0

⎞⎠
123

(5.180)

Now we can calculate η̄P1 and η̄P2 .

η̄P1(ε̇0) ≡ −(τ33 − τ11)

ε̇0
= 4μ (5.181)

η̄P2(ε̇0) ≡ −(τ22 − τ11)

ε̇0
= 2μ (5.182)

5.3.2 UNSTEADY ELONGATION

5.3.2.1 Elongational Stress Growth

Startup of steady elongational flow has the same experimental difficulties as steady elonga-
tional flow, but some start-up curves have been reported (see Section 6.4.2). For the startup
of steady elongational flow the kinematics are

Kinematics of
startup of steady

uniaxial elongation

v =
⎛⎜⎝− 1

2 ε̇(t)(1 + b)x1

− 1
2 ε̇(t)(1 − b)x2

ε̇(t)x3

⎞⎟⎠
123

ε̇(t) =
{

0 t < 0

ε̇0 t ≥ 0

(5.183)

The material functions for the startup of steady elongation are defined analogously to those
for startup of steady shearing (see Table 5.2).

Material functions for stress decay after steady elongation could be defined, but in
practice steady state is almost never reached in an elongational experiment. Thus, it is not
very useful to define such material functions.

5.3.2.2 Elongational Creep

If instead of a constant elongational rate ε̇0 a constant elongational stressσ0 is applied to drive

TABLE 5.2
Definitions of Material Functions for Startup of Steady Elongation

Uniaxial elongational stress growth coefficient (b = 0, ε̇0 > 0) η̄+(t, ε̇0) ≡ −(τ33−τ11)
ε̇0

Biaxial elongational stress growth coefficient (b = 0, ε̇0 < 0) η̄+
B (t, ε̇0) ≡ −(τ33−τ11)

ε̇0

Planar elongational stress growth coefficients (b = 1, ε̇0 > 0) η̄+
P1
(t, ε̇0) = η̄+

P (t, ε̇0) ≡ −(τ33−τ11)
ε̇0

η̄+
P2
(t, ε̇0) ≡ −(τ22−τ11)

ε̇0

}
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a flow, the flow is called elongational creep. Elongational creep can be produced simply
by hanging a weight on a cylindrical sample. As was seen in shear creep, the measured
quantity then becomes the deformation (length change) of the sample, expressed as a strain.
The kinematics for elongational creep are

Kinematics of
elongational creep

τ33 − τ11 =
{

0 t < 0

σ0 = constant t ≥ 0
(5.184)

and the material function that is defined is the elongational compliance D(t, σ0):

Elongational
creep compliance

D(t, σ0) ≡ ε(0, t)

−σ0
(5.185)

where the elongational strain ε is defined in Equation (5.173) and is calculated from
measurements of the length change as a function of time.

An experiment that gives some information about relaxation after elongational defor-
mation is the unconstrained or free recoil experiment. In this experiment, at some time in the
creep elongation experiment the sample is cut free of the driving mechanism and allowed
to relax. The material is able to relax in all three directions. The amount of contraction that
occurs can be expressed as an amount of recoil strain and is an indication of the amount of
elasticity in the material:

Ultimate recoverable
elongational strain

εr = ln

[
l(t∞)
l(0)

]
(5.186)

where l(0) is the length of the sample at the time at which the sample is cut free of the
driving mechanism (t = 0), and l(t∞) is the length of the sample after it has had a chance
to relax completely.

5.3.2.3 Step Elongational Strain

The step-strain experiment can be performed in elongational flows. The lubricated squeezing
experiment in particular (see Section 10.2.2.2) provides reasonable measurements of step
biaxial extensions. The kinematics of step extension are analogous to the kinematics in the
step-shear experiment:

Kinematics of
step elongational

strain

v =
⎛⎜⎝− 1

2 ε̇(t)(1 + b)x1

− 1
2 ε̇(t)(1 − b)x2

ε̇(t)x3

⎞⎟⎠
123

ε̇(t) = lim
ε−→0

⎧⎨⎩
0 t < 0

ε̇0 0 ≤ t < ε
0 t ≥ ε

ε̇0ε = ε0 = constant

(5.187)
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The quantity ε0 is the magnitude of the elongational strain imposed on the fluid.
The material functions in these flows are elongational relaxation moduli E(t, ε0).

Uniaxial and biaxial elongation each have one nonzero step elongational modulus; for
planar elongational flow, there are two such moduli. In step elongation, as in step shear, the
relaxation moduli are defined as the ratio of a stress to a measure of strain. By convention,
however, the strain measure is not the simple elongational strain ε0, but rather the difference
between two components of a strain tensor called the Finger strain tensor C−1. The Finger
strain tensor is defined and discussed in detail in Chapter 9. The relevant components of
the Finger tensor for step elongational flow are

Uniaxial
step elongational

relaxation modulus
E(t, ε0) = −(τ33 − τ11)

C−1
33 − C−1

11

= −(τ33 − τ11)

e2ε0 − e−ε0
(5.188)

Biaxial
step elongational

relaxation modulus
EB(t, ε0) = −(τ33 − τ11)

C−1
33 − C−1

11

= −(τ33 − τ11)

e2ε0 − e−ε0
(5.189)

Planar
step elongational
relaxation moduli

EP1(t, ε0) = −(τ33 − τ11)

C−1
33 − C−1

11

= −(τ33 − τ11)

e2ε0 − e−2ε0

EP2(t, ε0) = −(τ22 − τ11)

C−1
22 − C−1

11

= −(τ22 − τ11)

1 − e−2ε0

(5.190)

For biaxial extension sometimes the biaxial extensional strain εB = −ε0/2 is reported
instead of ε0 (see Problem 5.18).

5.3.2.4 Small-Amplitude Oscillatory Elongation

A small-amplitude oscillatory deformation can be imposed in elongational flow by squeez-
ing a sample between two small plates in an oscillatory mode. This geometry is used
in instruments such as the differential mechanical analyzer (DMA) [204]. As was true
with small-amplitude oscillatory shear (SAOS), if small-amplitude oscillatory elongation
(SAOE) is performed at low enough amplitude, the output stresses will oscillate with the
same frequency as the input deformation. Since the flow is oscillating (changing direction),
the SAOE flow has aspects of both uniaxial and biaxial elongation. There is no past or
current use of a planar SAOE flow.

The kinematics of this flow are

Kinematics
of SAOE

v(t) =
⎛⎜⎝− 1

2 ε̇(t)x1

− 1
2 ε̇(t)x2

ε̇(t)x3

⎞⎟⎠
123

ε̇(t) = ε̇0 cos ωt

(5.191)

The rate of deformation tensor for this flow is therefore
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γ̇ (t) =
⎛⎝−ε̇0 cos ωt 0 0

0 −ε̇0 cos ωt 0

0 0 2ε̇0 cos ωt

⎞⎠
123

(5.192)

We can calculate the strain between tref = 0 and the current time t by integrating the
deformation rate ε̇(t):

ε̇(t) = ε̇0 cos ωt (5.193)

ε(0, t) =
∫ t

0
ε̇0 cos ωt ′ dt ′ = ε̇0

ω
sin ωt (5.194)

= ε0 sin ωt (5.195)

where ε0 = ε̇0/ω.
To analyze this flow we will assume that the three nonzero components of the stress

tensor for this flow are related to one another in the same way that the three nonzero
components of the rate-of-deformation tensor are related; that is, we assume that τ can be
written as

τ =
⎛⎝ τ11 0 0

0 τ11 0

0 0 −2τ11

⎞⎠
123

(5.196)

This is a good assumption for materials when they are deformed at the small rates of
deformation that are seen in the SAOE experiment.8

For small deformations and small deformation rates, the stresses generated in the SAOE
flow will be oscillatory functions of time with the same frequencyω as the input deformation
wave. The stress will, in general, be out of phase with respect to both deformation rate,
ε̇(t) = ε̇0 cos ωt , and deformation, ε(0, t) = ε0 sin ωt . If we designate δ as the phase
difference between stress and strain, we can express the 11-component of the stress as

τ11(t) = τ0 sin (ωt + δ) (5.197)

where τ0 is the amplitude of τ11, and δ is the phase difference between τ11 and the strain
wave ε(0, t). The stress difference on which all the material functions of SAOE will be
based is τ33 − τ11:

τ33 − τ11 = −2τ11 − τ11 = −3τ11 (5.198)

Following the same methods that were used for SAOS, we can then develop material
functions for this flow. Expanding τ33 − τ11 using trigonometric identities we obtain

8 At the small rates of deformation where the SAOE test is valid part of the stress tensor will be
proportional to the rate-of-deformation tensor, and part of the stress tensor will be proportional to a
strain tensor (see Chapter 8). Both of these tensors are diagonal tensors with the 11- and 22-components
equal and the 33-component equal to −2 times the 11-component.



166 MATERIAL FUNCTIONS

−(τ33 − τ11) = 3τ0 sin (ωt + δ) (5.199)

= 3τ0(sin ωt cos δ + cos ωt sin δ) (5.200)

The definitions of the material functions for SAOE are

SAOE
material functions

−(τ33 − τ11)

ε0
= E′ sin ωt + E′′ cos ωt (5.201)

Elongational
storage modulus

E′(ω) = 3τ0

ε0
cos δ (5.202)

Elongational
loss modulus

E′′(ω) = 3τ0

ε0
sin δ (5.203)

Using the linear viscoelastic constitutive equation developed in Chapter 8, we can show
that the dynamic moduli E′ and E′′ of SAOE are related to the dynamic moduliG′ andG′′
of SAOS as follows (see Problem 8.19):

E′ = 3G′ (5.204)

E′′ = 3G′′ (5.205)

The amount of rheological data taken in shear far exceeds that taken in elongation
because of the experimental difficulties faced in producing elongational flows. In the next
chapter we will look at some actual data on polymer systems for both shear and elongational
flows. As we will see, a very wide variety of responses is observed, depending on the
material studied.

5 . 4 P R O B L E M S

5.1 What is a constitutive equation? What is a material
function? What is the difference and how are they
related?

5.2 Compare and contrast the quantities η, η̄, η0, and η∗.

5.3 Compare and contrast the quantities γ̇ , γ̇ , ς̇ (t),

γ̇21(t), and γ̇0.

5.4 Why are G′(ω) and G′′(ω) called the storage and
loss moduli, respectively?

5.5 What are η+, �+
1 , and �+

2 predicted to be for an
incompressible Newtonian fluid? What are η−,�−

1 ,

and �−
2 predicted to be for an incompressible New-

tonian fluid?

5.6 What is the steady elongational viscosity η̄ for an
incompressible Newtonian fluid?

5.7 What is the elongational stress growth function
η̄+(t) for an incompressible Newtonian fluid?

5.8 What are G′(ω) and G′′(ω) for an incompressible
Newtonian fluid? Work out both in real and in com-
plex notation.

5.9 Starting with the fact that J ∗ = 1/G∗, show that the
following relations hold:

J ′ = G′

|G∗|2 , J
′′ = G′′

|G∗|2
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5.10 In Figure 5.8 the steady state value of J (t) after
recovery is shown as equal to t2/η0. Show why this
is the case for the linear viscoelastic limit.

5.11 Show that the second extensional viscosity η̄2 ≡
−(τ22 − τ11)/ε0, is equal to zero for uniaxial and
biaxial extension.

5.12 The small-amplitude oscillatory shear compliance
material function J ′ is defined as the ratio of the
amplitude of the strain in phase with stress to the
amplitude of the stress, and J ′′ is defined as the ratio
of the amplitude of the strain 90° out of phase with
the amplitude of stress to the stress [75]. Using
this definition, show that the following relationships
between G′, G′′ and J ′, J ′′ are valid (also given in
Table 5.1):

J ′ = 1/G′

1 + tan2 δ

J ′′ = 1/G′′

1 + (tan2 δ)−1

5.13 For this hypothetical constitutive equation,

τ = −ζ0∇v · (∇v)T

where ζ0 is a constant parameter of the model, answer
the questions below:

(a) What are the units of ζ0?

(b) Calculate the steady elongational viscosity η̄ and
the steady shear viscosity η predicted by this
constitutive equation.

(c) From what you know about rheology so far,
is this an appropriate constitutive equation?
Explain.

5.14 Calculate the steady shear viscosity η and the
steady elongational viscosity η̄ for this constitutive
equation:

τ = −
[
α∇v + β(∇v)T

]
where α and β are constant parameters of the model.
From what you know about rheology so far, is this
an appropriate constitutive equation? Explain.

5.15 A know-it-all coworker in your department says,
“Rheologists just make life difficult. It is not so
hard to find a good constitutive equation. Here—
this one predicts shear thinning and will work for

our elastic materials too.” The proposed constitutive
equation is

τ = −
(
ζ0

γ̇0

)
γ̇

where ζ0 is a constant parameter of the model and
γ̇0 is the constant shear rate in steady shear flow
[ς̇ (t) = γ̇0 = constant].

(a) Calculate the steady shear viscosity η(γ̇0) for
this model. Does the model predict shear thin-
ning? Sketch your result.

(b) Calculate the steady elongational viscosity η̄ for
this model. What difficulties do you encounter?

(c) From what you know about rheology so far,
is this an appropriate constitutive equation?
Explain.

5.16 An incompressible Newtonian fluid is subjected to
the velocity profile

v (m/s) =
⎛⎜⎝αx + βy

αx

βz

⎞⎟⎠
xyz

If γ̇ = 10 s−1, solve for the velocity profile (i.e., find
α and β.).

5.17 (a) Under what conditions will the velocity profile in
a Newtonian fluid undergoing small-amplitude
oscillatory shear (SAOS) be linear as required in
the defintions of the SAOS material functions?
See the analysis in Problem 3.23.

(b) For typical values of density, frequency, and so
on for a polymer melt, what is the minimum
viscosity as a function of gap between paral-
lel plates that satisfies this criterion? Is linear-
ity of velocity profile a good assumption under
most conditions of experimentation on polymer
melts?

5.18 We have defined uniaxial and biaxial extension us-
ing the axisymmetric flow convention (see Section
5.3.1). In this convention, both uniaxial and biaxial
extension have the same kinematics, but the sign of
the extension rate ε̇ is different in the two cases.
An alternative convention puts the flow directions
always in the x1-direction, and the two different
extension rates ε̇ and ε̇B as always positive:

Uniaxial elongation:
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v =
⎛⎜⎝ ε̇x1

− 1
2 ε̇x2

− 1
2 ε̇x3

⎞⎟⎠
123

ε̇ > 0

ηE(ε̇) ≡ −(τ11 − τ33)

ε̇

Biaxial elongation:

v =
⎛⎜⎝ ε̇Bx1

ε̇Bx2

−2ε̇Bx3

⎞⎟⎠
123

ε̇B > 0

ηB(ε̇B) ≡ −(τ11 − τ33)

ε̇B

What are the equivalencies between ε̇ and ε̇B and
among η̄, ηE , η̄B , and ηB? Prove your answers.



C H A P T E R

6
Experimental Data

The division of fluids into two types, Newtonian and non-Newtonian, is straightforward:
Newtonian fluids obey the Newtonian constitutive equation, τ = −μγ̇ , and non-Newtonian

fluids do not. The ways in which fluids fail to follow the Newtonian constitutive equation,
however, vary enormously. As was discussed in the last chapter, material functions provide
a common basis on which to compare the flow responses of non-Newtonian materials. In
this chapter we compare and contrast the measured material functions for several polymer
systems. In order to choose or develop constitutive equations to model non-Newtonian
behavior one must be familiar with observed rheological behavior. Other important uses of
rheological testing are quality control and other types of qualitative analysis (see Figure 5.1),
and these applications also draw heavily on our knowledge of non-Newtonian behavior.
The material in this chapter is just a brief introduction to this subject. More discussion of
rheological responses of non-Newtonian fluids can be found in the texts of Bird et al. [26],
Macosko [162], and especially in Ferry [75], among other sources.

This chapter is the last of the background chapters of this text. In Chapters 7 through 9
we will describe constitutive equations that can model some of the non-Newtonian behavior
we will describe in this chapter.

6.1 Steady Shear Flow

6.1.1 GENERAL EFFECTS—LINEAR POLYMERS

The steady shear viscosity η is one of the most widely measured material functions, and
nonconstant measurements of η are usually the first sign that a fluid is non-Newtonian.
Figures 6.1 and 6.2 show η(γ̇ ) for concentrated solutions of polybutadiene (PB), and
Figure 6.3 shows η(γ̇ ) for linear and branched polydimethylsiloxane melts (PDMS). At
low shear rates the viscosity is constant (η0), but at higher rates the viscosity decreases and
continues to drop as the shear rate increases further. This high-rate behavior, termed shear-
thinning, is almost universally observed for high-molecular-weight polymer melts. Note that
viscosity versus shear rate is plotted on a double-log plot. This is necessary since η decreases
by several orders of magnitude over the usual range of shear rates (10−2 < γ̇ < 102s−1

or higher).

169
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Figure 6.1 Steady shear viscosity η and first normal-stress coefficient �1 as a function of shear rate
γ̇ for a concentrated solution of a narrowly distributed polybutadiene; replotted from Menezes and
Graessley [177].Mw = 350 kg/mol;Mw/Mn < 1.05; concentration = 0.0676 g/cm3 in Flexon 391,
a hydrocarbon oil. Source: From “Nonlinear rheological behavior of polymer systems for several
shear-flow histories,” by E. V. Menezes and W. W. Graessley, Journal of Polymer Science, Polymer
Physics Edition, Copyright © 1982 by John Wiley & Sons, Inc. Reprinted by permission of John
Wiley & Sons, Inc.

The other two steady shear material functions are the normal-stress coefficients�1 and
�2. The first normal-stress coefficient is fairly easy to measure in a cone-and-plate apparatus,
and for the same polymers shown previously, the first normal-stress coefficients versus shear
rate are shown in Figures 6.1, 6.2, and 6.4. For some of the polybutadiene solutions the first
normal-stress coefficient also shows a zero-shear value �0

1 , followed by shear-thinning.
For the high-molecular-weight PDMS melts no zero-shear first normal-stress coefficient
is observed, perhaps due to the limited range over which �1(γ̇ ) was measured. For the
Mw = 350 kg/mol polybutadiene solution, viscosity and first normal-stress coefficient are
compared directly in Figure 6.1. The zero-shear value of the first normal-stress coefficient
�0

1 is greater than η0, and �1 shear-thins more strongly than does the viscosity.
In Figure 6.5 we show η and �1 for a dilute solution of polyisobutylene in a viscous

solvent, a mixture of polybutene and kerosene [24]. This type of fluid is called a Boger fluid,
and these fluids have been studied extensively because they are elastic (�1 > 0) but not
shear-thinning [η(γ̇ ) = constant]. By studying Boger fluids researchers hope to separate
the effects caused by shear-thinning and elasticity [31].

The second normal-stress coefficient is difficult to measure and is consequently more
rarely encountered in the literature. By adding special pressure transducers to a cone-
and-plate apparatus, however, �2 can be measured [181]. Such measurements for two
polystyrene solutions are shown in Figure 6.6; note that �2 is negative and small. For
these solutions none of the steady shear material functions vary much with the shear rate,
whereas η and �1 were quite shear-thinning for PDMS (Figures 6.3 and 6.4) and polybu-
tadiene solutions (Figures 6.1 and 6.2). There are literature reports that both normal-stress
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Figure 6.2 Steady shear viscosity η and first normal-stress coefficient �1 as a function of shear rate
γ̇ for concentrated solutions of four narrowly distributed polybutadienes; replotted from Menezes and
Graessley [177]. Filled symbols are viscosity η; open symbols are first normal-stress coefficient �1.
�,Mw = 200 kg/mol; �,Mw = 350 kg/mol; �,Mw = 517 kg/mol; �,Mw = 813 kg/mol. For all
materialsMw/Mn < 1.05; concentration = 0.0676 g/cm3 in Flexon 391, a hydrocarbon oil. Note that
the �1 data are displayed three decades lower than the η data. Source: From “Nonlinear rheological
behavior of polymer systems for several shear-flow histories,” by E. V. Menezes and W. W. Graessley,
Journal of Polymer Science, Polymer Physics Edition, Copyright © 1982 by John Wiley & Sons, Inc.
Reprinted by permission of John Wiley & Sons, Inc.

coefficients are shear-thinning for aqueous solutions of polyacrylamide and polyethylene
oxide [45].

6.1.2 LIMITS ON MEASUREMENTS–INSTABILITY

There are experimental limits on the range of shear rates that can be explored when
measuring η and�1. At the low shear-rate end, measurements are bounded by the sensitivity
with which torque or pressure drop can be measured. For the high-shear-rate limit, it is
often an instability that intrudes on the measurement. For example, for the cone-and-plate
viscometer, when the rate of rotation of the cone (or plate, since either can be turned) exceeds
a critical value, the edges of the sample start to deform [137] (Figures 6.7 and 6.8). If shearing
continues, the edge deforms more severely, and for some materials the sample splits and
twists out of the gap [250]. The shear rate at which the instability appears is related to the cone
angle employed, such that maximum shear rate times cone angle is a constant [203]. Because
edge instabilities occur at rather modest shear rates, most high-shear-rate data are measured
in a capillary rheometer. Recent results by Lee et al. [149] have shown that the onset of the
edge instability is controlled by the value of the second normal-stress coefficient �2.
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Figure 6.3 Shear viscosity η as a function of shear rate γ̇ for linear and branched polydimethyl-
siloxanes. +, Mw=131 kg/mol, Mw/Mn=1.9, linear; �, Mw=156 kg/mol, Mw/Mn=2.8, branched;
�, Mw=418 kg/mol, Mw/Mn=3.2, linear; �, Mw=428 kg/mol, Mw/Mn=2.9, branched; from Piau
et al. [207]. Source: Reprinted from Journal of Non-Newtonian Fluid Mechanics, 30, J. M. Piau, N. El
Kissi, and B. Tremblay, “Low Reynolds number flow visualization of linear and branched silicones
upstream of orifice dies,” 197–232, Copyright © 1988, with permission from Elsevier Science.

Figure 6.4 Shear first normal stress coef-
ficient�1 as a function of shear rate γ̇ for
linear and branched polydimethylsilox-
anes. +, Mw = 131 kg/mol, Mw/Mn =
1.9, linear; �, Mw = 156 kg/mol, Mw/
Mn = 2.8, branched; �, Mw = 418 kg/
mol, Mw/Mn = 3.2, linear; �, Mw =
428 kg/mol, Mw/Mn = 2.9, branched;
from Piau et al. [207]. Source: Reprinted
from Journal of Non-Newtonian Fluid
Mechanics, 30, J. M. Piau, N. El Kissi,
and B. Tremblay, “Low Reynolds number
flow visualization of linear and branched
silicones upstream of orifice dies,” 197–
232, Copyright © 1988, with permission
from Elsevier Science.

While capillary rheometers are capable of measuring much higher shear rates than cone-
and-plate rheometers, they are also subject to flow instabilities. At high rates it becomes
impossible to produce a smooth stream of polymer at the exit of the capillary die. The
extrudate becomes distorted in a way that depends on the type of polymer being examined.
For some materials a mild surface distortion occurs, known as sharkskin (Figure 6.9).
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Figure 6.5 Viscosity and first normal-stress coefficient as a function of shear rate for a dilute solution
of polyisobutylene in a viscous solvent, a mixture of polybutene and kerosene; from Binnington
and Boger [24]. This is a Boger fluid; note that the viscosity is constant, but the fluid is clearly not
Newtonian since �1 �= 0. Source: From the Journal of Rheology, Copyright © 1985, The Society of
Rheology. Reprinted by permission.

PDMS [208] shows a spiraling instability, whereas polystyrene (PS) and polyethylene
(PE) produce a wavy [231] and a completely distorted stream [119], respectively. For
some monodisperse polymers (PB, PI [253]) and high-molecular-weight linear polyethylene
(high-density polyethylene, HDPE [30]), the flow rate becomes discontinuous at a critical
value of the shear stress (Figure 6.10), shooting material from the exit of the capillary (spurt
instability). This instability occurs if the flow is driven by a constant pressure mechanism.
If the flow is driven at a constant flow rate, wildly oscillating pressure drops are observed
(Figure 6.11). Because the flow rateQ, and hence the shear rate γ̇ , is not stable in this flow
regime, the data shown in Figure 6.10 are not represented as viscosity versus shear rate but
rather as raw experimental data of apparent shear rate at the wall 4Q/πR3 versus wall shear
stress �PR/2L, where �P is the pressure drop, R and L are the radius and length of the
capillary, respectively, andQ is the volumetric flow rate. The definitions of apparent shear
rate at the wall and wall shear rate and other details of capillary rheometry can be found
in Chapter 10.

The capillary instabilities described are grouped under the general phenomenological
name melt fracture, and their causes are the subject of ongoing research [206, 65]. Implicated
in at least some of the manifestations of melt fracture are inlet and exit effects, melt
compressibility, wall slip, and elastic properties of the material. From the point of view
of capillary measurements of viscosity, melt fracture limits the highest values of shear rate
for which steady flow can be achieved.
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Figure 6.6 All three shear-flow material functions (η,�1, �2) as a function of shear rate for two
polystyrene solutions; from Magda et al. [163]. �, 28% polystyrene in dioctylpthalate (DOP); �,
28% polystyrene in tricresylphosphate (TCP). The polystyrene in these solutions is broadly distributed
withMw = 47 kg/mol. Source: Reprinted with permission, “Rheology, flow instabilities, and shear-
induced diffusion in polystyrene solutions,” J. J. Magda, C. S. Lee, S. J. Muller, and R. G. Larson,
Macromolecules, 26, 1696–1706 (1993). Copyright © 1993, American Chemical Society.

6.1.3 MATERIAL EFFECTS

The most significant factors that influence measured steady shear-flow properties are molec-
ular composition and structure. A great deal of research has been conducted to correlate com-
position and structure with rheological properties. In fact, industrial polymeric-materials
research is often focused on modifying materials chemically or physically to produce desired
rheological properties. A detailed discussion of molecular differences among polymers can
be found in the literature [75, 77, 97]. Beyond chemical composition, the most significant
properties that affect rheology are molecular weight and molecular-weight distribution
(MWD) as well as molecular architecture.

6.1.3.1 Molecular Weight and Molecular-Weight Distribution

The effect of molecular weight can best be appreciated by examining the now classic plot
by Berry and Fox [21] of zero-shear viscosity η0 versus molecular weight for monodisperse
polymer melts (Figure 6.12). For a wide range of materials,η0 increases proportionally to the
first power of molecular weight belowMc, the critical molecular weight for entanglement.
Above Mc the dependence of viscosity on molecular weight changes considerably, η0 ∝
M3.4−3.5. The low-molecular-weight regime is sometimes called the Rouse regime [138]
since a molecular and constitutive model for short-chain polymer dynamics by Rouse
predicts the observed M1 dependence of viscosity as well as many other aspects of short-
chain behavior [138]. No purely theoretical model predicts theM3.4 dependence aboveMc,
but the Doi–Edwards model comes close [70], predicting η0 ∝ M3.
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Figure 6.7 Edge fracture of a poly-
dimethylsiloxane melt in a cone-and-
plate rheometer; from Hutton [113].
At high rates (7.2 s−1) the meniscus
at the edge draws in. Source: From
“Fracture and secondary flow of elas-
tic liquids,” J. F. Hutton, Rheolog-
ica Acta, 8, 54–59 (1969), Figure 2.
Copyright © 1969, Springer-Verlag.

Figure 6.8 Conical instabilities in a cone-and-plate flow (γ̇ = 6.25 s−1) of an 11 wt % solution of
polystyrene in decalin; from Kulicke et al. [134]. Conical vortices that disturb the edges of the sample
are observed at high rates. Source: “Visual observation of flow irregularities in polymer solutions at
theta-conditions,” by W. M. Kulicke, H. E. Jerebiern, H. Kiss and R. S. Porter, Rheologica Acta, 18,
711–716 (1979), Figure 2. Copyright © 1979, Springer-Verlag.

The existence of the two regimes of molecular-weight dependence of viscosity is
one of the strongest pieces of evidence for the existence of entanglements in polymers
(Figure 6.13). In the entanglement picture, below a critical molecular weightMc, polymer
chains are too short to knot up and entangle. They have high viscosities, but doubling
their molecular weight only doubles the viscosity (η ∝ M1). Above a threshold molecular
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(a)

(b)

(c)

Figure 6.9 Surface of extrudate from a
capillary rheometer exhibiting sharkskin
and wavy-flow melt fracture instabili-
ties; from Pomar et al. [213]. The sample
is a solution of 25 wt % octadecane,
75 wt % linear low-density polyethylene
(Mw = 114 kg/mol, Mw/Mn = 3.9).
(a) Early in the sharkskin region. (b) Just
prior to the transition to wavy flow. (c)
Just after the transition to wavy flow.
Source: Reprinted from Journal of Non-
Newtonian Fluid Mechanics, 54, G. Po-
mar, S. J. Muller, and M. M. Denn, “Ex-
trudate distortions in linear low-density
polyethylene solutions and melt,” 143–
151, Copyright © 1994, with permission
from Elsevier Science.

weight, knots and entanglements can exist among the polymer chains, and the viscosity
increases dramatically compared to unentangled chains. In this regime if the molecular
weight is doubled, the viscosity increases by a factor of 23.4 ≈ 10. Other properties,
such as the diffusion coefficient, also show a change in molecular-weight dependence at
Mc [189].

Molecular-weight distribution influences the shape of the viscosity function, as illus-
trated in Figure 6.14. The transition between the constant zero-shear portion of the curve
and the shear-thinning portion is more abrupt and occurs at a higher shear rate for the narrow
molecular-weight-distribution material than for the broadly distributed material. Increasing
Mw/Mn also has the effect of decreasing the slope of the shear-thinning region of η(γ̇ ).
Narrow MWD polymers are known to show melt-flow instabilities more easily than their
broad MWD counterparts. This stabilization effect is attributed to the wider distribution of
relaxation times and processes present in the broadly distributed material. A material with
a wide distribution of relaxation times has more options of how to respond to the imposed
stresses in a flow and thus can avoid instability. The stabilizing effect of a broad molecular-
weight distribution can be seen in the polybutadiene spurt data of Vinogradov (Figure 6.15)
[252], where the instability disappears as polydispersity, measured byMw/Mn, increases.

6.1.3.2 Chain Architecture

Chain architecture refers to the physical arrangement of monomeric building blocks in a
polymer material. Up until now we have been concentrating on linear homopolymers–chains
in which the monomers are arranged sequentially. Many industrially important polymers
are branched, however. Branching itself can have several forms (Figure 6.16), including
long-chain branching, short-chain branching, radial branching (star polymers), and dense



6.1 Steady Shear Flow 177

105 106 107

�PR
L2

, dyn/cm2

4 R
, s

Q

π
3

–1

101

102

103

104

LPE-1

LPE-2

LPE-3

LPE-4

Figure 6.10 Spurt instability in a linear polyethylene at 160°C; replotted from Blyler and Hart [30].
At a critical wall shear stress�PR/2L = 2×106 dyn/cm2, the apparent shear rate 4Q/πR3 increases
abruptly, and polymer spurts from the capillary. See the figure for a definition of the symbols used.
Materials are linear polyethylenes: LPE-1 melt index (MI) = 0.1,Mw unknown; LPE-2 MI = 0.2,
Mw = 200 kg/mol; LPE-3 MI = 0.9, Mw = 131 kg/mol; LPE-4 MI = 5, Mw = 79 kg/mol.
See Glossary for a definition of melt-flow index. Source: From Polymer Engineering and Science,
Copyright © 1970, Society of Plastics Engineers. Reprinted by permission.

Figure 6.11 Pressure fluctuations in the cap-
illary flow at 190°C of a high-density poly-
ethylene (HDPE); from Lupton and Regester
[160]. The physical properties of the HDPE
are ρ = 0.952 g/cm3, melt index = 1. SCU
and SCL are the upper and lower critical wall
stresses (wall stress = �PR/2L) between
which the pressure fluctuates, and Q∗ is the
apparent shear rate,Q∗ = 4×flow rate/πR3.
Source: From Polymer Engineering and Sci-
ence, Copyright © 1965, Society of Plastics
Engineers. Reprinted by permission.
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Figure 6.12 Effect of molecular
weight on the measured zero-shear
viscosity for a variety of polymers;
from Berry and Fox [21]. Below a
critical molecular weight Mc, η0 ∝
M1; at higher molecular weights η0 ∝
M3.4−3.5. Source: From “The viscos-
ity of polymers and their concentrated
solutions,” G. C. Berry and T. G Fox,
Advances in Polymer Science, 5, 261–
357 (1968), Figure 1. Copyright ©
1968, Springer-Verlag.

branching upon branches, known as hyperbranching. A type of material that essentially is
composed entirely of branches is the dendrimer. Dendrimers are a new kind of polymer
whose structures resemble fractals—the molecule emanates from a multifunctional center,
and two repeat units are added to each of the end-group sites. These form the next generation
of sites for subsequent branching. Chemical assembly of the structure proceeds layer after
layer, and a very dense molecule results [242, 71] (Figure 6.16e).

Branching tends to affect the shape of the viscosity versus shear-rate curve in the
same way as does broadening the molecular-weight distribution. More significantly, long-
chain branching has a strong effect on the zero-shear viscosity (Figure 6.17). Long-chain
branching adds considerably to the viscosity of a polymer at low shear rates because of the
increase in relaxation times caused by the branches. Polymers tend to relax by motion along



6.1 Steady Shear Flow 179

Figure 6.13 Schematic of (a) unentangled and (b) entan-
gled polymers. Unentangled polymers are able to rapidly
relax interactions with neighboring molecules. Entangled
polymers form knots and are slowed down in their ability
to relax interactions with their neighbors.

Figure 6.14 Effect of molecular weight distribution on viscosity; from Uy and Graessley [250a].
Shown are viscosity versus shear-rate master curves for poly(vinyl acetate) concentrated solutions
in diethyl phthalate. Polymers of different Mw values were shifted empirically using the zero-shear
viscosity η0 and a time constant τ0/2 to produce the master curves for comparison. The different
curves represent samples with different molecular weight distributions: A—Mw/Mn = 1.09; B—
Mw/Mn = 2.0; C—branched. Source: Reprinted with permission, “Viscosity and normal stresses in
poly(vinyl acetate) systems,” W. C. Uy and W. W. Graessley, Macromolecules, 4, 458–463 (1971).
Copyright © 1971, American Chemical Society.

their backbones (Figure 6.18). This motion is hindered by branch points, and the relaxation
time increases dramatically. In addition, these long relaxation times introduce a dependence
on the shear history into rheological behavior as follows [96]. Once a branched polymer
has been processed for some time, it adopts some chain configurations that take a very long
time to randomize. This hysteresis can introduce irreproducibility into rheological testing
and into performance properties.

At high shear rates the viscosity of a branched system is lower than that of a linear system
of the same molecular weight (Figure 6.19). This is attributed to the more compact structure
of the branched system. At high rates both linear and branched chains disentangle and flow
past each other as whole units, and the compact structure of branched polymers reduces
the interactions among molecules and reduces viscosity (Figure 6.18). The zero-shear first
normal-stress difference�0

1 also increases dramatically with the introduction of long-chain
branching [61]. Branched polymers are preferred in processes with a highly elongational
character such as film blowing, where long-chain branching increases extension-thickening
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Figure 6.15 Effect of molecular-weight distribution on the spurt instability in capillary flow of
polybutadiene melts; from Vinogradov [252]. The flow curves shown (4Q/πR3 versus �PR/2L;
see Chapter 10 for details) are for blends of polybutadiene of molecular weight M2 = 240 kg/mol
blended with polybutadiene of molecular weights M1 = (a) 76, (b) 38, (c) 20, and (d) 8.7 kg/mol.
Mass ratios φ1 : φ2 are indicated. Source: From “Critical regimes of deformation of liquid polymeric
systems,” by G. V. Vinogradov, Rheologica Acta, 12, 357–373 (1973), Figure 13. Copyright © 1973,
Springer-Verlag.

Figure 6.16 Various branched polymeric architectures. (a) Long-chain branching. (b) Short-chain
branching. (c) Star polymers. (d) Hyperbranching. (e) Dendrimers.

behavior (the tendency for the extensional viscosity to increase as the rate of extension
increases; see Section 6.3) and thus stabilizes the blown film.

Short-chain branches actually reduce viscosity compared to a linear polymer of the
same molecular weight [61]. This is because the molecule extends less far out into the melt
and therefore has fewer interactions with its neighbors. This is only true when the length
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Figure 6.17 Effect of branching on zero-
shear viscosity η0, that is, at low shear rates;
from Kraus and Gruver [131]. Curves are
for � linear, � three-armed star-branched
(linear with one long side chain), and �
four-armed star-branched polybutadienes at
379 K. At lower molecular weights the
branched polymers have lower η0; at very
high molecular weights, however, the vis-
cosity of the branched polymers greatly
exceeds that of the linear polymer. Source:
From “Rheological properties of multichain
polybutadienes,” by G. Kraus and J. T. Gru-
ver, Journal of Polymer Science, Part A,
Copyright © 1965 by John Wiley & Sons,
Inc. Reprinted by permission of John Wiley
& Sons, Inc.

of the branches is less than the entanglement molecular weight of the polymer, however
[61]. Hyperbranched materials, an outgrowth of the invention of the dendrimer, are new
materials, and little is known of their rheological properties. They hold promise of having
very useful chemical properties because of their high molecular weight and relatively low
viscosity when compared to a linear polymer of the same molecular weight. Dendrimers are
the most compact polymers of all. They exhibit much lower viscosities than linear polymers
of comparable molecular weight and do not shear-thin [248] (Figure 6.20).

6.1.3.3 Mixtures and Copolymers

As mentioned at the start of this section, chemical composition is the most significant
material trait that causes different polymers to exhibit distinct rheological properties. An
in-depth discussion of the properties of various homopolymers is beyond our scope, but
there are some general observations that we can make on the changes in rheological
properties observed when chemical composition is changed by blending polymers with
other polymers, with low-molecular-weight materials, or with inert fillers, or when a
copolymer is formed. Many of these processes have signature effects on viscosity and
other rheological functions.

It is common in the polymer processing industry to mix fillers such as carbon black or
talc into polymers to produce a composite that has greater stiffness and greater resistance
to flow at high temperatures than the unfilled polymer melt. In general, fillers have little
effect on viscosity at high rates, but at low rates fillers can increase the viscosity by an order
of magnitude. Figure 6.21 shows the effect on the viscosity of polypropylene of adding
varying amounts of talc (hydrated magnesium silicate) as filler [40]. The magnitude of the
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Figure 6.18 Relaxation motions
of linear and branched polymers.
(a) Entangled linear: chains move
principally along their contour.
(b) Entangled branched: branch
points retard motion along contour.
(c) Disentangled branched: once
disentangled (high γ̇ ), branched
and linear polymers flow more
freely.

effect depends on the concentration of the filler. For the system shown, talc particles are
believed to interact at low rates, forming a network-like structure that must be broken for
flow. The extra stress it takes to break the structure is measured as an increase in viscosity at
low rates. The first normal-stress difference is also increased by filler [237]. Even fillers that
do not interact to form a network increase low-rate viscosity, as pointed out by Einstein [73,
162] and as observed in the data in Figure 6.22 on polypropylene mixed with glass beads.

Because the high-rate viscosity of filled systems is unaffected by the filler, processing
at high rates is unchanged by the presence of the filler. In mold-filling operations such as
injection molding, however, the flow into the cold mold can be quite slow. In this low-
shear-rate process, the viscosity of the filled system will be appreciably higher than that
of the unfilled system, requiring higher pressures and causing the process to take a longer
amount of time for a filled polymer compared to an unfilled polymer. In addition, undesirable
effects such as mold lines and surface structures are observed in products made with filled
polymers [40]. These effects result from the slow relaxation times of filled compounds
during mold filling.
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Figure 6.19 Effect of branching on vis-
cosity at γ̇ = 20 s−1; from Kraus and
Gruver [131]. Symbols are defined in Fig-
ure 6.17. η(γ̇ = 20 s−1) is lower for
branched polybutadienes than for linear
polybutadienes of the same molecular
weight. Source: From “Rheological prop-
erties of multichain polybutadienes,” by
G. Kraus and J. T. Gruver, Journal of Poly-
mer Science, Part A, Copyright © 1965
by John Wiley & Sons, Inc. Reprinted by
permission of John Wiley & Sons, Inc.

Figure 6.20 Steady shear viscosity of generations (G) 0 through 6 ethylenediamine (EDA)-core,
poly(amidoamine) (PAMAM)-bulk dendrimers at 70°C; from Uppuluri [248]. Each generation rep-
resents an additional growth cycle of the dendrimer, that is, increasing molecular weight.
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Figure 6.21 Viscosity versus shear rate at 200°C for talc-filled polypropylene; from Chapman and
Lee [40]. Data at low rates were taken in a cone-and-plate rheometer; high-rate data were taken in
a capillary rheometer. Source: From SPE Journal, Copyright © 1970, Society of Plastics Engineers.
Reprinted by permission.

Figure 6.22 Viscosity versus shear rate for polypropylene and for polypropylene mixed with inert
glass filler and interacting talc filler; from Chapman and Lee [40]. Although the absence of specific
interactions reduces the viscosity of the glass-filled compared to the talc-filled polypropylene, the
viscosity of the glass-filled system is still greater than that of the neat polymer. Source: From SPE
Journal, Copyright © 1970, Society of Plastics Engineers. Reprinted by permission.

Polymer blending is a common technique for producing new rheological properties.
Most polymers are incompatible, that is, when they are mixed together, the two constituent
homopolymers phase-separate into domains. The sizes of the phase-separated domains
range from 100 nm to several μm, depending on the mixing methods employed. The
shear viscosity of one such incompatible blend is shown in Figure 6.23 for various
temperatures. The viscosity of the homopolymer nylon is independent of the shear rate over
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Figure 6.23 Viscosity η versus
shear rate γ̇ for blends of nylon and a
branched polyolefin at various tem-
peratures; from Chuang and Han
[46]. Various blend compositions
are shown. The nylon wt % of the
blends varies as follows: �, 100;
�, 80; �, 60; , 40; �, 20; �,
0. Temperatures (°C) are indicated
by the shading of the symbols: left
half filled, 220; open, 230; filled in,
240; right half filled, 250. Source:
Reprinted with permission, “Rheo-
logical behavior of blends of nylon
with a chemically modified poly-
olefin,” H.-K Chuang and C. D. Han,
Advances in Chemistry: Polymer
Blends and Composites in Multi-
phase Systems, 206,171–183 (1984).
Copyright © 1984, American Chem-
ical Society.

the experimental range explored (�). This material is mixed with a branched polyolefin
that shear-thins at higher rates and which has a much higher viscosity (�). The viscosity
curves of the nylon-rich blends of these two materials lie inbetween the curves of the two
homopolymers (�,�). The nylon-lean blends, however, exhibit a viscosity that is shear-
thinning everywhere and that is higher than the viscosity of either blend component ( , �).
This viscosity enhancement is caused by the filler effect of the stiffer polyolefin domains,
which are quite large at these low wt % nylon compositions. Viscosities of all of the blends
depend on temperature.

The first normal-stress differences measured for the same incompatible blends are
shown in Figure 6.24 as a function of shear stress. Unlike viscosity,N1 is nearly independent
of temperature for these blends. Note also that the curves for N1 for all blend compositions
appear in sequence between the curves for the two homopolymers, indicating that the filler
effect does not influence the first normal-stress difference and hence the elasticity of these
blends. Note that if these data were plotted as the material function�1 = |N1|/γ̇ 2

0 instead of
as bareN1, the blends would be shear-thinning. Note also that the opposite-sign convention
for stress was used in the reporting of these data.

As noted earlier, physical blending of two polymers usually results in a phase-separated
morphology. The detailed structure of a phase-separated blend depends on the conditions
under which the blend was mixed and on the thermal history of the blend. Another, more
controlled way of combining the properties of two polymers is to create a block copolymer.
A block copolymer is a polymer that has long sequences or blocks of one type of polymer
connected to long sequences of a second type of polymer.

Block copolymers are important industrial materials since at room temperature they are
tough and elastic, but at high temperatures they flow easily [4, 8]. They are also important
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Figure 6.24 First normal-stress differ-
enceN1 = τ11 −τ22 versus shear stress
τ21 for blends of nylon and a branched
polyolefin at various temperatures;
from Chuang and Han [46]. Various
blend compositions are shown. The
symbols are defined in Figure 6.23.
Source: Reprinted with permission,
“Rheological behavior of blends of
nylon with a chemically modified
polyolefin,” H.-K Chuang and C. D.
Han, Advances in Chemistry: Polymer
Blends and Composites in Multiphase
Systems, 206,171–183 (1984). Copy-
right © 1984, American Chemical
Society.

components in adhesives. The steady shear viscosity of a (b)polystyrene–(b)polybutadiene–
(b)polystyrene (SBS) triblock copolymer versus shear rate is shown in Figure 6.25. Block
copolymers are shear-thinning, but the shear-thinning seen for SBS occurs at much lower
shear rates than was seen for linear homopolymers. The shear-thinning in block copoly-
mers is caused by their microstructure. For industrially important block copolymers such
as the SBS shown in Figure 6.25, the two constituent homopolymers, polystyrene and
polybutadiene, are not thermodynamically compatible, that is, blends of these two ho-
mopolymers phase separate. In a block copolymer, however, the covalent bonds that
link the blocks of styrene and butadiene together prevent phase-separation They do not
produce a homogeneous polymer melt, however. Rather, SBS microphase-separates—
the blocks of polystyrene find like blocks on neighboring molecules and form small
microdomains of polystyrene that are present both at room temperature and at elevated
temperatures, where the polystyrene is molten (Figure 6.26). The same happens for the
polybutadiene blocks. The extra energy it takes to disrupt this thermodynamic microstruc-
ture accounts for the observed high viscosity at low rates for microphase-separated SBS
(Figure 6.25).

Suspensions of solids and liquids are an important class of fluids since they include
inks, processing fluids, and many foods. We will not give a review of the extensive literature
on suspensions (see Macosko [162, chap. 10], as well as [218, 112]), except to indicate that
concentrated suspensions of small particles can exhibit shear-thickening behavior in steady
shearing flows [178, 98] (Figure 6.27). The data in Figure 6.27 show that at low shear
rates the TiO2 suspensions studied shear-thin, but at high shear rates the high-concentration
suspensions shear-thicken, that is, the viscosities of the suspensions increase with the shear



6.1 Steady Shear Flow 187

Figure 6.25 Steady shear viscosities versus shear rate of three (b)polystyrene–(b)polybutadiene–
(b)polystyrene (SBS) triblock copolymers at 175°C; from Holden et al. [111]. Block molecular weights
of each copolymer are also listed. Source: From “Thermoplastic elastomers,” by G. Holden, E. T.
Bishop and N. R. Legge, Journal of Polymer Science, Part C, Copyright © 1969 by John Wiley &
Sons, Inc. Reprinted by permission of John Wiley & Sons, Inc.

Figure 6.26 Schematic of two morph-
ologies adopted by microphase-sepa-
rated block copolymers. ABA triblock
copolymer chains are shown arranging
their configurations so that theA blocks
group with other A blocks to form a
distinct microphase. The same holds for
the B blocks. The shapes of the mi-
crodomains are primarily controlled by
the volume fractions of A and B in the
block copolymer.

rate. In suspensions, shear-thickening is associated with the presence of volume dilatancy,
that is, the tendency of the volume of the suspension to increase with shearing. Metzner and
Whitlock [178] showed that the onset of rheological dilatancy (shear-thickening) occurs
after the onset of volumetric dilatancy (volume expansion). Shear-thickening has also been
seen in some polymer solutions [146] where the mechanism must be different.
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Figure 6.27 Viscosity versus shear rate for five suspensions of TiO2 in water; recalculated and
replotted from Metzner and Whitlock [178]. The diameters of the TiO2 particles were between 0.2 and
1 μm, and the data were taken on a Couette (cup-and-bob) rheometer. Source: From the Transactions
of the Society of Rheology, Copyright © 1958, The Society of Rheology. Reprinted by permission.

6.1.4 TEMPERATURE AND PRESSURE EFFECTS

Steady shear viscosity is a strong function of temperature, as seen for polybutadiene in
Figure 6.28 [203]. For a temperature increase of 125°C the zero-shear viscosity of this
polybutadiene drops by a factor of 25. For many liquids, including polymers, the temperature
dependence of viscosity is exponential:

η0 = AeB/T (6.1)

where η0 is the zero-shear viscosity, T is absolute temperature in kelvins, and A and B are
constants that vary from material to material [180].

The variation of viscosity with shear rate complicates the consideration of the temper-
ature dependence of viscosity. The curves at different temperatures have similar shapes,
however, and often can be represented more compactly by shifting the data vertically until
the zero-shear values line up, and subsequently by shifting horizontally on the shear-rate
axis until the curves superimpose. This process is called time–temperature superposition,
and it has a theoretical basis that is discussed in depth in Section 6.2.1.3.

Pressure also has an effect on viscosity [172] (Figure 6.29); viscosity increases with
increasing pressure due to the increased frictional forces among molecules [172, 262]. The
usual form for the pressure dependence of viscosity is also exponential:

η0 = KeaP (6.2)

where η0 is the zero-shear viscosity, P is pressure, and K and a are constants [162, 61].
Although the effect of pressure on viscosity is not as large as the effect of temperature,
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Figure 6.28 Viscosity versus shear rate at four different temperatures for a polybutadiene melt. Raw
capillary data from Gruver and Kraus [102] corrected for nonparabolic velocity profile (Rabinowitsch
correction; see Chapter 10) and plotted. Mw = 145 kg/mol, Mw/Mn = 1.1. From “Rheological
properties of polybutadienes prepared by n-butyllithium initiation,” by J. T. Gruver and G. Kraus,
Journal of Polymer Science, Part A, Copyright © 1964 by John Wiley & Sons, Inc. Reprinted by
permission of John Wiley & Sons, Inc.

Figure 6.29 Apparent viscosity of polystyrene and branched polyethylene as a function of pressure;
replotted from Maxwell and Jung [172]. Use of the term “apparent viscosity” reflects that the
Rabinowitsch correction has not been applied; see Chapter 10. Source: Reprinted from Modern
Plastics, March, 1957, pp. 174–182, 276, a publication of the McGraw-Hill Companies, Inc.
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pressure effects can be important in practical flows because pressures in excess of 50 MPa
(7000 psig; extruders) or even 100 MPa (14,000 psig; injection molders [236]) can develop
in processing equipment. In capillary viscometers a pressure gradient is used to produce
the flow in which viscosity is measured (see Chapter 10), and as a consequence, viscosity
can vary along the length of the capillary. This effect is small at modest pressures (less than
1 kPa [145]), but it can become significant for measurements in long dies. The magnitude
of the viscosity–pressure effect varies with the type of polymer under consideration. For
polyethylene the addition of a hydrostatic pressure of 172 MPa (25,000 psig) causes
viscosity to increase by between a factor of 3 and 10. For polystyrene, however, such a
pressure increases viscosity by a factor of 100 [262] (Figure 6.29).

In summary, the steady shear rheological properties vary widely with material com-
position, molecular weight, and temperature. Significant but of lesser importance are the
influences of molecular-weight distribution, pressure, and the presence of a filler. We see
then, even when considering the simplest rheological measurements (steady shear material
functions), that the situation is complex. This is one of the challenges of the practice
of rheology.

We are not limited, of course, to studying steady shear flow. We now move on to discuss
results from non-steady shear flows and, in the subsequent sections, elongational flows.

6.2 Unsteady Shear Flow

6.2.1 SMALL-STRAIN UNSTEADY SHEAR FLOW—SAOS AND STEP STRAIN

The steady shear data discussed in the last section give important information on large-strain
behavior that is quite relevant in polymer processing flows. The small-strain region is also
important, but in a different venue—as an analytical tool to quantify material relaxation
characteristics. Two of the most widely used small-strain tests are the small-amplitude
oscillatory shear (SAOS) and the step-strain tests; these will be discussed next.

The SAOS experiment introduced in Section 5.2.2.5 is used quite widely because of its
accuracy. This experiment has the advantage that data can be taken over several cycles and
averaged, increasing the reliability of the measurement. The step-strain experiment, which
gives similar information when performed at small strains, depends on the measurement of
rapidly changing transient stresses, making it inherently less accurate than SAOS. The step-
strain experiment is more useful in the nonlinear regime (high strains) where the nonlinear
property known as damping function h(γ0) may be obtained. Large-amplitude step strains
and damping functions are discussed in detail in Section 6.2.2.

SAOS and small-strain step strains both measure rheological properties in what is
called the linear viscoelastic limit. In the linear viscoelastic limit strains are additive, that
is, the effect of two strains is just the sum of the effects of each strain imposed individually
[see Equation (5.56) and the equations that follow]. As a result of this property of linear
superposition, it is possible to formulate an accurate constitutive equation for materials in the
linear viscoelastic limit. We will study this equation in Chapter 8. Because the constitutive
equation is known, moreover, it is possible to measure one linear viscoelastic property,
such asG′(ω) orG′′(ω) in SAOS, and from the measured results we can calculate all other
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material functions in the linear viscoelastic limit, for example,G(t) (small step strains), η0

(low steady shear rates), and so on.

6.2.1.1 General Effects—Linear Polymers

SAOS data are sensitive to molecular properties. As an example, consider high-molecular-
weight linear homopolymers [75]. These materials typically have curves of G′(ω) and
G′′(ω) as shown in Figure 6.30. At high frequencies, all homopolymers exhibit a glassy
modulus of approximately G′ = 109 Pa. At lower frequencies (the transition region) the
storage modulus G′ drops, reflecting the greater amount of relaxation that can occur when
the polymer is deformed at a lower frequency. For entangled melts, a plateau appears at these
intermediate frequencies at a modulus level of between 104 and 106 Pa, and a minimum
is observed in the loss modulus G′′ [75, 77]. The modulus level of the G′ plateau, called
the rubbery plateau, is known as the plateau modulus G0

N . It is inversely proportional to
the molecular weight between entanglements [75]; the breadth of the rubbery plateau is
proportional to the molecular weight [196]. At the lowest frequencies, representing time
scales long enough to permit the unraveling of entanglements, the moduli drop further,
eventually to unmeasurable levels. At these lower frequencies, G′ ∝ ω2 and G′′ ∝ ω.
These powers of 2 and 1 can be predicted from the linear viscoelastic model mentioned
earlier (see Chapter 8). The low-frequency region is called the terminal zone [75], and
the frequency of the onset of the terminal zone is often associated with the inverse of the
longest relaxation time of the material, λ1 = 1/ωx . Again, this assignment can be justified
by the use of the linear viscoelastic equation discussed in Chapter 8. The actual values
of frequency that are classified as high, intermediate, and low depend on the temperature
at which the moduli are measured. A more extensive discussion of the shape of linear
viscoelastic rheological functions for a wide variety of polymers can be found in Ferry [75,
chap. 2].

As mentioned earlier, the constitutive equation for the linear viscoelastic limit is known,
and therefore rheological data in the linear viscoelastic region can be converted from one
type of material function to another. As an example, the G(t) curve calculated for the data
of Figure 6.30 using the linear viscoelastic model of Chapter 8 is shown in Figure 6.31. In
many ways G(t) resembles a mirror image of G′(ω). This reciprocal relationship between
t and ω is not unexpected since they are both measures of the time of relaxation.

Another reason for the importance of SAOS data is the observation [53] that for many
materials, the steady-shear-viscosity versus shear-rate curve (η vs. γ̇ ) has the same shape
and values as the complex-viscosity versus frequency curve (|η∗| vs.ω) if they are compared
at γ̇ (s−1) = ω (rad/s),

Cox–Merz rule η(γ̇ ) = |η∗(ω)|γ̇=ω (6.3)

This empirical rule is known as the Cox–Merz relationship, and it has been seen experimen-
tally to hold for many polymeric systems in the low- and intermediate-frequency regimes
(Figure 6.32). Because of the existence of this rule, experimentalists often use the easier
to measure linear viscoelastic η∗(ω) curves as a substitute for the true nonlinear-property
viscosity η(γ̇ ). This should be done with caution, since the validity of the Cox–Merz rule
must be evaluated for each individual system. The Cox–Merz rule is known to hold for some
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Figure 6.30 Master curve of the material functionsG′(ω) andG′′(ω) for an atactic linear polystyrene;
data taken by D. J. Plazek and V. M. O’Rourke as plotted in Ferry [75]. Mw = 600 kg/mol,
narrow molecular-weight distribution. The reference temperature is 100°C. Source: From Viscoelastic
Properties of Polymers, J. D. Ferry, Copyright © 1980 by John Wiley & Sons. Reprinted by permission
of John Wiley & Sons, Inc.

Figure 6.31 Master curve of the material functionG(t), the relaxation modulus, for an atactic linear
polystyrene; calculated from the G′ and G′′ data in Figure 6.30 calculated by Ferry [75] from the
data taken by D. J. Plazek and V. M. O’Rourke. The reference temperature is 100°C. Source: From
Viscoelastic Properties of Polymers, J. D. Ferry, Copyright © 1980 by John Wiley & Sons. Reprinted
by permission of John Wiley & Sons, Inc.
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Figure 6.32 Dynamic (η′, η∗) and steady shear (η) viscosities versus frequency and shear rate,
respectively, for a low-density polyethylene (LDPE) at 175°C; from Venkatraman et al. [251]. �, data
taken in a cone-and-plate rheometer; �, corrected capillary data. Source: From Polymer Engineering
and Science, Copyright © 1990, Society of Plastics Engineers. Reprinted by permission.

low-density (branched) polyethylenes [251] and for polystyrene [53] and to break down for
some linear [249, 251] and branched [144, 119] polyethylenes, for block copolymers [87],
and for rigid molecules [221].

6.2.1.2 Material Effects

As with steady shear properties, linear viscoelastic properties vary widely from material to
material. For linear homopolymers, the basic shapes of the SAOS curves are as described in
the last section, but the details (the value ofG0

N , the location of the curve on the frequency
scale, the detailed shapes of the transitions, etc.) vary with the chemical composition
[75]. The differences in linear viscoelastic (LVE) properties are such that SAOS and the
related linear viscoelastic material functions can be used to help determine the chemical
makeup of unknown systems by comparing curves of unknown samples to a database of
known materials.

Molecular weight and molecular-weight distribution have important effects on linear
viscoelastic properties. As mentioned earlier, the rubbery plateau in G′ (G′ ≈ 104 − 106)

only appears in entangled polymers, that is, only above a critical molecular weight, and its
breadth increases with increasing molecular weight, as can be seen from the polystyrene
and polybutadiene data in Figures 6.33 and 6.34. The minimum in G′′ also broadens as
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Figure 6.33 Master curves of storage modu-
lus bT G′ versus aT ω for narrow-molecular-
weight-distribution polybutadienes of various
molecular weights; from Palade et al. [201].
bT is the vertical shift factor, bT ≡ Trefρref/

Tρ. Master curves were obtained from time–
temperature superposition. Tref = 25°C, Mw
(kg/mol): TV504 = 464, TV506 = 229,
LV498 = 85.8, TV510 = 70.6, TV514 =
51.3. Source: Reprinted with permission,
“Time–temperature superposition and linear
viscoelasticity of polybutadienes,” L. I. Palade,
V. Verney, and P. Attane, Macromolecules, 28,
7051–7057 (1995). Copyright © 1995, Ameri-
can Chemical Society.

the molecular weight increases (Figures 6.35 and 6.36). Polydispersity tends to broaden the
transition inG′ from the plateau to the terminal region, as shown in the data for polystyrene in
Figure 6.37 [168]. The minimum inG′′ that appears for monodisperse polymers disappears
with increasing polydispersity (Figure 6.38). Note that both G′ and G′′ are independent
of polydispersity at high frequencies, that is, in the portion of the curve that reflects the
transition to glassy behavior. The effect of long-chain branching on linear viscoelastic
properties resembles the effect of broadening molecular-weight distribution. In addition,
branching increases the longest relaxation time of the molecule and thus pushes the terminal
zone (the range of frequency where G′ ∝ ω2 and G′′ ∝ ω) to lower frequencies, often
outside of the experimental window.

The effect of copolymerization can be seen clearly in the SAOS data shown in Fig-
ure 6.39b for random copolymers of styrene and butadiene. These data are in terms of logG′
versus temperature rather than logG′ versusaT ω, but, as discussed in the next section, logG′
versus temperature exhibits the same features as logG′ versus log aT ω (in mirror image;
see Section 6.2.1.3). The pure polybutadiene in this study has a glass transition temperature
of about −75°C, as reflected by the transition of G′ at this temperature from a value of
2×1010 dyn/cm2 (109 Pa) to the plateau modulus (< 107 dyn/cm2). As the amount of styrene
monomer is increased in the copolymers, the G′ transition shifts to higher temperatures,
reflecting the increase in the glass transition temperature. The shifting of the temperature
of the glass–rubber transition occurs progressively with the addition of styrene comonomer
until the curve of homopolystyrene is obtained, reflecting the polystyrene glass-transition
temperature of about 100°C. In contrast, for block copolymers that microphase-separate
(see Section 6.1.3) a different effect is seen. Figure 6.39a shows the curves of storage
modulus versus temperature for styrene-isoprene block copolymers. For compositions of
the block copolymer with less than 50% polystyrene, glass transitions are observed at −15°C
and 110°C, reflecting homopolymer properties.1 In between these two transition zones the

1 The measurement of Tg in a temperature sweep is affected by the rate at which temperature is
increased in the experiment. When the scan rate is high, the measured value of Tg is higher than the
equilibrium value, which is associated with infinitely slow changes in temperature [75].
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Figure 6.34 Master curves of storage modulus G′ versus aT ω for narrow-molecular-weight-
distribution polystyrenes of various molecular weights; from Onogi et al. [196]. Master curves were
obtained from time–temperature superposition. Tref = 160°C, Mw (kg/mol): L18 = 581, L19 =
513, L5 = 351, L22 = 275, L15 = 215, L27 = 167, L37 = 113, L16 = 58.7, L34 =
46.9, L14 = 28.9, L12 = 14.8, L9 = 8.9. Source: Reprinted with permission, “Rheological
properties of anionic polystyrenes. I. Dynamic viscoelasticity of narrow-distribution polystyrenes,”
Onogi, S., T. Masuda, and K. Kitagawa, Macromolecules, 3, 109–116 (1970). Copyright © 1970,
American Chemical Society.

Figure 6.35 Master curves of loss modulus
G′′ versus aT ω for narrow-molecular-weight-
distribution polybutadienes of various molecu-
lar weights; from Palade et al. [201]. Master
curves were obtained from time–temperature
superposition. Tref = 25°C; Mw listed in Fig-
ure 6.33. Source: Reprinted with permission,
“Time–temperature superposition and linear
viscoelasticity of polybutadienes,” L. I. Palade,
V. Verney, and P. Attane, Macromolecules, 28,
7051–7057 (1995). Copyright © 1995, Ameri-
can Chemical Society.

value of G′ is the plateau modulus G0
N . The value of GoN in microphase-separated block

copolymers varies with the styrene content because of the filler effect caused by polystyrene
microdomains.

The linear viscoelastic properties of block copolymers are quite unique, as can be seen
by looking at their SAOS moduli as a function of frequency and temperature (Figures 6.40
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Figure 6.36 Master curves of loss modulusG′′ versus aT ω for narrow-molecular-weight-distribution
polystyrenes of various molecular weights; from Onogi et al. [196]. Master curves were obtained from
time–temperature superposition. Tref = 160°C; Mw listed in Figure 6.34. Source: Reprinted with
permission, “Rheological properties of anionic polystyrenes. I. Dynamic viscoelasticity of narrow-
distribution polystyrenes,” Onogi, S., T. Masuda, and K. Kitagawa, Macromolecules, 3, 109–116
(1970). Copyright © 1970, American Chemical Society.

Figure 6.37 Master curves of storage modulusG′ versus aT ω for narrow-molecular-weight-distribu-
tion polystyrene melts and blends; from Masuda et al. [168]. Tref = 160°C. Mixtures of two molecular
weights: L34 = 46.9 kg/mol and L27 = 167 kg/mol. Binary blends have compositions as follows:
BB38 = 80 wt % L27, BB36 = 60 wt % L27, BB34 = 40 wt % L27, and BB32 = 20 wt % L27.
Source: Reprinted with permission, “Rheological properties of anionic polystyrenes. II. Dynamic
viscoelasticity of blends of narrow-distribution polystyrenes,” T. Masuda, K. Kitagawa, T. Inoue, and
S. Onogi, Macromolecules, 3, 116–125 (1970). Copyright © 1970, American Chemical Society.
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Figure 6.38 Master curves of loss modulusG′′ versus aT ω for narrow-molecular-weight-distribution
polystyrene melts and blends from Masuda et al. [168]. Tref = 160°C. Samples are identified in
Figure 6.37. Source: Reprinted with permission, “Rheological properties of anionic polystyrenes. II.
Dynamic viscoelasticity of blends of narrow-distribution polystyrenes,” T. Masuda, K. Kitagawa,
T. Inoue, and S. Onogi, Macromolecules, 3, 116–125 (1970). Copyright © 1970, American Chemical
Society.

and 6.41). In the terminal region (low frequencies) block copolymers do not show the
scaling laws of G′ ∝ ω2 and G′′ ∝ ω that are characteristic of linear homopolymers, but
instead show scaling laws of G′ ∝ ω0.5 and G′′ ∝ ω0.5 [47, 14]. This behavior is caused
by microphase separation, the same thermodynamic effect that causes block copolymers
to show high steady shear viscosities at low shear rates, as discussed in Section 6.1.3. For
some lower-molecular-weight block copolymers it is possible to dissolve the microdomains
at high temperature. When the microdomains dissolve, the block copolymer becomes a
homogeneous material, and it exhibits a constant zero-shear viscosity in steady shear. The
dynamic viscosity η′ also approaches a constant value at low frequencies (Figure 6.42;
T ≥ 146°C). In the homogeneous phase the slopes of the curves of the low-frequency
moduli increase from 0.5 to near 1, and then ultimately follow the homopolymer scaling
rules, G′ ∝ ω2 and G′′ ∝ ω1 (see Figures 6.40 and 6.41). It is highly desirable to process
block copolymers in the homogeneous state if one exists, since less stress is required to
make the polymer flow in the homogeneous regime. Temperature has an important effect
on the rheological properties of all systems, as discussed in the next section.

6.2.1.3 Temperature Effects—Time–Temperature Superposition

Linear viscoelastic properties, like steady shear properties, are a strong function of tempera-
ture. Figure 6.43 shows the dynamic compliance J ′(ω) for a poly(n-octyl methacrylate) as a
function of frequency over a wide temperature range. J ′(ω) changes qualitatively in shape
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Figure 6.39 Modulus versus temperature for (a) styrene isoprene block copolymers and (b) styrene
butadiene random copolymers as a function of styrene content; from Cooper and Tobolsky [52].
Source: From “Properties of linear elastomeric polyurethanes,” by S. L. Cooper and A. V. Tobolsky,
Journal of Applied Polymer Science, Copyright © 1966 by John Wiley & Sons, Inc. Reprinted by
permission of John Wiley & Sons, Inc.

as well as quantitatively over almost four decades in magnitude as temperature changes
by ≈ 145°C. The change in the rheological properties of polymers with temperature is
due to several factors; the dominant effect is that relaxation times decrease strongly as the
temperature increases. A second and less important effect is that the moduli associated with
various relaxations in a polymer are proportional to absolute temperature. An important
experimental observation that facilitates our understanding of the temperature dependence
of rheological functions is that for many (but not all [76, 17, 209]) materials, all the relaxation
times and moduli have the same functional dependence on temperature. This fact greatly
simplifies how rheological material functions change with temperature and has led to the
important time–temperature superposition principle, which we will now discuss in detail.

To understand the temperature effect on material functions, consider the SAOS moduli
G′(ω) and G′′(ω). These moduli are a function of the time scale of deformation through
their dependence on frequency ω. They are also a function of temperature through various
relaxation times λi and moduli parameters gi that characterize the particular material
response of the fluid being considered. In Chapter 8 we will derive the functional forms of
G′(ω, λi, gi) and G′′(ω, λi, gi) that result from a specific linear viscoelastic model known
as the generalized Maxwell model. The functions that describeG′ andG′′ have an important
property that affects the temperature dependence of the SAOS moduli: the frequency and
relaxation times always appear together, that is, G′ and G′′ are a function of the product
ωλi rather than of ω and λi individually.
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Figure 6.40 Linear viscoelastic moduli G′(ω) and G′′(ω) for a polystyrene–polybutadiene–poly-
styrene block copolymer (block Mw =7–43–7 kg/mol) [47]; from Chung and Gale. The data have
been time–temperature shifted to a reference temperature of 125°C. The moduli at low frequency
do not follow the power laws G′ ∝ ω2 and G′′ ∝ ω that are exhibited by linear polymers. Rather
for microphase-separated block copolymers G′ ∝ ω0.5 and G′′ ∝ ω0.5. At 175°C the microphase
structure is melted, G′ ∝ ω1.2 and G′′ ∝ ω0.84. Source: From “Newtonian behavior of a styrene-
butadiene-styrene block copolymer,” by C. I. Chung and J. C. Gale, Journal of Polymer Science,
Polymer Physics Edition, Copyright © 1976 by John Wiley & Sons. Reprinted by permission of John
Wiley & Sons, Inc.

To see how this observation impacts the general temperature dependence of rheological
functions, we can define a function aT (T ) which represents the temperature dependence
of the relaxation times λi . Thus we can write λi = λ̃iaT , where λ̃i is not a function of
temperature. We noted that G′ and G′′ are a function of the product ωλi = (aT ω)λ̃i . Thus
if all of the temperature dependence of the SAOS moduli enters through the relaxation
times, we can conclude that a plot of G′ and G′′ versus aT ω will be independent of
temperature.

This is approximately correct. There is another minor contribution to the temperature
dependence of SAOS moduli that enters through the individual moduli gi associated with
each relaxation time. The temperature dependence of gi is gi = g̃iTρ(T ), where ρ(T ) is
the polymer density, which is a weak function of temperature, and g̃i is not a function of
temperature. The gi enter into the functions for G′ and G′′ such that the product Tρ can
be factored out of the function (see Chapter 8), that is,G′/ρT andG′′/ρT are functions of
aT ω only. (Note that T is in units of absolute temperature.)

Thus, all of the temperature dependence of G′ and G′′ can be suppressed if, instead
of plotting these bare functions versus ω, the following reduced functions G′

r and G′′
r

are plotted:

G′
r ≡ G′(T )Trefρref

Tρ
versus aT ω (6.4)
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Figure 6.41 Linear viscoelastic moduliG′(ω) andG′′(ω) for a 1,4-polybutadiene–1,2-polybutadiene
block copolymer (block Mw =27.3–44.5 kg/mol) [14]; from Bates. The data have been time–
temperature shifted to a reference temperature of 67°C. Near 100°C the microphase structure is
melted, and at the highest temperature shownG′ ∝ ω2 andG′′ ∝ ω1. Source: Reprinted with permis-
sion, “Block copolymers near the microphase separation transition. 2. Linear dynamic mechanical
properties,” F. Bates, Macromolecules, 17, 2607–2613 (1984). Copyright © 1984, American Chemical
Society.

G′′
r ≡ G′′(T )Trefρref

Tρ
versus aT ω (6.5)

where Tref is a reference temperature, and ρref is the density of the material at Tref . Since J ′
and J ′′ are related to the inverses of G′ and G′′ (see Table 5.1), the reduced functions for
compliance are given by

J ′
r ≡ J ′(T )Tρ

Trefρref
versus aT ω (6.6)

J ′′
r ≡ J ′′(T )Tρ

Trefρref
versus aT ω (6.7)

This technique is known as time–temperature superposition, or the method of reduced
variables [75]. The plot in Figure 6.30 of G′ and G′′ versus frequency for polystyrene was
obtained with the help of time–temperature superposition.

Time–temperature superposition is observed for a wide variety of materials. As an
example, we can apply the time–temperature superposition principle to the data in Fig-
ure 6.43. The measurements of complex compliance J ′(ω) reported in Figure 6.43 span the
frequency range 20 < ω < 3000 Hz. We see that these curves have a definite relationship to
one another, specifically that horizontal shifts will cause the curves to coincide. This is the
equivalent of the data-reduction technique described before, as we can see by examining
an arbitrary function f (aT ω) plotted in the same way:
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Figure 6.42 Dynamic viscosity η′
versus frequency ω and steady
shear viscosity η versus shear rate
γ̇ for a (b)polystyrene–(b)polybu-
tadiene–(b)polystyrene triblock co-
polymer of block Mw = 7(PS)–
43(PB)–7(PS) kg/mol; from Gou-
inlock and Porter [94]. For η′
various temperatures are shown
as indicated; steady shear viscosity
is given at a single temperature,
151°C. At 150°C the block copoly-
mer goes through the microphase-
separation transition, and both vis-
cosities become independent of the
rate of deformation. Source: From
Polymer Engineering and Science,
Copyright © 1977, Society of
Plastics Engineers. Reprinted by
permission.

log f versus log (aT ω) = log f versus log aT + log ω (6.8)

On a log–log plot of f versus ω, the function aT (T ) can be calculated by measuring the
shift along the frequency scale log aT required to bring a plot of log f (T ) versus logω into
superposition with the reference curve, log f (Tref) versus logω. The results of such shifting
of the data in Figure 6.43 is shown in Figure 6.44.

The function aT (T ) has been widely studied for many polymers [75], and when time–
temperature superposition is performed correctly (see cautions), aT contains important
information about the temperature dependence of material relaxation times. The function
aT (T ) usually takes on one of two functional forms, depending on the proximity of the
experimental temperature range to the glass-transition temperature, Tg [75]. For temper-
atures within 100 K of the polymer’s glass transition temperature, most polymers show
Arrhenius dependence.

Arrhenius
equation

aT = exp

[−�H̄
R

(
1

T
− 1

Tref

)]
(6.9)

where�H̄ is the activation energy for flow,R is the ideal gas constant, T is the temperature
in K, and Tref is the reference temperature in K. For temperatures closer to Tg , aT follows
the Williams-Landel Ferry (WLF) equation [265].
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Figure 6.43 Linear viscoelastic storage compliance J ′ of poly(n-octyl methacrylate) as a function
of frequency and temperature; replotted from Dannhauser et al. [56]. Source: From the Journal of
Colloid Science, Copyright © 1958, Academic Press. Reprinted by permission.
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WLF
equation

log aT = −c0
1 (T − Tref)

c0
2 + (T − Tref)

(6.10)

where c0
1 and c0

2 are model parameters. Note that in the Arrhenius equation temperature
must be expressed in absolute temperature units, K (kelvins).

For many materials, the constants c0
1 and c0

2 of the WLF equation have been found to
have the universal values of co1 = 17.44 and c0

2 = 51.6K when Tref = Tg [75]. Alternatively
c0

1 and c0
2 may be used as fitting parameters and can be calculated from a linear regression

on a plot of (T −Tref)/log aT versus (T −Tref). The values of aT used to produce the master
curve in Figure 6.44 are shown in Figure 6.45 along with the fit of aT versus T to the WLF
equation with c0

1 = 13.53 and c0
2 = 97.5 K (Tref = −14.3°C = 258.9 K).

Although time–temperature superposition (TTS) has a theoretical basis for some
systems [27], it is also widely used for systems for which there is no theoretical justification.
The empirical observation of successful time–temperature superposition has been found
for G′ and G′′ as well as for other rheological functions, including steady shear viscosity,
first normal-stress coefficient, dynamic compliance (as demonstrated before), and creep
compliance [75, 26]. It was, in fact, the observation that such horizontal shifts could be
used to collapse creep compliance data that led to the discovery of time–temperature
superposition [147]. Note that since η∗ ≡ G∗/ω, η′ ≡ G′′/ω, and η′′ ≡ G′/ω, the
reduced complex viscosity functions are obtained by dividing the complex-viscosity-related
functions by aT in addition to applying the density–temperature factor used for moduli:

η∗
r (aT ω) = G∗(T )Trefρref

aT ωTρ
= η∗Trefρref

aT Tρ
(6.11)
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Figure 6.45 Shift parameters versus temperature for poly (n-octyl methacrylate) in Figure 6.44;
Tref = −14.3°C = 258.9K. Also included is the fit to the WLF equation; calculated from data in
Dannhauser et al. [56]. Source: From the Journal of Colloid Science, Copyright © 1958, Academic
Press. Reprinted by permission.
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η′
r (aT ω) = G′′(T )Trefρref

aT ωTρ
= η′Trefρref

aT Tρ
(6.12)

η′′
r (aT ω) = G′(T )Trefρref

aT ωTρ
= η′′Trefρref

aT Tρ
(6.13)

Steady shear viscosity also shifts in the same manner:

ηr(aT γ̇ ) = η(T )Trefρref

aT Tρ
(6.14)

Thus the time–temperature superposition principle predicts that one function, aT , accounts
for both the vertical shift in η [Equation (6.14)] and the horizontal shift aT γ̇ . Figure 6.46
shows an example of time–temperature superposition applied to the steady shear viscosity
data in Figure 6.28.

The time–temperature superposition concept is used principally to allow a large amount
of data to be represented compactly in just two graphs, the master curve and the curve of
shift factors versus temperature. Master curves are used also to infer rheological properties
under conditions that are difficult or impossible to achieve experimentally, for example,
to predict moduli at very low or very high frequencies. These types of extrapolations are
somewhat dangerous, however, since they cannot be verified experimentally and depend on
the validity of time–temperature superposition, that is, on the assumption that all relaxation

Figure 6.46 Master curve of steady shear viscosity ηr versus reduced shear rate aT γ̇ obtained through
time–temperature superposition for the polybutadiene data shown in Figure 6.28; Tref = 300 K.
Source: From “Rheological properties of polybutadienes prepared by n-butyllithium initiation,” by
J. T. Gruver and G. Kraus, Journal of Polymer Science, Part A, Copyright © 1964 by John Wiley &
Sons, Inc. Reprinted by permission of John Wiley & Sons, Inc.
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times have the same temperature dependence. The allure of time–temperature superposition
is often irresistible, however, since this method allows the rheological response of a fluid to
be measured over a limited dynamic range (range of ω or γ̇ ) at different temperatures, and
then to be shifted to produce a master curve that can represent the rheological properties over
a much wider dynamic range. An initial experimental range of four decades of frequency
easily can be extended to eight or more decades [75].

When materials fail to shift smoothly as discussed, this indicates that the relaxation
times associated with the material do not share the same temperature dependence. This is
expected in phase-separated blends, for example, where if one component of the blend is
nearing its glass-transition temperature, the relaxation times associated with that component
would not be expected to exhibit the same temperature dependence as the relaxation
times associated with the more fluid component. Deviations from the time–temperature
superposition principle have been observed in semicrystalline polymers [75] and star-
branched polymers [96].

Some simple linear homopolymers show deviations from time–temperature superpo-
sition. In polystyrene, Plazek [209] showed that shift factors aT calculated from viscosity
[Equation (6.14)], when applied to compliance, effectively shift data in the terminal zone
(long times, high temperatures) while failing to reduce the data in the transition region (short
times, low temperatures); see Figure 6.47. Plazek’s values of recoverable compliance Jr can
be shifted empirically in the transition region, but the shift factors obtained are different from
those calculated from viscosity. This behavior results from differences in the temperature
dependence of the relaxation processes of the terminal region and the glassy region. Penwell

Figure 6.47 Shear creep compliance corrected for vertical shift, Jp(t) = J (t)Tρ/(Trefρref ), versus
shifted time, t/aT for nearly monodisperse polystyrene (46.9 kg/mol) reduced to Tref = 100°C by
using values of aT calculated from aT = η(T )/η(Tref ); from Plazek [209]. Poor superposition is seen
due to the proximity ofTg for the lower experimental temperatures. Source: Reprinted with permission
from “Temperature dependence of the viscoelastic behavior of polystyrene,” D. J. Plazek, Journal of
Physical Chemistry, 69, 3480–3487 (1965). Copyright © 1965, American Chemical Society.
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et al. also saw deviations from time–temperature superposition in polystyrene steady shear
viscosity below 190°C [203]. Deviations from time–temperature superposition were seen
by Ferry and coworkers [76, 17] in polymethacrylates, again due to the presence of two sets
of relaxation modes, each with its own temperature dependence. In the case of poly(n-butyl
methacrylate), the entanglement spacing varies with temperature in the terminal region
causing a breakdown in time–temperature superposition, while for polymethacrylates with
longer side chains, specific interactions due to the side chains can cause some lack of
superposition near the glassy zone [75]. Other pitfalls of time–temperature superposition
have been discussed in the literature [210]. Materials that do not follow the time–temperature
superposition principle are termed thermorheologically complex, and their behavior must
be examined separately at every temperature and deformation rate of interest.

Finally, recall that the time–temperature superposition principle springs from the
fact that the product λiω appears in the linear viscoelastic functions rather than λi or ω
individually. Thus, as we pointed out earlier, if the temperature dependence of λi is given
by λ̃iaT (T ), plots of rheological functions versus aT ω will be independent of temperature.
Usually data are taken at a variety of temperatures and frequencies and are combined to
create a master curve. Another possible approach is to take data at a fixed frequency and to
vary the temperature. Since aT (T ) is not known a priori, this approach would appear to be
flawed, but the quantity log aT is reasonably close to being a linear function of temperature
(see Figure 6.45). Therefore plots of logG′ and logG′′ versus T (not log T ) resemble
slightly skewed versions of the mirror images (mirror image because high temperature is
equivalent to low frequency) of logG′ and logG′′ versus logω. Runs of G′ and G′′ at
fixed frequency versus temperature are straightforward to carry out and require a single
test and no data manipulation. Comparing this procedure to the data taking required to
produce a frequency master curve [runs of G′(ω) and G′′(ω) at multiple temperatures,
followed by time–temperature shifting], it is clear why the temperature sweep is a popular
test, particularly in an industrial setting. In addition, when time–temperature superposition
fails (e.g., incompatible blends), logG′ and logG′′ versus T can still be measured, and the
shapes obtained can be correlated with industrial variables. One field where this technique
is used is adhesives development [219]. Figure 6.48 shows the effects on logG′ versus T
of adding different amounts of a plasticizer to a block copolymer. Research has shown that
adhesive properties can be correlated with the height of the plateau modulus G0

N and to
the position of the transition region on the temperature scale. Different proposed adhesive
formulations could be evaluated by comparing the different shapes of temperature sweeps
(such as those in Figure 6.48) conducted under the same conditions (temperature ramp rate,
sample preparation conditions, etc.) [219].

In this section we have reviewed a wide range of material behavior in small-strain
unsteady shearing flows. Now we move on to large-strain unsteady flows.

6.2.2 LARGE-STRAIN UNSTEADY SHEAR FLOW

Unsteady large-strain flows produce a breakdown of structure in a fluid. In the startup of
steady shear of high-molecular-weight melts and concentrated solutions, the most striking
feature is the appearance of an overshoot at high rates in both η+(t) and�+

1 (t). This is shown
in Figures 6.49 and 6.50 for a concentrated polybutadiene solution. The highest values of
η+ and �+

1 are in the low-rate region, and these low-rate curves form linear viscoelastic



6.2 Unsteady Shear Flow 207

100

108

107

106

105

104

10�1

10�2

ta
n
δ

�60 �20 20 60 100 140
Temperature, °C

G
′ , 

Pa

Figure 6.48 Storage modulus G′ and tan δ for a block copolymer (Kraton 1111, (b)polystyrene–
(b)polyisoprene–(b)polystyrene block copolymer, Shell Development Company) and three mixtures
with tackifier (Piccotac 95BHT, a hydrocarbon resin; Hercules, Inc.) showing that adding the tackifier
reduces the plateau modulus and moves the glass transition to higher temperatures (transition zone
shifts to the right): �, Kraton 1111; �, 30 wt % tackifier; �, 50 wt % tackifier; ∇, 70 wt % tackifier;
from Kim et al. [126]. Source: From “Viscoelastic behavior and order-disorder transition in mixtures
of a block copolymer and a midblock-associating resin,” by J. Kim, C. D. Han, and S. G. Chu,
Journal of Polymer Science, Polymer Physics Edition, Copyright © 1988 by John Wiley & Sons, Inc.
Reprinted by permission of John Wiley & Sons, Inc.

envelopes that contain the higher rate data. The maxima in η+ and �+
1 occur at low strains

and are attributed to structural breakdown. For complex materials (block copolymers [87];
suspensions, liquid crystalline polymers, dilute solutions [163]) other features are observed
occasionally, including minima and secondary maxima. The time to reach steady state can
be considerable for higher-molecular-weight materials. On modern rheological equipment
an option is often provided of being able to linearly increase shear rate during a run. This
allows the entire steady-state flow curve η versus γ̇ to be measured at once. Care must be
taken, however, that adequate time is allowed between tests for transients such as stress
overshoots to die out and for steady state to be achieved.

When steady shearing stops, the stresses relax monotonically to zero. The curves for
the cessation material functions η−(t) and �−

1 (t) for the same concentrated polybutadiene
solution discussed before are shown in Figures 6.51 and 6.52. Both stresses relax more
quickly as the initial shear rate increases, with �−

1 decreasing more rapidly than η−. Due
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Figure 6.49 Shear-stress growth
function as a function of time t at
several shear rates for a concentrated
solution of a narrowly distributed
polybutadiene; from Menezes and
Graessley [177].Mw = 350 kg/mol;
Mw/Mn < 1.05; concentration =
0.0676 g/cm3 in Flexon 391, a hydro-
carbon oil. Source: From “Nonlin-
ear rheological behavior of polymer
systems for several shear-flow histo-
ries,” by E. V. Menezes and W. W.
Graessley, Journal of Polymer Sci-
ence, Polymer Physics Edition,
Copyright © 1982 by John Wiley &
Sons, Inc. Reprinted by permission
of John Wiley & Sons, Inc.

Figure 6.50 First normal-stress growth
function as a function of time t at several
shear rates for a concentrated solution of
a narrowly distributed polybutadiene; from
Menezes and Graessley [177]. Mw = 350
kg/mol, Mw/Mn < 1.05; concentration =
0.0676 g/cm3 in Flexon 391, a hydrocarbon
oil. Source: From “Nonlinear rheological be-
havior of polymer systems for several shear-
flow histories,” by E. V. Menezes and W. W.
Graessley, Journal of Polymer Science, Poly-
mer Physics Edition, Copyright © 1982 by
John Wiley & Sons, Inc. Reprinted by per-
mission of John Wiley & Sons, Inc.

to the difficulty involved in measuring �2 there are no reported start-up curves of this
material function.

The creep compliance for polystyrene at various temperatures is shown in Figure 6.53.
The data in this figure have been corrected for the vertical shift due to temperature using
the relations in Section 6.2.1.3. Like viscosity and the linear viscoelastic functions, J (t)
is a strong function of temperature. For high temperatures or long times these data follow
the time–temperature superposition principle and form a master curve with shift factors
aT = η(T )Trefρref/[η(Tref)Tρ] as discussed previously in Figure 6.47 (long times). The
data at short times and low temperatures can be shifted when the recoverable compli-
ance, rather than the total compliance, is considered. The recoverable compliance can
be obtained by subtracting the quantity t/η0 from the data [see Equation (5.80)]. The
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Figure 6.51 Normalized shear stress ces-
sation function versus time since cessa-
tion of flow t at several shear rates γ̇
for a concentrated solution of a narrowly
distributed polybutadiene; from Menezes
and Graessley [177]. Mw = 350 kg/mol;
Mw/Mn < 1.05; concentration = 0.0676
g/cm3 in Flexon 391, a hydrocarbon oil.
Source: From “Nonlinear rheological be-
havior of polymer systems for several
shear-flow histories,” by E. V. Menezes
and W. W. Graessley, Journal of Polymer
Science, Polymer Physics Edition, Copy-
right © 1982 by John Wiley & Sons, Inc.
Reprinted by permission of John Wiley &
Sons, Inc.

Figure 6.52 First normal-stress stress
cessation function at several shear rates
for a concentrated solution of a narrowly
distributed polybutadiene; from Menezes
and Graessley [177]. Mw = 350 kg/mol;
Mw/Mn < 1.05; concentration = 0.0676
g/cm3 in Flexon 391, a hydrocarbon oil.
Source: From “Nonlinear rheological be-
havior of polymer systems for several
shear-flow histories,” by E. V. Menezes
and W. W. Graessley, Journal of Polymer
Science, Polymer Physics Edition, Copy-
right © 1982 by John Wiley & Sons, Inc.
Reprinted by permission of John Wiley &
Sons, Inc.

recoverable compliance curves Jr(t) are shown in Figure 6.54. These curves shift quite
successfully to produce a master curve (Figure 6.55) although, as mentioned earlier, the
recoverable creep data give different values of aT than those calculated from viscosity
[see Equation (6.14); Figure 6.56]. The shape of the recoverable compliance master curve
indicates that an increasing amount of deformation is stored (is recoverable) as the creep
experiment progresses. The amount of stored deformation plateaus, however, as the flow
reaches steady state. Recall that Newtonian fluids do not store energy—when the flow of a
Newtonian fluid is stopped, no recovery is seen. Thus, the curve of elastic recovery for a
polymeric fluid is an effective way of characterizing the elastic nature of the fluid.
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Figure 6.53 Shear creep compliance corrected for vertical shift, Jp(t) = J (t)Tρ/(Trefρref ), of
nearly monodisperse polystyrene (46.9 kg/mol) at various temperatures; from Plazek [209]. Source:
Reprinted with permission from “Temperature dependence of the viscoelastic behavior of poly-
styrene,” D. J. Plazek, Journal of Physical Chemistry, 69, 3480–3487 (1965). Copyright © 1965,
American Chemical Society.

The large-strain step-strain experiment is perhaps the most important of the large-strain
unsteady shear experiments. Data for a concentrated solution of polystyrene are shown in
Figure 6.57. At low strain the data are independent of strain, and this is the linear viscoelastic
limit discussed earlier. At higher strains the curves begin to be strain-dependent, but the
shapes of the curves do not change much. The invariance of the shapes of G(t, γ0) with
strain indicates that all the data have the same time dependence. If we hypothesize that time
and strain can be separated as follows:

G(t, γ0) = G(t)h(γ0) (6.15)

then on a log–log plot, curves of logG(t, γ0) versus log t at different strains should be just
shifted vertically from one another by an amount logh(γ0),

logG(t, γ0) = logG(t)+ logh(γ0) (6.16)

The composite curve resulting from such a shift is shown in Figure 6.58, and we see that
it is quite successful for times greater than about 20 s. When the data for a material shift
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Figure 6.54 Recoverable shear creep compliance Jp − t/η0 of nearly monodisperse polystyrene
(46.9 kg/mol). Data have been corrected for vertical shift, Jp(t) = J (t)Tρ/(Trefρref ); from Plazek
[209]. Source: Reprinted with permission from “Temperature dependence of the viscoelastic behavior
of polystyrene,” D. J. Plazek, Journal of Physical Chemistry, 69, 3480–3487 (1965). Copyright ©
1965, American Chemical Society.

Figure 6.55 Master curve at 100°C
of recoverable shear compliance ver-
sus time t of a nearly monodisperse
polystyrene (46.9 kg/mol) calculated
from the data in Figure 6.54; from
Plazek [209]. Source: Reprinted with
permission from “Temperature de-
pendence of the viscoelastic behavior
of polystyrene,” D. J. Plazek, Jour-
nal of Physical Chemistry, 69, 3480–
3487 (1965). Copyright © 1965,
American Chemical Society.
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Figure 6.56 Shift factors as a function of temperature. �, values calculated from viscosity [Equa-
tion (6.14)], •, values used to produce the master curve of recoverable compliance in Figure 6.55
for monodisperse polystyrene (46.9 kg/mol; Tref = 100°C); from Plazek [209]. Source: Reprinted
with permission from “Temperature dependence of the viscoelastic behavior of polystyrene,” D. J.
Plazek, Journal of Physical Chemistry, 69, 3480–3487 (1965). Copyright © 1965, American Chemical
Society.

Figure 6.57 Nonlinear shear relaxa-
tion modulusG(t, γ0) as a function of
time t at 33.5°C, measured in relax-
ation after step shear strain for 20%
solutions of narrow molecular-weight-
distribution polystyrene (Mw = 1.8×
106) in chlorinated diphenyl; from
Einaga et al. [72]. Different curves
are for different strain amplitudes γ0 :
�, γ0 = 0.41; pip up γ0 = 1.87; for
successive clockwise 45° rotations of
pip, γ0 = 3.34, 5.22, 6.68, 10.0, 13.4,
18.7, and 25.4. Source: From Poly-
mer Journal, Copyright © 1971, The
Society of Polymer Science, Japan.
Reprinted by permission.
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Figure 6.58 Shifted relaxation
modulus G(t, γ0)/h(γ0) at 33.5°C
for the polystyrene solution data
shown in Figure 6.57; from Einaga et
al. [72]. h(γ0) is the damping func-
tion and is equal to G(t, γ0)/G(t),
where G(t) is the relaxation mod-
ulus at small strains, and log h is
the vertical shift required to super-
pose the curves of Figure 6.57. Sym-
bols are the same as in Figure 6.57.
Source: From Polymer Journal,
Copyright © 1971, The Society of
Polymer Science, Japan. Reprinted
by permission.

successfully such as those presented in Figure 6.58, we say that the material is time-strain
factorable. This property is predicted by some constitutive equations (see Section 9.4.1.3
and [138]). The function h(γ0) is called the damping function, and it represents the strain
dependence of the polymer.

Lodge and Meissner [159, 157] showed that the following relation holds for a wide
class of materials2 subjected to the step-strain deformation:

Lodge–Meissner
relationship

G(t, γ0)

G�1(t, γ0)
= 1 (6.17)

This relationship says that the shapes of the relaxation functions for shear stress and for
the first normal-stress difference are the same. This relationship is predicted by several
viscoelastic constitutive equations (see [138] and Chapter 9), and it has been found to hold
for polyethylene [142], polybutadiene solutions (narrow molecular-weight distribution)
[254], a slightly branched polybutadiene melt (broad molecular-weight distribution) [127],
polystyrene melts [143], and concentrated polystyrene solutions when the molecular weight
is not too high [140, 198, 199, 254].

2 They showed this relationship to hold for isotropic liquids [7] for which the principal directions of
stress and strain are always coincident. For a discussion of principal axes, see Appendix C.6.
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Figure 6.59 Nonlinear shear relax-
ation modulus G(t, γ0) versus time
for a concentrated solution (c = 0.23
g/cm3) of nearly monodisperse poly-
styrene (8.42 × 106 g/mol) in tricre-
syl phosphate; 30°C; from Morrison
and Larson [184].

For high-molecular-weight materials, the large-amplitude step-shear test is subject to
instabilities that causeG(t, γ0) to develop a kink (Figure 6.59). This effect has been seen in
polystyrene solutions [83, 184, 6] and in polybutadiene and polyisoprene melts [255, 254,
185], and is believed to be related to wall slip or to internal strain inhomogeneities [184,
6]. For these materials the Lodge–Meissner relationship is violated.

6.3 Steady Elongational Flow

The experimental literature on elongational-flow behavior is a fraction of the size of the
shear-flow literature, despite the importance of elongational properties in film blowing, fiber
spinning, and other processing operations. This subject is an area of active research.

As with the measurement of shear viscosity, steady state must be reached for an
elongational viscosity to be obtained. As noted previously, it is difficult to reach steady
state in elongation. A limited amount of data for the steady uniaxial elongational viscosity
of several polystyrenes is shown in Figure 6.60. The steady uniaxial elongational viscosity
η̄ at low rates for all four polystyrenes is equal to the three times the zero-shear steady
shear viscosity η0. This relationship is predicted for a Newtonian fluid, and η̄ = 3η0 is also
predicted by other constitutive equations (see Chapter 9). The quantity 3η0 is called the
Trouton viscosity and η̄/η0 is called the Trouton ratio.

The variation of η̄ with the shear rate is not strong in polystyrene, and weak extension-
thinning as well as extensional-thickening regions (also called tension-thinning and tension-
thickening) are observed (Figure 6.60). It is often important to know whether a material
is tension-thinning or tension-thickening since processes such as film blowing and fiber
spinning are only stable for materials that are tension-thickening; tension-thinning materials
become weaker as they are stretched, and this causes breakage [207]. Unfortunately, in
many cases it is not possible to reach high enough extension rates ε̇0 to determine whether
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Figure 6.60 Steady uniaxial elongational viscosities η̄(σ ) of several polystyrenes at the temperatures
indicated; from Münstedt [187]. The elongational viscosities are plotted as a function of σ = τ33−τ11,
while shear viscosity η(τ) for PS IV is plotted as a function of τ = τ21 Molecular weights: PS I,
Mw = 74 kg/mol, Mw/Mn = 1.2; PS II, Mw = 39 kg/mol, Mw/Mn = 1.1; PS III, Mw = 253
kg/mol, Mw/Mn = 1.9; PS IV, Mw = 219 kg/mol, Mw/Mn = 2.3. Source: From the Journal of
Rheology, Copyright © 1980, The Society of Rheology. Reprinted by permission.

a material is tension-thickening or -thinning. New techniques in this area may yield new
data, however (see Chapter 10).

The uniaxial elongational viscosity as a function of the extension rate for a filled
polymer system is shown in Figure 6.61. The unfilled polyisobutylene (PIB) shows a
constant elongational viscosity, but when the filler is added, the mixture is tension-thinning
[101]. This resembles the effect of filler on shear viscosity (see Figure 6.22)). For both the
unfilled polymer and the mixture of PIB and 42% α-alumina powder the Trouton ratio was
found to be 3.

6.4 Unsteady Elongational Flow

6.4.1 SMALL-STRAIN UNSTEADY ELONGATIONAL FLOW

In the small-strain limit, elongational flows such as small-amplitude oscillatory elonga-
tion (SAOE) give results that are directly and very simply related to small-strain shear
experiments [see Equations (5.204) and (5.205)]. Usually no distinction is made for linear
viscoelastic measurements taken in shear versus extension, and G′ and G′′ are reported
instead of E′ = 3G′ and E′′ = 3G′′ (see Figure 6.39). The choice of whether to use shear
or elongation for measuring linear viscoelastic properties is purely one of convenience.



216 EXPERIMENTAL DATA

Figure 6.61 Uniaxial elongational viscosity as a function of elongation rate for polyisobutylene (PIB)
and PIB filled with α-alumina powder to various volume fractions; from Greener and Evans [101].
The data are at 294 K. The filler causes the PIB to become tension-thinning. Source: From the Journal
of Rheology, Copyright © 1998, The Society of Rheology. Reprinted by permission.

6.4.2 LARGE-STRAIN UNSTEADY ELONGATIONAL FLOW

Because of the difficulties involved in creating elongational flow, most of what we know
about elongational behavior we have learned from elongational startup curves rather than
curves of steady elongational viscosity. Data for elongational startup have been taken for
uniaxial, biaxial, and planar elongational flows.

The uniaxial elongational growth curves for two different polystyrenes are shown in
Figure 6.62, for low-density polyethylene (LDPE) in Figure 6.63, and for polypropylene
at 180°C in Figure 6.64. Like the shear start-up curves, the low-rate data form a boundary
shared by all higher-rate data; but while in shear the low-rate data were an upper bound
[in η+(t)], in elongation they are a lower bound. At high values of time and high rates,
the elongational stresses become unbounded. We know little about the high-rate regime of
η̄+(ε̇0) because when samples are stretched out in these experiments, the cross-sectional
area of the sample becomes quite small, and the filament becomes weak. Surface tension
and interactions with the surroundings have a strong effect on data collected at high
elongational strains.

Recently a method has been developed for measuring elongational start-up curves
for polymer solutions. The filament-stretching technique [234, 171, 42] is described in
Chapter 10, and data on the Trouton ratio Tr = η̄+( ˙t, ε0)/η0 for a Boger fluid are shown
in Figure 6.65. At short times this solution shows a modest transient followed by a turnup
toward very high values of Tr at a critical time. The time at which the turnup occurs decreases
with increasing deformation rate. The response of dilute solutions of this type is very similar
to what is observed for polymer melts. Figure 6.66 shows the Trouton ratio as a function of
time for high-molecular-weight polystyrene solutions [153, 197, 105]. These data were also
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Figure 6.62 Start-up uniaxial elongational viscosity η̄+(t, ε̇0) versus time t for two polystyrenes at
130°C; from Münstedt [187]. For PS I, Mw = 74 kg/mol, Mw/Mn = 1.2; for PS II, Mw = 39
kg/mol, Mw/Mn = 1.1. Source: From the Journal of Rheology, Copyright © 1980, The Society of
Rheology. Reprinted by permission.

Figure 6.63 Start-up uniaxial elongational viscosity, η̄+(t, ε̇0) versus time t for low-density poly-
ethylene at 140°C, Mw = 250 kg/mol, Mw/Mn = 15; from Inkson et al. [130a]. Solid curves
represent a fit to a molecular constitutive equation called the 12 mode pompom melt. Source: From
the Journal of Rheology, Copyright © 1999, The Society of Rheology. Reprinted by permission.

taken using the filament stretching technique (see Chapter 10). In Figure 6.66 the results are
compared to Brownian dynamics simulations of a bead-spring model of polymer solutions
(see Section 9.4.2).

Figure 6.67 shows data on two polymers for the startup of steady biaxial elongation.
These data were measured using the lubricated squeezing technique (see Chapter 10).
Note that the results in biaxial extension resemble the uniaxial extensional data. Soskey
and Winter also measured large-amplitude biaxial step strains on the same materials



Figure 6.64 Start-up uniaxial elongational viscosity, η̄+(t, ε̇0), versus time t for polypropylene at
180°C; from Kurzbeck et al. [135]. Two initial sample lengths were used, L0 = 25 mm and 10 mm
as indicated on the figure. Source: From the Journal of Rheology, Copyright © 1999, The Society of
Rheology. Reprinted by permission.

Figure 6.65 Trouton ratio Tr =
η̄+(t, ε̇0)/η0 versus time for a
Boger fluid made from 0.185%
polyisobutylene in a mixture of
kerosene and polybutene; from
Sridhar et al. [234]. Since Boger
fluids exhibit constant viscosity,
Tr versus t has the same shape as
the curves of η̄+ versus t . Source:
Reprinted from Journal of Non-
Newtonian Fluid Mechanics, 40,
T. Sridhar, V. Tirtaatmadja, D. A.
Nguyen, and R. K. Gupta, “Mea-
surement of extensional viscosity
of polymer solutions,” 271–280,
Copyright © 1991, with permis-
sion from Elsevier Science.
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Figure 6.66 Trouton ratio as a
function of time for a solution
of 1.95 × 106 molecular-weight
polystyrene; from Li et al. [153].
The polymer had a narrow molec-
ular weight distribution, and the
data were taken at room temper-
ature. The solid and dashed lines
are Brownian dynamics simula-
tions of a bead-spring model of
polymer solutions. Source: From
the Journal of Rheology, Copy-
right © 2000, The Society of Rhe-
ology. Reprinted by permission.

Figure 6.67 Startup of steady biaxial elongation, from Soskey and Winter [230]. (a) Low-density
polyethylene at 150°C. (b) Polystyrene at 180°C. The solid curves are calculations of the shear (lower
curve) and biaxial elongational start-up curves using the generalized linear viscoelastic constitutive
equation (see Chapter 8). The data shown were calculated using the positive biaxial strain rate
ε̇B = − 1

2 ε̇, and thus ηb in the figure is equal to 2η̄B (see Problem 5.18). Source: From the Journal
of Rheology, Copyright © 1985, The Society of Rheology. Reprinted by permission.
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Figure 6.67 Continued

Figure 6.68 Nonlinear elongational stress-relaxation modulus EB(t,εB), where εB = −ε0/2, for (a) low-density polyethylene at
150°C and (b) polystyrene at 180°C; from Soskey and Winter [230]. At low strains the step-strain curves are independent of strain,
which is also observed in shear. Source: From the Journal of Rheology, Copyright © 1985, The Society of Rheology. Reprinted by
permission.
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Figure 6.69 Step biaxial damp-
ing functions for (a) low-density
polyethylene and (b) polystyrene
calculated from the data in Fig-
ure 6.68; from Soskey and Winter
[230] . The solid and dashed lines
are empirical fits of the curves to
the models of Soskey and Winter,
where α is a parameter in their
model, and εB = −ε0/2. Source:
From the Journal of Rheology,
Copyright © 1985, The Society of
Rheology. Reprinted by permis-
sion.
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(Figure 6.68). At small strains the elongational stress-relaxation modulus E(t) equals the
small-strain shear stress relaxation modulus G(t). At larger strains E(t, ε0) drops below
the linear viscoelastic limit, and as was done for shear step strains, an elongational damping
function hB can be calculated (Section 6.2.2):

E(t, ε0) = E(t)hB(ε0) (6.18)

The damping functions for the data in Figure 6.68 are shown in Figure 6.69. The shear
damping function h(γ0) and the biaxial damping function hB are not usually equal.

6.5 Summary

Much more information on the rheological behavior of polymers and other systems can be
found in the technical literature. A good starting place for learning more about polymer linear
viscoelastic behavior is Ferry’s text [75]. Recent mongraphs on rheology by Larson [139],
Macosko [162], and Dealy and Wissbrun [61] also contain very useful discussions of mate-
rial behavior, including systems not discussed here such as liquid crystals and suspensions.

We now seek constitutive models that can capture non-Newtonian behavior quantita-
tively. The variety of material behaviors exhibited by polymeric systems makes modeling
these systems quite challenging. To keep our task from overwhelming us, we will initially
consider models that capture only the simplest of non-Newtonian behaviors. These models
are discussed in the next chapter.

6 . 6 P R O B L E M S

6.1 For most linear polymers the steady shear viscosity
at low rates η0 is observed to follow the following
proportionality:

η0 ∝ M3.4

If a polymer of a molecular weight of 25 kg/mol has
a zero-shear viscosity of 1.2 ×103 Pa · s, what is the
zero-shear viscosity of a polymer that is three times
longer?

6.2 What is the spurt phenomenon? What is the impact
of this phenomenon on rheological measurements?

6.3 The steady elongational viscosity of a polymer is
found to be tension-thinning, and the polymer was
therefore rejected for use in a process that would have
spun the polymer into a fiber. Why would tension-
thinning be disadvantageous for a polymer to be spun
into a fiber?

6.4 For an unknown polymer, how could you determine
Mc, the critical molecular weight for entanglement?

6.5 The nonlinear shear stress-relaxation modulus
G(t, γ0) at 33.5°C for a 20% solution of narrow-
molecular-weight-distribution polystyrene (Mw =
1.8 × 106) in chlorinated diphenyl is given in Fig-
ure 6.57. Calculate the damping function h(γ0) for
these data. Plot your results.

6.6 The storage moduli versus time–temperature shifted
frequency for two monodisperse polymers are
sketched in Figure 6.70. Which of the two polymers
has a higher molecular weight? Explain your answer.

6.7 The steady shear viscosities versus shear rate for
three batches of the same type of polymer are given
in Figure 6.71. Which of the batches has the broadest
molecular-weight distribution? Explain your answer.

6.8 The zero-shear viscosity versus molecular weight
for a polymer is shown in Figure 6.72. What is
the entanglement molecular weight of this polymer?
Explain your answer. What is the significance ofMe?
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Figure 6.70 Problem 6.6: storage modulus
versus time–temperature-shifted frequency for
two monodisperse polymers.

Figure 6.71 Problem 6.7: steady shear viscosities
versus time–temperature-shifted shear rate for three
batches of the same type of polymer.
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Figure 6.72 Problem 6.8: zero-shear viscosity ver-
sus molecular weight for a polymer.



C H A P T E R

7
No Memory
Generalized Newtonian fluids

We are now ready to model non-Newtonian flow behaviors such as those described in
Chapter 6. The approach to developing constitutive equations that we will follow is based
on continuum mechanics. We will propose empirical constitutive equations and then predict
material functions. The validity of a constitutive equation will be judged on the ability of the
equation to predict observed behavior, in particular, the shape of the viscosity versus shear-
rate curve. The continuum approach will yield some interesting and useful non-Newtonian
constitutive equations, although the results will not be totally satisfying since this trial-
and-error method is not based on information about molecular structure. A more rigorous
approach would be to investigate the chemical and physical structure of a system of interest,
model the interactions of the particles using the laws of physics, and derive a constitutive
equation from these first principles. There is a problem with the molecular modeling method,
however; the interactions between particles are very complex in rheologically interesting
systems such as polymers, colloids, suspensions, and other mixtures. Even with modern
methods one cannot make interesting rheological calculations on relatively simple systems
such as polymer solutions or polymer melts.

Besides leading to simple and useful constitutive equations, the continuum approach
to constitutive modeling has established the framework for all constitutive modeling,
including molecular modeling approaches and modern thermodynamic and stochastic
methods. Chapter 9 gives a brief introduction to these other approaches. After studying
the material in this book, the reader will be well prepared to tackle the literature dealing
with these advanced methods.

In this chapter we introduce the generalized Newtonian fluid, a simple constitutive
equation that captures some observed non-Newtonian behavior. We begin with a discussion
of several constraints that must be met by all constitutive equations. This is followed by the
introduction of the generalized Newtonian fluid (GNF) model. Finally, we work out some
example problems and discuss the limitations of the GNF model.

7.1 Constitutive Constraints

Constitutive modeling is the art and science of looking for appropriate tensorial expressions
for stress as a function of deformation to match observed material behavior. These relations
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are then used with the equations of motion and continuity to solve flow problems. The
ultimate measure of the validity and usefulness of a given constitutive equation is how well
its predictions match observations.

There is no recipe to follow in developing useful constitutive equations. There are,
however, some physical and mathematical constraints that must be met by successful
constitutive equations. These constraints are the minimum criteria that ensure that the
equation makes mathematical sense.

• Observation: Stress is a second-order quantity. As shown in Chapter 3, there are always
two directions associated with stress—the direction of the stress and the orientation of
the surface on which the stress acts.

Implication: Constitutive equations are always equations of second order, that is, all
the terms in a constitutive equation must have two directions (unit vectors) associated
with them. This is the first and most easily met constraint.

• Observation: Stress is independent of the coordinate system used to describe it, that is,
stress is more than just of second order; stress is a second-order tensor.

Implication: Constitutive equations must be coordinate invariant, that is, the functions
contained in constitutive equations must not include any variables whose values change
when the coordinate system changes. The coefficients of vectors and tensors, for instance,
differ in different coordinate systems. Therefore vector and tensor coefficients that are
specific to one particular coordinate system must not appear explicitly in a constitutive
function. The only scalar functions that may appear in a constitutive equation are functions
of invariants. For example, only magnitudes of vectors (vectors have one invariant, the
magnitude) or any of the three scalar invariants of a second-order tensor (see Section 2.3.4
and below) may appear in constitutive equations.

• Observation: The stress tensor is symmetric for most materials and for all conventional
polymer melts and solutions.

Implication: The constitutive equation must predict a symmetric stress tensor. We
have seen that when a tensor is added to or multiplied by its transpose, a symmetric tensor
results. This is useful to remember when constructing constitutive equations.

• Observation: The response of a material to imposed stresses or to imposed deformation
is the same for all observers (requirement of material objectivity). For example, if a child
inflates a balloon on a merry-go-round, the mathematical description of the deformation
of the balloon must be independent of whether the equation is written with respect to an
observer on the merry-go-round or with respect to an observer on the ground outside.

Implication: This is a subtle and restrictive requirement that constrains the mathe-
matical forms of constitutive equations. We will postpone discussion of this point to the
end of Chapter 8, when we will discover how easy it is to violate the requirement of
material objectivity.

Constraints other than those outlined here may be adopted if it is desired that a particular
class of material behavior be predicted by the constitutive equation [247, 195, 238, 7]. For
example, if the Lodge–Meissner rule is followed by the materials being studied, this forms an
additional constraint on the constitutive equation: the constitutive equation must predict the
Lodge–Meissner relation. Until an empirical rule is shown to be followed by all materials,
however, it is the choice of the individual rheologist whether to make a particular class of
material behavior a constraint.
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EXAMPLE
Constitutive equations must be coordinate invariant, which implies that only vectors,
tensors, and vector and tensor invariants may appear in constitutive equations. For shear flow
of an incompressible fluid, what scalar quantities associated with the rate-of-deformation
tensor γ̇ may appear in constitutive equations?

SOLUTION

We begin by examining the invariants of the rate-of-deformation tensor γ̇ . To calculate the

invariants, we write γ̇ in an orthonormal coordinate system since the definitions for scalar

invariants presented in Section 2.3.4 only apply to orthonormal coordinate systems:

γ̇ =
⎛⎜⎝
∂v1
∂x1

∂v2
∂x1

∂v3
∂x1

∂v1
∂x2

∂v2
∂x2

∂v3
∂x2

∂v1
∂x3

∂v2
∂x3

∂v3
∂x3

⎞⎟⎠
123

(7.1)

Iγ̇ = trace(γ̇ ) = γ̇ii (7.2)

= ∂v1

∂x1
+ ∂v2

∂x2
+ ∂v3

∂x3
= ∇ · v = 0 for incompressible fluids (7.3)

IIγ̇ = trace(γ̇ · γ̇ ) = γ̇ : γ̇ (7.4)

=
3∑
p=1

3∑
k=1

γ̇pkγ̇kp (7.5)

IIIγ̇ = trace(γ̇ · γ̇ · γ̇ ) =
3∑
p=1

3∑
k=1

3∑
j=1

γ̇pkγ̇kj γ̇jp (7.6)

We see that for incompressible fluids Iγ̇ is always zero due to the continuity equation. The

magnitude of γ̇ , |γ̇ | = γ̇ (t), is related to the second invariant:

∣∣∣γ̇ ∣∣∣ = γ̇ (t) = +
√
γ̇ : γ̇

2
= +

√
IIγ̇

2
(7.7)

Thus the shear rate γ̇ (t)may appear in a constitutive equation. For simple shear flow, where
γ̇ is given by

γ̇ =
⎛⎝ 0 γ̇ (t) 0

γ̇ (t) 0 0

0 0 0

⎞⎠
123

(7.8)

it is straightforward to show that the third invariant of γ̇ , IIIγ̇ , is zero, and we leave this

exercise up to the reader. Thus, in shear flow γ̇ = |γ̇ | is the only scalar quantity associated

with γ̇ that may appear in a constitutive equation for incompressible fluids.
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We begin now our discussion of empirical constitutive equations. These equations
were proposed by researchers who based their hypotheses on observed material behavior
while following the rules outlined earlier. The strategy when working with these and all
other constitutive equations is to be aware of the origin of a particular equation and of its
predictions, and to limit the use of these equations to situations where they perform well. The
first group of constitutive equations we will discuss are the generalized Newtonian fluids.

7.2 GNF Constitutive Equation

The generalized Newtonian fluid (GNF) constitutive equation was developed from the
Newtonian constitutive equation for incompressible fluids,

Newtonian
constitutive equation

τ = −μγ̇ (7.9)

Since the Newtonian equation predicts a constant viscosity in steady shear, η(γ̇ ) = μ, it
must be modified for materials for which viscosity is not a constant:

Generalized Newtonian
fluid constitutive equation

τ = −η(γ̇ )γ̇ (7.10)

where η(γ̇ ) is a scalar function and γ̇ = |γ̇ |.
The GNF constitutive equation, Equation (7.10), is an equation of tensor order, and thus

it satisfies our first criterion for a constitutive equation. It produces a symmetric tensor τ
since the equation consists of a scalar function η(γ̇ ) multiplying a symmetric tensor,
γ̇ = ∇v + (∇v)T . Finally, it is coordinate invariant since it is only a function of the

tensor γ̇ and invariant scalars. The only scalar variable present in the GNF constitutive

equation is γ̇ , which is related to the second invariant of γ̇ . Recall that γ̇ = |γ̇ | is by

definition a positive quantity, since the positive square root is taken in the definition of
magnitude.

The use of the symbol η, which is usually associated with viscosity, for the function
multiplying γ̇ in the GNF equation is not accidental. We can see this by calculating the

stress tensor predicted by the generalized Newtonian fluid in steady shear flow.

EXAMPLE
Calculate the steady shear material functions, that is, viscosity η(γ̇ ) and the normal-stress
coefficients �1(γ̇ ) and �2(γ̇ ), for the generalized Newtonian fluid.

SOLUTION

Steady shear flow is defined by

v =
(
ς̇ (t)x2

0
0

)
123

, ς̇(t) = γ̇0 = constant (7.11)
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and γ̇ is therefore

γ̇ = ∇v + (∇v)T (7.12)

=
⎛⎝ 0 γ̇0 0

γ̇0 0 0

0 0 0

⎞⎠
123

(7.13)

where γ̇o may be positive or negative. Inserting the kinematics into the GNF equation we
obtain

τ = −η(γ̇ )γ̇ (7.14)

=
⎛⎝ 0 −η(γ̇ )γ̇0 0

−η(γ̇ )γ̇0 0 0

0 0 0

⎞⎠
123

(7.15)

Thus the GNF model predicts that there are only two nonzero components of τ , and these
two components are equal. Using the definitions of the steady shear material functions,
Equations (5.8)–(5.10), we can calculate η(γ̇ ), �1(γ̇ ), and �2(γ̇ ) for the generalized
Newtonian fluid:

η ≡ −τ21

γ̇0
= η(γ̇ ) (7.16)

�1 ≡ −(τ11 − τ22)

γ̇ 2
0

= 0 (7.17)

�2 ≡ −(τ22 − τ33)

γ̇ 2
0

= 0 (7.18)

Thus the scalar function η(γ̇ ) that multiplies γ̇ in the GNF equation is just equal to the steady

shear viscosity. We see that, like the Newtonian constitutive equation, the GNF constitutive
equation predicts �1 = �2 = 0 in steady shear flow.

The GNF model is quite general since the functional form of η(γ̇ ) has not yet been
specified. It must be given or fit to data in order for flow properties to be predicted using
the GNF equation. We will introduce three models for η(γ̇ ). Many other functional forms
for η are used with the GNF constitutive model, and these may be found in the literature
[26, 227] or in flow simulation software [212, 182, 38].

7.2.1 POWER-LAW MODEL

The power-law or Ostwald–de Waele model describes viscosity with a function that is
proportional to some power of the shear rate γ̇ :
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Power-law model
for viscosity

(GNF)
η(γ̇ ) = mγ̇ n−1 (7.19)

The power-law equation has two parameters that must be fit to experimental data. One
parameter is the exponent of γ̇ , n− 1, which is the slope of log η versus log γ̇ . The second
parameter is m, which is called the consistency index; logm is the y-intercept of the log η
versus log γ̇ plot, and m is related to the magnitude of the viscosity. The units of the two
parameters of the power-law model can be deduced from Equation (7.19):

m [=] Pa · sn (7.20)

n [=] dimensionless (7.21)

These unusual units are the result of the model’s choice to raise the dimensional quantity γ̇
to a fractional exponent, n− 1.

The power-law model can describe a Newtonian fluid. In that case m = μ and n = 1
(Figure 7.1). For n > 1, the plot of log η versus log γ̇ slants upward, and the material is
called dilatant or shear-thickening (it becomes thicker as it is sheared). For n < 1, the plot
of log η versus log γ̇ slants downward, and the behavior is called shear-thinning (Figure
7.1). Note that in the power-law model the slope of the log η versus log γ̇ plot is constant
for a given material. Thus this model cannot describe the viscosity of a material that has
a Newtonian plateau at small shear rates (η0) and which then shear-thins at high rates (for
example, see Figure 6.1).

The power-law GNF model has been used quite widely in calculations applied to
polymer manufacturing processes [236]. In processes such as extrusion the shear rates are
very high, and models capturing only the high-shear-rate region of the viscosity behavior
can do a fair job of predicting flow-rate versus pressure-drop data [236, 26]. There are
disadvantages to this model, however. It is strictly empirical, and thus we obtain no
molecular insight from it. It is not possible, for example, to predict how a new material
of higher molecular weight will perform given the power-law fit of a similar material of
lower molecular weight. Also, this model does not have a material relaxation time as one of
its parameters. It is useful to have a measure of a material’s relaxation time in order to be able
to predict time-dependent behavior such as how rapidly the fluid will relax upon cessation

Figure 7.1 Viscosity behavior as pre-
dicted by the power-law generalized
Newtonian fluid model.
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of flow. The relaxation time is also used in the Deborah number to scale time-dependent
processes involving the flow of a viscoelastic fluid (see Section 5.2.2.2). Finally, the power-
law model, like all generalized Newtonian fluids, does not predict nonzero normal stresses
in shear flow and thus misses some important nonlinear effects.

The advantages of the power-law GNF model are the ease with which calculations
can be made and the success the model has in predicting flow-rate versus pressure-drop
measurements. Two example flow calculations carried out with the power-law model are
discussed in Section 7.4.

7.2.2 CARREAU–YASUDA MODEL

A viscosity model that captures more details of the shape of experimentally measured η(γ̇ )
curves is the Carreau–Yasuda model. The Carreau–Yasuda model uses five parameters
(compared with two parameters in the power-law model):

Carreau–Yasuda model
η(γ̇ )− η∞
η0 − η∞

= [
1 + (γ̇ λ)a] n−1

a (7.22)

The five parameters in the Carreau–Yasuda model have the following effects on the shape
of the predicted η(γ̇ ) curve (Figure 7.2):

• η∞ The viscosity function approaches the constant value η∞ as γ̇ gets large.
• η0 The viscosity function approaches the constant value η0 as γ̇ becomes small.
• a The exponent affects the shape of the transition region between the zero-shear-rate

plateau and the rapidly decreasing (power-law-like) portion of the viscosity versus shear-
rate curve. Increasing a sharpens the transition.

• λ The parameter is a time constant for the fluid. The value of λ determines the shear rate
at which the transition occurs from the zero-shear-rate plateau to the power-law portion.
It also governs the transition from power-law to η = η∞.

• n The exponent is a power-law-like parameter that describes the slope of the rapidly
decreasing portion of the η curve.

This model can effectively fit most viscosity versus shear-rate data. A disadvantage of
the Carreau–Yasuda model is that it contains five parameters that must be fit simultaneously,

Figure 7.2 Viscosity behavior as
predicted by the Carreau–Yasuda
generalized Newtonian fluid model.
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Figure 7.3 Viscosity behavior as predicted by the Bingham generalized Newtonian fluid model.

although this is now fairly easy with modern software tools. It is difficult to arrive at
analytical solutions for velocity and stress fields using the Carreau–Yasuda model, but it
is straightforward to use this model in numerical calculations. Finally, like the power-law
model, the Carreau–Yasuda model does not give molecular insight into polymer behavior;
for example, it cannot predict molecular-weight dependence of viscosity. The Carreau–
Yasuda model does contain a material relaxation time λ, which can be correlated with
molecular structure.

7.2.3 BINGHAM MODEL

The Bingham model represents behavior that is fundamentally different from either the
power-law or the Carreau–Yasuda models. This model describes fluids that exhibit yield
stresses (Figure 7.3):

Bingham model η(γ̇ ) =
{∞ τ ≤ τy
μ0 + τy

γ̇
τ > τy

(7.23)

where τ ≡ |τ |, and τy , called the yield stress, is positive. In words, the Bingham model says
that the fluid will not flow until a stress exceeding the yield stress τy is applied. At stresses
much higher than the yield stress (γ̇ −→ ∞) the fluid flows with a constant viscosity. This
is a two-parameter model:

• τy No flow occurs until the absolute value of the shear stress exceeds the value of the
yield stress τy . This parameter is always positive.

• μ0 The viscosity of the fluid at high shear rates. This parameter is always positive.

7.3 Material Function Predictions

We showed in a previous example problem that we could predict the shear material functions
η, �1, and �2 using the GNF model. Since the latter is a constitutive equation we can,
in fact, calculate any material function, even those defined for non-shear flows. It is not
clear how useful these predictions will be since the GNF model was developed from
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the Newtonian model by fixing up the steady shear viscosity to match non-Newtonian
observations. The way to find out whether the GNF model is useful in nonsteady shear
flows is to make predictions of nonsteady shear-flow material functions and to compare the
predictions to observations. For practice with these types of calculations we will evaluate
the step-strain material functions and the steady elongational viscosity for two generalized
Newtonian fluids.

EXAMPLE
Calculate the predictions of the Carreau–Yasuda generalized Newtonian fluid for the
material functions for the step-strain experiment, G(t, γ0), G�1(t, γ0), and G�2(t, γ0).

SOLUTION

The step-strain experiment is defined in shear flow, and thus the velocity field is given by

v =
⎛⎝ ς̇ (t)x2

0

0

⎞⎠
123

(7.24)

The shear-rate tensor is

γ̇ =
⎛⎝ 0 ς̇ (t) 0

ς̇ (t) 0 0

0 0 0

⎞⎠
123

(7.25)

and the magnitude of the shear-rate tensor is γ̇ = |ς̇ (t)|.
For a Carreau–Yasuda generalized Newtonian fluid, the stress tensor in this flow is

calculated from

τ(t) = −η(γ̇ )γ̇ (7.26)

= −
{
η∞ + (η0 − η∞)

[
1 + (γ̇ λ)a] n−1

a

}⎛⎝ 0 ς̇ (t) 0

ς̇ (t) 0 0

0 0 0

⎞⎠
123

(7.27)

For the step-strain experiment, ς̇ (t) is given by (see Section 5.2.2.4)

ς̇ (t) = lim
ε−→0

⎧⎪⎨⎪⎩
0 t < 0
γ0

ε
0 ≤ t < ε

0 t ≥ ε
(7.28)

= γ0δ+(t) (7.29)

where δ+(t) is the asymmetric delta function, and γ0 is the magnitude of the step, which
will be taken to be positive.

The material functions in step shear strain are G(t, γ0), G�1(t, γ0), and G�2(t, γ0),
which are defined as
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G(t, γ0) = −τ21(t)

γ0
(7.30)

G�1(t, γ0) = −(τ11 − τ22)

γ 2
0

(7.31)

G�2(t, γ0) = −(τ22 − τ33)

γ 2
0

(7.32)

We need τ21(t) to calculate G(t, γ0), and we can calculate this from Equation (7.27):

τ21(t) = −ης̇(t) = −ηγ0δ+(t) (7.33)

= −
{
η∞ + (η0 − η∞)

(
1 + [γ0δ+(t)λ]a

) n−1
a

}
γ0δ+(t) (7.34)

We can now calculate G(t, γ0):

G(t, γ0) =
{
η∞ + (η0 − η∞)

(
1 + [γ0δ+(t)λ]a

) n−1
a

}
δ+(t) (7.35)

Note that the delta function is zero except near time t = 0, when it is very large. This means
that G(t, γ0) is also zero except near t = 0. Near t = 0 the delta-function term dominates
in the expression 1+ [γ0δ+(t)λ]a , and we can neglect the 1. Further, the delta-function term
dominates the resulting expression, η∞ + (η0 − η∞)

[
γ0δ+(t)λ

]n−1
, and we can neglect the

effect of the first η∞. Thus the expression for step-strain modulus becomes

G(t, γ0) = (η0 − η∞)γ n−1
0 λn−1[δ+(t)]n (7.36)

Note that the units are correct in this expression, since the delta function has units of s−1 and
γ0 is unitless. This is the final expression, and it tells us that the step-strain modulus predicted
by the Carreau–Yasuda generalized Newtonian fluid is a modified impulse function at t = 0.
This is not a very realistic prediction, and it shows that this GNF model is not very useful
in the step-strain flow.

We can see from Equation (7.27) that the other two material functions in step shear
strain are equal to zero for this model:

G�1(t, γ0) = −(τ11 − τ22)

γ 2
0

= 0

G�2(t, γ0) = −(τ22 − τ33)

γ 2
0

= 0
(7.37)

The preceding example shows one of the problems with GNF models: they were derived
by fixing up the steady shear predictions, but there is no guarantee that their predictions in
nonsteady shear flows will be meaningful. We check how a GNF model behaves in uniaxial
elongational flow in the next example.
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EXAMPLE
Calculate the predictions of the power-law generalized Newtonian fluid model in steady
uniaxial elongation.

SOLUTION

The kinematics for steady uniaxial elongation are given by

v =
⎛⎜⎝− 1

2 ε̇0x1

− 1
2 ε̇0x2

ε̇0x3

⎞⎟⎠
123

ε̇0 > 0 (7.38)

where ε̇0 is a positive constant. The rate-of-deformation tensor is then

γ̇ =
⎛⎝−ε̇0 0 0

0 −ε̇0 0

0 0 2ε̇0

⎞⎠
123

(7.39)

and the magnitude of the rate-of-deformation tensor is ε̇0

√
3. The uniaxial elongational

viscosity is defined as

η̄(ε̇0) ≡ −(τ33 − τ11)

ε̇0
(7.40)

Thus we must calculate the stress tensor τ for a power-law generalized Newtonian fluid
subjected to the kinematics given by Equation (7.38):

τ = −η(γ̇ )γ̇ (7.41)

= −m3
n−1

2 ε̇n−1
0

⎛⎝−ε̇0 0 0

0 −ε̇0 0

0 0 2ε̇0

⎞⎠
123

(7.42)

=
⎛⎜⎝m3

n−1
2 ε̇n0 0 0

0 m3
n−1

2 ε̇n0 0

0 0 −2m(3
n−1

2 )ε̇n0

⎞⎟⎠
123

(7.43)

Now we can calculate η̄,

η̄(ε̇0) ≡ −(τ33 − τ11)

ε̇0
= 3

n+1
2 mε̇n−1

0 (7.44)

The power-law GNF model predicts that the elongational viscosity will parallel the
shear viscosity, η = mγ̇ n−1. The Trouton ratio is defined as the ratio of elongational to
shear viscosity at the same value of deformation rate γ̇ , the magnitude of the rate-of-
deformation tensor for each flow. For Newtonian fluids the Trouton ratio can be shown to
be equal to 3. The Trouton ratio for the power-law GNF model is calculated as
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Trouton ratio
power-law GNF

η̄

η
= 3m(ε̇0

√
3)n−1

m(γ̇ )n−1
= 3 (7.45)

which is the same result as is obtained for Newtonian fluids.

The predictions of the power-law GNF model in steady uniaxial elongation seem
reasonable. The only way to check if they are correct is to compare them with experimental
data. The result of these two examples shows us that generalized Newtonian fluids are a
mixed bag: sometimes they make reasonable predictions, as we saw for uniaxial elongation,
but sometimes their predictions do not capture what is observed, as was seen in the step-
strain example.

We turn now to two examples to show how the GNF constitutive equation may be used
to calculate velocity profiles and flow rates in some simple flows. For these examples we
employ the power-law model for the viscosity function.

7.4 Flow Problems: Power-Law Generalized Newtonian Fluid

7.4.1 PRESSURE-DRIVEN FLOW IN A TUBE

Calculate the velocity profile, pressure profile, and stress tensor τ for pressure-driven
flow of an incompressible power-law liquid in a tube of circular cross section. The
pressure at an upstream point is P0, and at a point a distance L downstream the
pressure is PL. Assume that the flow between these two points is fully developed and
at steady state.

This problem is worked in cylindrical coordinates, as was the Newtonian case. The
difference in how the two problems are worked is that for the power-law generalized
Newtonian fluid the general equation of motion is used instead of the Navier–Stokes
equation. The correct cylindrical components of the equations of motion and of continuity
can be found in Table C.7 of Appendix C.2.

The equation of mass conservation is

0 = ∇ · v (7.46)

= 1

r

∂(rvr)

∂r
+ 1

r

∂vθ

∂θ
+ ∂vz

∂z
(7.47)

Since the flow is only in the z-direction, the r- and θ -components of v are zero,

v =
⎛⎝ vrvθ
vz

⎞⎠
rθz

=
⎛⎝ 0

0

vz

⎞⎠
rθz

(7.48)

The continuity equation thus gives us the result

∂vz

∂z
= 0 (7.49)
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Figure 7.4 Flow problem solved in Sec-
tion 7.4.1: Poiseuille flow of a power-law
generalized Newtonian fluid in a tube.

The equation of motion for an incompressible non-Newtonian fluid is

ρ

(
∂v

∂t
+ v · ∇v

)
= −∇p − ∇ · τ + ρg (7.50)

In cylindrical coordinates the terms become (see Appendix C.2)

ρ
∂v

∂t
=

⎛⎜⎝ ρ
∂vr
∂t

ρ ∂vθ
∂t

ρ
∂vz
∂t

⎞⎟⎠
rθz

(7.51)

ρv · ∇v = ρ

⎛⎜⎜⎝
vr
∂vr
∂r

+ vθ
(

1
r
∂vr
∂θ

− vθ
r

) + vz ∂vr∂z
vr
∂vθ
∂r

+ vθ
(

1
r

∂vθ
∂θ

+ vr
r

) + vz ∂vθ∂z
vr
∂vz
∂r

+ vθ
(

1
r

∂vz
∂θ

)
+ vz ∂vz∂z

⎞⎟⎟⎠
rθz

(7.52)

∇p =
⎛⎜⎝

∂p

∂r

1
r

∂p

∂θ

∂p

∂z

⎞⎟⎠
rθz

(7.53)

∇ · τ =
⎛⎜⎝

1
r
∂
∂r
(rτrr )+ 1

r

∂τθr
∂θ

+ ∂τzr
∂z

− τθθ
r

1
r2
∂
∂r
(r2τrθ )+ 1

r

∂τθθ
∂θ

+ ∂τzθ
∂z

+ τθr−τrθ
r

1
r
∂
∂r
(rτrz)+ 1

r

∂τθz
∂θ

+ ∂τzz
∂z

⎞⎟⎠
rθz

(7.54)

ρg =
⎛⎝ ρgrρgθ
ρgz

⎞⎠
rθz

(7.55)
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Substituting in what we know already about v and assuming symmetry of τ and steady
state, we obtain

ρ
∂v

∂t
=

⎛⎝ 0

0

0

⎞⎠
rθz

(7.56)

ρv · ∇v =
⎛⎝ 0

0

0

⎞⎠
rθz

(7.57)

∇p =
⎛⎜⎝

∂p

∂r

1
r

∂p

∂θ

∂p

∂z

⎞⎟⎠
rθz

(7.58)

∇ · τ =
⎛⎜⎝

1
r
∂
∂r
(rτrr )+ 1

r

∂τθr
∂θ

+ ∂τzr
∂z

− τθθ
r

1
r2
∂
∂r
(r2τrθ )+ 1

r

∂τθθ
∂θ

+ ∂τzθ
∂z

1
r
∂
∂r
(rτrz)+ 1

r

∂τθz
∂θ

+ ∂τzz
∂z

⎞⎟⎠
rθz

(7.59)

ρg =
⎛⎝ 0

0

ρg

⎞⎠
rθz

(7.60)

Note that gravity is taken to be in the flow direction.
Putting these together we obtain (all terms written in the r , θ , z coordinate system)⎛⎝ 0

0
0

⎞⎠ =
⎛⎜⎝ − ∂p

∂r

− 1
r

∂p

∂θ

− ∂p

∂z

⎞⎟⎠ −
⎛⎜⎝

1
r
∂
∂r
(rτrr )+ 1

r

∂τθr
∂θ

+ ∂τzr
∂z

− τθθ
r

1
r2
∂
∂r
(r2τrθ )+ 1

r

∂τθθ
∂θ

+ ∂τzθ
∂z

1
r
∂
∂r
(rτrz)+ 1

r

∂τθz
∂θ

+ ∂τzz
∂z

⎞⎟⎠ +
⎛⎝ 0

0

ρg

⎞⎠ (7.61)

To proceed further we need a relationship between τ and the velocity components. This
is provided by the power-law GNF constitutive equation:

τ = −ηγ̇ (7.62)

= −η [∇v + (∇v)T ] (7.63)

∇v =
⎛⎜⎝

∂vr
∂r

∂vθ
∂r

∂vz
∂r

1
r
∂vr
∂θ

− vθ
r

1
r

∂vθ
∂θ

+ vr
r

1
r

∂vz
∂θ

∂vr
∂z

∂vθ
∂z

∂vz
∂z

⎞⎟⎠
rθz

(7.64)

=
⎛⎜⎝ 0 0 ∂vz

∂r

0 0 1
r

∂vz
∂θ

0 0 ∂vz
∂z

⎞⎟⎠
rθz

(7.65)
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where vr = vθ = 0 has been used to simplify ∇v in the last step. Because of θ -symmetry
and the continuity equation, two of the three remaining components of ∇v are also zero,
and thus γ̇ is given by

γ̇ = ∇v + (∇v)T (7.66)

=
⎛⎝ 0 0 ∂vz

∂r

0 0 0

0 0 0

⎞⎠
rθz

+
⎛⎝ 0 0 0

0 0 0
∂vz
∂r

0 0

⎞⎠
rθz

(7.67)

=
⎛⎝ 0 0 ∂vz

∂r

0 0 0
∂vz
∂r

0 0

⎞⎠
rθz

(7.68)

Then τ becomes

τ = −ηγ̇ =
⎛⎝ 0 0 −η ∂vz

∂r

0 0 0

−η ∂vz
∂r

0 0

⎞⎠
rθz

(7.69)

Now that we know more about the stress tensor we can simplify Equation (7.61) (all terms
written in the r , θ , z coordinate system):⎛⎝ 0

0

0

⎞⎠ =
⎛⎜⎝ − ∂p

∂r

− 1
r

∂p

∂θ

− ∂p

∂z

⎞⎟⎠ −
⎛⎝ ∂τzr

∂z

0
1
r
∂
∂r
(rτrz)

⎞⎠ +
⎛⎝ 0

0

ρg

⎞⎠ (7.70)

=
⎛⎜⎝ − ∂p

∂r

− 1
r

∂p

∂θ

− ∂p

∂z

⎞⎟⎠ −
⎛⎜⎝

∂
∂z

(
−η ∂vz

∂r

)
0

1
r
∂
∂r

(
−rη ∂vz

∂r

)
⎞⎟⎠ +

⎛⎝ 0

0

ρg

⎞⎠ (7.71)

The function for η(γ̇ ) is given by the power-law equation

η = mγ̇ n−1 (7.72)

To evaluate this we must calculate γ̇ from the tensor γ̇ :

γ̇ = |γ̇ | = +
√
γ̇ : γ̇

2
(7.73)

= +
√(
∂vz

∂r

)2

(7.74)

= ± ∂vz

∂r
(7.75)
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The definition of magnitude requires that the result be a positive number. Thus our choice of
the sign that precedes ∂vz/∂r in Equation (7.75) depends on whether the derivative ∂vz/∂r
is positive or negative. In the current example, as r increases, the velocity decreases—the
velocity is at its maximum at the center of the tube (Figure 7.5). The derivative ∂vz/∂r is
negative, and the correct sign in Equation (7.75), therefore, is the negative:

γ̇ = |γ̇ | = −∂vz
∂r
> 0 (7.76)

The power-law equation thus becomes

η = m
(

−∂vz
∂r

)n−1

= m
(

−dvz
dr

)n−1

(7.77)

Since we have assumed that vz is not a function of θ and the continuity equation told us
that vz is not a function of z, we know that vz = vz(r), and we have changed the partial
derivatives ∂/∂r to total derivatives d/dr in the second expression of Equation (7.77).

Substituting this back into the simplified equation of motion [Equation (7.71)] we
obtain (all terms written in r , θ , z coordinates)

⎛⎝ 0

0

0

⎞⎠ =
⎛⎜⎝ − ∂p

∂r

− 1
r

∂p

∂θ

− ∂p

∂z

⎞⎟⎠ −

⎛⎜⎜⎜⎝
∂
∂z

[
−m

(
− dvz
dr

)n−1
dvz
dr

]
0

1
r
∂
∂r

[
−r m

(
− dvz
dr

)n−1
dvz
dr

]
⎞⎟⎟⎟⎠ +

⎛⎝ 0

0

ρg

⎞⎠ (7.78)

=
⎛⎜⎝ − ∂p

∂r

− 1
r

∂p

∂θ

− ∂p

∂z

⎞⎟⎠ −
⎛⎜⎝ 0

0
m
r
d
dr

[
r
(
− dvz
dr

)n]
⎞⎟⎠ +

⎛⎝ 0

0

ρg

⎞⎠ (7.79)

The r-component of ∇ · τ is zero since vz is not a function of z. The equation of motion
(EOM) is now quite simple, yielding that the pressure is only a function of z, and an equation
to be solved for vz(r):

r-component of EOM:
∂p

∂r
= 0 (7.80)

Figure 7.5 Illustration of negative ∂vz/∂r for all values of
r for Poiseuille flow in a tube.
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θ -component of EOM:
1

r

∂p

∂θ
= 0 (7.81)

z-component of EOM:
∂p

∂z
= −m

r

d

dr

[
r

(
−dvz
dr

)n]
+ ρg (7.82)

Note that since p is only a function of z, ∂p/∂z becomes dp/dz in Equation (7.82).
Equation (7.82) is a differential equation for p and vz and can be solved using separation
of variables, as was shown earlier for Newtonian fluids (Section 3.5.2). The boundary
conditions for this problem match those in the Newtonian case, and allow us to solve for
the three integration constants and the constant that arises from the separation of variables
technique (see Section 3.5.2).

z = 0 p = P0

z = L p = PL

r = 0
dvz

dr
= 0

r = R vz = 0

(7.83)

The final results for vz and p are

p = PL − P0

L
z+ P0 (7.84)

vz = R 1
n
+1

(
P0 − PL + ρgL

2mL

) 1
n
(

n

n+ 1

)[
1 −

( r
R

) 1
n
+1
]

(7.85)

The stress tensor is given by Equation (7.69). To calculate τ explicitly we must evaluate
τrz = −η∂vz/∂r:

τrz = −η∂vz
∂r

(7.86)

= −m
(

−dvz
dr

)n−1 (
dvz

dr

)
= m

(
−dvz
dr

)n
(7.87)

= (P0 − PL + ρgL)r
2L

(7.88)

τrz(r) = (P0 − PL)r
2L

(7.89)

where as before P = p − ρgz is used to fold the influence of gravity into the modified
pressure P . The stress tensor is then
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τ =
⎛⎝ 0 0 (P0−PL)r

2L

0 0 0
(P0−PL)r

2L 0 0

⎞⎠
rθz

(7.90)

Calculating the flow rate and average velocity from the velocity profile is straightforward:

Q =
∫
A

vz dA (7.91)

Poiseuille flow
power-law GNF

Q =
[
(P0 − PL)R

2mL

] 1
n
(
nπR3

1 + 3n

)
(7.92)

The predicted velocity profile is shown in Figure 7.6. For n = 1 the Newtonian case
is recovered, and as the power-law index n decreases from 1, the profiles flatten. Plug flow
is reached for n −→ 0. The shear stress is found to be the same simple linear function of r
that was calculated for the Newtonian case [compare Equations (3.225) and (7.90)].

7.4.2 COMBINED DRAG AND POISEUILLE FLOW THROUGH A SLIT

Calculate the velocity profile for pressure-driven flow of an incompressible power-
law liquid confined between two infinite plates if the top plate is moving at a constant
velocity V . The pressure at an upstream point is P0, and at a point a distance L
downstream the pressure is PL (P0 > PL). Assume that the flow between these two

Figure 7.6 Velocity profiles for different values of the power-law index n, predicted by the power-law
generalized Newtonian fluid model for steady Poiseuille flow in a tube.
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points is fully developed and at steady state. The separation between the two plates is
H , and the effect of gravity is negligible. This problem arises in sheet coating [236].

This problem is worked in rectangular coordinates. From mass conservation we have

0 = ∇ · v (7.93)

= ∂vx

∂x
+ ∂vy

∂y
+ ∂vz

∂z
(7.94)

We will take the flow to be in the x-direction (Figure 7.7), and thus the y- and z-components
of v are zero,

v =
⎛⎝ vxvy
vz

⎞⎠
xyz

(7.95)

=
⎛⎝ vx0

0

⎞⎠
xyz

(7.96)

The continuity equation thus gives us the result

∂vx

∂x
= 0 (7.97)

The equation of motion for an incompressible fluid is

ρ

(
∂v

∂t
+ v · ∇v

)
= −∇p − ∇ · τ + ρg (7.98)

For steady-state unidirectional flow where gravity is neglected this becomes

0 = −∇p − ∇ · τ (7.99)

⎛⎝ 0

0

0

⎞⎠
xyz

=
⎛⎜⎝− ∂p

∂x

− ∂p

∂y

− ∂p

∂z

⎞⎟⎠
xyz

−
⎛⎜⎝
∂τxx
∂x

+ ∂τyx
∂y

+ ∂τzx
∂z

∂τxy
∂x

+ ∂τyy
∂y

+ ∂τzy
∂z

∂τxz
∂x

+ ∂τyz
∂y

+ ∂τzz
∂z

⎞⎟⎠
xyz

(7.100)

Figure 7.7 Flow example: combined drag
and Poiseuille flow of a power-law general-
ized Newtonian fluid in a slit.
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To proceed further we must relate τ to the velocity components. As in the previous
example, we use the power-law, GNF equation:

τ = −ηγ̇ = −η[∇v + (∇v)T )] (7.101)

∇v =
⎛⎜⎝
∂vx
∂x

∂vy
∂x

∂vz
∂x

∂vx
∂y

∂vy
∂y

∂vz
∂y

∂vx
∂z

∂vy
∂z

∂vz
∂z

⎞⎟⎠
xyz

(7.102)

=
⎛⎜⎝
∂vx
∂x

0 0
∂vx
∂y

0 0
∂vx
∂z

0 0

⎞⎟⎠
xyz

(7.103)

where vy = vz = 0 has been used to simplify ∇v in the last step. Because the plates
are infinite in the z-direction, there is no variation of any quantity in the z-direction, and
the velocity cannot depend on z. Also, the continuity equation tells us that ∂vx/∂x = 0,
and thus vx = vx(y) only, and the partial derivative of vx with respect to y becomes the
total derivative of vx with respect to y (∂vx/∂y = dvx/dy). The rate-of-deformation tensor
is therefore

γ̇ = ∇v + (∇v)T (7.104)

=
⎛⎝ 0 0 0
dvx
dy

0 0

0 0 0

⎞⎠
xyz

+
⎛⎝ 0 dvx

dy
0

0 0 0

0 0 0

⎞⎠
xyz

(7.105)

=
⎛⎜⎝ 0 dvx

dy
0

dvx
dy

0 0

0 0 0

⎞⎟⎠
xyz

(7.106)

Then τ becomes

τ =
⎛⎜⎝ 0 −η dvx

dy
0

−η dvx
dy

0 0

0 0 0

⎞⎟⎠
xyz

(7.107)

Returning to the simplified momentum balance [Equation (7.100)] and using the stress
tensor derived in Equation (7.107), we now obtain⎛⎝ 0

0

0

⎞⎠
xyz

=
⎛⎜⎝− ∂p

∂x

− ∂p

∂y

− ∂p

∂z

⎞⎟⎠
xyz

−
⎛⎜⎝
∂τyx
∂y

∂τxy
∂x

0

⎞⎟⎠
xyz

(7.108)
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=
⎛⎜⎝− ∂p

∂x

− ∂p

∂y

− ∂p

∂z

⎞⎟⎠
xyz

−

⎛⎜⎜⎝
∂
∂y

(
−η dvx

dy

)
∂
∂x

(
−η dvx

dy

)
0

⎞⎟⎟⎠
xyz

(7.109)

The function for η(γ̇ ) is given by the power-law equation

η = mγ̇ n−1 (7.110)

We need to calculate γ̇ from the tensor γ̇ ,

γ̇ = |γ̇ | = +
√
γ̇ : γ̇

2
= +

√(
dvx

dy

)2

(7.111)

= ±dvx
dy

(7.112)

As we discussed in the last example, the definition of tensor magnitude requires that the
quantity obtained for the magnitude be positive. Thus our choice for the sign that precedes
dvx/dy in Equation (7.112) depends on whether that derivative is positive or negative. In the
current problem, if we choose y to be zero at the stationary plate, the sign of dvx/dy depends
on the magnitude of the pressure gradient relative to the plate velocity V (Figure 7.8). We
must consider two cases.

Case 1: There is no maximum in vx(y). In this case dvx/dy > 0 always, and therefore
γ̇ = +dvx/dy. We will use vx,1 for the velocity profile in case 1. The power-law equation
thus becomes

η = m
(
dvx,1

dy

)n−1

(7.113)

and the equation of motion is

Figure 7.8 Two possible types of velocity
profile generated in combined Poiseuille
and drag flow. (a) The pressure gradient is
not sufficient to produce a velocity max-
imum between the two confining walls
at y = 0 and y = H (case 1). (b) A
maximum in velocity is seen at y = β

(case 2).
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⎛⎝ 0

0

0

⎞⎠
xyz

=
⎛⎜⎝− ∂p

∂x

− ∂p

∂y

− ∂p

∂z

⎞⎟⎠
xyz

−

⎛⎜⎜⎜⎜⎝
∂
∂y

[
−m

(
dvx,1
dy

)n−1
dvx,1
dy

]
∂
∂x

[
−m

(
dvx,1
dy

)n−1
dvx,1
dy

]
0

⎞⎟⎟⎟⎟⎠
xyz

(7.114)

Since vx,1 is only a function of y, the y-component of ∇ · τ is zero. Thus the y- and
z-components of the equation of motion (EOM) give

y-component of EOM:
∂p

∂y
= 0 (7.115)

z-component of EOM:
∂p

∂z
= 0 (7.116)

and we can conclude that p = p(x) only. The x-component of the equation of motion gives

x-component of EOM:
dp

dx
= m d

dy

[(
dvx,1

dy

)n]
(7.117)

which is a separable differential equation. The boundary conditions are

x = 0 p = P0

x = L p = PL
y = 0 vx,1 = 0

y = H vx,1 = V

(7.118)

The solution for vx,1 subject to these boundary conditions is

Velocity
profile,
case 1

vx,1 = mL

PL − P0

(
n

n+ 1

)[(
PL − P0

mL
y + C1

) n+1
n

− C n+1
n

1

]
(7.119)

where C1 is found from the (numerical) solution of

V = mL

PL − P0

(
n

n+ 1

)[(
PL − P0

mL
H + C1

) n+1
n

− C n+1
n

1

]
(7.120)

Case 2: There is a maximum in vx(y) at y = β (Figure 7.8). We will call the velocity in
this case vx,2, and then γ̇ is given by

γ̇ =
{+ dvx,2

dy
0 ≤ y < β

− dvx,2
dy

β ≤ y ≤ H (7.121)

The power-law equation thus becomes
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η = m
(
dvx,2

dy

)n−1

0 ≤ y < β (7.122)

η = m
(

−dvx,2
dy

)n−1

β ≤ y ≤ H (7.123)

For the case where γ̇ = +dvx,2/dy, the equation for vx,2(y) is the same as in the first case,
except for different boundary conditions on y. The boundary conditions are

y = 0 vx,2 = 0

y = β vx,2 = vx,1
(7.124)

where vx,1 and vx,2 are the solutions for vx in cases 1 and 2, respectively. For the case where
γ̇ = −dvx,2/dy, the equation is different:

− dp

dx
= m ∂

∂y

[(
−dvx,2
dy

)n]
(7.125)

and the solution may be obtained by separation of variables, as in case 1. The boundary
conditions are

y = β vx,2 = vx,1
y = H vx,2 = V

(7.126)

In addition, recall that dvx/dy = 0 at y = β for both vx,1 and vx,2. The predicted velocity
profiles are shown in Figures 7.9 and 7.10 for selected values of the power-law parameters.
The complete solution can be found in Flumerfelt et al. [80] and is discussed in some detail
in Problem 7.26.

7.5 Limitations on GNF Models

As pointed out in the introduction to this chapter, the GNF models are popular because
of the relative ease with which flow calculations can be made. They also enjoy success in
predicting pressure-drop versus flow curves for polymer processes [236]. There are some
significant limitations to the usefulness of these models, however:

1. Some GNF models (the power-law model, for instance) do not accurately model the
zero-shear region of the viscosity curve. The power-law model is popular for its sim-
plicity, but it cannot be relied upon if the shear rate becomes small in the flow of
interest.

2. Since the GNF models rely on the modeling shear viscosity η(γ̇ ) to incorporate non-
Newtonian effects, it is not clear whether these models will be useful in nonshearing
flows. We can calculate nonshear material functions (e.g., η̄, η̄+, etc.) using generalized
Newtonian fluids, but in many cases they do not match observations.



248 GENERALIZED NEWTONIAN FLUIDS

Figure 7.9 Velocity profiles for different values of (a) pressure drop (Newtonian case, n = 1) and
(b) power-law index n predicted by the power-law generalized Newtonian fluid model for combined
drag and pressure-driven flow in a slit. Case 1, no velocity maximum. Values of the parameters used
in the calculations are given in the figure.
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Figure 7.10 (a) Velocity profiles for different values of the power-law indexn predicted by the power-
law generalized Newtonian fluid model for combined drag and pressure-driven flow in a slit. Case 2,
velocity shows a maximum. (b) Variation in the location of the velocity maximum as a function of
power-law index. Values of the parameters used in the calculations are given in the figure.
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3. The GNF models do not predict shear normal stresses N1 and N2, which are elastic
effects. In fact, all constitutive equations that are proportional to γ̇ fail to predict normal

stresses in shear flow because of the form of γ̇ for shear flow:

shear flow: γ̇ =
⎛⎝ 0 γ̇21(t) 0

γ̇21(t) 0 0

0 0 0

⎞⎠
123

(7.127)

GNF: τ = −ηγ̇ (7.128)

=
( 0 −ηγ̇21(t) 0

−ηγ̇21(t) 0 0
0 0 0

)
123

(7.129)

4. Since the GNF model is a direct empirical extension of the Newtonian fluid model, there
is no guarantee that elastic effects are properly accounted for in any of the GNF models. In
fact, since the GNF models are only a function of the instantaneous rate-of-deformation
tensor [i.e., τ(t) is a function of γ̇ (t) not γ̇ at any times other than the present time t], it

is impossible to predict observed material behavior such as strain recoil after creep and
gradual stress growth, as these effects depend on the history of the rate-of-deformation
tensor.

A more in-depth evaluation of the GNF models may be found in Bird et al. [26].
Several books on polymer processing contain solutions to problems employing the power-
law generalized Newtonian fluid as well as problems employing other GNF models [236,
179]. There are also several practice problems using GNF models at the end of this chapter.

To move beyond the GNF models toward more realistic constitutive equations, we
must consider memory effects. That is the subject of the next chapter.

7 . 6 P R O B L E M S

7.1 How are tensor invariants important in constitutive
modeling?

7.2 Why is γ̇ = |γ̇ | the only kinematic parameter that

appears in the GNF models?

7.3 What are the units ofm and n in the power-law GNF
constitutive equation? Explain these units.

7.4 The viscosity function for a given material is mea-
sured and found to be

η = 5450γ̇−0.34

where shear rate γ̇ is in units of s−1 and viscosity η
is in Pa · s. What is the power-law index n? What are
the units of 5450?

7.5 For the viscosity versus shear-rate data given in Table
7.1, calculate the consistency indexm and the power-
law index n.

7.6 From the solution for vz(r) in Equation (7.85), cal-
culate the flow rate and the average velocity for
Poiseuille flow in a tube (pressure-driven unidirec-
tional flow) of a power-law generalized Newtonian
fluid.

7.7 Solve Equation (7.82) for the pressure profile and
velocity profile for a power-law generalized New-
tonian fluid in Poiseuille flow in a tube.

7.8 Will a fluid that follows the power-law GNF constitu-
tive equation exhibit rod climbing? Why or why not?

7.9 Can the power-law GNF constitutive equation pre-
dict shear-thickening?

7.10 When we say that a model is empirical, what does
that mean?
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TABLE 7.1
Viscosity η versus Shear
Rate γ̇ for Problem 7.5

γ̇ η

(s−1) (Pa·s)

0.020 7.5 × 105

0.050 4.5 × 105

0.10 3.5 × 105

0.20 2.0 × 105

0.50 1.3 × 105

1.0 1.0 × 105

2.0 6.0 × 104

5.0 3.5 × 104

10 2.8 × 104

20 1.7 × 104

50 1.0 × 104

100 8.0 × 103

7.11 Calculate the viscosities in steady planar elonga-
tion, η̄P1 and η̄P2 , for a Carreau–Yasuda, generalized
Newtonian fluid.

7.12 Calculate the shear stress growth coefficients η+(t),
�+

1 (t), and �+
2 (t) for a Bingham generalized

Newtonian fluid. Sketch your results.

7.13 Calculate the viscosities η̄P1 and η̄P2 in steady planar
elongation for a power-law generalized Newtonian
fluid.

7.14 Calculate the uniaxial elongational stress growth
function η̄+(t) for a power-law generalized New-
tonian fluid. Sketch your answer.

7.15 What is the stress tensor τ for all incompressible gen-
eralized Newtonian fluids in Poiseuille flow (pres-
sure-driven, laminar flow) in a pipe? What is τrz(r)?
List all of your assumptions. Do not assume power-
law or any other specific model.

7.16 The friction factorf for fully developed laminar flow
in a circular pipe is given by [28]

f = 1

4

(
D

L

)
�P

1
2ρv

2
z,av

where D is the pipe diameter, L is the pipe length,
�P is the pressure drop, ρ is the density, and vz,av
is the average velocity in the pipe. The Reynolds
number for Newtonian fluids is ρvz,avD/μ, whereμ
is the Newtonian viscosity. A generalized Reynolds
number for power-law fluids, Regen, can be defined
by requiring that f = 16/Regen, in analogy with

the Newtonian case. What is Regen for a power-
law generalized Newtonian fluid? Note that your
expression should not contain �P .

7.17 I propose the following constitutive equation:

− τ = α
[
∇v + (∇v)T

]
+ β(∇v)T · ∇v

where α and β are constant parameters associated
with the material described by the model. A student
says, “No way.” Based on what we know so far
about constitutive equations, is she right? Justify
your answer.

7.18 Massa et al. [167] reported the complex viscosity
master curve η′ (25°C) = η′(T )/aT (T ) of a solution
of narrow-polydispersity polystyrene (M = 860
kg/mol) in chlorinated diphenyl (concentration =
0.0154 g/cm3) as a function of aT ω (rad/s), where
aT is the time–temperature shift factor (see Section
6.2.1.3), and ω is the oscillation frequency in the
small-amplitude oscillatory shear experiment. The
data are given in Table 7.2. The solution viscosity η′

s

has been subtracted from the measured η′ in order
to isolate the polymeric contribution to the complex
viscosity, η′

p = η′ − η′
s . This subtraction is done in

order to be able to compare experimental results to
molecular models that predict the polymeric contri-
butions to viscosity [27].

Recall that often the Cox–Merz rule applies to
polymer data (see Section 6.2.1.1). Assuming that
the Cox–Merz rule applies, η′

p(aT ω) = η(γ̇0), fit
the data in Table 7.2 to the Carreau–Yasuda GNF
model. Plot the data and the best-fit prediction of the
Carreau–Yasuda GNF model. What are the values
of the model parameters (η0, η∞, n, a, λ) that give
the best fit? (Hint: You can obtain an acceptable fit
through trial and error; another way would be to use
the add-in Solver in Microsoft Excel or any other
nonlinear fitting algorithm.)

7.19 Your labmate proposes the following constitutive
equation:

τ = −f (v1, v2)
[
∇v + (∇v)T

]
f (v1, v2) = αv2

2 + βv1

2

where α and β are scalars associated with the mate-

rial, and v =
⎛⎝ v1

v2

v3

⎞⎠
123

. Discuss why it is or is not

acceptable as a constitutive equation.
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TABLE 7.2
Data for Problem 7.18*

aT ω ≈ γ̇0 η′
p(25°C) ≈ η

(rad/s) (poise)

9.97E−01 1.72E+01
3.89E+00 1.69E+01
9.89E+00 1.62E+01
2.47E+01 1.40E+01
6.26E+01 9.86E+00
2.49E+02 5.40E+00
1.01E+03 3.12E+00
2.56E+03 2.28E+00
6.30E+03 1.67E+00
1.57E+04 1.30E+00
4.05E+04 1.09E+00
1.27E+05 9.20E−01
5.04E+05 7.97E−01
1.27E+06 7.27E−01
3.17E+06 7.30E−01

* A more complete data set may be
found in Table F.1 in Appendix F.

7.20 I have decided that there is a need for a new ma-
terial function for simple shear flow. I propose the
following kinematics:

v =
⎛⎝ ς̇ (t)y0

0

⎞⎠
xyz

ς̇(t) =
{

0 t < 0

eat t ≥ 0; a > 0

(a) Sketch ς̇ (t) = γ̇21(t) and γ21(0, t).

(b) The material function I define is

ηexp ≡ −τyx(t)
a

What is ηexp for a power-law generalized New-
tonian fluid?

7.21 The solution presented in the text for Poiseuille flow
in a tube for a power-law fluid assumes power-law
behavior at all shear rates. The shear rate at the tube
center is zero, however, and power-law behavior is
not expected at low shear rates. Estimate the error in
flow rates calculated from the power-law generalized
Newtonian fluid based on this effect [235]. For sim-
plicity, consider flow between infinite parallel plates.

7.22 A power-law generalized Newtonian fluid is con-
tained in a tank in which the pressure is maintained
constant (Figure 7.11). The tank has two exit pipes,

Figure 7.11 Problem 7.22: tank containing a power-law
generalized Newtonian fluid.

one of radius R and the second of radius 2R. Both
exit pipes are of lengthL, and the fluid exits the pipes
at atmospheric pressure. The flow rate of the fluid in
the larger pipe is 32 times the flow rate in the smaller
pipe. What is the fluid’s power-law index? The effect
of gravity can be neglected.

7.23 (a) For a power-law generalized Newtonian fluid
with the parameters listed below, plot the vis-
cosity η as a function of shear rate γ̇ (log–log
plot).

m = 50,000 Pa

n = 0.4

(b) For bothm andn, calculate the viscosity function
for twice and one-half the value of the param-
eter (e.g., for 2m and m/2), keeping the other
parameter the same as the in base case. Plot and
discuss your results.

7.24 (a) For a Carreau–Yasuda generalized Newtonian
fluid with the parameters listed below, plot the
viscosity as a function of shear rate (log–log
plot). Plot for 10−3 ≤ ω ≤ 103.

η∞ = 500 Pa

η0 = 50,000 Pa

a = 1

n = 0.5

λ = 10 s
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(b) For each of the five parameters above calculate
the viscosity function for twice and one-half the
value of the parameter (e.g., for 2η∞ and η∞/2),
keeping all other parameters the same as in the
base case. Plot and discuss your results for all
five parameters.

7.25 (a) The generalized Newtonian constitutive equa-
tion τ = −ηγ̇ can use any of a number of

empirical relationships for η(γ̇ ). One that we
have used extensively is the power-law equation,
but others are equally valid, for example, the
Ellis equation, which is a three-parameter model
(η0, τ0, α):

η

η0
= 1

1 + (τ/τ0)α−1

where τ is the magnitude of the stress tensor τ .
For an Ellis generalized Newtonian fluid with
the parameters listed below, plot the viscosity as
a function of shear rate (log–log plot).

η0 = 50,000 Pa

τ0 = 25,000 Pa

α = 3.0

(b) For each of the three parameters above calculate
the viscosity function for twice and one-half the
value of the parameter (e.g., for 2η0 and η0/2),
keeping all other parameters the same as in the
base case. Plot and discuss your results.

7.26 In the text, a partial solution for combined pressure-
driven/drag flow of a power-law generalized Newto-
nian fluid in a slit is given, and results for particular
values of the material and flow parameters are plot-
ted. The complete solution to this problem is given in
Flumerfelt et al. [80]. Their solution was calculated
for the coordinate system x, y, z, which differs from
that used in this text (shown as x̄, ȳ, z̄); see Figure
7.12. For their Case I, no maximum in velocity, their
result is

vz

V
= 1

�(s + 1)

{[
�

(
λ+ 1

2

)]s+1

−
[
�(λ− ξ)

]s+1
}

where

� = (P0 − PL)B
mL

(
B

V

)n

Figure 7.12 Coordinate system used by Flumerfelt et al.
[80] in solving generalized Couette flow discussed in Prob-
lem 7.26.

ξ = x/B, s = 1/n, and the constant λ is found
through numerical solution of the equation

1 = 1

�(s + 1)

{[
�

(
λ+ 1

2

)]s+1

−
[
�

(
λ− 1

2

)]s+1
}

(a) Show that the solution in this text and the one
given here from reference [80] match.

(b) Plot Flumerfelt et al.’s results for the case when
a maximum is present (their Case II); the solu-
tion is given below. Plot (i) for � = ±3, n =
0.2, 0.4, 0.5, 0.8, 1.0, and (ii) for n = 5,� =
±1.8,±3.0,±5.0,±7.0,±10. This flow is im-
portant in the analysis of extrusion.

Solution for Case II [80]:

v<z

V
= �|�|s−1

s + 1

[(
λ+ 1

2

)s+1

− (λ− ξ)s+1

]

v>z

V
= �|�|s−1

s + 1

[(
1

2
− λ

)s+1

− (ξ − λ)s+1

]
+ 1

where λ is given by the solution to

1 = �|�|s−1

s + 1

[(
1

2
+ λ

)s+1

−
(

1

2
− λ

)s+1
]

The maximum is located at ξ = λ; v<z is the
solution for the velocity profile when ξ ≤ λ,
and v>z is the solution when ξ ≥ λ.

(c) Flumerfelt et al. qualify their solution as follows:
“There are two important assumptions in the
numerical results: It is assumed that there are no
appreciable viscous heating effects that would
cause the rheological properties to be position-
dependent. It is assumed that the power law is
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appropriate; in Case II, if an appreciable portion
of the slit cross section is in the neighborhood
of zero velocity gradient, the inadequacies of the
power law may become apparent.” Explain these
comments.

7.27 Flow Problem: Pressure-driven flow of a
power-law generalized Newtonian fluid between
infinite parallel plates. Calculate the velocity pro-
file and flow rate for pressure-driven flow of an
incompressible power-law generalized Newtonian
liquid confined between two infinitely wide parallel
plates, separated by a gap of 2H . (The geometry
is the same as in the Newtonian case, treated in
Section 3.5.2.) The pressure at an upstream point
is P0, and at a point a distance L downstream the
pressure is PL. Assume that the flow between these
two points is fully developed and at steady state.
Plot the velocity profile as v1/v1,av versus x2/H for
n = 0.1, 0.5, 0.99. Comment on your results.

7.28 Flow Problem: Flow of a power-law generalized
Newtonian fluid down an inclined plane.

(a) Find the velocity profile at steady state for an
incompressible power-law generalized Newto-
nian fluid flowing down an inclined plane. The
upper surface of the fluid is exposed to air. The
fluid film has a constant height of H at steady
state. The plane makes an angle of ψ with the
vertical.

(b) Calculate the maximum velocity, the average
velocity, and the flow rate of the fluid.

(c) Plot the velocity profile as vx/vx,av versus h/H
forn = 0.1, 0.5, 0.99. Comment on your results.

7.29 Flow Problem: Axial annular flow of an incom-
pressible power-law generalized Newtonian fluid.
The flow shown in Figure 3.17 takes place in the coat-
ing of electrical wires [26]. A cylinder (the wire) of
radius κR is drawn through a tubular bath of fluid at
a velocity V . The tube has a radius R. The upstream
fluid is at pressure P0, and the downstream fluid is
also at pressure P0. Using the constitutive equation
for an incompressible power-law GNF, carry out the
following calculations:

(a) Calculate the steady-state velocity profile.

(b) Show how your result above reduces to the New-
tonian result in the appropriate limit (see Prob-
lem 3.19).

(c) Calculate the flow rate in the central channel.

(d) Calculate the force needed to pull the wire.

7.30 Flow Problem: Tangential annular flow of a
power-law generalized Newtonian fluid. Calculate
the velocity and pressure profiles for steady tangen-
tial annular flow of an incompressible power-law
generalized Newtonian fluid between long
concentric cylinders (length = L) when the inner
cylinder is turning (see Figure 3.16). Also calculate
the torque required to turn the cylinder. The outer
cylinder has a radius R, and the inner cylinder has a
radius κR and is rotating with an angular velocity�.
For the boundary condition on pressure, assume that
P = PR at the outer radius. Plot the velocity field for
n = 0.99, 0.3, 0.15, 0.1. (See Appendix C.1, Math
Hints, for help with this problem.)

7.31 Flow Problem: Poiseuille flow of an Ellis gen-
eralized Newtonian fluid. The GNF constitutive
equation τ = −ηγ̇ can use any of a number of em-

pirical relationships for η(γ̇ ). One that we have used
extensively is the power-law equation, but others are
equally valid, for example, the Ellis equation, which
is a three-parameter model (η0, τ0, α):

η

η0
= 1

1 + (τ/τ0)α−1

where τ is the magnitude of the stress tensor τ .

(a) Show that the velocity profile for steady laminar
flow of an Ellis fluid in a horizontal pipe of
circular cross section under a constant pressure
gradient (z = 0, P = P0, z = L,P = PL) is

vz = τRR

2η0

{[
1 −

( r
R

)2
]

+
(
τR

τ0

)α−1

×

2

α + 1

[
1 −

( r
R

)α+1
]}

τR = R�P

2L

�P = P0 − PL
(b) Plot the final velocity field as vz/vz,av versus
r/R for α = 0.1, 0.5, 0.99 and for τR/τ0 =
1, 10, 1000.

7.32 Flow Problem: Draining a power-law generalized
Newtonian fluid from a tank. The tank and tube
assembly shown in Figure 7.13 is initially filled with
an incompressible power-law generalized Newto-
nian fluid [28, 26]. During the draining process it
is assumed that the flow in the tube is laminar.
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Figure 7.13 Problem 7.32. Source: From Dynamics of
Polymeric Liquids, Volume 1: Fluid Mechanics, R. B. Bird,
R. C. Armstrong, and O. Hassager, Copyright © 1987 by
John Wiley & Sons, Inc. Reprinted by permission of John
Wiley & Sons, Inc.

(a) What is the flow rate in the pipe as a function of
the fluid height in the tank?

(b) Using a quasi-steady-state approach, set h =
h(t) and solve for the time to drain just the tank
(not the pipe).

7.33 Flow Problem: Laminar drag flow of two layers of
power-law generalized Newtonian fluids. Two im-
miscible power-law generalized
Newtonian fluids are sandwiched between infinite
plates, the top one of which is moving at a constant
speed V (Figure 7.14). Assuming that the interface
between the two fluids remains planar, calculate the
steady-state velocity distribution.

7.34 *Flow Problem: Laminar combined drag and
pressure flow of two layers of power-law general-
ized Newtonian fluids. Repeat Problem

Figure 7.14 Problem 7.33.

7.33 with an additional imposed pressure gradient in
the flow direction,

∂P

∂x1
= PL − P0

L
= constant

(The solution is quite involved.)

7.35 Flow Problem: Flow in a conical die [179]. Solve
for the pressure drop for steady, isothermal flow of an
incompressible power-law fluid through a die whose
boundaries are cones with a common apex (Figure
7.15). Follow the solution steps outlined below.

(a) The solution was worked out by Parnaby and
Worth [202]. In their solution they use the fol-
lowing expression for the power law equation:

η = m̃

γ̇0

[
γ̇

γ̇0

]n−1

where n is the power-law index, m̃ is a parameter
with units of stress, and γ̇0 = 1 s−1 is a reference
shear rate. Show how this expression relates to
our equation for power law viscosity. What is the
advantage of their expression?

(b) Assumingα andβ are small (lubrication approx-
imation) solve for the pressure drop as a function
of flow rate, Q [202]. The solution is

Figure 7.15 Problem 7.35 [202]. Source: This material has
been reproduced from the Proceedings of the Institution of
Mechanical Engineers, Vol. 188, 357–364, 1974, Figure 2,
by J. Parnaby and R. A. Worth by permission of the Council
of the Institution of Mechanical Engineers.
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�P =
(
Q

�πγ̇0

)n ( 2m̃

3nr3n
0 tan β

)(
1 − Y 3n

)
where�P is pressure drop,Q is flow rate, r0 =
z0 tan β, Y = z0/z1, and � is given by

�(s, κ) =
∫ 1

κ

∣∣∣λ2 − ξ2
∣∣∣s+1

ξ−s dξ

with s = 1/n, κ = κR/R = tan α/ tan β, ξ =
r/R, and λ is the value of the dimensionless
coordinate ξ for which shear stress is zero, which
can be solved from∫ λ

κ

(
λ2

ξ
− ξ

)s
dξ =

∫ 1

λ

(
ξ − λ2

ξ

)s
dξ



C H A P T E R

8
Memory Effects
Generalized Linear Viscoelastic Fluids

Power-law generalized Newtonian fluids, the main topic of the last chapter, are most useful
and accurate when applied at high shear rates to steady flows for which elastic effects are
not important. At the other end of the flow spectrum are slow, time-dependent flows where
elastic effects play an important role. Our current topic is to explore constitutive equations
that function well in the slow, elastically dominated limit.

The constitutive equations discussed in this chapter are the first constitutive equations
we will discuss that have memory effects built in. We begin with a general discussion
of memory effects, then we introduce the empirical Maxwell model, which incorporates
deformation history into the calculation of the stress at the current time. We then discuss two
generalizations of the Maxwell model and show what these models predict. We continue
with flow problems that employ the generalized Maxwell model constitutive equation, and
we end with a section describing the limitations of these models. All along we will practice
using the new constitutive equations by predicting material functions.

8.1 Memory Effects

Missing from the GNF approach is elasticity, or fluid memory. Recall that both the
Newtonian constitutive equation and the generalized Newtonian constitutive equation are
simple proportionalities between the stress tensor and the instantaneous rate-of-strain tensor.

Newtonian: τ(t) = −μ γ̇ (t) (8.1)

generalized Newtonian: τ(t) = −η(γ̇ ) γ̇ (t) (8.2)

Because γ̇ (t) represents only the instantaneous deformation, there can be no effect of the

history of the deformation on the stress in these models. Yet we know that for polymers rhe-
ological behavior is strongly affected by flow history [165]: when we stretch rubber bands,
they snap back; when we shear polymeric fluids, the stress does not grow instantaneously
when the flow starts, but rather it takes some time to accumulate (see Figure 6.49); likewise

257
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when we stop the shearing of a polymeric fluid, the stress does not instantaneously decrease
to zero as is required by the Newtonian and generalized Newtonian models, but rather there
is a slow decay of stress that takes finite time (see Figure 6.51).

To account for memory effects we need a constitutive equation that depends on
what happened to a material sometime in the past. The models we have examined so
far, the Newtonian and generalized Newtonian models, are functions of γ̇ (t), the rate-

of-deformation tensor at the current time only. To construct a constitutive equation with
memory, we must include terms that involve expressions such as γ̇ (t − t0), the value of

γ̇ at a time t0 seconds (or minutes, or hours) in the past. We would expect, however, that

the current and recent deformation rate would have a more important effect on the current
stress than the deformation that took place several seconds or minutes ago. A constitutive
equation that incorporates both of these characteristics might look like this:

stress at
current time︷︸︸︷
τ(t) = −η̃

[ current
strain rate︷︸︸︷
γ̇ (t) + 0.8

strain rate
t0 seconds ago︷ ︸︸ ︷
γ̇ (t − t0)

]
(8.3)

In this equation the current deformation rate contributes a term −η̃ γ̇ (t), which looks like a

Newtonian-type contribution since it is based on the current rate of deformation γ̇ (t). The

equation contains a second term, −0.8η̃ γ̇ (t − t0), which also contributes a portion of the

stress at the current time t . This term is related not to the current deformation, but rather to
the rate of deformation t0 seconds ago. Since fluids are observed to have fading memory of
what they experienced in the past, the memory term can be expected to be less important
than the stress contribution due to the current rate of deformation of the fluid. Thus the
factor 0.8 appears in front of the memory term, indicating that the fluid has forgotten 20%
of what happened to it t0 seconds ago.

To see how a fluid described by a memory equation such as Equation (8.3) behaves,
we can calculate various material functions for this constitutive equation. We begin by
calculating the steady shear viscosity.

EXAMPLE
Calculate the steady shear material functions η, �1, and �2 for the constitutive equation

τ(t) = −η̃
[
γ̇ (t)+ 0.8γ̇ (t − t0)

]
(8.4)

where η̃ and t0 are constant parameters of the model, and both parameters are positive. η̃
has units of viscosity (e.g., Pa · s), and t0 has units of time.

SOLUTION

Steady shear material functions are defined with respect to the following kinematics:

v =
⎛⎝ ς̇ (t)x2

0

0

⎞⎠
123

(8.5)
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ς̇ (t) = γ̇0 = constant (8.6)

The definitions of the steady shear material functions are given in Chapter 5 [Equa-
tions (5.8)–(5.10)], where the stress components are evaluated for the preceding kinematics.

We must calculate the tensor τ , which we obtain from the constitutive equation
[Equation (8.4)]. First we need γ̇ ,

γ̇ = ∇v + (∇v)T (8.7)

=
⎛⎝ 0 γ̇0 0

γ̇0 0 0

0 0 0

⎞⎠
123

(8.8)

Since γ̇0 is a constant, the tensor γ̇ is also a constant, and therefore both γ̇ (t) and γ̇ (t − t0)
are given by Equation (8.8). It is thus straighforward to calculate τ ,

τ(t) = −η̃
[
γ̇ (t)+ 0.8γ̇ (t − t0)

]
(8.9)

= −η̃
⎡⎣⎛⎝ 0 γ̇0 0

γ̇0 0 0

0 0 0

⎞⎠
123

+ 0.8

⎛⎝ 0 γ̇0 0

γ̇0 0 0

0 0 0

⎞⎠
123

⎤⎦ (8.10)

= −1.8η̃

⎛⎝ 0 γ̇0 0

γ̇0 0 0

0 0 0

⎞⎠
123

(8.11)

We can now calculate the steady shear material functions for this model:

η = −τ21

γ̇0
= 1.8η̃ (8.12)

�1 = 0 (8.13)

�2 = 0 (8.14)

How can we interpret this? Consider that the portion of this constitutive equation that
depends on the instantaneous rate-of-deformation tensor is −η̃γ̇ . A fluid characterized by

this instantaneous portion alone, that is, one for which τ = −η̃γ̇ , is a Newtonian fluid with

viscosity equal to η̃. From the results of this practice example we see that for the memory
fluid described by Equation (8.4) the viscosity is 1.8 times higher in steady shear than it
would have been if it had had no memory.

Normal-stress coefficients are both zero for this constitutive equation since the stress
is proportional to the rate-of-strain tensor, and γ̇ has zeros on the diagonal for shear flow.

When a constitutive equation includes terms that depend on the past deformation
experienced by the fluid (memory), this has a quantitative effect on the steady shear viscosity,



260 GENERALIZED LINEAR VISCOELASTIC FLUIDS

as shown in the preceding example. In unsteady flows there is also a qualitative effect on
the predicted material functions. To see how memory affects unsteady shear flow, we will
calculate the shear start-up material functions η+,�+

1 , and�+
2 for the simple memory fluid

defined previously.

EXAMPLE
Calculate η+(t), �+

1 (t), and �+
2 (t) for the simple memory fluid

τ(t) = −η̃
[
γ̇ (t)+ 0.8γ̇ (t − t0)

]
(8.15)

where η̃ and t0 are constant parameters of the model, and both parameters are positive. η̃
has units of viscosity (poise or Pa·s), and t0 has units of time.

SOLUTION

The startup of the steady shearing experiment is defined with respect to the following
kinematics:

v(t ′) =
⎛⎝ ς̇ (t ′)x2

0

0

⎞⎠
123

(8.16)

ς̇ (t ′) =
{

0 t ′ < 0

γ̇0 t ′ ≥ 0
(8.17)

We have used t ′ when writing these kinematics since we will need to consider these equations
at times other than the current time t . The variable t ′ is a dummy variable, which just shows
us what the function is.

The startup steady shearing material functions are defined for the kinematics given as

η+(t, γ̇0) ≡ −τ21

γ̇0
(8.18)

�+
1 (t, γ̇0) ≡ − (τ11 − τ22)

γ̇ 2
0

(8.19)

�+
2 (t, γ̇0) ≡ − (τ22 − τ33)

γ̇ 2
0

(8.20)

To evaluate these functions we must calculate the stress tensor τ(t) predicted by the
constitutive equation. First we calculate the rate-of-deformation tensor:

γ̇ (t ′) = ∇v + (∇v)T (8.21)

=
⎛⎝ 0 ς̇ (t ′) 0

ς̇ (t ′) 0 0

0 0 0

⎞⎠
123

(8.22)
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Since ς̇ (t ′) is a function of time, γ̇ (t ′) is also a function of time. Looking at the constitutive

equation, we see that to calculate τ(t) we need γ̇ (t) and γ̇ (t − t0). To obtain γ̇ (t), we

substitute t ′ = t into Equations (8.17) and (8.22):

γ̇ (t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 t < 0⎛⎝ 0 γ̇0 0

γ̇0 0 0

0 0 0

⎞⎠
123

t ≥ 0
(8.23)

To calculate γ̇ (t − t0) we substitute t ′ = t − t0 into Equations (8.22) and (8.17),1

γ̇ (t − t0) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 t − t0 < 0⎛⎝ 0 γ̇0 0

γ̇0 0 0

0 0 0

⎞⎠
123

t − t0 ≥ 0
(8.24)

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 t < t0⎛⎝ 0 γ̇0 0

γ̇0 0 0

0 0 0

⎞⎠
123

t ≥ t0
(8.25)

Now we can calculate τ(t) from the constitutive equation:

τ(t) = −η̃
[
γ̇ (t)+ γ̇ (t − t0)

]
(8.26)

To add the two rate-of-deformation tensors (the one evaluated at t and the other evaluated
at t − t0), we must consider three different time intervals:

t < 0 τ = −η̃
[
0 + 0

]
(8.27)

0 ≤ t < t0 τ = −η̃
⎡⎣⎛⎝ 0 γ̇0 0

γ̇0 0 0

0 0 0

⎞⎠
123

+ 0

⎤⎦ (8.28)

1 Reminder on functions: Given a function f (x) such as f (x) = x2 + 3x + 2 we know that when
x = a we can evaluate f (a) by substituting a for x in the general formula, f (a) = a2 + 3a + 2.
When functions appear in less familiar form, however, the same rule applies. For f (x) given by

f (x) =
{

6 x < 0

10 x ≥ 0

we can evaluate f (x − 3) as follows:

f (x − 3) =
{

6 x − 3 < 0

10 x − 3 ≥ 0
=

{
6 x < 3

10 x ≥ 3
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t ≥ t0 τ = −η̃
⎡⎣⎛⎝ 0 γ̇0 0

γ̇0 0 0

0 0 0

⎞⎠
123

+ 0.8

⎛⎝ 0 γ̇0 0

γ̇0 0 0

0 0 0

⎞⎠
123

⎤⎦ (8.29)

Thus the stress tensor for our simple memory constitutive equation in the startup of steady
shearing is given by

τ(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 t < 0

−η̃
⎛⎝ 0 γ̇0 0

γ̇0 0 0

0 0 0

⎞⎠
123

0 ≤ t < t0

−1.8η̃

⎛⎝ 0 γ̇0 0

γ̇0 0 0

0 0 0

⎞⎠
123

t ≥ t0

(8.30)

We can now calculate the material functions η+, �+
1 , and �+

2 from the definitions given at
the start of the problem [Equations (8.18)–(8.20)]:

η+(t) =
⎧⎨⎩

0 t < 0

η̃ 0 ≤ t < t0
1.8η̃ t ≥ t0

(8.31)

�+
1 (t) = 0 (8.32)

�+
2 (t) = 0 (8.33)

The shear stress growth function η+(t) calculated here is sketched in Figure 8.1.

Figure 8.1 Shear stress growth function η+ as a function of time t for the simple memory fluid
discussed in text.

The simple memory fluid shows a two-step buildup of stress in the start-up experiment.
In contrast, the startup of steady shearing of a purely Newtonian fluid is an instantaneous
step up at t = 0 to the steady shear viscosity value (see Section 5.2.2.1). The gradual buildup
in η+ of the simple memory model is reminiscent of the actual response of polymeric fluids
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shown earlier in Figures 6.49 and 6.50, although our simple model does not, of course,
closely predict the smooth rise in η+ that is actually observed. By considering constitutive
equations that depend in a continuous manner on the history of γ̇ , however, we can find

models that predict the smooth buildup of η+ correctly. Thus, by including a dependence
of τ(t), the stress at the current time, on the history of the rate-of-deformation tensor [γ̇ (t)

evaluated at times other than the current time t], we can correctly model many memory
effects, such as the gradual rise of η+ as well as the gradual fall of η−, the shape of G(t)
(step-strain experiment), and other time-dependent effects.

8.2 The Maxwell Models

In the last section we demonstrated that for a constitutive equation to include memory
effects, and hence elasticity, it must contain some information about the deformation history
that a fluid has experienced. We discussed a simple memory fluid constitutive equation that
contained a limited amount of information about deformation history. We designed a simple
example to reflect our belief that a fluid’s memory of past deformations should be imperfect,
that is, a fading memory. Now we would like to present another memory fluid model that
improves on the simple (and rather arbitrary) memory fluid we just discussed. This is called
the Maxwell model.

8.2.1 SIMPLE MAXWELL MODEL

The development of the Maxwell model follows a different path than that considered above.
In the development of the simple memory fluid we added (integrated) the contributions of
past events to the stress at the current time. The development of the Maxwell model, as we
shall see in this section, follows a differential approach based on ideas of elasticity. At the
end of the section, however, we will find that these two approaches are equivalent.

The Maxwell model results from the direct combination of viscous behavior and elastic
behavior in one constitutive equation. From studying Newtonian fluids in Chapter 3, we
understand a thing or two about viscous behavior. To understand elastic behavior we will
now examine the elastic solid that was mentioned briefly in Section 5.2.2.5. Perfectly elastic
solids respond to shear deformation according to Hooke’s law (shear only):

Hooke’s law
(shear only)

τ21(t) = −G∂u1

∂x2
(8.34)

= −Gγ21 (tref , t) (8.35)

where G is a scalar constant, called the elastic modulus. In words, Hooke’s law says that
the shear stress is proportional to the shear strain. Strain is the deformation of the sample
at the current time t with respect to the shape at some reference time tref or some other time
of interest (see Section 5.2.2.3). In Hooke’s law the reference time is a time when the stress
is zero, τ21 = 0. We see then that the stress generated by a Hookean material depends only
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on the current state of the system and the reference state of the system, but not at all on the
instantaneous rate of deformation.

Hooke’s law can be applied to flows other than shear if we write the strain as a tensor:

Infinitesimal
strain tensor

γ (tref , t) ≡ ∇u+ (∇u)T (8.36)

Hooke’s law
(slow rates)

τ(t) = −Gγ (tref , t) (8.37)

The vector u(tref , t) = r(t)−r(tref) gives the displacement of a fluid particle between times
tref and the current time t , as was discussed in Section 5.2.2.3. The tensor ∇u is called the
displacement gradient tensor, and the strain tensor γ (tref , t) is called the infinitesimal strain

tensor. Recall that the shear strain and the shear rate are related by (see Section 5.2.2.4)

γ21(tref , t) =
∫ t

tref

γ̇21(t
′) dt ′ (8.38)

The variable t ′ is a dummy variable of integration. For small displacement gradients this
relationship holds for each coefficient of the tensors γ̇ and γ ,

γpk(tref , t) =
∫ t

tref

γ̇pk(t
′) dt ′ (8.39)

This expression for the components of the infinitesimal strain tensor in terms of integrals
over the strain-rate components results from the assumption that strains are additive in the
limit of small strain rates.

The original Hooke’s law [Equation (8.34)] is just the 21-component of the tensor
version of Hooke’s law [Equation (8.37)] written for the specific case of shear flow. In our
discussion of more advanced constitutive equations in Chapter 9 we will discuss γ (tref , t)

and other strain tensors in more detail. Hooke’s law is empirical and is found to hold at only
small displacement gradients.

The Hookean solid constitutive equation is a good model for rubbers (rubber bands)
and crosslinked gels that do not flow without breaking, or for metals at very small strains.
The challenge for polymeric melts, however, is to find a constitutive equation that can
incorporate some elastic effects while still predicting viscous effects and flow. Such an
equation was proposed for shear flow by James Clerk Maxwell in 1867:

Maxwell equation
(scalar version)

τ21 + μ

G

∂τ21

∂t
= −μγ̇21 (8.40)

At steady state (∂τ21/∂t −→ 0) this equation becomes Newton’s law of viscosity. For rapid
motions at short times (t −→ 0), the time-derivative term is much larger than the stress
term, and if we therefore neglect τ21 in Equation (8.40), Hooke’s law for elastic solids is
recovered:
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∂τ21

∂t
� τ21 (8.41)

μ

G

∂τ21

∂t
= − μγ̇21 (8.42)

∂τ21

∂t
= −Gγ̇21 (8.43)

τ21(t) = −G
∫ t

tref

γ̇21(t
′) dt ′ (8.44)

= −Gγ21 (tref , t) (8.45)

In integrating the left side of Equation (8.44), we have taken τ21(tref) = 0. The Maxwell
equation is strictly empirical, and its validity depends only on how well it predicts observed
shear behavior. The Maxwell equation is limited to small strains by its use of the relationship
between γ21 and γ̇21, and it is also limited to shear flow since it is a scalar rather than a
tensor equation.

Before we address some of these concerns, let us first consider the physics behind
the Maxwell equation. As we have discussed, the Maxwell equation combines viscous and
elastic expressions. One could, of course, combine elastic and viscous effects in a variety
of ways; why did Maxwell combine them as he did?

The answer to this question can be found by considering two elementary mechanical
elements that produce force, the spring and the dashpot. If a spring is made to undergo a
displacement Dspring, it produces a restoring force in the direction opposite to the direction
of the displacement:

f = −GspDspring (8.46)

where f is the magnitude of the resisting force and Gsp is the spring force constant. This
force law resembles Hooke’s law for elastic solids. A dashpot is a device like the shock
absorbers on an automobile: a piston is made to move through a viscous Newtonian fluid.
The magnitude of the resisting force f caused by the drag on the piston as it moves through
the liquid at a speed dDdash/dt is related to the viscosity of the fluid:

f = −μdDdash

dt
(8.47)

where μ is the fluid viscosity andDdash represents the piston displacement. If we connect a
spring and a dashpot in series (Figure 8.2) and displace the combined unit, the spring will
deform, and the piston will move through the liquid in the dashpot. Both units will experience
the same applied force, but each element will undergo a different displacement. The total
displacement of the two units in series Dtotal will just be the sum of the displacements of
the individual units:

Dtotal = Dspring +Ddash (8.48)

Taking the time derivative of Equation (8.48) and substituting the expressions for Dspring
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Initial state,
no force

Final state,
force resists
displacement

f

Dtotal

f

Figure 8.2 Displacement of a spring and dashpot in series. Initially the combined unit exerts no force.
After displacement by an amount Dtotal the unit experiences a force of magnitude f in the direction
opposite to the displacement.

and Ddash [Equations (8.46) and (8.47)], we obtain an equation for the total force f that is
analogous to the Maxwell equation:

f + μ

Gsp

df

dt
= −μdDtotal

dt
(8.49)

We see then that the Maxwell equation can be interpreted as the series combination of
viscous and elastic effects in a fluid. There are, of course, other ways of combining the
viscous and elastic contributions to stress in viscoelastic fluids (e.g., combining them in
parallel, or combining an elastic contribution in parallel with the combined elastic/viscous
unit, etc.), and many of these ways of combining springs and dashpots have been investigated
over the years as possible rheological models [25]. Again, all of these models are empirical,
and the only justification for choosing one over another is if the model correctly predicts
experimental data.

Thus the Maxwell equation combines the Newtonian and Hookean equations in a way
that makes some sense, both in terms of the limits at steady state and at short times and
in terms of the physical analogy to combining springs and dashpots in series. It is not a
constitutive equation, however, because it is not of tensor order, and we have yet to see
whether the predictions of the Maxwell equation are useful.

We can remove the first objection by generalizing the Maxwell equation to a tensor
form in what seems to be the most obvious way, that is, replace the appropriate kinematic
and stress scalars with tensors. This is an arbitrary2 choice, but since the entire development

2 This is also dangerous, as we will show in Section 8.5 and discuss in Chapter 9.
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of this equation was empirical, no obvious rules have been broken. Thus the full Maxwell
fluid constitutive model is

Maxwell model
(differential form)

τ + λ∂τ
∂t

= −η0γ̇ (8.50)

We have replaced μ with η0 since we are limited to small rates and the zero-shear viscosity
is the relevant viscosity. We have also replaced μ/G with λ, which has the units of time
and which we introduced earlier as the relaxation time of the material. This tensor equation
has the same limits as the scalar Maxwell equation, that is, at steady state it becomes the
Newtonian constitutive equation τ = −η0γ̇ , and at short times it becomes the Hooke’s law

constitutive equation τ = − (η0/λ) γ (tref , t) with G = η0/λ.

Notice that the Maxwell model [Equation (8.50)] is a differential equation for τ . To
calculate stresses, we must solve the Maxwell model for the stress tensor. We can find the
solution for τ by integrating with the help of an integrating factor, in this case (1/λ)e

t
λ

(see [34] and Appendix C.1). The fact that it is a tensor equation is not an impediment. We
can solve the equations represented by all nine tensor components at once. The Maxwell
differential equation is

τ + λ∂τ
∂t

= −η0γ̇ (8.51)

Multiplying through by (1/λ)e
t
λ we obtain(

1

λ

)
e
t
λ τ + e tλ ∂τ

∂t
= −η0

(
1

λ

)
e
t
λ γ̇ (8.52)

We can factor the left side to become

∂

∂t

(
e
t
λ τ
)

= −η0

λ
e
t
λ γ̇ (8.53)

Integration over all past times up to the time of interest t yields∫ t

−∞
d
[
e
t ′
λ τ (t ′)

]
=

∫ t

−∞
−η0

λ
e
t ′
λ γ̇ (t ′) dt ′ (8.54)

e
t ′
λ τ (t ′)

∣∣∣t−∞
=

∫ t

−∞
−η0

λ
e
t ′
λ γ̇ (t ′) dt ′ (8.55)

If we require that at t = −∞ the stress be finite, we can simplify the left side, and we
obtain

e
t
λ τ (t) =

∫ t

−∞
−η0

λ
e
t ′
λ γ̇ (t ′) dt ′ (8.56)

τ(t) = e− t
λ

∫ t

−∞
−η0

λ
e
t ′
λ γ̇ (t ′) dt ′ (8.57)
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Maxwell model
(integral form)

τ(t) = −
∫ t

−∞

[η0

λ
e

−(t−t ′)
λ

]
γ̇ (t ′) dt ′ (8.58)

Note again the different meanings of the times t ′ (dummy variable of integration) and t
(current time), which is the time at which we are calculating τ . The term e

−t
λ is a constant

with respect to the integral over t ′, and we can move it in and out of the integral with
impunity.

Equation (8.58) is the integral form of the Maxwell model, a two-parameter (η0 and λ)
constitutive equation. Written in this form we see that the stress in the Maxwell model is
proportional to the integral, over all past times, of the shear-rate tensor at some past time t ′,
γ̇ (t ′), multiplied by an exponentially decaying function of the interval between the current

time t and all the past times being integrated over, t ′,

τ(t) = −
∫ t

−∞

variable
forgetting
function︷ ︸︸ ︷[η0

λ
e

−(t−t ′)
λ

]
γ̇ at

past
times︷︸︸︷
γ̇ (t ′) dt ′ (8.59)

Since the Maxwell model calculates the stress at the time of interest t as the integral over
events at past times t ′, it is not only a function of the instantaneous shear-rate tensor, but
it is also a function of the history of the shear-rate tensor. Thus the Maxwell model is
a refinement of the crude memory model discussed at the beginning of this chapter. The

function (η0/λ)e
−(t−t ′)
λ in the Maxwell model serves as a weighting function that indicates

how much of the past deformation is remembered by the fluid at time t . It is a decreasing
function of the interval between t and t ′, that is, the farther back the deformation occurred,
the less impact that deformation has on the stress at the current time t . This is exactly the
kind of continuously forgetting function that we thought would be appropriate for polymers
in our discussion in Section 8.1.

Thus we have identified a new constitutive equation that satisfies many of our require-
ments for a polymeric constitutive equation: it is of tensor order, it predicts a symmetric
stress tensor [since it is proportional to a symmetric tensor γ̇ (t ′)], and it contains no

obvious violations of material objectivity.3 In addition, it is a function of the history of
the rate-of-deformation tensor, a requirement for a constitutive equation that will predict
memory effects. Finally, it contains a continuously varying forgetting factor that meets our
expectations for the needed weighting of the importance of γ̇ (t ′) as t ′ recedes farther and

farther into the past.
What next? The ultimate test of any constitutive equation is whether the predictions of

the equation match experimental observations. To answer this we must calculate material
functions using the Maxwell model and compare the predictions to measurements. We begin
by calculating steady shear properties.

3 There is a problem here, however, that is less obvious. We will discuss it at the end of the chapter.



8.2 The Maxwell Models 269

EXAMPLE
Calculate the steady shear material functions η(γ̇ ), �1(γ̇ ), and �2(γ̇ ), predicted by the
Maxwell constitutive equation.

SOLUTION

As always, when calculating material functions, we begin with the kinematics. For steady
shear flow the kinematics are given by

v =
⎛⎝ ς̇ (t)x2

0

0

⎞⎠
123

(8.60)

ς̇ (t) = γ̇0 = constant (8.61)

Steady shear viscosity is a material function defined for steady shear flow.

η ≡ −τ21

γ̇0
(8.62)

The stress τ21 for the Maxwell model is calculated as follows:

τ = −
∫ t

−∞
η0

λ
e

−(t−t ′)
λ γ̇ (t ′) dt ′ (8.63)

= −
∫ t

−∞
η0

λ
e

−(t−t ′)
λ

⎛⎝ 0 γ̇0 0

γ̇0 0 0

0 0 0

⎞⎠
123

dt ′ (8.64)

τ21(t) = −
∫ t

−∞
η0

λ
e

−(t−t ′)
λ γ̇0 dt

′ (8.65)

= −η0γ̇0 e
−(t−t ′)
λ

∣∣∣t−∞
(8.66)

= −η0γ̇0 (8.67)

From the definition of viscosity we calculate

η = −τ21

γ̇0
= η0 (8.68)

Thus we reach the satisfying solution that, at steady state, the viscosity predicted
by the Maxwell model equals η0, the parameter we originally inserted into the Maxwell
model to account for viscous effects. The normal-stress coefficients are both zero, since
the Maxwell constitutive equation is proportional to γ̇ , which has zeros on the diagonal for

shear flow,

�1 = −(τ11 − τ22)

γ̇ 2
0

= 0 (8.69)
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�2 = −(τ22 − τ33)

γ̇ 2
0

= 0 (8.70)

Now we will examine how the Maxwell model performs when subjected to a time-
dependent shear flow.

EXAMPLE
Calculate the step shear strain material functions G(t, γ0), G�1(t, γ0), and G�2(t, γ0) for
the Maxwell constitutive equation.

SOLUTION

The step-strain experiment is defined in shear flow, and thus the velocity field is (see
Section 5.2.2.4)

v(t ′) =
⎛⎝ ς̇ (t ′)x2

0

0

⎞⎠
123

(8.71)

ς̇ (t ′) = lim
ε−→0

ς̇ (t ′, ε) (8.72)

ς̇ (t ′, ε) =

⎧⎪⎪⎨⎪⎪⎩
0 t ′ < 0
γ0

ε
0 ≤ t ′ < ε

0 t ′ ≥ ε
(8.73)

and the shear-rate tensor is

γ̇ (t ′) =
⎛⎝ 0 ς̇ (t ′) 0

ς̇ (t ′) 0 0

0 0 0

⎞⎠
123

(8.74)

For a Maxwell fluid, the stress tensor in shear flow is given by

τ(t) = −
∫ t

−∞

(η0

λ

)
e

−(t−t ′)
λ

⎛⎝ 0 ς̇ (t ′) 0

ς̇ (t ′) 0 0

0 0 0

⎞⎠
123

dt ′ (8.75)

and the material functions G(t, γ0), G�1(t, γ0), and G�2(t, γ0) are defined as

G(t, γ0) = −τ21(t)

γ0
(8.76)

G�1(t, γ0) = −(τ11 − τ22)

γ 2
0

(8.77)
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G�2(t, γ0) = −(τ22 − τ33)

γ 2
0

(8.78)

where γ0 is the magnitude of the step.
Taking τ21(t) from Equation (8.75), we can calculate the material function G(t, γ0)

predicted by the Maxwell model:

τ21(t) = −
∫ t

−∞

(η0

λ

)
e

−(t−t ′)
λ ς̇ (t ′) dt ′ (8.79)

−τ21(t, ε) =
∫ 0

−∞
0 dt ′ +

∫ ε

0

(η0

λ

)
e

−(t−t ′)
λ
γ0

ε
dt ′ +

∫ t

ε

0 dt ′ (8.80)

= γ0η0

λε

∫ ε

0
e

−(t−t ′)
λ dt ′ (8.81)

G(t, γ0) = lim
ε−→0

−τ21(t, ε)

γ0
(8.82)

= lim
ε−→0

η0

λ

∫ ε
0 e

−(t−t ′)
λ dt ′

ε
(8.83)

which is independent of γ0. Since in this last expression both the numerator and the
denominator vanish when we take the limit, we can use l’Hôpital’s rule to complete the
calculation of G(t). The Leibnitz rule will allow us to take the derivative of the numerator
with respect to ε,

G(t) = lim
ε−→0

η0

λ

∫ ε
0 e

−(t−t ′)
λ dt ′

ε
(8.84)

= lim
ε−→0

η0

λ
d
dε

∫ ε
0 e

−(t−t ′)
λ dt ′

d
dε
ε

(8.85)

= lim
ε−→0

η0

λ
e

−(t−ε)
λ (8.86)

Relaxation modulus for
Maxwell model

G(t) = η0

λ
e

−t
λ (8.87)

Thus the relaxation modulus for the Maxwell model is an exponential decay with respect
to time (Figure 8.3).

Because the diagonal stress components are zero for a Maxwell fluid in shear flow, the
other two material functions in step shear strain are zero,

G�1(t, γ0) = −(τ11 − τ22)

γ 2
0

= 0 (8.88)

G�2(t, γ0) = −(τ22 − τ33)

γ 2
0

= 0 (8.89)
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Figure 8.3 Plot of the scaled shear relaxation modulus for a single-relaxation-time Maxwell fluid.
(a) Linear scale. (b) Log scale.

We see from the preceding example that the Maxwell model reasonably predicts
the relaxation modulus G(t). Compared with the shape of the experimental G(t) for a
concentrated solution of polystyrene shown in Figure 6.57, the Maxwell model correctly
predicts a smoothly decreasing function of time for G(t). With only two parameters, η0

and λ, it is not possible to fit the Maxwell model to most experimental curves of relaxation
modulus, but compared to the predictions of the Newtonian and generalized Newtonian
fluid models (see Section 7.3), the Maxwell model represents a significant advance toward
capturing real polymer shear behavior in this type of transient experiment. One remaining
important qualitative test is to see what the Maxwell model predicts in elongation. We
examine this in the final practice example.
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EXAMPLE
Calculate the steady uniaxial elongational viscosity η̄ predicted by the Maxwell constitutive
equation.

SOLUTION

The kinematics for steady uniaxial elongation are given by

v =
⎛⎜⎝− 1

2 ε̇(t)x1

− 1
2 ε̇(t)x2

ε̇(t)x3

⎞⎟⎠
123

ε̇0 > 0 (8.90)

where ε̇(t) = ε̇0, a positive constant. The rate-of-deformation tensor is then

γ̇ =
⎛⎝−ε̇0 0 0

0 −ε̇0 0

0 0 2ε̇0

⎞⎠
123

(8.91)

and the magnitude of the rate-of-deformation tensor is ε̇0

√
3. The uniaxial elongational

viscosity is defined as

η̄(ε̇0) ≡ −(τ33 − τ11)

ε̇0
(8.92)

Thus we need to calculate the stress tensor τ for a Maxwell fluid subjected to the kinematics
given,

τ(t) = −
∫ t

−∞

(η0

λ

)
e

−(t−t ′)
λ γ̇ dt ′ (8.93)

= −
∫ t

−∞

(η0

λ

)
e

−(t−t ′)
λ

⎛⎝−ε̇0 0 0

0 −ε̇0 0

0 0 2ε̇0

⎞⎠
123

dt ′ (8.94)

=

−η0︷ ︸︸ ︷[
−
∫ t

−∞

(η0

λ

)
e

−(t−t ′)
λ dt ′

]⎛⎝−ε̇0 0 0

0 −ε̇0 0

0 0 2ε̇0

⎞⎠
123

(8.95)

=
⎛⎝ η0ε̇0 0 0

0 η0ε̇0 0

0 0 −2η0ε̇0

⎞⎠
123

(8.96)

Now we can calculate η̄:

η̄(ε̇0) ≡ −(τ33 − τ11)

ε̇0
= 3η0 (8.97)

We see that the Maxwell model predicts the same elongation viscosity as the Newtonian
model. The Trouton ratio η̄/η0 is just 3, the same result as was obtained for Newtonian and
power-law generalized Newtonian fluids, a reasonable result.
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8.2.2 GENERALIZED MAXWELL MODEL

As was noted in the second practice example, the shear stress-relaxation modulus for a
fluid that follows the Maxwell model is an exponential decay with time, and this response
is independent of the magnitude of the strain γ0. Although the single exponential decay
function does describe qualitatively the relaxation of stress of many fluids, the fit is
not quantitative, as we can see in Figure 8.4 for a narrow-molecular-weight-distribution
polystyrene solution. Most fluids are not characterized by a single relaxation time λ, but
rather have multiple relaxation times. We can obtain a good fit to the data in Figure 8.4 if
we add up four Maxwell models (Figure 8.5). The Maxwell constitutive equation can be
modified to describe materials with more than one relaxation time if we assume additivity of
stresses, that is, that the total stress exhibited by a material is just the sum of the individual
stresses due to each relaxation time.

To express mathematically what we have just described in words, we postulate that a
fluid has many relaxation times λk , and we write a Maxwell model for each relaxation time
λk . For each λk and ηk there is a contribution to the extra stress tensor τ

(k)
generated:

τ
(k)

+ λk
∂τ
(k)

∂t
= −ηkγ̇ (8.98)

These individual stress contributions now sum to give the complete extra stress tensor τ .
For a system with N relaxation times,

τ =
N∑
k=1

τ
(k)

(8.99)

Figure 8.4 Relaxation-modulus data at 33.5°C for a polystyrene of narrow molecular-weight distri-
bution, Mw = 1.8 × 106, 20% solution in chlorinated diphenyl; from Einaga et al. [72]. The data
are for small strains (γ0 = 0.41, 1.87) and are independent of strain. Also shown is a predicted G(t)
using the Maxwell model with λ = 150 s and g = η0/λ = 2500 Pa.
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Figure 8.5 Relaxation-modulus data from Figure 8.4 fit to the sum of four G(t) contributions
calculated using the Maxwell model with parameters λk and gk = ηk/λk as indicated. The fit can be
made arbitrarily good by choosing to use more λk and gk .

=
N∑
k=1

[
−
∫ t

−∞

(
ηk

λk

)
e

−(t−t ′)
λk γ̇ (t ′) dt ′

]
(8.100)

Generalized
Maxwell model

τ(t) = −
∫ t

−∞

[
N∑
k=1

(
ηk

λk

)
e

−(t−t ′)
λk

]
γ̇ (t ′) dt ′ (8.101)

This last expression is called the generalized Maxwell model. This model has 2N
parameters, λk and ηk for k = 1 to N , and therefore sufficient flexibility to fit any
experimental stress-relaxation curve. One question remains: does this model predict the
summation of exponentials that we were hoping for? We can answer this question by
calculating G(t) for the generalized Maxwell model.

EXAMPLE
Calculate the step shear strain material functions G(t, γ0), G�1(t, γ0), and G�2(t, γ0) for
the generalized Maxwell constitutive equation.

SOLUTION

The step-strain experiment is defined in shear flow, and thus the velocity field is given by
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v =
⎛⎝ ς̇ (t)x2

0

0

⎞⎠
123

(8.102)

ς̇ (t ′) = lim
ε−→0

ς̇ (t ′, ε) (8.103)

ς̇ (t ′, ε) =

⎧⎪⎨⎪⎩
0 t ′ < 0

γ̇0 = γ0

ε
0 ≤ t ′ < ε

0 t ′ ≥ ε
(8.104)

and the material functions are G(t, γ0), G�1(t, γ0), and G�2(t, γ0), which were defined in
the last example. The shear-rate tensor is

γ̇ =
⎛⎝ 0 ς̇ (t) 0

ς̇ (t) 0 0

0 0 0

⎞⎠
123

(8.105)

For a generalized Maxwell fluid, the stress tensor in this flow is given by

τ(t) = −
∫ t

−∞

[
N∑
k=1

(
ηk

λk

)
e

−(t−t ′)
λk

]⎛⎝ 0 ς̇ (t ′) 0

ς̇ (t ′) 0 0

0 0 0

⎞⎠
123

dt ′ (8.106)

Taking τ21(t) from Equation (8.106), we can calculate the material function G(t, γ0)

predicted by the Maxwell model:

τ21(t) = −
∫ t

−∞

[
N∑
k=1

(
ηk

λk

)
e

−(t−t ′)
λk

]
ς̇ (t ′) dt ′ (8.107)

−τ21(t, ε) =
∫ 0

−∞
0 dt ′ +

∫ ε

0

[
N∑
k=1

(
ηk

λk

)
e

−(t−t ′)
λk

]
γ0

ε
dt ′ +

∫ t

ε

0 dt ′ (8.108)

=
N∑
k=1

γ0ηk

λkε

∫ ε

0
e

−(t−t ′)
λk dt ′ (8.109)

G(t, γ0) = lim
ε−→0

−τ21(t, ε)

γ0
(8.110)

= lim
ε−→0

∑N
k=1

ηk
λk

∫ ε
0 e

−(t−t ′)
λk dt ′

ε
(8.111)

As we did with the single-relaxation-time Maxwell model, we use l’Hôpital’s rule to
complete the calculation of G(t, γ0). The result is independent of γ0:
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Relaxation modulus for the
generalized Maxwell model

G(t) =
N∑
k=1

ηk

λk
e

−t
λk (8.112)

Thus the relaxation modulus for the generalized Maxwell model is a summation of exponen-
tials. Any observed relaxation response can be fit to Equation (8.112) if enough relaxation
times are chosen, that is, for N large. As was true for the single-relaxation-time Maxwell
model, the diagonal stress components are zero for a generalized Maxwell fluid in shear
flow, and G�1(t, γ0) = G�2(t, γ0) = 0.

8.3 GLVE Constitutive Equation

Both the Maxwell model [Equation (8.58)] and the generalized Maxwell model [Equa-
tion (8.101)] have the same structure, only differing in the form of the function in square
brackets. We can further generalize both models and define a generalized linear viscoelastic
(GLVE) model as follows:

Generalized linear
viscoelastic (GLVE) model

τ(t) = −
∫ t

−∞
g(t − t ′)γ̇ (t ′) dt ′ (8.113)

This constitutive equation has as its parametric quantity one function, g(t − t ′). Once this
function is known, the stress can be calculated in any flow situation. The Maxwell model
and the generalized Maxwell model are both GLVE constitutive equations with the GLVE
function g(t − t ′) given by

Maxwell model: g(t − t ′) = η0

λ
e

−(t−t ′)
λ (8.114)

generalized Maxwell model: g(t − t ′) =
N∑
k=1

ηk

λk
e

−(t−t ′)
λk (8.115)

These two expressions are just the same functions that we obtained for the step shear
relaxation modulus, only evaluated for the argument t − t ′ instead of for t . [Compare
Equations (8.114) and (8.115) with Equations (8.87) and (8.112)]. Thus, for any GLVE
fluid, the function that multiplies γ̇ (t ′) is the shear-relaxation-modulus function obtained

in step strain,

g(t − t ′) = G(t − t ′) (8.116)

We can verify that the response of a GLVE fluid to a step-strain experiment is just g(t) by
carrying out the usual step-strain calculations on the GLVE model. To remind us of the link
between the function g(t − t ′) and the step-strain material functionG(t), the GLVE model
is usually written with the nomenclature G(t − t ′) replacing g(t − t ′):
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generalized linear
viscoelastic (GLVE) model:

τ(t) = −
∫ t

−∞
G(t − t ′)γ̇ (t ′) dt ′ (8.117)

Within the integral in the GLVE equation, note also that two separate expressions
appear, one related to the kinematics, γ̇ (t ′), and another separate function that describes the

material response to the flow, g(t − t ′) = G(t − t ′). The GLVE equation is one of a class
of constitutive equations called separable [138]. Separability of material and kinematic
contributions to the stress is a general property exhibited by some materials at all strains
and by all linear viscoelastic fluids at small strain rates. Many, but not all, constitutive
equations are separable; see Larson [138] for a more in-depth discussion of the implications
of separability.

We see from the GNF, Maxwell, and GLVE fluids that it is common practice for
constitutive equations to be written with material functions as part of their definitions. So
far we have seen the viscosity η appear in the generalized Newtonian equation, the zero-
shear viscosity η0 in the Maxwell model, and the step-strain relaxation modulus G(t)
in the GLVE constitutive equation. Although this is standard practice, it is somewhat
unfortunate since this nomenclature causes confusion to beginners who are trying to
keep constitutive equations and material functions straight. The advantage of writing the
constitutive equations this way is that the user is reminded up front of the predictions of the
constitutive equation with regard to some material functions.

We devote the rest of this section to some example problems for calculating material
functions from the GLVE constitutive equation, followed by some flow problems using the
GLVE equation. Several of the examples are related to small-amplitude oscillatory shear
flow, which is perhaps the most widely used experimental application of the GLVE equation.
The final section of the chapter discusses some of the limitations of the GLVE model.

EXAMPLE
Calculate the steady shear material functions η, �1, and �2 for the generalized linear

viscoelastic constitutive equation.

SOLUTION

Steady shear material functions are defined with respect to the following kinematics:

v =
⎛⎝ ς̇ (t)x2

0

0

⎞⎠
123

(8.118)

ς̇ (t) = γ̇0 = constant (8.119)

The definitions of the steady shear material functions are given in Chapter 5 [Equa-
tions (5.8)–(5.10)], where the stress components are evaluated for these kinematics.

We must calculate the tensor τ , which we obtain from the constitutive equation:

τ(t) = −
∫ t

−∞
G(t − t ′)

⎛⎝ 0 γ̇0 0

γ̇0 0 0

0 0 0

⎞⎠
123

dt ′ (8.120)
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We can now calculate the steady shear material functions for this model:

η = −τ21

γ̇0
=

∫ t

−∞
G(t − t ′) dt ′ (8.121)

�1 = −(τ11 − τ22)

γ̇ 2
0

= 0 (8.122)

�2 = −(τ22 − τ33)

γ̇ 2
0

= 0 (8.123)

We can simplify the expression for viscosity by introducing the variable s = t − t ′. With
this substitution, the final result for viscosity becomes

Viscosity for
GLVE model

η =
∫ ∞

0
G(s) ds (8.124)

EXAMPLE
Calculate the material functionsG′(ω) (storage modulus) andG′′(ω) (loss modulus) for the
generalized linear viscoelastic model and for the generalized Maxwell model.

SOLUTION

One of the most common uses of the generalized Maxwell model is to perform calculations
on small-amplitude oscillatory shear (SAOS) data. We can find the predictions of the GLVE
and generalized Maxwell models in SAOS by the same method we have been following,
that is, we substitute the definition of velocity in shear flow v = ς̇ (t)x2ê1, with ς̇ (t)
specified, into the constitutive equation and calculate the stresses and subsequently the
material functions.

For SAOS, the usual shear-flow shear-rate tensor γ̇ is obtained as

γ̇ =
⎛⎝ 0 ς̇ (t) 0

ς̇ (t) 0 0

0 0 0

⎞⎠
123

(8.125)

with the strain rate given by

ς̇ (t) = γ̇21(t) = γ̇0 cos ωt (8.126)

The definitions of the material functions G′(ω) and G′′(ω) are related to the stress wave
τ21(t) (see Section 5.2.2.5):

− τ21(t) = G′γ0 sin ωt +G′′γ0 cos ωt (8.127)

To calculate τ21(t), we use the GLVE constitutive equation:
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τ = −
∫ t

−∞
G(t − t ′)

⎛⎝ 0 ς̇ (t ′) 0

ς̇ (t ′) 0 0

0 0 0

⎞⎠
123

dt ′ (8.128)

τ21(t) = −
∫ t

−∞
G(t − t ′) ς̇(t ′) dt ′ (8.129)

= −
∫ t

−∞
G(t − t ′) γ̇0 cos ωt ′ dt ′ (8.130)

This integration is a bit easier to follow if we substitute s = t − t ′. This change alters the
limits of the integral as well:

τ21(t) =
∫ 0

∞
G(s) γ̇0 cos (ωt − ωs) ds (8.131)

Expanding the cosine term allows us to identify G′ and G′′ (recall that γ̇0 = γ0ω):

−τ21(t) =
∫ ∞

0
G(s) γ̇0 cos ωt cos ωs ds

+
∫ ∞

0
G(s) γ̇0 sin ωt sin ωs ds (8.132)

=
[∫ ∞

0
G(s) cos ωs ds

]
γ0ω cos ωt

+
[∫ ∞

0
G(s) sin ωs ds

]
γ0ω sin ωt (8.133)

Comparing this expression with the definitions of G′ and G′′ [Equation (8.127)] we find:

G′′(ω) = ω
∫ ∞

0
G(s) cos ωs ds (8.134)

G′(ω) = ω
∫ ∞

0
G(s) sin ωs ds (8.135)

For the generalized Maxwell model these integrals may be carried out by using the complex
notation for cosine and sine, yielding

SAOS material
functions for
generalized

Maxwell model

G′′(ω) =
N∑
k=1

gkλkω

1 + λ2
kω

2

G′(ω) =
N∑
k=1

gkλ
2
kω

2

1 + λ2
kω

2

(8.136)

where we have made the substitution gk = ηk/λk . G′(ω) and G′′(ω) for the Maxwell
model are plotted in Figure 8.6 in nondimensional form for N = 1. G′ and G′′ cross at
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Figure 8.6 Plot of scaled dynamic moduli G′(ω) and G′′(ω) for a single-relaxation-time Maxwell
fluid. λ1 is the relaxation time, η1 is the viscosity parameter, and ω is radian frequency.

ωλ1 = 1(G′ = G′′), or at ω = 1/λ1. This relationship can be used to estimate a relaxation
time from experimental data of G′(ω) and G′′(ω).

In the preceding example the expressions for G′(ω) and G′′(ω) for the generalized
Maxwell model capture some important features of actual melt-flow data for these material
functions. Notice that for small ω,

lim
ω−→0

G′ ∝ ω2 (8.137)

lim
ω−→0

G′′ ∝ ω (8.138)

These relationships are observed for straight-chain polymers at low frequencies (for exam-
ple, see Figures 6.34 and 6.36). In the following example problem we see how this scaling
at low frequency determines the longest relaxation time that characterizes a fluid.

EXAMPLE
Fit the relaxation spectrum of the generalized Maxwell model to the SAOS data forG′(ω)
and G′′(ω) listed in Table 8.1. The data are for a narrowly distributed polystyrene melt of
Mw = 59 kg/mol, T = 190°C [252].
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TABLE 8.1
Data for Example Problem

ω G′ ω G′′
(rad/s) (Pa) (rad/s) (Pa)

2.45E+01 9.27E+01 5.56E+00 4.53E+02
4.98E+01 3.33E+02 1.59E+01 1.29E+03
1.01E+02 1.16E+03 4.55E+01 3.82E+03
2.05E+02 3.76E+03 1.30E+02 1.09E+04
4.16E+02 1.10E+04 3.72E+02 3.10E+04
8.44E+02 2.79E+04 1.06E+03 6.23E+04
1.71E+03 5.19E+04 2.13E+03 8.52E+04
3.44E+03 8.40E+04 4.29E+03 8.81E+04
6.95E+03 1.18E+05 8.62E+03 1.01E+05
1.99E+04 1.84E+05 1.73E+04 1.24E+05
5.69E+04 2.50E+05 3.49E+04 1.76+05
1.63E+05 3.51E+05 9.96E+04 3.18E+05
4.66E+05 5.67E+05 2.84E+05 5.76E+05
1.34E+06 1.17E+06 5.72E+05 8.44E+05

* A more complete data set may be found in Table F.2
in Appendix F.

SOLUTION

There is commercial software available that will perform this calculation [216], but a
reasonable solution can be found by trial and error using a spreadsheet program or other
mathematical software.

The data are plotted in Figure 8.7. Also shown are G′ and G′′ calculated for a single-
relaxation-time Maxwell element:

SAOS material functions
for a single-relaxation-time

Maxwell fluid

G′(ω) = g1ω
2λ2

1

1 + ω2λ2
1

G′′(ω) = g1ωλ1

1 + ω2λ2
1

(8.139)

The data we were given show the expected terminal behavior at low frequencies, that is,
G′ ∝ ω2 and G′′ ∝ ω1, and thus the longest relaxation-time contribution to the relaxation
spectrum needs to fit this portion of the curve. By trial and error with values for g1 and λ1 we
found that g1 = 4×104 Pa and λ1 = 0.0016 s provide a reasonable fit at low frequencies, as
shown in Figure 8.7. For the single-relaxation-time Maxwell fluid, g1 changes the height of
the plateau seen in the predictedG′, and λ1 moves the curves left and right on the frequency
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Figure 8.7 Linear viscoelastic moduli G′ and G′′ for a polystyrene melt at 190°C; from Vino-
gradov [252]. The polymer has Mw = 59 kg/mol, and its molecular weight is narrowly distributed.
The model curves shown are for a single-relaxation-time Maxwell fluid with g1 = 4 × 104 Pa and
λ1 = 0.0016 s. Source: From “Critical regimes of deformation of liquid polymeric systems,” by G. V.
Vinogradov, Rheologica Acta, 12, 357–373 (1973), Figure 13. Copyright © 1973, Springer-Verlag.

scale. (Increasing λ1 shifts the crossover of G′ and G′′ for the predicted curves to the left,
toward lower frequencies.)

The number and spacing of the relaxation times used in this fit are arbitrary, depending
only on the quality of the fit desired. Our strategy is to use the fewest number of relaxation
elements necessary for a reasonable fit. It is clear from the shapes of G′(ω) and G′′(ω)
for the single Maxwell element that more than one relaxation time is needed. To add a
second element we arbitrarily choose λ2 = λ1/5 and guess values of g2 until the combined
G′ and G′′ curves of the two relaxation modes fits the next higher frequency portion of
the experimental curves. If the G′ guessed curve seems to grow too quickly when a new
relaxation mode is added, we may need to go back and decrease the modulus parameter
of an earlier relaxation time. Relaxation times are added and moduli guessed and adjusted
until the entire curve is fit.

This method is rough, but a reasonable fit can be obtained, and if desired we can obtain
a more refined fit using a nonlinear fitting program.4 The rough fit calculated using the
method described can be used as an initial guess in a nonlinear fitting program to speed
up the convergence. A good objective function to minimize when using a nonlinear fitting
program to fit G′ and G′′ data is

4 Microsoft Solver in Excel works well for this purpose. A more detailed discussion of fitting relaxation
spectra is given in Macosko [162].
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O =
N∑
i=1

{
[G′(ωi)−G′

model(ωi)]
2

[G′(ωi)]2
+ [G′′(ωi)−G′′

model(ωi)]
2

[G′′(ωi)]2

}
(8.140)

where O is the objective function. Equation (8.140) is preferred to a simple sum of squared
differences between the model and the data, which would be dominated by the errors at
large values of G′ and G′′. Other possible objective functions are discussed and compared
in Secor [162, Appendix 3A]. The final fit is given in Figure 8.8.

Figure 8.8 Linear viscoelastic moduli G′ and G′′ for a polystyrene melt at 190°C; from Vino-
gradov [252]. The polymer has Mw = 59 kg/mol, and its molecular weight is narrowly distributed.
The model curves shown are for a 5-relaxation-time Maxwell fluid (N = 5 in Equation 8.136) with
parameters given in the figure. Source: From “Critical regimes of deformation of liquid polymeric
systems,” by G. V. Vinogradov, Rheologica Acta, 12, 357–373 (1973), Figure 13. Copyright © 1973,
Springer-Verlag.

With an appropriate number N of relaxation times, nearly any set ofG′ andG′′ curves
can be fit to Equations (8.136) (see Figure 8.9). Keep in mind, however, that if the data to be
fit do not show terminal behavior, the value of the longest relaxation time λ1 obtained from
the fit will only reflect what was the lowest frequency available in the experimental data,
ωmin. We can obtain a fairly good fit to the generalized Maxwell model for the polyethylene
data shown in Figure 8.9. If we plot the fit curves outside the experimental frequency range,
however, we can see that our fit assumes 1/ωmin ≈ λ1 and that the value ofG′ at the largest
experimental frequency ωmax is the plateau modulus (Figure 8.10). The prediction for the
longest relaxation time is fine for these data because they are nearly terminal, but it is unclear
whether GoN is equal to the highest measured value of G′, as is assumed in the fitting.

Thus far we have used the Maxwell and the GLVE models to predict material functions.
We can also solve flow problems with these constitutive equations, as we demonstrate in
the next section.
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Figure 8.9 Dynamic shear moduli for polyethylene and best fit to Equation (8.136); from from
Laun [142]. Note that the data are borderline terminal (they are just beginning to approach slopes of 2
and 1 at low frequencies). Source: From “Description of the non-linear shear behavior of a low density
polyethylene melt by means of an experimentally determined strain dependent memory function,” by
H. M. Laun, Rheologica Acta, 17, 1–5 (1978), Figure 1. Copyright © 1978, Springer-Verlag.

8.4 Flow Problems: GLVE Fluid

8.4.1 POISEUILLE FLOW OF A GLVE FLUID

Calculate the velocity profile and the stress tensor for pressure-driven flow of an
incompressible generalized linear viscoelastic liquid flowing in a tube of circular
cross section. The pressure at an upstream point is P0, and at a point a distance L
downstream the pressure is PL. Assume that the flow between these two points is
fully developed and at steady state.

We have seen this classic problem twice before (see Figure 7.6), and the solution follows
the same pattern as in both the Newtonian case and the generalized Newtonian case. The
problem is worked in cylindrical coordinates.

We assume that the velocity is in the z-direction only, and this allows us to simplify
the continuity equation:

v =
⎛⎝ vrvθ
vz

⎞⎠
rθz

=
⎛⎝ 0

0

vz

⎞⎠
rθz

(8.141)

0 = ∇ · v = ∂vr

∂r
+ 1

r

∂vθ

∂θ
+ ∂vz

∂z
(8.142)
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Figure 8.10 Plot of a generalized Maxwell model fit toG′(ω) andG′′(ω) data of polyethylene [142].
The fit curve will take on Maxwell-like shapes outside the experimental range. Accurate values of
the longest relaxation time and of the plateau modulus cannot be obtained unless the data are clearly
terminal (have slopes of 2 and 1 for G′ and G′′ at low frequencies) and unless they reach a plateau
at high frequencies. Source: From “ Description of the non-linear shear behavior of a low density
polyethylene melt by means of an experimentally determined strain dependent memory function,” by
H. M. Laun, Rheologica Acta, 17, 1–5 (1978), Figure 1. Copyright © 1978, Springer-Verlag.

0 = ∂vz

∂z
(8.143)

The equation of motion for a steady (∂v/∂t = 0) unidirectional (v · ∇v = 0) flow
simplifies to

0 = −∇p − ∇ · τ + ρg (8.144)

⎛⎝ 0

0

0

⎞⎠
rθz

= −
⎛⎜⎝

∂p

∂r

1
r

∂p

∂θ

∂p

∂z

⎞⎟⎠
rθz

−
⎛⎜⎝

1
r
∂
∂r
(rτrr )+ 1

r

∂τθr
∂θ

+ ∂τzr
∂z

− τθθ
r

1
r2
∂
∂r
(r2τrθ )+ 1

r

∂τθθ
∂θ

+ ∂τzθ
∂z

1
r
∂
∂r
(rτrz)+ 1

r

∂τθz
∂θ

+ ∂τzz
∂z

⎞⎟⎠
rθz

+
⎛⎝ 0

0

ρg

⎞⎠
rθz

(8.145)

Note that gravity is taken to be in the flow direction. To simplify the equation of motion
further, we must calculate τ from the constitutive equation, which is the GLVE constitutive
equation,

τ(t) = −
∫ t

−∞
G(t − t ′) γ̇ (t ′) dt ′ (8.146)

= −
∫ t

−∞
G(t − t ′)

⎛⎝ 0 0 ∂vz
∂r

0 0 0
∂vz
∂r

0 0

⎞⎠
rθz

dt ′ (8.147)
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We see that many of the stress coefficients are zero, and Equation (8.145) then simplifies to⎛⎝ 0

0

0

⎞⎠
rθz

= −
⎛⎜⎝

∂p

∂r

1
r

∂p

∂θ

∂p

∂z

⎞⎟⎠
rθz

−
⎛⎝ ∂τzr

∂z

0
1
r
∂
∂r
(rτrz)

⎞⎠
rθz

+
⎛⎝ 0

0

ρg

⎞⎠
rθz

(8.148)

The continuity equation told us that vz is not a function of z, and we will assume that vz
is not a function of θ due to symmetry; therefore vz is only a function of r , and ∂τzr/∂z = 0.
As usual with Poiseuille flow, the r- and θ -components of the equation of motion tell us
that pressure is neither a function of r nor of θ , and we will solve the z-component of the
equation of motion for the velocity profile.

The z-component of the simplified equation of motion can be written as

0 = −dP
dz

− 1

r

∂

∂r
(rτrz) (8.149)

where we have written P = p − ρgz. The boundary conditions on pressure, velocity, and
stress are the usual ones for Poiseuille flow:

z = 0 P = P0 = P0

z = L P = PL − ρgL = PL
r = 0 τrz = 0

r = R vz = 0

(8.150)

Previously when addressing the Poiseuille flow of a generalized Newtonian fluid, we solved
Equation (8.149) with the same boundary conditions. The solutions for P and τrz are

P =
(

PL − P0

L

)
z+ P0 (8.151)

τrz(r) = −
(

PL − P0

2L

)
r (8.152)

To solve for the velocity field, we can equate this expression for τrz with the same
quantity obtained from Equation (8.147):(

PL − P0

2L

)
r =

∫ t

−∞
G(t − t ′)

(
∂vz

∂r

)
dt ′ (8.153)

Since we are at steady state, ∂vz/∂r is independent of time, and this derivative can be
removed from the integral,(

PL − P0

2L

)
r =

(
∂vz

∂r

)[∫ t

−∞
G(t − t ′) dt ′

]
(8.154)

As we showed in a previous example problem, the expression in square brackets is just the
viscosity η0; therefore we can solve for vz(r) in a straightforward manner. We have used
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the symbol η0 for the viscosity because the GLVE equation is limited to low shear rates.
After solving for vz(r) and applying the boundary conditions, the result is

Velocity profile of
a GLVE fluid in

Poiseuille flow in a tube
vz(r) = (P0 − PL)R2

4Lη0

[
1 −

( r
R

)2
]

(8.155)

This is the same relationship as that in the Newtonian case with the Newtonian viscosity
μ replaced by the zero-shear viscosity η0 of the GLVE fluid. The final result for the stress
tensor is

τ(t) =
⎛⎝ 0 0 P0−PL

2L

0 0 0
P0−PL

2L 0 0

⎞⎠ (8.156)

In the next sections we demonstrate another flow problem, which is more complicated. It
is also quite realistic as it results in the relationships that govern real commercial instruments
for measuring SAOS properties.

8.4.2 TORSIONAL OSCILLATORY VISCOMETER, PART I: CALCULATION OF

THE VELOCITY PROFILE

For a generalized linear-viscoelastic fluid occupying the annular gap between two
concentric cylinders (Couette geometry), calculate the velocity profile for the flow
produced by tangentially driving the outer cylinder at an oscillatory shear rate. The
inner cylinder is attached to a torque bar and can therefore also oscillate at a small
amplitude as a result of the shear stress imposed by the fluid.

One of the most common experiments in rheology is the measurement of the small-
amplitude oscillatory shear (SAOS) properties η′(ω) and η′′(ω) or G′(ω) and G′′(ω) [216,
32]. As we will see more extensively in Chapter 10, to make rheological measurements we
must relate actual measurable quantities such as torque, pressure, flow rate, and rotational
speed to the quantities that appear in material functions such as stress, shear rate, and strain.
In this example and the follow-up example discussed next we see how this works for the
tangential-annular-flow geometry. The first step is to calculate the velocity profile.

Our solution to this problem parallels that given by Bird et al. [26], and we have
generally used the same notation as that text. Eventually we will assume that the gap
between the inner and outer cylinders is narrow, and we will neglect curvature effects. We
begin the problem, however, without making this assumption. We will use complex notation
for the oscillating quantities (see Section 5.2.2.6).

The flow geometry and some of the geometric variables are defined in Figure 8.11.
In the type of rheometer pictured, the outer cylinder, called the cup, is rotated in an
oscillatory manner by a motor. The inner cylinder, called the bob, is attached to a fairly
stiff torque bar. The torque exerted by the fluid on the bob rotates the bob through a small
angle that is measured as a function of time. The torque bar acts like a linear spring,
and thus the torque is proportional to the tiny angular displacement of the torque bar. To
calculate the motion of the torque bar, we must first calculate the velocity profile of the fluid
in the gap.
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Figure 8.11 Geometry used in example: small-amplitude oscillatory tangential annular flow of a
generalized linear viscoelastic fluid.

The flow is driven by the motion of the outer wall, which is moved following a cosine
function of amplitude�0

aR . The motion of the outer wall is described by the time-dependent
angle �aR(t), from which the velocity of the outer wall, vθ |r=aR , can be calculated:

�aR(t) = �0
aR cos ωt = �

(
�0
aRe

iωt
)

(8.157)

vθ |r=aR = aR d�aR
dt

= �
(
aRiω �0

aRe
iωt
)

(8.158)

Since the function for �aR(t) is a cosine function, the amplitude �0
aR is a real number.

The stress transmits through the fluid, and the stress field in the gap is assumed to
oscillate at the driving frequency ω,

τrθ (t) = �
(
τ̃0e

iωt
)

(8.159)

where τ̃0 is complex since τrθ (t) will not, in general, be in phase with the driving wall
motion. The shear stress causes the inner wall (the bob) to move; we define an angle�R(t)
to describe this motion. We assume that�R(t)will also oscillate at the driving frequencyω,

�R(t) = �
(
�0
Re
iωt
)

(8.160)

vθ |r=R = Rd�R
dt

= Riω �0
Re
iωt (8.161)

The phases of�R and�aR will usually be different. For this reason, although�0
aR is a real

number, �0
R is in general a complex number.

We now set out to solve for the velocity field in the gap. We proceed in the same manner
as with the flow problems addressed in Chapters 3 and 7. We begin by assuming that vr and
vz are zero,

v =
⎛⎝ vrvθ
vz

⎞⎠
rθz

=
⎛⎝ 0

vθ

0

⎞⎠
rθz

(8.162)
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The continuity equation therefore gives ∂vθ/∂θ = 0, and using the tables for cylindrical
coordinates we can construct γ̇ :

γ̇ =
⎛⎜⎝ 0 ∂vθ

∂r
− vθ

r
0

∂vθ
∂r

− vθ
r

0 0

0 0 0

⎞⎟⎠
rθz

(8.163)

We have assumed that the cylinders are long, and therefore ∂vθ/∂z = 0, and the velocity
is only a function of r and t . As we did with the velocity at the boundary, we assume that
the velocity in the gap is a time-dependent oscillating function of frequency ω,

vθ (r) = �
(
ṽ0e

iωt
)

(8.164)

where ṽ0 is a complex number.
We use the GLVE constitutive equation to construct τ :

τ = −
∫ t

−∞
G(t − t ′)

⎛⎜⎝ 0 ∂vθ (t
′)

∂r
− vθ (t

′)
r

0
∂vθ (t

′)
∂r

− vθ (t
′)
r

0 0

0 0 0

⎞⎟⎠
rθz

dt ′ (8.165)

From the preceding we can see that the only nonzero terms in τ are τrθ and τθr . This allows
us to simplify the equation of motion (neglecting gravity) to (all terms written in the r, θ, z
coordinate system):⎛⎝ 0

ρ ∂vθ
∂t

0

⎞⎠ +
⎛⎜⎝ ρ

v2
θ

r

0

0

⎞⎟⎠ =
⎛⎜⎝ − ∂p

∂r

− 1
r

∂p

∂θ

− ∂p

∂z

⎞⎟⎠ −
⎛⎝ 0

1
r2
∂
∂r

(
r2τrθ

)
0

⎞⎠ (8.166)

The z-component of the equation of motion tells us that ∂p/∂z = 0 (we have neglected
gravity). The r-component of the equation of motion (EOM) tells us that there is a pressure
gradient in the r-direction due to centrifugal force,

z-component of EOM:
∂p

∂z
= 0 (8.167)

r-component of EOM: ρ
v2
θ

r
= −∂p

∂r
(8.168)

We can solve for the radial pressure gradient at the end of the problem if we wish, when we
have an expression for vθ . The θ -component of the equation of motion gives an equation
for the shear stress:

θ -component of EOM: ρ
∂vθ

∂t
= −1

r

∂p

∂θ
− 1

r2

∂

∂r

(
r2τrθ

)
(8.169)

Due to symmetry in the θ -direction, we can assume that ∂p/∂θ = 0. Thus the equation to
solve becomes

− ρ ∂vθ
∂t

= 1

r2

∂

∂r

(
τrθ r

2
)

(8.170)
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Unlike the expressions we have encountered previously, this is not, in general, a separable
differential equation since both vθ and τrθ are functions of t and r . We have assumed,
however, that vθ and τrθ are particular time-oscillatory functions with frequency ω, and
therefore we can separate the time and radial variations. Substituting the complex expres-
sions in Equations (8.159) and (8.164) into Equation (8.170), we obtain

−iωρ ṽ0e
iωt = eiωt

r2

∂

∂r

(
τ̃0r

2
)

(8.171)

−iωρ ṽ0r
2 = d

dr

(
τ̃0r

2
)

(8.172)

We have thus eliminated the time dependence and can concentrate on the r-dependence. We
can write the r-dependence of τ̃0 in terms of ṽ0 and r by considering the relationship between
τ̃0 and the complex material function η∗. From the definition of η∗ found in Section 5.2.2.6,5

we know that τ̃0 = −η∗γ̇0, where γ̇0 is the amplitude of γ̇21(t). If we write that γ̇21(t)must
be an oscillatory function of ω,

γ̇21(t) = γ̇0e
iωt (8.173)

where γ̇0 is complex, we can calculate γ̇0 from Equations (8.163) and (8.164),

dṽ0

dr
− ṽ0

r
= γ̇0 (8.174)

and Equation (8.172) becomes

iωρ ṽ0r
2 = η∗ d

dr

[
r2

(
dṽ0

dr
− ṽ0

r

)]
(8.175)

iωρ

η∗ ṽ0r
2 = d

dr

[
r3 d

dr

(
ṽ0

r

)]
(8.176)

The simplification on the right side of Equation (8.176) can be verified by the reader.
Substituting ṽ0 = r�(r), where �(r) is a function related to the r-dependence of the

angular velocity, Equation (8.176) can be rearranged to become

�′′ + 3

r
�′ + ã2� = 0 (8.177)

where the prime indicates differentiation by r . The solution to this equation is [164]

� = 1

r

[
C1J1(ãr)+ C2Y1(ãr)

]
(8.178)

ã ≡
√

−iωρ
η∗ (8.179)

5 The derivation of the equation for η∗ in Section 5.2.2.6 assumed simple parallel shear flow. It can
be shown [26] that the material functions defined in simple shear flow also apply to nonsimple shear
flows such as tangential annular flow. For more details on nonsimple shear flows see [26, 155, 156].
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Here J1 and Y1 are first-order Bessel functions of the first and second kinds, respec-
tively [232], and C1 and C2 are integration constants. The complete solution incorporating
the appropriate boundary conditions for torsional oscillatory flow of a GLVE fluid has been
worked out by Markovitz [164].

We can solve a simplified version of Equation (8.176) by making the assumption that
the gap between the cylinders is narrow. This allows us to neglect the effects of curvature.6

The equations become those written in the Cartesian (123) shear coordinate system; we
will continue to use r, θ and z to maintain contact with our original coordinate system. For
a narrow-gap limit,

γ̇ =
⎛⎜⎝ 0 ∂vθ

∂r
0

∂vθ
∂r

0 0

0 0 0

⎞⎟⎠
rθz

(8.180)

and ⎛⎝ 0

ρ ∂vθ
∂t

0

⎞⎠
rθz

+
⎛⎝ 0

0

0

⎞⎠
rθz

=
⎛⎝− ∂p

∂r

0

− ∂p

∂z

⎞⎠
rθz

−
⎛⎝ 0
∂τrθ
∂r

0

⎞⎠
rθz

(8.181)

In this limit, Equation (8.176) becomes(
iωρ

η∗

)
ṽ0 = d2ṽ0

dr2
(8.182)

This is a straightforward second-order ordinary differential equation with constant co-
efficients.

When solving an equation such as Equation (8.182), it is convenient to redefine the
variables to simplify the boundary conditions. We will change Equation (8.182) from being
a function of r to being a function of a dimensionless variable X , where

X = r − R
aR − R (8.183)

The equation for ṽ0 becomes

d2ṽ0

dX 2
=

(
iω

M1

)
ṽ0 (8.184)

where

M1 = η∗

ρR2(a − 1)2
(8.185)

subject to the no-slip boundary conditions at each wall, that is, at r = aR and r = R. In
terms of our new coordinates the no-slip boundary conditions become

6 Note that when we neglect curvature effects, the flow becomes simple shear flow again, that is,
γ̇ (t) = γ̇21(t)(ê1ê2 + ê2ê1).
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X = 0 vθ = Rd�R
dt

�⇒ ṽ0(0) = iωR�0
R (8.186)

X = 1 vθ = aRd�aR
dt

�⇒ ṽ0(1) = iωaR�0
aR (8.187)

The solution for ṽ0 is [232]

ṽ0 = C1e
i+1√

2

√
ω
M1

X + C2e
−(i+1)√

2

√
ω
M1

X
(8.188)

Applying two boundary conditions allows us to calculate the two integration constants C1

and C2 and to obtain the solution. This final exercise is left up to the reader.

8.4.3 TORSIONAL OSCILLATORY VISCOMETER, PART II: MEASUREMENT OF

SAOS MATERIAL FUNCTIONS

Using the velocity profile calculated in the previous example, show how the small-
amplitude oscillatory shear material functions η′(ω) and η′′(ω) can be calculated
from measurements of the angle ratio �0

R/�
0
aR = Aeiδ , where A is the amplitude

of the ratio, and δ is the phase difference between the motions of the inner and outer
cylinders.

To relate the calculated velocity profile toη′ andη′′ we must find the connection between
the shear stress imposed on the inner wall by the fluid and the restoring torque generated
by the resisting torque bar. To do this, we must perform an angular momentum balance on
the bob.

The shear stress in the fluid exerts a total torque on the bob that may be written as7(
torque on

inner surface

)
= (2πRL) (−τrθ )|R R (8.189)

The other force acting on the bob is the restoring force of the torque bar:(
restoring force
of torque bar

)
= −K�R (8.190)

where K is the force constant of the torque bar. The resulting motion of the bob,�R(t), is
determined by the balance of angular momentum,

I
d2�R

dt2
= −K�R + 2πR2L (−τrθ )|R (8.191)

where I is the moment of inertia of the bob.
The shear stress at the inner wall, (−τrθ )|r=R , depends on material properties through

the complex viscosity. For the cylindrical geometry, the complex viscosity is written as

7 Note that our sign convention for stress requires that stress be positive when it is transporting
momentum from high-velocity regions to low-velocity regions. Because the moving cup is causing a
flux of momentum in the negative r-direction, the stress τrθ is negative. To obtain a positive torque,
a negative sign is included.
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η∗ ≡ −τrθ (t)
γ̇rθ (t)

(8.192)

We can therefore calculate the stress at the inner wall in terms of η∗,

(−τrθ )|r=R = η∗γ̇rθ (t)
∣∣
r=R (8.193)

In the narrow-gap case we obtain the shear rate at the wall γ̇rθ from Equation (8.180)
combined with the solution for the velocity profile from the previous exercise,

− τrθ |r=R = η∗eiωt
dṽ0

dr

∣∣∣∣
r=R

(8.194)

We can now substitute the expressions for �R and (−τrθ )R into the balance of angular
momentum and simplfy:

I
d2

dt2

(
�0
Re
iωt
) = −K�0

Re
iωt + 2πR2Lη∗eiωt

dṽ0

dr

∣∣∣∣
r=R

(8.195)

�0
R = 2πR2Lη∗

K − Iω2

dṽ0

dr

∣∣∣∣
r=R

(8.196)

The derivative dṽ0/dr|r=R can be obtained from Equation (8.188).
Our goal is to solve for η∗ in terms of the amplitude ratio A and phase lag δ of the

ratio of inner and outer wall motions:

�0
R

�0
aR

= Aeiδ (8.197)

To obtain the final result involves considerable algebra, but it is straightforward. First the
boundary conditions [Equations (8.186) and (8.187)] are substituted into the solution for ṽ0

[Equation (8.188)], and a result for ṽ0 is obtained. This is used to calculate the derivative
dṽ0/dr|r=R in Equation (8.196), and that equation is solved for�0

aR/�
0
R . As shown in Bird

et al. [26], the result for this ratio is

�0
aR

�0
R

=1+ i

M

(
ω̃2 − 1

Ãω̃
+ ω̃

2

)
− 1

M2

(
ω̃2 − 1

6Ã
+ ω̃2

24

)
+ terms of order

(
1

M3

)
(8.198)

where

ω̃ = ω
√
I

K
(8.199)

M = M1

√
I

K
= η∗

ρR2(a − 1)2

√
I

K
(8.200)

Ã = 2πR4Lρ(a − 1)

I
(8.201)

Keeping only the first two terms and solving for M, we obtain
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M = iW
A−1(cos δ − i sin δ)− 1

(8.202)

where

W = ω̃2 − 1

Aω̃
+ ω̃

2
(8.203)

Separating this expression into the form a + bi and incorporating the definition for M
allows us to solve for η∗ and its real and imaginary parts, η′ and η′′:

η′(ω) = G′′

ω
= −ρBW (ω)A sin δ

1 + A2 − 2A cos δ

η′′(ω)= G′

ω
= ρBW (ω)A(A − cos δ)

1 + A2 − 2A cos δ

(8.204)

in which B is given by

B = (a − 1)2R2

√
K
I

(8.205)

Thus measurements of η′ and η′′ can be made from the knowledge of instrument constants
(K , I ), geometry (a,R), material properties (ρ), and the actual dynamic measurements of
amplitude (A) and phase lag (δ) for a particular material. Equations (8.204) are the actual
relations used in commercial rheometers of this type [32].

8.5 Limitations of the GLVE Model

The GLVE model succeeds in capturing the small-strain-rate behavior of most materials.
The generalized Maxwell model, given that it has an essentially unlimited number of
parameters ηk , λk , can be used to curve-fit experimental linear viscoelastic data for ease
of calculation. There are important limitations to the GLVE model, however, which are
enumerated as follows:

1. The GLVE model predicts a constant viscosity (no shear-thinning), which is inconsistent
with experimental observations. This limits the usefulness of the GLVE model to small
shear rates where η = η0.

2. The definition of strain used in the derivation of the generalized Maxwell model assumes
strain is additive. This limits the GLVE models to small strain rates.

3. Like the generalized Newtonian fluid models discussed in Chapter 7, the GLVE models
are proportional to γ̇ and cannot predict normal stresses in shear flow.

4. The GLVE model cannot describe flows with a superimposed rigid rotation, that is, it is
not objective.

The last item is extremely important since objectivity, that is, the requirement that
predictions be independent of the choice of observer (see Section 7.1), is a requirement of
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all constitutive equations. It is particularly surprising to learn that the GLVE constitutive
equation violates this important tenet since throughout the development of the model we
seem to have followed all the rules of vector/tensor mathematics. Where, then, did we go
wrong in the development of this model?

We misstepped when we generalized the scalar Maxwell equation to the tensorial
Maxwell model:

scalar Maxwell equation: τ21 + μ

G

∂τ21

∂t
= −μγ̇21 (8.206)

tensor Maxwell equation: τ + η0

G

∂τ

∂t
= −η0γ̇ (8.207)

At the time that this step was introduced, we said that since the model we were developing
was strictly empirical, we could do as we liked in proposing the tensor version of the
Maxwell model. This is true, as long as we follow all rules of frame invariance. As it
happens, the partial time derivative used in the tensorial Maxwell model does not transform
invariantly when the frame of reference is changed from a stationary to a rotating frame, as
we will now show. Thus, by writing the simple partial derivative of τ in the tensor version
of the Maxwell model, we proposed a frame-variant equation.

The violation of frame invariance in the Maxwell model and in the GLVE model can
be demonstrated by finding a coordinate system in which the stress tensor predicted by
the GLVE constitutive equation is incorrect. The breakdown occurs when the stress in a
rotating frame of reference is written in a stationary reference frame. To show the failure of
the GLVE model, we will perform a change-of-basis calculation for a shear flow occurring
in a rotating frame of reference; this example was developed by Bird et al. [26].

Consider a shear flow produced by, for example, a bath of fluid and two counterrotating
belts. The entire apparatus is on a rotating turntable (Figure 8.12). A Cartesian coordinate
system (x̄, ȳ, z̄ with basis vectors êx̄ , êȳ , êz̄) rotating around the z- or z̄-axis with the speed
of the turntable is defined as shown. The stationary coordinate system will be x, y, and
z with basis vectors êx , êy , and êz. The z̄- and z-directions are the same (êz = êz̄) and
point upward. With respect to the x, y, z system the x̄, ȳ, z̄ system is located at position
x0, y0, 0.

The flow that occurs on the turntable is a steady shear flow in the x̄, ȳ, z̄ coordinate
system with a constant (positive) shear rate equal to γ̇0. Thus

v =
⎛⎝ γ̇0ȳ

0
0

⎞⎠
x̄ȳz̄

= γ̇0ȳ êx̄ (8.208)

γ̇ =
⎛⎝ 0 γ̇0 0

γ̇0 0 0

0 0 0

⎞⎠
x̄ȳz̄

(8.209)

The GLVE equation gives (in the x̄, ȳ, z̄ coordinate system)

τ = −
∫ t

−∞
G(t − t ′) γ̇ (t ′) dt ′ (8.210)
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x̄

ȳ

�
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Figure 8.12 Rotating shear flow considered in text. Steady shear flow is occurring in a frame of
reference that is rotating due to the motion of the turntable.

τȳx̄ = −
∫ t

−∞
G(t − t ′) γ̇0 dt

′ (8.211)

= −
∫ ∞

0
G(s)γ̇0 ds (8.212)

where s = t − t ′. We then get the expected result for the viscosity [see Equation (8.124)]:

η = −τȳx̄
γ̇0

(8.213)

=
∫ ∞

0
G(s) ds (8.214)

Now we will carry out the same calculation in the stationary x, y, z coordinate system.
Our first step is to eliminate the differences in the origins of the two coordinate systems by
considering the coordinate system (x− x0, y− y0, z). This coordinate system has the same
origin as the x̄, ȳ, z̄ system, and thus the only remaining difference between (x−x0, y−y0, z)

and x̄, ȳ, z̄ is the rotation of the x̄, ȳ, z̄ system.
When written in the x̄, ȳ, z̄ system, the velocity of the flowing fluid is

v
with respect
to rotating

frame

= γ̇0ȳ êx̄ (8.215)

When the fluid velocity is written with respect to the stationary (x − x0, y − y0, z) system,
however, the velocity of the frame of reference vframe will also appear:
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v
with respect
to stationary

frame

= γ̇0ȳ êx̄ + vframe (8.216)

To complete the change of frame we need to write expressions for ȳ, êx̄ , and vframe in the
stationary coordinate system (x − x0, y − y0, z). We do this with the aide of Figure 8.13.
The speed of the frame of reference (magnitude of the velocity |vframe|) is just the angular
velocity � of the turntable times the radial position of a given point,

|vframe| = r� (8.217)

From the geometry in Figure 8.13 we see that the frame velocity at point P is

vframe = −�(y − y0)êx +�(x − x0)êy (8.218)

To relate (x − x0) and (y − y0) with x̄ and ȳ we again refer to Figure 8.13:

x̄ = (y − y0) sin �t + (x − x0) cos �t (8.219)

ȳ = (y − y0) cos �t − (x − x0) sin �t (8.220)

z̄ = z (8.221)

Similarly we can see that the unit vectors are related by

êx̄ = cos �t êx + sin �t êy (8.222)

êȳ = − sin �t êx + cos �t êy (8.223)

Putting it all together we obtain

Figure 8.13 Relationship between velocities with respect to the rotating and stationary reference
frames.
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v
with respect
to stationary

frame

= γ̇0ȳêx̄ + vframe (8.224)

= γ̇0[(y − y0) cos �t − (x − x0) sin �t](cos �t êx + sin �t êy) (8.225)

−�(y − y0)êx +�(x − x0)êy (8.226)

=
⎛⎝ γ̇0 cos �t[(y − y0) cos �t − (x − x0) sin �t] −�(y − y0)

γ̇0 sin �t[(y − y0) cos �t − (x − x0) sin �t] +�(x − x0)

0

⎞⎠
xyz

(8.227)

Now we are ready to carry out the calculation for τ using the GLVE equation, but
expressed in the stationary frame of reference. We have v; now we calculate γ̇ :

γ̇ = ∇v + (∇v)T (8.228)

∇v =
⎛⎜⎝
∂vx
∂x

∂vy
∂x

∂vz
∂x

∂vx
∂y

∂vy
∂y

∂vz
∂y

∂vx
∂z

∂vy
∂z

∂vz
∂z

⎞⎟⎠
xyz

(8.229)

=
⎛⎜⎝
∂vx
∂x

∂vy
∂x

0
∂vx
∂y

∂vy
∂y

0

0 0 0

⎞⎟⎠
xyz

(8.230)

=
⎛⎝−γ̇0 cos �t sin �t −γ̇0 sin 2�t +� 0

γ̇0 cos 2�t −� γ̇0 sin �t cos �t 0

0 0 0

⎞⎠
xyz

(8.231)

Therefore γ̇ (t) is given by

γ̇ =
⎛⎝−γ̇0 sin 2�t γ̇0 cos 2�t 0

γ̇0 cos 2�t γ̇0 sin 2�t 0

0 0 0

⎞⎠
xyz

(8.232)

We now use Equation (8.232) for γ̇ in the GLVE equation:

τ(t) = −
∫ t

−∞
G(t − t ′)γ̇ (t ′) dt ′ (8.233)

= −
∫ t

−∞
G(t − t ′)

⎛⎝−γ̇0 sin 2�t ′ γ̇0 cos 2�t ′ 0

γ̇0 cos 2�t ′ γ̇0 sin 2�t ′ 0

0 0 0

⎞⎠
xyz

dt ′ (8.234)

Thus for τyx in the x, y, z coordinate system we arrive at

τyx(t) = −
∫ t

−∞
G(t − t ′) cos 2�t ′γ̇0 dt

′ (8.235)
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= −
∫ ∞

0
G(s) cos [2�(t − s)]γ̇0 ds (8.236)

where s = t − t ′. To calculate the viscosity we must consider a system such that the
rate-of-deformation tensor has the following form:

γ̇ =
⎛⎝ 0 γ̇0 0

γ̇0 0 0

0 0 0

⎞⎠
123

(8.237)

Looking at Equation (8.232) we see that this is true at t = 0. Using τyx from Equation (8.236)
evaluated at t = 0 we obtain the following result for the viscosity:

η = −τyx
γ̇o

(8.238)

=
∫ ∞

0
G(s) cos (2�s) ds (8.239)

This result says that the viscosity of the fluid, which in the rotating coordinate system
was a material constant as it should be, now depends on the rate of rotation � of the
original coordinate system. This is clearly incorrect. We therefore conclude that the GLVE
constitutive equation is not properly formulated for a change of basis between stationary
and rotating frames of reference.

Does this mean that the GLVE model is invalid as a constitutive equation? As we see
from Equation (8.232), if the frequency of rotation of the rotating frame of reference is
sufficiently low (� −→ 0), γ̇ becomes the usual steady shear-rate tensor, and the GLVE

equation holds and is invariant to the change of reference frame. This observation reinforces
the need to limit the application of the GLVE constitutive equation to slow flows.

This near mishap with frame invariance sets the stage for our discussion in Chapter 9
of nonlinear viscoelastic constitutive equations where we will be showing how to fix the
Maxwell model so that it is frame invariant and therefore valid in all reference frames.
The discussion in Chapter 9 also gives the reader many tools needed to study advanced
rheological topics. If your interests lie more directly in taking rheological data and learning
to determine material functions for various fluids experimentally, you may wish to skip the
next chapter.

8 . 6 P R O B L E M S

8.1 What constitutive equations have we studied thus
far? What are their pros and cons?

8.2 What physical significance is attached to each of the
two parameters of the Maxwell model?

8.3 Does the generalized linear viscoelastic model pre-
dict rod climbing? Briefly justify your answer.

8.4 All constitutive equations we have studied so far
predict a stress tensor τ proportional to the shear-
rate tensor γ̇ . For an incompressible fluid that fol-

lows such a constitutive equation, what is τrz(r) in
steady Poiseuille flow in a tube? Do not assume any
particular constitutive equation in arriving at your
result.

8.5 Is the following constitutive equation capable of
predicting memory effects? Why or why not?
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τ(t) = −η1 γ̇ (t)

where η1 is a function of γ ·

8.6 Calculate the material functions for cessation of
steady shearing, η−(t), �−

1 , and �−
2 , for the simple

memory fluid discussed in the text [Equation (8.4)].

8.7 A colleague suggests the following constitutive
equation for a material you are studying:

τ(t) = −ζ̃
[
γ̇ (t)+ 0.8γ̇ (t − t0)+ 0.6γ̇ (t − 2t0)

]
where ζ̃ and t0 are the parameters of the model.

(a) Calculate the steady shear material functions η,
�1, and �2 predicted by this model.

(b) Sketch the shear stress τ21(t) as a function of
time that would be predicted by this model in
the startup of steady shear experiment. What are
η+(t), �+

1 , and �+
2 predicted by this model?

(c) Sketch the shear stress as a function of time that
would be predicted by this model in the cessation
of steady shear experiment. What are η−(t),�−

1 ,
and �−

2 predicted by this model?

(d) What do the parameters ζ̃ and t0 represent
physically?

8.8 For slow deformations, the Hookean constitutive
equation can be written as

τ = −Gγ (tref , t)

where G is the modulus, a constant parameter of
the model. Calculate the shear step-strain relaxation
modulus G(t) for this model. Recall that for small
strains [Equation (8.39)],

γ (tref , t) =
∫ t

tref

γ̇ (t ′) dt ′

8.9 What are G′(ω) and G′′(ω) for a Hookean solid?
[Hint: See Equation (8.39).]

8.10 Calculate the viscosity η for the generalized linear
viscoelastic model, the Maxwell model, and the gen-
eralized Maxwell model.

8.11 What is the shear-stress response τ21(t) to the step-
strain experiment predicted for the generalized linear
viscoelastic model?

8.12 Calculate the step shear-strain material functions
G(t, γ0), G�1(t, γ0), and G�2 (t, γ0) for the gen-
eralized linear viscoelastic constitutive equation.

Express your result in terms of an integral over
s = t − t ′.

8.13 Calculate the shear creep compliance J (t) and the
recoverable creep compliance Jr (t ′) = R(t ′) for the
Maxwell model. Sketch your solutions.

8.14 What is the magnitude of the complex viscosity
|η∗(ω)| for a single-relaxation-time Maxwell fluid?
Plot this material function versus frequency over a
wide range of frequencies (log–log plot). What other
material function does |η∗(ω)| resemble?

8.15 Calculate the material functions for cessation of
steady shearing, η−(t), �−

1 , and �−
2 , for the gener-

alized linear viscoelastic model. Express your result
in terms of an integral over s = t − t ′. Calculate
these material functions for the Maxwell model and
the generalized Maxwell model.

8.16 Calculate the material functions for startup of steady
shearing,η+(t),�+

1 , and�+
2 , for the generalized lin-

ear viscoelastic model. Express your result in terms
of an integral over s = t−t ′. Calculate these material
functions for the generalized Maxwell model.

8.17 Show that G′(ω) and G′′(ω) are given by Equa-
tions (8.136) for the generalized Maxwell model.

8.18 The value of the relaxation modulusG(t) at zero time
is called the instantaneous modulus, G(0) ≡ G0 =
limt−→0G(t) [95]. Show for a generalized linear
viscoelastic fluid that the instantaneous modulus can
be calculated from G′′ as follows:

G0 = 2

π

∫ ∞

−∞
G′′(ω) d lnω

8.19 Show that the dynamic moduli E′, E′′ of small-
amplitude oscillatory elongation (SAOE) are related
to the dynamic moduli G′,G′′ of small-amplitude
oscillatory shear (SAOS) as follows: E′ = 3G′ and
E′′ = 3G′′.

8.20 Consider a shear deformation where the strain rate
history is given by

ς̇ (t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 t ≤ 0

γ̇0 0 < t ≤ t1
−γ̇0 t1 < t ≤ t2
0 t > t2

We want to define a new material function η� based
on this deformation:

η� ≡ − τyx(t)
γ̇0

t > t2
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where τyx(t) is the stress generated by the deforma-
tion history given above.

(a) Sketch ς̇ (t).

(b) Calculate and sketch the strain γ (0, t).

(c) What is η� for the generalized Maxwell fluid?

8.21 For a particular fluid, the relaxation modulus was
measured and was found to fit the following equa-
tion:

G (Pa) = 240e−
t

25

where t is in seconds. For slow flows, calculate η−(t)
for this fluid.

8.22 For the generalized Maxwell model parameters
shown in Table 8.2:

TABLE 8.2
Parameters for
Problem 8.22

λk ηk

(s) (Pa · s)

0.01 2 × 104

0.1 6 × 104

1 2 × 105

10 2 × 104

100 2 × 104

(a) Plot logG′(ω) and logG′′(ω) versus logω over
the range 0.01 ≤ ω ≤ 100 rad/s.

(b) Plot G(t) versus t and logG versus log t .

(c) Calculate η0.

8.23 For the relaxation spectrum given in Table 8.3:

TABLE 8.3
Parameters for Problem 8.23

λk gk

k (s) (Pa)

1 5 × 101 5 × 105

2 1 × 101 6 × 105

3 5 × 100 8 × 105

4 1 × 100 3 × 106

5 5 × 10−1 3 × 106

6 2 × 10−1 6 × 106

7 1 × 10−1 8 × 106

(a) Plot G′(ω) and G′′(ω) on a log–log plot. Use
10−3 ≤ ω ≤ 102 rad/s.

(b) What is the value of ω at the crossover ofG′ and
G′′?

(c) We saw that for the single-relaxation-time Max-
well fluid the crossover of G′ and G′′ occurred
at ω = 1/λ1. Is the value of ω at the crossover
equal to 1/λ1 in this case? Discuss your answer.

8.24 The Jeffreys model is as follows:

τ + λ∂τ
∂t

= −η0

(
γ̇ +�

∂γ̇

∂t

)

where λ is the relaxation time, η0 is a viscosity
parameter, and � is called a retardation time.

(a) Show that the Jeffreys model may be written as
the sum of a Maxwell contribution to the stress
and a Newtonian stress:

τ = τ
Maxwell

+ τ
Newtonian

Note that τ
Maxwell

satisfies the Maxwell equation
and τ

Newtonian
satisfies the Newtonian equation.

(b) What is the relationship between parameters η0
and � of the Jeffreys model and the parameters
of the Maxwell and Newtonian equations?

8.25 For a certain material we measureG′(ω) andG′′(ω)
and we find

G′ (Pa) = 5000ω2

1 + 100ω2

G′′ (Pa) = 500ω

1 + 100ω2

where ω is in units of rad/s.

(a) Sketch logG′(ω) and logG′′(ω) versus logω at
low frequencies.

(b) What is G(t) for this material?

(c) What is η0?

(d) What is the shear stress as a function of time after
this material is subjected to a sudden step strain
of γ0 = 5 at time t = 0?

8.26 The linear viscoelastic data for a generation-4 poly
(amidoamine) (PAMAM) dendrimer are given in
Table 8.4 [248]. What is 1/ωx (ωx is the frequency
at which G′ and G′′ cross)? Determine the linear
viscoelastic spectrum; use the minimum number of
relaxation times needed to get a good fit. What is the
longest relaxation time?
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TABLE 8.4
Data for Problem 8.26*

aT ω G∗
(rad/s) (Pa) tan δ

8.29E+00 8.06E+05 1.54E−01
3.92E+00 7.46E+05 2.82E−01
2.33E+00 6.66E+05 4.06E−01
1.47E+00 6.10E+05 5.83E−01
8.44E−01 5.94E+05 8.79E−01
5.63E−01 3.94E+05 1.28E+00
3.52E−01 2.74E+05 1.96E+00
2.18E−01 1.91E+05 2.77E+00
1.33E−01 1.22E+05 4.30E+00
7.60E−02 7.67E+04 6.64E+00
4.98E−02 5.12E+04 9.74E+00
3.29E−02 3.44E+04 1.40E+01
2.17E−02 2.25E+04 2.16E+01
1.43E−02 1.49E+04 2.93E+01
9.40E−03 9.81E+03 4.72E+01

* A more complete data set may be
found in Table F.3 in Appendix F.

8.27 The linear viscoelastic data for a narrowly distributed
solution of polystyrene (Mw = 860 kg/mol, c =
0.015 g/cm3 in Aroclor 1248 [167]) are given in
Table 8.5. What is 1/ωx (ωx is the frequency at which
G′ andG′′ cross)? Determine the linear-viscoelastic
spectrum; use the minimum number of relaxation
times needed to get a good fit. What is the longest
relaxation time?

8.28 The linear viscoelastic data for a broadly distributed
high-density polyethylene are given in Table 8.6
[142].

(a) Determine the linear viscoelastic spectrum.

(b) How does the meaning of the longest relaxation
time differ for the fit to these data compared
to the fit performed in the example problem in
Section 8.3?

8.29 For the high-density polyethylene discussed in Prob-
lem 8.28 (G′,G′′ given) calculate the step shear
relaxation modulus G(t). Plot your results.

8.30 For the high-density polyethylene discussed in Prob-
lem 8.28 (G′,G′′ given) calculate the dynamic
compliance material functions J ′ and J ′′. Plot your
results.

8.31 For the material whose G′(ω) and G′(ω) are shown
in Figure 8.14, what is approximately the value of the

TABLE 8.5
Data for Problem 8.27*

ω G′ ω G′′
(rad/s) (Pa) (rad/s) (Pa)

6.35E+00 9.81E−01 1.02E+00 1.70E+00
1.55E+01 5.49E+00 2.54E+00 4.23E+00
3.99E+01 2.13E+01 6.22E+00 1.01E+01
9.62E+01 4.81E+01 1.56E+01 2.43E+01
2.38E+02 8.96E+01 3.91E+01 4.70E+01
5.99E+02 1.58E+02 1.54E+02 1.05E+02
1.48E+03 2.72E+02 5.93E+02 2.32E+02
3.73E+03 4.69E+02 1.90E+03 4.88E+02
7.70E+03 6.38E+02 6.08E+03 1.03E+03
1.91E+04 1.10E+03 1.53E+04 2.03E+03
4.81E+04 1.83E+03 3.76E+04 4.08E+03
1.22E+05 2.75E+03 1.20E+05 1.10E+04
3.02E+05 4.23E+03 3.05E+05 2.54E+04

7.63E+05 6.21E+04
1.94E+06 1.49E+05
3.01E+06 2.44E+05

* A more complete data set may be found in Table F.4
in Appendix F.

longest relaxation time? Please explain how you jus-
tify your answer. It may help to make some sketches
on the figure.

8.32 You need a relaxation time value λ to scale up a
mixer for a non-Newtonian fluid. Table 8.7 gives the
data for the linear viscoelastic step-strain modulus
G(t) for your material. Calculate λ.

8.33 For the generation-4 PAMAM dendrimer discussed
in Problem 8.26 (G∗ and tan δ given) calculate the
dynamic modulus material functionsG′ andG′′ and
also the step shear relaxation modulus G(t). Plot
your results.

8.34 Many molecular models have been developed to
describe the behaviors of polymer melts and solu-
tions. One model that has achieved some success
is the Rouse model [138]. The relaxation spectrum
predicted by the Rouse model is

Gi = G = constant for all relaxation modes

λi = λ1

i2
for i = 1, 2, 3, . . .

where λ1 is the longest relaxation time.

(a) PlotG′(ω) andG′′(ω) for a material that follows
the Rouse model using only:
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TABLE 8.6
Data for Problem 8.28*

aT ω G′ aT ω G′′
(rad/s) (Pa) (rad/s) (Pa)

2.46E−03 1.18E+01 1.56E−03 8.24E+01
4.59E−03 3.70E+01 4.30E−03 2.12E+02
7.46E−03 7.13E+01 1.06E−02 4.38E+02
1.23E−02 1.30E+02 2.27E−02 9.17E+02
2.20E−02 2.61E+02 5.07E−02 1.97E+03
3.83E−02 4.19E+02 9.58E−02 2.91E+03
7.76E−02 9.14E+02 2.17E−01 4.48E+03
1.33E−01 1.55E+03 5.40E−01 6.26E+03
2.78E−01 2.91E+03 1.11E+00 8.73E+03
6.74E−01 5.36E+03 2.55E+00 1.18E+04
1.44E+00 8.60E+03 5.92E+00 1.70E+04
3.40E+00 1.40E+04 1.48E+01 2.24E+04
8.14E+00 2.28E+04 2.60E+01 3.00E+04
1.72E+01 3.32E+04 6.57E+01 3.85E+04
3.94E+01 4.69E+04 1.66E+02 4.94E+04
8.68E+01 6.46E+04 4.95E+02 5.99E+04
2.55E+02 9.52E+04 7.40E+02 6.60E+04
7.62E+02 1.35E+05 1.67E+03 7.68E+04
2.03E+03 1.73E+05 2.71E+03 7.89E+04

* A more complete data set may be found in Table F.5
in Appendix F.

Figure 8.14 Figure for Problem 8.31 G′(ω) and G′′(ω) for a polymer.

(i) The first mode

(ii) The first two modes

(iii) The first 15 modes

(iv) 150 modes.
(b) At high frequencies, what is the slope ofG′ and
G′′ for the full Rouse model?

8.35 Calculate the final solution for the velocity vθ , from
Equation (8.188) for the torsional oscillatory annular
flow exercise in Section 8.4.2.

TABLE 8.7
Data for Problem 8.31*

t,s G(t), Pa

1.00E−03 2.70E+07
2.00E−03 2.69E+07
5.01E−03 2.65E+07
1.00E−02 2.59E+07
2.00E−02 2.48E+07
5.01E−02 2.20E+07
1.00E−01 1.84E+07
2.00E−01 1.41E+07
5.01E−01 8.75E+06
1.00E+00 5.68E+06
2.00E+00 3.29E+06
5.01E+00 1.53E+06
1.00E+01 7.95E+05
2.00E+01 3.03E+05
5.01E+01 4.49E+04
7.08E+01 1.50E+04
1.00E+02 3.40E+03
1.58E+02 1.81E+02
2.00E+02 2.32E+01



C H A P T E R

9
Introduction to More Advanced
Constitutive Modeling

We have shown that the two non-Newtonian constitutive equations we have encountered
thus far are useful within limited ranges. The generalized Newtonian fluid (GNF) model is
accurate in calculations of pressure-drop and flow-rate information and in situations where
shear-thinning of viscosity is the dominant behavior. The generalized linear viscoelastic
(GLVE) constitutive equation describes the small-deformation-rate limit and is widely used
by chemists and engineers to characterize material properties. Both equations have serious
limitations, however: neither predicts normal stresses in shear flow, nor do they capture
other nonlinear elastic effects involving fluid memory. Also, most seriously, at the end of
Chapter 8 we showed that the GLVE model is not properly formulated to be invariant to
a change of reference frame for a rotating frame of reference, and the GLVE equation is
therefore inappropriate for use at high deformation rates.

Our goal in rheological modeling of polymers is to formulate constitutive equations
that can be used to predict accurately the rheological behavior of polymers, particularly in
the large-strain, high-rate regime that is used in polymer processing. The models we have
studied were developed as extensions of the Newtonian constitutive model and thus were
formulated in terms of the shear-rate or rate-of-deformation tensor γ̇ . For larger strain flows,

however, it is the strain and the strain history that must be considered in order to develop
better constitutive equations, as we will see in this chapter. Properly formulating the strain
measure fixes the frame-invariance problem encountered in the GLVE model. The question
of strain measure is also closely linked to the types of time derivatives that are permitted in
constitutive equations, and in this chapter we will introduce the concept of using convected
coordinate systems in which to take time derivatives. More comprehensive descriptions of
advanced constitutive approaches may be found in the two volumes of Bird et al. [26, 27]
as well as in Larson [138].

If you are anxious to move on to practical subjects related to measurements of
rheological functions, please skip to Chapter 10 and return to this chapter later.

9.1 Finite Strain Measures

As mentioned before, experiments demonstrate that the deformation history has a profound
effect on stresses and strains generated in polymeric systems. The Maxwell model,

305
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τ + λ∂τ
∂t

= −η0γ̇ (9.1)

was introduced in Chapter 8 as an empirical attempt to add some dependence on deformation
history to the Newtonian constitutive equation. The strain does not appear explicitly in this
form of the Maxwell model, however.

We can reveal the strain tensor associated with the Maxwell model through a manipu-
lation of the integral version. We will use the GLVE equation in this derivation. The GLVE
model becomes the Maxwell or generalized Maxwell model with the appropriate choice of
the relaxation-modulus function G(t − t ′).

The GLVE model is,

τ(t) = −
∫ t

−∞
G(t − t ′)γ̇ (t ′) dt ′ (9.2)

We now integrate to rewrite this expression in terms of γ , the infinitesimal strain tensor,

which was defined in Section 5.2.2.3 as

u
(
tref , t

′) = r(t ′)− r(tref) (9.3)

γ
(
tref , t

′) = ∇u (tref , t
′) + [∇u (tref , t

′)]T (9.4)

=
∫ t ′

tref

γ̇ (t ′′) dt ′′ (9.5)

where tref is the reference time for strain, which we will now take as the current time t , t ′ is
the time of interest, and u(t, t ′) = r(t ′)− r(t) = r ′ − r is the vector that follows a particle’s
displacement between t and t ′. To carry out the integration, we use integration by parts as
follows:1

−τ(t) =
∫ t

−∞
G(t − t ′)γ̇ (t ′) dt ′ (9.9)

= G(t − t ′)γ (t, t ′)
∣∣∣t ′=t
t ′=−∞

−
∫ t

−∞
∂G(t − t ′)
∂t ′

γ (t, t ′) dt ′ (9.10)

1 The details of this calculation are as follows. Integration by parts,∫ b

a

u dv = u v|ba −
∫ b

a

v du (9.6)

u = G(t − t ′) dv = γ̇ (t ′) dt ′ (9.7)

du = ∂G(t − t ′)
∂t ′

dt ′ v =
∫ t ′

t

γ̇ (t ′′) dt ′′ = γ (t, t ′) (9.8)

The choice of tref = t as the lower limit of the strain integral is arbitrary. This choice results in the
simplification of the u v|ba term in this integration.
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If we require that G(∞) = 0 and γ (t,−∞) be finite, the first term goes to zero, and we

obtain a version of the GLVE fluid model that contains the first derivative of the relaxation
modulusM(t − t ′), called the memory function, and the infinitesimal strain tensor γ (t, t ′):

GLVE model
(strain version)

τ(t) = +
∫ t

−∞
M(t − t ′) γ (t, t ′) dt ′ (9.11)

where

M(t − t ′) ≡ ∂G(t − t ′)
∂t ′

(9.12)

In defining γ (t, t ′) we chose the current time t as our reference state. Strain is a measure of

relative deformation, and two states must always be specified, the reference state and the
state of interest. There is no unique reference state.

We see that the GLVE fluid model (and by extension the Maxwell models) uses the
infinitesimal strain tensor as its strain measure [26]. The use of the infinitesimal strain
tensor in the GLVE model is the cause of the frame variance observed for this model, as we
will now show. Consider γ (t, t ′) written for the rotation of a rigid body around the z-axis

(Figure 9.1). In Cartesian coordinates the position vector r of an arbitrary particle can be
written as

r =
(
x

y

z

)
xyz

= r̄ + zêz (9.13)

where r̄ is the vector projection of r into the xy-plane. After rotation of the body around
the z-axis, the z-coordinates of particles do not change, and therefore the vector r ′, which
gives the position of the particle after the rotation, can be written as

yy

P t( )�

P t( )

t�t

r̄¯

r̄¯�

r̄¯

r β¯ cos

r β¯ sin ββ

x x

ψ

ψ

Figure 9.1 Relationship between particle position vectors in a rigid body that is rotating. P(t) is a
point in the body at time t , and P(t ′) is the same point at a later time t ′.
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r ′ = r̄ ′ + zêz (9.14)

where r̄ ′ is the xy-projection of r ′, and z is unchanged. To write γ (t, t ′) for this rotation

we must calculate the displacement vector u = r ′ − r = r̄ ′ − r̄ , which we can write in
Cartesian coordinates using the geometric relations shown in Figure 9.1:

r̄ =
(
x

y

0

)
xyz

(9.15)

r̄ ′ =
⎛⎝ r̄ cos (ψ + β)
r̄ sin (ψ + β)

0

⎞⎠
xyz

=
⎛⎝ x cos ψ − y sin ψ

x sin ψ + y cos ψ

0

⎞⎠
xyz

(9.16)

To arrive at the last expression we have expanded the trigonometric terms and used
x = r̄ cos β, y = r̄ sin β. The displacement vector u is therefore,

u = r̄ ′ − r̄ =
⎛⎝ x(cos ψ − 1)− y sin ψ

x sin ψ + y(cos ψ − 1)

0

⎞⎠
xyz

(9.17)

and we can calculate ∇u:

∇u(t, t ′) = ∂up

∂xi
êi êp (9.18)

=
⎛⎝ cos ψ − 1 sin ψ 0

− sin ψ cos ψ − 1 0

0 0 0

⎞⎠
xyz

(9.19)

Finally, we calculate γ (t, t ′):

γ (t, t ′) = ∇u(t, t ′)+ [∇u(t, t ′)]T (9.20)

=
⎛⎝ 2(cos ψ − 1) 0 0

0 2(cos ψ − 1) 0

0 0 0

⎞⎠
xyz

(9.21)

Equation (9.21) shows that for a solid-body rotation, the infinitesimal strain tensor γ (t, t ′)
is a function of the rotation angle ψ . Substituting γ (t, t ′) into the GLVE model we obtain

the stress tensor predicted by this model for solid-body rotation around z:

τ = +
∫ t

−∞
M(t − t ′)

⎛⎝ 2(cos ψ − 1) 0 0

0 2(cos ψ − 1) 0

0 0 0

⎞⎠
xyz

dt ′ (9.22)
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Figure 9.2 Displacement vector u(r, r ′) ≡ r ′−r tracks orientation changes as well as shape changes.

Thus the stress τ in a rigid body rotating around an axis is found to depend on the angle of
rotation of the body, a completely false prediction.

The problem with γ is that it measures deformation using the vector u = r ′−r directly.

This vector indicates the relative displacement of particles in a fluid, but it also conveys
information about the orientation of the motion (Figure 9.2). The relative orientation of
particles is irrelevant to the state of stress, and using u directly can introduce artificially
large deformation rates into the mathematics describing the problem. The GLVE equation
is only valid for small deformation rates, and therefore unphysical predictions like that
in Equation (9.22) result when γ is used in that constitutive equation. We must find a

strain measure that retains information about change in shape while dropping orientation
information. We pursue this next. For slow deformations even the rotation-induced artificial
deformation rates are low, and the GLVE model is valid: in Equation (9.22) if we allowψ to
approach zero, the infinitesimal strain tensor vanishes, as desired for a solid-body rotation.

9.1.1 DEFORMATION GRADIENT TENSOR

We must develop a strain tensor that will accurately capture large-strain deformations
without being affected by irrelevant rigid-body rotation. We begin by describing an arbitrary
deformation that includes both change in shape and rotation, and then we will address how
to eliminate the rotation from the description.

Consider a particle of fluid labeled P , as depicted in Figure 9.3. Two times are shown:
t , which is the current time and the reference time, and t ′, which is a time in the past and the
time of interest. At time t the location of each fluid particle is described by a vector r that
points from the origin of a fixed coordinate system to the fluid particle. In the discussion
that follows, the value of the vector r at time t serves as an index that identifies which
particle is being discussed.
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Figure 9.3 Arbitrary deformation of a particle of fluid.

At previous times t ′, the particle positions are designated by the vectors r ′. Thus, for
each particle at all times there is a vector function r ′(t ′), which describes that particle’s
path. The position of every particle at all times can be written as r ′(t ′, r), which indicates
the position at time t ′ of the particle that is now at r .

To describe deformation or change in shape, consider the distance between P and the
nearby particle labeled Q, shown in Figure 9.3. The distance between P and Q at time
t ′ is dr ′, and at time t it is dr . The deformation that these nearby particles experience
between the current (reference) time and time t ′ can be described by writing the function
that transforms dr to dr ′. To express this function mathematically, we begin by writing dr
and dr ′ in Cartesian coordinates:

dr =
⎛⎝ dxdy
dz

⎞⎠
xyz

dr ′ =
⎛⎝ dx ′

dy ′

dz′

⎞⎠
xyz

(9.23)

The particle position at t ′ depends only on what particle is being considered, that is, on the
particle label r . Thus r ′ = r ′(r), and we can relate the differential dx ′ to x, y, and z as
follows:

dx ′ = ∂x ′

∂x
dx + ∂x ′

∂y
dy + ∂x ′

∂z
dz (9.24)

= dr · ∂x
′

∂r
(9.25)

Analogously, for dy ′ and dz′, we find

dy ′ = dr · ∂y
′

∂r
(9.26)
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dz′ = dr · ∂z
′

∂r
(9.27)

or, equivalently,

dr ′ = dr · ∂r
′

∂r
(9.28)

The last expression gives the transformation of the relative position vector dr at t to
dr ′, its direction and magnitude at time t ′. The tensor ∂r ′/∂r , which accomplishes this
transformation, is called the deformation-gradient tensor denoted by F(t, t ′).

Deformation-gradient
tensor

F(t, t ′) ≡ dr ′

dr
(9.29)

and

dr ′ = dr · F (9.30)

Following the same procedure, we can write dx, dy, and dz in terms of x ′, y ′, and z′ as
follows:

dr = dr ′ · dr
dr ′

(9.31)

We define the inverse deformation-gradient tensor F−1, such that F · F−1 = I. By dot

multiplying F−1 on the right-hand side of Equation (9.30) and comparing the result with
Equation 9.31) we can see that

dr ′ · F−1 = dr · F · F−1 (9.32)

dr ′ · F−1 = dr (9.33)

and

Inverse deformation-
gradient tensor

F−1(t ′, t) ≡ dr

dr ′
(9.34)

The deformation-gradient tensor and the inverse deformation-gradient tensor represent the
linear function of time and position that describes the entire deformation history of each
fluid particle. F and F−1 are inverses, that is, the motion described by F is the reverse of

that captured by F−1. These two tensors can be used to keep track of the relative positions
of particles in a flowing fluid and therefore of the changes in shape and orientation caused
by flow. These tensors will be essential tools in our development of large-strain constitutive
equations.

To familiarize ourselves with F and F−1, we will now calculate the inverse deforma-
tion-gradient tensor for shear flow.
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EXAMPLE
Calculate F−1 for steady simple shear flow at a shear rate γ̇0 (γ̇0 > 0), with v written in
the usual Cartesian frame (xyz).

SOLUTION

The velocity field for steady shear flow is

v =
⎛⎝ γ̇0y

0

0

⎞⎠
xyz

(9.35)

At time t ′ the location of a particle with respect to a fixed origin will be given by r ′:

r ′ =
⎛⎝ x ′

y ′

z′

⎞⎠
xyz

(9.36)

At a later time t the position will be given by the vector r . The y ′ and z′ coordinates of
r ′ do not change in a shear deformation since the velocity components are zero in those
directions. In the x ′-direction, however, the coordinate changes as a result of the flow:

r =
⎛⎝ xy
z

⎞⎠
xyz

=
(
x ′ + (t − t ′)γ̇0y

′
y ′
z′

)
xyz

(9.37)

The quantity (t − t ′)γ̇0 is the strain, γ (t ′, t) = ∫ t
t ′ γ̇0 dt

′′, at time t relative to the fluid
configuration at time t ′. The reference time for strain in this case is tref = t ′. From this
expression for r and the definition of F−1 it is straightforward to calculate F−1:

F−1(t ′, t) = ∂r

∂r ′
=

⎛⎜⎝
∂x
∂x ′

∂y

∂x ′
∂z
∂x ′

∂x
∂y ′

∂y

∂y ′
∂z
∂y ′

∂x
∂z′

∂y

∂z′
∂z
∂z′

⎞⎟⎠
xyz

(9.38)

Inverse deformation-
gradient tensor for

shear flow
F−1(t ′, t) =

⎛⎝ 1 0 0

γ 1 0

0 0 1

⎞⎠
xyz

(9.39)

where γ ≡ γ̇0(t − t ′) and is a positive number.

Derivatives of F−1 with respect to t and t ′ will appear in some of the quantities we
will use, and it is helpful to relate these to the velocity gradient ∇v. To calculate, for
example, ∂F−1/∂t , we begin with the definition of F−1 and calculate the time derivative
using Einstein notation (x = x1, y = x2, z = x3):
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F−1 = ∂r

∂r ′
= ∂xk

∂x ′
p

êpêk (9.40)

∂F−1

∂t
= ∂

∂t

∂xk

∂x ′
p

êpêk = ∂

∂x ′
p

∂xk

∂t
êpêk (9.41)

= ∂vk

∂x ′
p

êpêk (9.42)

We can rewrite this in more familiar terms if we recognize that vk , the kth component of
velocity at time t , is a function of the particle being considered, that is, of r . We can therefore
write the differential components dvk as follows:

dvk = ∂vk

∂x1
dx1 + ∂vk

∂x2
dx2 + ∂vk

∂x3
dx3 (9.43)

∂vk

∂x ′
p

= ∂vk

∂x1

∂x1

∂x ′
p

+ ∂vk

∂x2

∂x2

∂x ′
p

+ ∂vk

∂x3

∂x3

∂x ′
p

(9.44)

= ∂vk

∂xm

∂xm

∂x ′
p

(9.45)

Finally we can write

∂F−1

∂t
= ∂vk

∂x ′
p

êpêk = ∂vk

∂xm

∂xm

∂x ′
p

êpêk (9.46)

= F−1 · ∇v (9.47)

The time derivative of the deformation-gradient tensor F is found similarly (see Prob-
lem 9.4),

∂F

∂t
= −∇v · F (9.48)

A summary of various derivatives of F and F−1 and of related tensors is given in Table 9.1.

9.1.2 FINGER AND CAUCHY TENSORS

We are seeking a strain tensor to capture deformation without rotation. We have defined
two linked strain measures, F(t, t ′) and F−1(t ′, t), which describe changes in the relative
locations of nearby material particles and which may be written for every pair of points in
the body. These tensors contain complete information on the motion of the body, including
simple rotations. To describe large-strain deformation correctly we must separate rotation
from stress-producing change of shape. This problem can be solved by decomposing F or

F−1 into its rotation and deformation parts by a technique called polar decomposition.

The polar decomposition theorem [9] states that any tensorA for which an inverseA−1

exists (A · A−1 = I) has two unique decompositions:
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TABLE 9.1
Strain Tensors and Their Derivatives*

Ref.
Name A Eq. Definition

∂A

∂t

∂A

∂t ′

Deformation
gradient,
t −→ t ′

F (9.29)
∂r ′

∂r
−∇v · F F · ∇′v′

Inverse
deformation

gradient,

t ′ −→ t

F−1 (9.34)
∂r

∂r ′
F−1 · ∇v −∇′v′ · F−1

Cauchy,
t −→ t ′ C (9.108) F · FT −

[
C · (∇v)T + ∇v · C

]
F · γ̇ ′ · FT

Finger,
t ′ −→ t

C−1 (9.109) (F−1)T · F−1 (∇v)T · C−1 + C−1 · ∇v −(F−1)T · γ̇ ′ · F−1

Finite
strain,
t −→ t ′

γ [0] (9.128) C − I ∂C

∂t

∂C

∂t ′

Finite
strain,
t −→ t ′

γ
[0]

(9.132) I− C−1 − ∂C
−1

∂t
− ∂C

−1

∂t ′

Displacement
gradient,
t −→ t ′

∇u (5.52) r ′ − r ∂F

∂t

∂F

∂t ′

Infinitesimal
strain,
t −→ t ′

γ (8.36) ∇u+ (∇u)T
∂γ (t, t ′)

∂t
= −γ̇

∂γ (t, t ′)

∂t ′
= γ̇ ′

* The symbol ∇′ denotes the del operator with respect to x ′; γ̇ ′ denotes γ̇ (t ′). Note that in the entries for the infinitesimal
strain tensor γ , the deformation indicated is from reference time t to time of interest t ′. The negative sign in the result for

derivative of γ with respect to time t is present because this is the derivative of the infinitesimal strain tensor with respect

to its reference time.

A = R · U (9.49)

= V · R (9.50)

where U , V , and R are given by

U ≡ (AT · A) 1
2 (9.51)

V ≡ (A · AT ) 1
2 (9.52)
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R ≡ A · (AT · A)− 1
2 = A · U−1 (9.53)

U and V are symmetric nonsingular tensors,2 and the tensorR is orthogonal. An orthogonal
tensor is one for which its transpose is also its inverse:

Orthogonal
tensor

R−1 = RT (9.54)

RT · R = R · RT = I (9.55)

Orthogonal tensors have an important property, which we can demonstrate by causing the
orthogonal tensor R to operate on an arbitrary vector u. We begin by noting that for any
vector u and tensor R, we can write:

v ≡ R · u (9.56)

= u · RT (9.57)

The equivalency of Equations (9.56) and (9.57) can be verified by carrying out the dot
product using Einstein notation. We now calculate the magnitude of v:

v = +√
v · v (9.58)

=
√
(u · RT ) · (R · u) (9.59)

=
√
u · (RT · R) · u (9.60)

Since R is orthogonal, RT · R = I, and we obtain

v = √
u · u (9.61)

= u (9.62)

or, the magnitude of a vector is unchanged after being operated on by the orthogonal tensor
R. We see that R is a pure rotation tensor—it changes the direction of the vector on which
it operates, but it does not change its magnitude.

The symmetric tensors U and V that result from the polar decomposition of a tensor
A are called the right and left Cauchy–Green stretch tensors of A, respectively. Since the
original tensor A would, in general, change both the vector length and direction, and R is
a pure rotation tensor, U and V must contain all of the stretch information of the tensor
A. U and V do contain some rotation information, however, as we will demonstrate in the
example that follows.

2 A nonsingular tensor is one whose determinant is nonzero. This is a sufficient condition for an
inverse to the tensor to exist. U and V are also positive definite [9]. A tensor U is positive definite
when for any vector v, the scalar v · U · v is positive.
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EXAMPLE
For the tensor A

A =
⎛⎝ 1 0 2

0 3 1

1 0 0

⎞⎠
xyz

(9.63)

calculate the right stretch tensor U and the rotation tensor R. Calculate the angle through
which R rotates the vector u,

u =
⎛⎝ 1

2

1

⎞⎠
xyz

(9.64)

the angle through which U rotates u, and the length changes brought about by U and A.

SOLUTION

The vectors of interest are shown schematically in Figure 9.4. We can calculate the
right stretch and rotation tensors directly from their definitions [Equations (9.51) and
(9.53)]. These calculations are simplified by the use of computer software.3

First we form the tensor AT · A,

AT · A =
⎛⎝ 2 0 2

0 9 3

2 3 5

⎞⎠
xyz

(9.65)

= (R · U)T · R · U (9.66)

= UT · RT · R · U (9.67)

= U 2 (9.68)

where the last expression follows from the symmetry ofU (UT = U) and the orthogonality
of R.

u¯
w

A��
U��

R��

Figure 9.4 Calculation of the effects of the right stretch and rotation tensors.

3 Programs capable of these calculations include Mathcad [170], Matlab [169], Mathematica [267],
and Maple [260].
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To calculate the square root of U 2 we must first express this tensor in diagonal form,
that is, we must find the coordinate system ξ1, ξ2, ξ3 in which U ’s only nonzero elements
are along the diagonal. Once in diagonal form, the square root can be calculated by taking
the square root of the diagonal elements4:⎛⎝ a 0 0

0 b 0

0 0 c

⎞⎠
1
2

ξ1ξ2ξ3

=
⎛⎝

√
a 0 0

0
√
b 0

0 0
√
c

⎞⎠
ξ1ξ2ξ3

(9.69)

The result can then be expressed in the original coordinates by another coordinate trans-
formation.

To carry out the change in basis needed for the square-root calculation, we follow the
procedure outlined in Appendix C.6. These operations are matrix operations, not tensor
operations, that is, we are calculating a representation of U , the tensor, in two different
coordinate systems; U is unchanged. To distinguish matrix from tensor operations, we
will represent matrices with square brackets and tensors with parentheses with a subscript
indicating the coordinate system used.

Let [U 2]xyz be the matrix of coefficients of U 2 in the original coordinate system;

[U 2]ξ1ξ2ξ3 will be the matrix of coefficients of U 2 in the system in which U 2 is diagonal.
Following Appendix C.6,

[U 2]ξ1ξ2ξ3 = LT [U 2]xyzL (9.70)

where the transformation matrix L is constructed from the eigenvectors of U squared.5

The calculation of eigenvalues and eigenvectors is straightforward and is covered in
advanced undergraduate math classes; this calculation is also preprogrammed into many
computer packages. The eigenvalues λi of U 2 in this example are λ1 = 0.739, λ2 = 4.548,
and λ3 = 10.713, and the eigenvectors form the columns of the transformation matrix L:

L =
⎡⎣−0.83 0.546 0.113

−0.19 −0.468 0.863

0.524 0.695 0.493

⎤⎦ (9.71)

Carrying out the matrix calculation in Equation (9.70) we obtain

[U 2]ξ1ξ2ξ3 = LT [U 2]xyzL =
⎡⎣ 0.739 0 0

0 4.548 0

0 0 10.713

⎤⎦ (9.72)

U 2 =
⎛⎝ 0.739 0 0

0 4.548 0
0 0 10.713

⎞⎠
ξ1ξ2ξ3

(9.73)

4 Since the stretch tensors are positive definite, the positive square root is appropriate.
5 The eigenvalues and eigenvectors of a tensor are the same in all coordinate systems; see Ap-
pendix C.6.
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The square root of the tensor U 2 can now be calculated by taking the square root of each
diagonal element in Equation (9.73):

[U ]ξ1ξ2ξ3 =
⎡⎣ 0.860 0 0

0 2.133 0

0 0 3.273

⎤⎦ (9.74)

U =
⎛⎝ 0.860 0 0

0 2.133 0

0 0 3.273

⎞⎠
ξ1ξ2ξ3

(9.75)

To convert this square root back to our original coordinate system we employ the inverse
transformation (Appendix C.6):

[U ]xyz = L[U ]ξ1ξ2ξ3L
T (9.76)

=
⎡⎣ 1.269 −0.09 0.617

−0.09 2.936 0.612

0.617 0.612 2.06

⎤⎦ (9.77)

U =
⎛⎝ 1.269 −0.09 0.617

−0.09 2.936 0.612

0.617 0.612 2.06

⎞⎠
xyz

(9.78)

To calculate R = A ·U−1, we need U−1. The inverse of a matrix is also straightforward to
calculate, and once again we use a mathematical software package. We obtain

U−1 =
⎛⎝ 0.946 0.094 −0.311

0.094 0.372 −0.139

−0.311 −0.139 0.620

⎞⎠
xyz

(9.79)

R = A · U−1 =
⎛⎝ 0.324 −0.183 0.928

−0.03 0.979 0.204

0.946 0.094 −0.311

⎞⎠
xyz

(9.80)

The reader can verify that the tensor R is an orthogonal tensor. We now calculate the
requested vectors and angles:

v = A · u =
⎛⎝ 3

7
1

⎞⎠
xyz

(9.81)

w = U · u =
⎛⎝ 1.707

6.393

3.901

⎞⎠
xyz

(9.82)



9.1 Finite Strain Measures 319

To calculate the angles between u and w and w and v we return to the definition of the dot
product:

u · w = uw cos ψuw (9.83)

ψuw = cos −1
(u · w
uw

)
= 0.212 rad (9.84)

ψwv = cos −1
(w · v
wv

)
= 0.424 rad (9.85)

The length changes brought about by U and A can be measured by the relative changes in
length among u, v, and w:

|u| = 2.449 (9.86)

|v| = 7.681 (9.87)

|w| = 7.681 (9.88)

v

u
=

√
(v · v)
(u · u) = 3.136 (9.89)

Note that the magnitudes of w and v are equal as expected, that is, the length changes
brought about by A and U are the same. The angles ψuw and ψwv and the length change
we have calculated will differ for other vectors operated on by A.

In the preceding example, which demonstrated the effect of polar decomposition on a
tensorA, we see that in considering the right stretch tensorU , rather than the original tensor
A, we have not totally isolated length changes from rotations. We have taken an important
step toward our goal, however, since we have removed the rotation accounted for byR, and
we have produced a symmetric, nonsingular tensor, U that contains the change-in-shape
information of A as well as some rotation information. The fact that U is symmetric is
significant because this property ofU will allow us to completely isolate the shape changes
from rotations, as we will now show.

There are three families of parallel vectors that are not rotated by a tensor. When a
tensor operates on one of these vectors, the vector’s length changes, but its orientation in
space is unchanged. For the tensor U these vectors, which we will write as ξ̂1, ξ̂2, and ξ̂3,
satisfy the following equations:

U operates
on ξ̂1︷ ︸︸ ︷
U · ξ̂1 =

returns a
stretched

version of ξ̂1︷︸︸︷
λ1ξ̂1 (9.90)

U · ξ̂2 = λ2ξ̂2 (9.91)

U · ξ̂3 = λ3ξ̂3 (9.92)
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where λi is the amount by which U stretches ξ̂i . These are the familiar unit eigenvectors
of U , and λ1, λ2, and λ3 are the eigenvalues of U (see Appendix C.6). Such vectors can
be found for all nonsingular tensors [see footnote after Equation (9.53)]. For symmetric
tensors, such as the left and right stretch tensors, it can be shown that the eigenvalues λi
are all distinct, real numbers, and the eigenvectors ξ̂i are mutually perpendicular [7] (see
Problem 9.44).

To understand how the left and right stretch tensors of a deformation tensor can be used
to develop a rotation-free strain measure, consider the situation in Figure 9.5. Let ξ̂1, ξ̂2, ξ̂3

and λ1, λ2, λ3 be the eigenvectors and eigenvalues of U and ζ̂1, ζ̂2, ζ̂3 and ν1, ν2, ν3 be the
eigenvectors and eigenvalues of V . These quantities are related. Recall the definitions of U
and V :

A = R · U = V · R (9.93)

If we right-dot-multiply this equation by ξ̂1 we obtain

R ·
(
U · ξ̂1

)
= V · (R · ξ̂1) (9.94)

λ1

(
R · ξ̂1

)
= V ·

(
R · ξ̂1

)
(9.95)

Equation (9.95) is just another eigenvalue equation for V , as we can see by comparing it to

the eigenvalue equation for ζ̂1:

ν1ζ̂1 = V · ζ̂1 (9.96)

Thus we can conclude that R · ξ̂1 and λ1 are an eigenvector and an eigenvalue of V ,

respectively, and, without loss of generality, we can choose ζ̂1 = R · ξ̂1 and λ1 = ν1. The
same argument can be repeated for the other eigenvalues, yielding

ζ̂i = R · ξ̂i = ξ̂i · RT (9.97)

λi = νi (9.98)

ξ̂ i

λξ̂i

ζ̂ i

λζ̂iV��

U��
R��

R��

Path II

Path I

Figure 9.5 Effects of the left and right stretch tensors on their eigenvectors.
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ξ̂i = ζ̂i · R (9.99)

where we have made use of the orthogonality property of R.
We can interpret these relations graphically by considering Figure 9.5 and the following.

When the tensor A operates on the vector ξ̂i , which is a unit eigenvector of U , the vector
can be considered to be first stretched in place by an amount λi , and then rotated to become
λi ζ̂i , where ζ̂i is a unit eigenvector of V (path I, in Figure 9.5).

path I: A · ξ̂i = R · U · ξ̂i (9.100)

= R ·
(
λi ξ̂i

)
= λi

(
R · ξ̂i

)
(9.101)

= λi ζ̂ (9.102)

Alternatively, the effect of A on ξ̂i can be considered to follow dashed path II: the vector ξ̂i
is first rotated with no length change to become ζ̂i , and this new vector is then stretched in
place by an amount λi , yielding the same net result:

path II: A · ξ̂i = V ·
(
R · ξ̂i

)
(9.103)

= V · ζ̂i (9.104)

= λi ζ̂i (9.105)

An analogous description can be made for the transformation ζ̂i ·A, where a unit eigenvector
of V left-multiplies A.

This graphical interpretation shows us that the left and right stretch tensors do isolate
pure stretch associated with a deformation tensor when the strain of an eigenvector ξ̂i or ζ̂i
is considered. The eigenvectors of U and V indicate the directions along which only pure
stretch is occurring in the original deformation described by A. The eigenvalues of these
tensors tell us the amounts of stretch taking place in each of the three mutually orthogonal
pure stretching directions. [Since U and V are symmetric tensors, see the definitions and
discussion following Equation (9.53).] Thus we will choose to develop rotation-free large-
strain measures by working with the stretch tensors of the deformation rather than with the
deformation tensors F and F−1 themselves.

It is now time to apply these concepts to the actual deformation-gradient tensors F

and F−1. The transformations we are concerned with are dr ′ −→ dr and dr −→ dr ′,
which are

dr = dr ′ · F−1 = (F−1)T · dr ′ (9.106)

dr ′ = dr · F = FT · dr (9.107)

These transformations involve four deformation tensors, F , FT , F−1 , and (F−1)T . To
remove the rotation from these tensors we apply polar decomposition, that is, we calculate
U and V for each deformation tensor. The squares of the left and right stretch tensors of
these deformation-gradient tensors are given in Table 9.2.
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TABLE 9.2
Summary of the Squares of the Left and
Right Stretch Tensors of Various
Deformation Tensors

A V 2 U2

F F · FT FT · F
FT FT · F F · FT

F−1 F−1 · (F−1)T (F−1)T · F−1

(F−1)T (F−1)T · F−1 F−1 · (F−1)T

Although it seems like there would be many choices for strain tensors from the entries
in Table 9.2, there are several factors that reduce the number of possibilities. First, the
choice of right versus left stretch tensor is arbitrary since it corresponds to the choice
of eigenvectors, those of U or V , to use to describe stretching, and both are equivalent.

Referring to Table 9.2, this tells us that usingFT ·F is equivalent toF ·FT , and (F−1)T ·F−1

is equivalent toF−1 ·(F−1)T . Thus just two unique tensors result from the decomposition of

the deformation tensors, and these are F ·FT , called the Cauchy tensor, and (F−1)T ·F−1,
called the Finger tensor. These two tensors are inverses to each other and are denoted by
the symbols C and C−1, respectively6:

Cauchy strain tensor C ≡ F · FT (9.108)

Finger strain tensor C−1 ≡ (F−1)T · F−1 (9.109)

In summary, we have used polar decomposition on the deformation-gradient and related
tensors to remove unwanted rotation from the description of fluid motion. The result of the
decomposition was the identification of two finite-strain tensors, C and C−1, which can

now be used in place of γ in constitutive equations. The tensors C and C−1 are related to

the vector transformations

dr ′ = FT · dr C = U 2 of FT (9.110)

dr = (F−1)T · dr ′ C−1 = V 2 of (F−1)T (9.111)

Use of the squared tensors U 2 or V 2 as strain measures instead of U or V is justified
for an elastic solid by comparing stresses predicted in shear to experimental observations,
as shown in the second example that follows. In the first example, using C−1 as the strain

6 See Tables D. 1 and D.2 in Appendix D for other symbols used in the literature for these tensors.
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measure, we calculate τ for an elastic body undergoing solid-body rotation. Recall that the
GLVE model failed this test of objectivity.

EXAMPLE
For solid-body rotation, calculate the stress predicted by a finite-strain Hooke’s law con-
stitutive equation with γ (tref , t) replaced by the negative of the Finger strain tensor,

−C−1 = −(F−1)T · F−1.

SOLUTION

In Chapter 8 we presented the following tensor version of Hooke’s law:

τ(t) = −Gγ (tref , t) (9.112)

where G is a scalar called the modulus, and the strain measure is the infinitesimal strain
tensor. The reference time tref is taken to be at some isotropic stress state, that is, at a time
when there are only isotropic stresses on the material. We will take tref = 0. To adapt
the Hookean constitutive equation to large strains we replace γ (0, t) with −C−1(t, 0) =
−(F−1)T · F−1. The Finger tensor describes the particle shape at time 0 relative to the
material’s configuration at time t , which is the negative of the strain we desire; hence we
include a negative sign:

τ(t) = GC−1 = G
(
F−1

)T · F−1 (9.113)

(See the end of the chapter for further discussion of this negative sign.)
The inverse deformation-gradient tensor for counterclockwise rotation of a material

around the z-axis can be shown to be [see Equation (9.16)]

F−1 =
⎛⎝ cos ψ sin ψ 0

− sin ψ cos ψ 0

0 0 1

⎞⎠
xyz

(9.114)

whereψ is the angle between r(0) and r(t). Using this tensor we can calculate (F−1)T ·F−1:

(
F−1

)T · F−1 =
⎛⎝ 1 0 0

0 1 0

0 0 1

⎞⎠
xyz

(9.115)

Substituting this result into the modified Hookean constitutive equation gives

τ(t) = G
⎛⎝ 1 0 0

0 1 0

0 0 1

⎞⎠
xyz

(9.116)

Thus we arrive at the correct result for solid-body rotation, τ = GI, that is, the stress of an
elastic body is independent of the rotation angle in solid-body rotation and is equal to its
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stress at rest. The finite-strain Hooke’s law that uses C−1 as its strain measure passes this
test of objectivity.

EXAMPLE
Using the finite-strain Hooke’s law of the previous practice example, calculate the shear and
normal stresses produced in an elastic body subjected to the onset of steady shear (constant
shear rate γ̇0) at time t = 0.

SOLUTION

The finite-strain Hooke’s law is

τ = GC−1(t, 0) (9.117)

= G
(
F−1

)T · F−1 (9.118)

The Finger tensor measures the deformation at time zero, the time at which the deformation
was imposed on the sample, with respect to the fluid configuration at the current time t .
For shear flow we calculated F−1 in Equation (9.39). Substituting this into the constitutive
equation we arrive at

τ = G
⎛⎝ 1 γ 0

0 1 0

0 0 1

⎞⎠ ·
⎛⎝ 1 0 0

γ 1 0

0 0 1

⎞⎠ (9.119)

= G
( 1 + γ 2 γ 0

γ 1 0
0 0 1

)
(9.120)

where γ = γ (0, t) = ∫ t
0 γ̇0 dt

′′ = γ̇0t . Thus the shear stress and the two normal-stress
differences predicted to be generated when deforming an elastic solid are

τ21 = Gγ = Gγ̇0t (9.121)

τ11 − τ22 = Gγ 2 = Gγ̇ 2
0 t

2 (9.122)

τ22 − τ33 = 0 (9.123)

For the material described by the Hooke’s law constitutive equation the shear stress
τ21 = Gγ̇0t does not approach steady state as time approaches infinity. This reflects the
solid character of Hookean materials.

To see whether these predictions are valid, we compare them with experimental data
for an elastic solid undergoing simple shear. Data for a silicon rubber subjected to torsional
shear (see Chapter 10 for more on torsional shear) is shown in Figure 9.6 [162]. The best
fit for the modulusG from these data is 160 kPa. The fit is good on average, although some
deviations are seen at large values of strain γ . Both the model and the data show that while
the shear stress can be positive or negative, the normal-stress difference is always positive.
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Figure 9.6 Data for shear and first
normal-stress difference for a silicon
rubber solid under torsional shear;
from DeGroot [63] as cited in Ma-
cosko [162]. Solid lines are the fit
to the finite-strain Hooke model with
G = 160 kPa. Source: From Rhe-
ology: Principles, Measurements and
Applications,” by C. W. Macosko,
Copyright © 1994 by VCH Publish-
ers, Inc. Reprinted by permission of
John Wiley & Sons, Inc.

The normal-stress difference τ11 − τ22 represents the amount of force that must be applied
to the top and bottom of the deforming cylinder to maintain a constant cylinder height.

The finite-strain Hooke’s law based on the Finger tensor passes an important test: it
matches experimental data. This equation also makes valid predictions in uniaxial extension.
This comparison with experiment confirms that the Finger tensor, the square of the left
stretch tensor of (F−1)T , is a useful measure of strain in an elastic body.

We have arrived at new large-strain measures to use in constitutive modeling, the
Finger strain tensor C−1(t ′, t), and the Cauchy strain tensor C(t, t ′). These strain tensors
are objective,7 that is, they are independent of the frame of reference of the observer, and
thus we have avoided the problem of spurious rotation effects encountered with the Maxwell
and GLVE models. In the next section we will replace γ (t, t ′) in the GLVE model with

−C−1(t ′, t) and examine the resulting viscoelastic constitutive equation. The ultimate test
of a strain measure is how well τ is predicted when the strain tensor is used in a constitutive
equation.

Before closing this section we wish to consider two more strain tensors that are
associated withC,C−1, and γ . Consider the displacement vector u(t, t ′) = r ′−r , discussed

at the beginning of the chapter. This can be related to F as follows:

∇u = ∂

∂r

(
r ′ − r) (9.124)

7 We have not proven it here, but this is discussed in detail in Lodge [155], Leal [148], and Oldroyd
[192, 193, 194, 195].
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= F − I (9.125)

The definition of the infinitesimal strain tensor γ is

γ (t, t ′) ≡ ∇u+ (∇u)T (9.126)

We can now show that γ is the small-displacement limit of a more general finite-strain

tensor γ [0] defined as follows [26]:

γ [0] = F · FT − I (9.127)

≡ C − I (9.128)

where C is the Cauchy tensor. Using F = ∇u+ I [Equation (9.125)] we see that at small

displacement gradients γ [0] becomes

γ [0] =
(
∇u+ I

) (
∇u+ I

)T − I (9.129)

= ∇u · (∇u)T + ∇u+ (∇u)T (9.130)

lim
∇u−→0

(
γ [0]

)
= ∇u+ (∇u)T = γ (t, t ′) (9.131)

Another finite-strain tensor, γ
[0]

, also becomes γ at small displacement gradients (see

Problem 9.5):

γ
[0]

≡ I− C−1 (9.132)

The principal difference between the pairs C, C−1, and γ [0], γ
[0]

is in their values in solid-

body rotation. When no deformation takes place, C = C−1 = I, whereas γ [0] = γ
[0]

= 0.

Also, at small strains γ [0] and γ
[0]

reduce to γ , whereas in that limit C−1 and C differ from

γ by an isotropic constant I. Thus γ [0] and γ
[0]

represent relative change in shape whereas

C and C−1 represent shape directly. As we will see in the discussions that follow, this
difference leads to irrelevant differences in predicted stress tensors. The time derivatives of
these strain measures can be worked out in the usual way, and some quantities of interest
are listed in Table 9.1.

A comment on notation. The inverse deformation-gradient tensor F−1 gives the

change from r ′ −→ r , and can therefore be written as F−1(t ′, t). The Finger tensor

C−1 = (F−1)T ·F−1 is likewise describing the change from t ′ −→ t and is therefore written

as C−1(t ′, t). The deformation-gradient tensor F describes the reverse transformation
from r to r ′, and F and the related Cauchy tensor C are written as F(t, t ′) and C(t, t ′),
respectively. The infinitesimal strain tensor γ can be written either way, but the meaning is

different:
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γ (t ′, t) =
∫ t

t ′
γ̇ (t ′′) dt ′′ (9.133)

γ (t, t ′) =
∫ t ′

t

γ̇ (t ′′) dt ′′ (9.134)

γ (t ′, t) = −γ (t, t ′) (9.135)

This difference shows up in the small-strain limits of C−1 and C, which can be derived
from their definitions and Equation (9.125):

lim
(r ′−r)→0

C−1(t ′, t) = I− γ (t, t ′) (9.136)

lim
(r ′−r)→0

C(t, t ′) = γ (t, t ′)− I (9.137)

At small strains the Cauchy tensor is proportional to the infinitesimal strain tensor γ (t, t ′),
whereas the Finger tensor is proportional to the negative of γ (t, t ′). So that our finite-

strain constitutive equations reduce to the experimentally valid small-strain equations,
γ (t, t ′) in the small-strain constitutive equations (Hooke’s law, GLVE, Maxwell model)

is replaced with C(t, t ′) or −C−1(t ′, t), as was seen in several practice examples earlier in
this chapter.

With possible finite-strain tensors now in hand, we can proceed with developing large-
strain, frame-independent constitutive equations to describe real flows of polymer melts
and solutions.

9.2 Lodge Equation

In this section we develop the Lodge equation by replacing the strain measure of the Maxwell
equation with the Finger tensor. In Chapter 8 we saw that the Maxwell equation could be
written either as a differential [Equation (8.50)] or as an integral equation [Equation 8.58)].
The Lodge equation can also be written in both integral and differential forms, as we will
see. The choice of which form of the Lodge equation to use is arbitrary and is dictated by
convenience.

9.2.1 INTEGRAL FORM OF THE LODGE EQUATION

We seek to develop a finite-strain constitutive equation based on the Maxwell model. Using
the integral version of the GLVE model in Equation (9.11) and the Maxwell relaxation

function G(t − t ′) = (η0/λ)e
− (t−t ′)

λ , we can write the Maxwell model in terms of its strain
tensor:

τ(t) = +
∫ t

−∞
η0

λ2
e−

(t−t ′)
λ γ (t, t ′) dt ′ (9.138)
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We know the strain measure γ (t, t ′) has an unwanted dependence on solid-body rotation.

We can develop a new constitutive equation from the Maxwell model by replacing γ (t, t ′)
with one of the new rotation-invariant strain tensors discussed before. Lodge [154, 158,
155] replaced γ (t, t ′) with −C−1(t ′, t). The choice of which finite-strain measure to use,

C−1, C, or some combination of these, is arbitrary and can only be justified by examining
the predictions of the resulting constitutive equation. Lodge’s constitutive equation is

Lodge equation τ = −
∫ t

−∞

[η0

λ2
e−

(t−t ′)
λ

]
C−1(t ′, t) dt ′ (9.139)

This equation [154, 158, 155] is properly frame invariant because the Finger tensor correctly
describes solid-body rotation as a deformation-free transformation.

As we stated before, to determine whether the Lodge equation is useful we must
compare predictions of the Lodge model with known fluid behavior. We calculate material
functions using the Lodge equation by substituting the Finger tensor for the flow under
consideration into Equation (9.139) and calculating the predicted stress components (see
Table 9.3). We will now practice carrying out constitutive calculations with the Lodge
equation by considering the material function η̄, the uniaxial elongational viscosity.

EXAMPLE
Calculate the steady uniaxial extensional viscosity η̄ predicted by the Lodge equation.

SOLUTION

The Lodge model contains the Finger tensor C−1, which is given in Table 9.3 for three

common flows. For practice, however, we will calculate C−1 for this flow from scratch. We
begin with the kinematics:

v =
⎛⎜⎝− ε̇(t)

2 x1

− ε̇(t)

2 x2

ε̇(t)x3

⎞⎟⎠
123

(9.140)

ε̇(t) = ε̇0 = constant (9.141)

The definition of C−1 is

C−1 = (F−1)T · F−1 (9.142)

where

F−1 = ∂r

∂r ′
(9.143)

We must calculate the displacement function r(r ′), where r is the location of a particle at
the current time, and r ′ is the same particle’s location at some time t ′ in the past,
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TABLE 9.3
Strain Tensors for Shear and Extension in Cartesian Coordinates*

Shear in 1-Direction Uniaxial Counterclockwise
with Gradient Elongation Rotation

Tensor in 2-Direction in 3-Direction around ê3

F(t, t ′)

⎛⎝ 1 0 0

−γ 1 0

0 0 1

⎞⎠
123

⎛⎝ e
ε
2 0 0

0 e
ε
2 0

0 0 e−ε

⎞⎠
123

⎛⎝ cos ψ − sin ψ 0

sin ψ cos ψ 0

0 0 1

⎞⎠
123

F−1(t ′, t)

⎛⎝ 1 0 0

γ 1 0

0 0 1

⎞⎠
123

⎛⎝ e−
ε
2 0 0

0 e− ε
2 0

0 0 eε

⎞⎠
123

⎛⎝ cos ψ sin ψ 0

− sin ψ cos ψ 0

0 0 1

⎞⎠
123

C(t, t ′)

⎛⎝ 1 −γ 0

−γ 1 + γ 2 0

0 0 1

⎞⎠
123

⎛⎝ eε 0 0

0 eε 0

0 0 e−2ε

⎞⎠
123

I

C−1(t ′, t)

⎛⎝ 1 + γ 2 γ 0

γ 1 0

0 0 1

⎞⎠
123

⎛⎝ e−ε 0 0

0 e−ε 0

0 0 e2ε

⎞⎠
123

I

γ [0](t, t ′)

⎛⎝ 0 −γ 0

−γ γ 2 0

0 0 1

⎞⎠
123

⎛⎝ eε − 1 0 0

0 eε − 1 0

0 0 e−2ε − 1

⎞⎠
123

0

γ
[0]
(t, t ′)

⎛⎝−γ 2 γ 0

γ 0 0

0 0 0

⎞⎠
123

⎛⎝ e−ε − 1 0 0

0 e−ε − 1 0

0 0 e2ε − 1

⎞⎠
123

0

* For shear flows γ = γ (t ′, t) =
∫ t

t ′
ς̇ (t ′′) dt ′′ =

∫ t

t ′
γ̇21(t

′′) dt ′′ and for elongational flows ε = ε(t ′, t) =
∫ t

t ′
ε̇(t ′′) dt ′′.

The angle ψ is the angle from r(t) = r to r(t ′) = r ′ in counterclockwise rotation around the ê3-axis.

r(t) =
⎛⎝ x1

x2

x3

⎞⎠
123

r ′(t ′) =
⎛⎝ x ′

1

x ′
2

x ′
3

⎞⎠
123

(9.144)

The particle positions are determined by their initial positions (r ′ = x ′
1ê1 + x ′

2ê2 + x ′
3ê3)

and their velocities [Equation (9.140)]. For the 1-direction we can calculate the relation
between x1 and x ′

1 as follows:

v1 = dx1

dt
= − ε̇0

2
x1 (9.145)

dx1

x1
= − ε̇0

2
dt (9.146)

ln x1 = − ε̇0

2
t + C1 (9.147)

where C1 is an arbitrary constant of integration. The initial conditions are that at t = t ′,
x1 = x ′

1, and thus we arrive at the following equation for the displacement in thex1-direction:
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x1 = x ′
1e

− ε̇0(t−t ′)
2 (9.148)

= x ′
1e

− ε
2 (9.149)

where ε = ε̇0(t − t ′) is the elongational strain in the flow. Following the same procedure
for the 2- and 3-directions we obtain

x2 = x ′
2e

− ε
2 (9.150)

x3 = x ′
3e
ε (9.151)

and therefore the displacement vector r for steady uniaxial elongational flow is

r =
⎛⎝ x ′

1e
− ε

2

x ′
2e

− ε
2

x ′
3e
ε

⎞⎠
123

(9.152)

We can now calculate F−1 and C−1 from their definitions:

F−1 ≡ ∂r

∂r ′
=

⎛⎜⎜⎝
∂x1
∂x ′

1

∂x2
∂x ′

1

∂x3
∂x ′

1

∂x1
∂x ′

2

∂x2
∂x ′

2

∂x3
∂x ′

2

∂x1
∂x ′

3

∂x2
∂x ′

3

∂x3
∂x ′

3

⎞⎟⎟⎠
123

(9.153)

=
(
e− ε

2 0 0
0 e− ε

2 0
0 0 eε

)
123

(9.154)

C−1 ≡ (F−1)T · F−1 =
(
e−ε 0 0
0 e−ε 0
0 0 e2ε

)
123

(9.155)

Substituting the Finger tensor for uniaxial elongation into the Lodge model we can
now calculate the stress tensor τ(t) for this flow:

τ(t) = −
∫ t

−∞
η0

λ2
e

−(t−t ′)
λ

⎛⎝ e−ε 0 0

0 e−ε 0

0 0 e2ε

⎞⎠
123

dt ′ (9.156)

The extensional viscosity η̄ is defined as

η̄ ≡ −(τ33 − τ11)

ε̇0
(9.157)

Thus we must calculate τ33 and τ11. Remember that ε = ε̇0(t − t ′).

τ33 = −
∫ t

−∞
η0

λ2
e

−(t−t ′)
λ e2ε dt ′ (9.158)

= −
∫ ∞

0

η0

λ2
e(2ε̇0− 1

λ )s ds, where s = t − t ′ (9.159)
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= η0

λ2

1

2ε̇0 − 1
λ

2ε̇0λ < 1 (9.160)

Similarly:

τ11 = η0

λ

( −1

1 + λε̇0

)
(9.161)

Now we can calculate the extensional viscosity:

η̄ = −(τ33 − τ11)

ε̇0
(9.162)

= 3λG0

(1 − 2λε̇0)(1 + λε̇0)
(9.163)

where G0 ≡ η0/λ. Both the axial stress τ33 and the elongational viscosity become
unbounded for ε̇0 = 1/2λ.

It is straightforward to show that in steady shear the Lodge model predicts a constant
viscosity, η = λG0. Thus the Trouton ratio for the Lodge model is neither 3, nor is it
constant, but rather it varies with the elongation rate ε̇0:

Trouton ratio
(Lodge model)

η̄(ε̇0

√
3 = γ̇ )

η(γ̇ )
= 3

(1 − 2λγ̇ /
√

3)(1 + λγ̇ /√3)
(9.164)

Selected predictions of the Lodge model are given in Appendix D, Tables D.3 and
D.4, and the steady shear and steady uniaxial elongational flow properties are illustrated
in Figure 9.7. We saw before that the Lodge equation predicts an elongational viscosity
that becomes unbounded at a high extension rate. In shear this model predicts a constant
viscosity, like the GLVE model, but the Lodge model also predicts a nonzero first normal-
stress coefficient. Thus by fixing the frame-invariance problem, we have also discovered a
way of predicting first normal-stress differences in shear. The Lodge model fails to predict a
nonzero second normal-stress coefficient, however, and the viscosity and first normal-stress
differences predicted by the Lodge model are both constant. Thus for nonlinear polymer
rheological modeling, although the Lodge model represents a significant improvement over
the generalized Newtonian and the GLVE fluids, it still fails to predict some important
observed behavior such as shear-thinning and nonzero second normal-stress coefficients.

We can illustrate the objectivity of the Lodge model if we return to the turntable
example discussed in Chapter 8. In that example we calculated, in two different coordinate
systems, the stresses predicted by the GLVE fluid in a shear flow: one coordinate system
rotated slowly with the flow cell on a turntable, and the other coordinate system was a fixed
laboratory reference frame. As you may recall, the GLVE predictions based on the fixed
laboratory reference frame erroneously indicated that the stresses in the rotating shear flow
should depend on the angular velocity � of the turntable.
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Figure 9.7 Predictions of the Lodge equation or the upper convected Maxwell model in shear and
extension. Both η and�1 are independent of shear rate, whereas η̄ varies with the elongation rate and
becomes unbounded at ε̇0 = 1

2λ.

In this chapter we have developed new strain measures to fix the rotational problems
associated with γ (t, t ′), and the Lodge equation is the result. We now might ask, will the

Lodge equation pass the rotating turntable objectivity test that the GLVE model failed?
Our development of C−1 was predicated on fixing this problem; we will now carry out this
calculation and subject the Lodge model to the rotating reference-frame test.

Consider a shear flow carried out in a flow cell on a turntable that is slowly rotating at
angular velocity � (see Figure 8.12). The reference frame x̄ȳz̄ rotates at the speed of the
turntable, and this coordinate system is a shear coordinate system for the flow, v = γ̇0ȳêx̄ .
The x, y, z coordinate system is stationary. To calculate the stress in the fluid with respect
to the x, y, z and x̄, ȳ, z̄ coordinate systems using the Lodge equation, we must evaluate
C−1 = (F−1)T ·F−1 in each coordinate system. To evaluate the Finger tensor C−1, we first

need the inverse deformation tensorF−1. We can calculateF−1 if we know the displacement
function that relates the particle positions at time t , given by the vector r , to their initial
positions at time t ′, given by r ′,

F−1 = ∂r

∂r ′
=

⎛⎜⎝
∂x
∂x ′

∂y

∂x ′
∂z
∂x ′

∂x
∂y ′

∂y

∂y ′
∂z
∂y ′

∂x
∂z′

∂y

∂z′
∂z
∂z′

⎞⎟⎠
xyz

(9.165)

We begin by calculating r and r ′, and hence F−1 and C−1, in the rotating x̄, ȳ, z̄ coordinate
system.

In the x̄, ȳ, z̄ coordinate system shear flow is occurring, and we can write particle
positions at time t with respect to particle positions at time t ′ in a straightforward manner:
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x̄ = x̄ ′ + γ̇0ȳ(t − t ′) (9.166)

ȳ = ȳ ′ (9.167)

z̄ = z̄′ (9.168)

In this rotating frame we can now calculate C−1 from its definition, and subsequently we
obtain the Lodge equation:

C−1 =
( 1 + γ 2 γ 0

γ 1 0
0 0 1

)
x̄ȳz̄

(9.169)

Lodge stress tensor,
turntable example,

x̄, ȳ, z̄ coordinate system
τ(t) = −

∫ t

−∞
η0

λ2
e−

(t−t ′)
λ

⎛⎝ 1 + γ 2 γ 0

γ 1 0
0 0 1

⎞⎠
x̄ȳz̄

dt ′ (9.170)

To calculate τ in the stationary x, y, z coordinate system we substitute the rela-
tionships between coordinates x̄, ȳ, z̄ and x, y, z [(Equations (8.219)–(8.221)] into Equa-
tions (9.166)–(9.168) and solve for the displacement functions written in the x, y, z
coordinate system:

(y − y0) = (y ′ − y0)
[
C ′C + S ′S + SC ′γ

]
+ (x ′ − x0)

[−CS ′ + SC ′ − SS ′γ
]

(9.171)

(x − x0) = (y ′ − y0)
[−SC ′ + CS ′ + CC ′γ

]
+ (x ′ − x0)

[
SS ′ + CC ′ − CS ′γ

]
(9.172)

z = z′ (9.173)

where S = sin �t , S ′ = sin �t ′, C = cos �t , C ′ = cos �t ′, and γ = γ̇0(t − t ′). With
the functions r(r ′) now known, we can evaluate F−1 and then C−1. Although the algebra
is involved, the result is quite simple:

C−1(t ′, t) =
⎛⎝ 1 − 2CSγ + C2γ 2 (C2 − S2)γ + SCγ 2 0

(C2 − S2)γ + SCγ 2 1 + 2CSγ + S2γ 2 0

0 0 1

⎞⎠
xyz

(9.174)

We can then obtain an expression for τ written with respect to the stationary frame by
inserting this version of the Finger tensor into the Lodge equation:

Lodge stress tensor, turntable example, x, y, z coordinate system

τ(t) = − ∫ t
−∞

η0

λ2 e
− (t−t ′)

λ ×⎛⎝ 1 − 2CSγ + C2γ 2 (C2 − S2)γ + SCγ 2 0

(C2 − S2)γ + SCγ 2 1 + 2CSγ + S2γ 2 0

0 0 1

⎞⎠
xyz

dt ′
(9.175)
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Now, to check for objectivity, we wish to calculate the viscosity using the stationary-
frame expression for stress [Equation (9.175)]. We only know how to calculate viscosity in
steady shear when stress is written in a shear coordinate system, however. We must use a
coordinate system in which

γ̇ =
⎛⎝ 0 γ̇0 0

γ̇0 0 0

0 0 0

⎞⎠
123

(9.176)

The stationary frame becomes a shear frame when t = 0. Setting t = 0, we then calculate
the stress to be

τ(0) = −
∫ 0

−∞
η0

λ2
e
t ′
λ

⎛⎝ 1 + γ 2 γ 0

γ 1 0

0 0 1

⎞⎠
xyz

dt ′ (9.177)

which is independent of �, as it should be, and which is identical to the stress at t = 0
calculated from the Lodge equation expressed in the rotating shear system, x̄, ȳ, z̄ [Equation
(9.170)]. Thus the Lodge equation passes this test of material objectivity.

We close this section with another example involving the Lodge equation. This time
we illustrate how to calculate some unsteady-state material functions.

EXAMPLE
Calculate the material functions η̄+

P1
(t, ε̇0) and η̄+

P2
(t, ε̇0) predicted by the Lodge equation

for startup of steady planar extensional flow.

SOLUTION

As usual when calculating material functions, we begin with the kinematics for the flow in
question, startup of planar elongation.

v =
⎛⎝−ε̇(t)x1

0

ε̇(t)x3

⎞⎠
123

(9.178)

ε̇(t) =
{

0 t < 0

ε̇0 t ≥ 0
(9.179)

where ε̇0 is positive. To evaluate the Lodge constitutive equation we need the Finger tensor,
which for planar elongation can be calculated to be

C−1(t ′, t) =
⎛⎝ e−2ε 0 0

0 1 0

0 0 e2ε

⎞⎠
123

(9.180)

where
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ε(t ′, t) =
∫ t

t ′
ε̇(t ′′) dt ′′ (9.181)

We can now write the Lodge equation for this flow:

τ = −
∫ t

−∞
η0

λ2
e

−(t−t ′)
λ

⎛⎝ e−2ε 0 0

0 1 0

0 0 e2ε

⎞⎠
123

dt ′ (9.182)

To calculate ε we must evaluate the integral in Equation (9.181) using the function ε̇
in Equation (9.179), which is sketched as a function of the dummy variable t ′′ in Figure
9.8. The time t in the limit of the integral for ε is the current time, or the time at which we
seek to calculate τ , and it is therefore greater than zero. The time t ′ in the lower limit is
some time in the past, which can be positive or negative. We see then that we must write
the integral for calculating ε differently, depending on the value of t ′.

ε(t ′, t) =
{∫ t

0 ε̇0 dt
′′ = ε̇0t t ′ < 0∫ t

t ′ ε̇0 dt
′′ = ε̇0(t − t ′) t ′ ≥ 0

(9.183)

This expression for ε is then used in Equation (9.182) to calculate the stress components.
The results are

τ11 = − η0

Cλ

(
2ε̇0λe

− tC
λ + 1

)
(9.184)

τ22 = −η0

λ
(9.185)

τ33 = η0

Aλ

(
2ε̇0λe

− tA
λ − 1

)
(9.186)

where A ≡ 1−2ε̇0λ and C ≡ 1+2ε̇0λ. Now we calculate the material functions η̄+
P1
(t, ε̇0)

and η̄+
P2
(t, ε̇0) from their definitions:

η̄+
P1

= −(τ33 − τ11)

ε̇0
= 2η0

AC

(
2 − Ae−

C t
λ − Ce−

A t
λ

)
(9.187)

ε
.
0

ε t
.
( )�

t t�0

Figure 9.8 Deformation-rate function ε̇(t ′′) for startup of the planar elongation experiment.
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η̄+
P2

= −(τ22 − τ11)

ε̇0
= 2η0

C

(
1 − e− C t

λ

)
(9.188)

Note that η̄+
P1

becomes unbounded for ε̇0 = 1/2λ.

9.2.2 DIFFERENTIAL LODGE EQUATION—UPPER CONVECTED MAXWELL

MODEL

The Lodge equation is better known in its differential form. To convert the integral equation
to a differential equation, we calculate dτ/dt by differentiating Equation (9.139), applying
the Leibnitz rule to the derivative of the integral. Table 9.1 is used to evaluate derivatives
of C−1.

−dτ
dt

= d

dt

∫ t

−∞
η0

λ2
e−

(t−t ′)
λ C−1(t ′, t) dt ′ (9.189)

=
∫ t

−∞
∂

∂t

[η0

λ2
e−

(t−t ′)
λ C−1(t ′, t)

]
dt ′ +

[η0

λ2
e−

(t−t ′)
λ C−1(t ′, t)

]∣∣∣
t ′=t

(9.190)

Since C−1(t, t) = I, the second term simplifies, and we can now expand the derivative
of the product inside the integral to obtain

− dτ

dt
= η0

λ2
I+

∫ t

−∞
η0

λ2
e−

(t−t ′)
λ

∂C−1(t, t ′)
∂t

dt ′ + 1

λ
τ (9.191)

where we have used Equation (9.139) in writing the last term. Substituting for ∂C−1/∂t

from Table 9.1 results in [again using Equation (9.139) where appropriate]

−dτ
dt

= η0

λ2
I− (∇v)T · τ − τ · ∇v + 1

λ
τ (9.192)

−η0

λ2
I =

[
dτ

dt
− (∇v)T · τ − τ · ∇v

]
+ 1

λ
τ (9.193)

The terms in square brackets have a special meaning [138] (discussed in Section 9.3) and

are denoted by
∇
τ , where the symbol ∇ indicates the following operations on an arbitrary

tensor A:

Upper convected
derivative of A

∇
A ≡ DA

DT
− (∇v)T · A− A · ∇v (9.194)

whereDA/Dt = dA/dt (see Section 2.6.3). The differential Lodge equation then becomes

τ + λ ∇
τ = −η0

λ
I (9.195)

This equation usually appears in a slightly different form that we can derive by redefining
τ with a constant offset in the diagonal components [138]. We can make this adjustment
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without any change to the significance of τ since for an incompressible fluid τ is only
known to within an isotropic constant (see Section 4.5). If the new stress tensor is defined
as ς ≡ τ + (η0/λ)I, the differential Lodge equation becomes

ς − η0

λ
I+ λ ∇

ς −η0

∇
I = −η0

λ
I (9.196)

ς + λ ∇
ς = −η0γ̇ (9.197)

where we have used
∇
I = −γ̇ [see Equation (9.194)].

We arrive at the usual form of the differential Lodge model, which is more commonly
known as the upper convected Maxwell model since it resembles the Maxwell equation:

Upper convected
Maxwell model

τ + λ ∇
τ = −η0γ̇ (9.198)

We have returned to using τ for the stress tensor. The derivative denoted by ∇ and defined by
Equation (9.194) is called the upper convected derivative, and the meaning of this quantity
will be discussed in Section 9.3. The predictions of the upper convected Maxwell model
match those for the integral Lodge equation.

9.2.3 OTHER LODGE-LIKE EQUATIONS

In developing his constitutive equation, Lodge chose the Finger tensor as the strain measure,
but a Maxwell model using the Cauchy tensor could also be defined:

Cauchy–Maxwell
equation

τ(t) = +
∫ t

−∞
η0

λ2
e−

(t−t ′)
λ C(t, t ′) dt ′ (9.199)

The choice of strain measure hinges entirely on the accuracy of the predictions of the
resulting constitutive equation. The use of the Cauchy tensor in a constitutive equation
results in the prediction of nonzero second normal-stress differences, a key shortcoming of
the Lodge equation and of other constitutive equations based on the Finger tensor alone.
The Cauchy–Maxwell equation [Equation (9.199)] overpredicts the magnitude of second
normal-stress-difference effects, however, and therefore this model is not generally used.
A table of the predictions of the Cauchy–Maxwell equation is given in Appendix D.

We can create a more general version of the Lodge equation by fixing the frame variance
of the GLVE model rather than of the simple Maxwell model. If we replace γ (t, t ′) in

Equation (9.11) with −C−1(t, t ′), we obtain the Lodge rubberlike liquid equation.

Lodge rubberlike
liquid model

τ(t) = −
∫ t

−∞
M(t − t ′) C−1(t ′, t) dt ′ (9.200)

The memory function M(t − t ′) that appears in the Lodge rubberlike liquid equation was
originally introduced in Equation 9.12. By replacing the single-relaxation-time memory
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function in the Lodge equation [function in square brackets in Equation (9.139)] with
a general function M(t − t ′), we improve the Lodge model’s ability to predict linear
viscoelastic behavior of systems. One common choice forM(t− t ′) is the memory function
for the generalized Maxwell model. The definition of the memory function is

M(t − t ′) ≡ ∂G(t − t ′)
∂t ′

(9.201)

For the generalized Maxwell model,

G(t − t ′) =
N∑
k=1

(
ηk

λk

)
e

−(t−t ′)
λk (9.202)

and therefore

Memory function
for generalized
Maxwell model

M(t − t ′) =
N∑
k=1

(
ηk

λ2
k

)
e

−(t−t ′)
λk (9.203)

With this choice for memory function, the Lodge rubberlike liquid model can accurately
predict linear viscoelastic behavior.

The Lodge-like models we have discussed up to now are quasi-linear models, that is,
they are fixups of constitutive models based on equations linear in τ21 and γ̇21, but they are
nonlinear because the strain measures C−1 and C are nonlinear in γ̇21. Other empirical
modifications of the Lodge model are possible, particularly those producing nonlinear
models. For example, we could replaceM(t− t ′)with a function of both time and invariants
of the rate-of-deformation tensor γ̇ . Alternatively we could propose an integral equation

that would involve both the Finger and the Cauchy tensors. These types of nonlinear integral
equations will be discussed in Section 9.4.1.3.

9.3 Convected Derivatives

We saw in the last section that by changing the strain measure used in the Maxwell
equation, we arrive at a modified Maxwell equation that fixes the problem of frame variance
encountered in the original model and that predicts nonzero first normal-stress differences
in steady shear. This represents an important first step into the domain of finite-strain
constitutive models.

Also in the last section we showed that using the Finger tensor in the integral Lodge
model corresponded to replacing the partial time derivative in the differential Maxwell
model with a new derivative, the upper convected derivative. In the history of the develop-
ment of constitutive equations based on continuum mechanics, researchers have followed
both the path of developing new integral equations for τ based on adopting different strain
measures and the path of developing new differential equations for τ based on proposing
new time derivatives (Figure 9.9). To understand this latter path, we need some knowledge
of the physical basis of convected derivatives; this is the subject of this section. We first
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Figure 9.9 Two paths for improving constitutive equations based on continuum mechanics: new
time derivatives yield new differential constitutive equations; new strain measures yield new integral
constitutive equations.

begin with a discussion of nonorthonormal bases. Next we write the coefficients of the stress
tensor in a nonorthonormal basis that moves and deforms with the flowing continuum. The
upper convected derivative will be shown to be related to the time derivative of convected
stress components. We will also see that other types of convected derivatives are admissible
and lead to different, objective, differential constitutive equations, such as the differential
version of the Cauchy–Maxwell equation. This section is highly technical and can be
omitted on first reading. For readers more interested in advanced constitutive modeling
than in the justification of the use of convected derivatives, we recommend you skip ahead
to Section 9.4.

9.3.1 NONORTHONORMAL BASES

To delve into the meaning of convected derivatives, we must familiarize ourselves with
the mechanics of nonorthonormal bases. Up until now the basis vectors we have used to
express vector and tensor coefficients have been mutually orthogonal and of unit length.
In the simplest orthonormal system, the Cartesian coordinate system, the basis vectors are
also independent of position. All of the coordinate systems discussed have been fixed in
the lab frame, that is, stationary (except in the example at the end of Chapter 8).

As pointed out in Chapter 2, however, basis vectors need not be orthonormal or
stationary. The only requirements are that the basis vectors be linearly independent and
nonzero. The convected derivative that arose in the discussion of the upper convected
Maxwell model in the previous section is a special derivative, which has meaning in a
coordinate system that is embedded in a flowing medium and that moves and deforms with
the continuum. In such convected coordinate systems, even if the basis vectors start out
as orthonormal basis vectors, after some flow, the material-embedded basis vectors will
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no longer be mutually orthogonal, nor will they be of unit length. The fact that material
basis vectors change with time does not invalidate them as basis vectors as long as they
remain linearly independent and nonzero. The first criterion of linear independence is easily
satisfied by convected coordinates, since vectors that are embedded in a deforming fluid
cannot become linearly dependent, as this would require that two particles of mass occupy
the same space at the same time. The second criterion, that the basis vectors be nonzero,
is also easily fulfilled by embedded vectors since mass is conserved—an embedded basis
vector originally chosen to be nonzero cannot flow to be a zero vector if mass is conserved.
Vectors embedded in a flowing material are thus well suited to serve as time-varying basis
vectors for flowing media.

We begin then with the basics of working with nonorthonormal bases. When using
nonorthonormal basis vectors, we must take care when calculating products between
vectors. When we wish to express the dot product between two vectors v and u in terms of
their Cartesian coordinates, the procedure is familiar:

v · u = vi êi · ukêk (9.204)

= viuk δik (9.205)

= vkuk (9.206)

The dot products formed between the Cartesian basis vectors give the Kronecker delta
function since they are mutually orthogonal unit vectors. We can equally well write v and u
in terms of nonorthonormal basis vectors b(1), b(2), and b(3) and calculate their dot product:

v · u = vmb(m) · upb(p) (9.207)

= vmupb(m) · b(p) (9.208)

Since the basis vectors b(k) are not orthonormal, however, we cannot simplify the product
any further without first knowing the specifics of the basis vectors b(k). For the product
b(m) · b(p) we can use the short-hand notation bmp; the nine scalars bmp are called the metric
coefficients of the basis. Note that bmp = bpm since the dot product is commutative.

There do exist special vectors that when dotted with nonorthonormal basis vectors
result in the Kronecker delta [7]. These vectors are called the reciprocal basis vectors b(1),
b(2), and b(3), where we have placed the indices identifying the vectors in the superscript
position to indicate their inverse relationship to the original subscripted vectors:

b(p) · b(j) = δpj (9.209)

The reciprocal vectors are formed as follows:

b(1) ≡ b(2) × b(3)
B

(9.210)

b(2) ≡ b(3) × b(1)
B

(9.211)

b(3) ≡ b(1) × b(2)
B

(9.212)



9.3 Convected Derivatives 341

B ≡ b(1) · b(2) × b(3) �= 0 (9.213)

Notice that the indices associated with the vectors rotate through the three positions 123, 231,
312 in the definitions. The quantity a · b× c is called the triple product of the three vectors
a, b, and c. It can be shown that the triple product of any three vectors is equal to the volume
of the parallelepiped formed by the vectors. Thus the triple product in Equation (9.213) will
be nonzero as long as the basis vectors themselves are nonzero and noncoplanar.

From the use of the cross product and the triple product in the definitions of the
reciprocal basis vectors, one can see that b(i) · b(j) = b(i) · b(j) = δij . We can also show that

b(1) · b(2) × b(3) = 1

B
�= 0 (9.214)

and thus the reciprocal basis vectors are not coplanar and may also be used as basis vectors.
The reciprocal basis vectors are not, in general, mutually orthogonal, and they are not of
unit length, and hence there is a set of reciprocal metric coefficients associated with the
reciprocal basis vectors b(i) · b(j) ≡ bij . For the Cartesian basis ê1, ê2, ê3, the reciprocal
vectors are equal to the basis vectors themselves, and bij = bij = δij , as can be seen from
the preceding definitions.

9.3.2 CONVECTED COORDINATES

The usual way of describing fluid particle motion in a flow is to reference the motion to a
fixed laboratory coordinate system and to keep track of how the coefficients of fluid particles
change with time. The convected coordinate approach is in some senses opposite to this.
In this approach we will hold the coordinates of the fluid particles constant and have the
coordinate system (i.e., the basis vectors) change with time. In the convected approach, we
wish to use coordinates that are permanently associated with particular particles of fluid
(Figure 9.10). For convenience we choose the convected coordinate system to be a mutually
orthogonal, equally spaced three-dimensional grid at time t , which is our reference time.

Because of flow, fluid particles separate at various rates at different times t ′. In the
convected coordinate approach we describe the positions of each particle at all times t ′ by
using the same convected coordinates x̂1, x̂2, and x̂3. In writing the convected coordinates
we place the indices in the superscript position following an accepted convention [7, 26].
We will have more to say about this notation a bit later. At times other than the reference
time t the lines of constant x̂1, x̂2, and x̂3 will not be straight and will not form a uniform
grid. Rather, the deformation of the coordinate grid will map the deformation of the fluid.
The basis vectors that are associated with the convected coordinates will not be mutually
orthogonal, nor of unit length. To define these basis vectors in a consistent fashion, we
return briefly to a discussion of Cartesian and curvilinear coordinates.

The position of a particle with respect to an origin can be identified by the vector r ,
which in Cartesian coordinates is given by

r = xêx + yêy + zêz (9.215)

The vector position r is a function of coordinates x, y, and z, and its differential dr can be
written as



342 INTRODUCTION TO MORE ADVANCED CONSTITUTIVE MODELING

Figure 9.10 Two-dimensional schematic of the proposed convected coordinate system at two differ-
ent times. The x, y, z coordinate system is fixed in space, whereas the x̂1, x̂2, x̂3 coordinate system
moves with the flow. At time t ′, point P has convected coordinates x̂1 = 5, x̂2 = 3 and Cartesian
coordinates x = −11, y = 6. At time t , convected coordinates are the same since they are attached to
the material point, but Cartesian coordinates have changed to x = 5, y = 3. The convected coordinate
system is chosen so that it coincides with the Cartesian system at t ′ = t .

dr = ∂r

∂x
dx + ∂r

∂y
dy + ∂r

∂z
dz (9.216)

= êx dx + êy dy + êz dz (9.217)

In cylindrical coordinates8 r̄ , θ , z, the position vector r may be written as

r = r̄ êr̄ + zêz (9.218)

with its differential written as

dr = ∂r

∂r̄
dr̄ + ∂r

∂θ
dθ + ∂r

∂z
dz (9.219)

Recall that the cylindrical basis vectors are a function of position. Therefore to evaluate
the partial derivatives in the expression for the differential [Equation (9.219)] we write the
cylindrical basis vectors in terms of spatially independent (e.g., Cartesian) coordinates:

êr̄ = cos θ êx + sin θ êy (9.220)

êθ = − sin θ êx + cos θ êy (9.221)

êz = êz (9.222)

8 In this section, to distinguish the magnitude of the position vector r from the cylindrical coordinate
r̄ , we follow Bird et al. [26] and call the cylindrical coordinate r̄ .
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We then arrive at a more familiar result for dr:

dr = dr̄ êr̄ + r̄ dθ(− sin θ êx + cos θ êy)+ dz êz (9.223)

= dr̄ êr̄ + r̄ dθ êθ + dz êz (9.224)

In spherical coordinates, the analogous procedure results in the expected differential element
dr in that system (see Problem 9.41).

To define the convected basis vectors we will carry out a procedure analogous to that
described for Cartesian and cylindrical coordinate systems. The vector r can be expressed
as a function of the convected coordinates x̂1, x̂2, and x̂3, and the differential dr may be
written as

dr = ∂r

∂x̂1
dx̂1 + ∂r

∂x̂2
dx̂2 + ∂r

∂x̂3
dx̂3 (9.225)

We choose therefore to define the basis vectors g
(i)

for our convected coordinate system as

g
(1)

≡ ∂r

∂x̂1
(9.226)

g
(2)

≡ ∂r

∂x̂2
(9.227)

g
(3)

≡ ∂r

∂x̂3
(9.228)

Thus Equation (9.225) becomes

dr =
3∑
i=1

g
(i)
dx̂i (9.229)

The basis vectors g
(i)

depend on convected coordinate position x̂i as well as on time t ′ and
are not, in general, mutually perpendicular, nor are they of unit length. The dot product
between pairs of these base vectors will be denoted by gij , called the metric of this basis:

g
(i)

· g
(j)

≡ gij (9.230)

The nonorthogonal convected basis vectors g
(i)

have corresponding reciprocal vectors g(i),

defined in the usual way9:

g(1) ≡
g
(2)

× g
(3)√

g
(9.231)

g(2) ≡
g
(3)

× g
(1)√

g
(9.232)

9 The choice of writing
√
g for the value of the triple product in these definitions is arbitrary but

standard [26]. The scalar g is equal to the determinant of the 3 × 3 matrix with elements gij .
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g(3) ≡
g
(1)

× g
(2)√

g
(9.233)

√
g ≡ g

(1)
· g
(2)

× g
(3)

(9.234)

Any vector may be expressed in the coordinate systems formed by the convected basis
vectors or the convected reciprocal basis vectors:

v = vi êi (9.235)

= v̂ig
(i)

(9.236)

= v̂ig(i) (9.237)

The notation convention for nonorthonormal basis vectors is to match superscripted co-
efficients with subscripted basis vectors and vice versa [7, 26]. Thus in Equation (9.236)
we write v̂j for the convected coordinates of v that are written with respect to the basis
vectors g

(j)
. Vector coefficients of v written with respect to the reciprocal basis vectors g(k)

are written as v̂k . The coefficients of v in the Cartesian system (or in stationary curvilinear
systems), vi , are called the physical components of v. The coefficients in the convected basis
system, v̂i , are called the contravariant components, and those in the reciprocal basis, v̂i ,
are called the covariant coefficients of v. The dot products of the pairs of basis vectors, gij ,
are called the covariant metric coefficients, and the analogous quantities for the reciprocal
base vectors, gij , are called the contravariant metric coefficients.10 Also, the contravariant
and covariant coefficients do not, in general, have the same units as v because the g(i) and
g
(j)

can have units.
Tensor covariant and contravariant coefficients may also be written:

A = Aij êi êj (9.238)

= Âij g(i)g(j) (9.239)

= Âij g
(i)
g
(j)

(9.240)

To calculate, for example, the contravariant coefficients of a tensor A, we can pre- and
postmultiply A by the reciprocal basis vectors:

g(p) · A · g(k) = g(p) · Âjng
(j)
g
(n)

· g(k) (9.241)

= Âjn(g(p) · g
(j)
)(g

(n)
· g(k)) (9.242)

= Âjnδpj δnk (9.243)

10 The terms contravariant and covariant refer to the methods by which the coordinate coefficients
transform from one coordinate system to another. The basis vectors and reciprocal basis vectors
transform differently, because while the basis vectors are always associated with the same material
particles (they are embedded vectors), the reciprocal basis vectors are not. To learn more about these
concepts, see Appendix C.7 and Lodge [155].
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= Âpk (9.244)

For practice in using nonorthonormal bases, we will prove an identity involving the metric
coefficients gij ≡ g(i) · g(j) and gij ≡ g(i) · g(j).

EXAMPLE
Prove that

∑3
i=1 gjig

ip = δjp.

SOLUTION

We begin by writing an arbitrary vector v with respect to the two different bases. To make
clear which indices are summed, we will place the summation signs explicitly:

v =
3∑
i=1

g
(i)
v̂i =

3∑
k=1

g(k)v̂k (9.245)

We now dot-multiply both sides of Equation (9.245) with one of the basis vectors g
(p)

:

3∑
i=1

g
(p)

· g
(i)
v̂i =

3∑
k=1

g
(p)

· g(k)v̂k (9.246)

3∑
i=1

gpi v̂
i =

3∑
k=1

δpkv̂k = v̂p (9.247)

Now we dot-multiply the same expression [Equation (9.245)] with g(p):

3∑
i=1

g(p) · g
(i)
v̂i =

3∑
k=1

g(p) · g(k)v̂k (9.248)

3∑
i=1

δpi v̂
i = v̂p =

3∑
k=1

gpkv̂k (9.249)

We can combine Equations (9.247) and (9.249) to arrive at

v̂p =
3∑
i=1

gpi v̂
i (9.250)

=
3∑
i=1

gpi

3∑
k=1

gikv̂k (9.251)

=
3∑
k=1

3∑
i=1

gpig
ikv̂k (9.252)

For the last equation to be true, the following relation must hold:
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δpk =
3∑
i=1

gpig
ik (9.253)

Having defined convected coordinates and having practiced a bit with using these
nonorthogonal basis vectors, we can now use convected coordinates to describe deformation
and flow.

9.3.2.1 Deformation

Our goal in constitutive modeling is to develop mathematical expressions that relate the
deformation of a material with the stress that is generated by the deformation [192, 193,
194, 195, 155, 25].11 Deformation is the change in shape of a body. To describe change
in shape, or strain, it is sufficient to know the change in the distances between every pair
of particles in the body. When solving flow problems in fixed orthonormal coordinates,
we have kept track of the location of every particle as a function of time. If we know the
location of every particle at every time, we know the shape, at every instant, of the body
made up of the particles. We also have additional information that does not pertain to shape,
however; namely, we know the orientation of the body as a function of time.

To just describe shape, we must focus on the separations of particles as a function
of time. Consider two particles S and W whose positions relative to the origin O of
the convected coordinate system (another material point) are given by vectors w and
s (Figure 9.11). We can write these vectors in the convected coordinate system g

(i)
as

follows:

w = ŵpg
(p)

(9.254)

s = ŝmg
(m)

(9.255)

The vector between S andW is just w− s, and the distance between these two points is the
magnitude of that vector,∣∣w − s∣∣2 = (w − s) · (w − s) (9.256)

= (ŵp − ŝp)g
(p)

· (ŵk − ŝk)g
(k)

(9.257)

= (ŵp − ŝp)(ŵk − ŝk) g
(p)

· g
(k)

(9.258)

= (ŵp − ŝp)(ŵk − ŝk)gpk (9.259)

Recall that in our convected coordinates the coefficients of the vectors never change. The
length and orientation of the basis vectors g

(i)
do change. Since (ŵp − ŝp)(ŵk − ŝk) is

11 Our presentation here has been heavily influenced by the discussions of Oldroyd’s work [192, 193,
194, 195] by Lodge [155] and Bird et al. [26].
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Figure 9.11 Schematic showing two material vectors. Points S,W , and the originO are all material
points. As the material deforms, the three vectors shown always connect the same pairs of material
points.

constant, all of the shape information of the body must be contained in the time- and
particle-varying metric of the basis, gpk .

Since gpk ≡ g
(p)

· g
(k)

and vector dot products are commutative, then gpk = gkp.
There are nine coefficients gpk , but due to symmetry, only six of these are independent. The
original vectors indicating the positions of particles W and S contained three independent
components each, which in combination yield nine independent quantities. The reduction
from nine independent quantities in the combination ofw and s to the six in gpk reflects that
the gpk do not contain orientation information. The missing three independent quantities
are the equivalent of the information contained in the coefficients of a unit vector pointing
from S to W . We can see that if we construct a constitutive equation including only the
gpk to account for change in shape (strain), the resulting expression will be free from
spurious effects of particle orientation. This is the great advantage of using convected
coordinate systems.

9.3.2.2 Stress

We now turn to examine the properties of the coefficients of the total stress tensor�, written
in the convected coordinate system. Recall that the force per unit area on a surface is equal
to the unit normal to that surface dotted with the stress tensor [Equation (3.58)]. Therefore
the force f

(i)
,12 on a surface perpendicular to g

(i)
is given by (no summation implied)

f
(i)

=
g
(i)

|g
(i)

| ·� (9.260)

where the normalization is needed since g
(i)

is not a unit vector. We can postmultiply this
equation by g

(j)
to obtain

12 This notation f
(i)

for the force on a surface with unit normal g
(i)
/|g

(i)
| is unfortunate, but hard

to avoid. Normally the parenthesized subscript is reserved for nonnormal basis vectors; this is the
one exception.
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f
(i)

· g
(j)

=
g
(i)

|g
(i)

| ·� · g
(j)

(9.261)

If we choose now to write � in the basis formed by the reciprocal basis vectors, expres-
sion (9.261) simplifies considerably. To avoid confusion, all summations will be written
explicitly in this sequence:

f
(i)

· g
(j)

=
g
(i)

|g
(i)

| ·� · g
(j)

(9.262)

=
3∑
p=1

3∑
k=1

1

|g
(i)

|g(i) · �̂pk g
(p)g(k) · g

(j)
(9.263)

=
3∑
p=1

3∑
k=1

1√
g
(i)

· g
(i)

�̂pk (g
(i)

· g(p))(g(k) · g
(j)
) (9.264)

=
3∑
p=1

3∑
k=1

1√
g
(i)

· g
(i)

�̂pk δipδkj (9.265)

= 1√
g
(i)

· g
(i)

�̂ij (9.266)

Solving now for �̂ij , the covariant coefficients of �, we obtain

�̂ij = (f
(i)

· g
(j)
)
√
g
(i)

· g
(i)

(9.267)

From this relation we see that the covariant coefficients of � only depend on the dot
products between vectors and not on the vectors themselves. These particular coefficients
of � are therefore independent of instantaneous particle position and orientation. They
depend only on the shape through scalar products among the basis vectors g

(i)
, and on

forces through the scalar product of the force vector f
(i)

with the g
(j)

. Since the �̂ij are
independent of particle orientation, we can safely avoid introducing into the constitutive
equation unwanted dependence on solid-body rotation when taking the time derivative of
this coefficient.

Oldroyd [192, 193, 194] formulated rules for constructing admissible constitutive
equations based on the arguments presented [26]. The complete deformation history of
a material is contained in the metric coefficients gpk(̂x1, x̂2, x̂3, t ′), and the complete stress
history is contained in the stress coefficients �̂pk(̂x1, x̂2, x̂3, t ′). Admissible constitutive
equations must be able to be written in terms of only these two functions plus material
constants. For nonisothermal problems the temperature field must be included as well.
Similar arguments can be used to show that the contravariant coefficients of �, �̂pk , and
the contravariant metric coefficients gpk may be used analogously to construct admissible
constitutive equations [155, 192, 193, 194, 195].
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9.3.3 RELATION TO CARTESIAN COORDINATES

In the last section we showed that time derivatives of contravariant and covariant coefficients
of the stress tensor could be used to construct objective constitutive equations. Working
directly in the convected coordinate system, however, is awkward and unfamiliar. We turn
now to the task of relating quantities expressed in the convected coordinate systems to
the more familiar Cartesian laboratory frame. We will see in this section that when the
time derivatives of the contravariant coefficients of�, ∂�̂ij /∂t , are expressed in stationary

coordinates, the upper convected derivative
∇
� results. An additional convected derivative

(the lower convected time derivative, associated with the Cauchy tensor) results when the
time derivatives of the covariant coefficients are used.

A tensor � may be written with respect to any basis, such as the stationary Cartesian
basis or the basis formed by the convected basis vectors g

(i)
:

� = �ij êi êj (9.268)

= �̂ij g
(i)
g
(j)

(9.269)

We would like to relate the physical coefficients �ij with the contravariant convective
coordinates �̂ij . We have not specified much about the basis g

(i)
. We now choose that

at time t (the reference time) the convected coordinate system g
(i)

exactly coincides with

the fixed Cartesian system êi . With this choice we know that the convected coordinates
of each particle, x̂1, x̂2, and x̂3, at all times t ′ will be numerically equal to their Cartesian
coordinates at time t . This is the fundamental property of the convected basis: all of the
change-of-orientation and -shape information for a particle is encoded in the changes in the
basis vectors g

(i)
, allowing the convected coefficients x̂i that identify the particle to remain

forever constant.
We can now relate the convected basis vectors to the familiar deformation tensors F

and F−1. The basis vectors g
(i)

at time t ′ are defined as

g
(i)

≡ ∂r ′

∂x̂i
(9.270)

By our choice in the previous paragraph, the convected coordinate x̂i is equal to the ith
coefficient of the vector r that identifies where the particle is at time t . If we denote this by
xi and write r ′ in the Cartesian basis ê1, ê2, ê3, we obtain

g
(i)

= ∂x ′
p

∂xi
êp (9.271)

Recalling the definition of the deformation-gradient tensor F , we can write

F ≡ ∂r ′

∂r
(9.272)

g
(i)

= êi · F (9.273)

= FT · êi (9.274)
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where the last two expressions are equivalent. We can derive analogous expressions13 for
the reciprocal base vectors g(i):

g(i) = ∂x̂i

∂r ′
(9.280)

= ∂xi

∂x ′
p

êp (9.281)

= F−1 · êi (9.282)

= êi · (F−1)T (9.283)

Note that in these expressions the reciprocal relationship between g
(i)

and g(j) is preserved:

g
(i)

· g(j) = êi · F · F−1 · êj
= δij (9.284)

We can now write down a general tensor expression for �̂pk:

� =
3∑
i=1

3∑
j=1

�̂ij g
(i)
g
(j)

(9.285)

13 The starting point for this second derivation, Equation (9.280), can be obtained if we write x̂i as
a function of r ′. For the differentials dx̂i we can then write

dx̂i = dx̂i

dr ′
· dr ′ (9.275)

From the definition of g
(i)

,

dr ′ = g
(i)
dx̂i (9.276)

Substituting this into expression (9.275), we arrive at

dx̂i = dx̂i

dr ′
· g
(k)
dx̂k (9.277)

For this to be true, the following must hold:

dx̂i

dr ′
· g
(k)

= δik (9.278)

which gives us that dx̂i/dr ′ must be the vector reciprocal to g
(k)

, or

dx̂i

dr ′
= g(i) (9.279)
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g(p) ·� · g(k) =
3∑
i=1

3∑
j=1

g(p) · �̂ij g
(i)
g
(j)

· g(k) (9.286)

=
3∑
i=1

3∑
j=1

δpi�̂
ij δjk (9.287)

= �̂pk (9.288)

�̂pk = g(p) ·� · g(k) (9.289)

= êp ·
(
F−1

)T ·� · F−1 · êk (9.290)

We can relate �̂pk to the Cartesian coordinates�ms by substituting� = ∑3
m=1

∑3
s=1�ms

êmês into Equation (9.290):

�̂pk =
3∑
m=1

3∑
s=1

êp ·
(
F−1

)T ·�msêmês · F−1 · êk (9.291)

=
3∑
m=1

3∑
s=1

[
êp ·

(
F−1

)T · êm
] (
ês · F−1 · êk

)
�ms (9.292)

We wish to examine the time derivative at any time t ′ of the contravariant convected
coefficients of�. The stress is a function of time t ′ and particle label r or, equivalently, of
particle label x̂i :

�(t ′, r) = �(t ′, x̂1, x̂2, x̂3) (9.293)

From the chain rule then,

d�̂pk

dt ′
=

(
∂�̂pk

∂t ′

)
x̂

+
3∑
s=1

(
∂�̂pk

∂x̂s

)
t ′,x̂j,j �=s

∂x̂s

∂t ′
(9.294)

=
(
∂�̂pk

∂t ′

)
x̂

(9.295)

where we have used the fact that the x̂s are always constant. Thus we will take the partial
derivative at constant convected coefficients (i.e., following the same material particle),
which is equivalent to the total time derivative of �̂pk since the convected coefficients
do not change with time. To evaluate this derivative in fixed coordinates, we will use
Equation (9.290) and expand using the product rule of differentiation. The following results
are written in Gibbs (vector–tensor) notation, but the details of the calculation at every step
can be verified using Einstein notation:

d�̂pk

dt ′
= ∂

∂t ′

[
êp ·

(
F−1

)T ·� · F−1 · êk
]

(9.296)
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= êp ·
{(
F−1

)T ·� ·
(
∂F−1

∂t ′

)
x̂

+
(
F−1

)T ·
(
∂�

∂t ′

)
x̂

· F−1

+
[
∂(F−1)T

∂t ′

]
x̂

·� · F−1

}
· êk (9.297)

= êp ·
(
F−1

)T ·
{(
∂�

∂t ′

)
x̂

−
[
� · ∇′v′ + (∇′v′)T ·�

]}
· F−1 · êk (9.298)

We have used Table 9.1 to arrive at Equation (9.298).
To interpret this expression, we will now let t ′ go to t . For most of the terms, this limit

is straightforward:

F−1 −→ I (9.299)(
F−1

)T −→ I (9.300)

∇′v′ −→ ∇v (9.301)

To write (∂�/∂t ′)x̂ as t −→ t ′, we must consider two ways of writing the total stress tensor
�. While we have been writing � as a function of t ′ and particle label r , it also may be
conceived as a straightforward function of position r ′ and time t ′. If we write d�/dt ′ using
both representations and invoke the chain rule, it becomes clear what (∂�/∂t ′)x̂ becomes
as t −→ t ′. We had previously calculated d�(t ′, x̂)/dt ′ [Equation (9.295)] and arrived at
the following result:

d�(t ′, x̂)
dt ′

=
(
∂�

∂t ′

)
x̂

(9.302)

Calculating the time derivative of � using the representation � = �(t ′, r ′) we obtain

d�(t ′, r ′)
dt ′

=
(
∂�

∂t ′

)
r ′

+
3∑
s=1

(
∂�

∂r ′s

)
t ′,r ′

j,j �=s

∂r ′s
∂t ′

(9.303)

=
(
∂�

∂t ′

)
r ′

+
3∑
s=1

(
∂�

∂r ′s

)
t ′,r ′

j,j �=s

v′
s (9.304)

=
(
∂�

∂t ′

)
r ′

+ v′ · ∇′� (9.305)

In the stationary laboratory coordinates we see that the total derivative of� with respect to
t ′ is also just the substantial derivative at t ′ [Equation (9.305) [7]. Thus as t −→ t ′,(

∂�

∂t ′

)
x̂

= d�

dt ′
−→ D�

Dt
(9.306)

Combining all expressions for the limit t −→ t ′, the expression for the contravariant
convected derivative now becomes
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d�̂pk

dt
= êp ·

{
D�

Dt
−
[
� · ∇v + (∇v)T ·�

]}
· êk (9.307)

Relationship between
convected coefficients and
upper convected derivative

d�̂pk

dt
= êp · ∇

� · êk (9.308)

where we have written the final expression using the symbol for upper convected derivative
that was defined in Section 9.2.2. Recall that pre- and postmultiplying a tensor with
orthonormal coordinates, as is done in Equation (9.308), just yields the coefficients of

the tensor (in this case
∇
�) in that orthonormal basis (i.e., êp · A · êk = Apk).

We started with the goal of relating the convected coefficients �̂pk to a fixed Carte-
sian coordinate system. The result of our manipulations is shown in Equation (9.308).

Equation (9.308) tells us that the Cartesian coordinates of the tensor
∇
� ≡ D�/Dt −[

� · ∇v + (∇v)T ·�
]
, the upper convected derivative of the total stress tensor, are equal

to the time derivatives of the convected coordinates �̂pk . We had earlier shown that taking
the time derivative of the convected coordinates �̂pk is an objective way of calculating the
time changes in stress in a flow. Thus we have found a way to calculate, in fixed Cartesian
coordinates, the frame-invariant time derivative of a quantity such as stress—the answer is
to calculate the upper convected derivative.

This rather lengthy exercise serves to show the physical meaning of the upper convected
derivative: the upper convected derivative represents the rate of change of a quantity as
seen from a coordinate system that is convected along with the flow, that is, a coordi-
nate system that translates, rotates, and deforms with the fluids. The upper convected
derivative is an objective, that is, a frame-invariant method of taking into account the
deformation that fluid particles experience in flow. The frame invariance results from using
the convected coordinates, which contain information about particle separations without
including information about particle orientations. Using the upper convected derivative to
formulate a constitutive equation is just one choice of many possible convected derivatives,
as we will see next. It is a choice, however, that yields a properly objective constitutive
equation.

9.3.4 OTHER CONVECTED DERIVATIVES

In the preceding derivation we sought a frame-invariant time derivative by using time
derivatives of convected components. We started with Equation (9.296) by taking the time
derivative of the contravariant coefficients of�. We could have equally well chosen to use
the covariant coefficients, however, and we would have arrived at a different but equally
valid time derivative of stress called the lower convected derivative, which is denoted by
the symbol �:

Lower convected
derivative of A

�

A ≡ DA

Dt
+ ∇v · A+ A · (∇v)T (9.309)
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The lower convected time derivative appears in the differential version of the Maxwell
model when it is corrected for frame variance by using the Cauchy tensor C, rather than

the negative of the Finger tensor C−1. The result is the lower convected Maxwell model:

Lower convected
Maxwell model

τ + λ �τ = −η0γ̇ (9.310)

The approach for showing the equivalence of the Cauchy–Maxwell equation [Equa-
tion (9.199)] and the lower convected Maxwell model is the same as was followed
in Section 9.2, where we manipulated the Lodge equation to get the upper convected
Maxwell model.

Our use of convected coordinate systems was motivated by our need to find frame-
invariant ways of expressing time-changing stresses and deformations. We have discussed
two convected coordinate systems, g

(i)
and g(i), that produce frame-invariant time deriva-

tives, but there are many other coordinate systems that may be used to produce properly
invariant time derivatives. One such coordinate system is the corotational frame, in which
the time derivative following a fluid particle is taken with respect to a coordinate system that
rotates with the instantaneous fluid angular velocity [27]. The fixed-coordinates expression

for the derivative that results, called the corotational or Jaumann derivative
◦
A, is shown in

Table 9.4 along with the definitions of the derivatives we have seen thus far. The vorticity
tensor, ω = ∇v − (∇v)T , appears in the definition of the corotational derivative.

In addition, empirical modifications may be made to the convected derivative expres-
sions to develop different constitutive equations. For example, Gordon and Schowalter [93]
used the scalar parameter ξ to introduce nonaffine motion into their picture of how dilute

TABLE 9.4
Time Derivatives and Corresponding Strain Measures of Continuum Mechanics*

Name of Derivative Derivative in Gibbs Notation Strain Measure

Substantial or material
DA

Dt
= dA

dt
= ∂A

∂t
+ v · ∇A None

Covariant or lower convected
�

A ≡ DA

Dt
+ ∇v · A+ A · (∇v)T C

Contravariant or upper convected
∇
A ≡ DA

Dt
−
[
(∇v)T · A+ A · ∇v

]
C−1

Corotational or Jaumann
◦
A ≡ DA

Dt
+ 1

2

(
ω · A− A · ω

)

Gordon–Schowalter
�

A ≡ DA

Dt
− (∇v)T · A− A · ∇v + ξ

2
(A · γ̇ + γ̇ · A) E

* ω = ∇v− (∇v)T , andE is the solution of the differential equation
�

E = 0. The parameter ξ in the Gordon–Schowalter
derivative is related to the amount of nonaffine motion allowed in a deformation [93].
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solutions flow [138]. In the resulting convected derivative, ξ determines the character of

the derivative (see Table 9.4). For ξ = 0 the Gordon–Schowalter derivative
�

A becomes the
upper convected derivative, for ξ = 1 it is the corotational derivative, and for ξ = 2, the
lower convected derivative. The only constraints on proposing new convected derivatives
are that the derivative be objective and that the constitutive equation that results make
meaningful predictions. These are simple but stringent conditions.

Often an equivalent strain measure can be deduced for a proposed invariant time deriva-
tive (see Table 9.4). Thus the two ways we have discussed of arriving at better constitutive
equations—proposing better strain measures or proposing better time derivatives—are in
many respects equivalent. Again, the proof of any constitutive equation is how well its
predictions match reality. For a comparison of how well several constitutive equations
predict actual polymer behavior, see Larson [138] and other references [124, 125].

9.4 Other Constitutive Approaches

To do meaningful simulations of stress and deformation of non-Newtonian fluids, we must
have accurate constitutive models that work in the high-strain or high strain rate (nonlinear
viscoelastic) regimes. In this text we have discussed several constitutive models for non-
Newtonian fluids: the generalized Newtonian model, the Maxwell model, the generalized
linear viscoelastic model, and, in this chapter, the Lodge model and various convected
versions of the Maxwell model (see Table 9.5). Of these, the GLVE model is inappropriate
for high-rate flows, and the Maxwell model is inappropriate for general flows. In this
chapter we have been studying models valid at high deformation rates, but the usefulness
of the constitutive equations studied so far depends on the fluid being modeled. We have
still not identified any constitutive equations that are appropriate for fluids exhibiting both
normal-stress effects and shear-thinning, and these are among the most common types of
non-Newtonian fluids.

It is beyond the scope of this text to explore nonlinear viscoelastic constitutive models
in great detail, but it will be helpful to discuss some of the major relations here. We will
discuss the two methods that have dominated the search for better constitutive models, the
continuum approach and the molecular modeling approach.

9.4.1 CONTINUUM APPROACH

The approach we have followed thus far has been based on continuum mechanics. We began
with the Newtonian equation, which works for many fluids, and we modified it empirically,
hoping for good non-Newtonian constitutive equations. The only other advance we have
discussed is substituting the convected derivatives for simple time derivatives in order to
preserve material objectivity.

The high-strain constitutive equations developed in Sections 9.2 and 9.3 were all based
on the Maxwell model. The original Maxwell model is a simple equation that is linear in
both strain rate γ̇21 and stress τ21. When modeling any process, it is always prudent to begin
with the simplest models (i.e., linear models) and to move to more complex, nonlinear
equations only if the linear equations are inadequate. In the next section we discuss other
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TABLE 9.5
Summary of Non-Newtonian Constitutive Equations Studied Thus Far

Name Equation Advantages/Limitations

Generalized
Newtonian model

τ = −η(γ̇ )γ̇ Easy to use/does not predict normal stresses
in shear; no memory effects

Maxwell model τ + λ∂τ
∂t

= −η0γ̇ Includes some memory effects/invalid in
rotating frame of reference

Generalized linear
viscoelastic model

τ = −
∫ t

−∞
G(t − t ′)γ̇ (t ′) dt ′ Valid for all materials in linear viscoelastic

limit/only valid at low strain rates; does not
predict normal stresses in shear

Upper convected
Maxwell model

τ + λ ∇
τ = −η0γ̇ Includes memory effects and shear 1st normal

stresses/does not predict shear-thinning or
nonzero shear 2nd normal-stress difference

Lodge model τ = −
∫ t

−∞
η0

λ2
e−

(t−t ′)
λ C−1(t ′, t) dt ′ Same as upper convected Maxwell

Lower convected
Maxwell model

τ + λ�τ = −η0γ̇ Includes memory effects and shear normal
stresses/does not predict shear-thinning
and overpredicts shear 2nd normal-stress
difference

Cauchy–Maxwell
model

τ(t) = +
∫ t

−∞
η0

λ2
e−

(t−t ′)
λ C(t, t ′) dt ′ Same as lower convected Maxwell

linear scalar models besides the Maxwell model, and the quasi-linear tensorial models we
can develop from them by including convected derivatives and nonlinear strain tensors. In
a subsequent section we will introduce explicitly nonlinear models constructed by other
methods, such as including scalar nonlinear functions and adding higher-order terms to the
Maxwell model.

9.4.1.1 Linear and Quasi-Linear Models

The Maxwell model contains linear terms containing stress τ21, rate of deformation γ̇21,
and also a linear term involving the time derivative of stress, ∂τ21/∂t . One linear term that
is missing from the Maxwell model is the time derivative of the rate of strain. The Jeffreys
model [26] is the model formed by adding this term to the Maxwell model:

Jeffreys model
(scalar version)

τ21 + λ1
∂τ21

∂t
= −η0

(
γ̇21 + λ2

∂γ̇21

∂t

)
(9.311)

The Jeffreys model contains two time constants, λ1 and λ2, called the relaxation and
retardation times, respectively, and a viscosity parameter η0. Recall that for the Maxwell
model we could rationalize the form of the equation by invoking the image of a spring and
a dashpot acting in series (see Figure 8.2). The mechanical system whose force equation is
analogous to the Jeffreys model is shown in Figure 9.12.
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Figure 9.12 Mechanical system composed of two dashpots and a spring, for which the differential
equation relating force and displacement is analogous to the Jeffreys model.

When converted to a tensor form, the Jeffreys model suffers from the same frame-
variance problem as the Maxwell and the generalized linear viscoelastic models—stresses
calculated with the Jeffreys model will depend on superposed coordinate rotations of the
system (see the discussion in Section 8.5). As shown at the beginning of this chapter, we
can fix this frame-variance problem by replacing partial differentiations with respect to time
with any of the convected time derivatives in Table 9.4. Converting the Jeffreys model to a
tensor form and using the upper convected and the lower convected derivatives, we obtain
the following constitutive equations:

Upper convected Jeffreys
or Oldroyd B fluid [192]

τ + λ1
∇
τ = −η0

(
γ̇ + λ2

∇
γ̇

)
(9.312)

Lower convected Jeffreys
or Oldroyd A fluid

τ + λ1
�
τ = −η0

(
γ̇ + λ2

�

γ̇

)
(9.313)

These models are no longer linear because the convected derivative terms introduce
nonlinear terms in the velocity gradient ∇v. Bird et al. [26] call the convected Maxwell and
Jeffreys models quasi-linear.

The Oldroyd A or lower convected Jeffreys model turns out not to be a useful model,
as it suffers from many of the drawbacks of the lower convected Maxwell model due to its
use of the lower convected derivative (it overpredicts �2; see Appendix D). The Oldroyd
B model resembles the Lodge model in some ways—it predicts constant viscosity and first
normal-stress coefficient, as well as zero second normal-stress coefficient. The predictions
of these two models differ slightly in elongation, however: the Lodge model predicts a
tension-thickening elongational viscosity, whereas the Oldroyd B model can predict either
tension-thickening (λ1 > λ2) or constant elongational viscosity (λ1 = λ2) (see Appendix
D). For λ1 < λ2 the Oldroyd B model predicts negative first normal stresses. The Oldroyd
B or upper convected Jeffreys model is used widely for Boger fluids, fluids that exhibit
constant viscosity but also pronounced normal-stress effects [24, 31].

We must still find models that will predict shear thinning of viscosity and the first
normal-stress coefficient. To search out new models, we can think of more linear models
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by adding more terms to the Jeffreys model, using as our inspiration different combinations
of springs and dashpots. We can then hope to produce shear-thinning nonlinear models by
fixing up the linear models with convected derivatives, as we did the Maxwell and Jeffreys
models. Unfortunately this strategy will not introduce qualitatively different constitutive
equations. We can see why by examining the integral version of the Jeffreys model. Consider
the tensor version of the Jeffreys model:

τ + λ1

∂τ

∂t
= −η0

(
γ̇ + λ2

∂γ̇

∂t

)
(9.314)

Although this constitutive equation is inadmissible due to its use of the partial time
derivative, this equation is the starting point for calculating the integral version of the
Jeffreys model, which we can make objective by replacing its nonobjective strain measure
with the Finger or Cauchy tensors (Section 9.1). We can solve the Jeffreys equation, Equation
(9.314), using the same integrating-factor technique that we used in Section 8.2.1 to solve
for stress in the Maxwell equation. After multiplying by the integrating factor (1/λ1)e

t/λ1

and factoring the left side, we obtain

∂

∂t

(
et/λ1τ

)
= −η0

λ1

(
et/λ1 γ̇ + λ2e

t
λ1

∂γ̇

∂t

)
(9.315)

Then taking τ to be finite at −∞, we can integrate this equation:

et/λ1τ(t) = −η0

λ1

∫ t

−∞

[
et

′/λ1 γ̇ (t ′)+ λ2e
t ′/λ1

∂γ̇ (t ′)

∂t ′

]
dt ′ (9.316)

τ(t) = −
∫ t

−∞
η0

λ1
e

−(t−t ′)
λ1 γ̇ (t ′) dt ′ − e−t/λ1

∫ t

−∞
λ2η0

λ1
et

′/λ1

∂γ̇ (t ′)

∂t ′
dt ′ (9.317)

The second term on the right side can be integrated by parts if we take γ̇ to be finite at −∞,

and we obtain the final result:

Integral Jeffreys
model

τ(t) = −
∫ t

−∞

[
η0

λ1

(
1 − λ2

λ1

)
e

−(t−t ′)
λ1

]
γ̇ (t ′) dt ′ − λ2η0

λ1
γ̇ (t) (9.318)

We can see that the integral Jeffreys model is the equivalent of the sum of two models:
a Newtonian model with viscosity λ2η0/λ1 and a generalized linear viscoelastic model with
the relaxation modulus functionG(t − t ′) given by the terms in square brackets. If the two
terms on the right side are combined, the Jeffreys model can also be cast into the form
of a generalized linear viscoelastic model with the relaxation modulus function G(t − t ′)
given as [26]

Relaxation modulus
function for

Jeffreys model
G(t − t ′) =

[
η0

λ1

(
1 − λ2

λ1

)
e

−(t−t ′)
λ1

]
+ 2
η0λ2

λ1
δ(t − t ′) (9.319)
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where δ(t − t ′) is the symmetric or Dirac delta function [129, 27]. The Dirac delta function
is defined in terms of the following relations:∫ +b

−a
f (x)δ(x) dx = f (0) (9.320)∫ +b

−a
f (x)

dδ(x)

dt
dx = −df

dx
(0) (9.321)

where f (x) is an arbitrary function, both a and b are positive, and a < b. The Dirac delta
function can be represented by the continuous function

δ(x) = lim
n−→∞

√
n

π
e−nx

2
(9.322)

Recall that the functionG(t− t ′) is just the response of the fluid to a step strain imposed
at t = t ′. Thus the Jeffreys model responds to a step strain with an exponential stress decay
and an added infinite contribution to the shear stress at the time of the step. This additional
contribution is generated by the added Newtonian term—Newtonian fluids generate stresses
proportional to instantaneous shear rate, and during the step γ̇21 is infinite.

We see then that the Jeffreys model is a GLVE model, that is, it can be written as
an integral over all past times over a time-dependent material-based function times the
time-dependent rate-of-deformation tensor γ̇ :

GLVE model: τ(t) = −
∫ t

−∞
G(t − t ′) γ̇ (t ′) dt ′ (9.323)

By adding the term −η0λ2 ∂γ̇ /∂t to the Maxwell model, we changed the relaxation modulus

function G(t − t ′), but we left the overall structure of the model intact—an integral over
a time-dependent function times γ̇ . Other linear modifications of the Maxwell model

motivated by other combinations of springs and dashpots in series and parallel result in
a similar effect: the relaxation-modulus function changes, but the overall structure of the
model remains the same [25]. Since all these linear models are encompassed by the GLVE
model, we know from the discussion in Section 9.1 that all spring–dashpot models can be
written explicitly in terms of their strain measure γ (t, t ′):

GLVE model (strain explicit): τ(t) = +
∫ t

−∞
M(t − t ′) γ (t, t ′) dt ′ (9.324)

where

M(t − t ′) ≡ ∂G(t − t ′)
∂t ′

(9.325)

and we can make them objective by substituting an objective strain measure such as the
Finger or Cauchy tensor forγ (t, t ′). The objective versions of any spring–dashpot-generated

model then will be Lodge-like (if C−1 is used) or Cauchy–Maxwell-like (if C is used) and
will be quasi-linear due to the nonlinear strain measure. Thus we cannot obtain qualitatively
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new behavior such as shear-thinning or the proper ratio of�1/�2 by tinkering with dashpot
and spring models in this way. We need to try a different approach.

9.4.1.2 Nonlinear Differential Constitutive Models

In the last section we showed that we are unable to model both shear-thinning and
nonzero normal-stress differences in shear using quasi-linear models. We now discuss
nonlinear models, that is, models that are nonlinear in either γ̇ or τ , or that have non-

linearities introduced by scalar functions of the invariants of these tensors. Nonlinear
models lead to the calculation of flow fields or material functions in the same way as
linear models, but due to the complexities of the equations, we must employ advanced
solution methods, usually numerical methods [54], to obtain results. We will introduce the
reader to these more complex constitutive models here but leave an in-depth discussion
of carrying out constitutive calculations with nonlinear models to the literature [26, 238,
54, 212].

The models in this section do succeed, in many cases, in predicting shear-thinning
and reasonable normal-stress effects. The job of distinguishing among the models and
choosing the best one for a particular application thus comes down to examining the
detailed model predictions and comparing them with the experimental data on a material
of interest. Since for all of the equations in this section it is a fairly involved process to
make constitutive predictions, the added accuracy of the nonlinear models does not always
justify the heavy computational price. Making the decision between using a more accurate
but computationally intense nonlinear model and a simpler but qualitatively incorrect model
such as the power-law generalized Newtonian fluid is the most delicate decision left up to
the rheologist. For some guidance on this process, see Tables 9.6 and 9.7.

A simple way of requiring a model to shear-thin is to introduce a viscosity function
that varies with the shear rate γ̇ . This is the approach that was taken in the development of
the generalized Newtonian fluid (GNF) model:

τ = −η(γ̇ )γ̇ (9.326)

As discussed in Chapter 7, the GNF equation will not predict nonzero normal stresses
in shear flow because the predicted stresses are proportional to the rate-of-deformation
tensor γ̇ , and γ̇11 = γ̇22 = γ̇33 for shear flow. Also, memory effects are absent from the

GNF model.
We can create a nonlinear model that contains memory effects and that predicts normal

stresses in shear flow by replacing the viscosity parameterη0 in the upper convected Maxwell
model (this model contains memory effects but does not shear-thin) with a viscosity function,
η(γ̇ ) (which explicitly shear-thins). Such a constitutive equation is admissible because it
uses the upper convected derivative and because the function we propose to introduce is
only a function of an invariant of γ̇ . The resulting equation is called the White–Metzner

equation [264] [compare to equation (8.40)]:

White–Metzner
model

τ + η(γ̇ )

G0

∇
τ = −η(γ̇ )γ̇ (9.327)
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TABLE 9.6
Summary of Predictions of Several Nonlinear Constitutive Equations in Shear and Elongation

Name Advantages/Limitations

Upper convected Jeffreys or
Oldroyd B [Equation (9.312)]

Does not predict shear-thinning; does predict shear 1st normal-stress
differences; shape of elongational viscosity versus elongation rate depends
on value of retardation time λ2.

Lower convected Jeffreys or
Oldroyd A [Equation (9.313)]

Does not predict shear-thinning; does predict shear 1st and 2nd normal-stress
differences; predictions of �2 are too large, however.

White–Metzner [Equa-
tion (9.327)]

Predicts shear-thinning; does predict shear 1st normal-stress differences;
does not predict �2 and does not predict a linear viscoelastic limit for all
choices of η(γ̇ ).

Oldroyd 8-constant
[Equation (9.328)]

Predicts shear-thinning; does predict shear 1st and 2nd normal-stress
differences; predicts multiple overshoots in startup of steady shearing (not
observed experimentally); predicts a maximum in elongational viscosity as
a function of elongation rate (often observed); contains upper convected
Maxwell and Jeffreys as well as many other models as special cases [26].

Giesekus [Equation (9.329)] Predicts shear-thinning; does predict shear 1st and 2nd normal-stress
differences; predicts overshoots in shear and 1st normal stresses in start-up
experiment; contains upper convected Maxwell and Jeffreys models as
special cases [26].

Factorized Rivlin-Sawyers
[Equation (9.330)]

Very general model; predictions of model depend on choices of functions
�1 and �2; for �2 �= 0 the Rivlin–Sawyers equation predicts �2 �= 0.

Factorized K-BKZ
[Equation (9.331)]

Very general model; is a subset of the factorized Rivlin–Sawyers equation;
predictions of model depend on choices of potential function U(I1, I2).

In the White–Metzner equation G0 is a constant modulus parameter associated with the
model, and η(γ̇ ) is a function that must be specified. The ratio η(γ̇ )/G0 can be thought of
as a deformation-rate-dependent relaxation time λ(γ̇ ).

The White–Metzner model is appealing in that it is relatively easy to make calculations
of material functions and flow fields with this model. This model does not have a unique
linear viscoelastic limit, however, because of the function η(γ̇ )—the linear viscoelastic
limit (γ̇ → 0) depends on the function η(γ̇ ). If the function η(γ̇ ) is chosen to have
a low-shear-rate plateau, then at low shear rates the linear viscoelastic behavior of the
upper convected Maxwell equation will be obtained. Some of the characteristics of the
White-Metzner model are discussed in Larson [138]. Calculations of the journal-bearing
problem (eccentric rotating cylinders) are reported by Beris et al. [18] and are discussed
in Bird et al. [26]. The material functions calculated with the White–Metzner model
in steady flows are the same as for the Lodge (upper convected Maxwell) model with
the constant parameter η0 replaced with a function η(γ̇ ) and λ replaced with λ(γ̇ ) =
η(γ̇ )/G0. The White–Metzner model performs qualitatively differently from the upper
convected Maxwell model in step strains because of the effect of rapid deformation on
the relaxation times λ(γ̇ ) [138]. The White–Metzner model does not predict the Lodge–
Meissner relationship [138].
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TABLE 9.7
Summary of the Kinds of Applications That Might Be Modeled with the Constitutive
Equations Discussed in This Book*

Application Important Effects Potential Constitutive Equation

Fiber spinning Elongational flow; want fluid to be
tension-thickening

Cannot use straight power-law GNF since shear
and elongation thin together; a hybrid GNF
could be used, i.e., one with different power laws
for shear and elongation; alternatively could use
UCM, UCJ-Oldroyd-B, which do not shear-thin,
or a nonlinear model that shear-thins

Extrusion Viscoelasticity plays a minor role
[61]

GNF with appropriate viscosity function

Profile extrusion Die swell important; this is an elastic
effect

UCM, UCJ-Oldroyd-B (for non-shear-thinning
fluids), or any of the nonlinear constitutive
equations that shear-thin

Injection molding Pressure drop and flow rate important;
nonisothermal flows; elongation can
be important in fountain flow inside
mold [44]

GNF with appropriate viscosity function; need to
include energy effects; may use nonlinear model
if fountain flow is important

Contraction flows Elongation is important; elasticity
affects the character of the vortices
that are formed [103, 104]

GNF models can be used, but the fixed Trouton
ratio of the standard GNF (Tr=3) will limit
the type of vortex behavior that is predicted; if
viscoelasticity is suspected to be an important
effect, use UCM, UCJ-Oldroyd-B, or nonlinear
models if shear-thinning is important

Pumping Viscoelasticity is rarely important in
pumping [44]

GNF

Mixing Highly elastic materials may strongly
affect the power consumed in a
mixer; also rod climbing will occur

UCM, UCJ-Oldroyd-B, or nonlinear models if
shear-thinning is important

Coating Normal stresses are important in
instabilities in coating flows

UCM, UCJ-Oldroyd-B, or nonlinear models if
shear-thinning is important

* Help is provided in identifying which constitutive equations might be appropriate for the type of simulation attempted.
Models considered include GNF and upper convected Maxwell (UCM) and Jeffreys (UCJ-Oldroyd-B).

A direct way of including nonlinearity in a proposed constitutive equation is to include
terms involving expressions such as γ̇ ·γ̇ or γ̇ : γ̇ . Oldroyd proposed a constitutive equation

that added to the upper convected Maxwell model all possible terms that are linear in either
γ̇ or τ and at most quadratic in γ̇ . The resulting constitutive equation is called the Oldroyd

8-constant model:14

14 The terms in the Oldroyd 8-constant model were arrived at by imposing the conditions of frame
invariance on an arbitrary function of τ and γ̇ and then retaining only the terms linear in τ and at

most quadratic in γ̇ . The expressions are simplified to those shown in Equation (9.328) by using the

Cayley–Hamilton theorem (see glossary in Appendix B). There is a nice discussion of the Oldroyd
8-constant model in Larson [138].
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Oldroyd 8-constant model

τ + λ1
∇
τ + 1

2 (λ1 − μ1)(γ̇ · τ + τ · γ̇ )+ 1
2μ0(tr τ)γ̇ + 1

2ν1(τ : γ̇ )I

= −η0

[
γ̇ + λ2

∇
γ̇ +(λ2 − μ2)(γ̇ · γ̇ )+ 1

2ν2(γ̇ : γ̇ )I

] (9.328)

η0, λ1, and λ2 are the zero-shear viscosity, relaxation time, and retardation time that are
familiar from the Maxwell and Jeffreys models. The other five constants, μ0, μ1, μ2, ν1,
and ν2, are associated with the additional nonlinear terms. Oldroyd wrote his equation in
terms of the corotational derivative (see Table 9.4), and therefore some of the parameters
appear in combinations rather than singly in the equation as written here, which uses the
upper convected derivative.

The Oldroyd 8-constant model contains many of the constitutive equations we have
already discussed as special cases (Table 9.8). The Oldroyd 8-constant model predicts shear-
thinning, normal stresses in shear flow, and many other qualitative effects. Bird et al. give
a discussion of the predictions of a simplified version of this model, which they call the
Oldroyd 4-constant model. It is the equivalent of the Oldroyd B plus the term containing
μ0 from the Oldroyd 8-constant model. The values of the parameters in the Oldroyd 4-
constant model are listed in Table 9.8. The second-order fluid, mentioned in Table 9.8, also
a subset of the Oldroyd 8-constant model, is a model that results from assuming that the
stress tensor may be expressed as a polynomial in the rate-of-deformation tensor γ̇ . This

expansion, known as the retarded-motion expansion, has also been considered to higher
orders, most notably to third order in the constitutive equation known as the third-order
fluid [26].

Omitted from the Oldroyd 8-constant model are terms that are second order in stress.
There is no reason a priori to avoid these terms, and in fact the Giesekus equation, which

TABLE 9.8
Values of Parameters in the Oldroyd 8-Constant Model That Produce
Various Other Constitutive Equations [26]

Name λ1 λ2 μ0 μ1 μ2 ν1 ν2

Newtonian 0 0 0 0 0 0 0

Upper convected Maxwell λ1 0 0 λ1 0 0 0

Lower convected Maxwell λ1 0 0 −λ1 λ2 0 0

Corotational Maxwell λ1 0 0 0 0 0 0

Upper convected Jeffreys (Oldroyd B) λ1 λ2 0 λ1 λ2 0 0

Lower convected Jeffreys (Oldroyd A) λ1 λ2 0 −λ1 −λ2 0 0

Corotational Jeffreys λ1 λ2 0 0 0 0 0

Second-order fluid 0 λ2 0 λ1 μ2 0 0

Oldroyd 4-constant model λ1 λ2 μ0 λ1 λ2 0 0
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Giesekus
equation

τ + λ ∇
τ +αλ

η0
τ · τ = −η0γ̇ (9.329)

was developed from molecular arguments involving anisotropic drag [138], includes such
a term.
This model has three parameters, the zero-shear viscosity η0, the relaxation time λ, and
α, which is a parameter that relates to the anisotropy of the drag encountered by flowing
polymer segments. A more in-depth discussion of this model and of the other constitu-
tive equations mentioned here can be found in Larson [138]. Larson also compares the
predictions of some of these models with experimental data and with other models not
mentioned here.

9.4.1.3 Integral Models with Nonlinearity

We have discussed the idea of using frame-invariant finite-strain measures to eliminate
spurious rotation effects from the Maxwell model (see Figure 9.9). The resulting finite-
strain models, for example, the Lodge equation [Equation (9.139)] and the Cauchy–Maxwell
equation [Equation (9.199)], are quasi-linear since the strain measures used,C−1 andC, are
nonlinear in strain. An explicitly nonlinear model can be formulated by introducing scalar
functions of strain invariants into the integral formulation. A general constitutive equation
that follows this approach is the factorized Rivlin–Sawyers equation [26]15:

Factorized
Rivlin–Sawyers

equation
τ(t) = +

∫ t

−∞
M(t − t ′)

[
�2(I1, I2)C −�1(I1, I2)C

−1
]
dt ′ (9.330)

where M(t − t ′) is the memory function [Equation 9.12)], I1 and I2 are the first and
second invariants of C or C−1 as defined in Appendix C.6 (the invariants of a tensor and
its inverse are related; see Problem 9.45), and �1 and �2 are scalar functions that must
be specified. The third invariant of C−1 is not needed in these functions because of the

incompressibility condition (I3 = det|C−1| = 1 for incompressible fluids). Note that both
the Finger tensor and the Cauchy tensor appear in the factorized Rivlin–Sawyers equation.
Constitutive equations that use only the Finger tensor predict a zero second normal-stress
coefficient in shear, whereas equations that only use the Cauchy tensor overpredict �2 (for
examples, see Tables D3 and D.5). Thus, with appropriate choices for the functions�1 and
�2, the correct magnitude of �2 can be achieved with a Rivlin–Sawyers equation.

The choice of the functions �1 and �2 depends on what type of behavior is most
important to the user. The Rivlin–Sawyers class of equations includes many successful
molecular-model-based constitutive equations, such as the Rouse–Zimm, Doi–Edwards,
and Curtiss–Bird models [26, 27, 138]. It is essential to bring in material-specific mecha-
nistic information to help specify �1 and �2, since the range of behavior that falls within
the Rivlin–Sawyers class of equations is extremely broad.

15 This model is considered factorized because the memory function M(t − t ′) is the only explicit
function of time, and it is factored out of each term, leaving the pure strain functions �1 and �2.
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A subset of the Rivlin–Sawyers class of equations is the K-BKZ class, due to Kaye
[122] and Bernstein, Kearsley, and Zapas [20]:

Factorized
K-BKZ
equation

τ =
∫ t

−∞
M(t − t ′)

[
2
∂U

∂I2
C(t, t ′)− 2

∂U

∂I1
C−1(t ′, t)

]
dt ′ (9.331)

In the factorized K-BKZ equation the strain-dependent functions multiplying the strain ten-
sors are related to each other—they are the derivatives of a potential functionU(I1, I2)with
respect to the first two invariants of C−1. Using the K-BKZ equation instead of the Rivlin–
Sawyers equation eliminates a possible violation of the second law of thermodynamics in
the Rivlin–Sawyers equation [141].

The predictions of the K-BKZ equations depend on the choice of the potential function
U(I1, I2), but reasonable fits to experimental data on linear polymers can be obtained,
as discussed in Larson [138]. The K-BKZ equation does not perform well in flows that
include flow reversal. See Bird et al. [26] for some sample calculations involving the K-
BKZ model.

9.4.2 MOLECULAR APPROACH—POLYMERIC CONSTITUTIVE MODELS

We have studied several continuum-based constitutive equations, such as the generalized
Newtonian fluid and the generalized linear viscoelastic fluid, and we have discussed how
they can be used for some rheological modeling purposes. In the previous several sections
we discussed the kinds of nonlinear rheological models that have been developed using the
continuum approach. We have learned how to make constitutive equations frame invariant
in at least two ways, and we have seen that as we demand that constitutive equations model a
wider variety of behavior, the equations themselves become quite complex, and the choices
we have in how to specify functions in the new constitutive equations (such as potential
function U in the K-BKZ or the Rivlin–Sawyers functions) become unmanageable.

Progress in constitutive modeling is unlikely to come by random searching through all
the possible differential models or all the possible Rivlin–Sawyers models using trial and
error. To pilot our way through what is still an enormously wide variety of equations, we
must turn to techniques that derive information from fluid structure, that is, we must pursue
molecular models of rheological behavior. To illustrate the molecular modeling approach
we will focus on rheological modeling of polymeric systems.

The molecular approach to polymer constitutive modeling begins with structural
pictures of polymers and builds up equations for macroscopic stresses based on the model
used. The advantage of molecular-based modeling is that predictions may be made, not
only of the form of the constitutive equations, but also of the effect on flow properties
of molecular parameters such as molecular weight, monomeric friction coefficient, and
molecular relaxation times. A disadvantage of the molecular approach is the complexity
that is inherent in macromolecular descriptions or, alternatively, the inaccuracies inherent
in simplifying assumptions.

The molecular approach to constitutive modeling is discussed in detail in Bird et al.’s
second volume [27] as well as in Larson [138] and Doi and Edwards [70]. Here we will
content ourselves with a description of the most important classical molecular models of
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polymeric systems and a few remarks on trends in constitutive modeling from a molecular
perspective.

9.4.2.1 Probabilistic Approach—Configuration Distribution Function

If we review our initial discussion in Chapter 3 of the extra stress tensor τ , we recall that
this tensor is meant to model all molecular stresses acting at a point in a fluid. If we can
calculate the molecular tension force f̃ acting on an arbitrary surface of area dA with unit
normal n̂, then we can calculate τ from16

f̃ = −dA n̂ · τ (9.332)

We then must calculate the forces generated in a deforming polymeric system from a
molecular picture of that system. First we will consider the forces generated when deforming
a single polymer chain. We will then take the result for a single chain and apply it first to a
crosslinked polymer solid, and then to an entangled polymer melt. Our discussion on this
subject follows that of Larson [138] with some input from Bird et al.’s second volume [27].

Consider a polymer chain such as that shown schematically in Figure 9.13. Research
on polymer chains in a melt of other chains has shown that polymers prefer to adopt a
random coil configuration at equilibrium. The coil shape can be described in terms of the
end-to-end vector R, shown in Figure 9.13. The forces we seek are the forces generated
when the random coil is deformed. A simple way to keep track of this deformation is to
consider the change in orientation and length of the end-to-end vector R.

From physics we know that the work dW is equal to force dotted with displacement.
For the polymer coil, the work performed in extending the end-to-end vector by an amount
dR is given by Equation (9.333)

R�

Figure 9.13 Two-dimensional schematic of the definition of the end-to-end vector R in a polymer
coil. The polymer coil can be modeled as a random walk.

16 Although in Equation (3.58) it is the total-stress tensor that appears in an equation of this form,
we are dealing with incompressible fluids, and we are unconcerned by the addition of an isotropic
force such as pI. We will only be predicting normal stress differences with the constitutive equations

developed. Note also that f = −f̃ .
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dW = f̃ · dR (9.333)

where f̃ is the tension force necessary to deform the polymer coil. If f̃ is a conservative

force, we can calculate f̃ from

f̃ = ∂W

∂R
(9.334)

The workW is just the coil free energy which equals −T S, where T is absolute temperature
andS is the chain entropy. To calculate the force, then, we need an expression for the entropy.

To calculate the entropy we must turn to statistical thermodynamics. Boltzmann showed
that the system entropy is related to the number of configurations that the system can adopt,

S = k ln� (9.335)

where k is Boltzmann’s constant, and � is the number of configurations of the polymer
chain that result in a coil with end-to-end vector R. If we model the coil as a random walk
of N steps of step length a, we can use some straightforward results of studies of such
random walks to determine �. For a random walk beginning at the origin, the probability
ψ0 dR1dR2dR3 that the other end of the walk lies at a position between R and R + dR is
approximately given by a Gaussian function:

ψ0(R) ∼=
(
β√
π

)3

e−β
2R·R (9.336)

where β2 = 3/(2Na2). ψ0(R) is called the configuration distribution function, and it is
associated with the equilibrium configuration of the polymer chain.

The number of configurations that have an end-to-end vector ofR is proportional toψ0.
If we write� = cψ0, we can calculate the entropy from Equation (9.335) and subsequently
the force needed to deform the coil:

S = k ln� = k(ln c + lnψ0) (9.337)

= k ln c + 3k ln

(
β√
π

)
− kβ2R · R (9.338)

f̃ = ∂W

∂R
= −T ∂S

∂R
(9.339)

= 2kTβ2R (9.340)

Force to deform
a Gaussian spring

f̃ = 3kT

Na2
R (9.341)

where N is the number of steps of length a of a random walk used to model the polymer
chain. The final result for the force necessary to elongate a polymer coil [Equation (9.341)]
indicates that a polymer coil resists stretching with a force that is proportional to its length.
This is the same as the force law for a linear spring [Equation (8.46)].
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We can use the result for the force required to deform a single chain [Equation (9.341)]
to derive an expression for the force on an arbitrary surface within the fluid [27]. Consider
a plane of area dA with unit normal n̂ located arbitrarily within a polymer melt. There are
ν polymer chains per unit volume in the melt. We now construct a cube bisected by dA, as
shown in Figure 9.14. If we choose the box sides to be of length ν−1/3, then there will be
just one chain in the box on average. We will call R the end-to-end vector of the chain in
the box, and we will consider an end-to-end vector to be in the box when its origin (tail) is
in the box.

We can then write the force on dA = ν−2/3 due to chains of end-to-end vector R as
follows:( force on surface dA

due to chains of
end-to-end vector R

)
=

⎛⎜⎝
probability
chain has

end-to-end
vector R

⎞⎟⎠
⎛⎜⎝

probability a chain
of end-to-end

vector R crosses
surface dA

⎞⎟⎠
⎛⎜⎝

force exerted on
surface due to

chain of end-to-
end vector R

⎞⎟⎠ (9.342)

We have already calculated the expression for the force [Equation (9.341)]. The probability
that a chain has end-to-end vector R is given by the conformation distribution function
ψ(R) dR1 dR2 dR3,⎛⎜⎝

probability a
nonequilibrium chain has

an end-to-end vector
between R and R + dR

⎞⎟⎠ = ψ(R) dR1 dR2 dR3 (9.343)

Figure 9.14 Schematic of a cube of fluid that contains one polymer chain on average. The chain is
modeled by its end-to-end vector R. The probability that R crosses the surface dA is just the ratio of
the shaded area in (b) to the area abcd.
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This is not the equilibrium distribution because we are considering the general case where
the chain may be deformed. To calculate the probability that the vector R passes through
dA, consider Figure 9.14.

The end-to-end vector R can fit into the box in a variety of places. Recall that we have
defined that R is in the box if its tail (indicated by a black dot) is in the box. If we consider
R located along the left edge of the section of the box shown in Figure 9.14b, we can see
that it is the length n̂ · R that determines whether R crosses the plane dA. As we move R
to the right, the vector crosses dA when its tail is a distance n̂ ·R from the centerline of the
cube. Moving R further to the right, the vector stops intersecting dA when its tail is at the
centerline. This thought experiment is equally valid at any cube cross section and thus we
can calculate the probability of R crossing dA as the ratio of the volume in which the tail
of R is located when it crosses dA to the total volume of the box:⎛⎜⎝

probability a chain
of end-to-end

vector R crosses
surface dA

⎞⎟⎠ =
(n̂ · R)

(
ν− 1

3

)2

ν−1
= (n̂ · R)ν 1

3 (9.344)

We can now assemble the terms of Equation (9.342) to obtain the tension force on dA due
to chains of end-to-end vector R:( tension force on surface

dA due to chains of
end-to-end vector R

)
= {
ψ(R) dR1 dR2 dR3

} {
ν

1
3 (n̂ · R)

}{ 3kT

Na2
R

}
(9.345)

Finally, to include the contributions of chains of all end-to-end vectors, we integrate the
expression for force over all of end-to-end-vector space:⎛⎜⎝

tension force
on surface dA

due to all
polymer chains

⎞⎟⎠ =
∞∫

−∞

∞∫
−∞

∞∫
−∞

( force on surface dA
due to chains of

end-to-end vector R

)
dR1 dR2 dR3 (9.346)

f̃ = 3kT ν
1
3

Na2

∞∫
−∞

∞∫
−∞

∞∫
−∞

(
n̂ · R R)ψ(R) dR1 dR2 dR3 (9.347)

= 3kT ν
1
3

Na2

(
n̂ · 〈R R〉) (9.348)

where 〈R R〉 is the integral of the tensor R R over the nonequilibrium configuration
distribution function ψ(R),

〈 · 〉 ≡
∞∫

−∞

∞∫
−∞

∞∫
−∞

· ψ(R) dR1 dR2 dR3 (9.349)

Comparing this result with Equation (9.332) and taking dA = (
ν−1/3

)2
, we obtain the result

for the stress tensor predicted from this analysis:
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f̃ = −ν− 2
3 n̂ · τ (9.350)

Stress tensor generated
by elongating a
Gaussian chain

τ = −3νkT

Na2
〈R R〉 (9.351)

Note that ν is the number of chains per unit volume. In probability theory the quantity 〈RR〉
is called the second moment of the function ψ(R) (see Equation 9.349). Thus, the stress
due to polymer chains described in this way is proportional to the second moment of the
configuration distribution function.

9.4.2.2 Elastic Solids—Rubber-Elasticity Theory

Equation (9.351) gives us the stress in terms of an integral over the configuration distribution
function ψ(R). This function has not yet been specified, however. The configuration
distribution function contains the information on how the end-to-end vectors of all the
different polymers in a system deform for all possible deformations. Thus, the amount of
unknown information in ψ(R) is about equal to the amount of unknown information in
the original stress tensor τ . What we have gained by this analysis, however, is a change
in question. Instead of asking what the stress is at all points in a fluid for all possible
deformations, we are now asking, how do the end-to-end vectors of all the different polymers
in a system deform for all possible deformations? To address this question, we must propose
a model for how these end-to-end vectors move under all circumstances. We will discuss
two models: the elastic network model for crosslinked polymers and the Green–Tobolsky
temporary-network model for polymer melts.

Consider an ideal crosslinked network in which, between every two crosslinks, there
is a polymer strand that follows a random walk of N steps of length a (Figure 9.15). We
assume that at equilibrium, that is, at time t ′ before deformation, each strand is characterized
by the same equilibrium configuration-distribution function ψ0(R

′) dR′
1 dR

′
2 dR

′
3.

The simplest type of deformation we can consider is an elongational deformation
characterized by this inverse deformation-gradient tensor F−1:

F−1 =
⎛⎝ λ1 0 0

0 λ2 0

0 0 λ3

⎞⎠
123

(9.352)

λ1, λ2, and λ3 are the elongation ratios in the three coordinate directions. For example, for
steady uniaxial elongation in the x3-direction, we showed that λ3 = l/l0 = eε̇0t [Equa-
tion (4.41)]. We now make the key assumption that the crosslinks follow the macroscopic
deformation. This means that the deformation that characterizes the fluid at a macroscopic
level can also be applied to microscopic motion, such as the motion of the crosslinks in our
polymer network. This is called affine motion.

For affine deformation we can use the macroscopic elongation ratios λ1, λ2, and λ3 to
relate the microscopic end-to-end vectors before and after the deformation:

λ1 = R1

R′
1

(9.353)
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R�

R2

R1

( )b

( )a

( )c

Figure 9.15 Crosslinked polymer network. (a) Between junction points, the polymer strands are
random coils. (b) The stress on the network can be modeled by studying the distribution of vectors
that connect the crosslink points. (c) If we translate all the crosslink-to-crosslink or end-to-end vectors
to the origin, we can see what the configuration distribution function looks like. Here the function is
random.

λ2 = R2

R′
2

(9.354)

λ3 = R3

R′
3

(9.355)

R(t) =
⎛⎝ λ1R

′
1

λ2R
′
2

λ3R
′
3

⎞⎠
123

(9.356)

R(t) is the end-to-end vector of the strand after deformation. The 1,2,3 coordinate system
is a Cartesian system in which the deformation is elongational.

Our goal is to write the configuration distribution function ψ(R) for the system after
deformation. We can do this if we notice that since we deformed affinely, if we started with
a certain number of polymer strands with end-to-end vector between R′ andR′ +dR′, after
the deformation we will have the same number of strands having end-to-end vector between
R and R+ dR. In other words, every strand in the equilibrium state with initial end-to-end
vector R′ will map to a strand in the deformed state with end-to-end vector R. Thus the
probability that the end-to-end vector of a strand is betweenR and R+dR in the deformed
state is given by the equilibrium distribution function ψ0:⎛⎜⎝

probability of
end-to-end vector

between R
and R + dR

⎞⎟⎠ = ψ(R) dR1 dR2 dR3 (9.357)

= ψ0(R
′) dR′

1 dR
′
2 dR

′
3 (9.358)
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ψ(R) dR1, dR2, dR3 =
(
β√
π

)3

e−β
2R′ ·R′

dR′
1 dR

′
2 dR

′
3 (9.359)

=
(
β√
π

)3

e
−β2

{(
R1
λ1

)2+
(
R2
λ2

)2+
(
R3
λ3

)2
}
dR1 dR2 dR3 (9.360)

Configuration
distribution

function after
deformation

ψ(R) =
(
β√
π

)3

e
−β2

{(
R1
λ1

)2+
(
R2
λ2

)2+
(
R3
λ3

)2
}

(9.361)

Note that dR′
1dR

′
2dR

′
3 = dR1dR2dR3 because of incompressibility.

Now that we know ψ(R), we can calculate the stress tensor from Equation (9.351),

τ = −3kT ν

Na2
〈R R〉 (9.362)

= −3kT ν

Na2

∞∫
−∞

∞∫
−∞

∞∫
−∞

R R ψ(R) dR1 dR2 dR3 (9.363)

= −νkT λ2
i êi êi (9.364)

Much algebra is left out between these last two steps. To write this result in a more familiar
form, compare with the Finger tensor for this deformation:

C−1 = (F−1)T · F−1 =
⎛⎝ λ2

1 0 0

0 λ2
2 0

0 0 λ2
3

⎞⎠
123

(9.365)

The constitutive equation we derive for this affine-deformation model for an elastic solid
is [257, 79, 115, 243]

Affine deformation
of a solid rubber

(rubber-elasticity theory)
τ = −νkT C−1 (9.366)

This is just the finite-strain Hooke’s law discussed in Section 9.1.2 [Equation (9.113)] with
modulus G = νkt . We derived Equation (9.366) by discussing an arbitrary elongational
deformation, that is, a deformation where the Finger tensor is diagonal. Since the Finger
tensor is always symmetric (by construction, since AT · A is always symmetric), it can

always be expressed in some coordinate system, the principal frame of C−1, in which it
will be diagonal (see Appendix C). Thus our result for τ is valid for any deformation of an
incompressible elastic solid.

9.4.2.3 Polymer Melts—Temporary Network Model

Using the rubber-elasticity theory described in the last section, Green and Tobolsky [99]
modeled polymer melts. Unlike elastic solids, polymer melts do not have fixed crosslinks
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that can be followed during a deformation. Polymer melts form a network with temporary
crosslinks formed from entanglements (Figure 6.13), as discussed in Chapter 6. As will be
described, the Green–Tobolsky temporary network model uses crosslink points that break
and reform at equal rates to model the flowing polymer melt.

Consider a network with ν junction points per unit volume. The junctions are not
permanent, but ν is constant, that is, the junctions break and reform at equal rates. Recall
that in rubber-elasticity theory, we followed the vectors between junctions since these were
the end-to-end vectors of the polymer strands connecting the junctions. The end-to-end
vectors were given by R′ at some time t ′ in the past, and after deformation they rotated
and stretched to the vector R. In the Green–Tobolsky theory, these end-to-end vectors have
finite lifetimes, during which they deform affinely and after which they disappear. For the
number of junctions per unit volume to remain constant, when an old junction point dies,
a new end-to-end vector must be born. Green and Tobolsky proposed that when a new
end-to-end vector is created, it adopts the equilibrium distribution function ψ0.

We define the following probabilities:( probablity per unit time
that a strand dies and is
reborn at equilibrium

)
≡ 1

λ
(9.367)

⎛⎜⎝
probablity that a strand

retains the same end-to-end
vector from time t ′ to t
(survival probability)

⎞⎟⎠ ≡ Pt ′,t (9.368)

We can solve for Pt ′,t in terms of λ by considering the following question: what is the
probability that a strand retains the same end-to-end vector from time t ′ to time t +�t?

Pt ′,t+�t =
⎛⎜⎝

probability that
strand retains the same

end-to-end vector
from t ′ to t

⎞⎟⎠
⎛⎜⎜⎜⎝

probability that
strand does not die

and reappear with the
equilibrium configuration

over the interval �t

⎞⎟⎟⎟⎠ (9.369)

Pt ′,t+�t = (
Pt ′,t

) (
1 − 1

λ
�t

)
(9.370)

Rearranging and taking the limit as �t goes to zero, we obtain the following differential
equation for Pt ′,t , which we can then solve:

lim
�t−→0

Pt ′,t+�t − Pt ′,t
�t

= dPt ′,t

dt
= −1

λ
Pt ′,t (9.371)

lnPt ′t = − t
λ

+ C1 (9.372)

where C1 is an arbitrary constant of integration. We can evaluate C1 from the boundary
condition that at t ′ = t , Pt ′,t ′ = 1, that is, the probability that a strand survives from t ′ to t ′
is certain, and we obtain the final result:
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Strand survival
probability

Pt ′,t = e −(t−t ′)
λ (9.373)

Now we apply the other two assumptions of the Green–Tobolsky model: (1) if a strand
does not break and reform, it deforms affinely, and (2) if a strand does escape its constraints
(die), it takes on the equilibrium configuration distribution ψ0. We can thus calculate the
contribution to the stress tensor of the individual strands by following them from birth
to death:⎛⎜⎝

stress from
strands born

between
t ′ and t ′ + dt ′

⎞⎟⎠ =
⎛⎜⎝

probability
that a strand

is born between
t ′ and t ′ + dt ′

⎞⎟⎠
⎛⎜⎝

probability
that a strand

survives from
t ′ to t

⎞⎟⎠
⎛⎜⎝

stress generated
by an affinely

deforming strand
between t ′ and t

⎞⎟⎠
dτ =

[
1

λ
dt ′

] [
Pt ′,t

] [−GC−1(t ′, t)
]

(9.374)

Note that when the strand is born it is characterized byψ0, and the expression −GC−1(t ′, t)
is for the stress generated in deforming a strand from the equilibrium distribution at time
t ′ to the nonequilibrium distribution at time t . Thus the expression in Equation (9.374)
incorporates the two Green–Tobolsky assumptions listed before.

We can now integrate dτ over all past times t ′ to include strands born at all possible
times. This gives us the final constitutive equation:

Green–Tobolsky
temporary network model

(Lodge model)
τ = −

∫ t

−∞
G

λ
e−

(t−t ′)
λ C−1(t ′, t) dt ′ (9.375)

Recall that G = νkT .
We have reached the remarkable result that the Green–Tobolsky temporary network

model results in a constitutive equation that is identical to the Lodge equation [Equa-
tion (9.139)]. Recall also that the Lodge equation is equivalent to the upper convected
Maxwell equation, and thus so is the Green–Tobolsky equation. It seems then that the
molecular approach to constitutive modeling results in the same constitutive equations,
at least in this case, as the continuum approach. Rather than a disadvantage, however,
this is an encouraging result, since it reassures us that both approaches are equally valid.
The molecular modeling result has the advantage that there is a physical interpretation to
parameters such asG and λ, and further that there are predictions on how these parameters
should vary with quantities such as temperature or the number of strands per unit volume.

We know that the Lodge model does not capture shear-thinning or second normal-
stress effects. The Green–Tobolsky temporary network model implies that we must assume
something other than affine motion of strands with equal birth and death rates to predict these
effects. Some molecular effects that have been incorporated into models successfully include
anisotropic drag [90, 91] and nonaffine motion [66, 67, 68, 69]. For more on molecular
models of polymer melts, see Larson [138] and Bird et al. [27].

A qualitatively different approach to molecular modeling polymer melts is the reptation
concept, which we describe next.
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9.4.2.4 Polymer Melts–Reptation Theories

In 1971 de Gennes [86] proposed a qualitatively different way to look at the constraints
formed by neighboring chains on a particular chain of interest. Instead of thinking of a
polymer melt as a temporary network, de Gennes proposed that the neighboring chains
make a test chain behave as if it were confined to a tube (Figure 9.16). The tube diameter
is approximately the length of the strand end-to-end vectors in a network of the Green–
Tobolsky type, but the new idea introduced by the tube picture was that polymer chains
will only relax by a snake-like motion along their backbones, that is, along the tubes. De
Gennes called this motion reptation, which involved the back-and-forth motion of the chain
within its constraining tube. As the chain emerges from an end, it forgets part of its original
tube. Even if it reverses direction, the chain will not necessarily retrace its steps; rather it
will create a new tube. Eventually the chain will have forgotten all of its original tube and
will be relaxed.

De Gennes’ reptation idea was developed into a constitutive equation by Doi and
Edwards [66, 67, 68, 69]. In their picture when a polymer melt is deformed, the chains and
their tubes deform affinely with the macroscopic deformation. Doi and Edwards proposed
that soon after the deformation, however, chains retract within their tubes, rapidly attaining
their original length. With the retraction mechanism, the net effect of the deformation is to
reorient chain segments without stretching them [138, 70].

Figure 9.16 Reptating chain. Initially, the chain is associated with a tube of lateral constraints (top).
The chain relaxes by moving along its contour, abandoning part of the tube. The chain can go in either
direction, moving back and forth, forgetting more and more of the tube, until it finally remembers
none of the original tube (bottom). When the chain has escaped from the original tube, it has relaxed.
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The Doi–Edwards constitutive equation, like several other models we have discussed,
may be written as an integral over all past times of a memory function times a strain tensor
(see Larson [138] for the derivation):

Doi–Edwards
equation

τ = −
∫ t

−∞
M(t − t ′)Q(t ′, t) dt ′ (9.376)

where

Q(t ′, t) = 1

4π

∫ 2π

0

∫ π

0
5

(
û′ · F−1 û′ · F−1

|û′ · F−1|2
)

sin θ dθdφ (9.377)

M(t − t ′) =
∑
i odd

Gi

λi
e
− t−t ′

λi (9.378)

where û′ is a unit vector that indicates the orientation of strands at time t ′, and F−1 is the
inverse deformation tensor. The integral is over the usual angles θ and φ of the spherical
coordinate system, and Gi and λi are given by the expressions

Gi = 8G0
N

π2i2
(9.379)

λi = λ1

i2
(9.380)

HereG0
N is the plateau modulus, and λ1 is the longest relaxation time of the chain. These are

the only two parameters in the Doi–Edwards model. Note that the Doi–Edwards equation
is of the factorized K-BKZ type [26].

The Doi–Edwards model is quite successful in predicting some observed rheological
behavior of polymers, including the ratio of�1/�2, the shape of the start-up curves, and the
shape of the step shear damping function h(γ0). The Doi–Edwards model is also successful
from a molecular point of view, predicting that zero-shear viscosity increases with the third
power of molecular weight, not far from the observed exponent ofM3.4 (Figure 6.12). The
Doi–Edwards model predicts shear-thinning of both viscosity and�1, and tension-thinning
of elongational viscosity η̄. The Doi-Edwards model performs less well in reversing flows.
Refinements of the Doi–Edwards model are discussed in Larson [138].

9.4.2.5 Polymer Solutions–Elastic Dumbbell Model

A simple molecular model for a polymer in solution is the elastic dumbbell model (Fig-
ure 9.17). In this model the polymer chain end-to-end vector is represented explicitly as a
spring connecting two beads. The forces that causeR to stretch are the solvent drag force on
the beads and the Brownian motion force caused by collisions between solvent molecules
and the polymer chain. Resisting these forces is the restoring force of the spring. This model
is for dilute solutions where no two polymer chains interact.

Because the elastic dumbbell model invokes both macroscopic-type forces (drag) and
molecular or statistical-type forces (Brownian motion), it is not solvable in the usual sense.
Equations of this type are called Langevin equations. Recall from the rubber-elasticity
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R� R�

Figure 9.17 Elastic motion of the ends of a polymer coil in solution can be modeled by elastic
dumbbell. The beads on the ends of the dumbbell experience solvent drag.

calculations that we can calculate the constitutive equation associated with a molecular
model if we know the configuration distribution function ψ(R). We can evaluate ψ(R) for
the dumbbell model by calculating R for a large number of elastic dumbbells (an ensemble
of dumbbells) using the appropriate Langevin equation and determine the probability
ψ(R) dR1dR2dR3 that an elastic dumbbell has an end-to-end vector betweenR andR+dR.
We can then obtain the constitutive equation [138].17

When we carry out the analysis described, we obtain the following constitutive equation
for the elastic dumbbell model:

τ + λ ∇
τ = −Gλγ̇ (9.381)

whereG = νkT , λ = ζ/8kTβ2, ν is the number of dumbbells per unit volume, ζ is the bead
friction coefficient, k is Boltzmann’s constant, T is absolute temperature, and β2 = 3/2Na2

is the usual parameter associated with the random walk [Equation (9.336)]. This constitutive
equation is just the upper convected Maxwell model.

More refined molecular models of the bead-spring type lead to more complex con-
stitutive equations of the types that we have already discussed, such as K-BKZ class
equations, Rivlin–Sawyers class equations, and Oldroyd 8-constant-type equations. By
using a molecular picture of a system of interest, we can zero in on the type of equation
that would be most helpful for that system. We must still be careful, however, not to infer
that any particular molecular model is true based on its prediction of the stress tensor, since
we saw before that two very different molecular models (temporary network and elastic
dumbbell in solution) can lead to the same constitutive equation. [Different configuration
distribution functions ψ(R) can have the same second moments.]

As a final comment on advanced constitutive equations, we note that there are some
new approaches that may lead to greater understanding of the rheological behavior of
materials, particularly of polymers. An example of this is the mixed micro/macro stochastic
method pioneered by Öttinger and coworkers [200]. Solving for the constitutive equation
predicted by a particular molecular model is often mathematically difficult. At the end of

17 Actually, we do not need to calculate ψ explicity to get τ , since we only need the second moment
of ψ to evaluate τ ; see Larson [138].
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the exercise we obtain an equation we can test, and if the results are not to our liking, we
must revise the molecular model and solve again, if possible. In this traditional method,
it may be difficult to determine whether the failure to predict observations is due to an
incorrect model or whether it is due to an inappropriate assumption made in solving for the
constitutive equation.

In Öttinger et al.’s method [200], dubbed CONNFFESSIT (Calculation of non-
Newtonian Flow: Finite Element Stochastic Simulation Techniques), they combine finite-
element calculations of the equation of motion and the continuity equation with a stochastic
simulation for the stress tensor τ . This method is computationally intense, since a large
number of simulations must be averaged for the evaluation of τ at every element in the
finite-element solution, but it is free of any mathematical simplifications used to increase
solvability. Also, the methods are nimble—the molecular model can be changed readily
and the flow resimulated without a great deal of work by the rheologist (although with a
great deal of additional work for the computer). These methods can be used to solve for
material functions and also for the velocity field and stress tensor in complex flows.

Another approach to rheological modeling is to examine the flow of complex fluids from
a thermodynamic point of view. Beris and Edwards [19] describe how to model flowing
systems by examining the structure and interactions among molecules or other subunits
within complex flowing systems. If relatively simple macroscopic parameters can be found
to describe the microscopic behavior of the fluid, the simpler macroscopic model that is
found can be used to calculate flow properties. By using a macroscopic model of the fluid
structure, the approach of Beris and Edwards avoids some of the tremendous computational
complexity of pure ab initio calculations. In addition, this approach enforces thermodynamic
consistency of the resulting equations for flow properties–for some constitutive equations
developed using the approaches described in this book, the second law of thermodynamics
can be violated, depending on the choice of model parameters [141, 138]. We anticipate that
important advances in our understanding of rheology will come from the thermodynamic
approach as it develops.

In this text we have endeavored to open up to the reader the world of polymer rheology
and constitutive modeling. The scope of this book is introductory, although we have explored
some advanced topics in this chapter. More on molecular modeling of polymeric and
complex systems can be found in the literature [138, 139, 27, 70, 19]. The reader should
understand that a constitutive model is only as good as its predictions. In some cases the
models we have studied will suffice, and under other circumstances more advanced models
are called for. Readers now have the tools needed to explore the rheological literature and
to evaluate and choose models for their own uses.

The last chapter of the text deals with the practical problem of measuring rheologi-
cal properties to compare to constitutive calculations. To choose the correct constitutive
equation for modeling purposes good rheological data are essential.

9 . 5 P R O B L E M S

9.1 You work for a company that uses polymeric ma-
terials. Your boss comes in with a 50-pound bag

of polymeric pellets. She says, “We want to use
this in our injection molding line, but we need to
run some molding simulations. Please find out what
constitutive equation we should use.” Outline your
strategy for complying with your boss’ request.
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9.2 Derive the inverse deformation-gradient tensor F−1

for steady uniaxial elongational flow in the z-direc-
tion.

9.3 Derive F−1 for the counterclockwise rotation of a
rigid body through an angle ψ around the z-axis.

9.4 The deformation-gradient tensor was defined by
writingF ·F−1 = I. By taking the time derivative of
Iwritten this way, derive the expression for ∂F/∂t .

9.5 For small displacements we can relate the two strain
tensors γ and C−1 as follows: when t − t ′ is not too

large, the position vector r ′ at time t ′ is related to the
same quantity at the current time by the equation

r = r ′ + ∂r ′
∂t ′ (t − t

′)

= r ′ + v′(t − t ′)
Using this relation and the definition of γ in Equa-

tion (9.5), derive the relationship between C−1 and
γ at small strains.

9.6 Show that the Finger tensor is the inverse of the
Cauchy tensor.

9.7 Consider the polar decomposition of an arbitrary
tensor A into rotational tensor R and left and right
stretch tensors V and U , respectively. Sketch the

effect of A, R, and U on ξ̂ , a unit eigenvector of

U . Do the same for ζ̂ , a unit eigenvector of V .

9.8 Consider the polar decomposition of the deforma-
tion-gradient tensor F for counter-clockwise rota-
tion around z, into rotational tensor R and left and
right stretch tensors V andU , respectively. What are
R, U , and V ? Show that R is orthogonal. Discuss
the meaning of your solution.

9.9 Derive the Finger and Cauchy strain tensors for
counterclockwise rotation of a solid body through
an angle ψ around the z-axis.

9.10 Derive the Cauchy strain tensor for shear flows. Do
not assume the flow is steady.

9.11 Derive the Cauchy strain tensor for uniaxial elonga-
tional flows. Do not assume that the flow is steady.

9.12 Derive the Finger and Cauchy strain tensors for pla-
nar elongational flows. Do not assume the flow is
steady.

9.13 What are the Finger and Cauchy strain tensors for
uniaxial and biaxial elongational flows as expressed

in Society of Rheology nomenclature, given in Prob-
lem 5.18?

9.14 Calculate the viscosity η(γ̇ ) and normal-stress coef-
ficients �1(γ̇ ) and �2(γ̇ ) for the Lodge model.

9.15 Calculate the step-strain shear material functions
G(t, γ0), G�1(t, γ0), and G�2 (t, γ0) for the Lodge
model.

9.16 Calculate the startup of steady shear material func-
tions η+(t, γ̇0), �

+
1 (t, γ̇0), and �+

2 (t, γ̇0) for the
Lodge model.

9.17 Calculate the cessation of steady shear material func-
tions η−(t, γ̇0), �

−
1 (t, γ̇0), and �−

2 (t, γ̇0) for the
Lodge model.

9.18 Calculate the steady-state planar extensional viscosi-
ties η̄P1(ε̇0) and η̄P2 (ε̇0) predicted by the Lodge
model.

9.19 Calculate the startup of the steady uniaxial elonga-
tion material function η̄+(t, ε̇0) for the Lodge model.

9.20 Calculate the small-amplitude oscillatory shear ma-
terial functions G′(ω) and G′′(ω) for the Lodge
model. Also calculate the time-dependent normal-
stress differences N1(t) and N2(t).

9.21 Calculate the response of the Lodge model to su-
perimposed small-amplitude oscillatory shear and
steady shear [157]. For this flow, the shear-rate func-
tion is

ς̇ (t) = γ̇0 + aω cos ωt

Sketch your answers for τ21(t), N1(t), and N2(t).

9.22 What is η∗(ω) for the single-relaxation-time Max-
well model? Does the upper convected Maxwell
model follow the Cox–Merz rule?

9.23 Calculate the steady shear-flow material functions
η(γ̇0), �1(γ̇0), and �2(γ̇0) for the integral finite-
strain Maxwell model based on the Cauchy tensor:

τ(t) = +
∫ t

−∞
η0

λ2
e−

(t−t ′)
λ C(t, t ′) dt ′

9.24 Calculate the startup of steady shear material func-
tions η+(t, γ̇0), �

+
1 (t, γ̇0) and �+

2 (t, γ̇0) for the
integral finite-strain Maxwell model based on the
Cauchy tensor (see Problem 9.23 for the constitutive
equation).

9.25 Calculate the cessation of steady shear material func-
tions η−(t, γ̇0), �

−
1 (t, γ̇0), and �−

2 (t, γ̇0) for the
integral finite-strain Maxwell model based on the
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Cauchy tensor (see Problem 9.23 for the constitutive
equation).

9.26 Calculate the step shear strain material functions
G(t, γ0),G�1(t, γ0), andG�2 (t, γ0) for the integral
finite-strain Maxwell model based on the Cauchy
tensor (see Problem 9.23 for the constitutive
equation).

9.27 Calculate the steady uniaxial elongational viscosity
material function η̄(ε̇0) for the integral finite-strain
Maxwell model based on the Cauchy tensor (see
Problem 9.23 for the constitutive equation).

9.28 Calculate the steady planar elongational viscosity
material functions η̄P1(ε̇0) and η̄P2 (ε̇0) for the
integral finite-strain Maxwell model based on the
Cauchy tensor (see Problem 9.23 for the constitutive
equation).

9.29 Calculate the startup of steady uniaxial elongational
viscosity material function η̄+(t, ε̇0) for the integral
finite-strain Maxwell model based on the Cauchy
tensor (see Problem 9.23 for the constitutive
equation).

9.30 Calculate the startup of steady planar elongational
viscosity material functions η̄+

P1
(t, ε̇0) and η̄+

P2
(t, ε̇0)

for the integral finite-strain Maxwell model based
on the Cauchy tensor (see Problem 9.23 for the
constitutive equation).

9.31 Calculate the material functions for step shear strain
G(t, γ0), G�1(t, γ0), and G�2 (t, γ0) for the finite-
strain Hooke’s law based on the Finger tensor C−1.

9.32 Calculate the predictions of the finite-strain Hooke’s
law (based on C−1) for stress in uniaxial extension.
Compare the predictions to the data given in Table
9.9. What is the best-fit value of the modulus, G?

TABLE 9.9
Data for Problem 9.32.

Elongation Stress
Ratio l/l0 (MPa)

1.61 0.69
2.08 1.39
2.34 1.50
2.91 2.79
3.51 3.87
3.95 5.10
4.34 6.45
4.73 7.76
5.19 10.46
5.73 13.38

9.33 Show that
∇
C−1 = 0.

9.34 Show that
�

C = 0.

9.35 If three vectors a, b, and c are noncoplanar, show
that a · (b × c) �= 0.

9.36 Show that B ≡ b(1) · b(2)× b(3) is the volume of the
parallelepiped formed by the vectors b(1), b(2), and
b(3).

9.37 Show using Einstein notation that even permutations
of the triple product are equal, that is, that for any
three nonzero vectors a, b, and c, the following is
true: a · b × c = c · a × b = b · c × a.

9.38 Show that b(p)·b(k) = δpk for non-orthonormal basis

vectors b(p) and their reciprocal vectors b(k).

9.39 In Chapter 2 we showed that tensors are linear vector
functions. In that derivation we expressed a vector
in terms of orthonormal basis vectors. Repeat the
derivation without referring to orthonormal basis
vectors.

9.40 Using the following vector identity:

(a × b) · (c × d) =
∣∣∣∣ a · c b · c
a · d b · d

∣∣∣∣
show that

b(1) · b(2) × b(3) = 1

B

and thus that the reciprocal basis vectors b(1), b(2),
and b(3) form a basis.

9.41 Beginning with the expression for dr , r = r(r, θ, φ)
in spherical coordinates, show that the differential
space vector dr is given by

dr = dr êr + r dθ êθ + r sin θ dφ êφ

Note the following:

êr = sin θ cos φ êx + sin θ sin φ êy + cos θ êz

êθ = cos θ cos φ êx + cos θ sin φ êy − sin θ êz

êφ = − sin φ êx + cos φ êy

9.42 Show that I= gij g
(i)
g
(j)

= gij g(i)g(j).
9.43 Show that g defined in Equation (9.234) is the deter-

minant of the matrix with elements gij .

9.44 For a symmetric tensor with distinct eigenvectors
(λ1 �= λ2 �= λ3), show that the eigenvectors are mu-
tually perpendicular. For the case where the eigen-
values are not distinct (one or more eigenvalues are
repeated) see Aris [7].
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9.45 Show how the invariants of a tensor and its inverse
are related. Note the alternative definitions of tensor
invariants given in Appendix C.6.

9.46 Show that the time derivative of the covariant con-
vected coefficients of a tensor A can be written in
vector–tensor notation as follows:

�

A = DA

Dt
+ ∇v · A+ A · (∇v)T

where v is the velocity field.

9.47 Show that using the Cauchy tensor in the integral
Maxwell model results in the appearance of the lower
convected derivative when that equation is trans-
formed to differential form.

9.48 Consider a simple shear flow occurring on a rotating
turntable (see Section 8.5 and Figure 8.12). Write the
stress tensor predicted by the Lodge equation using a
stationary coordinate system and one that is rotating
around the z-axis with the speed of the turntable.
Compare the two results. What does this allow you
to conclude about the Lodge equation?

9.49 The Oldroyd B model has found success in modeling
polymer solutions. This model can be thought of as a
straightforward sum of an upper convected Maxwell
model for polymeric contributions and a Newtonian
model for solvent contributions:

τ = τp + τ s

where the polymeric contribution τp follows the
upper convected Maxwell equation, and the solvent
contribution τ s follows the Newtonian equation. Be-
ginning with this formulation, show that the Oldroyd
B model can also be written as

τ + λ1
∇
τ = −η0

(
γ̇ + λ2

∇
γ̇

)
where η0, λ1, and λ2 are scalar parameters of the
model.

9.50 In the derivation of the integral version of the Jef-
freys model, show that Equation (9.317) becomes
Equation (9.318).

9.51 Show that the generalized linear viscoelastic equa-
tion with relaxation modulus G(t − t ′) given below
is the equivalent of the integral Jeffreys model:

G(t − t ′) =
[
η0

λ1

(
1 − λ2

λ1

)
e

−(t−t ′)
λ1

]
+ 2
η0λ2

λ1
δ(t − t ′)

9.52 Graphically compare the predictions of the Lodge
and Oldroyd B (convected Jeffreys) models in steady
shear and in steady extension. Carry out your com-
parison using the same value of the relaxation time
λ1, but use different values for the retardation time
λ2.

9.53 Rewrite the Oldroyd 8-constant model in terms of
the corotational time derivatives of stress and defor-

mation rate,
◦
τ and

◦
γ̇ .

9.54 Show that the determinant of C−1 = 1 for incom-
pressible fluids.

9.55 Show that for an encompressible fluid the two finite-
strain tensors γ

[0]
and γ [0] are related as follows

[26]:

γ [0] = (I2 − I1)I+ (I1 − 2)γ
[0]

+ (γ
[0]

· γ
[0]
)

where I1 and I2 are the first two invariants of C−1

as defined in Appendix C.6. (Hint: use the Cayley–
Hamilton theorem, which is defined in the glossary
in Appendix B.)).

9.56 Show how the invariants ofC−1 and γ
[0]

are related

[26].

9.57 Show that the stress tensor in rubber elasticity theory
is as given below. In other words, show that Equation
(9.364) results from Equation (9.362):

τ = −νkT λ2
i êi êi

9.58 Show that ∫ +b

−a
f (x)δ(x)dx = f (0)

using the following approximation for δ(x):

δ(x) = lim
n→∞

√
n

π
e−nx2

f (x) is an arbitrary function, a and b are positive,
and a < b.
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10
Rheometry

In this text we have concentrated on the study of the behavior of a continuum subjected
to external forces. Three equations were discussed: the equation of motion (momentum
conservation), the continuity equation (mass conservation), and the constitutive equation,
which is a material-specific equation that indicates how deformation and stress are related.
These equations are all the relations that are needed to solve flow problems. On the practical
side, we seek to apply continuum calculations to real-life problems involving complex
fluids and complex geometries, and we want our results to be accurate. The decision that
has perhaps the most profound impact on the accuracy of such simulations is the choice of
constitutive equation.

The only way to determine whether a constitutive equation reflects the behavior
of a material accurately is to measure properties of that material and to compare the
measured results with predictions made by the constitutive equation. Making measurements
of rheological material functions is called rheometry. To measure a material function we
must design an experiment to produce the kinematics prescribed in the definition of the
material function, and then we must measure the stress components needed and calculate
the material function.1 In this chapter we will discuss several of the more common techniques
used to measure shear and elongational material functions. A more extensive discussion
of flow geometries, including formulas for stresses and strain rates, may be found in Bird
et al. [26]. Many experimental effects due to instrument design and operation also affect
rheological measurement; Walters’ classic text [258] provides a comprehensive discussion
of such experimental issues.

Stress is usually measured mechanically using, for example, a strain-gauge or a force-
rebalance transducer [216, 32], but this is not always the case. The last section of this chapter
introduces a nonmechanical method for measuring stress, flow birefringence, which may be
coupled with any of the flow geometries described. In contrast to most mechanical methods,
which involve integrating a force or torque over a measurement surface, birefringence allows
for the local measurement of stress.

1 Creep is an exception to this. In creep experiments the stress is applied, and the deformation is
measured; see Chapter 5.
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10.1 Shear Flow

Most rheological measurements are performed in one of the four shear geometries discussed
in this section: capillary flow, parallel-plate and cone-and-plate torsional flow, and Couette
flow. This is because of ease of experimentation. Shear flow is important in situations
where the viscosity is the dominant material property, such as in flows near walls and in
mixing applications.

10.1.1 CAPILLARY FLOW

Flow through a capillary is a unidirectional flow in which cylindrical surfaces slide past
each other as in a collapsible telescope (Figure 10.1). Near the tube walls, except for the
curvature of these surfaces in the θ -direction, this flow is the same as the simple shear
prescribed in the definition of viscosity.2 To see how to calculate viscosity from measurable
properties in capillary flow we must relate cylindrical coordinates, which are the natural
coordinates in which to analyze flow in a tube, and shear coordinates, 1, 2, 3, in which the
material functions are defined:

v = γ̇0x2ê1 =
⎛⎝ γ̇0x2

0

0

⎞⎠
123

(10.1)

We can relate the usual cylindrical coordinates of this problem, r, θ, z, with the shear
coordinate system near the wall, 1, 2, 3, as follows: êz is the flow (1) direction, −êr is the
gradient (2) direction, and −êθ is the neutral (3) direction. We take −êr as the gradient
direction so that the shear stress τ21 represents a positive flux of momentum in the negative
x2-direction, as is usual in our definition of shear flow (Figure 10.2). We must take −êθ as
the 3-direction to maintain a right-handed coordinate system. Thus we can relate the stress
and shear rate in capillary flow with these quantities in the shear coordinate system:

τ21 = − τrz|r=R (10.2)

r

z R r1

r2
r3

Figure 10.1 Shearing surfaces for Poiseuille flow in a tube are cylinders sliding past one another.

2 Here we concentrate on simple shear flow. One can show [26] that the shear flows discussed in
this chapter are all part of a more general classification of shear flows called viscometric flows. The
material functions of Chapter 5 are all equally valid for viscometric flows. This implies that issues of
curvature mentioned here and in subsequent sections are not significant.
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Figure 10.2 Coordinate system for
shear flow, x1, x2, x3, as compared
to the usual cylindrical coordinate
system, r , θ , z, for flow in a tube.

γ̇0 = ∂vz

∂(−r) = −∂vz
∂r

(10.3)

The rate-of-deformation tensor for Poiseuille flow in a tube is

γ̇ = ∇v + (∇v)T (10.4)

=
⎛⎝ 0 0 ∂vz

∂r

0 0 0
∂vz
∂r

0 0

⎞⎠
rθz

(10.5)

We see that −∂vz/∂r|r=R is the shear rate at the wall γ̇R:

γ̇ = |γ̇ | = −∂vz
∂r

(10.6)

γ̇ (R) = − ∂vz

∂r

∣∣∣∣
r=R

≡ γ̇R (10.7)

We can now calculate viscosity in terms of variables associated with capillary flow:

η = −τ21

γ̇0
= τrz|r=R

− ∂vz
∂r

∣∣∣
r=R

= τrz|r=R
γ̇R

(10.8)

Therefore to determine viscosity from capillary-flow experiments, we need expressions for
wall shear stress τrz|r=R and wall shear rate γ̇R in terms of experimental variables.

10.1.1.1 Shear Stress in Capillary Flow

We wish to consider pressure-driven flow (Poiseuille flow) in a tube of circular cross section
(see Figure 3.10) for a general fluid, that is, for a fluid for which the constitutive equation
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is unknown. We assume that the fluid is incompressible and the flow is unidirectional. The
problem is addressed in cylindrical coordinates,

v =
⎛⎝ vrvθ
vz

⎞⎠
rθz

=
⎛⎝ 0

0

vz

⎞⎠
rθz

(10.9)

∇ · v = ∂vz

∂z
= 0 (10.10)

For steady-state unidirectional flow, the left side of the equation of motion (inertial contri-
bution) is zero. By combining the pressure and gravity terms as was done in the Newtonian
and power-law solutions, the equation of motion for the general fluid in Poiseuille flow
simplifies to

0 = −∇P − ∇ · τ (10.11)

⎛⎝ 0

0

0

⎞⎠
rθz

=
⎛⎜⎝ − ∂P

∂r

− 1
r
∂P
∂θ

− ∂P
∂z

⎞⎟⎠
rθz

−
⎛⎜⎝

1
r
∂
∂r
(rτrr )+ 1

r

∂τθr
∂θ

+ ∂τzr
∂z

− τθθ
r

1
r2
∂
∂r

(
r2τrθ

) + 1
r

∂τθθ
∂θ

+ ∂τzθ
∂z

+ τθr−τrθ
r

1
r
∂
∂r
(rτrz)+ 1

r

∂τθz
∂θ

+ ∂τzz
∂z

⎞⎟⎠
rθz

(10.12)

where P = p − ρgz.
To proceed further we must make some assumptions that are compatible with the

experimental realities of actually implementing this flow. The first assumption is that the
stresses and pressure are θ -independent; thus each term in Equation (10.12) with a derivative
with respect to θ may be eliminated. The flow field does vary with z in an actual measurement
since the material enters the capillary from an upstream reservoir of larger diameter, as
shown in Figure 10.3. Velocity rearrangement and elasticity due to the elongational nature
of the contraction flow at the entrance affect the stresses in that area. Also, when the melt
leaves the capillary, the velocity field near the exit will differ from the fully-developed flow
field in the main section of the tube. If the capillary is long, however, the impact of these
end effects, as they are called, is diminished. We will assume that the capillary tube is long
and thus that there are no z-variations in velocity or stress components. (We will discuss
how to take end effects into account in Section 10.1.1.3.) Finally, the stress tensor will be
assumed to be symmetric. Thus the equation of motion becomes⎛⎝ 0

0

0

⎞⎠
rθz

=
⎛⎝− ∂P

∂r

0

− ∂P
∂z

⎞⎠
rθz

−
⎛⎜⎝

1
r
∂
∂r
(rτrr )− τθθ

r

1
r2
∂
∂r

(
r2τrθ

)
1
r
∂
∂r
(rτrz)

⎞⎟⎠
rθz

(10.13)

The θ -component can be solved for τθr :

τθr = C1

r2
(10.14)

The integration constant C1 can be evaluated for the boundary condition that at r = 0 the
stress is finite. Thus, τθr = 0. The z-component of the equation of motion gives us an
expression for the shear stress τrz(r):
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Figure 10.3 Geometry used in one type of commercial capillary rheometer. The bulk of the polymer
being tested resides in the upstream reservoir. A piston pushes the fluid through a small capillary of
radius R, and the material exits at the bottom at a flow rate Q. Many polymers exhibit die swell,
a phenomenon in which the diameter of the exiting fluid can be several times the diameter of the
capillary from which it is flowing. The figure is not drawn to scale; the ratio of the capillary radius R
to the barrel radius Rb is typically 10 or 12 to 1.

z-component: − ∂P(r, z)
∂z

= 1

r

∂

∂r

[
rτrz(r)

]
(10.15)

So far the modified pressure field P is a function of r and z. To explore the r-dependence
of P , we examine the r-component of the equation of motion:

r-component: − ∂P
∂r

= 1

r

∂

∂r
(rτrr )− τθθ

r
(10.16)
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We can write the normal-stress components in terms of the second normal-stress difference,
N2 = τrr − τθθ ,

−∂P
∂r

= ∂τrr

∂r
+ τrr

r
− τθθ

r
(10.17)

= ∂N2

∂r
+ N2

r
+ ∂τθθ

∂r
(10.18)

From Equation (10.18) we see that for materials for which N2 is small or zero and
for which τθθ is independent of r , P is only a function of z, and we can readily solve
Equation 10.15 by separation of variables as we did for Newtonian fluids in Chapter 3 and
for GNFs in Chapter 7. As we discussed in Chapter 5, �2 = −N2/γ̇

2
0 has been found to

be a very small (negative) quantity for polymers. Less is specifically known about τθθ , but
it seems reasonable to assume that this stress will be small or zero in a flow with assumed
θ -symmetry. Thus the conditionN2 = 0 = ∂τθθ/∂r should be met easily by most materials.

For materials with nonzero N2 or ∂τθθ/∂r , we can still solve Equation 10.15 as long
as the derivative ∂P/∂z is constant in the flow domain. This condition is compatible with
r-dependence of P , as we can see by integrating ∂P/∂z to obtain P = (constant)z+f (r),
where f (r) is an unknown function of r. Thus, as long as the pressure distribution is of this
form for the fluid in question, we may proceed with the solution of Equation 10.15 even if
N2 �= 0 or ∂τθθ/∂r �= 0.

Returning to the z-component of the equation of motion, we arrive at the following:

− dP(z)
dz

= 1

r

∂

∂r

[
rτrz(r)

]
(10.19)

This is the same separable differential equation we encountered when solving this flow
problem for Newtonian and power-law generalized Newtonian fluids. If the boundary
conditions on pressure are P(0) = P0, P(L) = PL, the solution is

τrz = P0 − PL
L

r

2
+ C1

r
(10.20)

where C1 is the integration constant. For finite stress at r = 0, the integration constant is
zero, and we obtain

Shear stress in
capillary flow

τrz = (P0 − PL)r
2L

= τR r
R

(10.21)

where τR = (P0 − PL)R/2L is the shear stress at the wall. Our assumptions in arriving at
this point are listed in Table 10.1.

We have derived an expression for shear stress at the wall τR , which applies for nearly
all materials and is calculable from experimental measurements of �P and a knowledge
of the geometric constants R and L. To obtain the viscosity, we now need to find a way to
express the wall shear rate γ̇R in terms of experimentally measured quantities.

10.1.1.2 Shear Rate in Capillary Flow

We seek an expression for − ∂vz/∂r|r=R . If the velocity field is known, it is straightforward
to calculate the wall shear rate γ̇R . For Newtonian fluids, for example (see Section 3.5.2),
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TABLE 10.1
Assumptions for Poiseuille Flow in a Capillary

1. Unidirectional flow

2. Incompressible fluid

3. θ -symmetry

4. Long capillary so that z-variation is negligible

5. Symmetric stress tensor

6. ∂P/∂z = constant

7. Finite stress at r = 0

vz(r) = 2Q

πR2

[
1 −

( r
R

)2
]

(10.22)

γ̇ = −dvz
dr

= 4Q

πR3

r

R
(10.23)

γ̇R = 4Q

πR3
(10.24)

and the viscosity is calculated as

η ≡ −τ21

γ̇0
= τR

γ̇R
(10.25)

= (P0 − PL)R
2L

(
πR3

4Q

)
= μ (10.26)

where we have used the expression forQwe derived earlier for a Newtonian fluid [Hagen–
Poiseuille law, Equation (3.219)] to simplify the last step. From Equation (10.26) we see
that if data of pressure drop and flow rate are taken for a Newtonian fluid, an accurate
calculation of the viscosity can be obtained by plotting the wall shear rate 4Q/πR3 versus
the wall shear stress (P0 − PL)R/2L and taking the inverse of the slope (Figure 10.4):

4Q

πR3
≡ γ̇a = 1

μ

(P0 − PL)R
2L

(10.27)

Figure 10.4 Viscosity is obtained from pressure-drop
and flow-rate information on a Newtonian fluid.
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Newtonian fluid
in capillary flow

γ̇a = 1

μ
τR (10.28)

The quantity 4Q/πR3, the shear rate at the wall for a Newtonian fluid, is also called the
apparent shear rate when non-Newtonian fluids are studied, and it is given the symbol γ̇a .
There is actually nothing apparent about this quantity; γ̇a is simply what the shear rate at the
wall would have been if the material had been Newtonian. This combination of variables
appears in non-Newtonian expressions, as we shall see.

We can carry out the calculation of shear rate at the wall for a power-law generalized
Newtonian fluid since, again, the velocity field [Equation (7.85)] is known. The result is

vz = R 1
n
+1

(
P0 − PL

2mL

) 1
n
(

1

1/n+ 1

)[
1 −

( r
R

) 1
n
+1
]

(10.29)

γ̇R = − dvz

dr

∣∣∣∣
r=R

(10.30)

=
(τR
m

) 1
n =

(
4Q

πR3

)(
1/n+ 3

4

)
(10.31)

where to obtain the last equation we have employed Equation (7.92) for the flow rate Q
for a power-law fluid. Note that for a Newtonian fluid (n = 1, m = μ), this reduces to the
expression obtained earlier.

The equation for wall shear rate for a power-law fluid has the unknown parameter n in
it. A closer look at Equation (10.31) shows that we can calculate n from a double-log plot
of experimentally measured γ̇a versus τR:

log

(
4Q

πR3

)
= 1

n
log τR + log

(
4m− 1

n

1/n+ 3

)
(10.32)

Power-law GNF
in capillary flow

log γ̇a = 1

n
log τR + log

(
4m− 1

n

1/n+ 3

)
(10.33)

The parameters n andm of the power-law model may be calculated from the values obtained
for the slope and intercept of this line (Figure 10.5). Thus, to measure the viscosity for an
unknown fluid believed to be a power-law generalized Newtonian fluid, pressure-drop and
flow-rate data are collected on the fluid (the pressure drop is set, and the flow rate is
measured, or vice versa [114, 92]), and n and m are obtained from the log–log graph of
γ̇a versus τR . The raw pressure-drop and flow-rate data can then be converted to viscosity
versus shear rate using the value of n calculated, the equation for the wall shear stress
τR = (P0 − PL)R/2L, and Equations (10.25) and (10.31).

For both Newtonian and power law fluids we used vz(r) to calculate γ̇R , which is
needed to calculate viscosity. For a general fluid we must calculate γ̇R without knowing
vz(r). To see how to proceed, we observe that in both cases quantities related to the viscosity
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Figure 10.5 Parameters m and n of the power-law generalized Newtonian fluid model are obtained
from pressure-drop and flow-rate information.

were obtained from different types of plots of γ̇a versus τR . We also saw that the shear rate
was related to the flow rate and geometric parameters. By pursuing expressions for γ̇a as
a function of τR for a general fluid, we will see that one can relate pressure drop and flow
rate to viscosity without assuming a velocity field.

The general expression for viscosity from capillary data is due to Weissenberg and
Rabinowitsch [261]. To get γ̇R , we begin by manipulating the general equation for flow rate
in a tube:

Q = 2π
∫ R

0
vz(r)r dr (10.34)

The shear rate for this flow is γ̇ = |γ̇ | = −dvz/dr . We can introduce γ̇ as a variable in

Equation (10.34) by integrating by parts; the result is3

Q = π
∫ R

0
γ̇ r2 dr (10.38)

We have assumed no slip at the wall, vz(R) = 0. We have related flow rate to shear
rate, but from the results for Newtonian and generalized Newtonian fluids, we suspect that

3 The details of this calculation are as follows. Integration by parts,∫ b

a

u dv = u v|ba −
∫ b

a

v du (10.35)

u = vz dv = r dr (10.36)

du = dvz

dr
dr v = r2

2
(10.37)
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we want an equation involving shear rate and shear stress. To introduce shear stress into
Equation (10.38) we can use Equation (10.21) for τrz and perform a change of variable to
eliminate r:

τrz = τR r
R

(10.39)

Q = πR3

τ 3
R

∫ τR

0
γ̇ τ 2

rz dτrz (10.40)

4Q

πR3
≡ γ̇a = 4

τ 3
R

∫ τR

0
γ̇ (τrz) τ

2
rz dτrz (10.41)

We replaced 4Q/πR3 with γ̇a in Equation (10.41) in anticipation of obtaining an equation
relating γ̇a and τR . To eliminate the integral we can now differentiate Equation (10.41) with
respect to τR . We will use the Leibnitz rule,

γ̇aτ
3
R = 4

∫ τR

0
γ̇ (τrz) τ

2
rz dτrz (10.42)

d

dτR

(
γ̇aτ

3
R

) = 4
∫ τR

0

∂

∂τR

[
γ̇ (τrz)τ

2
rz

]
dτrz + 4γ̇ (τR) τ

2
R (10.43)

The first term on the right side is zero, and we can expand the left side using the product rule.
If we recall that d ln x = dx/x, we arrive at the following compact form for γ̇ (τR) ≡ γ̇R ,
the shear rate at the wall in capillary flow:

Wall shear rate
in capillary flow

of power-law GNF
γ̇ (τR) ≡ γ̇R = γ̇a

[
1

4

(
3 + d ln γ̇a

d ln τR

)]
(10.44)

The quantity in square brackets is called the Weissenberg–Rabinowitsch correction. For
Newtonian fluids the correction becomes 1, and γ̇R = γ̇a as before. This correction allows us
to calculate the shear rate at the wall without assuming any form for the velocity profile. The
Weissenberg–Rabinowitsch correction accounts for the differences in shear rates between
the Newtonian case and the general case due to the fact that the velocity profiles for non-
Newtonian fluids in capillary flow are nonparabolic (Figure 10.6).

The viscosity is now obtained from Equation (10.8):

η ≡ −τ21

γ̇0
(10.45)

η(γ̇R) = τR

γ̇R
(10.46)

Any homogeneous
fluid in capillary flow

η(γ̇R) = 4τR
γ̇a

(
3 + d ln γ̇a

d ln τR

)−1

(10.47)

The viscosity may therefore be determined in capillary flow from measurements of Q
(needed to calculate γ̇R) and �P ≡ P0 − PL (needed to calculate τR) and the geometric
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Figure 10.6 Schematic of the effect of material properties on the shear rate at the wall. For shear-
thinning fluids such as shown in the figure, the shear rate at the wall is higher than in a Newtonian
fluid with the same average velocity.

constants R and L. The slope of the double-logarithmic plot of γ̇a versus τR is used with
each data pair, (τR, γ̇a) to calculate η(γ̇R) (Figure 10.7).

The expression derived for the viscosity is based on properties of the fluid near the
wall. If the properties of the fluid at the wall are representative of the properties of the fluid
in general (which they are believed to be for polymer melts and other similar systems), the
viscosity measured in capillary flow may be relied upon. Care must be taken, however, with
suspensions and other complex systems that have been shown to exhibit unusual behavior
at the walls [162].

The next two sections describe corrections that may be needed in capillary rheometry
to account for end effects and wall slip.

Figure 10.7 Schematic of how the
derivative in the Weissenberg–Ra-
binowitsch correction is obtained
from pressure-drop and flow-rate in-
formation for any type of fluid.
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10.1.1.3 Entrance and Exit Effects—Bagley Correction

One of our assumptions in the derivation of τR in a capillary was that the capillary is long
and that therefore velocity variations in the z-direction may be neglected. We described a
flow where the modified pressure difference was P0 − PL over a length L.

In an actual capillary rheometer, however, the flow takes some time to develop at the
inlet, and for polymers, the flow at the exit is disturbed by die swell. These two effects
introduce some z-variation in the velocity. This z-variation is not a problem as long as we
only calculate P0 −PL andL over the portion of the capillary where steady fully developed
unidirectional flow occurs (see Figure 10.3). The problem is that the pressure drop over the
portion of the flow that is steady and fully developed is unknown. We also do not know the
true length of the region that is in steady fully developed flow.

Measurements of pressure drop across a capillary are typically made in an apparatus
such as that shown in Figure 10.3. Gravity effects are neglected, P = p. The pressure at the
top of the capillary p0 (point B in Figure 10.3) is related to the force per unit area F/πR2

b

that is required to move the piston at a steady rate. The pressure drop across the wide barrel
is neglected. The pressure at the bottom of the capillary pL is atmospheric. The pressure
drop over the entire capillary is then just the difference between these two pressures:

p0 = Patm + F

πR2
b

(10.48)

pL = Patm (10.49)

p0 − pL = F

πR2
b

(10.50)

where Rb is the radius of the barrel andPatm is atmospheric pressure. The total length of the
flow is taken to be the entire capillary length L. Ignored is the fact that the polymer flow
must rearrange at the capillary entrance and exit.

The effect of the pressure drop in the barrel can be eliminated by measuring the pressure
at the inlet of the capillary independently, that is, by placing a transducer at point B
in Figure 10.3. This feature is present on some rheometers [92]. The end effects can be
accounted for by observing the effect of changing the ratio of capillary length to diameter
at constant shear rate, as will now be explained.

Runs performed on a capillary rheometer at constant wall shear rate (constant flow rate
Q) should always generate the same wall shear stresses, that is, τR = �pR/2L = constant
for a given material at a fixed temperature. Runs performed at constant flow rate but with
different capillaries (changing R or L) should therefore result in measured values of�p as
follows:

�p = 2τR
L

R
(10.51)

Thus a plot of �p versus L/R at constant shear rate (i.e., constantQ) is a line through the
origin of slope 2τR when no end effects are present. When end effects are present, however,
this line will not go through the origin.

Experimental results on short capillaries for some highly elastic materials show that
while plots of �p versus L/R do form straight lines, the y-intercept is not zero ([10], see
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Figure 10.8). The value of the y-intercept on a plot of �p versus L/R is the combined
entrance and exit pressure loss due to rearrangements of the velocity profile at the entrance
and exit. Capillary data may be corrected for end effects by subtracting the pressure-axis
intercept of the �p versus L/R plot from the values of pressure used to calculate τR .
Equivalently, the end effects can be corrected by adding e to the value of L/R used in
calculating τR ([61], see Figure 10.8). This is called the Bagley correction [10].

10.1.1.4 Wall Slip

In the derivation of the Weissenberg–Rabinowitsch equation we assumed no slip at the wall
of the capillary. This is standard for tube flow, but there is evidence that this condition may
occasionally be violated.

To determine what observations would accompany wall slip, we can examine a slipping
system such as that shown in Figure 10.9. The effect of slip is to reduce the deformation
experienced by the fluid. In the case where slip is occurring, as compared to the no-slip
case, the shear rate is reduced throughout, but especially near the wall. The shear stress
at the wall, τR = �PR/2L, is unaffected by the change in boundary condition (see the
beginning of Section 10.1.1).

To calculate a viscosity in a situation where slip is occurring, one must calculate the
true shear rate near the wall; this analysis is due to Mooney [183]. The first step is to correct

Figure 10.8 Pressure drop versus L/R for polyethylene; melt index = 2.9, T = 190°C [10]. Each
curve is taken at a constant value of apparent shear rate γ̇a = 4Q/πR3. The correction for end effects
at each apparent shear rate may be calculated either from the y-intercept or from the extrapolated
x-intercept e. Reprinted with permission from E. B. Bagley, “End Corrections in the Capillary Flow
of Polyethylene,” Journal of Applied Physics, 28, 624–627, (1957). Copyright © 1957, American
Institute of Physics.



10.1 Shear Flow 395

Figure 10.9 System undergoing shear flow.
(a) No slip. (b) Slip at the wall. For flow in a
capillary, v1(x2) = vz(−r).

the apparent shear rate γ̇a for slip. The corrected γ̇a may then be used in the Weissenberg–
Rabinowitsch calculation [Equation (10.44)] to account for nonparabolic velocity profile.
The apparent shear rate is normally given by (no slip)

γ̇a ≡ 4Q

πR3
= 4vz,av

R
(10.52)

where vz,av = Q/πR2 is the average fluid velocity in the tube. When slip occurs, this
calculation of γ̇a is too large since much of vz,av goes into slip at the wall. A corrected value
for γ̇a may be obtained by substituting vz,av − vz,slip for vz,av in this expression, where vz,slip

is the wall slip velocity,

γ̇a,slip-corrected = 4vz,av

R
− 4vz,slip

R
(10.53)

If we postulate that the slip velocity vz,slip is only a function of wall shear stress τR then
plots of 4vz,av/R = 4Qmeasured/πR

3 versus 1/R at constant τR would give straight lines
with a slope of 4vz,slip and an intercept of γ̇a,slip-corrected. Ramamurthy’s data on a linear
low-density polyethylene melt [214] show just this trend (Figure 10.10). Conversely, if the
plots of 4Q/πR3 versus 1/R at constant τR have a slope of zero, no slip has been achieved
in the experiments. However, the Mooney technique is only an indirect measurement of
vz,slip, based on a postulate that slip is occurring. Other violations of our assumptions could
be responsible for the nonzero slope measured, for instance, the possible contributions of
entrance losses [208], instability, compressibility, or normal stresses.

An alternative method for reporting on slip effects is based on the quantity called the
extrapolation length b (Figure 10.11), which is the distance in the negative x2-direction at
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Figure 10.10 Apparent shear
rate, uncorrected for slip, ver-
sus inverse capillary radius for
a linear low-density polyethy-
lene; melt index = 1, T =
220°C; from Ramamurthy
[214]. Each curve represents
data at different constant val-
ues of wall shear stress,
�pR/2L. For the lines that
are horizontal, no wall slip is
inferred. For the lines with
positive slopes, the wall slip
velocity may be calculated as
slope/4. From the Journal of
Rheology, Copyright © 1986,
The Society of Rheology.
Reprinted by permission.

Figure 10.11 Definition of extrapolation length b in a
flow in which the fluid slips along the wall.

which the velocity profile extrapolates to zero [35]. This way of looking at slip is favored
by those investigating the molecular causes of slip because molecular models can predict
the variation of b with parameters such as molecular weight and monomer properties [35].
The parameter b and the slip velocity are related as follows:
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γ̇R,slip-corrected = v1,slip

b
(10.54)

where γ̇R,slip-corrected is the true shear rate near the wall. Thus b is calculated from the
slip velocities obtained in the Mooney analysis and from the doubly corrected shear rates,
that is, those obtained after the Mooney and Weissenberg–Rabinowitsch corrections have
been applied.

Capillary rheometry is in wide use, particularly for obtaining viscosities at the high
shear rates used in polymer processing. With appropriate attention paid to end effects and
slip effects, the measured viscosities can be very accurate.

10.1.2 DRAG FLOW—PARALLEL DISKS

Measuring viscosity in a capillary typically requires 40 grams of material. In contrast,
measurements may be made on less than 1 gram of sample in a parallel-disk torsional
rheometer, as depicted schematically in Figure 10.12. The parallel-disk apparatus is thus
preferred for the study of small quantities of materials or for substances that would be
adversely affected by the severe contraction at the inlet of capillary flow. Edge fracture
occurs at high rates in the parallel-disk apparatus, however (see Section 6.1.2), and thus the
maximum shear rate obtainable in parallel-disk flow is less than in capillary flow.

For a Newtonian fluid we solved the problem of torsional flow between parallel disks
in Section 3.5.4. There we used the equation of motion, the continuity equation, and the
Newtonian constitutive equation to solve for vθ (r, z). As we discussed in the last section,
we do not want to assume a constitutive equation here, since we want to measure unknown
fluid properties with the parallel-disk apparatus. Instead of making an assumption about the
constitutive relation of the fluid, we will make some assumptions about the velocity profile,
much as we did in the case of capillary flow.

In the parallel-disk rheometer, when the upper disk is rotated at a constant angular
velocity �, the only nonzero component of v is vθ :

v =
⎛⎝ 0

vθ

0

⎞⎠
rθz

(10.55)

R

z

rH

ΩΩ

( )b( )a

Cross sectional view Figure 10.12 Torsional parallel-
disk rheometer for viscosity mea-
surement.
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With this velocity field, and assuming incompressible flow, the continuity equation tells us
that ∂vθ/∂θ = 0. If we assume that simple shear flow takes place in the θ -direction with
the gradient in the z-direction (i.e., the velocity profile is linear in z) we can write

vθ = A(r)z+ B(r) (10.56)

where A(r) and B(r) are (so far) unknown functions of r . For the cylindrical coordinate
system shown in Figure 10.12, the velocity boundary conditions are that vθ = 0 at z = 0,
and vθ = r� at z = H , where H is the gap between the parallel disks. Applying these
boundary conditions to the equation for vθ yields

vθ = r�z

H
(10.57)

The rate-of-deformation tensor is then

γ̇ = ∇v + (∇v)T (10.58)

=
⎛⎜⎝ 0 ∂vθ

∂r
− vθ

r
0

∂vθ
∂r

− vθ
r

0 ∂vθ
∂z

0 ∂vθ
∂z

0

⎞⎟⎠
rθz

=
⎛⎝ 0 0 0

0 0 r�
H

0 r�
H

0

⎞⎠
rθz

(10.59)

γ̇ = |γ̇ | = r�

H
(10.60)

At the outer edge of the parallel disks we can write γ̇ = γ̇R , and thus

γ̇ = γ̇R r
R

(10.61)

where γ̇R = R�/H . The strain γ (0, t) also depends on the radial position:

γ (0, t) =
∫ t

0
γ̇ (t ′) dt ′ (10.62)

=
∫ t

0

r�

H
dt ′ = r�t

H
(10.63)

Examining Equations (10.57) and (10.59) we see that if the θ -curvature is neglected (see
footnote 2 this chapter) and if we consider flow at a particular value of r , parallel-disk
flow resembles shear flow, v = γ̇0x2ê1. We can make the following assignments: θ is the
flow (1) direction, z is the gradient (2) direction, and r is the neutral (3) direction. The
assumption of nearly unidirectional flow is best at the rim, r = R, and we therefore can
calculate viscosity from

τ21 = τzθ |r=R (10.64)

γ̇0 = R�

H
= γ̇R (10.65)

η = −τ21

γ̇0
= −τzθ |r=R

γ̇R
(10.66)
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We already have an expression for γ̇R in terms of experimentally accessible variables. Now
we seek such an expression forτzθ |r=R .

For parallel-disk flow with the assumed velocity profile the stress tensor takes on a
simple form due to symmetry (see Section 4.4). The stress tensor written in the r, θ, z
coordinate system looks a bit different from when it is written in the 1, 2, 3 coordinate
system,

τ =
⎛⎝ τrr 0 0

0 τθθ τzθ

0 τzθ τzz

⎞⎠
rθz

(10.67)

Using this form of the stress tensor and the assumed velocity profile, the equation of motion
simplifies to ⎛⎜⎝− ρv2

θ

r

0

0

⎞⎟⎠
rθz

=
⎛⎜⎝ − ∂p

∂r

− 1
r

∂p

∂θ

− ∂p

∂z

⎞⎟⎠
rθz

−
⎛⎜⎝

1
r
∂
∂r
(rτrr )− τθθ

r

∂τzθ
∂z

∂τzz
∂z

⎞⎟⎠
rθz

(10.68)

Note that θ -derivatives have been canceled since vθ is independent of θ and τ depends
only on vθ . If we further assume that pressure does not vary with θ , we can integrate the
θ -component of the equation of motion to obtain

∂τzθ (r, z)

∂z
= 0 (10.69)

τzθ = C(r) (10.70)

where C(r) is an unknown function of r . Thus, to measure shear stress (at the top plate, for
example), we must take measurements at specific values of r and evaluate viscosity at each
position.

Although it is possible to measure τzθ as a function of radial position [59], it is much
easier to measure the total torque T required to turn the upper disk (or to maintain the lower
disk immobile). We can relate T to the viscosity at the rim η(γ̇R) by following a derivation
resembling that used for the Weissenberg–Rabinowitsch equation for capillary flow [229],
as we will now show. The torque on the top disk is given by4

T =
∫
A

(stress)(lever arm) dA (10.71)

=
∫ R

0
(−τzθ |z=H ) (r) (2πr dr) (10.72)

Viscosity at any value of r can be written as

η ≡ −τ21

γ̇0
= −τzθ (r)

γ̇ (r)
= η(r) (10.73)

4 The stress is negative due to the sign convention for stress; see the footnote before Equation (8.189).
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We can replace τzθ in Equation (10.72) with viscosity, which, in general, is a function of
the radial position r ,

T = 2π
∫ R

0
ηγ̇ r2 dr (10.74)

We must convert the equation containing torque, which is currently an integral over
viscosity and shear rate, into an expression for viscosity obtainable from torque. Following
the same steps that gave us the Weissenberg–Rabinowitsch equation in capillary flow
(Section 10.1.1.2), we will take the derivative of Equation (10.74) to remove the integral.
We can foresee that we will obtain an equation that will require plots of torque versus rim
shear rate, and therefore, before differentiating, we will replace the variable r in the integral
with γ̇ , using γ̇ = γ̇Rr/R,

T = 2πR3

γ̇ 3
R

∫ γ̇R

0
ηγ̇ 3 dγ̇ (10.75)

Now, to eliminate the integral, we differentiate both sides by γ̇R using the Leibnitz rule:(
T

2πR3

)
γ̇ 3
R =

∫ γ̇R

0
ηγ̇ 3 dγ̇ (10.76)

d

dγ̇R

[(
T

2πR3

)
γ̇ 3
R

]
=

∫ γ̇R

0

∂

∂γ̇R

(
ηγ̇ 3

)
dγ̇ + η(γ̇R)γ̇ 3

R (10.77)

The first term on the right-hand side is zero, and after rearrangement we arrive at an equation
for steady shear viscosity measured in a torsional parallel-disk viscometer:

Viscosity in
parallel-disk flow

η(γ̇R) = T /2πR3

γ̇R

[
3 + d ln (T /2πR3)

d ln γ̇R

]
(10.78)

Thus, to measure the viscosity of a fluid in a parallel-disk rheometer at the rim shear rate
γ̇R , data at a variety of rim shear rates γ̇R , that is, rotational speeds �, must be taken, the
torque differentiated in the manner described by Equation (10.78) (Figure 10.13), and a
correction applied to each (T , γ̇R) data pair.

Recall that in the capillary viscometer the viscosity was calculated at the wall, η =
η(γ̇R). In the parallel-disk viscometer the viscosity is calculated at the rim, η = η(γ̇R). In the
case of the capillary viscometer we warned that structured fluids such as suspensions might
have material properties that are affected by the presence of the wall and that this should be
considered when interpreting capillary viscosities. For the parallel-disk viscometer we offer
a similar warning. Since the strain varies with the radius [Equation (10.63)], not all material
elements experience the same strain, γ (0, t) = r�t/H . The torque, however, is a quantity
measured with contributions from fluid elements at all values of r . For materials that are
strain sensitive (e.g., phase-separated blends, liquid crystals), the parallel-disk viscometer
gives results that represent a blurring of the material properties exhibited at each radius,
that is, at a variety of shear strains.

The parallel-disk geometry is popular in the small-amplitude oscillatory shear (SAOS)
mode [216, 32]. When the amplitude is small enough to give a linear profile (see Problem
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Figure 10.13 Derivative in the viscosity expression [Equation (10.78)] is obtained from torque and
angular-velocity information for any type of fluid.

3.23), the preceding analysis remains valid, and γ̇ is given by Equation (10.60) with
�(t) = dθ/dt , where θ(t) = θ0�

{
eiωt

}
is the angular displacement of the plate. The

SAOS material functions η′(ω) and η′′(ω) can be related to the measured torque amplitude
T0 and phase lag δ through a calculation similar to that given in Section 8.4.2 for the Couette
geometry. Details of this calculation may be found in Bird et al. [26]. The results are

SAOS material functions for
parallel-disk apparatus

η′(ω) = 2HT0 sin δ

πR4ωθ0

η′′(ω) = 2HT0 cos δ

πR4ωθ0

(10.79)

10.1.3 DRAG FLOW—CONE AND PLATE

The problem of the radial dependence of the shear rate (and shear strain) in the torsional
parallel-disk experiment can be eliminated if the cone-and-plate geometry is used. Although
this may not be an intuitive improvement to the parallel-disk system, we will see that a
homogeneous flow (no radial dependence) is produced in the limit of small angles �0.
Loading highly viscous materials can be difficult in a cone-and-plate viscometer, however,
since the cone must be pressed into the sample; also, the cone-and-plate geometry suffers
from the same edge distortions at high shear rates that were discussed in the previous section
and in Section 6.1.2.

The cone-and-plate geometry is shown in Figure 10.14. In this experiment, if the
curvature of the flow lines can be neglected, simple shear flow in the φ-direction is produced
when the cone is rotated at a constant angular velocity�. This flow is analyzed in spherical
coordinates,
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Figure 10.14 Torsional cone-and-plate rheometer
for viscosity measurement.

v =
⎛⎝ 0

0

vφ

⎞⎠
rθφ

(10.80)

Note that the shear surfaces for this flow are surfaces of constant θ , where θ is the usual
spherical-coordinate-system angle, measured down from the vertical. These conical surfaces
are approximately planes when the cone angle is small.

Our analysis will resemble that used for the parallel-disk geometry. For a shallow
cone, the region of space of interest is near the bottom plate, and in this region −rθ is
nearly the same as z. If we assume that simple shear flow takes place in the φ-direction
with the gradient in the (−rθ)-direction (and neglect curvature in the φ-direction), then the
continuity equation tells us that ∂vφ/∂φ = 0, and we can write

vφ = C1(−rθ)+ C2 (10.81)

where C1 and C2 are constants. For the coordinate system shown in Figure 10.14, the
boundary conditions are that vφ = 0 at θ = π/2, and vφ = r� at θ = π/2 −�0, where�0

is the (small) cone angle. Applying these boundary conditions to the equation for vφ yields

vφ = r�

�0

(π
2

− θ
)

(10.82)

The rate-of-deformation tensor γ̇ in this flow (for vr = vz = 0) is

γ̇ =
⎛⎜⎝ 0 0 r ∂

∂r

( vφ
r

)
0 0 sin θ

r
∂
∂θ

( vφ
sin θ

)
r ∂
∂r

( vφ
r

)
sin θ
r

∂
∂θ

( vφ
sin θ

)
0

⎞⎟⎠
rθφ

(10.83)

=
⎛⎝ 0 0 0

0 0 γ̇θφ

0 γ̇θφ 0

⎞⎠
rθφ

(10.84)

Since θ is close to π/2 (�0 is small), sin θ ≈ 1, and we can simplify γ̇θφ as follows:
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γ̇θφ = sin θ

r

∂

∂θ

( vφ

sin θ

)
(10.85)

= 1

r

∂vφ

∂θ
= − �

�0
(10.86)

Thus,

γ̇ =
⎛⎜⎝ 0 0 0

0 0 − �
�0

0 − �
�0

0

⎞⎟⎠
rθφ

(10.87)

γ̇ = |γ̇ | = + �
�0

(10.88)

The strain is calculated for the cone-and-plate geometry as follows:

γ (0, t) =
∫ t

0
γ̇ (t ′) dt ′ (10.89)

=
∫ t

0

�

�0
dt ′ = �t

�0
(10.90)

Comparing Equations (10.82) and (10.87) with the velocity and rate-of-deformation
tensor for the shear flow in the definition of viscosity, we see that

γ̇0 = 1

r

∂vφ

∂(−θ) = �

�0
= γ̇ (10.91)

τ21 = −τθφ (10.92)

η = −τ21

γ̇0
= τθφ

γ̇
(10.93)

Both the shear rate and the shear strain are independent of position in the cone-and-plate
geometry, which makes it straightforward to calculate the viscosity from a total torque
measurement. The torque T on the bottom plate may be calculated as5

T =
∫
A

(stress)(lever arm) dA (10.94)

=
∫ 2π

0

∫ R

0

(
τθφ

∣∣
θ= π

2

)
(r)(r dφdr) (10.95)

Since the shear rate is constant throughout the flow domain, the viscosity and the shear stress
are constant too, and τθφ may be removed from the integral. For the boundary condition
τθφ = 0, r = 0, we obtain for the torque on the plate,

5 In the chosen spherical coordinate system, as θ increases, vφ decreases, and thus τθφ is positive;
see the footnote before Equation (8.189).
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T = 2

3
πR3τθφ

∣∣∣∣
θ= π

2

(10.96)

Thus the viscosity may be calculated directly:

Viscosity in
cone-and-plate flow

η ≡ −τ21

γ̇0
= τθφ

γ̇
= 3T �0

2πR3�
(10.97)

We see that in the limit of a small cone angle, the cone-and-plate geometry produces
constant shear rate, constant shear stress, and homogeneous strain throughout the sample.
This makes the calculations of viscosity [Equation (10.97)] quite simple in the cone-
and-plate geometry. The uniformity of the flow in the cone-and-plate geometry is also
a great advantage when working with structure-forming materials such as liquid crystals,
incompatible blends, and suspensions that are strain or rate sensitive. In addition, the cone-
and-plate geometry has the advantage that the first normal-stress difference can be calculated
from measurement of the axial thrust on the cone, as we will now show, following the
derivation of Bird et al. [26].

The total thrust on the plate due to the fluid flow F is just the integral over the area of
the plate of the normal stress on the plate minus the atmospheric thrust πR2Patm [26]:

F =
[

2π
∫ R

0
�θθ |θ= π

2
rdr

]
− πR2Patm (10.98)

To calculate �θθ |θ= π
2
, we turn to the r-component of the equation of motion for this problem.

Taking vr = vθ = 0 and assuming incompressible fluid, the r-component of the equation
of motion becomes

−ρv
2
φ

r
= −∂p

∂r
− 1

r2

∂

∂r
(r2τrr )− 1

r sin θ

∂

∂θ
(τθr sin θ)

− 1

r sin θ

∂τφr

∂φ
+ τθθ + τφφ

r

(10.99)

The flows we are considering are limited to relatively slow rates to minimize inertial effects
and edge instabilities, and we can therefore neglect the centrifugal-force term ρv2

φ/r . Since
the shear rate is constant throughout the flow field in this experiment, all components of
the stress tensor τ are also constant. This allows us to simplify this equation further by
eliminating stress derivatives. Note also that ∂�θθ/∂r = ∂p/∂r . Finally, we are interested
in one particular surface, that for which θ = π/2, and therefore sin θ = 1. Expanding the
derivatives in Equation (10.99) and simplifying as described, we obtain:

0 = −∂�θθ
∂r

− 2τrr
r

+ τθθ + τφφ
r

(10.100)

We can write Equation (10.100) in terms of the first and second normal-stress coefficients
for steady shear flow, �1 and �2, defined previously as:

�1 = −τ11 − τ22

γ̇ 2
0

= −τφφ − τθθ
γ̇ 2

0

(10.101)



10.1 Shear Flow 405

�2 = −τ11 − τ22

γ̇ 2
0

= −τθθ − τrr
γ̇ 2

0

(10.102)

The final result is

∂�θθ

∂ ln r
= −γ̇ 2

0 (�1 + 2�2) (10.103)

We can integrate Equation (10.103), but we need a boundary condition. At the rim, the
radial normal stress is the atmospheric pressure, �rr(R) = Patm, and thus τrr (R) = 0.
From this and from Equation (10.102) we see that τθθ (R) = −�2γ̇

2
0 . At the rim, therefore,

�θθ(R) = Patm − �2γ̇
2
0 . Carrying out the integration of Equation (10.103) with this

boundary condition, we obtain

�θθ |θ= π
2

= [−γ̇ 2(�1 + 2�2)
]

ln
( r
R

)
+ (
Patm −�2γ̇

2
0

)
(10.104)

With this expression and no further assumptions, Equation (10.98) may be evaluated, and
after some straightforward algebra, the following simple result is obtained:

First normal-stress
coefficient in

cone-and-plate flow
�1 = 2F�2

0

πR2�2
(10.105)

Thus, in the cone-and-plate geometry, values of the viscosity in steady shear are
obtained from measurements of the total torque required to hold the plate immobile and from
knowledge of the rate of angular rotation � and geometric factors [Equation (10.97)]. We
obtain the first normal-stress coefficient from the additional measurement of the total thrust
on the plate. The simplicity of these measurements accounts for the popularity of this system.

Like the parallel-disk geometry, the cone-and-plate geometry is also widely used
in linear viscoelastic, small-amplitude oscillatory shear (SAOS) measurements. For the
SAOS experiment, the material functions are calculated for the cone-and-plate geometry
as follows [26]:

SAOS material functions
for cone-and-plate apparatus

φ = φ0�
{
eiωt

}
η′ = 3�0T0 sin δ

2πR3ωφ0

η′′ = 3�0T0 cos δ

2πR3ωφ0

(10.106)

where φ is the torsional angle through which the cone oscillates, T0 is the amplitude of the
torque, and δ is the phase difference between torque and torsional angle.

10.1.4 DRAG FLOW—COUETTE

In Chapter 8 we discussed SAOS in the cup-and-bob or Couette geometry in depth (see
Figure 8.11). In that problem the generalized linear viscoelastic (GLVE) constitutive
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equation was used along with the continuity equation and the equation of motion to obtain
a solution relating unknown linear viscoelastic properties η′ and η′′ to measurements of
the stress amplitude ratio A and phase angle δ in forced SAOS. The use of a particular
constitutive equation, the GLVE equation, in this derivation does not limit the usefulness of
the analysis since the small-amplitude experiment is already limited to small deformation
rates. Steady shear viscosity can also be measured conveniently in the Couette flow
geometry, as we will now see.

In the concentric-cylinder or Couette geometry, the fluid to be tested is confined to
the narrow space between two cylinders. When the inner cylinder (the bob) is rotated at a
constant angular velocity �, the only nonzero component of v is vθ :

v =
( 0
vθ
0

)
rθz

(10.107)

With this velocity field, the continuity equation tells us that for an incompressible fluid
∂vθ/∂θ = 0. For a long bob, z-variations can also be neglected. If we follow the procedure
used for the parallel-disk geometry and assume that simple shear flow takes place in the
θ -direction with the gradient in the r-direction (i.e., the velocity profile is linear in r), we
can write

vθ = C1r + C2 (10.108)

where C1 and C2 are as yet unknown constants. For the cylindrical coordinate system
shown in Figure 8.11, the boundary conditions are that vθ = 0 at r = R, and vθ = κR� at
r = κR, where R is the radius of the outer cylinder (the cup), and κR is the radius of the
bob. Applying these boundary conditions to the equation for vθ yields

vθ = κ�(r − R)
κ − 1

(10.109)

The rate-of-deformation tensor γ̇ in this flow is calculated to be

γ̇ =
⎛⎜⎝ 0 ∂vθ

∂r
0

∂vθ
∂r

0 0

0 0 0

⎞⎟⎠
rθz

(10.110)

γ̇ = |γ̇ | = +∂vθ
∂r

= κ�

κ − 1
(10.111)

Following the same arguments used in the previous sections, we can make the assignments
that θ is the flow (1) direction, −r is the gradient (2) direction, and z is the neutral (3)
direction and conclude that

τ21 = −τrθ (10.112)

γ̇0 = −∂vθ
∂r

= −κ�
κ − 1

= −̇γ (10.113)

η = −τ21

γ̇0
= −τrθ

γ̇
(10.114)
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We can measure the total torque T required to turn the bob (or to maintain the cup
immobile), and T can be related to the shear stress and hence to the viscosity through the
following manipulations:

T = (stress)(lever arm)(area) (10.115)

= (τrθ |r=κR)(κR)(2πκRL) (10.116)

Viscosity in
Couette flow
(bob turning)

η = T (κ − 1)

2πR2Lκ3�
(10.117)

The case where the cup turns and the bob is stationary gives equivalent results (see
Table 10.2).

Low-viscosity fluids generate little stress in torsional experiments. In Couette flow,
however, the large fluid contact area 2πκRL boosts the torque, improving the measurement.
The gap must be small enough so that the assumption of a linear velocity profile holds. A
separate analysis may be performed to calculate viscosity using a wide-gap Couette [26],
or for rotating a bob in an infinite fluid [152, 227, 132]. The Couette geometry is limited to
modest rotational speeds by the appearance of high-shear-rate instabilities leading to three-
dimensional flows. In some cases these instabilities are due to inertia (Taylor cells [246]),
and in other cases they are due to elasticity (see [186] and Figure 1.8).

One final comment on the Couette geometry is in order. In general, the majority of the
stress transmitted to the torque transducer in the Couette geometry is due to the fluid in
the narrow gap, as intended. The fluid in the bottom of the cup, however, does transfer a
small stress. Two approaches are used to account for effects due to the fluid at the bottom.
The first approach is to make the bottom of the bob in the shape of a cone (Figure 10.15a);
thus the shear-stress contribution of the bottom can be accounted for by using the equations
from the cone-and-plate analysis. A second approach is to shape the bob as shown in
Figure 10.15b. With this shape, an air bubble is trapped at the bottom of the bob, and the
low stresses associated with the air can be neglected. Both shapes give acceptable results in
most situations, although regardless of shape the variation in shear rate at the bottom of the
cup can lead to particle segregation in suspensions, particularly in viscoelastic suspensions
examined at high shear rates [118].

The four shear geometries discussed—capillary, parallel-disk, cone-and-plate, and
Couette—all lead in a fairly straightforward way to measurements of steady shear viscosity.
In the case of cone-and-plate torsional flow we can also measure�1(γ̇ ). The choice of which
geometry to use is dictated by convenience, that is, which rheometer you have available,
and by experimental factors such as limits on torque measurement capability, sample size,
sample loading issues, desired shear rates, and so on. A comparison of these four shear
geometries is given in Table 10.3.

All four geometries can be used for unsteady shear experiments such as startup,
cessation, and creep, and the torsional geometries (parallel disk, cone and plate, Couette)
are well designed for producing the SAOS, step-strain, and creep-recovery kinematics. For
unsteady flows there will be a limit to how rapidly an instrument can respond due to inertia
of the geometry and due to the speed with which the driving motor or driving pressure can
respond. These issues vary from instrument to instrument. When considering nonsteady-
state experiments, it is important to consult the manufacturer’s literature on a rheometer to
determine what these limitations are.
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TABLE 10.2
Summary of the Expressions for Steady Shear Rheological Quantities for Common
Geometries*

Magnitude of Measured
Shear Stress Shear Rate Material

Geometry |τ21| γ̇ Function

Capillary flow (wall conditions)

P0,PL = modified pressure at z = 0, L (P0 − PL)R
2L

4Q

πR3
R η = τR

4Q/πR3
R−1

Q = flow rate

L = capillary length

R = 1
4

[
3 + d ln(4Q/πR3)

d ln τR

]
τR = τrz|r=R

Parallel disk (at rim)
T = torque on top plate 2T

πR3
R

r�

H
η = 2T

πR3γ̇R
R

� = angular velocity of top plate, > 0

H = gap

R = 1
4

[
3 + d ln (T /2πR3)

d ln γ̇R

]
γ̇R = γ̇ (R)

Cone and plate
T = torque on plate 3T

2πR3

�

�0
η = 3T �0

2πR3�F = thrust on plate

� = angular velocity of cone, > 0

�0 = cone angle �1 = 2F�2
0

πR2�2

Couette (bob turning)

T = torque on inner cylinder, < 0 −T
2πR2Lκ2

κ�

1 − κ η = T (κ − 1)

2πR2Lκ3�� = angular velocity of bob, > 0

R = outer radius

κR = inner radius

L = length of bob

Couette (cup turning)

T = torque on inner cylinder, > 0 T
2πR2Lκ2

κ�

1 − κ η = T (1 − κ)
2πR2Lκ3�� = angular velocity of cup, > 0

R = outer radius

κR = inner radius

L = length of bob

*R is radius of fixture. To calculate strain in each case, multiply shear rate by time t . Note that η ≡ −τ21/γ̇0 = |τ21|/γ̇ .
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Figure 10.15 Two possible shapes for the bottom
of the bob in the Couette geometry. (a) The stress
is accounted for by using the cone-and-plate equa-
tions. (b) The stress is minimized by trapping an air
bubble.

10.2 Elongational Flows

Although most rheological measurements are made in shear flow, this is not because
elongational flows are unimportant. On the contrary, all industrial flows have an elongational
component (e.g., flow through a contraction, jet impingement), and often the elongation
flow dominates a process (e.g., fiber spinning, bubble inflation, coating [179, 236]). Shear
measurements dominate the rheological literature because they are easy to perform, and
in some applications information on the viscosity function or on the linear viscoelastic
behavior is all that is needed, such as in narrow-gap molding flows or for quality control.

Elongational flow properties, although important, are very difficult to measure. As was
discussed in Section 4.3.1, one of the important characteristics of elongational flows is the
very rapid and large deformation of fluid elements. This very feature, however, makes the
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TABLE 10.3
Comparison of Experimental Features of Four Common Shear Geometries

Feature Parallel Disk Cone and Plate Capillary Couette (Cup and Bob)

Stress range Good for high viscosity Good for high viscosity Good for high viscosities Good for low viscosities

Flow stability Edge fracture at modest rates Edge fracture at modest rates Melt fracture at very high rates,
i.e., distorted extrudates and
pressure fluctuations are observed

Taylor cells are observed at high
Re due to inertia; elastic cells are
observed at high De

Sample size and sample
loading

< 1 g; easy to load < 1 g; highly viscous materials
can be difficult to load

40 g minimum; easy to load 10–20 g; highly viscous materials
can be difficult to load

Data handling Correction on shear rate needs
to be applied; this correction
is ignored in most commercial
software packages

Straightforward Multiple corrections need to be
applied

Straightforward

Homogeneous? No; shear rate and shear stress
vary with radius

Yes (small core angles) No; shear rate and shear stress
vary with radius

Yes (narrow gap)

Pressure effects None None High pressures in reservoir cause
problems with compressibility of
melt

None

Shear rates Maximum shear rate is limited
by edge fracture; usually cannot
obtain shear-thinning data

Maximum shear rate is limited
by edge fracture; usually cannot
obtain shear-thinning data

Very high rates accessible Maximum shear rate is limited
by sample leaving cup due to
either inertia or elastic effects;
also 3-D secondary flows develop
(instability)

Special features Good for stiff samples, even
gels; wide range of temperatures
possible

�1 measurable; wide range of
temperatures possible

Constant-Q or constant-�P
modes available; wide range of
temperatures possible

Narrow gap required; usually
limited to modest temperatures
(e.g., 0 < T < 60°C)
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generation of elongational flow a challenge. In this section we will discuss some current
methods for determining elongational-flow properties of polymer melts and solutions. The
calculations for stress and deformation are fairly straightforward in elongational flow; the
principal difficulty is in producing the flow reliably. For the most part, these measurements
are not routine but rather are the focus of current research efforts.

10.2.1 UNIAXIAL EXTENSION

10.2.1.1 Melt Stretching

Uniaxial elongational flow may be produced by stretching a polymer melt sample between
rapidly separating crossheads of, for example, a tensile-testing machine (Figure 4.1a). The
motion of the ends is programmed so that the length of the melt sample increases in a
manner so as to give the desired elongation-rate function ε̇(t). Alternatively, the flow may
be designed to impart a desired tensile-stress function, −[τ33(t)− τ11(t)] = −(τzz − τrr ).

The time-dependent total force needed to deform a sample can be measured by a load
cell (pressure transducer) positioned at one end of the sample (Figure 10.16); this can be
related to �zz for the flow by

�zz(t) = Patm − f (t)

A(t)
(10.118)

where Patm is atmospheric pressure and is equal to�rr , f (t) is the magnitude of the tensile
force, and A(t) is the (changing) cross-sectional area of the sample. The normal-stress
difference is thus

τzz − τrr = �zz −�rr = −f (t)
A(t)

(10.119)

from which the desired material functions may be calculated. If the flow is such that
elongational flow is produced everywhere throughout the sample, that is, if the flow is

Measures
force

Load
cell

Fluid
sample

z

r

Figure 10.16 Geometry for producing a uniaxial extensional
flow on a cylindrical sample. The force to bring about the
deformation is measured by the load cell positioned at the top.
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homogeneous, then for the startup of steady elongation the area varies as A(t) = A0e
−ε̇0t

[can be calculated from Equation (5.174)], and the elongational viscosity growth function
can be calculated from a measurement of f (t) alone:

η̄+ = f (t)eε̇0t

A0ε̇0
(10.120)

The steady elongational viscosity η̄ can be calculated from the steady-state value of f (t),
denoted by f∞:

η̄ = f∞eε̇0t∞

A0ε̇0
(10.121)

Note that although the term eε̇0t∞ increases exponentially with time, f∞ decreases exponen-
tially with time, and the product should be constant at steady state, that is, at one particular
value of t∞, where t∞ is large.

This comparatively simple experiment is, unfortunately, fraught with difficulties. The
condition of homogeneous flow is difficult to achieve in practice since any defects in
the initial sample will cause significant heterogeneities in the flow. Heterogeneity is also
introduced into the flow near the clamped ends since the clamps that hold the ends of
the sample do not usually adjust in width as the sample narrows during the deformation
(Figure 10.17). Also, the tensile-testing equipment typically used for these experiments
cannot reach sample elongations l/ l0 much above 50. This is equivalent to strains ε =
ln(l/ l0) < 4, which are insufficient to achieve steady state. If attempted in air, small
temperature gradients and drafts will strongly distort the measured forces at even modest
elongations (see Figure 10.17). Only with the utmost care, and using chemically inert fluids
to thermally insulate and to support the vertically or horizontally stretching sample, can
credible elongational results at modest strains be obtained in this configuration [26]. When
using an inert fluid, care is needed to eliminate any chemical interactions between the sample
and the supporting fluid, and the highest temperatures available are limited by the stability
of the supporting fluid.

The problem of the limitation on strain imposed by the size of the tensile tester can be
solved by drawing a sample of fixed length through counterrotating rollers or metal belts [26,
173, 175, 176] (see Figures 4.11a and 10.18). This type of instrument for elongational
viscosity measurement was invented by J. Meissner and collaborators. In the Meissner
instrument the tensile force is measured by mounting one set of clamps or rollers at the
lower end of a strain-gauge transducer. The motion of the strain gauge is proportional to
the force experienced by the metal-belt clamp or roller. In the commercial version of this
instrument [216] the samples are suspended over a porous table on a cushion of inert gas,
eliminating chemical interactions present in designs that incorporated a supporting liquid.
Small glass beads are sprinkled on the sample to mark the deformation (Figure 10.19), and
the entire experiment is monitored from the top and side by video equipment. The true strain
rate in the flow is calculated from the video images, and very impressive reproducibility is
being obtained [176, 175].

The Meissner instrument is also capable of measuring unconstrained recoil after
elongation at a constant rate. This is accomplished by cutting the sample at a desired
time and then monitoring the sample shrinkage with the video equipment. It is also possible
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Ideal elongational
deformation

Initial Initial

Final

Final( )a ( )b

Experimental
challenges

End effects

Inhomogeneities

Final

Effect of gravity,
drafts, surface tension

Figure 10.17 (a) Idealized uniaxial elongation experiment. (b) Some of the experimental difficulties
that may be encountered. It is difficult to make a sample that is free of bubbles and dirt, and these
inhomogeneities may affect the deformation in significant ways. The ends also introduce strain
inhomogeneities. Finally, gravity, surface tension, and drafts can affect the flow at long times.

to measure stress relaxation after the cessation of constant elongational deformation by
stopping the flow at a desired time and monitoring the decay in tensile stress. In all cases
the stress is measured through the transducer mounted on the drawing clamp or belt, and
strain is measured by visually observing markers on the sample. The material functions
are then calculated in a straightforward manner using Equation (10.119) and the material-
function definitions.

The Meissner rheometer is the best instrument available for measurements on viscous
polymer melts. Since the sample must float on a bed of air, there is a minimum viscosity
that can be measured, however. The maximum strain rate is limited by the speed of the
clamps and the stability of the flow. The maximum viscosity is limited by the range of the
strain-gauge transducer.

10.2.1.2 Filament Stretching—Sridhar’s Apparatus

Polymer solutions cannot be grabbed at each end of a specimen and stretched, but a variation
on this geometry was introduced by Sridhar et al. [234] to measure the elongational viscosity
of polymer solutions (Figure 10.20). Based on ideas explored by Matta and Tytus [171] and
Chen et al. [42], this technique stretches a small quantity of polymer solution placed between
two round plates. The plates are then separated at a rapid rate, approximating a constant
deformation rate. The force on the filament is measured by a load cell attached to the
stationary end, and the deformation rate is monitored by video or other optical methods.
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Figure 10.18 Metal-belt elongational rheometer MBER [175]. From Proceedings of the XIIth In-
ternational Congress on Rheology, Copyright © 1996, Canadian Rheology Group. Reprinted by
permission.

Variations of this device have been built and refined by several groups [228, 233, 241, 16,
133]. The equations to analyze the flow, if homogeneous uniaxial extension is achieved,
are the same as discussed at the beginning of this section. This technique has the advantage
that the sample starts from a well-defined initial rest state. Second, except near the ends,
the strain of each material element in the sample is the same in this geometry.

Experiments and calculations on the filament-stretching apparatus show, however, that
due to gravity, surface tension, and the no-slip condition at the plates, the deformation near
the ends is not homogeneous uniaxial extension. At short times there is an induction period
during which a secondary flow occurs near the plates due to the interaction of gravitational
and surface tension forces [227], and this delays the development of a uniform cylindrical
column during the flow. Furthermore, elongational rates calculated on length changes versus
those based on radius changes give substantially different results [228]. The latter problem
can be addressed through a two-step experiment in which a constant elongational rate based
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Figure 10.19 Strain measurement in an
elongational flow experiment. Marker par-
ticles or a grid are placed on the surface of
the sample. If the flow is homogeneous, we
can assume that the deformation marked on
the surface is characteristic of the sample
throughout. Greater reliability is obtained
by taking measurements of the elongation
based on multiple pairs of points.

on the filament length is first imposed and the mid-filament diameter is measured [5, 197]. A
calibration curve of Hencky strain based on length vs. Hencky strain based on mid-filament
diameter is produced, and this curve is then used in a second experiment to program the
plate separation that will result in an exponentially decreasing mid-filament diameter. Even
with this fix, however, inhomogeneities near the plates complicate the interpretation of the
measured stress. Thus, although this is a promising technique that gives reproducible results,
at present there are still some important difficulties in interpreting the data. Researchers
are attempting to eliminate gravity effects in this test geometry by conducting tests in
zero-gravity aircraft [268]. If successful, effects due to gravity can be separated from
other causes, although zero-gravity rheological testing is not likely to become routine any
time soon.

10.2.2 BIAXIAL AND PLANAR EXTENSION

10.2.2.1 Meissner’s Apparatus

Meissner and collaborators have applied their rotary clamp design [174] and the newer
metal-belt design [175] to produce biaxial extension and other shear-free flows, including
planar elongation [174, 26, 175] (Figure 10.21). Rotary clamps or belts and automatic
scissors are used to pull apart a carefully prepared polymer sheet. The force f (t) required
to stretch the film is related to the biaxial-flow material function η̄+

b :

τ33 − τ11 = −f (t)
A(t)

(10.122)

η̄+(ε̇0, t) = −(τ33 − τ11)

ε̇0
= f (t)

A(t)ε̇0
(10.123)

where A(t) is the time-dependent cross-sectional area of the thin sheet.
The original apparatus that utilized rotary clamps required an enormous sample (350-

mm diameter, 5 mm thick, about 450 g) [174]. The new design based on the metal-belt
system has the potential of allowing these measurements to be carried out on more modest
quantities of polymer sample (2–4 g) [175]. The same issues as those discussed with the
uniaxial version of this instrument apply to the biaxial flow. There is no commercial version
of the biaxial instrument at this time.
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Figure 10.20 Flow produced in filament-stretching experiment. (a) Change of shape of the bound-
ary [226]. Reprinted from Journal of Non-Newtonian Fluid Mechanics, 40, R. W. G. Shipman, M. M.
Denn, and R. Keunings, “Mechanics of the ‘falling plate’ extensional rheometer,” 281–288, Copyright
© 1991, with permission from Elsevier Science. (b) Time sequence for an actual experiment [234].
Reprinted by permission. Reprinted from Journal of Non-Newtonian Fluid Mechanics, 40, T. Sridhar,
V. Tirtaatmadja, D. A. Nguyen, and R. K. Gupta, “Measurement of extensional viscosity of polymer
solutions,” 271–280, Copyright © 1991, with permission from Elsevier Science.

10.2.2.2 Lubricated Squeezing

One elongational flow technique that is accessible to most rheologists is lubricated squeez-
ing [41] (see Figure 4.11d). In this technique a small disk of the sample (1–5 g) is placed
between two lubricated plates, and the plates are brought together at a programmed rate
to produce steady or transient biaxial stretching flows. The lubrication of the plates allows
the melt to slip along the surfaces, eliminating the wall shear flow that would normally
occur [162]. Experiments [41] and analysis [224] show that in order to achieve the postulated
flow, the viscosity of the lubricating fluid must be chosen to be between 500 and 1000 times
smaller than η0 for the fluid being tested.

For steady biaxial squeezing the plate separation h(t) (see Figure 4.11d) must follow
the following relation:

ε̇0 = constant = 1

h

dh

dt
< 0 (10.124)

The normal-stress difference can be calculated from the magnitude of the force f (t) on the
bottom plate,

τ33 − τ11 = τzz − τrr = f (t)

πR2
(10.125)

whereR = R(t) is the time-dependent radius of the deforming disk.R(t)may be measured
using transparent plates and a video camera or, if homogeneous flow is produced,R(t)may
be deduced from conservation of mass:

πR2(0)h(0) = πR2(t)h(t) (10.126)
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Figure 10.21 Meissner’s rotary
clamp rheometer for producing (a)
equibiaxial and (b) planar elonga-
tional flow; from Meissner [174].
For both, the sample is a polymer
film in the center (S) and rotary
clamps pull the film outward while
cutting the growing film in several
places. In (a) the force is mea-
sured by 8 transducers (T). In (b)
only clamps A–F rotate; clamps G
and H measure the force required
to prevent the lateral contraction.
From Chemical Engineering Com-
munications, Copyright © 1985,
Gordon and Breach Publishers.
Reprinted by permission.

The biaxial elongation material functions can be calculated from their definitions in the
usual way.

Reaching strains higher than ε = 1 in lubricated squeezing is prevented by the thinning
of the lubricant layer and subsequent buildup of pressure in the thin film [162]. Secor [224]
used a double-syringe pump to replenish the lubricant and extended his experimental regime
to ε = 2.5. Venerus and coworkers [128, 250] used porous plates to continuously supply
lubricant. They were able to achieve a more uniform pressure, but were still limited to
εmax = 1. The lubricated squeezing technique has also been used to obtain nonlinear step-
strain data in biaxial elongation ([230] and Figure 6.68). Although this technique is limited
to small strains, it is easy to implement and requires small samples. Lubricated squeezing
is thus a worthwhile technique to pursue in order to obtain a limited amount of extensional
flow information.
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10.2.2.3 Stagnation Flows

A technique used to produce biaxial elongation in low-viscosity solutions and melts is the
opposed-jets geometry (Figure 4.11b). In this flow two streams are made to impinge upon
one another, producing a stagnation point at their intersection. Alternatively the flow can
be run backward with two opposing nozzles sucking fluid from a bath, producing uniaxial
elongation. The normal stresses are determined by mounting one nozzle on a stiff spring
and measuring its small deflection during flow.

A simpler version of this technique directs two liquid streams at one another through
crossed slots (Figure 4.14c). At the very center, planar elongational flow is hoped to
be produced. The stresses at the stagnation point can be measured by directing a laser
along the line of symmetry where the greatest extension occurs and recording the flow
birefringence (see Section 10.3). The opposing-jets technique and other similar methods
employing crossed slots and lubricated dies (Figure 10.22) are not very accurate because
of the uncertainty about the flow field produced and also the presence of the upstream
flow, which introduces an unknown flow history into the experiment. Simulations with
the Carreau–Yasuda generalized Newtonian fluid model [225] show that the region of
pure elongational flow at the stagnation line in these dies is vanishingly small. A method
that is simpler than producing a stagnation flow, although fraught with some of the same
drawbacks, is flow through a sudden contraction, which is discussed in the next section.

10.2.2.4 Contraction Flow—Cogswell and Binding Analyses

One experiment that gives some indication of the elongational behavior of a fluid is
the measurement of pressure drop across flow into an abrupt contraction (Figure 10.23).
This is not a homogeneous elongational flow and therefore no material functions can be
measured directly, but techniques developed by Cogswell [48] and Binding [22] do permit
the calculation of an elongational viscosity for some materials. These methods involve many
approximations and are therefore of limited use, but the flow into an abrupt contraction can
be produced on a standard laboratory capillary rheometer [11], and thus these techniques
provide an easy way to estimate trends in elongational viscosity as a function of the
elongation rate.

The flow into an abrupt contraction has elements of shear flow, introduced by the no-
slip conditions at the walls, and elements of elongational flow, caused by the pronounced
stretching of material elements near the centerline of the flow (Figure 10.23). Even when the

Figure 10.22 Type of lubricated die that
may be used to produce a highly exten-
sional flow. A lower viscosity fluid is in-
troduced near the walls to eliminate the
no-slip boundary condition there.
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Figure 10.23 Flow geometry addressed by Cogs-
well [48] and Binding [22]. The flow into a con-
traction has an extensional character along the
centerline. For many fluids recirculating vortices
form in the corners, and the main flow is through
a funnel-shaped section near the center of the
flow field. Contraction flow is not pure elongation,
however, since there is shear near the walls. Both
Cogswell and Binding made several assumptions
about the flow field and the importance of elonga-
tional, shear, and elastic effects in order to analyze
the flow.

constitutive equation is known, the analysis of this flow requires a numerical solution [23]
and is quite challenging to carry out due to high stresses generated at the entrance to the
smaller channel. To use contraction flow in measuring rheological material functions such
as viscosity and elongational viscosity, we follow the same procedure as was followed in
the analyses of, for example, capillary flow and cone-and-plate flow, that is, we will make
some reasonable assumptions about the flow field.

When polymeric liquids flow into an abrupt contraction, the fluid usually channels
toward the centerline and forms regions of recirculation in the corners of the contraction.
On the boundaries of the central, funnel-shaped region [defined by the lines R(z) shown
in Figure 10.23], the velocity is not zero, but small compared to the velocity at the
centerline [48], and we take it to be zero. The recirculating regions or vortices dissipate
energy, and this loss in energy is reflected in the measurement of large entrance-pressure
losses, �pent (see Section 10.1.1.3). The simplest analysis of entrance flow is due to
Cogswell [48, 49], who assumed that �pent can be written as the direct summation of
two pressure drops, one due to shear viscosity and the other due to elongational viscosity.
Cogswell then solves for each of these two pressure drops individually, applying a force
balance on a differential section of the funnel-shaped entry-flow region and integrating
over the entire entry section. Details of the analysis are found in the literature [48]. In
order to arrive at a tractable solution, Cogswell makes several assumptions in addition to
those already mentioned. All of the assumptions invoked in Cogswell’s analysis are listed
in Table 10.4.

Employing these assumptions, the average elongational rate in contraction flow is
calculated to be

Average elongation rate,
Cogswell analysis

ε̇0 = τRγ̇a

2(τ11 − τ22)
(10.127)

where τR = mγ̇ na and γ̇a = 4Q/πR3, associated with the calculation of the entrance
pressure loss (see Figure 10.8). The average stress difference τ11 − τ22 is obtained from the
entry pressure loss:
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TABLE 10.4
Assumptions for the Cogswell Analysis of Contraction Flow

1. Incompressible fluid

2. Funnel-shaped flow; no slip (vz = 0) on funnel surface

3. Unidirectional flow in funnel region

4. Fully developed flow upstream and downstream

5. θ -symmetry

6. Pressure drops due to shear and elongation may be calculated separately and summed to give total entrance
pressure loss

7. Neglect Weissenberg–Rabinowitsch correction, γ̇R = γ̇a = 4Q/πR3

8. Shear stress is related to shear rate through a power law, τR = mγ̇ na
9. Elongational viscosity is constant

10. Shape of funnel is determined by the minimum generated pressure drop

11. No effect of elasticity (shear normal stresses neglected)

12. Neglect inertia

Average normal-stress
difference,

Cogswell analysis
τ11 − τ22 = −3

8
�pent(n+ 1) (10.128)

where n is the power-law parameter for shear viscosity. The elongational viscosity is then
calculated from the elongational stress and the elongational rate:

Elongational viscosity,
Cogswell analysis

η̄ ≈ −(τ11 − τ22)

ε̇0
=

9
32 (n+ 1)2�p2

ent

τRγ̇a
(10.129)

Thus if the shear viscosity function η = mγ̇ n−1
a is known, the elongational viscosity can

be calculated from the measurement of �pent and the flow rate Q. Similar equations can
be derived for flow into a planar contraction [48, 162]. When compared to other techniques
for calculating η̄ for polymers such as low-density (branched) and high-density (linear)
polyethylene, the Cogswell analysis is fairly accurate at high rates, but fails at lower
rates [145].

A more complicated but more accurate analysis of contraction flow is due to Bind-
ing [22]. Binding makes many of the same assumptions as Cogswell, but he allows the
elongational viscosity to vary with the deformation rate, and he does not neglect the
Weissenberg–Rabinowitsch correction. To make the problem solvable, however, Binding
resorts to some assumptions about the shape of the funnel, and, like Cogswell, he neglects
any influence of elasticity on the normal stresses calculated. In his analysis Binding
minimizes the overall energy required to drive the flow (Table 10.5).

In the Binding analysis the entrance pressure loss �pent is related to the shear and
elongational viscosity functions through the following equation:

�pent = 2m(1 + t)2
3t2(1 + n)2

[
lt (3n+ 1)nt Int

m

] 1
1+t
γ̇
t (n+1)

1+t
R0

[
1 − α 3t (n+1)

1+t
]

(10.130)
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TABLE 10.5
Assumptions for the Binding Analysis of Contraction Flow

1. Incompressible fluid

2. Funnel-shaped flow; no slip (vz = 0) on funnel surface

3. Unidirectional flow in funnel region (see assumption 10)

4. Fully developed flow upstream and downstream

5. θ -symmetry

6. Shear viscosity is related to shear rate through a power law, η = mγ̇ n−1

7. Elongational viscosity is given by power law, η̄ = lε̇t−1
0

8. Shape of funnel is determined by the minimum work to drive flow

9. No effect of elasticity (shear normal stresses neglected)

10. Quantities (dR/dz)2 and d2R/dz2 related to funnel shape are neglected; this has the implication that the
radial velocity is neglected when calculating the rate of deformation

11. Neglect energy required to maintain corner circulation

12. τθθ − τrr = 0

13. Neglect inertia

where m and n are the parameters associated with the shear viscosity power law (η =
mγ̇ n−1), l and t are the parameters associated with the elongational viscosity power law
(η̄ = lε̇t−1

0 ), α = R0/R1, R0 is the downstream radius, R1 is the upstream radius, Q is the
flow rate, and Int and γ̇R0 are defined as

Int =
∫ 1

0

∣∣∣∣2 −
(

3n+ 1

n

)
φ1+ 1

n

∣∣∣∣t+1

φ dφ (10.131)

γ̇R0 = (3n+ 1)Q

nπR3
0

(10.132)

The variable φ is a dummy variable of integration. To calculate �pent we first need
to know t , the power-law index for elongational viscosity. From Equations (10.130) and
(10.132) we see that a plot of log�pent versus logQ will give a straight line of slope
t (n+ 1)/(1 + t) from which we can calculate t if the shear viscosity power-law is known.
Once t is known, the integral Int may be calculated, and finally the elongational viscosity
coefficient l may be calculated from Equation (10.30). The final outcome of the analysis is
the function η̄ = lε̇t−1

0 .
The elongational viscosities calculated using the Binding analysis are quite reasonable

for shear-thinning fluids, but for elastic fluids with constant viscosity (called Boger fluids)
the analysis is not accurate. The Binding analysis is more accurate than the Cogswell analysis
for commodity polymers such as linear low-density polyethylene (LLDPE) [245].

We see from the discussions in this section and in previous sections that elongational
flow properties are quite challenging to measure. Many more geometries have been studied,
and these are compared quantitatively and contrasted in Macosko [162] and elsewhere [205,
51]. A brief comparison of four of the most reliable methods of measuring elongational
flow properties are given in Table 10.6. It is an ongoing challenge for rheologists to develop
reliable, flexible techniques to evaluate elongational properties.
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TABLE 10.6
A Comparison of Experimental Features of Four Elongational Geometries

Filament Binding/
Feature Melt Stretching MBER Stretching Cogswell

Stress Range Good for high
viscosity

Good for high
viscosity

Good for low
viscosity at room
temperature

Good for high and
low viscosities

Flow stability Subject to gravity,
surface tension and
air currents

Can be unstable at
high rates

Subject to gravity,
surface tension and
air currents

Unstable at very
high rates

Sample size and
sample loading

10 g; care must be
taken to minimize
end effects

<2 g; requires
careful preparation
and loading

<1 g; easy to load 40 g minimum; easy
to load

Data handling Straightforward,
but does not result
in any elongational
material functions

Straightforward;
more involved if
strain is measured

Two tests are
required to
account for strain
inhomogeneities

Cogswell—
straightforward
Binding—more
complicated but not
difficult

Homogeneous? No, not at ends Could be with care No, not at ends No—mixed shear
and elongational
flow

Pressure effects No No No Yes—
compressibility of
melt reservoir could
cause difficulties

Elongation rates Maximum rates
depend on clamp
speeds

Maximum
elongation rate is
limited by ability to
maintain the sample
in steady flow

Maximum rates
depend on plate
speeds; minimum
rates depend on the
ratio of gravity and
viscous effects

High and low rates
possible

Special features Cannot reach high
strains or steady
state; wide range
of temperatures
is possible; the
instrument is
commercially
available

Often strain is not
measured but is
calculated from
the imposed strain
rate; a wide range
of temperatures
is possible; the
instrument is
commercially
available

Currently limited to
room temperature
liquids

Is based on a
presumed funnel-
shaped flow—this
may not take
place; wide range
of temperatures
possible

10.3 Flow Birefringence

The rheometric techniques we have described thus far have focused on directly measuring
forces or torques and then calculating stresses and material functions from these. An
alternative approach is to measure other material properties that can be related to stress
rather than measuring stress directly. For transparent polymers, the optical property called
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birefringence has been found to be directly proportional to stresses [116], and thus bire-
fringence provides a noninvasive way of measuring stress fields in some systems. Flow
birefringence is applicable to both shear and elongational flows.

In this section we introduce the concept of birefringence and derive the expressions
that allow shear and elongational stresses to be calculated in the most commonly used flow
geometries. Fuller’s text on optical rheometry [84] provides a more complete discussion
of the use of polarized light in rheometry. In our discussion we assume that the reader
has a level of familiarity both with light and with the optical properties of matter. A more
thorough background in optics is given in Appendix E or may be obtained by reading
Fowles [81].

10.3.1 INTRODUCTION

When light travels in a vacuum, its speed is the well-known result, c = 2.997925 × 108

m/s. When light propagates through a transparent material, its speed u is less than c, and
the refractive index n = c/u is used to describe the speed of light in the medium. The
refractive index is defined with respect to the susceptibility χ , a material property that
relates the polarization state of the material (characterized by a vector P ) and the electric-
field vector E of the incident light:

Polarization of an
isotropic medium

P = ε0χE

χ = n2 − 1
(10.133)

The scalar ε0 is called the permittivity of free space, and it is a universal constant;
ε0 = 8.854 × 10−12 F/m. The interrelations between P , E, and the magnetic-field vector
H are governed by Maxwell’s equations (see Appendix E).

The preceding discussion supposes that the speed of light in a material is the same in
all directions, that is, the material is isotropic. Some materials, however, are anisotropic
with respect to the passage of light, and more complicated expressions are needed. The
refractive index is a tensor n in an anisotropic material, as is the susceptibility χ :

Polarization of an
anisotropic medium

P = ε0χ · E
χ = n · n− I (10.134)

Both χ and n are symmetric tensors [81].

Having to consider the refractive index as a tensor is a considerable complication in
the study of anisotropic materials. The situation can be simplified somewhat, however, by
considering n in a coordinate system ξ̂x , ξ̂y, ξ̂z, in which it takes on a diagonal form, that
is, one in which all off-diagonal elements are zero:

n =
⎛⎝ nxx 0 0

0 nyy 0

0 0 nzz

⎞⎠
ξxξyξz

(10.135)
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where the subscript ξxξyξz serves as a reminder that n only takes on this simple form in
a particular coordinate system denoted by ξx, ξy, ξz. For symmetric tensors, it is always
possible to find such an orthonormal coordinate system [5a]. The vectors that form the
coordinate system in which n is diagonal are called the principal axes of the tensor. Details
of how to find the principal axes of a tensor and of how to calculate the coefficients of a
symmetric tensor in the principal frame can be found in Appendix C.6.

When n is in its diagonal form, we need only consider three values of refractive index,
nxx ≡ n1, nyy ≡ n2, and nzz ≡ n3. There are three cases to consider: n1 = n2 < n3, called
uniaxial positively birefringent, n1 = n2 > n3, uniaxial negatively birefringent, and n1,
n2, n3 all distinct, characteristic of biaxial materials. Where n1 = n2 = n3, the material is
isotropic, and Equations (10.134) reduce to Equations (10.133). For uniaxially birefringent
materials, the two equal refractive indices are called ordinary indices, n1 = n2 ≡ n0,
and the different index is called extraordinary index, n3 ≡ ne. The birefringence �n is
defined as the difference between the principal refractive indices, that is, �n ≡ ne − n0

for uniaxial materials, and there are two independent birefringences, �n21 ≡ n2 − n1 and
�n32 ≡ n3 − n2, for biaxial materials.

Definition of
birefringence

�n = ne − n0 uniaxial
�n21 = n2 − n1

�n32 = n3 − n2

}
biaxial

(10.136)

To measure birefringence, linear polarized light is sent through an anisotropic ma-
terial along a principal axis. The electric-field vector E has two nonzero components
(Figure 10.24), both orthogonal to the direction of beam travel. For example, if ξ̂z is taken
to be the direction of light travel, then E for the incident light may be written as

Figure 10.24 Components of the electric-field vector of linearly polarized light traveling in two
media: (a) In an isotropic medium (e.g., air)—the light remains linearly polarized and the tip of E,
when projected in the xy-plane, traces back and forth on a line. (b) In the ξz-direction of an anisotropic
solid, where ξx, ξy, ξz are the principal directions of n for that solid—in this case the light becomes
elliptically polarized, and the projected tip of E traces an ellipse in the ξxξy plane.
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Eincident = ei(kz−ωt)
⎛⎝E0x

E0y

0

⎞⎠
ξxξyξz

= eiω( zu−t)

⎛⎝E0x

E0y

0

⎞⎠
ξxξyξz

(10.137)

where ω is the frequency of the light, k = ω/u is the magnitude of the wave vector, u is
the speed of light in the medium, and E0x and E0y are the amplitudes of the electric-field
vector in the ξx- and ξy-directions; E0x and E0y are constant and real for linearly polarized
light. The subscript ξxξyξz on the vector reminds us that we have written E in the principal
frame of n, the refractive index tensor of the medium through which the light is traveling.

When light is traveling along a principal direction of an anisotropic material, it is easy
to calculate the effect of the medium on the polarization state of the beam: the component
of the incident-light electric-field vector in the ξx principal direction will travel at velocity
u1 = c/n1 associated with the ξx principal direction; the component of the incident-light
electric-field vector in the ξy principal direction will travel with the ξy-direction velocity,
u2 = c/n2. The electric-field vector of the exiting light will be just the vector sum of these
two components after their travel. The net effect on linearly polarized incident light of
traversing an anisotropic sample of thickness hwill be that it becomes elliptically polarized,
that is, the ξx- and ξy-components of the exiting-light electric-field vector are out of phase
by an amount δ, as shown:

Eexiting =
⎛⎜⎝E0xe

iω( h
u1

−t)

E0ye
iω( h

u2
−t)

0

⎞⎟⎠
ξxξyξz

(10.138)

= eiω
(
n1h
c

)
e−iωt

⎛⎝ E0x

E0ye
iδ

0

⎞⎠
ξxξyξz

(10.139)

where

Retardance δ = ωh�n21

c
= 2πh�n21

λv
(10.140)

Here ω = 2πc/λv is the frequency of the light, n1 and n2 are the principal refractive
indices in the ξx- and ξy-directions, �n21 = n2 − n1 is the birefringence, h is the sample
thickness, λv is the wavelength of light in a vacuum, and c is the speed of light in vacuum.
Equation (10.139) is the equation for the electric-field vector of the elliptically polarized
beam that exits the sample at z = h. If the beam passes next into an isotropic medium, the
polarization state remains that calculated in Equation 10.139, and the wave propagates with
phase factor e−iωt replaced by ei(kz−ωt), where k is characteristic of the isotropic medium
and z represents distance traveled in the new medium.

The phase difference or retardance δ of the birefringent sample can be measured by
employing optical elements that subtract a phase difference from the light in the amount
needed to return the exiting-beam polarization to its original, linearly polarized state [116]
(Figure 10.25). Alternatively, a birefringent sample may be placed between crossed po-
larizers with light incident down a principal direction. The polarizers’ transmission axes
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are then positioned such that they are oriented at 45° with respect to the sample’s other
two principal axes (Figure 10.26). Using matrix methods [84] to account for the effect of
the medium on the incoming light, it can be shown that the intensity I measured in this
configuration is related to δ [84, 116]:

I = I0 sin2 δ

2
(10.141)

where I0 is the intensity of the polarized light inpinging on the sample. Measuring δ
with light incident in the ξz-direction yields the birefringence �n21 = n2 − n1 through
Equation (10.140). If�n32 or�n31 = �n32 +�n21 is desired, light is sent in along the ξx
or ξy principal directions, respectively.

In rheology, stress causes normally isotropic polymer melts and solutions to become, in
general, biaxially birefringent. Also, both positively flow-birefringent (e.g., polybutadiene)
and negatively flow-birefringent (e.g., polystyrene) polymers exist [116]. The stresses in
the flow are found to be directly proportional to the birefringence through a relationship,
called the stress-optical law, described next.

10.3.2 STRESS-OPTICAL LAW

The stresses generated in the flow of polymer melts are caused by the displacement of poly-
mer chains from their equilibrium random configurations toward elongated configurations

Figure 10.25 One method of measuring birefringence. Various samples of known birefringence are
inserted into the light path until extinction occurs. The retardance δ of the unknown sample is then
the negative of the retardance of the insert.
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Figure 10.26 A second method of measuring birefringence. Light is sent down a principal direction,
and the other two principal directions are set at an angle of 45° to the polarizer. The intensity of the
exiting beam is measured and equals I0 sin2(δ/2).

(see Section 9.4.2). These elongated configurations are not isotropic, and the stressed poly-
mer displays anisotropic optical properties or birefringence (Figure 10.27). The simplest
possible relationship between stress and birefringence is a linear proportionality.

For there to be a linear relationship between the stress tensor and the refractive-index
tensor, these two tensors must have the same set of principal axes. This condition is called the
condition of coaxiality. We can see that this must hold by considering a linear relationship
between n and τ , written in the principal frame for n:

n = Cτ + B (10.142)

Force applied, anisotropic chain,
anisotropic polarization = birefringent

No net force, isotropic chain,
isotropic polarization

n

n2

n1

n

Figure 10.27 Elongation of a polymer
chain through a tension on the chain
results in anisotropic optical properties.
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⎛⎝ n1 0 0

0 n2 0

0 0 n3

⎞⎠
ξxξyξz

= C
⎛⎝ τ11 τ12 τ13

τ21 τ22 τ23

τ31 τ32 τ33

⎞⎠
ξxξyξz

+
⎛⎝B11 B12 B13

B21 B22 B23

B31 B32 B33

⎞⎠
ξxξyξz

(10.143)

where B is an unspecified constant tensor, and C is a scalar constant. If there is no flow,
the only stresses present would be isotropic, τ = τ0I, and the material would be optically
isotropic, n = nI. In this case, for no flow:⎛⎝ n 0 0

0 n 0

0 0 n

⎞⎠
ξxξyξz

= C
⎛⎝ τ0 0 0

0 τ0 0

0 0 τ0

⎞⎠
ξxξyξz

+
⎛⎝B11 B12 B13

B21 B22 B23

B31 B32 B33

⎞⎠
ξxξyξz

(10.144)

and thus Bii = n−Cτ0 ≡ B, and all other components of B are zero. Since B is constant,
it must be the same in the flow and no-flow cases. Thus substituting B = BI back into
Equation (10.143) we see that all off-diagonal terms of τ are zero in this frame. Thus n and
τ are diagonal in the same frame, that is, they have the same principal axes. Note thatB = BI
holds in any coordinate system since isotropic tensors are invariant to a transformation of
the coordinate system (see Appendix C.6 and [7]).

The linear stress-optical law is, therefore,

Stress-optical law n = Cτ + BI (10.145)

and it has been found to be valid for a wide variety of polymers and polymer solu-
tions [116, 256]. The constant C is called the stress-optical coefficient, and it has units
of Pa−1. This relationship is also predicted by many molecularly based constitutive equa-
tions [138].

The stress-optical law is not valid for all flow conditions. To understand the limitations
on the stress-optical law, consider once again Figure 10.27. When a polymer chain is
deformed by flow, the chain segments orient, producing an anisotropic optical environment.
The stress imposed on the polymer is proportional to the number of oriented segments,
which is, in turn, proportional to birefringence. There is an upper limit to the amount of
alignment that a chain can experience, however—once the chain is completely extended in
the flow, applying more stress cannot produce more alignment. There is no upper limit to
the amount of stress that can be imposed on the fluid, however, and thus the proportionality
between stress and birefringence must fail at some point. When using flow birefringence
we must always know the range of validity of the stress-optical law for the material
being studied.

The stress-optical law is used to measure stresses in the same flow geometries as were
discussed earlier in the chapter. One hitch is that light must be sent down a principal direction
of stress.6 As we will see, this is straightforward for simple elongational flow and a bit more
complicated for shear flows.

6 If the direction of the light is not a principal direction, the calculations of birefringence are more
complex; see Appendix E.
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10.3.3 ELONGATIONAL FLOW

In elongational flow we established in Section 4.3.1 that the symmetry of the flow implies
that the stress tensor has the following form:

τ =
⎛⎝ τ11 0 0

0 τ22 0

0 0 τ33

⎞⎠
123

(10.146)

The basis for these coefficients of τ are a Cartesian coordinate system where ê3 is the
direction of stretch, and the flow contracts equally along the 2- and 1-directions. The
diagonal form of τ tells us that these conventional laboratory-frame axes are the principal
axes of the stress tensor for elongational flow, and the measurement of stress birefringence is
straightforward. A light beam is sent through the 2-direction, which is a principal direction,
and �n31 = n3 − n1 is measured. Knowledge of the stress-optical coefficient C allows
τ33 − τ11 to be calculated and from that, the elongational viscosity η̄. If η̄2 is desired
(during planar elongation), light must be sent in the 3-direction, and �n21 is measured. To
obtain the stress-optical coefficient initially, one must measure the flow birefringence and
independently measure the stresses using conventional mechanical methods.

10.3.4 SHEAR FLOW

As we discussed in Section 4.4.1, the symmetry of shear flow allows us to conclude that
the stress tensor can be written as

τ =
⎛⎝ τ11 τ21 0

τ21 τ22 0

0 0 τ33

⎞⎠
123

(10.147)

This is the stress tensor written in the conventional shear coordinate system, in which ê1

designates the flow direction, ê2 is the gradient direction, and ê3 is the neutral direction.
Unlike the stress tensor for elongational flow, this tensor is not diagonal in the

conventional laboratory frame. To use birefringence for shear stress measurement we must
relate the stress components above to the components of τ in the principal frame of reference.
As discussed in Appendix C.6, to calculate the coefficients of τ in the principal coordinate
system, we must solve the following matrix characteristic equation for the eigenvalues λi :

[τ ]123 ≡
⎡⎣ τ11 τ21 0

τ21 τ22 0

0 0 τ33

⎤⎦ (10.148)

det |[τ ]123 − λI | = 0 (10.149)

where [τ ]123 is the matrix of coefficients of τ in the laboratory shear (123) frame. The results
for the eigenvalues or principal stresses of shear flow are [161]

σ1 = λ1 = 1

2
(τ11 + τ22)+ 1

2

√
(τ11 − τ22)2 + 4τ 2

21 (10.150)
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σ2 = λ2 = 1

2
(τ11 + τ22)− 1

2

√
(τ11 − τ22)2 + 4τ 2

21 (10.151)

σ3 = λ3 = τ33 (10.152)

[τ ]ξxξyξz =
⎡⎣ σ1 0 0

0 σ2 0

0 0 σ3

⎤⎦ (10.153)

τ =
⎛⎝ σ1 0 0

0 σ2 0

0 0 σ3

⎞⎠
ξxξyξz

(10.154)

where again the subscript ξxξyξz indicates that the tensor τ is written in its principal
frame.

To interpret these results more physically, we note first that λ3 = τ33. Solving for
the eigenvector ξ̂z that corresponds to λ3, we obtain [for more on this calculation see
Equation (C.72)]

ξ̂z =
⎛⎝ 0

0

1

⎞⎠
123

(10.155)

Note that we require the eigenvectors to be unit vectors. This can be done without loss of
generality.

Thus one of the vectors is unchanged (ê3 = ξ̂z) for the coordinate transformation that
diagonalizes τ . This tells us that the transformation between the shear coordinate system

and the principal frame (composed of the eigenvectors ξ̂x , ξ̂y, ξ̂z) is a simple rotation of ê1

and ê2 around ê3 (Figure 10.28). If the angle between ê1 and ξ̂x is called χ , then by the
methods in Appendix C.6, the rotation matrix can be seen to be7

Figure 10.28 Relationship between the shear coordinate
system x1, x2, x3 and the principal coordinate system of the
refractive index tensor, ξ̂1, ξ̂2, ξ̂3.

7 The use of χ for the angle between the shear and principal frames is standard. This is not to be
confused with the isotropic susceptibility, which is also called χ .
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L =
⎡⎣ cos χ − sin χ 0

sin χ cos χ 0

0 0 1

⎤⎦ (10.156)

The components of τ in the rotated coordinate system ξ̂x , ξ̂y, ξ̂z can now be calculated from

the matrix expression [τ ]ξxξyξz = LT [τ ]123 L (for details see Appendixes C.5 and C.6),
which yields expressions for the diagonal components σi , but now in terms of the angle χ ,

σ1 = (τ11 − τ22) cos2 χ + τ22 + τ21 sin 2χ (10.157)

σ2 = (τ11 − τ22) sin2 χ + τ22 − τ21 sin 2χ (10.158)

σ3 = τ33 (10.159)

with

tan 2χ = 2τ21

τ11 − τ22
(10.160)

Writing the principal stress differences σ1 − σ2 and σ2 − σ3 as �σ1 and �σ2, respectively,
and rearranging, we obtain the following relationships between τ21,N1, andN2 in the shear
coordinate system, and �σ1, �σ2, and χ in the principal coordinate system:

Relation between
principal stresses

and shear coordinate stresses

τ21 = �σ1 sin 2χ

2
N1 = τ11 − τ22 = �σ1 cos 2χ

N2 = τ22 − τ33 = �σ2 +�σ1 sin2 χ

(10.161)

Here χ is called the orientation or extinction angle.
The problem of measuring τ21, N1, and N2 has now been replaced by the need to

measure �σ1, �σ2, and χ . The stress-optical law is⎛⎝ n1 0 0

0 n2 0

0 0 n3

⎞⎠
ξxξyξz

= C
⎛⎝ σ1 0 0

0 σ2 0

0 0 σ3

⎞⎠
ξxξyξz

+
⎛⎝B 0 0

0 B 0

0 0 B

⎞⎠
ξxξyξz

(10.162)

Measurements of the birefringencesn1−n2 andn2−n3, plus knowledge of the stress-optical
coefficient C, yield the principal stress differences �σ1 and �σ2:

n1 − n2 = C(σ1 − σ2) = C�σ1 (10.163)

n2 − n3 = C(σ2 − σ3) = C�σ2 (10.164)

The angle χ must be measured separately. In practice, �σ2 = (n2 − n3)/C is not often
measured in shear flow since this would require sending light along the principal direction
ξ̂y , and this direction is unknown a priori and varies with the material studied and the flow
conditions. It is possible to measure �σ1 = (n1 − n2)/C, however, by sending light in
along the ξ̂z-direction, which is a principal axis.
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The simplest arrangement for measuring n1 − n2 and χ in steady flow is to bracket a
Couette flow with crossed polarizers [116] (Figure 10.29). These are then turned together
such that the extinction axes of the polarizers rotate, and the angle at which extinction occurs
with the sample present is χ . We can see why this is true by looking at Equation (10.138).
If light polarized along one of the two remaining principal directions (either ξ̂x or ξ̂y in this
case) is sent through a birefringent medium, no change in phase is effected. For example,
if the incoming light is polarized in the ξx-direction, then

Eincident = eiω( zu−t)
⎛⎝E0x

0
0

⎞⎠
ξxξyξz

(10.165)

While passing through the birefringent sample, the ξx-component of E travels at speed u1,
and the ξy-component travels at speed u2; hence,

Eexiting = eiω( hu1
−t)

⎛⎝E0x

0
0

⎞⎠
ξxξyξz

(10.166)

Figure 10.29 Measurement of orientation angle χ and the retardance δ for shear flow. In the
configuration shown, light emerges unless the axes of the polarizer and analyzer correspond to
shear principal directions (α = 0). χ is determined by rotating the crossed polars until the light
is extinguished. The polaroids are then rotated so that α = 45°, and δ is measured as 2 sin −1√I/I0
[see Equation (10.141)].
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which is linearly polarized in the ξx-direction, that is, no change in polarization was induced
upon passing through the birefringent medium in this direction. Thus a polaroid oriented to
extinguish the light in its incident state will still extinguish the light with the birefringent
medium present. If the incoming light is polarized in any direction but the ξx- or ξy-
directions, however, the electric-field vector will have two nonzero components when
written in the principal frame, each of which will travel in the birefringent medium at
its respective velocity (u1 or u2), and the resulting phase difference will not be zero. In
this case a polaroid set to extinguish the light in its original state (no sample present) will
no longer extinguish the light that has passed through the birefringent medium, which is
now elliptically polarized. Thus, when rotating the crossed polaroids across the steady
flow field, extinction will occur when the principal birefringence (or equivalently stress)
directions line up with the extinction axes of the crossed polaroids. Once χ is located, the
crossed polarizers can then be positioned with their extinction axes oriented at 45° with
respect to χ , the intensity measured, and the retardance δ (which is related to n1 − n2)
obtained from Equation (10.141).

In unsteady shear flows the problem of measuring χ is a considerable challenge,
which can be overcome by modulating the incoming polarization in some way [82, 117,
149]. One method [82] is to insert a photoelastic modulator in the laser path before the
sample. The entire system is bracketed by crossed polarizers. A photoelastic modulator is
a quartz crystal whose optical properties change with the strain on the crystal. The crystal
is deformed sinusoidally, resulting in the light that passes through it experiencing a time-
variable retardance δmod:

δmod = A sin ωmodt (10.167)

where A is an amplitude that depends on experimental conditions, and ωmod is the resonant
frequency of the quartz crystal. Using matrix methods [84] to account for the optical
impact of each element in the optical train, it can be shown [82] that measurements of
the intensities corresponding to the first and second harmonics of ωmod allow the sample
retardance δ and orientation angle χ to be calculated simultaneously as a function of time.
The two intensity harmonics can be measured in a straightforward manner using lock-in
amplifiers.

Our preceding discussion shows how τ21 and N1 can be measured with light sent in
along the 3-direction of shear flow. It is sometimes easier, however, to send light along ê2

or ê1, such as through the plates of a parallel-disk rheometer or along the axis of a capillary
tube [116]. Since ê2 and ê1 are not principal directions, the optics are more complex.
The case of light propagating in the 2-direction of shear flow is described in detail in
Appendix E. Luckily, for moderate values of the birefringence, the results of sending light
down a nonprincipal axis and down a principal axis are the same, that is, a retardance δ
is induced, which is related to the birefringence in the plane orthogonal to the direction of
travel of light. In the shear-flow coordinate system, the refractive index tensor is

n =
⎛⎝ n11 n21 0

n21 n22 0

0 0 n33

⎞⎠
123

(10.168)
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For small values of birefringence, we show in Appendix E that sending light in the 2-
direction (not a principal direction) measures the difference n11 − n33, and for light in
the 1-direction, n22 − n33 is measured. It is important to note that these are not principal
refractive index differences, �n21 = n2 − n1 and �n32 = n3 − n2, but rather refractive
index differences associated with the shear coordinate system. They are related to the shear
normal-stress differences in a straightforward manner:

n11 − n22 = C(τ11 − τ22) (10.169)

n22 − n33 = C(τ22 − τ33) (10.170)

10.4 Summary

We have presented an outline of only some of the rheometric techniques that are used to
characterize polymeric and other non-Newtonian materials. Walters’ book [258] contains
important discussions on many effects that enter into the actual measurements of material
functions. Recent reviews of rheometric techniques and equipment may be found in Ma-
cosko [162] and Collyer and Clegg [51]. Other representative texts that discuss rheological
measurements are Dealy and Wissbrun [61], Dealy [58], and for the industrial approach,
Walters’ other text [259] and Barnes et al. [11]. For more on optics, see Appendix E and
Fowles [81], and for more on optical rheometry, see Fuller [84].

1 0 . 5 P R O B L E M S

10.1 What is the Weissenberg–Rabinowitsch correc-
tion? Why is it needed?

10.2 How can we correct capillary data for entrance and
exit effects?

10.3 How can we correct capillary data for slip effects?

10.4 For a Newtonian fluid in Poiseuille flow in a capil-
lary, show that near the wall the velocity takes on
the form v = γ̇0x2ê1.

10.5 For a power-law generalized Newtonian fluid in
Poiseuille flow in a capillary, show that near the
wall the velocity takes on the form v = γ̇0x2ê1.

10.6 We showed that we can measure steady shear vis-
cosity η in a capillary rheometer using the follow-
ing equations:

η(γ̇R) = τR

γ̇R
= τR

Q/πR3

[
3 + d ln(4Q/πR3)

d ln τR

]−1

γ̇R = Q

πR3

[
3 + d ln(4Q/πR3)

d ln τR

]

where τR is the wall shear stress, R is the radius
of the capillary, Q is the flow rate in the capillary,
and γ̇R is the shear rate at the wall.

(a) What are the assumptions that went into deriv-
ing this relationship?

(b) The term in brackets on the right-hand side of
the equation is known as the Rabinowitsch cor-
rection. What is the Rabinowitsch correction
correcting for?

(c) Describe what data you would take and how
you would manipulate them to calculate the
viscosity of an unknown material using a cap-
illary rheometer.

10.7 Show that Equation (10.44) for the general case of
the shear rate in capillary flow and Equation (10.31)
for the capillary shear rate of a power-law general-
ized Newtonian fluid are consistent.

10.8 In experiments on a Newtonian fluid in a capillary
rheometer, the measured pressure drop across the
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capillary was 200 psi for a constant flow rate Q.
The capillary was 1 mm in diameter and 20 mm in
length. For experiments run at the same flow rate,
what would the pressure drop across the capillary
have been if the capillary had been 1 mm in diame-
ter but 40 mm in length? What would the pressure
drop have been if the capillary had been 20 mm in
length, but with a diameter of 0.5 mm? Comment
on your answers.

10.9 For a power-law generalized Newtonian fluid of
interest the viscosity is given by

η(Pa · s) = 3.62 × 106 γ̇−0.8

where γ̇ is given in units of s−1. In experiments on
this material in a capillary rheometer, the measured
pressure drop across the capillary was 200 psi for
a constant flow rateQ. The capillary was 1 mm in
diameter and 20 mm in length. For experiments run
at the same flow rate, what would the pressure drop
across the capillary have been if the capillary had
been 1 mm diameter but 40 mm in length? What
would the pressure drop have been if the capillary
had been 20 mm in length, but with a diameter of
0.5 mm? Comment on your answers, and compare
to Newtonian predictions (that is, for power-law
parameter n = 1).

10.10 You are given a sack of polymer and are told to
measure viscosity versus shear rate at 200°C on
a capillary rheometer in the lab. Describe what
experiments you need to run to get an accurate plot
of viscosity as a function of shear rate.

10.11 You have air pressure of 90 psig in your lab that
you want to use to drive a capillary rheometer. For
typical sizes of capillaries (R = 0.5, 1, 1.5 mm;
L = 10, 20, 30, 40 mm), assuming a Newto-
nian fluid, calculate the maximum viscosities and
maximum shear rates you can achieve with lab
pressure as your driving force. You estimate that
the lowest average exit velocity you can measure
is vz,av,min = 0.5 mm/s. Would the proposed capil-
lary rheometer be appropriate for most polymers?

10.12 For the data in Figure 10.10, calculate vslip as a
function of wall shear stress.

10.13 For the data in Figure 10.8, calculate the true pres-
sure drop as a function of apparent shear rate.

10.14 The raw data of apparent shear rate versus wall
shear stress given in Table 10.7 [131] are for a star-
branched polybutadiene (Mw = 333 kg/mol) at

379°C. Calculate and plot the true viscosity versus
true shear rate at this temperature. What arem and
n for a fit of these data to the power-law generalized
Newtonian fluid model?

TABLE 10.7
Data for Problem 10.14


PR

2L

4Q

πR3

(dyn/cm2) (s−1)

0.44 0.021
0.57 0.051
0.66 0.15
0.84 0.21
1.12 0.48
1.28 0.64
1.51 1.01
1.63 1.15
1.80 1.56
1.92 1.77
2.17 2.56
2.22 2.56
2.36 3.13
2.54 3.68

10.15 Derive an expression for the shear rate at the wall
for Poiseuille flow between two flat parallel plates.
Your expression will be similar to the Rabinowitsch
correction discussed for flow in a tube. You may
assume that the end and edge effects are negligible.
Verify that your solution is correct for the case
of a power-law generalized Newtonian fluid (see
Problem 7.27).

10.16 The steady-state torque required to rotate the upper
plate in the torsional parallel-disk rheometer was
calculated for an incompressible Newtonian fluid
in Section 3.5.4. Show that this result for the torque
is consistent with the viscosity calculated from the
Rabinowitsch expression for this geometry, Equa-
tion (10.78).

10.17 You are given a sack of polymer and are told to
measure viscosity versus shear rate at 200°C on a
parallel-disk rheometer in the lab. Describe what
experiments you need to run to get an accurate plot
of viscosity as a function of shear rate.

10.18 In conducting measurements of G′ and G′′ on
a cone-and-plate rheometer, you notice that the
torques that are generated by the fluid are below
the minimum sensitivity of the instrument. What
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can you do to raise the torques generated by the
fluid on the cone-and-plate instrument?

10.19 Data were taken with a cone-and-plate rheometer
on a fluid of unknown properties. The stress re-
sponse with time was fit to the following function:

τθφ |θ=�0 (Pa) = −16(1 − e−25t )

where t is in seconds; the imposed shear rate γ̇0 =
γ̇φθ was 10 s−1.

(a) Plot the shear stress as a function of time. It is
customary to plot on a log–log plot.

(b) Calculate the stress growth function η+(t) for
this fluid at γ̇0 = 10−1.

(c) Calculate the steady shear viscosity for this
fluid at γ̇0 = 10−1.

10.20 You are given a sack of polymer and are told to
measure viscosity versus shear rate at 200°C on a
cone-and-plate rheometer in the lab. Describe what
experiments you need to run to get an accurate plot
of viscosity as a function of shear rate.

10.21 The viscosity and first normal-stress coefficient
were measured on a cone-and-plate viscometer to
be 300 Pa · s and 50 Pa · s2, respectively, at a shear
rate of 5 s−1. The cone angle was 4°, and the radius
of the cone-and-plate fixtures was 25 mm.

(a) What was the torque in this measurement?
Give your answer in both N · m and in g ·
cm.

(b) What was the thrust? Give your answer in both
newtons and grams.

(c) What would the torque and thrust have been if
fixtures with radius 12.5 mm had been used?
Comment on how your calculations would im-
pact your selection of which transducer to use
to measure torque and thrust.

10.22 A cone-and-plate rheometer is equipped with a
2000-g · cm transducer to measure torque. What is
the maximum viscosity measurable with fixtures
having a radius of 12.5 mm and a cone angle of
4°? Give your answer as a function of shear rate.
What if the cone angle is 2°? What if the radius is
25 mm?

10.23 Compare and contrast the cone-and-plate and par-
allel-disk torsional shear geometries. Under what
circumstances would each be favored?

10.24 A Couette rheometer is equipped with a 2000-g
· cm transducer to measure torque. What is the

maximum viscosity measurable with fixtures hav-
ing an inner radius of 12.5 mm, a gap of 1 mm (outer
− inner radius = gap), and a bob length of 30 mm?
Give your answer as a function of shear rate.

10.25 You are given a polymer solution and are told
to measure viscosity versus shear rate at room
temperature on a Couette rheometer in the lab.
Describe what experiments you need to run to
get an accurate plot of viscosity as a function of
shear rate.

10.26 The viscosity of a fluid was measured on a Couette
viscometer to be 6.2 Pa · s. The inner radius was
25 mm, the gap (outer − inner radius) was 1 mm,
and the bob length was 30 mm. The shear rate was
10 s−1.

(a) What was the torque in this measurement?
Give your answer in both N · m and in g · cm.

(b) What would the torque have been if fixtures
with an inner radius of 15 mm and a gap of
1 mm had been used? The length remains the
same at 30 mm.

10.27 In experiments with a polymer on the metal-belt
extension rheometer (MBER), the force in newtons
as a function of time f (t) was measured and em-
pirically fit to the function f (t) = 8.0 × 10−4(1 −
e−0.0010t )0.40, where t is time in seconds. The
initial cross-sectional area was 10.0 mm2, and the
elongational rate was 0.0010 s−1. What is η̄+ for
this experimental run? Plot your answer.

10.28 What is the difference between uniaxially and bi-
axially birefringent materials?

10.29 The refractive index tensor of zircon is given below
[81].

n =
⎛⎜⎝ 1.923 0 0

0 1.923 0

0 0 1.968

⎞⎟⎠
ξ1ξ2ξ3

(a) What are ne, n0, and �n?

(b) Is zircon uniaxial, biaxial, or isotropic? If uni-
axial, is it positively or negatively birefringent?

10.30 For beryl, n0 = 1.598 and ne = 1.590 [81]. What
is n for beryl? What is the birefringence?

10.31 For diamond, n = 2.417 and the crystal is isotropic
[81]. What is n?

10.32 The refractive index tensor of feldspar is given
below [81].
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n =
⎛⎜⎝ 1.524 −2.000 × 10−3 0

−2.000 × 10−3 1.524 0

0 0 1.530

⎞⎟⎠
123

Is feldspar uniaxial, biaxial, or isotropic? What is
the value of birefringence (or the two values of
birefringence if feldspar is biaxial)?

10.33 The light incident on a slab of calcite is character-
ized by electric field vector E,

E = eiω( zu−t)

⎛⎜⎝ 2

0

1

⎞⎟⎠
ξ1ξ2ξ3

whereω = 2πc
λv

and the light is from a helium-neon
laser, λv = 0.6328μm. The refractive index tensor
for calcite is [81]

n =
⎛⎜⎝ 1.658 0 0

0 1.658 0

0 0 1.486

⎞⎟⎠
ξ1ξ2ξ3

Calculate the polarization state of the exiting light.
The thickness of the sample is 3 mm, and the light
is passing along the ξ̂2-direction.

10.34 Calculate the eigenvalues of the stress tensor τ in
terms of the coefficients of τ in the shear coordinate
system [Equations (10.150–10.152)].

10.35 Derive the relationships between the principal
stresses σi and the shear coordinate system coeffi-
cients τ21, τ11, τ22, and τ33 [Equation (10.161)].

10.36 Show that the stress-optical law written as

ñ = Cτ̃

ñ ≡ n− 1

3
trace(n)I

τ̃ ≡ τ − 1

3
trace(τ )I

is equivalent to the form discussed in the text. What
is B equal to? τ̃ is known as the deviatoric stress
tensor, that is, the stress tensor written such that the
isotropic stress is zero.
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A P P E N D I X

A
Nomenclature

Symbol Section Definition

a 2.2 Magnitude of vector a, a = |a|
4.3.2 Length of side of a cube of fluid
7.2.1 Exponent parameter of Carreau–Yassuda generalized Newtonian

fluid constitutive model
ã 8.4.2 Combination of parameters, ã = √−Iωρ/η∗

a1, a2, a3 3.2.2 1-, 2-, 3-components of vector a
aT 6.2.1.3 Shift factors for time–temperature superposition of rheological

functions
a 2.2 Arbitrary vector variable

3.2.2 Stress on 1-plane of a cube of fluid surrounding a point of interest
â 2.2 Arbitrary unit vector
A 3.2.2 Area

C.6 3 × 3 matrix of coefficients of tensor A in 123 Cartesian coordinate
system

A(t) 10.2.1.1 Cross-sectional area in elongational rheometry
A(r) 10.1.2 Scalar function of r
Ã 8.4.2 Combination of variables in torsional viscometer example,

Ã = 2πR4 Lρ(a − 1)/I
A0 10.2.1.1 Initial cross-sectional area in melt stretching experiment
A 8.4.2 Amplitude ratio in torsional viscometer example
A 2.3 Arbitrary tensor variable

A11, A12, A13, etc. 2.3 11, 12, 13, etc. coefficients of tensor A, i.e., A23 is the coefficient of
the ê2 ê3 diad

Â11, Â12, Â13, etc. 9.3.2 11, 12, 13, etc. contravariant convected coordinates of tensor A
Â11, Â12, Â13, etc. 9.3.2 11, 12, 13, etc. covariant convected coordinates of tensor A

b 4.3.3 Scalar parameter indicating the way streamlines of elongational
flow change with rotations around the flow direction

10.1.1.4 Extrapolation length; used to quantifiy slip at surfaces
b(t) 5.2.2.5 Time-dependent displacement of upper plate in small-amplitude

oscillatory shear experiment
bT 6.2.1.2 Vertical shift factors for time–temperature superposition,

bT ≡ Trefρref/Tρ

b 2.3.3 Arbitrary vector variable
3.2.2 Stress on 2-plane of a cube of fluid surrounding a point of interest

b(1), b(2), b(3) 9.3.1 nonorthonormal reciprocal basis vectors
b(1), b(2), b(3) 9.3.1 nonorthonormal basis vectors
b1, b2, b3 2.3.3 1-, 2-, 3-coefficients of vector b.
B 9.3.1 Volume of parallelepiped formed by vectors b(1), b(2), b(3)

C.6 3 × 3 matrix of coefficients of tensor B in 123 Cartesian coordinate
system

continued

438
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Symbol Section Definition

B 8.4.2 Combination of variables in torsional viscometer example,
B = (a − 1)2R2 K/I

B(r) 10.1.2 Scalar function of r
B 2.3 Arbitrary tensor variable

D Finger strain tensor (DPL notation)
10.3.2 Constant tensor

B−1 D Cauchy strain tensor (DPL notation)
B11, B12, B13, etc. 2.3 11, 12, 13, etc. coefficients of tensor B, i.e., B23 is the coefficient of

the ê2ê3 diad
c 2.4 Speed of light in a vacuum
c, c′ C.4 Section on finite deformation tensors in spherical coordinates,

c = cos φ, c′ = cos φ′
C,C′ C.4 Section on finite deformation tensors in spherical coordinates,

C = cos θ , C′ = cos θ ′
C1, C2 4.3.1 Integration constants
c0

1, c
0
2 6.2.1.3 Constants in WLF equation for shift factor log aT versus

temperature
C 10.3.2 Stress-optical coefficient
C 9.1.1 Cauchy strain tensor
C−1 9.1.1 Finger strain tensor
c 3.2.2 Stress on 3-plane of a cube of fluid surrounding a point of interest

c1, c2, c3 3.2.2 1-, 2-, 3-components of vector c
d 2.3 Arbitrary vector variable
D 10.1.1.4 Tube diameter

8.2 Displacement of a spring or dashpot
D E.3 Electric displacement vector
De 5 Deborah number, De ≡ λ/tflow
d/dt 2 Derivative operator
∂/∂t 2 Partial derivative operator
D/DT 2.6.3 Substantial derivative operator
e 10.1.1.3 Bagley correction length

êx , êy , êz 2.2.1.1 Unit vectors in x-, y-, z-directions of Cartesian coordinate system
2.2.1.1 Unit vectors in 1-, 2-, 3-directions of Cartesian coordinate system;

same as x-, y-, and z-directions
êr , êθ , êz 2.5 Unit vectors in r-, θ -, z-directions of cylindrical coordinate system
êr , êθ , êφ 2.5 Unit vectors in r-, θ -, φ-directions of spherical coordinate system

E E.3 3 × 1 matrix of coefficients of vector E
E B Young’s modulus
E 10.3.1 Electric-field vector
E0 E.2 Vector prefactor of electric-field vector, E = E0e

i(k·r−ωt)
E0 E.2 Magnitude of vector E0

E0x , E0y , E0z 10.3.1 x-, y-, z-components of E0
E 9.3.4 Strain tensor that corresponds to Gordon–Schowalter derivative

[138]
ET D Inverse deformation-gradient tensor (DPL notation) [26]
f 8.2 Force on a spring or dashpot
f (t) 4.2 Scalar function of time

10.2.1.1 Force in elongation experiment
10.2.2 Force on a plate in biaxial stretching experiment

f (x, t) 2.6.2 Scalar function of space (x) and time (t)
f (x1, x2, x3, t) 2.6.3 Scalar function of three-dimensional space (x) and time (t)

f (b) 2.3.3 Arbitrary vector function
f 3.2 Force (vector)
f
(i)

3.2 ith force

9.3.2.2 Force on surface normal to g
(i)

f1, f2, f3 3.2.2 1-, 2-, 3-components of vector f

continued
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Symbol Section Definition

f (t) 10.2.1.1 Vector force as a function of time for melt stretching experiment
F 10.1.1 Force on piston in a capillary rheometer

F(t, t ′) 9.1.1 Deformation-gradient tensor
F−1(t ′, t) 9.1.1 Inverse deformation-gradient tensor

F 10.1.3 Axial thrust in cone-and-plate rheometer
g 2.2.1.1 Gravitational force constant (scalar)

9.3.2 Determinant of matrix gij
gij 9.3.2 Contravariant metric coefficients, gij = g(i) · g(j)
gij 9.3.2 Covariant metric coefficients, gij = g

(i)
· g
(j)

g(t − t ′) 8.2 Generalized function that appears in generalized linear viscoelastic
constitutive equation

g̃i 6.2.1.3 Non-temperature-dependent portion of individual relaxation
moduli gi , gi = g̃iTρ

g 3.2.3 Force due to gravity (vector)
g(1), g(2), g(3) 9.3.2 Nonorthonormal reciprocal basis vectors of convected coordinate

system
g
(1)
, g
(2)
, g
(3)

9.3.2 Nonorthonormal basis vectors of convected coordinate system

G 5.2.2.5 Elastic modulus in Hooke’s law for elastic solids
G(t) 5.2.2.4 Linear viscoelastic relaxation modulus
G(t, γ0) 5.2.2.4 Nonlinear viscoelastic relaxation modulus
G0 9.2 Modulus parameter in Lodge model
G0 B Instantaneous modulus

G′(ω),G′′(ω) 5.2.2.5 Storage and loss moduli measured in small-amplitude oscillatory
shear

G′
r (aT ω),G

′′
r (aT ω),G

∗
r (aT ω) 5.2.2.5 Time–temperature shifted moduli measured in small-amplitude

oscillatory shear
G∗(ω), |G∗(ω)| 5.2.2.6 Complex modulus (complex number, G∗ = G′ − iG′′) and

magnitude of complex modulus (real number)
G�1 (t, γ0),G�2 (t, γ0) 5.2.2.4 First and second normal-stress step shear relaxation moduli

G0
N 6.1.3 Plateau modulus
Gsp 8.2 Force constant of a spring
h 5.4 Gap in small-amplitude oscillatory shear test as defined in problem

10.3.1 Sample thickness (birefringence)
h(t) 10.2.2.2 Height of a sample in lubricated squeezing experiment
H 3.5.1 Slit half-height in Poiseuille flow in an infinite slit

10.1.2 Gap between parallel plates
H0 E.2 Magnitude of vector H 0
H E.1 Magnetic-field vector
H 0 E.2 Vector prefactor of magnetic-field vector, H = H 0e

i(k·r−ωt)
H(t) 5.2.2.4 Heaviside unit step function

H0x ,H0y ,H0z E.2 x-, y-, z-components of H 0
i 5.2.2.6

√−1
î, ĵ , k̂ 2.2.1.1 Unit vectors in x; y; z-directions of Cartesian coordinate system
I 8.4.2 Moment of inertia of bob in torsional viscometer example

C.6 3 × 3 matrix of coefficients of identity tensor I
I 5.2.2.6 Imaginary operator, I (a + bi) = b
I 2.4 Identity tensor, I= δij êi êj

IB , IIB , IIIB 2.3.4 First, second, and third invariants of tensor B

J(t) 5.2.2.3 Shear creep compliance
J1(r) 8.4.2 First-order Bessel function of the first kind
Jr 5.2.2.3 Recoverable compliance
J 0
s 5.2.2.3 Steady-state compliance
J 2.6.2 Value of integral as defined in text
k 10.3.1 Magnitude of wave vector k
k E.2 Wave vector of light

continued
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Symbol Section Definition

k̂ E.2 Unit vector in direction of wave vector k, k̂ = k/|k|
kx, ky, kz E.3 x-, y-, and z-components of wave vector k
K E.2 Dielectric constant or relative permittivity
K E.3.2.1 Dielectric constant tensor in an anisotropic medium
Km E.2 Ratio of permeability of medium to that of vacuum
K 8.4.2 Force constant in torque bar in torsional viscometer example
l 4.2 Final separation of two particles of interest

B Final length of sample undergoing uniaxial extension
l0 4.2 Initial separation of two particles of interest

B Initial length of sample undergoing uniaxial extension
l1, l2 4.2 y-components of two particles of interest

L11, L12, L13, etc. 2.2.1.1 11, 12, 13, etc. elements of 3 × 3 matrix L
L 3.5.2 Tube length (Poiseuille flow in a tube) or bob length (torsional

viscometer)
9.1.2 3 × 3 transformation matrix for rotation of orthonormal bases

m 2.2.1.1 Mass (scalar)
7.2.1 Consistency index of power-law generalized Newtonian fluid

constitutive model
M 2.3.3 Arbitrary tensor variable
M 4.5 Molecular weight of a fluid
M 8.4.2 Combination of variables in torsional viscometer example,

M ≡ M1
√
I/K

M1 8.4.2 Combination of parameters,M1 ≡ η∗/ρR2(a − 1)2

Mc 6.1.3 Critical molecular weight for entanglement in linear polymers,
Mc ≈ 2Me

Me 6.1.3 Entanglement spacing, i.e., molecular weight between
entanglements for linear polymers

n 7.2.1 Exponential parameter in power-law and Carreau–Yasuda
generalized Newtonian fluid constitutive models

10.3.1 Refractive index in isotropic medium
n̂ 2.2 Unit vector perpendicular to vectors a and b following right-hand

rule
2.6.1 Outwardly pointing unit vector normal to surface S

n 10.3.1 Refractive index tensor
n1, n2, n3 10.3.1 Principal values of refractive index tensor of a material

n11, n12, n13, etc. 2.3 11, 12, 13, etc. coefficients of tensor n, i.e., n23 is the coefficient of
the ê2ê3 diad

neff E.3 Effective refractive index
N1, N2 4.5 First and second normal-stress difference, N1 ≡ τ11 − τ22,

N2 ≡ τ22 − τ33
p 2.4 Thermodynamic pressure (scalar)
Patm 10.2.1.1 Atmospheric pressure
P 10.3.1 Polarization vector
P 3.5.2 Modified pressure, P ≡ p − ρgz

P0, PL 3.5.1 Pressure at x1 = 0 and x1 = L, see example on Poiseuille flow in a
tube

P0,PL 3.5.1 Modified pressure at x1 = 0 and x1 = L, see example on Poiseuille
flow in a tube

Q 3.5.1 Volumetric flow rate (scalar)
r 2.5 Coordinate variable in cylindrical or spherical coordinate system;

note: definition of r is not the same in the two systems
r̄ 9.3.2 Radial coordinate variable in cylindrical coordinate system; used

when confusion would result from using r
r ′ 9.1 Particle position at time t ′
R 3.5.2 Tube radius

4.5 Ideal gas constant
R 9.1.2 Rotation tensor

continued
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Symbol Section Definition

Rb 10.1.1 Radius of barrel in capillary flow
R 10.1.4 Rabinowitsch correction in capillary flow

10.1.4 Shear-rate correction in parallel-plate flow
� 5.2.2.6 Real operator, �(a + bi) = a
s, s′ C.4 Section on finite deformation tensors in spherical coordinates,

s = sin φ; s′ = sin φ′
S 2.6.1 Surface area enclosing arbitrary volume V
s 9.3.2 Position vector in example

ŝ1, ŝ2, ŝ3 9.3.2 Contravariant convected coordinates of vector s
S, S′ C.4 Section on finite deformation tensors in spherical coordinates,

S = sin θ ; S′ = sin θ ′
S E.2 Poynting vector
t 2.6.2 Time
t ′ 8.2 Arbitrary time; used as a dummy variable of integration
T 4.5 Absolute temperature
T 10.1.2 Torque
t0 5.4 Time parameter in model given
t1 8.2 Intermediate time in strain calculation
tflow 5 Flow time scale; used in definition of De
tref 5.2.2.4 Reference time for calculation of strain
Tref 6.2.1.3 Reference temperature for time–temperature superposition
Tg 6.2.1.3 Glass-transition temperature

Tcylindrical C.4 3 × 3 matrix used in calculating deformation gradient tensor F and
its inverse in cylindrical coordinates

Tspherical C.4 3 × 3 matrix used in calculating deformation gradient tensor F and
its inverse in spherical coordinates

tan δ 5.2.2.5 Loss tangent; measured in small-amplitude oscillatory shear
experiment

u 2.2 Magnitude of vector u
E.2 Speed of light in a medium

u 9.1 Quantity in integration by parts
u 2.2.1.1 Arbitrary vector variable

8.2 Displacement vector
u1, u2, u3 2.2.1.1 Scalar coefficients of vector u in ê1-, ê2-, ê3-directions
U 9.1.2 Right stretch tensor
v 2.2.1.1 Arbitrary vector

2.2 Velocity vector
v 9.1 Quantity in integration by parts
v′ 9.3.3 Velocity vector at time t ′
vz,av 10.1.1.4 Spatial average velocity
Vwall 3.5.1 Velocity of wall

v1, v2, v3 2.2.1.1 Scalar coefficients of vector v in ê1-, ê2-, ê3-directions
v̂1, v̂2, v̂3 9.3.2 Contravariant convected coordinates of vector v
v̂1, v̂2, v̂3 9.3.2 Covariant convected coordinates of vector v
v̄1, v̄2, v̄3 4.4.1 Scalar coefficients of vector v in ē1-, ē2-, ē3-directions
ṽ1, ṽ2, ṽ3 2.2.1.1 Scalar coefficients of vector v in a particular coordinate system in

example
ṽ0 8.4.2 Complex amplitude of fluid velocity in gap, torsional oscillatory

viscometer example
vz,slip 10.1.1.4 Slip velocity
vframe 8.5 Velocity of frame of reference in turntable example
vsurface 2.6.2 Velocity of surface element dS
V 2.6.1 Arbitrary fluid volume over which a volume integration is

performed
V̂ 4.5 Specific volume of a gas
V 9.1.2 Left stretch tensor
w 2.2.1 Arbitrary vector variable

continued
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Symbol Section Definition

W 9.3.2 Position vector in example
W 3.5.1 Slit width in Poiseuille flow in infinite slit
W 8.4.2 Combination of variables in torsional viscometer example,

W = (ω̃2 − 1)/Aω̃ + ω̃/2
w1, w2, w3 2.2.1.1 Scalar coefficients of vector w in ê1-, ê2-, ê3-directions
ŵ1, ŵ2, ŵ3 9.3.2 Contravariant convected coordinates of vector w

X 8.4.2 Combination of parameters, X = (r − R)/(aR − R)
x, y, z 2.6.2 Spatial variables in Cartesian (fixed, orthonormal) coordinate

system
x′, y′, z′ 9.1.1 Coordinates for position of particle of interest at time t ′
x̂1, x̂2, x̂3 9.3.2 Contravariant convected coordinates of position vector r
x̂1, x̂2, x̂3 9.3.2 Covariant convected coordinates of position vector r
x̄, ȳ, z̄ 4.4.1 Spatial variables in ē coordinate system
x 2.6.2 Spatial variable
X E.3 3 × 3 matrix of coefficients of tensor χ

y 2.2.1.1 Coordinate variable in Cartesian coordinate system
Y C.1.1 New variable used in similarity transform solution
Y1(x) 8.4.2 First-order Bessel function of the second kind

y C.1.1 Dummy variable used in similarity transform solution
Z 2.2.1.1 3 × 3 matrix of scalar variables

Z11, Z12, Z13, etc. 2.2.1.1 11, 12, 13, etc. elements of matrix Z
α 2.1 Arbitrary scalar variable
α0 2.6.2 Scalar constant; limit of integration
β 2.1 Arbitrary scalar variable
β0 2.6.2 Scalar constant; limit of integration
γ 5.2.2.3 Shear strain
γ0 5.2.2.4 Fixed strain imposed in step-strain experiment

5.2.2.5 Strain amplitude imposed in small-amplitude oscillatory shear
experiment

γ∞ 5.2.2.3 Recoverable shear
γxx, γxy, γxz, etc. 4.2 xx, xy, xz, etc. coefficients of tensor γ , i.e., γyz is the coefficient of

the êy êz diad
γ (tref , t) 8.2 Infinitesimal strain tensor between times tref and t

γ [0] 9.1.1 Finite strain tensor, γ [0] ≡ C − I
γ

[0]
9.1.1 Finite strain tensor, γ

[0]
≡ I− C−1

γ̇ (t) 4.2 Rate of strain or shear rate; always a positive quantity, γ̇ ≡ |γ̇ |
γ̇a 10.1.1.2 Apparent shear rate, γ̇a ≡ 4Q/πR3

γ̇0 4.2 Constant rate of strain or shear rate
5.2.2.5 Strain-rate amplitude imposed in small-amplitude oscillatory shear

experiment
γ̇R 10.1.1 Wall shear rate in capillary flow

10.1.2 Rim shear rate in parallel-plate flow
γ̇ slip-corrected 10.1.1.4 Shear rate in capillary flow corrected for slip

γ̇ 3.3.2 Rate-of-strain or deformation rate tensor

γ̇11, γ̇12, γ̇13, etc. 4.2 11, 12, 13, etc. coefficients of tensor γ̇ , i.e., γ̇23 is the coefficient of

the ê2ê3 diad
δ 5.2.2.5 Phase difference between strain and stress in small-amplitude

oscillatory shear experiment; tan δ is known as loss tangent
10.3.1 Phase difference between x- and y-components of electric-field

vector of light
δij 2.2.2 Kronecker delta function
δm 10.3.4 Time-variable retardation in photoelastic modulator

�n21,�n31 10.3.1 Birefringences, �n21 ≡ n2 − n1, �n31 ≡ n3 − n1
�σ1,�σ2 10.3.4 Principal stress differences, �σ1 ≡ σ1 − σ2, �σ2 ≡ σ2 − σ3
�T D Deformation-gradient tensor (DPL notation)

continued
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Symbol Section Definition

ε 4.3.1 Strain in elongational flow; also known as Hencky strain
ε 5.2.2.4 Short time over which a step deformation is imposed on a sample in

the step shear strain experiment
E.2 Permittivity of a medium

εijk 2.2.2 Einstein epsilon function
ε̇(t) 4.3.1 Strain rate in elongational flow
ε̇o 4.3.1 Constant strain rate in elongational flow
ε0 10.3.1 Permittivity of free space, ε0 = 8.854 × 10−12 F/m
ζ 2.1 Arbitrary scalar variable

E.3.2.3 Angle between 2-direction of shear flow and wave vector k
ζ̂1, ζ̂2, ζ̂3 9.1.2 Unit eigenvectors of left stretch tensor V
η(γ̇ ) 5.2.1 Non-Newtonian viscosity

η̄(ε̇) or η̄1(ε̇) 5.3.1 Steady elongational viscosity or first steady elongational viscosity,
ε̇ > 0

η̄2(ε̇) 5.3.1 Second steady elongational viscosity
η̄B1 (ε̇) or η̄B (ε̇) 5.3.1 Steady biaxial elongational viscosity, ε̇ < 0
η̄P1 (ε̇) or η̄P (ε̇) 5.3.1 First steady planar elongational viscosity, ε̇ > 0

η̄P2 (ε̇) 5.3.1 Second steady planar elongational viscosity, ε̇ > 0
η′(ω), η′′(ω) 5.2.2.5 Linear viscoelastic viscosities
η∗(ω), |η∗(ω)| 5.2.2.5 Complex viscosity (complex number, η∗ = η′ − iη′′), magnitude of

complex viscosity (real number)
η′
r (aT ω), η

′′
r (aT ω), η

∗
r (aT ω) 5.2.2.5 Time–temperature-shifted complex viscosities, measured in

small-amplitude oscillatory shear
η0 5.2.1 Zero-shear viscosity, η0 ≡ limγ̇−→0 η

ηk 8.2 kth viscosity parameter in generalized Maxwell model
η∞ 7.2.1 Infinite-shear viscosity parameter of Carreau–Yassuda generalized

Newtonian fluid constitutive model
η̃ 5.4 Viscosity parameter in model given

η+(t, γ̇ ) 5.2.2.1 Shear stress growth coefficient
η−(t, γ̇ ) 5.2.2.2 Shear stress relaxation coefficient
θ 2.5 Coordinate variable in spherical or cylindrical coordinate systems;

note: definition is different in each case
θ(t) 8.4.2 Angular displacement in fluid in torsional viscometer example
θ ′ 8.4.2 dθ/dt

θ ′′ 8.4.2 d2θ/dt2

�,�,� C.6 Coefficients of characteristic equation of matrix or tensor
�0 10.1.3 Cone angle in cone-and-plate viscometer

�aR(t) 8.4.2 Time-dependent angular displacement of inner wall in torsional
oscillatory viscometer example (complex)

�0
aR(t) 8.4.2 Real amplitude of driven time-dependent angular displacement of

outer wall in torsional oscillatory viscometer example
�R(t) 8.4.2 Driven time-dependent angular displacement of inner wall in

torsional oscillatory viscometer example
κ 3.3.1 Dilatational viscosity (scalar)

3.6 Ratio of inner to outer radius in Couette geometry
λ 5 Material relaxation time

C.6 Eigenvalue of tensor or matrix
λk 8.2 kth relaxation time in generalized Maxwell model

9.1.2 Eigenvalues
λ1 6.1.3 Longest relaxation time of a material
λ̃i 6.2.1.3 Non-temperature-dependent portion of individual relaxation time

λi , λi = λ̃iaT
λv E.3.2.2 Wavelength of light in vacuum
� 8.5 Retardation time

C.6 3 × 3 diagonal matrix of coefficients of a tensor A in principal frame
μ 3.3.1 Newtonian viscosity (scalar constant)

continued
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Symbol Section Definition

μ E.2 Permeability of a medium
μ0 7.2.1 Viscosity parameter of Bingham generalized Newtonian fluid

constitutive model
ν 2.3.4 Order of a tensor

ν1, ν2, ν3 9.1.2 Eigenvalues of left stretch tensor V
ξ 9.3.4 Non-affine-motion or slip parameter in Gordon–Schowalter

derivative; ξ = 0 corresponds to affine motion
B Arbitrary variable in definition of error function
C.6 3 × 1 column eigenvector

ξ ′ B Dummy variable of integration in definition of error function
ξ̂1, ξ̂2, ξ̂3 9.1.2 Unit eigenvectors of symmetric matrix or tensor
ξ̂x , ξ̂y , ξ̂z E Unit eigenvectors of symmetric susceptibility tensor χ and

refractive index tensor n; when stress-optic law holds, these are
also unit eigenvectors of extra stress tensor τ

� 3.2.2 Total stress tensor, � ≡ τ + pI
�11,�12,�13, etc. 3.2.2 11, 12, 13, etc. coefficients of tensor �, i.e., �23 is the coefficient

of the ê2ê3 diad
ρ 3.1 Mass density (scalar)
ρref 6.2.1.3 Mass density at reference temperature for time–temperature

superposition
σ1, σ2, σ3 10.3.4 Principal values or eigenvalues of extra stress tensor
ς 9.2 Extra stress tensor plus an isotropic constant; used in derivation of

Lodge equation, ς ≡ τ + ηo
λ
I

ς̇(t) 4.2 Shear-rate function defined for simple shear flow
τ0 5.2.2.3 Constant stress applied in creep experiment
τy 7.2.1 Yield stress of Bingham generalized Newtonian fluid constitutive

model
τR 10.1.1.2 Shear stress at wall of a capillary, τR ≡ �PR/2L
τ̃0 5.2.2.6 Complex coefficient of stress wave in small-amplitude oscillatory

shear, τ̃o = iτoeiδ
τ 3.3 Extra stress tensor

τ11, τ12, τ13, etc. 3.2.2 11, 12, 13, etc. coefficients of tensor τ in 123 coordinate system,
i.e., τ23 is the coefficient of the ê2ê3 diad

τxx, τxy , τxz, etc. 4.5 xx, xy, xz, etc. coefficients of tensor τ in xyz coordinate system,
i.e., τyz is the coefficient of the êy êz diad

τ̄11, τ̄12, τ̄13, etc. 4.4.1 11, 12, 13, etc. coefficients of tensor τ in ē coordinate system, i.e.,
τ̄23 is the coefficient of the ē2ē3 diad

τ
k

8.2 kth stress contribution in generalized Maxwell model
[τ ]123 10.3.4 3 × 3 matrix of coefficients of stress tensor τ written in the 123

coordinate system
[τ ]ξx ξy ξz 10.3.4 3 × 3 matrix of coefficients of stress tensor τ written in the ξxξyξz

coordinate system
φ 2.2 Coordinate variable in spherical coordinate system

�,�,� C.6 Coefficients of characteristic equation of a matrix or a tensor
χ 10.3.1 Susceptibility, a scalar property of an isotropic material
χ 10.3.1 Susceptibility tensor for anisotropic material

χ1, χ2, χ3 E.3 Principal values of susceptibility tensor
ψ 2.2 Angle between vectors a and b

2.2.1.1 Angle between a person and the wall in an example
2.2.1.1 Angle between string and horizontal in example
E.3.2.3 Angle between 1-direction of shear flow and plane containing wave

vector k and ê2
ψuw 9.1.2 Angle between vectors u and w

�,�,� C.6 Coefficients of characteristic equation of matrix or tensor
�1(γ̇ ), �2(γ̇ ) 5.2.1 First and second normal-stress coefficients

continued
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Symbol Section Definition

�+
1 (t, γ̇ ), �

+
2 (t, γ̇ ) 5.2.2.1 First and second normal-stress growth coefficients

�−
1 (t, γ̇ ), �

−
2 (t, γ̇ ) 5.2.2.2 First and second normal-stress relaxation coefficients

ω 5.2.2.5 Radian frequency of oscillation in small-amplitude oscillatory
shear experiment

10.3.1 Frequency of light
ω̃ 8.4.2 Combination of variables in torsional viscometer example,

ω̃ = ω√
I/K

ωx 6.1.3 Frequency at which G′ and G′′ cross at low-frequency end of
entanglement plateau; 1/ωx is often identified as longest
relaxation time of a material

ωmod 10.3.4 Resonant frequency of photoelastic modulator
� 8.5 Angular velocity of rotating system
∇ 2.4 Nabla or del operator; related to differential operations,

∇ = ∂/∂xi êi in Cartesian coordinates x1, y2, z3
∇′ 9.3.3 Nabla or del operator at position r ′, ∇ = ∂/∂x′

i êi in Cartesian
coordinates x′

1, x
′
2, x

′
3∇2 2.4 Laplacian operator, ∇ · ∇

x(∗) 5.2.2.6 Complex conjugate of complex number x
AT 2.3.4 Transpose of tensor A
∇
A 9.2 Upper convected deriative of A
�

A 9.3.4 Lower convected deriative of A
◦
A 9.3.4 Corotational deriative of A

�

A 9.3.4 Gordon–Schowalter deriative of Â 9.3.2 Denotes convected coordinate
(· · ·)123 2.3 Indicates that components listed are in the x1, x2, x3 coordinate

system with basis vectors ē1, ē2, ē3
(· · ·)1̄2̄3̄ 4.4.1 Indicates that components listed are in the x̄1, x̄2, x̄3 coordinate

system with basis vectors ē1, ē2, ē3
(· · ·)xyz 2.5 Indicates that components listed are in the x, y, z coordinate system

with basis vectors êx , êy , êz
(· · ·)x̄ȳz̄ 4.6 Indicates that components listed are in the x̄, ȳ, z̄ coordinate system

with basis vectors êx̄ , êȳ , êz̄
(· · ·)ξ1ξ2ξ3 C.6 Indicates that components listed are in the ξ1, ξ2, ξ3 coordinate

system with basis vectors ξ̂1, ξ̂2, ξ̂3
(· · ·)ξx ξy ξz E Indicates that components listed are in the ξx , ξy , ξz coordinate

system with basis vectors ξ̂x , ξ̂y , ξ̂z
[v]123 C.6 3 × 1 matrix of coefficients of vector v in 123 coordinate system
[A]123 C.6 3 × 3 matrix of coefficients of tensor A in 123 coordinate system
(∂ · /∂·)̂x 9.3.3 Indicates that derivative is taken at constant convected coordinate x̂
J C.7.1 Jacobian of a transformation
ηs B Solvent viscosity
ηsp B Specific viscosity
[η] B Intrinsic viscosity
ε E.3.1 Dielectric tensor
τp B Polymer contribution to the stress Oldroyd B equation
τ s B Solvent contribution to the stress in the Oldroyd B equation
φ1, φ2 B Parameters in the Reiner-Rivlin fluid model
c B Concentration

λsteady B Material time constant in steady flow
We B Weissenberg number
Re 10.1 Reynolds number
δ+ 5.2.2.4 Asymmetric delta function
� B Potential energy function
χ 10.3.4 Orientation angle
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N 

Nabla operator. See Del (nabla) 
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neo-Hookean model 455 
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Poiseuille flow 

 combined drag and Poiseuille 

   flow through slits 242–47 248–49 

 of GLVE fluids in tubes 285–88 

 between parallel plates 84–89 

 power-law GNF in tubes 236–42 

 in tubes 89–94 

Polar decomposition 313–15 455–56 
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   molecular approach— 
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Process modeling 9–11 
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Pseudoplastic fluids 456 

R 

Rate of strain 109–10 

Rate-of-strain tensor 75 257 

Reciprocal basis vectors 340–41 

Recoil function 147 

Recoil strain 146 
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Refractive index 496–97 

Reiner-Rivlin fluids 456 

Relative permittivity 496 

Relaxation modulus 152 271–72 358–59 

Relaxation time 7 140 356 456 
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Retardance 425 
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Reynolds’ transport theorem 
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Rheology 

 definition of 1 

 as spectroscopy 8–9 

Rheometers 

 cone-and-plate 401–5 

 Meissner 412–13 

 metal-belt elongational 

   rheometer (MBER) 414 

 parallel-disk 397–401 

Rheometery, definition of 382 

Rheopectic fluids 456 

Rheopexy  456 

Right-handed coordinates 16 

Rivlin-Sawyers equation, 

   factorized 364 494 

Rotational viscometer 106 

Rouse regime 174 

Rubber-elasticity theory 370–72 

Rubbery plateau 191 

S 

SAOE (small-amplitude oscillatory 

   elongation) 164–66 

SAOS (small-amplitude oscillatory 

   shear) 137 153–59 

Scalar product of tensors 34 

Scalars  13–14 

 gradient of 43–44 

 Laplacian of 47 

Second normal-stress coefficient 135 

Second normal-stress decay 

   coefficient 140 
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Second normal-stress difference 128 

Second normal-stress growth 

   coefficient 138 

Second normal-stress step shear 

   relaxation modulus 152 

Second-order fluid equation 456 

Second planar elongational 

   viscosity 160 

Separable constitutive equations 278 

Sharkskin  172 176 

Shear, recoverable 147 

Shear components 113 

Shear creep 137 141–50 

Shear creep compliance 145–46 

Shear flow. See also Elongational 

   flows 

 birefringence in 429–34 

 capillary flow 

  entrance and exit effects— 

   Bagley correction 393–94 

  introduction to 383–84 

  shear rate in 387–92 

  shear stress in 384–87 

  wall slip 394–97 

 comparison of experimental 

   features 410 

 definition of 132 134 

 drag flow 

  cone and plate 401–5 

  Couette geometry 405–9 

  between parallel disks 397–401 

 introduction to 134 383 
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Shear flow (Cont.) 

 simple  106–12 122–25 

   See also Simple shear-free 

   (elongational) flows 

 steady  134–36 137 

  chain architecture 176–81 

  general effects—linear 

   polymers 169–71 

  limits on measurements— 

   instability 171–74 

  mixtures and copolymers 181–88 

  molecular weight and 

   molecular-weight 

   distribution 174–76 

  temperature and pressure 

   effects 188–90 

 summary of steady shear 

   rheological quantities 408 

 unsteady 

  introduction to 136–37 

  large-strain 206–14 

  shear creep 137 141–50 

  shear-stress decay 137 140–41 

  shear-stress growth 137–40 

  small-amplitude oscillatory 

   shear (SAOS) 137 153–59 

  small-strain. See Small- 

   strain unsteady shear 

   flow—SAOS and step 

   strain 

  step shear strain 150–52 
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Shear rate  109–10 

 apparent 456–57 

 in capillary flow 387–92 

Shear-rate tensor 268 

Shear strain 142 

 recoverable 146 

 step  150–52 

Shear stress 

 in capillary flow 384–87 

 wall  457 

Shear-stress decay 137 140–41 

Shear-stress decay coefficient 140 

Shear-stress growth 137–40 

Shear-stress growth coefficient 138 

Shear-thickening, shear-thinning and 2–4 

Shear-thickening (dilatant) fluids 230 450 

Shear-thinning and shear- 

   thickening 2–4 

Shear-thinning materials 230 

Silly Putty  6–7 

Similarity transformation 460–62 

Simple fluids 457 

Simple Maxwell models 263–73 

Simple shear flow 106–12 122–25 

Simple shear-free (elongational) 

   flows 

 biaxial stretching flow 119–21 

 introduction to 112–13 

 planar elongational flow 121–22 

 uniaxial elongational 

   (extensional) flow 113–19 
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Singular/nonsingular matrices and 

   tensors 457 

Siphon effect 10 

Slits, combined drag and Poiseuille 

   flow through 242–47 248–49 

Slump test  457 

Small-amplitude oscillatory 

   elongation (SAOE) 164–66 

Small-amplitude oscillatory shear 

   (SAOS) 137 153–59 

Small-strain unsteady elongational 

   flow 215–16 

Small-strain unsteady shear 

   flow—SAOS and step 

   strain 

 general effects—linear 

   polymers 191–93 

 introduction to 190–91 

 material effects 193–97 

 temperature effects—time- 

   temperature superposition (TTS) 197–206 458 

Solid rubber, affine deformation of 372 

Specific interactions 457 

Specific viscosity 459 

Spectroscopy, rheology as 8–9 

Spherical coordinates 49 50 52–53 

 continuity equation in 49–52 

 differential operations in 465–66 

 equation of motion (EOM) in 467 468 

 finite deformation tensors in 471 

 Navier-Stokes equation in 468 

Spurt flow  457 
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Squeezing, lubricated 416–17 

Sridhar’s apparatus 413–15 

Stagnation flows 418 

Stagnation point 114 

Standard flows 

 introduction to 105–6 

 measuring stresses in 126–28 

 simple shear flow 106–12 

 simple shear-free (elongational) 

   flows 

  biaxial stretching flow 119–21 

  introduction to 112–13 

  planar elongational flow 121–22 

  uniaxial elongational 

   (extensional) flow 113–19 

 stress tensor in 

  elongational flow 125–26 

  introduction to 122 

  simple shear flow 122–25 

Steady elongational flow 159–62 214–15 

Steady shear flow 134–36 137 

 chain architecture 176–81 

 general effects—linear 

   polymers 169–71 

 limits on measurements— 

   instability 171–74 

 mixtures and copolymers 181–88 

 molecular weight and molecular- 

   weight distribution 174–76 

 temperature and pressure effects 188–90 

Steady-state compliance 146 

Step elongational strain 163–64 
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Step shear strain 150–52 

Storage compliance 156 

Storage modulus 155–56 158–59 166 

Strain. See also Finite strain measures 

 elongational 161 

 Hencky 161 453 

 rate of  109–10 

 recoil  146 

 shear  142 

 step elongational 163–64 

 ultimate recoverable 

   elongational 163 

Strain tensors 314 329 489 

 Finger  164 

Stress constitutive equation 73 

Stress continuity 83 

Stresses 

 convected coordinates and 347–48 

 first-normal-stress difference 127 

 measuring, in standard flows 126–28 

 normal  113 

 second-normal-stress difference 128 

 yield  4 

Stress growth, elongational 162 

Stress-optical law 426–28 

Stress tensor 

 extra  72 

 in standard flows 

  elongational flow 125–26 

  introduction to 122 

  simple shear flow 122–25 

 total  69 126 
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Stretching flow, biaxial 119–21 

Substantial derivative 55–56 

Summation convention. See 

   Einstein notation 

Surfaces of constant phase 497 

Susceptibilities, principle 503 

Susceptibility tensor 50 

Symmetric (Dirac) delta function 358–59 449 

Symmetric tensors 39 

T 

Temporary network model 372–74 

Tensile-testing machine 106 

Tensors 

 antisymmetric 39–40 

 Cauchy 313–27 

 Cauchy-Green stretch 315 447 

 contravariant coefficients of 348 

 contravariant convected 

   components 448 

 contravariant transformations of 479–83 

 covariant coefficients of 348 

 covariant components of 448 

 covariant transformations of 483–87 

 curl of  448 

 definition of 30 

 deformation-gradient 309–13 314 349–50 

 determinant of 42 

 deviatoric stress 450 

 dielectric 500 

 differential operations with 42–48 

 displacement gradient 264 
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Tensors (Cont.) 

 divergence of 46 450 

 dyad (dyadic product) 30 

 Einstein notation for 34–37 

 extra stress 72 452 

 Finger  313–27 

 finite deformation 470–71 

 identity 39 

 infinitesimal strain 264 

 integral theorems 

  Gauss-Ostrogradskii 

   divergence theorem 53–54 

  Leibnitz formula Reynolds’ 

   transport theorem 54–55 456 

  substantial derivative 55–56 

 introduction to 30 

 invariants of 40 42 453–54 

 inverse deformation-gradient 311 

 inverse of 41–42 

 linear vector functions as 37–38 

 magnitude of 39 

 order of 41 

 orthogonal 315 455 

 physical components of 455 

 positive definite 456 

 principal axes of 424 

 rate-of-strain 75 257 

 rules of algebra. See also 

   Multiplication of tensors 

  addition 30–32 

  dot product 32–34 

  introduction to 30 
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Tensors (Cont.) 

  scalar product 34 

 shear-rate 268 

 singular/nonsingular 457 

 strain  314 329 489 

  Finger 164 

 stress. See Stress tensor 

 susceptibility 501 

 symmetric 39 

 trace of 40 

 transpose of 34–35 

 zero  39 

Terminal zone 191 

Thermorheological complexity 457 

Thixotropic fluids 457 

Time-strain factorability 457–58 

Time-temperature shift factors 458 

Time-temperature superposition (TTS) 197–206 458 

Torsional flow between parallel plates 94–98 

Torsional oscillatory viscometer 

 measurement of SAOS material 

   functions 293–95 

 velocity profile calculation 288–93 

Total stress tensor 69 126 

Trace of tensors 40 

Traction vector 458 

Transpose of tensors 34–35 

Triple product of vectors 341 

Trouton ratio 214 331 458 

Trouton viscosity 214 458 

TTS (time-temperature 

   superposition) 197–206 458 
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Tubes 

 Poiseuille flow in 89–94 

 Poiseuille flow of GLVE fluids in 285–88 

 Poiseuille flow of power-law 

   GNF in 236–42 

 pressure-driven flow in 236–42 

U 

Ultimate recoil function 147 

Ultimate recoverable elongational 

   strain 163 

Uniaxial elongational flow 113–19 

 filament stretching—Sridhar’s 

   apparatus 413–15 

 melt stretching 411–13 

Uniaxial elongational stress growth 

   coefficient 162 

Uniaxial elongational viscosity 160 

Uniaxial step elongational 

   relaxation modulus 164 

Unit step function 152 453 

Unit vectors 14–15 458 

Unsteady elongational flow 

 elongational creep 162–63 

 elongational stress growth 162 

 large-strain 216–18 219–22 

 small-amplitude oscillatory 

   elongation (SAOE) 164–66 

 small-strain 215–16 

 step elongational strain 163–64 
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Unsteady shear flow 

 introduction to 136–37 

 large-strain 206–14 

 shear creep 137 141–50 

 shear-stress decay 137 140–41 

 shear-stress growth 137–40 

 small-amplitude oscillatory 

   shear (SAOS) 137 153–59 

 small-strain. See Small- 

   strain unsteady shear 

   flow—SAOS and step 

   strain 

 step shear strain 150–52 

Upper convected derivative 336 337 354 

Upper convected Jeffreys model 357 492 

Upper convected Maxwell model 336–37 490 

V 

Vacuum, light in 495–96 

Vectors 

 basis  18–19 

 contravariant components of 344 448 

 contravariant metric coefficients of 344 

 covariant components of 344 448 

 curl of  448 

 definition of 14 

 differential operations with 42–48 

 direction of 14–15 

 divergence of 46 450 

 Einstein notation for 28–30 

 electric displacement 500 

 gradient 43–44 
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 integral theorems 

  Gauss-Ostrogradskii 

   divergence theorem 53–54 

  Leibnitz formula (Reynolds’ 

   transport theorem) 54–55 456 

  substantial derivative 55–56 

 introduction to 14–15 

 Laplacian of 47 

 magnitude of 14 16–17 

 multiplication of. See 

   Multiplication of vectors 

 physical components of 344 455 

 rules of algebra. See also 

   Coordinates 

  addition 22–24 

  cross (outer) product 16 17 26–28 

  dot (inner) product 16–17 24–26 

  introduction to 15–17 

 traction 458 

 triple product of 341 

 unit  14–15 458 

 zero  15 

Velocity continuity 83–84 

Viscoelastic effects. See 

   Elastic/viscoelastic 

   effects 

Viscoelastic fluids 7 

Viscometers 

 Brookfield 2 

 Cannon-Fenske 2 

 rotational 106 
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Viscometers (Cont.) 

 torsional oscillatory 

  measurement of SAOS 

   material functions 293–95 

  velocity profile calculation 288–93 

Viscosity 

 apparent 458–59 

 in cone-and-plate flow 404 

 in Couette flow 407 

 elongational 160 

  Cogswell analysis 420 

 intrinsic 459 

 Newton’s law of 1 69n. 74 

 in parallel disk flow 400 

 power-law model for 230 

 specific 459 

 for steady shear flow 135 

 Trouton 214 458 

Viscous loss modulus 156 

W 

Wall shear stress 457 

Wall slip  394–97 

Wave equations 

 anisotropic media 

  general 499–501 

  harmonic waves 501–17 

 electric field in vacuum 495 

 isotropic media 496 

Weissenberg effect 5–6 

Weissenberg-Rabinowitsch 

   correction 391 
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Weissenburg (Deborah) number 448 459 

White-Metzner model 360–61 493 

Williams-Landel-Ferry (WLF) 

   equation 201 203 

Y 

Yield stress 4 

Young’s modulus 459 

Z 

Zero tensor 39 

Zero vector 15 
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