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Preface

Nuclear magnetic resonance, discovered by Bloch and Purcell in 1946, is
widely used as a powerful analytical method in different fields of modern
science, medicine and industry. It is difficult to overestimate the role of
NMR in fundamental and applied chemistry where practically each chemical
study, from the simplest organic molecules to complex molecular systems
such as proteins, leans upon the data obtained by NMR experiments, carried
out on different nuclei. Moreover, modern NMR is an indispensable tool for
the practicing chemist.

Historically, since the appearance of the first commercial NMR instru-
ments, practical applications of NMR split up two different spheres: NMR
spectroscopy and NMR relaxation. The first domain deals with NMR spectra
which show the number of distinct nuclei in investigated samples. In other
words, the spectra are directly connected with structures of compounds.
This circumstance explains the popularity of NMR spectroscopy among
chemists. The resulting data, collected by nuclear relaxation experiments are
time dependent. For this reason, relaxation is related to the dynamics of
investigated objects: rotational or translational motions in liquids and solids,
phase transitions in the solid state, spin dynamics in the solid state and
molecular mobility in liquid crystals. All these problems are within the ambit
of molecular physics, the physics of solids and materials science.

Spin relaxation has attracted the attention of physicists from the early
days of NMR, and the theory of the observed phenomena has been rapidly
developed and applied, first of all in studies of solids. Nowadays, NMR
relaxation plays an important role in biophysics where it helps to charac-
terize motions in complex biological macromolecules such as proteins and
nucleic acids. Thus, these studies throw light upon the biological activity
of macromolecules and on the change of the activity upon binding with
other molecules.

H. Günther and J. Kowalewski note that NMR relaxation studies are almost
as old as the NMR method itself. Moreover spin relaxation has played a major
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role in traditional NMR spectroscopy. Actually, as we will see below, long
T1 and short T2 times make NMR spectroscopic experiments very difficult,
sometimes impossible. H. Günther reminds us that the first attempt to
demonstrate the NMR phenomenon for 1H and 7Li nuclei, performed by
Gorter in 1936, was prevented by relaxation. The popularity of relaxation
experiments among chemists is still not very high. Partly this could be
explained by the interests of synthetic chemists, working on the design of new
molecular systems and their structures. However, relaxation experiments can
provide unique structural information, particularly in solutions where other
structural approaches are unavailable.

The present book is not a scientific monograph, and does not claim to be a
complete account. Its task is simple: to show in practice how relaxation exper-
iments on protons, deuterons or other nuclei can be applied for qualitative
structural diagnostics in solutions, quantitative structural determinations,
recognitions of weak intermolecular interactions and studies of molecu-
lar mobility. Focusing on methodical aspects and discussing the possible
sources of errors in relaxation time determinations and their interpretations,
we consciously avoid the complex quantum mechanical descriptions. We use
macroscopic equations, which are converted into simple forms, convenient
for applications. Thus, the reader does not need any special knowledge of
physics and NMR. In addition the first chapters of the book give the theo-
retical basics of nuclear relaxation and explain how and why nuclei relax.
Finally, we believe that the small size of the book and its simplicity will
stimulate further learning about nuclear relaxation and wide applications of
the NMR relaxation technique in chemistry.

Vladimir I. Bakhmutov
Department of Chemistry, Texas A&M University, College Station, USA
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In spite of the constant technical improvements to NMR spectrometers and
developments in NMR experiments [1–4], their physical meaning may be
defined as an excitation of nuclei, placed in an external magnetic field, by
radiofrequency irradiation, followed by registration of absorbed energy as
NMR signals. The signals form NMR spectra that are recorded as plots of
the line intensity versus frequency. Dispositions of resonance lines in the
spectra, characterized by chemical shifts (ppm), and their splitting due to
spin–spin coupling, measured in Hz (Figure 1.1), depend on the electronic
environments of nuclei. Integral intensities of the signals are proportional
to the number of resonating nuclei. That is why NMR spectra are directly
related to molecular structures.

We illustrate a scheme of the simplest NMR experiment, resulting in a
so-called one-dimensional (1D) NMR spectrum. As seen from Figure 1.2, the
experiment consists of several time sections: (i) an initial time delay RD (the
so-called relaxation delay); (ii) a radiofrequency pulse (RFP) exciting nuclei;
and (iii) collection of NMR data as free induction decays (FID) during the
acquisition time (AT). Sections (i)–(iii) can be repeated in order to accumulate
the NMR data if necessary. The collected NMR data are time dependent and
therefore they can be expressed as a function of time f (t). In contrast,
NMR spectra represent the frequency-dependent data F(ν). Thus, NMR decays

Practical NMR Relaxation for Chemists Vladimir I. Bakhmutov
 2004 John Wiley & Sons, Ltd ISBNs: 0-470-09445-1 (HB); 0-470-09446-X (PB)



2 How and Why Nuclei Relax

Hc

−20 −21 −22 −23 −24 ppm

Hd

Hb

Ha

Figure 1.1 Hydride region of the 1H NMR spectrum of a C6D6 solution of the
complex [Ir2(µ-Ha)(µ-Pz)2(Hb)(Hc)(Hd)(NCCH3)(PPri

3)2] containing one bridging
and three terminal hydride ligands. (Reproduced with permission from E. Sola et al.
Orgamometallics 1998; 17: 693.  1998 American Chemical Society)

R
F
P

FT
FID

NMR Spectrum

TIME
RD  

TIME
AT  

Figure 1.2 Schematic presentation of the simplest 1D NMR experiment where typical
durations of RFP, RD and AT are of ∼5–10 µs, 1–4 s, and 1–3 s, respectively

require the mathematical procedure of Fourier transformation (FT) [2, 3]:

F(ν) =
∫

f (t) exp(−i2πνt) dt (1.1)

f (t) =
∫

F(ν) exp(+i2πνt) dν

converting the frequency domain into the time domain and vice versa.
Any two-dimensional (2D) NMR experiment [2, 3] adds a second frequency

axis. One of the simplest 2D NMR experiments, named 1H–1H COSY, is
shown in Figure 1.3. Here, after the action of the first pulse, a nuclear system
develops by proton–proton spin–spin coupling during time t1. Then, the first
set of time-dependent data f (t2) is collected during time t2 after the action of
the second radiofrequency pulse. The second set of time-dependent data f (t1)

can be collected if t1 is variable. Finally, double Fourier transformation with
respect to t1 and t2 creates two frequency domains. The resulting 2D NMR
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FID
RD

TIME
RD  

TIME
t(1)

RFP
90°

RFP
90°

TIME
t(2)

Figure 1.3 Pulse sequence for the 2D homonuclear proton–proton correlation (COSY)
NMR experiment. The second pulse can be 90◦ or 45◦

spectrum is a square plot where the diagonal shows the 1D 1H NMR spectrum
and cross peaks appear, due to scalar spin–spin coupling. Additionally, the
coordinate ‘intensity’ in such a spectrum is located perpendicular to the
plane formed by the frequency coordinates. The examples of 1H 2D NMR
spectra, 1H–1H COSY and 1H–1H NOESY, are shown in Figure 1.4.

In the context of this book, we are not concerned with traditional NMR spec-
tra and their interpretations on the basis of numerous spectrum–structure
relations. These aspects are well treated, for example, in the book by

−20

−22ppm −24 −22ppm −24

ppm

Hc Hd

Hb

Ha

−22

−24

Figure 1.4 Hydride region of the 1H COSY (left) and NOESY (right) NMR spectrum
of a C6D6 solution of the complex [Ir2(µ-Ha)(µ-Pz)2(Hb)(Hc)(Hd)(NCCH3)(PPri

3)2]
containing one bridging and three terminal hydride ligands. (Reproduced with
permission from E. Sola et al. Orgamometallics 1998; 17: 693.  1998 American Chemical
Society)
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Harris [5]. We will be interested in time-dependent data, which are gov-
erned by nuclear relaxation. However it should be emphasized that, even in
traditional NMR experiments, nuclear relaxation plays a major role. In fact, as
it follows from Figures 1.2 and 1.3, the registration of NMR signals is impos-
sible if relaxation times are infinitely large. To understand this statement
better, we start from the theoretical basics of the NMR phenomenon.

1.1 Nucleus in an External Magnetic Field

Quantum mechanical formalism [1] is the best way to explain clearly the
behavior of nuclei in a strong external magnetic field. According to this
formalism, any nucleus is magnetically active if it posses a nonzero angular
moment P, which is responsible for the appearance of the nuclear magnetic
moment µ:

µ = γP (1.2)

capable of interaction with the external magnetic field. Coefficient γ in
Equation (1.2), the nuclear magnetogyric ratio, is one of the fundamental
magnetic constants of nuclei, dependent on their nature (Table 1.1). As
we show below, the γ values dictate frequencies for observation of NMR.
Sensitivity in NMR experiments also depends on the γ values. Comparison
of the magnetic properties and natural abundance of isotopes in Table 1.1
shows that 1H and 19F nuclei are most convenient for chemical investigations
by the NMR method.

Table 1.1 NMR properties of some nuclei [5]

Nucleus Spin I

Natural
abundance

(%)

NMR frequency,
ν0 (MHz) at

B0 = 2.3488 T γ (107 rad T−1 s−1)

Sensitivity
relative

to 1H

1H 1/2 99.98 100 26.752 1.000
2H 1 0.016 15.35 4.107 1.45 × 10−6

11B 3/2 80.42 32.08 8.584 0.133
13C 1/2 1.108 25.14 6.728 1.76 × 10−4

14N 1 99.63 7.22 1.934 1.00 × 10−3

19F 1/2 100 94.08 25.18 0.834
31P 1/2 100 40.48 10.84 0.065
17O 5/2 0.037 13.557 −3.628 1.08 × 10−5

93Nb 9/2 100 24.549 6.567 0.487
117Sn 1/2 7.61 35.63 −9.578 3.49 × 10−3

119Sn 1/2 8.58 37.29 −10.02 4.51 × 10−3

199Hg 1/2 16.84 17.91 4.815 9.82 × 10−4

205Tl 1/2 70.5 57.63 15.589 0.140
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P
Z

P

O

Z

X

Y

Figure 1.5 Projection of the nuclear angular moment P on the Z-axis. The external
magnetic field is usually applied along this direction

The magnitudes of the P and the µ are quantized. In other words, projections
of the angular nuclear moment PZ on the Z-axis (Figure 1.5) can be written as:

PZ = h̄ mI (1.3)

h̄ = h/2π

where h is Planck’s constant (h/2π = 1.05457266 × 10−34 J s) and mI is the
magnetic quantum number. The value of mI depends on the nuclear spin I,
and takes values from I to −I:

I, I − 1, I − 2 . . . − I (1.4)

According to the quantum mechanical formalism, I is a multiple of 1/2.
Then, for example, at I = 1/2 the angular and magnetic moments can be
expressed by:

PZ = ±(1/2)h̄

µZ = ±(1/2)γh̄
(1.5)

Hence, the µZ (or PZ) projections, imagined as the vectors, can take only
two ‘permitted’ spatial orientations: parallel or antiparallel with respect to the
Z-axis. In the absence of an external magnetic field B0, both orientations
are energetically equivalent and thus nuclei occupy a single energy level.
The situation changes when a strong magnetic field is applied along the
Z-axis and the orientations become nonequivalent. Thus the initial energy
level undergoes so-called Zeeman splitting (Figure 1.6). The apparent energy
difference �E is proportional to the µZ magnitude and the strength of the
applied magnetic field B0:

�E = 2 µZB0 (1.6)
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0

Z
EB0

∆E

+hν

Figure 1.6 Zeeman energy levels in the external magnetic field B0 for nuclear spin
I = 1/2

According to the Bohr rules, a minimal energy difference is formulated as
one quantum, �E = hν, and then one can write:

hν0 = 2 µZB0 = γh̄B0

ν0 = γB0

(1.7)

These fundamental equations formulate the resonance conditions: a
nucleus with the magnetogyric ratio γ and spin of 1/2, placed into an external
magnetic field B0, undergoes a single-quantum transition (the mI number
changes from − 1/2 to + 1/2) between the Zeeman energy levels from a low
energy to a high energy when it is irradiated with frequency ν0. As can be
seen, the Larmor frequency ν0, is dependent on the nature of the nuclei (see
the γ) and the strength of the applied magnetic field B0. It is obvious that
the above nuclear transition is accompanied by an energy absorption �E,
registered as an NMR signal.

A macroscopic sample, placed in the external magnetic field, represents
an ensemble of nuclei. These nuclei populate the Zeeman energy levels
proportionally to the factor:

exp(−�E/kT) (1.8)

where T is the temperature and k is the Boltzmann constant (1.380658 ×
10−23 J/K). For this reason, the level with a lower energy in Figure 1.7 will be
more populated, thus creating the conditions for observation of NMR.

To show the behavior of nuclei with spin numbers larger than 1/2, consider
the Zeeman splitting for nuclei 2H or 14N (I = 1). According to the formal-
ism, these nuclei, placed in the magnetic field, give three energy levels,
corresponding to the µZ values +γh̄(1), 0 and −γh̄(1). It is obvious that the
levels are energetically equidistant. In addition, the double-quantum nuclear
transitions (when the mI value changes from +1 to −1) are forbidden. Thus,
in spite of the presence of three energy levels, identical nuclei give a single
resonance line in the NMR spectrum.
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ν0

Figure 1.7 Difference in populations of the Zeeman energy levels leading to obser-
vation of a NMR signal at irradiation of a sample

1.2 Spin–Lattice and Spin–Spin
Nuclear Relaxation

The fundamental equations (1.7) have a thermodynamic sense and show that
a nuclear system can be excited by radiofrequency irradiation to absorb the
energy. If a new excited state of nuclei is not isolated and capable of an energy
exchange with the environment, the initial equilibrium state can be recovered.
There are two principally different relaxation mechanisms. The first one
corresponds to the energetic exchange between excited nuclear spins and
the lattice. The latter can be formulated as a continuum of nuclear magnetic
moments (spins) of any sort, which surround the nuclear spins detected in
NMR experiments. In chemical language, the spins, populating the lattice,
can be physically located in the same molecule or neighboring molecules
and solvent molecules. By definition, spin–lattice nuclear relaxation reduces
the total energy of the excited nuclear system, leading to recovery of the
equilibrium state. In contrast, the second relaxation channel has rather an
entropy character: two identical spins with different orientations with respect
to the external magnetic field undergo motions ‘flip–flop’ as shown in
Figure 1.8. It is obvious that the total energy of the nuclear system remains

0

E

Flip-flop

Figure 1.8 Flip–flop spin motions causing nuclear spin–spin relaxation
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unchanged. Nevertheless, under these conditions, lifetimes of the excited
spins decrease and thus, the nuclear system relaxes.

1.2.1 Macroscopic Magnetization: Relaxation Times T1 and T2

The spin–lattice and spin–spin relaxation mechanisms can be clearly imag-
ined in terms of macroscopic magnetization. The latter appears in the sample
when it is placed in the external magnetic field. In the equilibrium state, the
macroscopic magnetization vector, M0

Z, is lying along the direction of the
applied magnetic field, the Z-direction in the coordinate system of Figure 1.9.
In this state, the M0

X and M0
Y component of the magnetization vector are

equal to zero. Note that the creation of the macroscopic magnetization is
directly related to the behavior of nuclear dipoles placed in the external
magnetic field. The nuclear dipoles with mI = +1/2 and −1/2 (Figure 1.10)

X

Y

M0
Z

Z

Figure 1.9 Macroscopic magnetization vector before and after action of a radiofre-
quency pulse. After the excitation, the macroscopic magnetization vector MZ deviates
from the Z-axis and precesses with the Larmor frequency

X

Y

µ, m = 1/2 

µ, m = −1/2

Z

Figure 1.10 Precession of nuclear magnetic moments around the Z-axis. The external
magnetic field is applied along this direction
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precess around the Z-direction with the Larmor frequency. Since their ori-
entations with respect to B0 are energetically different and the orientation,
corresponding to mI = +1/2, is preferable, the dipoles are summarized to give
finally the macroscopic magnetization vector along the Z-axis.

Irradiating the sample at the Larmor frequency ν0 leads to reorientation of
the M0

Z vector and its M0
Z projection reduces to MZ (Figure 1.9). Under these

conditions, the nuclear system is excited, the MZ vector precesses around
the Z-direction and the instantaneous MX and MY components are nonzero.
Bloch has described the relaxation of the excited nuclear system in terms
of the magnetization vector located in a coordinate system, rotating at the
frequency ν0. In this coordinate system, the MZ vector behaves according to
the equation:

dMZ/dt = −(MZ − MZ
0)/T1 (1.9)

and thus nuclear spin–lattice relaxation can be formulated as recovery of
the Z-(longitudinal) component of the nuclear magnetization vector with time
constant T1. By analogy, spin–spin relaxation corresponds to the Y- and
X- (transverse) components reducing to zero with time constant T2:

dMY/dt = −MY/T2

dMX/dt = −MX/T2

(1.10)

It is obvious that phenomenologically the T1 and T2 times characterize
two different processes and therefore, in the common case, T1 �= T2. In fact,
T1 > T2 in solids where molecular motions are strongly restricted. In contrast,
in solutions and liquids with fast molecular motions these times are usually
very similar.

Bloch’s description of nuclear relaxation provides an analytical means to
deduce the shape of NMR signals as a narrow bell-shaped curve with a
maximum at frequency ν0 (Figure 1.11). It must be emphasized that this,
so-called, Lorenz shape is typical of liquids and solutions, but not solids.
When the external magnetic field has an ideal homogeneity, linewidths,
�ν, measured in Hz, are directly controlled by T1 and T2 relaxation times
according to:

�ν = 1/π T1,2 (1.11)

However, in practice, the external magnetic field is not ideal and then the
width of NMR signals depends on the so-called effective relaxation time T∗

2:

1/T∗
2 = (γ�B0/2) + 1/T2 (1.12)

It is seen that T2
∗ → T2 when nonhomogeneity of the external magnetic

field �B0 is minimal. This situation, reached by standard adjustments of
shimming coils in NMR spectrometers, leads to narrowing of the observed
resonance lines and increase of their peak intensities. The latter, as we will
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ν0

∆ν1/2

Figure 1.11 The Lorenz shape of an NMR signal, which can analytically deduced for
liquids on the base of the Bloch equations

see below, is very important in NMR relaxation measurements. Note that in
the case of diamagnetic solutions and non-quadrupolar nuclei the standard
shimming adjustments usually give linewidths less than 0.3 Hz.

According to relationships (1.11) and (1.12), shortening relaxation T1, T2
times results in natural broadenings of NMR signals. These effects are
particularly strong for nuclei with spins I � 1. As we will see below, such
nuclei relax by the mechanism of quadrupolar interactions and T1, T2 times
are actually short. To show practically the variations in the T1 times and
the expected line widths, consider the data in Table 1.2. For example, 1H
and 31P nuclei (I = 1/2) of compound (c-CH2O)2P(BH3)N(CH3)2 (Figure 1.12)
relax in solutions with the quite long T1 times of 3.8 and 9.6 s, respectively.

Table 1.2 T1 times of nuclear relaxation, measured in solutions of some compounds,
and line widths �ν expected in NMR spectra

Nucleus Spin Compound T1 (s) �ν (Hz)

2H 1 CF3COOD 0.015 21
11B 3/2 (c-CH2O)2P(BH3)N(CH3)2 0.021 15
1H 1/2 (c-CH2O)2P(BH3)N(CH3)2 3.8 0.08
31P 1/2 (c-CH2O)2P(BH3)N(CH3)2 9.6 0.03
14N 1 Pyridine 0.0016 200
15N 1/2 Pyridine 85 0.004
93Nb 9/2 CpNbH3 0.00002 16000
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Figure 1.12 Dimethylaminephospholane, investigated by the 1H, 11B and 31P NMR
relaxation in an O2-free benzene-d6 solution (see Table 1.2)

In accordance with Equation (1.11), the lines in the 1H and 31P NMR spectra
of this compound are narrow. In contrast, 11B nuclei with I = 3/2 in the
same compound relax much faster (11B T1 = 21 ms). As result, an expected
line width in the 11B NMR spectrum will be more than 15 Hz. It is obvious
that such natural broadenings significantly exceed the effects that could
be caused by nonhomogeneity of the external magnetic field. 15N (I = 1/2)
and 14N (I = 1) isotopes in pyridine molecules (T1 (15N) and T1 (14N) times
are measured as 85 and 0.0016 s, respectively) demonstrate the strongly
greater effects. Finally, detection of NMR signals can become problematic or
even impossible when relaxation times are extremely short. For example, an
expected width of the 93Nb NMR signal in compound CpNbH3 is as large
as 16 kHz. In such cases, it is difficult to distinguish resonance signals from
baselines in NMR spectra.

1.3 Molecular Motions as the Reason
for Nuclear Relaxation

Nuclear spin–lattice relaxation, as a physical phenomenon, is an energetic
exchange between excited nuclear spins and their environment. The MZ

component of the macroscopic magnetization vector, turned from its equi-
librium orientation (Figure 1.9), precesses around the Z-direction and thus
the energetic exchange between the excited spins and lattice will be possible
in principle if the lattice creates magnetic fields, fluctuating at frequencies
close to the Larmor resonance frequency ν0 [1]. Nuclear magnetic moments,
forming the lattice, are physically located in molecules. In turn, the molecules
undergo thermal motions, which lead to the appearance of the fluctuating
fields responsible for thermal nuclear relaxation.

Figure 1.13 explains schematically how molecular motions can create such
fluctuating fields. Magnetic dipoles of the A and B nuclei, located, for
example, in the same molecule, are oriented along the direction of the applied
external magnetic field B0. These dipoles can interact and the strength of the
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Figure 1.13 Schematic presentation of molecular reorientation on dipolar coupling
between spins of A and B nuclei located in a molecule placed in the external magnetic
field B0. The molecular motion leads to a change in the orientation of the dipolar
vector with respect to the direction of the external magnetic field

dipole–dipole A–B coupling depends on the internuclear distance, r(A–B),
and spatial orientation of the dipolar vector, r(A–B), with respect to the
Z-axis. Then, strength of a magnetic field, created by the A nuclear magnetic
dipole at the location of the B nucleus also depends on the internuclear
distance and the r(A–B) orientation. It is obvious now that if a molecular
motion, shown in Figure 1.13, leads to reorientation of the r(A–B) dipolar
vector, then the magnetic field on the B nucleus also changes. On the other
hand, it easy to see that any molecular motion, for example, a free rotation
around the axis, lying along the r(A–B) vector, does not change its spatial
orientation and hence it has no influence on nuclear relaxation. Figure 1.14

X

H

H

Y

X
H

Figure 1.14 Molecular motions of trisubstituted aromatic molecules, having a prefer-
able rotational axis, located along the H–Y vector
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illustrates this situation in an aromatic molecule having a preferred rotational
axis. It is seen that the rotation leads to reorientation of C−H bonds in ortho-
positions of the aromatic ring while the direction of the C−H bond in the
para-position does not change. For this reason, T1 times of carbons, relaxing
by the dipole–dipole carbon–proton mechanism and lying along the rotation
axis, are usually remarkably longer.

Finally again it must be emphasized that molecular motions affect nuclear
relaxation more when the frequencies of motions are close to the Larmor
resonance frequency ν0. That is why relaxation times in solids are usually
significantly longer than those in liquids and solutions.

1.3.1 Correlation Times and Activation Energies
of Molecular Motions

Molecules in liquids and solutions undergo fast thermal motions such as
rotational reorientations, translational motions or their combinations. Addi-
tionally, various intramolecular motions (rotations around single chemical
bonds and segmental motions in polymeric molecules etc.) can significantly
contribute to nuclear relaxation. Quantitatively the molecular motions are
characterized by the correlation times τC and the activation energies �Ea. The
magnitude of τC can be formulated as the time necessary for a molecule to be
reoriented (a tumbling time). It is obvious that any molecular reorientation,
even in solutions, requires structural changes in the immediate environment.
That is why the moving molecule should overcome an energy barrier. Then,
by analogy with chemical kinetics, one can write:

τC = τ0 exp(Ea/RT) (1.13)

where Ea is the activation energy of molecular motions and τ0 is the correla-
tion time constant. Again, by analogy with chemical kinetics, the magnitude
of τ0

−1 can be defined as a frequency of attempts to overcome the energy
barrier and therefore τ0 ∼ 10−13 –10−14 s. It is clear that a larger correlation
time corresponds to a slower motion. Thus, on cooling, molecular reorienta-
tions slow down according to an exponential law. However, a more correct
definition of the τC is connected with the, so-called autocorrelation function
in the theory of nuclear relaxation where the τC is an average time for the
molecule to progresses through one radian.

The Stokes–Einstein–Debye theory of the liquid state shows that the molec-
ular motion correlation times depend on sizes (or volumes) of molecules and
bulk viscosity of solvents η. In the case of rotational reorientations of spher-
ical molecules (which behave like totally rigid bodies), the correlation time
τC is written as:

τC = 4πa3η/3kT (1.14)

where a is the molecular radius. This relationship explains why the corre-
lation times increase in solutions on going from small organic molecules
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(τC � 10−11 s) to polymeric systems (τC � 10−9 s). In practice, the rotational
correlation time is given by:

τC = (4πa3η/3kT)φC + τ0 (1.15)

where φ is a shape parameter (1 for a sphere), τ0 is the inertia contribution to
the overall rerientational time. Usually in liquids, this term is ignored. C is
the, so-called, slip coefficient, which can be calculated via several theories
and measures the hindrance to rotation experienced by a molecule in a dense
liquid [6].

Abragam [1] gives the best illustration of strong effects, caused by the
viscosity of samples (Table 1.3). As we will demonstrate below, the proton
T1 relaxation time, determined at room temperature, is a measure of the
correlation time τC because 1/T1 is proportional to τC. It follows from
Table 1.3 that, increasing the viscosity leads to the shortening of 1H T1 times
and hence to an increase of molecular motion correlation times. Finally,
sometimes rotational diffusion constants D are used for characterization of
molecular motions instead of correlation times. Equation (1.16) gives the
relation between these.

D = 1/6 τC (1.16)

In solutions, rotational molecular reorientations play a major role. Acti-
vation energies of such motions in the case of non-aggregated molecules
usually take values between 0.8 and 5 kcal/mol. Table 1.4 illustrates Ea
values typical of middle-sized transition metal complexes. Comparison of
the Ea values in toluene and CD2Cl2 for molecules W(H2)(CO)3(PPri3)2
or OsH(H2)(Cl)(CO)(PPri3)2 demonstrates the influence of solvent viscosi-
ties. As can be seen, the more viscous medium (toluene) corresponds to a
higher Ea value. The same effect is observed in CDCl3 and toluene solutions
of compound (µ-H)2Os3(CO)10. In accordance with Equation (1.14), activa-
tion energies for compounds with similar molecular volumes (for example,
OsH(H2)(Cl)(CO)(PPri

3)2 and OsH(O2)(Cl)(CO)(PPri
3)2 or [FeH(H2)(dppe)2]

BF4 and [RuH(H2)(dppe)2] BF4) are practically identical. Finally activation
energies are maximal in the case of binuclear systems such as Cp2TlH2H-
W(CO)5 and (MeCp){MeCp-PPh2Cr(CO)4}W(µ-H)H.

Table 1.3 Proton spin–lattice relaxation
times measured in different liquids [1]

Liquid η (cP) T1 (s)

Petroleum ether 0.48 3.5
Ligroin 0.79 1.7
Kerosene 1.55 0.7
Heavy machine oil 260 0.013
Mineral oil 240 0.007
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Table 1.4 Activation energies of molecular reorientations of transition metal
hydride complexes, determined from variable-temperature 1H NMR relax-
ation data in solution [7]

Compound Ea (kcal/mol) Solvent

OsH4(PTol3)3 2.53 CD2Cl2

OsH(H2)(Cl)(CO)(PPri
3)2 2.6 CD2Cl2

OsH(H2)(Cl)(CO)(PPri
3)2 3.8 Toluene-D8

OsH(H2)(Cl)(CO)(PPri
3)2 3.2 Toluene-D8

OsH(O2)(Cl)(CO)(PPri
3)2 3.3 Toluene-D8

[FeH(H2)(dppe)2] BF4 2.6 Acetone-D6

[RuH(H2)(dppe)2] BF4 2.5 Acetone-D6

[OsH(H2)(depe)2] BPh4 2.9 Acetone-D6

HMn(CO)5 2.52 TDF
HMn(CO)3)(PEt3)2 2.8 CD2Cl2

W(H2)(CO)3(PPri
3)2 2.6 CD2Cl2

W(H2)(CO)3(PPri
3)2 3.8 Toluene-D8

Cp2TlH2H-W(CO)5 4.0 Toluene-D8

Re2(µH2)(CO)8 3.1 Toluene-D8

(MeCp){MeCp-PPh2Cr(CO)4}W(µ-H)H 4.2 Toluene-D8

(µ-H)2Os3(CO)10 2.2 CDCl3

(µ-H)2Os3(CO)10 3.4 Toluene-D8

H(µ-H)Os3(CO)11 4.4 Toluene-D8

Commonly, molecular motions in solids are much slower than in solutions.
In the temperature region between −150◦ and +250◦C their correlation times
take values of 10−4 –10−6 s and activation energies reach 15–20 kcal/mol
and more. Exceptions are small molecules, which can undergo fast motions,
even in the solid state. For example, in the high-temperature tetragonal
phase (above 225 K) solid BD3ND3 shows reorientations with the Ea values
of 1.4 kcal/mol (τ0 = 1.1 × 10−13 s) and 1.7 kcal/mol (τ0 = 4.4 × 10−14 s) for
BD3 and ND3 groups, respectively. In the low-temperature orthorhombic
phase, these motions require higher energies: Ea = 3.2 and 6.2 kcal/mol [8].

1.3.2 Isotropic and Anisotropic Molecular Motions

A molecular motion is isotropic when a single value of the correlation time τC
at a given temperature (and a single value of the activation energy Ea, respec-
tively) describe this motion. For geometric reasons, the fully symmetric rigid
spherical molecules (Figure 1.15) undergo isotropic rotational reorientations
in dilute solutions. Note however that the ideal spherical molecules are
rather rare. Nevertheless motions of various symmetric molecules, such as,
the octahedral complexes Re(CO)6 or Mn(CO)6 can be satisfactorily described
as isotropic.
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Figure 1.15 Isotropic rotational reorientations of the ideal spherical molecule (left)
and anisotropic rotational motions of a molecule having a symmetrically-ellipsoidal
shape (right)

By definition, a symmetric ellipsoid, shown in Figure 1.15, has two direc-
tions of spatial extension. For this reason, such a molecule has two different
moments of inertia and thus rotational reorientations will be characterized
by two correlation times, τC(1), τC(2), and two activation energy values.
This simplest case of an anisotropic molecular motion often occurs in chem-
istry. However, in most cases, motions are more complicated, particularly
for polymeric (and biological) molecules or bulky inorganic aggregates.
Table 1.5 lists the effective motional correlation times, obtained for proto-
nated carbons in the molecule, depicted in Figure 1.17, from the 13C T1

Table 1.5 13C T1 times of protonated carbons
in piroxicam (see Figure 1.17) and the effec-
tive molecular motion correlation times in
DMSO-d6 (295 K) [10]

Carbon T1 (s) τC (s)

14 0.476 9.1 × 10−11

12 0.476 9.1 × 10−11

4 0.312 1.42 × 10−10

3 0.25 1.8 × 10−10

5 0.385 1.14 × 10−10

2 0.385 1.14 × 10−10

13 0.196 2.40 × 10−10

11 0.500 8.70 × 10−10
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measurements in DMSO-d6 solutions [10]. In spite of the fact that each car-
bon is attached to one proton, all the carbons show different relaxation times
and correlation times. The data reveal a complex character of molecular
motions where, beside the molecular tumbling, there are internal rotations
with a preferred axis (Figure 1.17). Even the simplest organic molecules can
undergo anisotropic motions. For example, molecular motions of toluene in
net liquid are composed of reorientations around the axes ZZ, YY and XX
(Figure 1.16). Table 1.6 lists the correlation times of these motions and their
activation energies. As we will see below, times of nuclear relaxation depend
strongly on rates and the character of molecular motions. The latter plays a
very important role when the relaxation times are interpreted quantitatively.

Z 

Z

Y

Y

XX

Figure 1.16 Molecular rotational reorientations of toluene in neat liquid
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Figure 1.17 Structure, atom numbering, and the main axis of internal motion in
4-hydroxy-2-methyl-N-2-pyridinyl-2H-1,2-benzothiazine-3-carboxamide-1,2-dioxide.
(Reproduced with permission from C. Rossi, Chemical Physics Letters 1992; 193, 553)

Table 1.6 Parameters of anisotropic motions of toluene
molecules in neat liquid [9]

Axis τC at 295 K (s) τ0 (s) Ea (kcal/mol)

XX 0.98 × 10−11 2.5 × 10−12 0.8
YY 2.2 × 10−11 2.9 × 10−12 1.2
ZZ 1.1 × 10−11 0.25 × 10−12 2.2
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The hardware and software of modern commercial FT NMR spectrometers
provide simple and convenient procedures for measurement of relaxation
times. In this chapter we are concerned only with the methods of direct
relaxation measurements suitable for target nuclei having a high natural
abundance (1H, 19F, 31P, 11B etc.) and moderately long relaxation. In addition,
these methods are particularly successful when compounds under inves-
tigation are relatively simple, giving well-resolved NMR spectra. Indirect
relaxation measurements, addressed to studies of complex molecules and
based on application of two-dimensional techniques, often require a special
design of NMR probes. These methods will be considered in Chapter 11.

The spin–lattice and spin–spin relaxation can be probed by the standard
inversion recovery and Carr–Purcell–Meiboom–Gill pulse sequences. In
most cases, quantitative structural information is extracted from an analysis
of the spin–lattice relaxation times. Therefore, here we focus mainly on
methods for collection of T1 data.

Experiments in a rotating coordinate system, based on the spin locking
pulse sequence, lead to determinations of T1ρ times. As we will show, T1ρ

relaxation times are closely related to times of spin–spin nuclear relax-
ation [1]. Moreover, T1ρ and T2 times, measured at moderate temperatures,
are identical for most liquids and solutions. In the context of structural
applications, T2 and T1ρ data are less informative. At the same time, they
are actively applied for studies of molecular mobility. These aspects will be
considered also in Chapter 11.

Practical NMR Relaxation for Chemists Vladimir I. Bakhmutov
 2004 John Wiley & Sons, Ltd ISBNs: 0-470-09445-1 (HB); 0-470-09446-X (PB)
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2.1 Exponential and Non-exponential
Nuclear Relaxation

As we have seen, nuclear relaxation, as recovery of an equilibrium state, is a
time-dependent process described by Equations (1.9) and (1.10). Integration
of Equation (1.9) with MZ = −MZ

0 at t = 0 results in the equations:

ln(M0
Z − Mz) = ln 2M0 − τ/T1 (2.1)

MZ/M0 = 1 − 2 exp(−τ/T1) (2.2)

showing an exponential character of the relaxation. Theoretically, nuclear
relaxation is simple and monoexponential only for uncoupled (i.e. isolated) or
weakly coupled nuclear spins. In the context of structural applications, this
type of nuclear relaxation is mostly ‘desirable’ because the free induction
decays, collected experimentally, can be automatically treated with the help
of the standard software of NMR spectrometers to give finally T1 (or T2)
relaxation times. However, the strongly anisotropic molecular motions can
lead to a nonexponential spin–lattice relaxation, even for simple spin systems
and in solutions. Registration, analysis and treatment of such a relaxation can
be found elsewhere [2]. The strongly coupled spin systems, usually formed
by 1H nuclei, often show the complex relaxation behavior, expressed in
practice as the multiexponential free induction decays. The principal feature
of these decays is the fact that they cannot be treated and described by
a single time parameter T1 (or T2). Calculations of the multiexponential
free induction decays are not trivial [3]. In addition, they require input
from certain relaxation models based on independent data. In the context
of structural applications this type of strongly-coupled nuclear relaxation is
‘undesirable’.

2.2 Measurements of Spin–Lattice
Relaxation Times

T1 relaxation time measurement can be carried out by inversion recovery,
saturation recovery or progressive saturation NMR experiments. Other meth-
ods of direct T1 determination are also available [4]. However, for reasons
of simplicity and convenience the inversion recovery approach remains
the most popular. Relaxation measurements are based on applications of
radiofrequency pulse sequences where the operating pulses can have differ-
ent power and length. Variations in these pulse parameters can excite either
the full NMR spectrum or only part of it.

Let us introduce the definition of the acting angle of a radiofrequency pulse.
When the macroscopic magnetization is considered in a coordinate system,
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Figure 2.1 Schematic presentation of the behavior of the macroscopic magnetization
vector M in a rotating coordinate system after action of a 90◦, 180◦ radiofrequency
pulses or two consecutive 90◦ radiofrequency pulses. The M orientation along the
positive X-axis corresponds to maximal intensity of a registered NMR signal

rotating with the Larmor frequency, the equilibrium state of a nuclear system
corresponds to the location of the magnetization vector along the Z-direction
in Figure 2.1. An irradiating field, exciting the nuclei, is applied, as a short
radiofrequency pulse, along the Y-axis (i.e. perpendicular to the plane of
Figure 2.1) and converts the magnetization vector to the X-axis. Since NMR
signals are technically registered along this direction, the acting angle α of
the applied radiofrequency pulse, is defined as:

α = γB1tp

cos(α) = exp(−tp/T1) (2.3)

where B1 is the power of the pulse and tp is its duration. In these terms, by
definition from Figure 2.1, a 90◦ pulse will generate a maximal magnetization
along the X-axis. Then, after Fourier transformation, line intensities in the
recorded NMR spectrum are maximal. In contrast, a 180◦ pulse converts the
magnetization vector from Z to −Z and its projection on the X-axis is equal
to zero. In such case, after Fourier transformation, line intensities will be also
close to zero. It follows from Figure 2.1 that pulses <90◦ or >90◦ do not lead
to optimal line intensities in resulting NMR spectra. Thus, the length of the
pulse plays an important role in long-term NMR experiments with a great
number of accumulations. An optimal length, providing the best sensitivity
for a given relaxation time, is called the Ernst angle. When NMR data are
collected with the help of the one pulse sequence, shown in Figure 1.2, and
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Table 2.1 The Ernst angle α providing
the best sensitivity in NMR spectra
accumulated in long-term experiments
with one pulse sequence at zero relaxation
delay and acquisition time 1 s

Spin–lattice
relaxation time (s) Ernst angle α (◦)

100 8
10 25
4 33
2 53
1 68
0.4 86
0.1 90

the RD value is zero, then nuclei relax during the acquisition time AT. At
the AT value of 1 s, the Ernst angle, as a function of T1, can be found with
the help of the data in Table 2.1. At long relaxation times (100 s) the resulting
NMR signals will be accumulated more successfully by using the 8◦ pulses
while 90◦ pulses are more productive at the short relaxation times.

The standard inversion recovery experiments for determinations of the
non-selective T1 times are based on the pulse sequence:

(RD–180◦ –τ–90◦ − AT)n (2.4)

where n is a number of accumulations. Figure 2.2 schematically illustrates
the action of the pulse sequence and the resulting NMR spectrum, obtained
after Fourier transformation. Here the time delay τ between the inverting
and registering pulses is varying from τ � T1 to τ � 3T1. It is obvious that
at a very short τ delay (τ � T1) the first 180◦ pulse inverts the magnetization
vector to the Z-axis and the registering 90◦ pulse converts this vector from
−Z to −X. As a result, a NMR signal appears with a ‘negative’ intensity.

All the pulses in the inversion recovery sequence (2.4) are hard and
short. Note that the hard pulses have typical durations of ∼5–10 µs and
excite a range of frequencies of order 105 Hz. Thus, the hard pulses excite all
resonances in the NMR spectra and for this reason, the determined relaxation
times are nonselective.

The NMR spectra, obtained at τ variations in the inversion recovery
experiments, will show their evolution from the negative intensities to the
positive ones (Figure 2.3). The collected data can be treated by a standard
nonlinear three-parameter fitting routine of NMR spectrometers to calculate
T1 values. The three parameters (an initial intensity, a current intensity and
a time T1) are varied to minimize differences between the experimental and
calculated line intensities by a least-squares method. Figure 2.3 illustrates the
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Figure 2.2 Inversion recovery experiments for T1 determinations. The resulting NMR
spectrum is shown for a very short τ time between the inverting and registering pulses
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Figure 2.3 Inversion recovery curves collected experimentally (points) and calcu-
lated with the standard nonlinear three-parameter fitting routine (solid lines). The
data are collected for CH3 (triangles) and α-protons (solid circles) in compound
(CH3)(BF3)N(CH2CH2)2 (CDCl3, 25◦C, T1 = 4.8 and 5.1 s, respectively) and α-protons
(open circles) in (H)(BF3)N(CH2CH2)2 (CD2Cl2, 25◦C, T1 = 4.8 s). (Reproduced with
permission from M. Güizado-Rodrı́guez et al. Inorganic Chemistry, 2001; 40: 3243.
 2001 American Chemical Society)

typical example of such treatments where the solid lines correspond to results
of the fitting procedures [5]. Again, the standard programs, provided by the
software of commercial NMR spectrometers, fit the experimental points to
monoexponential curves and they cannot be applied for more complicated
cases. Finally, to improve the quality of spin inversion [6], the 180◦ pulse in
sequence (2.4) can be replaced with a composite pulse cluster 90◦

φ 240◦
φ 90◦

φ.
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From Figure 2.3, line intensities in NMR spectra, obtained by inversion
recovery experiments, go through zero values. Under these conditions:

T1 = τ0/ ln 2 (2.5)

where the time delay τ0 corresponds to observation of minimal line intensities
in the resulting NMR spectra or, in other words, to zero crossing points. Thus,
T1 times can be determined without fitting procedures directly from the τ0
values [1]. However, it is obvious that accuracy in such T1 determination is
not very high. In fact, the resulting T1 values, determined by this method,
will depend strongly on signal/noise ratios in the collected NMR spectra.

Pulse sequences, applied for T1 determinations by saturation recovery
experiments, are similar to the inversion recovery sequences. Here however
the 90◦ saturating pulses replace the inverting 180◦ pulses in sequence (2.4).
Finally, the progressive saturation method is based on the pulse sequence:

Dummy pulses–RD–90◦ –AT (2.6)

where the saturation effect is reached with the help of dummy pulses and
the delay times, τ = RD + AT, are varying. It must be emphasized that in
this case the evolution of line intensities in the resulting NMR spectra is
described by the equation:

Mτ
Z/MZ

0 = 1 − exp(−τ/T1) (2.7)

This equation can be used for calculations of T1 values. Some modified
inversion recovery versions (the so-called fast methods) can be taken from
Kingsley [4], including the formulas for T1 calculations, estimations of T1
errors and maximization of signal/noise ratios.

2.3 Measurements of Selective and Biselective
T1 Times

The duration and the power of 180◦ pulses in sequence (2.4) can be adjusted
to excite a single line in an NMR spectrum. Action of the selective (or soft) 180◦

pulses in the inverse recovery experiments:

RD–180◦
sel –τ–90◦ –AT (2.8)

leads to determination of the selective relaxation times T1sel. At short τ values
(τ � T1) the resulting NMR spectrum will show the single resonance with
a ‘negative intensity’ (Figure 2.4). It is obvious that these conditions can be
used for calibration of the soft 180◦ pulses: a good calibration corresponds to
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Figure 2.4 Inversion recovery experiment with the selective 180◦ inverting pulse
operating in the region of the A resonance. Typical durations of selective pulses are
30–40 ms. The resulting NMR spectrum is shown for a very short τ time between the
inverting and registering pulses

a maximally possible negative intensity of the excited resonance, which is,
maximally close to its natural intensity.

In practice, the selective T1 experiments are important in studies carried
out at proton frequencies. Here a channel of 1H decoupler can be used
to generate the selective 180◦ pulses. Typical durations of these pulses are
usually close to 20–30 ms. Finally, principal channels of NMR spectrometers
are also suitable to obtain the selective pulses. Note that in these cases, they
use the, so-called shaped pulses.

By analogy, pulse sequence (2.9) containing two soft inverting 180◦ pulses:

RD–180◦
sel –180◦

sel –τ–90◦ –AT (2.9)

and operating at two different frequencies (Figure 2.5), results in determina-
tion of the biselective relaxation times T1bis. Interpretation of these experiments
as well as the T1sel measurements is mostly successful in the case of protons.
Their practical applications will be considered below. Here we emphasize
that in most cases the 1H relaxation times decrease as:

T1sel > T1bis > T1 (2.10)

However, even theoretically, the times differ slightly. The differences are
particularly small when two or more relaxation mechanisms operate simul-
taneously [7]. Figure 2.6 summarizes the results of the 1H T1, 1H T1sel and
1H T1bis experiments, carried out on the HX resonance of the Nb hydride
complex in a toluene solution at room temperature [8]. The differences in
the selective, biselective and nonselective T1(HX) times are very insignificant
because the spin–lattice relaxation of hydride resonances in such systems
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Figure 2.5 Inversion recovery experiment with two selective 180◦ inverting pulses
operating at frequencies of the A and B resonances. The resulting NMR spectrum is
shown for a very short τ time between the inverting and registering pulses
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Figure 2.6 Selective (T1sel), biselective (T1bis) and non-selective (T1) times measured
for the HX hydride ligand in a toluene solution of Cp2NbH2SiMe2Cl at 400 MHz. The
biselective experiments have been carried out for the HX and CH3 resonances

is governed by proton–proton and proton–niobium dipole–dipole inter-
actions. It is obvious that interpretations of these measurements require a
good accuracy in T1 determinations. To obtain reliable data, three to five
independent measurements are necessary.
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2.4 Determination of T1ρ and T2

As we discussed above, the action of the 90◦ pulse causes reorientation of the
magnetization vector, as shown in Figures 1.9 and 2.1. When the irradiating
field is switched off, the excited spins relax by molecular motions with
frequencies close to the Larmor frequency. Figure 2.7 demonstrates another
scheme of relaxation experiments where the irradiating radiofrequency field
changes its phase by 90◦, but it still operates as long as the τ time. Under
these conditions, the nuclear magnetization is aligned along the direction of
the applied radiofrequency field or, in other words, the magnetization vector
is spin-locked by this effective field. The effective radiofrequency field is
much weaker than the external magnetic field B0. In most cases, the strength
of the locking field is smaller by several orders of magnitude. For this
reason, the created magnetization will decay with a specific time constant
T1ρ, governed by molecular motions with significantly lower frequencies.
By analogy with the inversion recovery experiments, varying the τ values
leads to determination of the spin–lattice relaxation time in the rotating
coordinate system:

M(τ) = M0 exp(−τ/T1ρ) (2.11)

In the solid state, where molecular motions are strongly restricted, the T1ρ

values differ remarkably from T1 and T2 times. That is why the T1ρ experi-
ments are successfully applied for characterizations of molecular motions in
solids. In contrast, molecular tumbling is fast in solutions and nonviscous
liquids and therefore the T1, T2 and T1ρ times are practically identical.

The spin–spin relaxation time T2 describes recovery of transverse compo-
nents of the total nuclear magnetization. This time constant can be determined
with the help of the Carr–Purcell pulse sequence:

(90◦x′ –τ–180◦y′ –τ (first echo)–τ–180◦y′ –τ (second echo) etc. (2.12)

90Y° (B1Y)

τ

90X°
AT

Figure 2.7 Spin-locking experiment for determination of T1ρ times. The radiofre-
quency field B1, acts along the Y-axis and the time of its action (τ) is varied
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By analogy with the inversion recovery experiments, the NMR decays,
collected at τ variations, are treated by the standard fitting routine of NMR
spectrometers to calculate T2 times.

2.5 Preparation of Samples for Relaxation
Experiments

Durations of relaxation times depend strongly on the nature of nuclei, relax-
ation mechanisms, structural features of molecular systems, their mobility,
temperature and viscosity of solvents. By action of all these factors, relax-
ation times vary over very large ranges. Figure 2.8 illustrates the order and
typical variations of proton T1 times measured in solutions of simple organic
molecules. As seen, the 1H T1 relaxation times change from 2.5 to 6 s in CDCl3
and from 4.0 to 13 s in the less viscous CD2Cl2) [5]. T1 times of 13C nuclei
vary much stronger. For example, 13C nuclei directly attached to protons
(CH, CH2 and CH3 groups) relax mainly by carbon–proton dipole–dipole
interactions. For this reason, their T1 times are relatively short (3–15 s). In
contrast, quaternary carbons show very long T1 times reaching 100 s and
more. For example, 13C T1 times of fullerene C60 in various organic solvents
are may be >120 s.

As we will show in Chapter 12, an unpaired electron causes a fast para-
magnetic relaxation of neighboring nuclei. Since the unpaired electron spin
has a magnetic moment, which is 103 times higher than nuclear magnetic
moments, and since the paramagnetic relaxation rate is proportional to the
squares of the electron and nuclear magnetic moments, the relaxation mech-
anism in the presence of unpaired electrons is very effective. For this reason,
any paramagnetic impurities (such as simple paramagnetic ions and organic
or organometallic species with unpaired electrons or even molecular oxygen in

N

CH3

BH3 2.5, (4.0) s

3.6 (6.3) s

5.6 , (10.5) s
H

H

H

H

6.0, (10.6) s 

T1 CDCl3 (CD2Cl2)

5.9, (13.0) s 

5.9, (11.0) s

Figure 2.8 1H T1 times measured in CDCl3 and CD2Cl2 solutions (298 K, 400 MHz)
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solvents) will reduce relaxation times of compounds under investigation. By
definition, relaxation rates are additive magnitudes. Therefore, the influence
of the paramagnetic contribution to a total relaxation rate depends on the
duration of natural nuclear relaxation. It is obvious that a longer natural
T1 time will be distorted more. To avoid these effects, investigated samples
should be previously purified and deoxygenated. The deoxygenation can be
successfully reached by four freeze–pump–thaw cycles. The samples can be
sealed under vacuum or inert atmosphere by conventional procedures if
necessary. Good examples of the strong influence of oxygen are proton
spin–lattice relaxation times of benzene molecules in solution. For example,
a CS2 solution of benzene in the presence of air shows the 1H T1 value of 2.7 s
composed with 60 s in a degassed solution.
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The reliability of quantitative interpretations of relaxation times in terms
of molecular structure or molecular mobility requires knowledge of errors
in T1 and T2 determinations. Normally, potential sources of the errors are:
(i) poor adjustments of NMR spectrometers, inaccurate measurements of the
temperature and its poor stability (instrumental errors); (ii) a bad choice
of varied parameters for T1 (or T2) measurements; (iii) incorrect treatments
of the collected NMR decays, for example, when an inadequate relaxation
model is applied for T1 (or T2) calculations; (iiii) the chemical nature of
investigated samples. The latter can lead to a strong distortion of natural
relaxation times, due to the presence of chemical exchanges or paramagnet-
ics etc. Another source of the errors in interpretations of T1 (or T2) times
is the nature of nuclear relaxation. Actually, many nuclei often relax by
several mechanisms simultaneously. For example, the dipole–dipole relax-
ation and the relaxation by chemical shift anisotropy interactions or a set
of different dipole–dipole interactions can contribute to magnitudes mea-
sured experimentally. In such cases, for example, calculations of structural
parameters from T1 data will be based on preliminary evaluations of the
required contributions. It is obvious that incorrect evaluations of these con-
tributions will lead to incorrect conclusions. It should be emphasized that
such errors depend on concrete situations and they cannot be predicted in
most cases.

Practical NMR Relaxation for Chemists Vladimir I. Bakhmutov
 2004 John Wiley & Sons, Ltd ISBNs: 0-470-09445-1 (HB); 0-470-09446-X (PB)
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3.1 Instrumental Errors

The following instrumental factors have a significant influence on accuracy
in relaxation time measurements:

(a) calibrations of radiofrequency pulses;

(b) homogeneity of radiofrequency pulses;

(c) temperature control of the relaxation experiments;

(d) signal/noise ratios in the resulting NMR spectra.

The latter factor is quite obvious because the calculations of relaxation times
are based on treatments of peak (or integral) intensities of NMR signals
collected in the relaxation experiments (Figure 3.1). Poor signal/noise ratios
(particularly in the τ regions when the line intensities are close to zero)
increase the errors. Factor (b) is rather a technical problem connected with
the design of NMR spectrometers and does not depend on the investigator.
The temperature of the NMR experiment is usually controlled with an
accuracy of ±0.5◦C by standard variable-temperature units of commercial

τ = 15.0 sec

τ = 10.0 sec

τ = 2.0 sec

τ = 0.5 sec

τ = 0.1 sec

Figure 3.1 Schematic presentation of a typical evolution of line intensities in 1H
NMR spectra, collected by inversion recovery experiments at different values of τ
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NMR spectrometers. Calibrations of a real temperature in a sample should be
performed previously, for example, by the methanol thermometer method.

Good calibrations of the 90◦ (and 180◦) radiofrequency pulses can be
reached by standard single-pulse experiments with variations in the pulse
durations tp. In most cases, the procedures consist of searches of minimal
line intensities in NMR spectra when the durations of the radiofrequency
pulses correspond to the action angle α, close to 360◦. Then durations of the
90◦ pulses are easy calculated as tp(360◦)/4. It should be emphasized that
badly calibrated pulses often yield an effective nonexponential relaxation. In
such cases, treatments of the collected free induction decays with the help
of the standard fitting routine of NMR spectrometers will lead to additional
errors in T1 (or T2) calculations. Finally, note that the calibrated durations
of the radiofrequency pulses can remarkably change with temperature.
Therefore, the calibration experiments should be carried out at various
temperatures.

3.2 Incorrect Parameters for T1, T2
Measurements and T1, T2 Calculations

By definition, time delays RD in the pulse sequences, applied for relaxation
experiments, should provide a complete relaxation of nuclei in each cycle of
the measurements. It is obvious that if RD delays are too short, the peak (or
integral) line intensities in the resulting NMR spectra will be distorted. In
the case of a monoexponential nuclear relaxation, it is easy to show that the
time delays, RD, close to T1 values, recover ∼63% of an equilibrium nuclear
magnetization. In turn, a 99% recovery of the equilibrium magnetization
will require time delays equal to 5 T1. Therefore the T1 measurements are
correct when

Relaxation delay + acquisition time � 5T1.

It is obvious that this condition requires preliminary NMR experiments for
rough estimations of relaxation times. Since T1, T2 calculations are based on
peak (or integral) line intensities, a bad phasing in the collected NMR spectra
produces additional errors in T1 or T2 calculations. To minimize these errors,
the final NMR spectra should be carefully phased by convenient procedures.

Intensity of lines I in the inversion recovery NMR spectra is a function of
time τ: I(τ) = exp(−τ/T1). It is obvious that semilogarithmic plots of I–τ will
be straight lines with slopes equal to 1/T1. Determination of the slopes is the
simplest method for T1 calculations. Daragan et al. [1] have demonstrated
that, owing to the presence of spectral noise, errors in determinations of the
ln(I) values depend on the τ durations. Figure 3.2 illustrates schematically the
resulting effect. As can be seen, the points, obtained at the tails of relaxation
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0.5 1.0 1.5 τ/T1

Figure 3.2 Line intensity plotted against τ/T1 values in semilogarithmic (points and
solid line). The dashed lines illustrate increasing errors due to the presence of noise
in the NMR spectra

curves (when the τ/T1 ratio is larger than one), give growing errors. It is
obvious that these points should be weighted less. One can formulate the
best region for the τ variation in T1, T2 experiments. In the case of a simple
monoexponential relaxation, this region should be between 0.1T1 and T1
where the number of the varying τ values is more than 16.

On the other hand in practice, the type of nuclear relaxation is often
unknown. Therefore, in order to characterize properly, for example, the
inversion recovery process, the τ values should cover a larger range from
0.1T1 to 3T1. This range allows one to distinguish exponential and nonexpo-
nential relaxation as systematic deviations of experimental points from the
exponential behavior. For example, appearance of overshoots in the inversion
recovery curves, particularly at τ values close to T1 –2T1, is a good test for
the presence of an unusual nuclear relaxation. Finally it should be noted that
in spite of all these difficulties, the standard NMR adjustments and some
experience in relaxation experiments lead to results where relaxation times
are determined with errors less than 3–5%.

3.3 Coupled Nuclear Relaxation

By definition, two magnetically nonequivalent spins, A and X, form a simple
system, AX, if the chemical shift difference between A and X is significantly
larger than the spin–spin coupling constant J(A-X): �δAX(Hz)/JAX(Hz) > 10.
According to the well-known rule, the line multiplicity N of the A resonance
is calculated as N = 2nI + 1, where n is the number of X nuclei and I is their
spin. When the A, X nuclei are protons (I = 1/2), the AX spin system shows
a 1H NMR spectrum containing two doublets. Relative intensities within
multiplets are distributed according to Pascal’s triangle. Therefore, the AX
system shows a 1:1 equilibrium distribution of line intensities in each doublet.
Decreasing the �δAX(Hz)/JAX(Hz) ratio results in transformation of the AX
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spin system to a strongly coupled system, AB. By analogy, simple AX2 or AXX′
systems, formed by three nuclei, convert to strongly coupled systems marked
as ABX, AMX, AB2 or ABC. These systems show complex patterns where
multiplicities of resonances and equilibrium intensities within multiplets
do not follow the above rule or the binomial distribution. In each case the
patterns depend on �δ and J values.

As it has been mentioned, NMR relaxation of isolated spins is monoexpo-
nential. In contrast, strongly coupled spins can show ‘coupled relaxation’.
Ernst et al. have theoretically demonstrated that the registering hard 90◦

pulses, acting on strongly coupled spin systems in the inversion recovery
experiments, cause a mixing of the eigenstate populations. In turn, this
phenomenon is responsible for the appearance of multiexponential NMR
decays. Schaublin et al. [2] have emphasized that such a relaxation can be
observed, even in the case of a simple spin system AX2. In practice, the
presence of coupled nuclear relaxation can be experimentally recognized
as a strong perturbation of equilibrium distributions in line intensities within
resonance multiplets when an inverted spin system relaxes to equilibrium.
Figure 3.3 illustrates this relaxation behavior for a simple AX2 spin system.
The distribution of line intensities in the A triplet does not correspond to
1:2:1 and changes during the relaxation. Standard treatments of these inver-
sion recovery data will result in a faster effective relaxation of the central
component of the A triplet. This effect is observed, for example, in the 1H
NMR spectra of the bimetallic trihydride complex (Figure 3.4), where the 1H
T1 difference between the central and side lines in the H(A) triplet reaches
40% (Figure 3.5) [3].

It is obvious that treatments of the multiexponential NMR decays with the
help of standard exponential fitting will give significant errors in relaxation

A X2

τ

Figure 3.3 Coupled spin–lattice relaxation: the evolution of line intensities in an
inversion recovery experiment on an AX2 spin system (schematic)
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Figure 3.4 The structure of the bimetallic Ta/W trihydride complex, containing the
bridging (H(A)) and terminal (H(X)) ligands. The H(A) and H(X) nuclei form an AX2

spin system, showing the coupled proton relaxation in solutions

−17.9 −18.1 −18.3
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Figure 3.5 Room-temperature partially relaxed 1H NMR spectra of the H(A) ligand
collected in an inversion recovery experiment at various times τ for an acetone-d6 solu-
tion of the complex in Figure 3.4: (a) τ = 0.1 s; (b) τ = 0.6 s; (c) τ = 1.1 s; (d) τ = 20.1 s.
(Reproduced with permission from V. I. Bakhmutov, E. V. Vorontsov, G. Boni,
C. Moise. Inorganic Chemistry, 1997; 36: 4055.  1997 American Chemical Society)



Chemical Exchange 37

time calculations. Actually, such a formal treatment of the data, shown in
Figure 3.5, gives T1 = 2.33, 1.68 and 2.16 s for the lines in the H(A) triplet.
Approaches to a quantitative analysis of the multiexponential NMR decays
are based on perturbations of separated lines in spin multiplets, measure-
ments of the return of the lines to an equilibrium state with further density
matrix treatments [4]. Note that these studies rather concern description
of molecular motions. In the context of structural applications, it must be
emphasized that even the coupled relaxation can be successfully approxi-
mated by a single effective T1 time when the equilibrium line intensities are
minimally perturbed in the collected spectra [4].

3.4 Chemical Exchange

Relaxation times can be distorted in the presence of chemical (or positional)
exchanges. By definition, a chemical exchange, for example, between two
nonequivalent spin states, A and X,

A ⇐⇒ X
νA; τA νX; τX (3.1)

directly affects lineshapes of the A, X resonances when the exchange fre-
quencies, νE, are comparable to chemical shift differences, (νA − νX). Under
these conditions, the NMR spectra show the typical temperature evolution
(see Figure 3.6) where the exchanging lines undergo broadening and coales-
cence [5]. Finally, fast exchange results in observation of a single resonance
detected at an averaged frequency: ν = (νA + νX)/2. In this situation the spec-
tral parameters of individual states as well as their relaxation times, T1,2(A)
and T1,2(X) are completely averaged.

The spin states A and X can have different populations and belong to the
same molecule (intramolecular exchange) or different molecules (intermolec-
ular exchange). Also a natural relaxation time can be significantly shorter
in one of the spin states. Then it is obvious that the positional exchange
will more strongly affect the other state with longer T1,2 times. The effect
is particularly remarkable when one of the states is weakly populated, but
paramagnetic.

A positional exchange is a slow when νE < νA − νX. Under these conditions,
the A and X lines are well separated and remain narrow (see Figure 3.6).
However, in spite of the good separation of the resonances, their relaxation
times can be partially averaged. Owing to this effect, free induction decays,
collected by the inversion recovery experiments, will depend on T1(A) and
T1(X) times and in addition, on lifetimes of spins in the both states: τA and
τX. For these reasons, T1 calculations from the inversion recovery data will
require separations of two superimposed exponentials. In turn, standard
treatments of these data in a monoexponential approximation will lead to
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Figure 3.6 Temperature evolution of the NCH3 lineshapes in the variable-tempera-
ture 1H NMR spectra due to rotation around the C−N bond on the NMR timescale.
(Reproduced from A. D. Bain. Progress in Nuclear Magnetic Resonance Spectroscopy
2003; 43: 63, with permission from Elsevier)

effective magnitudes T1(eff). Sometimes natural T1 times can be determined
from the T1(eff) values with the help of approximate formulas [6]. Note,
however, that in this case exchange rates 1/τA and 1/τX should be obtained
independently. In the absence of such information, slow positional exchanges,
distorting the natural T1 values, are not desirable.

Slow positional exchanges can be identified spectroscopically by saturation
transfer experiments in 1H NMR spectra. The experiments involve a double-
resonance technique and consist of observation of A nuclei during irradiation
of X nuclei. In the presence of a saturating radiofrequency field, fast tran-
sitions of X nuclei between the Zeeman levels equalize their populations
and the X resonance is saturated. Owing to a slow positional exchange, the
saturating effect can be transferred from X to A. The latter is accompanied
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I0

AX

IST

Figure 3.7 Schematic Presentation of a saturation transfer experiment on A and X
nuclei coupled to a slow positional exchange: I0 is an equilibrium integral intensity
of the A resonance; IST an integral intensity after irradiation of the X resonance
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toluene-d8
295 K

Figure 3.8 The selective (T1sel) and non-selective (T1) 1H spin–lattice relaxation times
measured for the H(X) ligand of the Nb trihydride complex in the presence of a slow
H(X)/H(A) exchange (400 MHz, toluene-d8)

by decreasing the integral intensity of the A resonance IST, as shown in
Figure 3.7.

The spectral behavior of the Nb trihydride complex (Figure 3.8) in solution
illustrates the importance of the saturation transfer studies. The room-
temperature 1H NMR spectrum of the trihydride shows two well-separated
hydride resonances, H(X) and H(A) (Figure 3.9). According to the molecular
structure of the complex, the H(A) hydride atom is adjacent to two equivalent
H(X) ligands. As we will show in Chapter 4, two dipole–dipole H(A)–H(X)
contacts should strongly reduce the T1(HA) time with respect to T1(HX).
In contrast, the measured T1(HA) and T1(HX) values are very similar. A
partial T1 averaging (due to an H(A)/H(X) exchange) could cause this effect.
However, the NMR spectrum in Figure 3.9 does not reveal the presence of the
exchange. In contrast, the saturation transfer experiments, performed for the
HX/HA pair, have shown directly the presence of a slow hydride/hydride
exchange. It is obvious that, under these conditions, the T1(HA) and T1(HX)
values cannot be used as individual natural characteristics of the hydride
resonances and the temperature of T1 measurements should be decreased.
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Figure 3.9 The room-temperature 1H NMR spectrum of complex Cp2NbH3

(Figure 3.8) in toluene-d8 at 400 MHz. The signals in the region of 7.5 and 2.5 ppm
belong to the solvent

For other nuclei than protons, the saturation transfer technique is not
applied. In such cases, the presence of slow positional exchanges can be
established with the help of the two-dimensional NOE (NOESY) NMR
experiments, known as two-dimensional exchange spectroscopy (EXSY) [7].

Slow positional exchanges can be successfully revealed by 1H T1sel/
1H T1

measurements [8]. Theoretically, the dipolar T1sel times are usually longer
than the nonselective T1 times. The hydride resonances of the Nb complex in
Figure 3.8 demonstrate an opposite tendency and T1sel(HX) < T1(HX). The
selective inverting 180◦ pulse, operating at the H(X) resonance frequency,
results in different spin temperatures of the H(A) and H(X) states. Then, an
additional relaxation rate for the H(X) resonance, appearing in the selective
experiments, is explained by a slow exchange between the H(X) spins and
their ‘colder’ neighbor.

Finally, we illustrate an ‘abnormal’ relaxation behavior of NMR signals
caused by a chemical exchange involving paramagnetic species. The dia-
magnetic 18-e complex Cp*FeH(dppe) is protonated with weak acids (for
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Table 3.1 1H T1 relaxation data in a CD2Cl2

solution of Cp*FeH(dppe) in the presence of
a three-fold excess of 2,2,2-trifluoroethanol
(400 MHz)

T (K) T1(Fe(H2))(ms) T1(FeH)(ms)

190 24 25
200 15 12
220 11 3.9
240 9.6 0.67
250 11

example, 2,2,2-trifluoroethanol) in CD2Cl2 solutions to give the diamagnetic
dihydrogen complex [9]:

Cp∗FeH(dppe) + H+ ←→ Cp∗Fe(H2)(dppe)+ (3.2)

Both hydride resonances (FeH and Fe(H2)), well observed in the 1H NMR
spectra, provide the accurate T1 time measurements, shown in Table 3.1. The-
oretically, dipolar proton–proton coupling and the chemical shift anisotropy
mechanism (see Chapter 5) govern nuclear relaxation of the hydride reso-
nances. In accordance with the theory of dipole–dipole nuclear relaxation
(see Chapter 4), the 1H T1(FeH2) time, measured for the dihydrogen ligand,
is short, due to strong H−H dipolar coupling. The time increases on cool-
ing and goes through a minimum of 9.6 ms at 240 K again in accordance
with the theory. In contrast, the relaxation behavior of the hydride reso-
nance in the initial complex is abnormal. Actually in the absence of strong
dipole–dipole proton–proton interactions, the T1(Fe-H) times are unusu-
ally short particularly in the region of 240 K (0.7 ms). For non-quadrupolar
nuclei such magnitudes are direct evidence for the presence of paramagnetic
species involved in an exchange with complex Cp*FeH(dppe). In fact, the
source of the paramagnetic relaxation is the 17-e paramagnetic complex
[Cp*FeH(dppe)]+ X− which is unobservable by the 1H NMR spectra because
of a small concentration and the paramagnetic nature. The paramagnetic
complex participates in the degenerate exchange:

18e-Cp∗FeH(dppe) + 17e-[Cp∗FeH(dppe)]+X−

⇐⇒ 17e-[Cp∗FeH(dppe)]+X− + 18e-Cp∗FeH(dppe) (3.3)

affecting the 1H T1 times measured for the diamagnetic complex. On heating,
the rate of the exchange increases and the observed effects become more
pronounced. It is obvious that, under these circumstances, the measured
T1 times cannot be used for structural characterizations of the investi-
gated compounds.
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The fluctuating magnetic fields, causing nuclear relaxation, are created in
a sample by dipole–dipole, quadrupole, spin-rotation, scalar and chem-
ical shift anisotropy interactions. For many nuclei, different relaxation
mechanisms can operate simultaneously. In such cases, each mechanism
provides the corresponding contribution to a total relaxation rate. In addi-
tion, two ‘independent’ mechanisms can interfere to give the cross-relaxation
contributions.

In spite of the variety of relaxation mechanisms and the different origin
of nuclear coupling, relaxation rates 1/T1 (and also 1/T2 or 1/T1ρ) can be
expressed via the general formula:

1/T1 = C J(ω0, τC) (4.1)

Practical NMR Relaxation for Chemists Vladimir I. Bakhmutov
 2004 John Wiley & Sons, Ltd ISBNs: 0-470-09445-1 (HB); 0-470-09446-X (PB)
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where C is the strength of nuclear coupling. The function J(ω0, τC), called the
spectral density function, shows how the influence of nuclear coupling C on
the relaxation rate changes when frequencies of the field fluctuations move
off the Larmor frequency, ω0(ω0 = 2πν0). In other words, C connects with
molecular structure while J(ω0, τC) depends on molecular mobility.

4.1 Intramolecular Dipole–Dipole Relaxation:
Homo- and Heteronuclear Dipolar Coupling
and the Spectral Density Function

Interactions of nuclei of one sort with nuclei of other sort are called heteronu-
clear dipolar coupling. Homonuclear coupling corresponds to interactions
of nuclei of the same sort. If the magnetic dipole of one nucleus (see
Equation 1.5), for example, a proton, can interact with the magnetic dipole
of nucleus B, other than a proton, then the strength of this heteronuclear
dipolar coupling, DC, measured in Hz, is:

DCH−B = (4/30)(µ0/4π)2 r(H−B)−6 γH
2γB

2 h̄2IB(IB + 1) (4.2)

where γH and γB are the nuclear magnetogyric ratios of 1H and B nuclei,
respectively, IB is the spin of nucleus, B µ0 is the permeability of vacuum
and r(H−B) is the internuclear distance [1]. Note that the equation is written
to account for 100% natural abundance of nucleus B. When the natural
abundance of target nuclei less than 100%, (for example, 11B), the equation
can be easily modified.

Equation (4.2) shows that the strength of dipolar nuclear coupling is
proportional to the inverse sixth power of the internuclear distance. It is
easy to demonstrate that the dipolar coupling reduces by 244 times with
increasing the internuclear distance from 1 to 2.5 Å. It becomes obvious
that dipolar coupling is significantly more effective for nuclei, located in
the same molecule. Thus, in this case the DC constant is directly related to
molecular structure.

When two coupled nuclei are identical, for example, protons, the strength
of the homonuclear dipolar coupling, DCH−H, is written as:

DCH−H = 0.3 (µ0/4π)2 γH
4 h̄2 r(H−H)−6 (4.3)

The DC constants in Equations (4.2) and (4.3) change proportionally to γ2.
This fact and the magnetic properties in Table 1.1 allow us to predict the role
of dipole–dipole interactions in relaxation of different nuclei. It is obvious
that the strength of dipolar coupling is highest for a proton pair or a pair
where one of the nuclei is a proton. Significant dipole–dipole interactions
can be also expected for 19F nuclei and nuclei in their environment.
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1H – 12C 

1H – 13C1H – 13C

J(1H – 13C)

T1(1H – 12C) > T1(1H – 13C)

Figure 4.1 1H NMR spectrum of a C−H fragment (schematic). Intensity of each
satellite line is 0.5% due to the natural abundance of the 13C isotope

Effects of dipolar interactions on relaxation of proton/carbon pairs depend
on target nuclei. In fact, because of spin–spin scalar coupling and the low
natural abundance of 13C isotopes (∼1%), the 1H NMR spectrum of a
C−H fragment (Figure 4.1) exhibits a central line and two low–intensity
satellite lines. Theoretically, the 1H T1 time of these satellite lines should
be shorter than that of the central resonance, owing to the presence of
the 1H−13C dipolar coupling. However, for obvious reasons, the objects
of 1H relaxation experiments are the central resonances. They correspond
to protons attached to the magnetically inactive isotope 12C and show no
proton–carbon dipolar contributions. In contrast, 13C isotopes are always
attached to 1H and therefore C−H dipole–dipole interactions make one
of the major contributions to 13C T1 rates. Finally, in most cases, dipolar
coupling will be effective in nuclear relaxation if DC values are between 104

and 105 Hz.
The properties of 1H and 2H isotopes predict weakening dipolar coupling

on displacement of protons by deuterons. This is why isotopic displacement
is often applied in relaxation experiments to reduce or evaluate contributions
of the dipole–dipole relaxation [2]. For the same reason, application of
deuterated solvents minimizes the solvent effects in 1H NMR relaxation
experiments. For example, dipole–dipole interactions between the hydride
ligand and deuterons of a solvent contribute only 3% to the 1H T1 relaxation
rate of HRe(CO)5 in C6D6 [3].

Figure 1.13 explains the appearance of field fluctuations due to reorienta-
tions of dipolar vectors with respect to the direction of the external magnetic
field. When these reorientations (or in other words, molecular motions) have
large amplitudes and random character, then the spectral density function,
J(ω0, τC), takes the Bloembergen–Purcell–Pound form [1] and the rate of
spin–lattice relaxation (1/T1(H. . .B)) by the heteronuclear dipole–dipole
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interactions is:

1/T1(H . . . B) = DCH−B{3τc/(1 + ωH
2τc

2) + 6τc/[1 + (ωH + ωB)2τc
2)

+ τc/(1 + (ωH − ωB)2τc
2]} (4.4)

where ωH and ωB are the resonance frequencies of H and B nuclei, respec-
tively. By analogy, the rate of the proton–proton dipole–dipole relaxation is
expressed as:

1/T1(H . . . H) = DCH−H[τc/(1 + ωH
2τc

2) + 4τc/(1 + 4ωH
2τc

2)] (4.5)

Since the molecular motion correlation time, τc, depends on the temperature
(τC = τ0 exp(Ea/RT)), the plots of Equations (4.4) and (4.5) in semilogarith-
mic coordinates are symmetrical V-shaped curves with minima (Figure 4.2).
It is easy to show that in the case of 1H relaxation, the J(ω0, τC) term takes a
minimal value at:

τC = 0.62/ωH (4.6)

ln(T1, T2, T1ρ)

T1ρ

T1

1/T

T1ρmin

T1min

T2

1 ∼ ω0
2τC

2

1 << ω0
2τC

2

1 >> ω0
2τC

2

Figure 4.2 Temperature dependences of the dipolar T1, T2 and T1ρ relaxation times
in semilogarithmic coordinates at the Larmor frequency ω0. The dashed T1 curve
corresponds to a higher Larmor frequency than ω0. The regions with 1 � ω0

2τC
2,

1 ∼ ω0
2τC

2 and 1 � ω0
2τC

2 correspond to fast, intermediate and slow molecular
motions on the frequency scale of NMR
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According to this relationship, the correlation time is proportional to the 1/ωH

and thus the temperature, corresponding to the 1H T1 min value, increases with
increasing the strength of the external magnetic field. In addition, location of
T1 minima on the variable-temperature relaxation curves directly depends
on molecular mobility. Therefore, in solutions, where molecular motions are
fast, 1H T1 min times are observed in low-temperature experiments only on
relatively bulky molecular systems or highly viscous solvents, for example,
glycerin [4]. The power of an effective radiofrequency field, operating in the
T1ρ spin-locking experiments, is significantly less than that of the external
magnetic field. For this reason, in accordance with Equation (4.6), T1ρ minima
should be observed at significantly lower temperatures (Figure 4.2) with
respect to T1 min. In practice, T1ρ minima are reached relatively easy in solids
where molecular motions are slow. In solutions, these experiments can be
successful only in the case of very big molecules.

The left and right wings of the T1 plots in Figure 4.2 correspond to
ωH

2τC
2 � 1 (known as the extreme narrowing condition or fast motional

regime) and ωH
2τC

2 � 1 (slow molecular motions), respectively. Under these
conditions, Equation (4.5) converts to the equations:

1/T1(H . . . H) = (3/2)(µ0/4π)2 γH
4 h̄2 r(H−H)−6 τc (4.7)

1/T1(H . . . H) = (3/5)(µ0/4π)2 γH
4 h̄2 r(H−H)−6(1/ωH

2τC) (4.8)

In turn, for minimal 1H T1 values one can write:

1/T1 min(H . . . H) = 0.427(µ0/4π)2 γH
4 h̄2 r(H−H)−6/ωH (4.9)

As seen from Figure 4.2, T1 times are independent of the working frequency
of NMR spectrometers in the extreme narrowing region, while they increase
proportionally to ω0 at low temperatures. Equations (4.7) and (4.8) show that
in fast and slow motional regions, the plots of lnT1 versus 1/T are linear and
their slopes correspond to activation energies of molecular motions.

Since the mechanisms of spin–lattice and spin–spin nuclear relaxation are
different in principle, their temperature dependences are also different. In
the case of heteronuclear spin–spin relaxation, the spectral density function,
J(ω0, τC), takes the form:

J(ω0, τC) = [4τc + 3τc/(1 + ωH
2τc

2) + 6τc/(1 + ωB
2τc

2)

+ τc/(1 + (ωH − ωB)2τc
2) + 6τc/(1 + (ωH + ωB)2τc

2)] (4.10)

Combining the J(ω0, τC) functions in Equations (4.4) and (4.10) shows that
at ωH

2τC
2 � 1 the T2 and T1 times are identical (Figure 4.2). However,

on cooling, the T2 time reduces monotonically. This effect leads to the
well-known strong broadenings of NMR signals at low temperatures.

Finally, all these equations are written in terms of a single dipole–dipole
contact. The relaxation rates are additive and therefore, in the presence of
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a larger number of such contacts, all the dipolar contributions should be
summarized:

1/T1
OBS =

∑
n

1/T1 (4.11)

where n is the number of corresponding dipole–dipole contacts.

4.2 How to Reveal the Presence of the Dipolar
Mechanism

Dipole–dipole NMR relaxation has two important phenomenological fea-
tures: (i) T1 times do not depend on the Larmor frequencies and increase
in high-temperature regions; (ii) minimal T1 values are proportionally to
the Larmor frequencies. As we will show below, the spin-rotation and
chemical shift anisotropy mechanisms demonstrate another behavior. There-
fore, the above-mentioned features can be successfully used to identify the
dipole–dipole relaxation. Note, however, that in the presence of differ-
ent relaxation mechanisms direct evidence for dipole–dipole interactions
can be obtained by NOE experiments and measurements of the selective
relaxation times.

4.2.1 NOE as a Test for Dipole–Dipole Nuclear Relaxation

By definition, the nuclear Overhauser effect (NOE) is observed for a pair of
A/X nuclei if they are coupled by dipole–dipole interactions [4]. The effect
consists of perturbation of an equilibrium magnetization, measured for A
nuclei as the equilibrium integral intensity of the NMR signal, when X nuclei
are irradiated by a radiofrequency field (Figure 4.3). At positive magnetogyric
ratios of A and X nuclei, the effect is responsible for an enhancement of the A
integral intensity.

Since the correlation time of molecular tumbling depends on the tem-
perature, the NOE is also temperature dependent. Figure 4.4 illustrates this
dependence for a pair of protons as the plot of the NOE enhancement versus
ω0τC. Increasing the τC values (corresponding to decreasing the temperature)
leads to reducing the positive NOE enhancement to zero and then, to increas-
ingly negative NOE values. It is known that small molecules are reoriented
in nonviscous solutions at the τC values of 10−10 –10−11 s. It is obvious that
the NOE enhancements for these molecules should be positive at moderate
temperatures. In contrast, big molecules, such as proteins, tumble at τC values
of 10−7 s. In such cases, the NOE is negative.

The NOE magnitudes can be negative if one of the coupled nuclei has a
negative magnetogyric ratio, for example, as in the {1H}/15N or {1H}/29Si
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I0

AX

I{X} 

r(X·······A) < 2.6 Å

Figure 4.3 NOE enhancement observed for a pair of A/X protons coupled by dipolar
interactions and separated by a relatively short internuclear distance where X is the
irradiated nucleus and A is the detected one

NOE %
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0.1 1 10

−100 
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Figure 4.4 Nuclear Overhauser effect, observed in a pair of protons, as a function of
the molecular motion correlation times τC. Increasing the ω0τC values corresponds to
decreasing the temperature

pairs. In addition a system consisting of three protons:

H(A) . . . H(B) . . . H(C) (4.12)

also shows an unusual NOE behavior. In fact, the H(A) irradiation results
in the positive and negative NOE enhancement observed for H(B) and H(C)
nuclei, respectively.
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If the dipole–dipole mechanism dominates in relaxation of A and X nuclei,
the NOE observed for X nuclei can be expressed by the ratio:

MX{A}/MX
0 = 1 + γA/2γX (4.13)

where MX{A} and MX
0 are the integral intensities of X nuclei measured in the

presence and the absence of the A irradiation, respectively. Equation (4.13)
shows that a maximal NOE enhancement, expected for a pair of protons (i.e. at
γA = γX = γH) is equal to 50%. However, since the strength of dipole–dipole
interactions reduces with increasing internuclear distance, the NOE can be
observed at proton–proton distances less than 2.6 Å.

The NOE experiments are particularly useful when several relaxation
mechanisms operate simultaneously. If X nuclei interact with A nuclei and
in addition, with a group of other nuclei, then a combination of T1 measure-
ments and NOE experiments provide to evaluate the A−X dipole–dipole
contribution according to:

MX{A}/MX
0 = 1 + (γA/2γX) × (T1DD(X-A))−1/T1(TOT)−1 (4.14)

This situation often takes place in 13C NMR [6] where the NOE measured
in 13C and 13C{1H} NMR experiments, leads to a reliable evaluation of
the dipolar C−H relaxation contributions. Finally note that in practice the
NOE experiments can be performed with the help of one-dimensional (with
selective saturation of one of the NMR signals) or two-dimensional (for
example, NOESY) NMR techniques [7]. In the last case, the cross-peaks,
responsible for NOEs (see Figure 1.4), should be analyzed.

As an example of the NOE application, consider the niobium trihydride
(Figure 4.5) where the H(X) and H(A) ligands are separated by 1.98 Å.
Theoretically, the 1H spin–lattice relaxation of the H(A) ligand is governed
by dipole–dipole interactions with the H(X) ligands and protons in the
Cp rings. In addition, dipole–dipole proton–niobium interactions are also
effective. A Cp irradiation does not affect intensities of the H(A) and H(X)
resonances and thus Cp contributions to T1(HA) and T1(HX) times are
negligible. In contrast, irradiating the H(X) nuclei leads to a very pronounced

C5H5

C5H5
HX

HX

HA

1.98 Å

Nb

Figure 4.5 The niobium trihydride complex (schematically), containing the lateral
(HX) and central (HA) hydride ligands. The ligands are spatially separated by 1.98 Å
and show 1H resonances with the chemical shift difference of ∼1 ppm (toluene-d8).
Both circumstances provide good conditions for quantitative NOE measurements [8]
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NOE observed for the H(A) resonance (Figure 4.6) [8]. The quantitative NOE
measurements, in combination with relaxation experiments, give finally a
50% dipole–dipole H(A)−H(X) contribution to the H(A) relaxation rate.

The 31P and 31P{1H} NMR spectra, recorded for the organophosphorus
compounds in Figure 4.7, reveal the small (but nonzero) NOE enhance-
ments [9]. These values and the relaxation measurements result in calcula-
tions of the dipole–dipole 31P T1 times (Table 4.1). The 1H−31P coupling is
too weak to provide the effective relaxation mechanism for 31P nuclei.

(b)

(a)

−2.30 −2.40 −2.50
(ppm)

A

B

C

Figure 4.6 HA resonances in the 1H NMR spectrum of the trihydride Nb complex (see
Figure 4.5) and its deuterated derivatives without (a) and with (b) irradiation of the HX

signal in toluene-d8, at 220 K and 400 MHz; A = Cp2NbHX
2HA, B = Cp2NbHXDXHA,

C = Cp2NbDX
2HA. (Reproduced with permission from V. I. Bakhmutov, E. V.

Vorontsov, G. I. Nikonov, D. A. Lemenovskii. Inorganic Chemistry 1998; 37: 279.
 1998 American Chemical Society)

1 X = Y = O, Z = Lone pair

2 X = Y = NCH3, Z = Lone pair

3 X = Y = NCH3, Z = BH3

4 X = O,Y = NCH3, Z = Lone pair

5 X = O,Y = NCH3, Z = BH3

P

N(CH3)2

X

Y

Z

Figure 4.7 Dimethylaminephospholanes and their borane adducts investigated by
31P T1, T2 and NOE measurements (Table 4.1)
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Table 4.1 Total spin–lattice (T1), spin–spin (T2), dipolar (T1DD) and scalar (T2SC)
31P relaxation times in compounds 1–5 (Figure 4.7) measured in CDCl3 at room
temperature

Compound T1 (s) T2 (s) T2SC (s) T1DD (s)

1 10.2 ± 0.1 0.043 ± 0.002 0.043 ± 0.002 1792 ± 100
2 11.8 ± 0.1 0.01 ± 0.0005 0.01 ± 0.0005 242 ± 12
3 11.5 ± 0.3 0.063 ± 0.003 0.063 ± 0.003 471 ± 28
4 10.7 ± 0.3 0.01 ± 0.0005 0.01 ± 0.0005 62.6 ± 4
5 11.06 ± 0.04 0.038 ± 0.001 0.038 ± 0.001 45.3 ± 4

4.2.2 Evaluations of the Dipolar Contributions from Selective
and Nonselective T1 Times

Consider the spin system, consisting of a pair of the A and B protons. The
protons are spatially approximated and coupled. Figure 4.8 illustrates the
energy states, that come to be combined, and are responsible for a cross-
relaxation phenomenon [10]. When an inverting 180◦ pulse in the inversion
recovery experiment excites the B nucleus selectively, then its T1 time is:

1/T1sel(B) = 2WB + W2 + W0 (4.15)

where WB, W2 and W0 are probabilities of the corresponding nuclear transi-
tions. If this first 180◦ pulse is not selective, then:

1/T1(B) = 2WB + 2W2 (4.16)

A B

WA

W0

W2
WA

WB

WB

Figure 4.8 Scheme of energy levels for a two-spin AB system where W is the
probability of the corresponding nuclear transitions
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Thus, theoretically, the T1sel/T1 ratio is equal to 1.5. It is obvious that
this value, observed experimentally, will be a good test for a 100% dipolar
relaxation of the target nuclei. Smaller T1sel/T1 values will reveal the presence
of additional relaxation mechanisms.

4.3 Intermolecular Dipole–Dipole Interactions

Local magnetic fields, fluctuating in the lattice due to translational molec-
ular motions, lead to relaxation of spins, located in different molecules
(intermolecular dipole–dipole interactions). If molecules are spherical and
translational molecular motions are fast, then the relaxation rate of I spins,
1/T1(I), is:

1/T1(I) = (µ0/4π)2 (8/45) NS γI
2 γS

2 h̄2 S(S + 1)/DIS r(I−S) (4.17)

where NS is the concentration of S spins, r(I−S) is the closest internuclear
distance and DIS is the translation self-diffusion constant. By definition, this
type of nuclear relaxation characterizes molecular mobility or intermolecular
interactions. In the context of structural applications, this mechanism is
undesirable. In fact, molecular collisions of solute–solute or solute–solvent
will shorten relaxation times. In order to reduce these effects, concentrations
of investigated solutions should be decreased.

4.4 Electric Field Gradients
at Quadrupolar Nuclei

The quadrupole mechanism dominates spin–lattice and spin–spin relaxation
of nuclei, having spin numbers >1/2 [1]. Distributions of charges at such nuclei
are nonspherical (Figure 4.9) and responsible for appearance of nuclear
quadrupole moments Q. In this situation, the spins of quadrupole nuclei
can interact with not only the external and local magnetic fields, but also
with any electric field gradients at these nuclei. Most of quadrupolar nuclei
(for example, 81Br, 127I or 35Cl) have large quadrupole moments. These
nuclei become objects of nuclear quadrupole resonance (NQR) studies. By
analogy with NMR, NQR experiments are based on quantized energy levels,
corresponding to different orientations of quadrupole moments Q with
respect to the electric field gradients (EFG).

The EFG (for example, eqZZ, directed along a chemical bond) is expressed
via the electrostatic potential V as:

eqZZ = ∂2V/∂2
Z (4.18)
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+

−−

+

Figure 4.9 Schematic presentation of a non-spherical charge distribution responsible
for appearance of the nuclear quadrupole moment

A
B

E

Figure 4.10 A non-homogeneous electric field, E (schematically), changing along the
chemical bonds, A–B, and characterized by the eqZZ values

Thus, the EFG characterizes a non-homogeneous electric field E, changing
along this chemical bond (see atoms A and B in Figure 4.10). The electrostatic
potential V is a scalar magnitude. In contrast, the electric field gradient is
expressed mathematically as a tensor:

∣∣∣∣∣∣
eqXX 0 0

0 eqYY 0
0 0 eqZZ

∣∣∣∣∣∣ (4.19)

where the off-diagonal elements are equal to zero. By convention, the largest
element of the EFG tensor, eqZZ, is always oriented along the A−B bond (the
Z-axis). Finally, according to the theory of electrostatic interactions, the trace
of the tensor (qZZ + qYY + qXX) should be equal to zero.

4.5 Nuclear Quadrupole Coupling Constant
as Measure of the Electric Field Gradient

The energy of interactions between the nuclear quadrupole moments Q
and the EFG is expressed through the nuclear quadrupole coupling con-
stant (NQCC) [11]:

NQCC = e2qzzQ/h (4.20)

where eqZZ is the principal component of the EFG tensor, e is the elementary
charge (1.6021773 × 10−19 C) and NQCC is measured in frequency units and
is of the order of 106 –109 Hz. Thus, the NQCC is a measure of the ‘size’ of the
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EFG. A spatial extension or ‘shape’ of the EFG is defined via the asymmetry
parameter η:

η = |eqXX − eqYY|/eqZZ (4.21)

When the XX and YY components are equal (i.e. eqXX = eqYY and η = 0), then
the electric field gradient is axially symmetric.

Shapes and sizes of the electric field gradients at nuclei depend strongly on
the symmetry of charge distributions around these nuclei [12, 13]. Figure 4.11
helps to rationalize large variations in NQCC values, shown in Table 4.2.
For example, a symmetric charge distribution at the 14N nuclei in NH4

+Cl−

reduces the NQCC value to 0.016 MHz compared with 0.9 or even 3.98 MHz
in such compounds as EtONO2 or MeNH2, respectively. The NQCC value is
close to zero at the deuterium ligand in solid hydride PdD or at 11B nuclei in
the BH4

− ions again due to the fully symmetric charge distributions.
On a semiquantitative level, the electric field gradient at any quadrupolar

nucleus can be expressed as the sum of nuclear and electronic terms:

eqZZ = +
∑

n

Kn(3zn
2 − rn

2)/rn
5 − e〈ψ∗|

∑
i

(3zi
2 − ri

2)/ri
5|ψ〉 (4.22)

where K and e are charges on the neighboring nuclei and electrons, respec-
tively, and rn and ri are the corresponding distances. Thus, the electric field
gradient at the A nucleus in the A−B bond (Figure 4.10) depends on the
B charge as well as the A−B bond length. In other words, the NQCCs
characterize the A−B bonding modes.

Octahedral
symmetry

NQCC = 0
 η = 0

NQCC ≠ 0
 η = 0

NQCC ≠ 0
 η ≠ 0

Low symmetry

N

+

+

++

+

+ +
N

Axial
symmetry

+ +N

Figure 4.11 NQCC and η variations as a function of the charge distribution symmetry
around the registered nuclei N
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Table 4.2 NQCC variations for 17O, 14N, 2H
and 11B

Compound Nucleus NQCC (MHz)

O2
17O −8.42

CO 17O 4.43
MoO4

2− 17O 0.7
NaNO3

14N 0.745
CH3CN 14N 4.00
MeNH2

14N 3.98
EtONO2

14N 0.9
NH4Cl 14N 0.016
solid PdD 2H 0.000
BD3 NH3

2H 0.105
BH4

− 11B 0.0

4.6 Quadrupole Relaxation

Spins I of quadrupolar nuclei, placed in an external magnetic field, inter-
act with the electric field gradients, eqZZ, oriented usually along chemical
bonds. Random rotational reorientations of these bonds lead to the appear-
ance of fluctuating magnetic fields. Under these conditions, the spin–lattice
relaxation time, T1(Q), is:

1/T1(Q) = (3/50)π2(2I + 3)(I2(2I − 1))−1(e2qzzQ/h)2(1 + η2/3)

× (τc/(1 + ωQ
2τc

2) + 4τc/(1 + 4ωQ
2τc

2)) (4.23)

where η is the asymmetry parameter of the electric field gradient and I is
the nuclear spin. Table 4.3 lists T1(Q) times, measured for some quadrupolar
nuclei in solutions at room temperature. The T1(Q) times vary over very large
ranges and depend strongly on the nature of nuclei (values of quadrupole
moments Q) and the symmetry of their environments. For example, in spite of
the big quadrupole moment of 14N nuclei, their environment in the compound
Me4

14NBr is fully symmetric and the 14N T1 time is greatly increased (up
to 104 ms). In contrast, the NH3 groups in the complex (Co(NH3)6)(ClO4)3
show a very short 14N T1 time (0.3 ms). Similar tendencies are observed for
127I and 35Cl nuclei (compare compounds SnI4 and IF6

+ or HCl and ClO4
−,

respectively).
As in the case of dipole–dipole relaxation, temperature dependences of

T1(Q) times are V-shaped and symmetric in semilogarithmic coordinates.
When τC = 0.62/ωQ, they also go through minima. In the region of fast
molecular motions (high-temperature zones) Equation (4.23) converts to:

1/T1(Q) = 0.3π2(2I + 3)[I2(2I − 1)]−1(e2qzzQ/h)2(1 + η2/3)τc (4.24)
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Table 4.3 Quadrupole nuclear moments (Q) and the room-temperature T1(Q) times
of some quadrupolar nuclei measured in solution

Compound Nucleus (Q) (1028Q/m2) T1(Q) (ms)

HBr 81Br (0.31) 14.2 × 10−3

PBr3
81Br 0.3 × 10−3

SnI4
127I (−0.79) 0.15 × 10−3

IF6
+ 127I 1

CFCl3
35Cl (−0.10) 38.3 × 10−3

HCl 35Cl 0.8
ClO4

− 35Cl 270
MeNC 14N (1 × 10−2) 1220
Me4NBr 14N 104

(Co(NH3)6)(ClO4)3
14N 0.3

closo-2,4-C2B5H7
11B (4.1 × 10−2) 38.6–68.3

nido-B10H14
11B 4.8–17.3

C6D5CD3
2H (2.8 × 10−3) 5 × 103

2-benzamido-4,5-D2-norborneol 2H 50
D2

Ortho-hydrogen 2H 200
Para- hydrogen 3910
AsH3

75As (0.29) 50–100 × 10−3

Since in mobile liquids and solutions the molecular correlation times τc are
between 10−11 and 10−12 s, Equation (4.24) shows that the T1(Q) relaxation
times are primarily dictated by NQCC values.

Finally, it must be emphasized that, in spite of the principal difference
between quadrupolar and dipolar coupling, the T1 behavior in both cases is
very similar. In fact, T1(Q) times are independent of the working frequencies
of NMR spectrometers in high-temperature regions. Minimal T1(Q) times
increase proportionally to the Larmor frequency. Note, however, that in
contrast to nuclei with spins I = 1/2, relaxing by different mechanisms,
the relaxation of quadrupolar nuclei is always dominated by quadrupolar
interactions, particularly in asymmetric nuclear environments.
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This chapter concerns the mechanisms of nuclear relaxation, which are
not associated directly with molecular structures. Nevertheless studies of
relaxation by chemical shift anisotropy and scalar relaxation of the second
kind allow one to obtain important NMR parameters (�σ- and J-constants)
which are usually masked in NMR spectra. In turn, these spectral parameters
depend on electronic structures of investigated compounds. In addition, the
mechanisms considered in this chapter can give remarkable contributions to
relaxation rates studied for structural reasons. It is obvious that knowledge of
the factors controlling these mechanisms helps one to evaluate, for example,
dipolar relaxation contributions, used for structural conclusions.

5.1 Relaxation by Chemical Shift Anisotropy
The chemical shift δ in NMR spectra is a measure of electron screening of
nuclei, placed in an external magnetic field B0. For this reason, the chemical
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shift is often reformulated as a screening constant σ:

σ = −δ (5.1)

Electrons, surrounding nuclei, circulate by action of the applied external
magnetic field B0, creating a new magnetic field BE. The direction of this field
is opposite to the field B0. As a result, a local magnetic field BLoc, is produced:

BLoc = B0 − BE (5.2)

It is obvious that, under these conditions, the NMR signal can be registered
if the irradiating frequency is shifted.

According to the theory of electronic screening, the constant σ is a sum
of three principal terms: the diamagnetic term σlocal(dia), connected with
the circulation of unperturbed spherical (s) electrons, the paramagnetic term
σlocal(para), resulting from perturbed nonspherical electrons and the term σ∗,
caused by the magnetic anisotropy of neighboring groups [1]. Combinations
of these terms lead to large variations of chemical shifts for different nuclei
(Table 5.1).

The σ constants are three-dimensional magnitudes, characterized by σXX,
σYY and σZZ components, shown in Figure 5.1. Usually, these components are
not identical, and thus the screening constants are anisotropic. The chemical
shift anisotropy �σ is defined via the expression:

�σ = {2σZZ − (σXX + σYY)}/3 (5.3)

In mobile liquids or solutions, the high-amplitude molecular motions average
the σXX, σYY and σZZ components, providing measurements of only isotropic
screening constants σ (ISO) (or isotropic chemical shifts δ (ISO)):

σ(ISO) = (1/3)(σXX + σYY + σZZ) (5.4)

Table 5.1 Ranges of chemical shifts
(SCS) for different nuclei [2, 3]

Nucleus SCS (ppm)∗

1H −50–18∗∗
11B −130–95
13C −300–250
19F −250–400
31P −125–500
15N −500–850
195Pt −1370–12000

*Positive values correspond to a high
field displacement
**Including transition and nontransition
metal hydrides
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σZZ

σYY σXX

OX

OY

OZ

Figure 5.1 The σZZ, σXX and σYY components of three-dimensional screening con-
stants σ

In solids, molecular motions are slow or very restricted. Therefore, the σXX,
σYY, σZZ components and also chemical shift anisotropies can be calculated
directly from static NMR patterns [4] dependent on the symmetry of screen-
ing tensors. Figure 5.2 illustrates a solid-state NMR signal, typical of the
axially symmetrical screening tensor where:

σXX = σYY �= σZZ (5.5)

When the tensor of magnetic screening has a lower symmetry (i.e. σXX �=
σYY �= σZZ) lineshapes become more complex.

Chemical shift tensors and �σ values, determined for 14N and 19F nuclei
in the solid state, are shown in Table 5.2 [3]. It is seen that chemical shift
anisotropies of these nuclei are significant, and even comparable with the
scales of chemical shifts (see Table 5.1). This is not a rule, but it provides

σxxσzz σ

Figure 5.2 Lineshape of a solid-state NMR resonance with an axially symmetrical
screening tensor: σZZ �= σXX = σYY. The resonances are typically observed for C=O
groups in the static solid state 13C(1H) NMR spectra
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Table 5.2 Components of screening tensors and the �σ

values (ppm) for some nuclei, measured in the solid state

Compound σZZ σYY σXX �σ

14NH3 237.3 278.0 278.0 −44.3
Me14NC 370 10 10 360
HC14N 348 −215 −215 563
C6

19F6 465.9 310.8 310.8 155.1
Xe19F4 528.5 58.5 58.5 470

an estimate of the role of chemical shift anisotropy in relaxation of heavy
nuclei. For example, the �σ values of carbonyl groups reach 200 ppm and
their influence on 13C relaxation is obvious.

Random molecular motions cause fluctuations of local magnetic fields,
created by chemical shift anisotropies, and then the CSA relaxation rates,
1/T1(CSA), is:

1/T1(CSA) = (1/15)γI
2B0

2(�σ)2[2τc/(1 + ωI
2τc

2)] (5.6)

Simple estimations show that this mechanism is particularly effective for
such nuclei as 13C, 15N, 19F and 31P, having the large CSA values. However,
at the extremely high magnetic fields, used in modern NMR experiments,
this mechanism can become important, even for protons with relatively low
�σ values (∼ 20 ppm).

According to Equation (5.6), under conditions of fast molecular motion
(i. e. ω2τC

2 � 1) the CSA nuclear relaxation is field dependent and T1(CSA)
times decrease with increasing the B0

2. This effect can be used as a good
test for the presence of CSA relaxation. Table 5.3 demonstrates the field-
dependent spin–lattice relaxation rates measured for 13C nuclei in fullerene
molecules C60 in chlorobenzene-d5 [3]. It is obvious that in the absence
of protons, as sources of dipole–dipole interactions, the CSA mechanism
becomes dominant, providing >67% of relaxation at high magnetic fields,
even at high temperatures.

The CSA spin–spin relaxation rate, expressed via:

1/T2(CSA) = (1/90)γI
2B0

2(�σ)2[8τc + 6τc/(1 + ωI
2τc

2)] (5.7)

is also field dependent and proportional to B0
2 under conditions of fast

molecular motion. Combining Equations (5.6) and (5.7) leads to a ratio:
T1(CSA)/T2(CSA) = 7/6. This ratio, obtained experimentally, is an additional
test for domination of the CSA mechanism in nuclear relaxation.
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Table 5.3 Field-dependent spin–lattice relaxation rates of 13C nuclei in a chlo-
robenzene-d5 solution of fullerene C60. R1, R1

CSA and R1
SR are total, CSA and SR

relaxation rates, respectively (s−1)

T(K) R1 × 102 R1
CSA × 102 R1

SR × 103 CSA(%) SR(%)
9.4/4.7 T 9.4/4.7 T 9.4/4.7 T 9.4/4.7 T 9.4/4.7 T

273 2.44/6.22 2.42/6.06 0.16/0.16 99/97 1/3
288 2.00/6.19 1.84/4.60 1.59/1.59 92/74 8/26
303 1.72/5.79 1.52/3.80 1.99/1.99 88/66 12/34
318 1.47/5.36 1.25/3.11 2.25/2.25 85/58 15/42
333 1.23/6.16 0.82/2.05 4.11/4.11 67/33 33/67

5.2 Spin–Rotation Relaxation

The spin-rotation mechanism (SR) makes a remarkable contribution to
nuclear relaxation in relatively small molecules, undergoing fast rotations
in nonviscous media. Note that electrons in the molecules create magnetic
moments, even in the absence of external magnetic fields. Then, fast rotational
molecular reorientations result in the spin–rotation relaxation rate:

1/T1(SR) = Ir
2C2/9h̄2

τc (5.8)

where Ir is the molecular inertia moment, C is the spin–rotation constant,
measured in frequency units, and τc is the molecular motion correlation time.
It must be emphasize that this simple relationship is valid only for spherical
molecules. Equation (5.8) shows that the effectiveness of the SR mechanism
depends on C values. These values are significant for heavy nuclei (31P, 19F
etc). For example, in the case of 19F nuclei, the C constants can reach 2000 Hz.

Inspection of Equation (5.8) reveals a unique feature of the spin–rotation
mechanism: T1(SR) times decrease with increasing the temperature. This effect is
a good test for the presence of SR relaxation.

As we have shown in Chapter 4, proton–phosphorus dipole–dipole inter-
actions do not affect the 31P T1 times measured for the molecules shown in
Figure 4.7. Experiments at magnetic fields of 6.3 and 9.3 T do not reveal the
presence of a contribution of the CSA mechanism because the 31P T1 times
are independent of the external magnetic field. At the same time, on heating,
the 31P T1 values reduce (Table 5.4) and hence the spin–rotation mechanism
dominates phosphorous relaxation [5].

As it has been mentioned, in the absence of intensive dipole–dipole
interactions in the fullerene molecules C60, the CSA mechanism dominates
13C T1 relaxation at a magnetic field of 9.4 T (Table 5.3). However, the situation
changes at lower magnetic field (4.7 T) and higher temperatures. According
to the theory, the SR contribution increases with the temperature and, for
example, at 333 K this mechanism provides 67% of the 13C T1 relaxation rate.
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Table 5.4 Total 31P T1 times, mea-
sured in benzene-d6 solutions of com-
pounds 1–5 (see Figure 4.7)

Compound 31P T1 (s)
295/338 K

1 10.2 ± 0.1/6.8 ± 0.3
2 11.8 ± 0.1/10.5 ± 0.1
3 11.5 ± 0.3/8.6 ± 0.3
4 10.7 ± 0.1/8.3 ± 0.2
5 11.1 ± 0.1/7.7 ± 0.2

5.3 Interference Mechanisms of Nuclear
Relaxation

By definition, relaxation rates are additive magnitudes. When various relax-
ation mechanisms operate simultaneously (for example, the dipole–dipole,
chemical shift anisotropy and spin–rotation pathways), the correspond-
ing contributions should be summarized to give the total relaxation rates,
1/T1(tot):

1/T1(tot) = 1/T1(DDI) + 1/T1(CSA) + 1/T1(SR) (5.9)

All the contributions in Equation (5.9) are independent and can be separated
by the appropriate spectral or chemical procedures (see below). However,
two mechanisms of different nature can undergo interference in the so-
called cross-correlation mechanism. Such interference is often observed for
the dipole–dipole and CSA interactions. For example, the cross-correlation
between the 15N CSA and 15N−1H dipole–dipole interactions leads to
differential transverse relaxation, measured for two components of 15N
doublets [6].

Theoretically, the interference relaxation pathway can operate, even in
a pair of protons. If these protons are separated by internuclear distance
r(H−H) and molecular tumbling is fast, the cross-relaxation term, 1/T1(DDI,
CSA), is expressed as a function of the dipolar relaxation rate, R(DDI) (equal
to 1/T1(DDI):

1/T1(DDI, CSA) = −(4π/5
√

3)(3 cos2 � − 1)(ν0�σ)

× R(DDI)/{(µ0/4π)γH
2h̄/r(H−H)3} (5.10)

where ν0, µ0, γH, h̄ and �σ are the known physical parameters and � is the
angle between the r(H−H) vector and the principal axis of the chemical shift
tensor [7] (see Figure 5.3). It is easy to show that when the principal axis is
perpendicular to the r(H−H) vector and r(H−H) = 2.4 Å, �σ = 26 ppm and
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H H

σZZ

θ

r(H−H)

Figure 5.3 Angle � between the internuclear H−H vector and the principal axis of
the chemical shift tensor, σZZ, determining values of relaxation contributions from
interference of the dipole–dipole and CSA mechanisms

ν0 = 400 MHz, Equation (5.10) converts to the ratio:

1/T1(DDI, CSA) = 0.3 R(DDI) (5.11)

Thus, the DDI/CSA interference contribution can reach 30% of the
dipole–dipole relaxation rate at strong magnetic fields and big �σ values.
Note that the presence of the interference DDI/CSA terms cannot be
established experimentally by standard inversion recovery experiments.
In such cases, one can recommend application of pulse sequences [8]:

180◦ –τ–20◦
(5.12)

5.4 Scalar Relaxation of the Second Kind

Scalar interactions affect the spin–spin relaxation of A nuclei, which are
coupled by X nuclei, when the A−X coupling is time dependent. Phe-
nomenologically, scalar relaxation of the second kind (SRSK) appears as an
additional broadening of NMR signals. Figure 5.4 demonstrates a typical 1H
resonance, observed usually for HNR2 or H2NR amino groups. In accordance

∆ν

JNH

δ NH

Figure 5.4 The shape of a 1H NMR signal, observed for HNR2 or H2NR groups in
the absence (upper part) and presence (lower part) of proton scalar relaxation of the
second kind
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with the well-known rule, the 1H resonance should show a 1:1:1 triplet with
1J(1H−14N) constant of � 60 Hz. However, owing to fast relaxation of 14N
nuclei (as fast flip–flop motions of 14N spins during a detection period at the
proton frequency) this triplet transforms to a broadened singlet.

Usually, the linewidth �νSRSK for a resonance of A nuclei, coupled with X
nuclei, depends on the T2(SRSK) time:

�νSRSK = 1/π T2(SRSK) (5.13)

where the rate of spin–spin relaxation is:

1/T2(SRSK) = (8/3)π2J2(AX) × IX(IX + 1)T1X/{1 + (ωX − ωA)2T1X
2} (5.14)

Thus, the spin–spin coupling constants J(AX) are ‘masked’ by linewidths,
controlled, in turn, by the spin–lattice relaxation times T1(X). It is obvious
that these masked J(AX) constants can be determined if the T1X values are
known, and vice versa.

The SRSK mechanism plays an important role in relaxation of nuclei,
coupled with quadrupolar nuclei, for example, in 1H−11B, 13C−14N and
31P−14N pairs, where 1H, 13C and 31P are target nuclei. The last case is
illustrated by the data in Table 4.1. As it is seen, the 31P T2 times are strongly
shorter than 31P T1. Since in solutions T1 = T2, a T2 < T1 ratio directly shows
the presence of the SRSK mechanism. The contribution of this mechanism
can be obtained by:

1/T2(SRSK) = 1/T1 − 1/T2 (5.15)

According to the data in Table 4.1, scalar interactions completely dominate
the 31P spin–spin relaxation.

The hydride ligands in complexes 1–3 [9] (Figure 5.5) are adjacent to the
rapidly relaxing 93Nb quadrupolar nuclei, which could cause scalar coupling.
In accord, the hydride resonances are strongly broadened (Table 5.5) and the
observed linewidths, �νobs, do not correspond to T1 times. In fact, �νobs >

1/πT1. Moreover, the �νobs values increase with the temperature. Note that
this effect directly follows from Equation (5.14) at 1 � (ωNb − ωH)2T1Nb

2.
The SRSK �νNb−H broadenings, caused by the 93Nb−1H coupling, can be
calculated as �νNb−H = �νobs − �ν, where �ν = 1/πT1. It is obvious that
the H(A) resonances are broadened to a greater extent, owing to the larger
1J(1H−93Nb) spin–spin coupling constants. Then, the 1J(1H−93Nb) values
(Figure 5.5) can be estimated via Equation (5.14) where the T1X time (equal
to T1(93Nb)) takes a value of 2 × 10−5 s measured for Cp2NbH3 at room
temperature.

Finally, it should be emphasized that the broadening effects caused by
the SRSK mechanism can be successfully used for line assignments in
NMR spectra.
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Figure 5.5 Structures and 1H NMR parameters of Nb hydride complexes: the
1J(1H−93Nb) spin–spin coupling constants are determined on the basis of linewidths
and T1 times measured for the hydride resonances (Table 5.5)

Table 5.5 Temperature dependences of line widths �ν (Hz) and relaxation times T1

(s), measured in toluene-d8 at 400 MHz, for the hydride resonances in Nb complexes
1–3 (Figure 5.5)

Compound �νobs(HX)/�νNb−H(HX) �νobs(HA)/�νNb−H(HA) T1(HX)/T1(HA) T(K)

1 12.4 Very broadened 340
4.8/4.4 25.0/24.7 0.903/0.954 294
4.4/3.1 11.0/9.8 0.241/0.269 240
5.2/2.4 7.0/4.5 0.113/0.126 220

2 26.0 340
11.2/10.9 1.368 294

5.2/4.2 0.368 240
4.7/2.9 0.178 220
4.0/1.4 0.125 200

3 32.6/32.3 1.274 298
23.6/23.0 0.174 220
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Nuclear relaxation is a direct way of understanding dynamic processes in
condensed matter at a molecular level, and of deducing the basic connectivity
between primary structure and molecular motions, and hence the mechanical
properties of molecular systems. For these reasons, this method is widely
used in spite of nontrivial separations of relaxation contributions from
translational, rotational and internal motions in liquids or even in the solid
state. In addition, nuclear relaxation is a non-perturbing method for studying
molecular reorientations because the target nuclei usually occur naturally
in the compounds investigated (for example, 1H, 19F, 31P) or they can be
substituted for 2H, 13C or 15N nuclei without perturbation of the dynamics.

The frequency scale of motions available to investigators, as a function
of the magnetic field strength, is very large, from 102 Hz (slow motions) to
1012 Hz (fast motions) [1]. It is obvious that rates of motions depend on the
nature of molecules, their size and the physical properties of the medium.
For example, polymer systems show the widest spectrum of molecular
motions. Local reorientations in such systems occur at frequencies of the
order of 109 Hz via conformational transitions. Internal rotations of attached
groups occur at frequencies 109 –1010 Hz. Restricted librational motions with
amplitudes of 30◦ –60◦ occur at frequencies of 1011 –1012 Hz and, finally,
overall molecular tumbling occurs at frequencies of 105 –107 Hz.
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Molecular motions are not the principal topic of this book. Nevertheless,
we use different theoretical approaches, developed for an adequate descrip-
tion of molecular reorientations, in order to show how character of motions
affects relaxation times measured experimentally. Mathematically the influ-
ence of the molecular motions on times of nuclear relaxation is expressed
via the spectral density function J(ω, τC). If molecular motions are fully
isotropic, as in the case of spherical molecules, the J(ω, τC) function takes the
Bloembergen–Purcell–Pounds’ form (see Equations (4.4), (4.5) and (4.23),
corresponding to the symmetric V-shaped plots of ln(T1) versus 1/T. How-
ever, motions of real molecules are anisotropic and complex, particularly in
the case of polymer systems. In this situation, description of motions requires
modifications of the spectral density functions J(ω, τC) which are illustrated
in this chapter with the help of the simplest anisotropic motional models.

6.1 Spin–Lattice Nuclear Relaxation in
Ellipsoidal Molecules: Temperature
Dependences of T1 Times

Rotational molecular reorientations in solutions of many nonspherical molec-
ules are similar to those of a symmetrical ellipsoid in a continuous medium
(Figure 6.1). Ellipsoidal molecules have two principal rotational directions
with different moments of inertia. For this reason, their motions are charac-
terized by two molecular motion correlation times τ⊥ and τ|| (or the corre-
sponding diffusion coefficients) and two activation energies. A good chemical
example of such molecules is the bipyramidal hydride complex, IrH5(PPri

3)2,
with two trans-located bulky phosphorous ligands. The simple calculation
shows that this molecule has two inertia moments in the ratio 0.41:1 [2].

Woessner has carried out a detailed analysis of the 1H dipole–dipole
spin–lattice relaxation in an idealized case, when two protons are fixed in a
symmetric ellipsoid undergoing a thermally activated anisotropic rotational
diffusion [3, 4]. It has been shown that the spectral density function of Bloem-
bergen, Purcell and Pound (see Equation 4.5) still describes adequately the
relaxation behavior of this system if the isotropic motional correlation times
τC are replaced by the, so-called, effective correlation times τeff, given by the
expression:

τeff = A(θ) τA + B(θ) τB + C(θ) τC (6.1)

Coefficients A, B and C depend on the angle, θ, formed by the vector
connecting the protons and the rotational axis (Figure 6.1):

A(θ) = (1/4)(3 cos2 θ − 1)2

B(θ) = 3 sin2 θ cos2 θ (6.2)

C(θ) = (3/4) sin4 θ
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Figure 6.1 Rotational reorientation of an ellipsoidal molecule in a continuous
medium with the correlation times τ⊥ and τ||. When two protons are fixed in
such an ellipsoid, the orientation of the dipolar H−H vector is characterized by the
angle θ formed by the vector and one of the rotational axis (dashed line)

In turn, the correlation times τA, τB and τC in Equation (6.1) are given by:

τA = τ⊥

(τB)−1 = (5/6)τ⊥−1 + (1/6)τ||−1 (6.3)

(τC)−1 = (1/3)τ⊥−1 + (3/2)τ||−1

Thus, when the structure of an ellipsoidal molecule is known, measurements
of T1 times for different target nuclei, located in this molecule, finally give
the τ⊥ and τ|| values.

Now we consider a pair of protons, fixed in an ellipsoidal molecule,
and demonstrate how the motional anisotropy affects their spin–lattice
relaxation. The anisotropy of motions of ellipsoidal molecules can be quan-
titatively characterized by parameter ρ, expressed by:

ρ = D||/D⊥ (6.4)

where D|| and D⊥ are the rotational diffusion constants, corresponding to
the || and ⊥ axes, respectively. Take, for simplicity, the angle θ equal to
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Figure 6.2 Fast internal rotation (rotational diffusion) of CH3 groups in organic
molecules and (H2) ligands in transition metal dihydrogen complexes, leading to a
four-fold elongation of 1H T1 relaxation times

90◦. This situation occurs, for example, in methyl groups or dihydrogen
ligands in Figure 6.2, the protons of which participate simultaneously in
molecular tumbling and intramolecular rotation. According to Bakhmutov
and Gusev [5], under these conditions, the rate of dipolar relaxation, 1/T1,
can be expressed by:

1/T1(H−H) = (3/40)(µ0/4π)2γH
4h̄2r(H−H)−6τc

{1/(1 + ωH
2τc

2) + 4/(1 + 4ωH
2τc

2) + 3a/(a2 + ωH
2τc

2)

+ 12a/(a2 + 4ωH
2τc

2)} (6.5)

where a = (2ρ + 1)/3 and τC = 1/6 D⊥. It is easy to show that at ρ = 1,
Equation (6.5) converts to the Bloembergen–Purcell–Pounds function, i.e. to
the case of isotropic molecular motions. On the other hand when ρ → ∞ and
internal rotation becomes very fast on the time scale of molecular tumbling,
the function J(ωH, τc) in Equation (6.5) transforms to the Woessners’ form:

J(ωH, τc) = {(3 cos2 θ − 1)2/4}(τc/(1 + ωH
2τc

2) + 4τc/(1 + 4ωH
2τc

2) (6.6)

where at θ = 90◦ the factor (3 cos2 θ − 1)2 is equal to 1. Take r(H−H) = 2 Å
and calculate via Equation (6.5) the 1H T1 time as a function of τC. The results,
obtained for ρ varying from 1 to 2, 5, 10, 50 and ∞ and at the NMR frequency
of 200 MHz, are shown in Figure 6.3 as plots of the ln(T1) versus τC. Since
the correlation time τC depends on the temperature (see Equation 1.13), the
curves in Figure 6.3 reproduce the temperature dependences of relaxation
times at increasing anisotropy of the motion. Inspection of these data allows
one to formulate the following important conclusions.

First, increasing the anisotropy ρ causes an increase of 1H T1 times in
spite of the constant proton–proton distance; the increase is particularly
strong for the left and right wings of the curves corresponding to high- and
low-temperature regions, respectively.
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Figure 6.3 Plots of ln(T1) versus τC (equivalent to T1 temperature dependences)
calculated by Equation (6.5) for two protons, separated by 2 Å and resonating at
200 MHz. The calculations were carried out over a range of ρ values from ∞ to 50,
10, 5, 2 and 1 (in the high-temperature region from top to bottom). (Reproduced from
D. G. Gusev, D. Nietlispach, A. B. Vymenits, V. I. Bakhmutov, H. Berke. Inorganic
Chemistry, 1993; 32: 3270, with permission from Elsevier)

Second, anisotropic reorientations with intermediate ρ parameters (see
ρ = 10 and 50) result in the appearance of the nonsymmetric plots with
respect to τC values, corresponding to T1 min times. Moreover, at ρ = 50
the ln(T1) plot has two T1 minima, showing directly the presence of two
different motions. However if the anisotropy of molecular reorientations is
low (see ρ = 2–5) or very high (ρ = ∞), these features are not observed.
Hence, such reorientations and fully isotropic motions are indistinguishable
phenomenologically.

Third, when the ρ value increases from 1 to 50, T1 min times are shifted
towards lower temperatures.

Fourth, all the calculated T1(τC) curves show identical slopes of their
left and right wings, corresponding to high- and low-temperature regions,
respectively.

Thus treatment of the variable-temperature T1 relaxation curves, collected
experimentally for ellipsoidal molecular systems, under the assumption of
isotropic motions, leads to effectively elongated internuclear distances. It is
obvious that errors in the distance calculations depend on the character
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of the anisotropy of the motion. They become maximal when one of the
motions of ellipsoid molecules is very fast and the dipolar H−H vectors are
perpendicular to the internal motional axis. Actually the latter leads to the
situations when:

T1(aniso) = 4 T1(iso) (6.7)

However, it is remarkable that activation energies Ea, obtained in the
anisotropic approximation, remain meaningful while the correlation time
constants τ0 become fictitious parameters.

6.2 How to Reveal Anisotropic Molecular
Motions in Solution

As has been mentioned in Chapter 2, strongly anisotropic molecular motions
can lead to a nonexponential nuclear relaxation. It is obvious that in such
cases, the data collected, for example, by inversion recovery experiments,
are poorly approximated by the standard monoexponential fitting procedures.
The latter, in turn, directly reveal the presence of anisotropic motions. In
many cases, T1 times can be obtained from the nonexponential NMR decays
as the initial slopes R of the collected inversion recovery curves. According to
Daragan et al. [6], these slopes are determined by calculations of the inversion
recovery curves in the parabolic approximation lnI(t) = I0 − Rt − At2. These
treatments can be carried out with the help of the program RECULVE in
NMR software packages. In practice, however, relaxation curves are often
monoexponential even in the presence of anisotropic motions. In some cases
(as we have shown), anisotropic motions are easily revealed when plots of
ln(T1) versus 1/T deviate from the symmetric V-shaped curves or show
additional T1 minima. In the absence of such features, the anisotropy of
molecular motions can be established by relaxation measurements carried
out for different nuclei in the same molecule. Figure 6.4 summarizes the
results of relaxation experiments on the 1H resonances of the octahedral

Re

OC

ON

H(X)

H(Y)

POPri
3

POPri
3

T1min = 0.126 s (194 K, 200 MHz)
Ea = 3.2 kcal/mol,

τ0 = 1.5 10−13 s

T1min = 0.128 s (188 K, 200 MHz)
Ea = 3.0 kcal/mol,

τ0 = 2.0 10−13 s

Figure 6.4 Results of 1H T1 variable-temperature experiments carried out for the
H(X) and H(Y) ligands in the dihydride Re complex in toluene-d8
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Re dihydride. It must be emphasized that the H(X) and H(Y) resonances
show monoexponential 1H T1 behavior over a large temperature range.
Moreover, their T1 min times are very similar, as well as the Ea values
calculated from the T1 curves. However, in the absence of visible geometrical
reasons, the 1H T1 min times of the H(X) and H(Y) igands are observed at
different temperatures: 194 versus 188 K for the H(X) and H(Y) resonances,
respectively [5]. A similar situation is shown in Figure 6.5 where the location
of the T1 min(CH3) for complex ReH(CO)3(POPri

3)2 is markedly shifted to
a lower temperature with respect to a minimum observed for the hydride
ligands. Thus, in spite of a monoexponential relaxation, the motions of
ReH(CO)3(POPri

3)2 and ReH2(CO)(NO)(POPri
3)2 are anisotropic.

High-temperature T1 experiments on nuclei of different nature can also
reveal anisotropic motions. In high-temperature regions, the plots of ln(T1)
versus 1/T are linear and their slopes correspond to activation energies of
molecular motions. If molecular reorientations are isotropic, then different
target nuclei show identical Ea values. In contrast, variable-temperature T1
experiments on 1H, 31P and 187 Re nuclei in a toluene-d8 solution of complex

1

0

−1

ln
(T

1)

3 4 5 6

1000/T

Figure 6.5 Variable-temperature 1H T1 data collected in a toluene–d8 solution of
complex Re(CO)3H(POPri

3)2: triangles H ligand at 200 MHz; circles H ligand at
300 MHz; squares CH3 groups at 300 MHz (T1 min for the CH3 resonance is not
observed at 200 MHz). (Reproduced from D. G. Gusev, D. Nietlispach, A. B. Vymenits,
V. I. Bakhmutov, H. Berke. Inorganic Chemistry 1993; 32: 3270, with permission from
Elsevier)
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Figure 6.6 The octahedral rhenium hydride complexes, undergoing anisotropic
rotational reorientations in toluene-d8 [7]

ReH(CO)3PPh3 (compound 1 in Figure 6.6) lead to three Ea values varying
from 2.0 to 3.8 kcal/mol [7]. Hydride complex 2 also shows two Ea values
(2.8 ± 0.3 and 3.9 ± 0.3 kcal/mol, toluene-d8) obtained by the T1 experiments
at 1H and 2H frequencies [7]. Thus, molecular motions are again anisotropic
in both cases.

6.3 Nuclear Relaxation in the Presence
of Correlation Time Distributions

In solids and viscous liquids, for some reason (which are not always clear),
the variable-temperature relaxation data are poorly fitted to the Bloem-
bergen–Purcell–Pounds’ theory. In other words, molecular motion is not
described by a single correlation time τC, or the temperature dependence of
the τC is not exponential. One of the basic reasons for this phenomenon is the
appearance of correlated or cooperative motions [1].

Usually, one can assume that within an ensemble of reorienting units, there
are sub-ensembles, each of which is characterized by a single correlation time
τC. However, this time changes from one sub-ensemble to another. In such
a situation, one talks about a correlation time distribution where the τC time
becomes a center of the distribution with a certain width, depending on
the type of motions and the properties of molecular systems. It should be
noted that the correlation time distributions can be considered as convenient
mathematical expressions applied for treatment of experimental data which
deviate from the Bloembergen–Purcell–Pounds’ theory.

There are several symmetric and nonsymmetric correlation time distribu-
tions, successfully applied for interpretation of nuclear relaxation in the solid
state: Cole–Cole, Cole–Davidson, FAN, Fuoss–Kirkwood etc. [1]. Deter-
mination of the type of distribution is a very important and nontrivial
problem related to details of investigated systems and dynamic processes. In
other words, practical applications of the correlation time distributions are
addressed to studies of molecular motions when the elementary molecular
structure is already known. In the context of structural studies it is important
to show how the presence of correlation time distributions perturbs the
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measured T1 times. In fact, theoretically, the existence of the reorienting
ensembles and sub-ensembles can be proposed, even in regular liquids or
solutions becoming viscous at low temperatures.

The symmetric distribution of Fuoss and Kirkwood, is often applied
for studies of nuclear relaxation in the solid state. In the presence of the
Fuoss–Kirkwood distribution, the spin–lattice relaxation rate, 1/T1, in a pair
of protons, is:

1/T1(H−H) = {DCH−Hτcβ/ωHτc}×
∗{(τcωH)β/(1 + (ωHτc)

2β) + 2 (2ωHτc)
β/(1 + (2ωHτc)

2β} (6.8)

where DCH−H is the proton–proton dipolar coupling and β is the width
of the distribution (0 < β � 1). It is seen that at β = 1 Equation (6.8) con-
verts to the Bloembergen–Purcell–Pounds’ expression, i.e. to the isotropic
motional model. Figure 6.7 shows the 1H T1(τC) dependence calculated via
Equation (6.8) for a pair of protons, separated by 2 Å, at the NMR frequency
of 200 MHz and β = 1 (isotropic motions), 0.7 and 0.5. In spite of the constant
proton–proton distance, decreasing the β value results in an increase of the
relaxation times in the 1H T1 min region. The slopes of the linear sections, cor-
responding to fast and slow molecular motions, depend on β. Thus, effective
activation energies of molecular motions Ea(eff) are:

Ea(eff) = β Ea (6.9)

where Ea is a natural activation energy. Comparison of the plots in Figure 6.7
shows that treatment of the Fuoss–Kirkwood T1 times in the framework
of an isotropic motion model (i.e. β = 1) will lead to effective internuclear

ln(T1)

ln(τC)

β = 0.5

β = 1

β = 0.7

Figure 6.7 Logarithmic plots of T1 versus τC (schematic) obtained for a pair of
protons separated by 2 Å at 200 MHz in the presence of Fuoss–Kirkwood correlation
time distribution with variation in the width of the distribution β
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τC(1) τC(2) τC(3)

200 MHz

400 MHz

100 MHz

ln(T1)

ln(τC)

Figure 6.8 Variable-field T1 data in the presence of Fuoss–Kirkwood correlation
time distribution at β = 0.5 (schematic). The locations of the T1 min times at different
NMR frequencies allow one to determine the τC min values (τ C(1), τ (C2) and τ C(3))
corresponding to different temperatures

distances. The distances will be increased in the T1 min regions and shortened
in the high- and low-temperature zones.

By definition, the Bloembergen–Purcell–Pounds and Fuoss–Kirkwood
models of nuclear relaxation correspond to the symmetric plots of ln(T1)
versus ln(τC) or 1/T. For this reason, a priori these models are indistin-
guishable. Nevertheless, the Fuoss–Kirkwood distribution can be revealed
experimentally by variable-temperature and variable-field T1 measurements.
Figure 6.8 illustrates these experiments schematically as plots of the T1 ver-
sus τC in logarithmic coordinates. In accordance with Equation (6.8), the
plots go through minima, observed for different magnetic fields at different
temperatures. Thus, these data lead to a set of the τC(T1 min) values, which
give, in turn, a natural activation energy Ea. An effective activation energy
Eeff can be obtained as the slopes of the linear sections in the high- and low-
temperature regions. It is obvious that at Ea �= Eeff the relaxation data can be
treated with the help of the Fuoss–Kirkwood model with the β calculated
via Equation (6.9).

In the presence of the Cole–Davidson correlation time distribution [1], the
1H T1 time for a pair of protons is:

1/T1(H−H) = DCH−Hτc × {sin(βarctan τcωH)/ωHτc(1 + (ωHτc)
2)β/2)

+ 4 sin((βarctan 2τcωH)/2ωHτc(1 + (2ωHτc)
2)β/2} (6.10)

By definition, the Cole–Davidson plots of ln(T1) versus ln(τc) (or 1/T)
are asymmetric relative to T1 min locations (see Figure 6.9). It is obvious
that such a feature, observed experimentally, is a good basis for applica-
tion of this model. For example, the variable-temperature 1H T1 times in
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Figure 6.9 Variable-temperature T1 times in the presence of the asymmetric
Cole–Davidson correlation time distribution
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Figure 6.10 Variable-temperature proton T1 relaxation times, measured in a
toluene-d8 solution of complex RuH2(H2)(PPh3)2: circles hydride ligands; triangles
para and meta protons of PPh3; squares ortho protons of PPh3. (Reproduced from
D. G. Gusev, A. B. Vymenits, V. I. Bakhmutov. Inorganica Chimica Acta 1991; 179: 195,
with permission from Elsevier)

Figure 6.10, measured for all the protons in a toluene-d8 solution of complex
RuH2(H2)(PPh3)2 [8], do not correspond to Bloembergen–Purcell–Pounds’
relaxation, the slopes of the curves in the high- and low-temperature zones
are not identical and thus the Cole–Davidson correlation time distribution
could be a good approximation for treatment of these data.
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Finally, it should be emphasized that deviations of nuclear relaxation
from of the isotropic motional model are well documented in solids, highly
viscous liquids and glassy systems [1]. In contrast, a model of motion in
regular liquids or solutions is still not clearly established. For this reason, we
use the concept of the correlation time distribution as a mathematical tool for
estimation of errors in the calculated internuclear distances.
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Chapters 7–12 introduce practical applications of nuclear relaxation in solu-
tion, and focus on methodological aspects in studies of: weak intermolecular
interactions (Chapter 7); complexations and associations (Chapter 11); chem-
ical exchange in simple (Chapter 7) and complex (Chapter 11) molecular
systems, internuclear distances, nuclear quadrupole coupling constants and
chemical shift anisotropies (Chapters 8, 9 and 11); and paramagnetic molec-
ular systems (Chapter 12).

The main chemical objects used to illustrate structural studies and their
solutions on the basis of nuclear relaxation are transition metal hydride
complexes. The choice of these complexes, as model systems, is subjective.
However, it is quire reasonable from the chemical point of view for two rea-
sons. First, the hydride systems show a large variety of bonding modes from
normal (covalent) metal–hydrogen bonds in classical hydrides to dihydro-
gen complexes (or nonclassical hydrides) with η2-bonded H2 (Figure 7.1) [1].
Thus, determinations of H−H distances in such systems are very important
for their structural formulation. Secondly, dihydrogen (η2-H2) ligands in
nonclassical transition metal hydrides are very mobile and undergo various
ultra-fast internal reorientations, even in the solid state. In other words, their
hydride atoms are spatially unfixed and therefore they are excellent models
to study the principles of nuclear relaxation in mobile groups (Chapter 10).

Chapter 7 considers applications of T1 times of protons and deuterons for
qualitative testing in solutions. Note that similar approaches can be used in
studies of other nuclei.

Practical NMR Relaxation for Chemists Vladimir I. Bakhmutov
 2004 John Wiley & Sons, Ltd ISBNs: 0-470-09445-1 (HB); 0-470-09446-X (PB)
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Figure 7.1 Classical (left) and non-classical (right) transition metal hydride systems
with r(H–H) distances of >1.6 and <1.3 Å, respectively [1]. H–H bonding between
hydrogen atoms in the non-classic systems leads to the formation of (η2-H2) ligands,
capable of ultra-fast long-amplitude internal motions

7.1 Revealing Weak Intermolecular Interactions
by T1 Time Measurements in Solution

Interactions according to the equation:

A + B −−−⇀↽−−− A...B (7.1)

lead to formation of molecular aggregates, the energies of which depend
on the nature of the interactions and on the solvent. As a rule, noncovalent
intermolecular interactions such as electrostatic attraction, π–π interactions,
specific solvatation and hydrogen bonding, are quite weak. For this rea-
son, the formation of adducts (Equation 7.1) is fast on the NMR time scale
and therefore the observed NMR signals and their parameters are aver-
aged between free and bound states. For example, if the A molecules are
detected, then:

δA(obs) = P(A)δ(A) + P(A...B)δ(A...B)

1/T1A(obs) = P(A)1/T1(A) + P(A...B)1/T1(A...B) (7.2)

P(A...B) = 1 − P(A)

where P(A) and P(A...B) are mole fractions of the A and A...B states, respec-
tively [2].

Owing to the larger sizes and bigger moments of inertia of aggregates,
their molecular motions become slower and correlation times τC increase.
Since under conditions of fast molecular tumbling, relaxation rates 1/T1 are
proportional to τC (with the exception of the spin–rotation mechanism, see
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Equation 5.8), the formation of molecular aggregations will be accompanied
by decreasing T1 times measured for nuclei in the A (or B) states. It is easy
to formulate a best condition for the T1 diagnostics of weak interactions: a
relaxation measurement is more sensitive to molecular aggregations when
it is carried out on molecules of smaller size. This situation occurs, for
example, in solutions, containing acidic and basic components (CF3)2CHOH)
and (Bu4N)2[B12H12], respectively, which can interact to give BHδ− . . .δ+H
dihydrogen bonds [3]. The geometry of one of the Hδ− · · ·δ+H complexes,
optimized by the DFT method (in the gas phase) is shown in Figure 7.2. In
solution, because of dihydrogen bonding with the bulky (Bu4N)2[B12H12], an
effective molecular inertia moment of the alcohol (CF3)2CHOH will increase.
This simple idea agrees well with the relaxation data in Table 7.1: the T1
times, measured for 1H and 19F nuclei of the alcohol, reduce markedly upon
addition of (Bu4N)2[B12H12]. In contrast, the effect, observed for 11B nuclei
in the bulky (Bu4N)2[B12H12], molecules is smaller. In the presence of the
alcohol, the 11B T1 time changes insignificantly from 0.0215 to 0.0179 s. Finally,
it must be emphasized that the T1 measurements have been made in dilute
solutions to avoid the viscosity effects at the addition of (Bu4N)2[B12H12] to
a solution of (CF3)2CHOH or vice versa.

The same idea can be used to reveal any noncovalent interactions. For
example, the behavior of monoaromatic molecules (benzene and phenol
etc.) in aqueous solutions, important for environmental chemistry, has been

H2

H3

H4

H1

B1

Figure 7.2 Geometry, optimized by the DFT method (gas phase) for the H. . .H
bonded complex formed between the [B12H12]2− anion and methanol
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Table 7.1 Room-temperature T1 relaxation times (s) in CD2Cl2

solutions of individual compounds (Bu4N)2[B12H12] and (CF3)2

CHOH and their mixture at a (CF3)2CHOH/(Bu4N)2[B12H12]
ratio of 1:2

[B12H12]2− (CF3)2CHOH [B12H12]2− + (CF3)2CHOH

11B: 0.0215 19F: 6.3 11B: 0.0179 19F: 3.1
1HO: 5.4 1HO: 1.9
1HC: 7.5 1HC: 1.9

investigated by deuterium T1 relaxation experiments in the presence of dis-
solved humic acids [4]. Since the deuterium quadrupole coupling constant
of benzene-d6 is well known (196.5 ± 1.3 kHz), the molecular motion corre-
lation times τC can be calculated through 2H T1 times (see Equation 4.24). On
the other hand, the τC values can be obtained via the equation:

τC = 4πfa3η/3 kT (7.3)

if the viscosity η is measured experimentally. The microviscosity factor f in
Equation (7.3), equal to 1/6, accounts for the fact that diffusing molecules do
not experience a continuous medium. Table 7.2 lists the viscosity, measured
in benzene-d6/water solutions, the τC values obtained via Equation (7.3) and
the 2H T1 times expected on the basis of these parameters. Figure 7.3 shows
2H T1 times measured experimentally at different pH values.

As can be seen, in the case of the benzene dissolved in pure water, the
calculated and experimental 2H T1 times are very similar, and thus, in
pure water, solvent viscosity is the primary factor, affecting the benzene
molecular motions. The situation changes in the presence of humic acids. As
seen, the measured 2H T1 values are much smaller than those obtained in
pure water. Thus, benzene molecules are interacting with the humic acids.
Water solutions of phenol show the strongly reduced 2H T1 times (0.1–0.25 s)

Table 7.2 T1 relaxation times and molecular motion correlation times τC calculated
for benzene molecules via Equation (7.3) from the viscosity data obtained in pure
water and in the presence of humic acids (humic or fulvic acid concentration = 1 mg/
ml; T = 295 K; the molecular radius of benzene is taken as 2.49 10−10 m)

Solvent Viscosity (cP) τC (s) T1 (s)

Pure water 1.018 2.707 × 10−12 0.646
Soil humic acid 1.010 2.685 × 10−12 0.652
Peat humic acid 0.993 2.639 × 10−12 0.663
Suwannee River humic acid 1.037 2.757 × 10−12 0.635
Suwannee River fulvic acid 0.996 2.648 × 10−12 0.661
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Figure 7.3 2H T1 times, measured as a function of PH, for benzene-d6 molecules
in pure water and in the presence of soil humic acid, Suwannee River (SR) humic
acid and peat humic acid. (Reproduced with permission from M. A. Nanny, J. P.
Maza. Environmental Science and Technology 2001; 35: 379.  2001 American Chemical
Society)

compared with 0.646 s (see Table 7.2) calculated for benzene. It is obvious
that slower motions of the phenol are explained by the hydrogen bond
formation between phenol and water molecules.

Because of the small moments of inertia of regular organic molecules
and insignificant activation energies of their molecular reorientations in
dilute (nonviscous) solutions, they do not show T1 minima in variable-
temperature experiments. However if one of the interacting components
is bulky, then, because to the interaction, small molecules can also show
T1 min times. In this context, it is interesting to consider 1H relaxation of
alcohol (CF3)2CHOH, dissolved in toluene-d8 in the presence of Nb tri-
hydride Cp2NbH2

BHA. The latter could form dihydrogen-bonded species
Cp2NbH2

BHA...HOCH(CF3)2 and Cp2NbHAHB...HOCH(CF3)2 according to
quantum chemical (DFT) calculations [5]. The complex Cp2NbH2

BHA is
quite bulky and, on cooling, 1H T1 relaxation times of the Cp, HB and
HA resonances go through minima (Table 7.3). Table 7.4 lists the relax-
ation data, collected in the presence of a two-fold excess of (CF3)2CH−OH.
Again, the 1H T1 times of Cp2NbH2

BHA are minimal at low tempera-
tures. However in addition, the CH resonance of the alcohol (CF3)2CH−OH
also shows a minimal T1 time (1H T1 min = 0.136 s) observed at 210 K.
This is direct experimental evidence for the H...H aggregation occurring
in solution.
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Table 7.3 Variable-temperature 1H T1 relaxation data (s), col-
lected for Cp2NbH2

BHA in pure toluene-d8 at 400 MHz

T (K) Cp HA HB

180 1.024 0.131 0.148
190 1.150 0.109 0.133
200 1.4 0.116 0.146
210 1.98 0.167 0.221
220 2.8 0.253 0.344
230 3.8 0.367 0.500

Table 7.4 1H T1 times (s) measured at 400 MHz
in a toluene-d8 solution of Cp2NbH2

BHA in the
presence of (CF3)2CH−OH (1:1 ratio)

T (K) Cp CH HA HB

190 0.801 0.192 0.121 0.120
200 0.788 0.156 0.106 0.106
210 1.07 0.136 0.120 0.128
220 1.4 0.140 0.127 0.160
230 1.5 0.154 0.150 0.232
240 0.189 0.239 0.360

The same methodology can be applied for studies of H2 binding to the
iridium center:

IrHX2(PR3)2 + H2 ⇐⇒ trans-IrH(H2)X2(PR3)2 (7.4)

X = Cl, Br; R = Pri, Cy

This reaction is fast and reversible on the 1H NMR time scale [6, 7]. However,
the principal feature of this system is the fact that the (H2) ligand in the dihy-
drogen complex is ‘spectrally unobservable’, even at lowest temperatures,
when the equilibrium is completely shifted to the right-hand side. In a pure
toluene solution, the 1H resonance of free H2 appears as a narrow singlet
(4.54 ppm) relaxing by a complicated mechanism. The 1H T1 time of free
H2 molecules is relatively long and depends slightly on the temperature, as
shown in Figure 7.4. However, in the presence of the iridium hydride, the
T1(H2) time is greatly reduced, and the variable-temperature 1H T1 exper-
iments reveal a T1 minimum for this small molecule. This effect is good
evidence for (H2) binding to the Ir complexes. Moreover the 1H T1 times,
averaged between the free and bound dihydrogen molecules:

1/T1(H2)
OBS = P(H2)/T1(H2) + P(η2-H2)/T1(η

2-H2) (7.5)
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Figure 7.4 Variable-temperature 1H T1 data (200 MHz) for the signal of H2 in
toluene-d8 solution in the absence (1) and in the presence of IrHCl2(PCy3)2 (2); line 3
characterizes the T1 times of the ‘unobserved’ (H2) ligand in IrH(H2)Cl2(PCy3)2

allow one to calculate a 1H T1 min time (3.4 ms at 200 MHz) for the ‘spectrally
unobservable’ (2η-H2) ligand (see curve 3 in Figure 7.4).

7.2 T1 Studies of Exchange in Simple Molecular
Systems

The term ‘simple molecular systems’ means that such systems give the rel-
atively simple NMR spectra, where signals are well resolved and provide
direct measurements of relaxation times. Approaches to studies of exchange
in complex molecular systems are considered in Chapter 11. As is known,
kinetics and energetic parameters of chemical exchanges, occurring on the
NMR time scale, can be obtained by a complete analysis of lineshapes [2]
undergoing a typical temperature evolution, illustrated in Figure 3.6. Appli-
cations of the approximate formulas, based on an analysis of linewidths,
are also possible [8]. However if exchanges are slow and resonance lines
remain narrow, showing practically natural linewidths, these approaches
are not effective. In this situation, exchange can be characterized by the
relaxation technique. Actually, as we have shown in Chapter 3, the presence
of slow exchange is easy revealed by saturation transfer experiments. These
experiments, in combination with the T1 time measurements give kinetic
parameters of revealed exchanges.

Hydride ligands of ruthenium complexes 1–4 in Figure 7.5 show two
narrow 1H resonances in a large temperature region. However, on H(X)
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Figure 7.5 The rhenium dihydride complexes with magnetically non-equivalent
hydride ligands undergoing slow H(X)/H(Y) positional exchanges in the vari-
able-temperature 1H NMR spectra (Table 7.5)

irradiation, integral intensities of the H(Y) lines decrease markedly. The
same effects are observed for H(X) resonances at H(Y) irradiations [9]. Thus,
a slow hydride/hydride exchange occurs in these systems and its rate
constant k can be determined via the equation:

k = (1/T1(Y)){(I0/IST) − 1} (7.6)

where IST and I0 are the H(Y) integral intensities in the presence and absence
of H(X) irradiations, respectively. Note that the T1(Y) time in Equation (7.6)
is measured in the presence of the saturating radiofrequency field. In the
case of complexes 1–4, T1 times of the H(Y) and H(X) ligands are practically
identical, but they differ widely within this series of compounds: the smallest
value is observed for complex 1 (0.26 s at 16◦C) and the largest value is found
for complex 2 (3.3 s at 16◦C). Finally, the variable-temperature saturation
transfer and T1 experiments give the exchange rates and the activation
parameters in Table 7.5.

The pulse sequence:

RD–180◦
SEL –t–90◦ –AT (7.7)

Table 7.5 Kinetic parameters of H(X) / H(Y) exchange in complexes 1–4 (Figure 7.5)
obtained by saturation transfer experiments on the hydride resonances
(τ(H(X)) = τ(H(Y)) = 1/k)

Complex Solvent τ (s) /T(C) �H �= (kcal/mol) � S�= (e. u.)

1 Toluene-d8 1.2/60 18.4 −3.7
1 Toluene-d8/DMSO-d6 (1:1) 2.4/60 18.7 −3.9
2 Toluene-d8 0.95/60 20.5 2.3
3 Toluene-d8 0.57/60 15.2 −12.4
4 Toluene-d8 0.055/60 14.6 −9.1

0.15/45
4 Toluene-d8/DMSO-d6 (1:1) 0.2/45 13.6 −13.3
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applied for measurements of the selective T1 times, can also lead to deter-
minations of lifetimes for the slowly exchanging A and X resonances. Note
that the first 180◦ pulse in sequence (7.7) selectively excites, for example, A
nuclei and the delay time t varies. If the T1(A) and T1(X) relaxation times are
identical, then evolution of integral intensities I(t) as a function of the t time
in the equation:

[{I0A − IA(t)} − {I0X − IX(t)}]/[{I0A − IA(t)} − {I0X − IX(t)}] = exp(−2t/τA)

(7.8)

provides calculations of the τA lifetimes [8]. However, this method is effective
when the determined lifetimes are shorter or comparable to the T1(A) and
T1(X) times. In other words, the A and X resonances should have relatively
long relaxation times.

The radiofrequency field B1, operating in a spin-locking experiment, is
weaker by several orders of magnitude than the external magnetic field B0.
In this case, frequencies of molecular motions, governing the T1ρ relaxation
lie in a diapason of tens of kHz. If chemical exchanges occur with frequencies
of the same order, they can also affect T1ρ times, but not T1 times. Thus, in the
presence of exchange, the T1ρ and T1 times are not equal. Note that exchanges
with frequencies of tens of kHz completely average the A and X resonances.
For this reason, ratios T1ρ < T1, obtained for averaged resonances, are a good
test for the presence of fast chemical exchanges. By definition, exchange
contributions can be expressed as:

T1(EXCH)−1 = (T1ρ)
−1 − (T1)

−1 (7.9)

Then lifetimes τ(τ = τA = τX) can be obtained by experiments at various
powers of the spin-locking field (ω1 = γB1) via the equation:

T1(EXCH) = {(1/2)π2(νA − νX)2τ}−1 + τω1
2{2π2(νA − νX)2}−1 (7.10)

Additionally, these measurements, represented as plots of the T1(EXCH) ver-
sus ω1

2, give the τ values and simultaneously the chemical shift differences,
(νA –νX).

7.3 Structural 1H T1 Criterion

The rates of dipole–dipole nuclear relaxation are inversely proportional to
the sixth power of the internuclear distances. It is obvious that, for similar
molecular mobility within a series of chemical compounds, shorter internu-
clear distances will cause shorter relaxation times. Practical application of this
principle is particularly effective for structural formulation of systems with
very short H . . . H distances [10]. This situation occurs in dihydrogen com-
plexes where r(H−H) < 1 Å (see Figure 7.1). Table 7.6 lists the 1H T1 times,
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Table 7.6 1H T1 times measured by inversion recovery exper-
iments at 250 MHz for the hydride resonances in solutions of
classical and nonclassical transition metal hydride complexes

Hydride T1 (ms) Conditions

H2 1600 Toluene-d8, 203 K
IrH5(PCy3)2 820 CD2Cl2, 193 K
H2Fe(CO)4 3000 Toluene-d8, 203 K
ReH5(PPh3)3 540 Toluene-d8, 203 K
OsH4(PTolyl)3)3 820 Toluene-d8, 203 K
ReH8(PPh3)3

− 245 (T1 min) Ethanol-d6, 200 K
WH5(PMePh2)4

+ 179 (T1 min) CD2Cl2, 240 K
WH6(PMe2Ph)3 181 (T1 min) Toluene-d8, 235 K
W(H2)(CO)3(PPri

3)2 5 (T1 min) Toluene-d8

Ru(H2)H2(PPh3)3 38 Toluene-d8, 203 K
RuH(H2)(CO)(triphos) 6.2/51 CD2Cl2, 190 K
trans-IrH(H2)Cl2(PCy3)2 4.2 (T1 min) Toluene-d8, 235 K
Os(H2)H3(PPh3)3

+ 35 (T1 min) CD2Cl2, 220 K
[IrH(H2)(bq)(PPh3)2]+ 8 (T1 min) CD2Cl2, 200 K

HH

HH

H

H

H–H

I I

Figure 7.6 Proton–proton dipole–dipole interactions (see corresponding arrows) in
the trans dihydrogen/hydride iridium complex and the classical iridium polyhydride.
The scheme considers only shortest hydride/hydride contacts

measured in solutions of transition metal hydride complexes at 250 MHz.
Similar temperatures minimize the effects of the molecular motion correla-
tion times τC. The (H2) ligand in the dihydrogen complex IrH(H2)Cl2(PCy3)2
(Figure 7.6) is located trans to the closest hydride atom while each hydride
ligand in the classical complex IrH5(PCy3)2 is adjacent to two hydride atoms.
Nevertheless, the (H2) resonance in the dihydrogen complex shows a very
short T1 time of 4.2 ms compared with 820 ms observed in IrH5(PCy3)2. The
classical dihydride H2Fe(CO)4 also exhibits an extremely long relaxation



Structural 1H T1 Criterion 91

Table 7.7 1H T1 min values calculated at
250 MHz for: (a) slow- and fast-spinning
dihydrogen ligands (SS and FS, respectively)
at H−H distances 0.75–1.35 Å; (b) two
terminal hydride ligands separated by 1.65 Å

r(H−H) Å T1 min (ms)

SS FS

0.75 1.1 4.4
1.0 6.5 26
1.1 11.5 45.8
1.2 19.3 77.2
1.3 31.2 125
1.35 39 157
1.65 130

time. The T1(H2) time in dihydrogen complex W(H2)(CO)3(PPri
3)2 is again

short. Thus, comparison of these data leads to an empirical formulation of
the T1 criterion at 250 MHz: T1 > 150 ms for classical hydrides and T1 <

80 ms for dihydrogen complexes.
To verify the reliability of such a formulation, consider a pair of 1H

nuclei in the so-called elongated dihydrogen complexes where H−H dis-
tances can reach 1.35 Å [1]. Calculations of 1H T1 min values allow one to
avoid the influence of τC on T1. Under these conditions Equation (4.9)
coverts to:

T1 min(H−H) = {(r(H−H)/5.815}6 ν (7.11)

where T1 min, r(H−H) and ν are measured in seconds, Å and MHz, respec-
tively [11]. Now calculate the 1H T1 min time at 250 MHz as a function of
the r(H−H) for immobile and rapidly spinning (see Figure 7.1) dihydrogen
ligands. Remind that fast (H2) rotation causes a four-fold 1H T1 increase
(Equation 6.7). Table 7.7 shows the data obtained where a classical dihy-
dride structure with a H−H separation of 1.65 Å is taken for comparison.
It is obvious that the elongated and rapidly spinning dihydrogen ligands
and the classical hydride atoms are not distinguishable. On the other hand,
even rapidly spinning dihydrogen ligands with short H−H distances (� 1 Å)
can be reliably identified by 1H T1 min measurements in solution. It is easy
to show that the T1 min criterion is still valid when the dihydrogen lig-
ands are involved in a fast chemical exchange with terminal hydride atoms
(Figure 7.7).



92 1H T1 Relaxation Diagnostics in Solution

H – H* H–H

H

H

H

MM

1 Å

1. 65 Å

1. 65 Å

1. 65 Å

M

H*

H

T1min
OBS = 27.8 ms

T1min
OBS = 97 ms

Figure 7.7 1H T1 min times calculated at 250 MHz for: a resonance of a
hydride/dihydrogen complex with a fast-spinning (H2) ligand and fast
hydride/dihydrogen exchange; a resonance of a classical trihydride system

7.4 Partially Relaxed NMR Spectra

Partially relaxed NMR spectra, recorded by standard inversion recovery
experiments with time delays τ < T1, are also useful for structural diagnostics
in solution. For example, the room-temperature reaction:

ReH2(CO)(NO)(PR3)2 + (CH3)2C=O + CF3COOH−70◦C⇒
[ReH(CO)(NO)(PR3)2{(CH3)2CH − OH}]+[CF3COO]−25◦C⇒

[ReH(CO)(NO)(CF3COO)(PR3)2] + (CH3)2CHOH (7.12)

yields the Re monohydride and the alcohol, as products of an ionic hydro-
genation. These products can be easy identified by the traditional 1H NMR
spectra. However, a low-temperature reaction (7.12) leads to an intermediate
compound where the alcohol molecule can bind to the metal center [12].
Figure 7.8 shows schematically the partially relaxed 1H NMR spectrum
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(CH3)2CHOH(CH3)2CHOH–Re
P(CH3)3

Re-H

4 0 ppm

Figure 7.8 Partially relaxed 1H NMR spectrum (schematic), recorded at −70◦C in a
toluene solution after the low-temperature hydrogenation reaction (Equation 7.12).
The spectrum is obtained by the inversion recovery experiment at τ < 0.5 s.
The signals with positive and negative phases belong to the alcohol complex
[ReH(CO)(NO)(P((CH3)3)2{(CH3)2CHOH}]+ [CF3COO]− and free (CH3)2CHOH

recorded at the low temperature. As can be seen, the resonances of the
organometallic and alcohol fragments are practically relaxed while a free
alcohol molecule (the lines with negative phases) is far from full relaxation.
In other words, motions of the organometallic and coordinated alcohol moi-
eties are correlated, and thus the partially relaxed spectra strongly support
the structure of the low-temperature intermediate.

Owing to small chemical shift differences, the signals observed in NMR
spectra often overlap to give broadened lines. Partially relaxed spectra can
help in studies of such lines when T1 times of the overlapped resonances are
different. For example, after shaking a toluene-d8 solution of RuH4(PPh3)3
under a D2 atmosphere, the 1H NMR spectra reveal a D2/H2 exchange:

RuH4(PPh3)3 + D2 ⇐⇒ RuDH3(PPh3)3 + HD (7.13)

Ru DH3(PPh3)3 + HD ⇐⇒ RuD2H2(PPh3)3 + H2

In fact, the initial integral intensity of the hydride resonance in RuH4(PPh3)3
(−7.2 ppm) decreases and typical signals of H2 and HD molecules appear
at ∼ 4.5 ppm. The residual hydride line is strongly broadened (30 Hz) and
thus the resonances of isotopomers are not resolved. In contrast, the partially
relaxed 1H NMR spectra (Figure 7.9) [13] recorded by inversion recovery
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Figure 7.9 1H NMR signals of hydride ligands of the incompletely deuterated com-
plex RuH4(PPh3)3 collected by the inversion recovery method at 280 K. (Reproduced
from D. G. Gusev, A. B. Vymenits, V. I. Bakhmutov. Inorganic Chimica Acta 1991; 179:
195, with permission from Elsevier)

experiments with variations in the τ time, clearly show that the broadened
line consists of two resonances with chemical shifts of −7.21 and −7.11 ppm.
The former resonance, showing a smaller relaxation rate, can be assigned to
RuHD3(PPh3)3. The second line corresponds to RuH2D2(PPh3)3. It must be
emphasized that this methodology is quite suitable for any nuclei.
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If relaxation in a pair of nuclei is monoexponential and completely governed
by hetero- or homonuclear dipolar coupling in this pair, then measurements
of relaxation rates is a direct way to determine interatomic distances. How-
ever, in most cases, nuclei relax by a combination of different mechanisms
or different dipolar interactions. Such a situation is typical of molecular sys-
tems where, for example, X−H or H−H distances are determined by NMR
experiments on target nuclei (1H, 13C, 19F or 31P), which are surrounded
by a great number of protons. In such cases, a necessary dipolar contribu-
tion must be correctly evaluated from a measured (total) relaxation rate.
In this chapter, we consider the methodology of approaches to separations
of dipolar contributions based on the direct 1H T1, 1H T1sel and 1H T1bis

measurements or their combinations and also on so-called indirect relaxation
experiments. Finally, we analyze errors in determinations of internuclear
distances.
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8.1 X−H Distances: Metal–Hydride
Bond Lengths

As we have shown, the strength of heteronuclear dipolar coupling depends
on the nature of interacting nuclei. Since protons have the largest γ value and
practically 100% natural abundance (Table 1.1), dipole–dipole interactions
involving their participation are most significant. At a constant internu-
clear distance in an H−X pair, the heteronuclear dipolar coupling reduces
proportionally to coefficient k, calculated via the equation:

k = 0.44 (νX/νH)2IX(IX + 1) (8.1)

where νH and νX are the NMR frequencies of H and X nuclei, respectively,
and IX is the spin of X nuclei. Table 8.1 lists the k values, obtained by
Equation (8.1) together with the natural abundance of X nuclei. It is easy
to see that determinations of internuclear distances or bond lengths will
be problematic for 1H−14N or 1H−103Rh pairs because of the weak dipolar
coupling, particularly when a large number of protons surrounds the target
nuclei. Proton–boron dipole–dipole interactions are considerably stronger
and, for example, the 1H and 11B T1 measurements in NaBH4 lead to a
B−H distance of 1.26 Å, in good agreement with the neutron diffraction
data [1]. The natural abundance of 13C and 15N isotopes is too low and
therefore 1H T1 experiments are not appropriate for determinations of H−C
and H−N bond lengths. On the other hand, these distances are determinable
by T1 experiments on 13C or 15N nuclei. For example, 15N T1 relaxation
studies of labeled 13C−15N fragments finally lead to C−N distances when
the 13C−15N dipolar contributions are precisely evaluated from relaxation

Table 8.1 Strength of dipolar coupling in pairs of H/X nuclei as a function of the
nature of X nuclei in the external magnetic field of 7.05 T

Isotope Spin I ν0 (MHz) k Natural abundance (%)

1H 1/2 300 1 100
11B 3/2 96.2 0.14 80.1
31P 1/2 121.4 0.054 100
14N 1 21.7 0.0046 99.6
103Rh 1/2 9.6 0.0003 100
55Mn 5/2 74.3 0.24 100
59Co 7/2 71.2 0.39 100
93Nb 9/2 73.4 0.65 100
187Re 5/2 68.2 0.13 62.6
181Ta 7/2 36.0 0.1 99.9
51V 7/2 78.9 0.48 99.7
195Pt 1/2 64.5 0.015 33.8
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rates, measured experimentally. The latter dictates the real accuracy of
C−N determinations. In the solid state these dipolar contributions can be
extracted by removing the effects of chemical shift anisotropy in the so-called
DRAMA and REDOR experiments [2]. Then, the internuclear distances can
be found by simulations of lineshapes in NMR spectra obtained as parts of
two-dimensional experiments.

In spite of weak dipole–dipole interactions in the 1H−195Pt pair, this
case is very convenient for T1 relaxation studies in solution. In fact, a
1H NMR spectrum of an H−Pt molecular fragment exhibits the central
resonance and two satellite lines, corresponding to 1H nuclei, attached to
the nonmagnetic and magnetic Pt isotopes, respectively (Figure 8.1). It is
obvious that, if relaxation times of satellite lines are shorter, then 1H−195Pt
dipolar contributions are easy calculated as 1/T1(sat) − 1/T1(centr) [3]. A
similar situation can be expected for mercury hydride complexes H199HgR.
In contrast, the central and satellite lines of the HA ligand, binding to the W
center in binuclear complex Cp2TaHX

2HA−W(CO)5, relax identically [4]. In
fact, the NMR frequency of 183W nuclei is too low (12.5 MHz) to provide a
significant channel of nuclear relaxation.

It follows from Table 8.1 that the large spin numbers of 93Nb, 51V, 55Mn,
187Re, 59Co and 181Ta nuclei compensate their lower Larmor frequencies.
For this reason, these H−M bond lengths can be successfully determined
by 1H T1 relaxation measurements in solution. As we show below, the best
way is location of minimal 1H T1 times by variable-temperature experiments.
When 1H relaxation is completely governed by proton–metal dipole–dipole
interactions, metal–hydride distances r(M−H) are easy determined via

J(1H-195Pt) 

1/T1(1H)

1/T1(1H) + 1/T1(1H…195Pt)

Figure 8.1 1H NMR spectrum and relaxation rates, 1/T1, of a Pt-hydride molecule
(schematically)
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Equation (4.4), rewritten in the form [5]:

r(M−H) = CM−H(200 T1 min/νH)1/6 (8.2)

where r(M−H), T1 min, and νH are measured in Å, seconds and MHz, respec-
tively. In turn, coefficients CM−H in Equation (8.2) can be calculated by
using the magnetic properties in Tables 1.1 and 8.1. For example, Ta, Co,
Nb, Re and Mn nuclei give CM−H equal to 2.001, 2.491, 2.722, 2.228 and
2.287, respectively. It is easy to show that C = 2.405 for a pair of protons.
Thus, the metal–hydride and proton–proton dipole–dipole interactions are
comparable [5, 6].

These considerations show that significant metal–hydride dipole–dipole
interactions shorten relaxation times of hydride resonances. For example,
hydride ligands with identical environments in two structurally related com-
plexes PP3Rh−H and PP3Co−H demonstrate the quite different 1H T1 min
times: 543 and 62 ms in PP3Rh−H and PP3Co−H, respectively (Table 8.2). It
should be emphasized that the strong cobalt–hydride coupling in classical
cobalt hydrides can lead to short relaxation times close to those mea-
sured in dihydrogen complexes (compare the T1 min values in complexes
[CoH2(dppe)2]+ and ReCl(H2)(dppe)2). It is obvious that such interactions
can play a significant role, even in the 1H T1 behavior of dihydrogen ligands.
Calculate, for example, 1H T1 min times of 1H relaxation by proton–proton
and niobium–proton dipole–dipole interactions at 200 MHz in a quite rea-
sonable model of dihydrogen complexes Nb−(H2) (Figure 8.2). If the (H2)
ligand is not spinning, then the 1H T1 min(H−H) and 1H T1 min(Nb−H) values
are calculated via Equations (7.11) and (8.2) as 0.0052 and 0.0836 s, respec-
tively. Thus, Nb−H dipolar interactions provide 5.9% of the total relaxation
rate of an immobile dihydrogen ligand. According to Woessner’s expression
(see Equation 6.7), a fast (H2) rotation partially averages the proton–proton
dipolar coupling, leading to a four-fold 1H T1 min elongation. By analogy, a
(H2) rotation rapidly reorients the Nb−H vector and thus niobium–proton
dipole–dipole interactions reduce proportionally to a factor (3 cos2 θ − 1)2/4

Table 8.2 1H T1 min times measured in solutions
of the classical transition metal hydride com-
plexes with strong metal–hydride dipole–dipole
interactions (recalculated for 250 MHz)

Compound 1H T1 min (ms) Solvent

CoH(dppe)2 50.0 Toluene-d8

[CoH2(dppe)2]+ 53.7 Toluene-d8

PP3CoH 62.0 TDF
[PP3CoH2]+ 51.5 TDF
PP3RhH 543.0 TDF
ReCl(H2)(dppe)2 53.7 Toluene-d8
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Figure 8.2 Proton–niobium and proton–proton dipole–dipole interactions in a nio-
bium dihydrogen complex with a fast-spinning (H2) ligand

where θ = 16◦ (Figure 8.2). Under these conditions, the 1H T1 min(H−H) and
1H T1 min(Nb−H) times are 0.021 and 0.107 s, respectively, and the Nb−H
dipolar contribution gives 16.3% of the total 1H relaxation rate. Such contri-
butions cannot be ruled out in relaxation studies of dihydrogen complexes.

Finally, it must be emphasized that the metal–hydride dipole–dipole
contributions will increase in binuclear hydride systems where H ligands
are bridging between two metal atoms. For example, the rhenium–hydride
dipolar coupling governs 90% of the 1H T1 relaxation rate in complex
(µ-H)2Re2(CO)8.

8.1.1 How to Determine Metal–Hydride Bond Lengths by
Standard 1H T1 Measurements

Dipolar coupling between protons and 14N, 13C or 17O nuclei is too weak, and
therefore hydride resonances in the complexes, depicted in Figure 8.3, relax
completely by metal–hydride dipole–dipole interactions. For these reasons,
1H T1 min times, measured by standard inversion recovery experiments,
directly give M−H bond lengths via Equation (8.2). For example, the Mn−H
bond length in MnH(CO)5, determined by the NMR relaxation technique in
solution, is as long as 1.65 ± 0.05 Å [7] in good agreement with 1.60 ± 0.03 Å
obtained by neutron diffraction in the solid state. Note that a slight elongation
of the Mn−H distance, found in solution, can be connected with fast Mn−H
vibrational motions (see Chapter 10).

Figure 8.4 illustrates a more typical situation, where the H ligand is
adjacent to another hydride atom and in addition, to a number of protons
and phosphorus nuclei located in the ligand environment. Under these
conditions, the 1H total relaxation rate, 1/T1

TOT, is:

1/T1
TOT = 1/T1(H−HM) + 1/T1(M−H) + 1/T1(H−H) + 1/T1(H−P) + 1/T1

∗
(8.3)
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CO

COOC
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H

Re 

CO

COOC

OC

CO 

Figure 8.3 The octahedral Mn and Re hydride complexes, where metal–hydride
dipole–dipole interactions completely control spin–lattice relaxation rates of hydride
ligands

M

P

H

H

H

H

H

H

C C

Figure 8.4 Schematic representation of hydride–hydride, hydride–metal, hydride–
proton and hydride–phosphorus dipole–dipole interactions contributing to the 1H
spin–lattice relaxation of the marked hydride ligand

where 1/T1(H−HM), 1/T1(M−H), 1/T1(H−H) and 1/T1(H−P) correspond
to relaxation contributions caused by hydride–hydride, hydride–metal,
hydride–proton and hydride–phosphorus dipolar couplings, respectively. A
contribution from other relaxation mechanisms (for example, the CSA mech-
anism) is shown as 1/T1

∗. Since hydride–phosphorus dipolar interactions
are relatively small (see the k values in Table 8.1), the protons, located in the
ligand environment, make one of the principal contributions to the relaxation
rate of hydride resonances. This contribution can be ‘removed chemically’
with a total deuteration of phosphorus ligands. Then, the hydride relaxation
in deuterated molecules will be governed by metal–hydride interactions and
1H T1 measurements will lead to determinations of the M−H bond lengths.
This methodology has been used in studies of trihydride (Cp)2NbHX

2HA

and its deuterated derivatives (Cp)2NbDXHXHA and (Cp)2NbDXDXHA [8]
(Figure 8.5). Referring back to chapter 4 Figure 4.6 shows the 1H NMR spec-
trum of the isotopomeric mixture in an HA region. Owing to a significant
deuterium perturbation of the chemical shift (the so-called isotopic chem-
ical shift), all the HA resonances are well resolved and the corresponding
1H T1 times can be accurately measured. It follows from Figure 8.5 that
the displacement of 1H for 2H is accompanied by an increase of relaxation
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T1min = 0.099 s

T1min = 0.145 s
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Figure 8.5 Structures of the niobium trihydride and its partially-deuterated deriva-
tives, (Cp)2NbD(X)H(X)H(A) and (Cp)2NbD(X)2H(A) [8]. The 1H T1 times are mea-
sured for the H(A) ligands in a toluene-d8 solution at 400 MHz and 220 K

 = CH2-CH2

P

P

P

P

Co - H

1H T1min = 0.124 s
230 K, 500 MHz

TDF

1H T1min = 1.086 s
230 K, 500 MHz

TDF

P

P

P

P

Rh - H

Figure 8.6 The structurally-similar cobalt and rhodium monohydrides, illustrat-
ing the contribution of metal–hydride dipole–dipole contributions to the total T1

relaxation rates of hydride ligands

times. The longest 1H T1 time (T1 min = 0.145 s, 400 MHz) is measured for the
complex in which the HA ligand is surrounded by two deuterons. The nio-
bium–hydride interactions are dominant in (Cp)2NbDXDXHA and thus the
Nb−H(A) distance can be calculated via Equation (8.2). As has been noted,
the CSA relaxation is often responsible for the appearance of an additional
contribution 1/T1

∗ in Equation (8.3). In the case of the Nb trihydride, this
mechanism is not effective because the experiments in a high-temperature
zone at 200 and 400 MHz show identical 1H T1 times.
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Metal–hydride contributions are well evaluated by comparison of nuclear
relaxation in structurally similar compounds. The hydride systems in
Figure 8.6 have the same ligand environment [9] and thus 1/T1(H−H) and
1/T1(H−P) contributions are identical in both compounds. Since the γ value
of 103Rh nuclei is very low, the rhodium–hydride dipolar coupling is neg-
ligible and for this reason, the H−H and H−P dipolar interactions, govern
a minimal T1 time of 1.086 s. Then, 1/T1 min

TOT = 1/1.086 + 1/T1 min(Co−H)
and the T1 min(Co−H) time is calculated as 0.140 s. Finally, this value gives,
via Equation (8.2), a Co−H bond length of 1.54 Å in good agreement with
the solid-state data [9].

8.1.2 Metal–Hydride Bond Lengths by 1H T1sel
and 1H T1 min Measurements

Metal–hydride contributions (as well as other heteronuclear dipolar con-
tributions) can be evaluated spectroscopically by nonselective (T1) and
selective (T1sel) relaxation experiments. Take 1/T1(H−M) and 1/T1(H−H)
as relaxation rates caused by metal–hydride interactions and dipole–dipole
interactions between a hydride ligand and all the protons in a molecule,
respectively. Then the total relaxation rates, measured by the nonselective
and selective pulses, are:

1/T1 = 1/T1(H−M) + 1/T1(H−H) (8.4)

1/T1sel = 1/T1(H−M) + 1/T1sel(H−H) (8.5)

The corresponding proton–proton and metal–proton contributions are writ-
ten as:

1/T1(H−H) = 0.3 γH
4 h̄2 r(H−H)−6{τc/(1 + ωH

2τc
2)

+ 4τc/(1 + 4ωH
2τc

2)} (8.6)

1/T1sel(H−H) = 0.3 γH
4 h̄2 r(H−H)−6{τc/(1 + ωH

2τc
2)

+ 2τc/(1 + 4ωH
2τc

2) + τc/3} (8.7)

1/T1(M−H) = (2/15)γH
2 γM

2 h̄2 I(I + 1)r(M−H)−6 × {3τc/(1 + ωH
2τc

2)

+ 6τc/(1 + (ωH + ωM)2τc
2) + τc/(1 + (ωH − ωM)2τc

2)}(8.8)

If T1 and T1sel times are measured in high-temperature zones, i.e. at ωH
2τc

2 �
1, then the ratio between proton–proton and metal–proton contributions k
can be expressed via:

k = {0.3 γH
4 h̄2 r(H−H)−6}/{(2/15)γH

2 γM
2 h̄2 I(I + 1)r(M−H)−6}

= (f − 1)/(0.5 − f/3) (8.9)
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where f = T1sel/T1 [10]. Finally a combination of Equations (8.4), (8.5)
and (8.9) gives:

1/T1 = (4/30)r(M−H)−6 γH
2 γM

2 h̄2 I(I + 1)[(3 + k) × τc/(1 + ωH
2τc

2)

+ 4kτc/(1 + 4ωH
2τc

2) + 6τc/(1 + (ωH + ωM)2τc
2)

+ τc/(1 + (ωH − ωM)2τc
2)] (8.10)

Thus, if the T1sel times are measured in a high-temperature region, the
variable-temperature T1 data can be fitted to Equation (8.10) to give the
metal–hydride distance, r(M−H), the activation energy of molecular reorien-
tations Ea, and the correlation constant τ0. Note that the fitting procedures can
be performed with the least-squares linear regression programs in the com-
mercial software Matlab package. Figure 8.7 illustrates fitting the relaxation
data, collected in a toluene-d8 solution of complex ReH2(CO)(NO)(POPri

3)2.
As can be seen, Equation (8.10) closely follows the experimental T1 times in
the large temperature diapason. Moreover, the Ea and τ0 values, obtained by
1H T1 relaxation experiments at 200 and 300 MHz, are practically identical
(Figure 8.8).

4 5

1000/T

In
(T

1)

−15

15

Figure 8.7 Variable-temperature 1H T1 data for the hydride resonances in
ReH2(CO)(NO)(POPri

3)2; 200 MHz: circles, ReH with δ = −1.51 ppm; downward
triangles, ReH with δ = −4.78 ppm; 300 MHz; crosses, ReH with δ = −1.51 ppm;
upward triangles, ReH with δ = −4.78 ppm. (Reproduced from D. G. Gusev,
D. Nietlispach, A. B. Vymenits, V. I. Bakhmutov, H. Berke. Inorganic Chemistry,
1993; 32: 3270, with permission from Elsevier)
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200 MHz: Ea = 3.0 kcal/mol,
τ0 = 2.0 10−13 s, r(Re-H) = 1.70 ± 0.08 Å  

300 MHz: Ea = 3.2 kcal/mol,
τ0 = 1.6 10−13 s, r(Re-H) = 1.71 ± 0.03 Å  

200 MHz: Ea = 3.2 kcal/mol,
τ0 = 1.5 10−13 s, r(Re-H) = 1.72 ± 0.05 Å

300 MHz: Ea = 3.3 kcal/mol,
τ0 = 1.4 10−13 s, r(Re-H) = 1.69 ± 0.03 Å

Re 

OC

POPri
3

POPri
3

ON

H

H

Figure 8.8 Re-H bond lengths and parameters of molecular motions (Ea and τ0)
determined for the Re dihydride complex by the variable-temperature 1H T1, T1sel

relaxation measurements at 200 and 300 MHz in toluene-d8 [10]

Analysis of Equation (8.10) shows that errors in the r(M−H) determinations
by the T1sel/T1 method depend on the accuracy of the k values. To minimize
the errors, the T1sel and T1 times should be measured in a high-temperature
region by several independent experiments at each temperature. Under these
conditions, the difference between the Re−H bond lengths in the isomeric Re
hydrides (Figure 8.9) is actually meaningful, illustrating a large transligand
effect. It must be emphasized again that the very similar activation energies
of molecular reorientations (and also the τ0 values), obtained for both
compounds, give strong support to the reliability of these experiments.

According to the data in Figure 8.7, the 1H T1 times go through minima
(T1 min). Under these conditions, Equation (8.10) is rewritten as:

r(M−H) = C [(1.4k + 4.47) T1 min/ν]1/6 (8.11)

C = 107[γH
2 γM

2 h̄2 I(I + 1)/15π]1/6

where r(M−H), T1 min and ν are measured in Å, seconds and MHz, respec-
tively. In the case of Re, Mn, Nb and Ta nuclei, constant C is calculated as
4.20, 4.31, 5.11 and 3.74, respectively. Thus, locations of 1H T1 min times and
measurements of 1H T1sel values in high-temperature zones give r(M−H) via
Equation (8.11). Table 8.3 gives examples of such studies carried out in solu-
tions of the niobium hydride systems [11] depicted in Figure 8.10. Owing to
the so-called nonclassical interligand Si−H interactions, the SiMe2Cl groups
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Re 

PMe3 PMe3

PMe3

Me3P

Me3P

Me3P

Me3P

Me3PCO 

H

Re 

CO 

H 

300 MHz, CD2Cl2: Ea = 2.6 kcal/mol,

τ0 = 1.7 10−13 s, r(Re-H) = 1.69 ± 0.03 Å

300 MHz, CD2Cl2: Ea = 2.6 kcal/mol, 

τ0 = 2.5 10−13 s, r(Re-H) = 1.77 ± 0.03 Å 

Figure 8.9 Metal–hydride bond lengths and parameters of molecular motions (Ea

and τ0) measured in two Re monohydrides by the variable-temperature 1H T1, T1sel

relaxation experiments in toluene-d8 [10]

Table 8.3 Nb−H bond lengths (Å) in complexes I–IV (Figure 8.10)
obtained by X-ray (or neutron diffraction, ND) analysis in the solid
state, quantum-chemical calculations (DFT), and the T1sel/T1 min mea-
surements (NMR) in solution (tolene-d8)

Complex Hydride X-ray DFT NMR ND

I HA 1.65 1.750 1.79
HX 1.70 1.734 1.80

1.76
II HA 1.66 1.793 1.74

(1.783)a

HX 1.76 1.745 1.675
(1.740)a

III HX - 1.739 1.714
(1.744)a

IV HA 1.74 1.811 1.783 1.816
(1.791)a

aDifferent basis set

can affect the Nb−H bond lengths. In accord, the Nb−H bond, neighboring
the SiMe2Cl ligand, is remarkably elongated. This effect is reasonably max-
imal in complex IV containing two SiMe2Cl groups. Finally, note that the
Nb−H bond lengths in Table 8.3, obtained by NMR relaxation in solution,
are longer than those determined by X-ray diffraction in the solid state. In
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H(X)

H(X)

Figure 8.10 The niobium trihydride complexes and its SiMe2Cl derivatives, illustrat-
ing influence of non-classical interligand Si...H interactions on the niobium-hydride
bond lengths (Table 8.3)

fact, for objective reasons, the X-ray method underestimates metal–hydride
distances while the solution relaxation experiments, DFT calculations and
neutron diffraction show very similar data.

Applications of the 1H T1sel/T1 min method have some restrictions. It is
obvious that the inverting 180◦ pulse will be selective when one of two
closely located resonances is excited, but the second is not. Thus, the first
restriction can be defined as a minimal chemical shift difference, expressed in
Hz, when the acting pulse remains selective. This condition depends on the
hardware of NMR spectrometers. However, a crude estimation is 25–30 Hz.
The second restriction connects with the nature of the molecules investigated.
In fact, the T1sel/T1 min approach cannot be applied if a selectively excited
resonance is involved in a slow chemical exchange.

8.2 Proton–Proton Distances by Standard
1H T1 Measurements

Distances between pairs of protons are accurately determined by standard
1H T1 experiments when the corresponding proton–proton dipole–dipole
contributions are truly evaluated from the total relaxation rates. If the molec-
ular motion correlation times τC are obtained independently, for example,
by relaxation experiments on other nuclei, then H−H distances can be
calculated via Equation (4.7). The relatively bulky molecular systems often
show minimal relaxation times, 1H T1 min. Under these conditions, r(H−H)
distances are:

r(H−H) = 5.815 (T1 min/ν)
1/6 (8.12)
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where T1 min, r(H−H) and ν are measured in seconds, Å and MHz, respec-
tively [6]. On the other hand, these V-shaped plots of ln(1H T1) versus 1/T
can be fitted to Equation (4.5) to give r(H−H), Ea and τ0. It is obvious
that the fitting procedures are preferable. First, they give a better accuracy
in r(H−H) calculations, owing to a larger mass of treated experimental
data. Second, good agreements between the theoretical and experimental
curves will independently confirm the correctness of an applied dipolar
relaxation model. Below we demonstrate different approaches to r(H−H)
determinations in solution.

Since dipolar couplings between protons and 17O, 13C and 187,189Os nuclei
are negligible, proton–proton dipole–dipole interactions make a major con-
tribution to the 1H relaxation rates in the osmium hydride cluster [3] depicted
in Figure 8.11. The 1H T1 times, measured by standard inversion recovery
experiments, are practically identical for both hydride resonances in toluene-
d8 at 90 MHz (Figure 8.11). This is good evidence for the isotropic character
of molecular motions. According to variable-temperature measurements, the
1H T1 times vary from 1.67 s (252 K) to 0.73 s (188 K) and go through a
minimum of 0.5 s observed at 207 K. The data are well fitted to Equation (4.5)
and thus H−H dipole–dipole interactions govern completely the hydride
relaxation in the complex, at least at relatively low magnetic fields. Finally
the r(H−H), Ea and τ0 values are very plausible (Figure 8.11) and identical
for both hydride resonances.

Hydride resonances of transition metal hydride clusters show signifi-
cant chemical shift anisotropies (�σ ∼ 20 ppm) in the solid-state 1H NMR

r(H−H) = 2.46 ± 0.04;

Ea = 4.4 ± 0.1 Kcal/mol

τ0 = (1.92 ± 02) 10−14 s

δ = −20.05 ppm,

T1 = 1.43 s, 241 K

Os(CO)4

Os(CO)4

(CO)3Os 

H

H 

δ = −10.46 ppm.

T1 = 1.31 s, 241 K

Figure 8.11 The 1H chemical shifts, the H–H distance and molecular motion param-
eters determined for the osmium hydride cluster by the variable-temperature 1H T1

measurements at 90 MHz in toluene-d8 [3]
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spectra [3]. Since the CSA relaxation rate is proportional to the B0
2 and

�σ2 values, the CSA mechanism can become effective at higher magnetic
fields. In the case of the Os system in Figure 8.11, the 1H T1 min time, mea-
sured at 90 MHz (0.5 s), can be recalculated via Equation (4.9) as 2.22 s at
400 MHz to account for the dipolar nuclear relaxation. However, a 1H T1 min
time, obtained experimentally, is shorter (1.93–2.00 s at 227 K). Then, in the
presence of the CSA contribution, the total hydride relaxation rate is:

1/TTOT
1 = 0.3 (µ0/4π)2 γH

4 h̄2 r(H−H)−6

× [τc/(1 + ωH
2τc

2) + 4τc/(1 + 4ωH
2τc

2)]

+ (2/15) γH
2 B0

2(�σ)2[τc/(1 + ωH
2τc

2)] (8.13)

Now the r(H−H), Ea, and τ0 values, previously obtained by relaxation
measurements at 90 MHz, can be used for fitting the variable-temperature T1
data, collected at 400 MHz, to Equation (8.13). In good agreement with the
solid-state NMR, the fitting procedure leads to �σ values of 22.6 ± 2.0 and
20.0 ± 1.9 ppm for the bridging and terminal hydride ligands, respectively. It
is easy to show that the CSA mechanism provides 10% of the total relaxation
rate at 400 MHz. This contribution is not large because the H−H distances are
overestimated by only 2% if the CSA contribution is not taken into account.
However, it is obvious that the errors in the distances will increase at 500,
600 MHz or more and, for this reason, applications of highest magnetic fields
in relaxation measurements are often unreasonable. In addition, the highest
magnetic fields can lead to the so-called partial alignment of molecular
systems. In turn, this effect can rouse anisotropy of molecular motions,
perturbing the relaxation behavior. For example, the dihydrogen complex
[Os(H2)(PPh3)2(bpy)(CO)]+ shows the T1 min(H2) time of 25.2 ms at 750 MHz
compared with 22.8 ms, extrapolated from 500 MHz [12].

Os(CO)4

Os(CO)4

Os(CO)3

Os(CO)3

(CO)3Os 

(CO)3Os 

H 

H 

H 

D 

T1 = 6.5 s 

T1 = 30.2 s

Figure 8.12 1H T1 times of the dihydride osmium cluster and its partially-deuterated
derivative measured at 270 MHz and 298 K
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Proper proton–proton dipolar contributions can be accurately evaluated
by partial deuteration of compounds under investigation. For example,
1H T1 measurements at 270 MHz and 298 K in solutions of isotopomeric
hydride cluster systems depicted in Figure 8.12 [3], give the proton–proton
relaxation rate, calculated as 1/T1(DD) = (1/6.5 − 1/30.2)(1/0.96), where the
factor 1/0.96 compensates the residual dipolar coupling by the 2H nucleus.
In turn, the 1/T1(DD) leads to r(H−H) = 2.35 ± 0.03 Å via Equation (4.7) in
excellent agreement with the neutron diffraction studies (r(H−H) = 2.37 Å).
Note that the τC value, necessary for the r(H−H) calculation, has been
obtained by 13C and 17O T1 relaxation experiments on the same compound.

8.3 H−H Distances by T1sel/T1bis Measurements

An alternative method for separation of proton–proton dipole–dipole contri-
butions is based on a combination of the selective (T1sel) and biselective (T1bis)

relaxation time measurements [10]. Theoretically, the difference between the
1/T1sel and 1/T1bis rates gives the cross-relaxation rate σij:

(1/T1sel − 1/T1bis)i = (1/T1sel − 1/T1bis)j = σij

σij = 0.1 (µ0/4π)2 γH
4 h̄2 r(Hi−Hj)

−6 [6τc/(1 + 4ωH
2τc

2) − τc]

(8.14)
where i protons are coupled by j protons. If the molecular motion correlation
times τc are obtained independently, then σij measurements give Hi−Hj dis-
tances via Equation (8.14). Figure 8.13 shows the H−H distances found by 1H
T1sel/T1bis experiments on Re complexes in toluene-d8 solutions [10]. Again,

Re 

R = CH3, r(H…H) = 2.25 ± 0.15 Å

R = Cy, r(H…H) = 2.34 ± 0.37 Å

R = OPri, r(H…H) = 2.28 ± 0.12 Å 

OC

PR3

PR3

ON

H 

H 

Figure 8.13 The H...H distances in the rhenium dihydride complexes determined by
the 1H T1sel/T1bis experiments in toluene-d8 solutions [10]
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the τc values, necessary for r(H−H) calculations, have been obtained inde-
pendently by fitting the variable-temperature 1H T1 times to Equation (8.10).
As can be seen, the experiments in solution provide good localizations of
the hydride ligands, which can be compared with the solid-state data. Actu-
ally, to account for the Re−H bond lengths (see above) the H−H distances
correspond to H−Re−H angles about 80◦ as found in the solid state.

To show the magnitudes, measured in the 1H T1sel/1H T1bis experiments,
and the logic of T1 interpretations, consider the binuclear Ta/Au hydride
complex (see Figure 8.14). Table 8.4 lists the relaxation data obtained for
the HX ligand. It is seen, that the nonselective T1 time (0.28 s) is remarkably
shorter than T1sel (0.38 s). Nevertheless, the T1sel/T1 ratio is equal to 1.36 com-
pared with 1.50, expected from proton–proton dipolar relaxation. This result
is explained by the presence of tantalum–hydride dipole–dipole interactions.
The T1sel(HX) and T1bis(HX−Ph) times are identical and thus dipole–dipole

CpCH3

CpCH3

AuPPh3

Ta

HX

HA

H

1.63 Å

1.77 Å

1.82 Å 

PF6
− 

+

Figure 8.14 Localization of the hydride ligands (δ(HA) = −0.714 ppm, 298 K,
δ(HX) = 0.131 ppm) in the binuclear transition metal hydride complex by the T1 min,
T1sel and T1bis relaxation measurements in acetone-d6

Table 8.4 T1 data for the HX resonance of the Ta/Au hydride complex
in acetone-d6 at 273 K and 200 MHz (CHα and CHβ correspond to the α

and β protons in the Cp ligands)

Parameter Value (s) Parameter Value (s)

T1 0.280 (0.385)a T1bis(HX−CHα) 0.365
T1sel 0.380 (0.528)a T1bis(HX−HA) (0.442)a

T1bis(HX−CH3) 0.344 (0.488)a T1 min
b 0.0962

T1bis(HX−Ph) 0.383 T1 min(HX−HA)b 0.185
T1bis(HX−CHβ) 0.363
a295 K;
bat 210 K
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interactions between the HX ligand and protons in the Ph rings are negligible.
The difference between the T1sel(HX) and T1bis(HX−CHα) values is close to
the error of the measurements (5%) and hence the corresponding dipolar
contribution is also very small. The CH3 protons provides a more remarkable
contribution (compare T1sel(HX) = 0.380 s with T1bis(HX−CH3) = 0.344 s).
However the biggest effect is observed for the HX/HA pair where the
T1sel(HX) value is much greater than T1bis(HX−HA) (0.528 compared with
0.442 s at 295 K). This result shows that the HX−HA dipolar coupling plays
a principal role in the HX relaxation, providing 52% of the total HX relax-
ation rate. Finally, the T1, T1sel, T1bis and T1 min data lead to the structure in
Figure 8.14.

In contrast to direct T1sel/T1bis measurements in Equation (8.14), the cross-
relaxation terms σij can be obtained by the one-dimensional NOESY, ROESY
(rotating frame Overhauser effect) and TROESY (transfer ROE) experi-
ments [13]. Note that selective excitation of i protons in NOE measurements
is realized with the help of shaped pulses of 40–50 ms duration. A spin
lock in the TROESY experiments is reached with the locking field where
γB1/2π = 2.8 kHz. Theoretically, the cross-relaxation rates, measured by the
NOE and TROE experiments, are expressed as combinations of the spectral
density functions taken at certain frequencies:

σij(NOE) = (1/4) (µ0/4 π)2 γ4 h̄2 r(Hi−Hj)
−6 [(6J(2ω) − J(0)] (8.15)

σij(TROE) = (1/8) (µ0/4 π)2 γ4 h̄2 r(Hi−Hj)
−6 [(6J(2ω) + 3J(ω) − J(0)]

(8.16)
where J(0), J(ω) and J(2 ω) are τC, τC/(1 + ωH

2τC
2) and τC/(1 + 4ωH

2τC
2),

respectively. Thus, in most cases, determinations of r(Hi−Hj) distances
require a knowledge of correlation times τC and the character of molecular
motions. The latter, as we have shown in Chapter 6, has an influence on
choice of the type of the spectral density function.

In the absence of these independent data, unknown proton–proton dis-
tances can be obtained by comparison of σij(NOE), or σij(TROE), values,
measured for a pair of protons, with the cross-relaxation terms, determined
for a reference proton pair, where a proton–proton distance is known.
According to this so-called isolated spin pair approximation (ISPA), the
unknown distances can be calculated via the equation:

r(Hi−Hj) = r(REF) (σREF/σij)
1/6 (8.17)

Unknown r(Hi−Hj) distances can be obtained in the framework of the so-
called model-free approach. According to this approach, molecular motions
are formally described as a combination of slow (and isotropic) global molec-
ular reorientations, characterizing by correlation times τM, and additional
fast internal motions with correlation times τ � τM. Under these conditions,
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the spectral density function takes the form:

J(ω) = (2/5) S2 τM/(1 + ω2 τM
2) (8.18)

where S2 is the Szabo motional parameter, varying between 0 and 1. It is
obvious that at S2 = 1 the internal motion is totally restricted. Again, if the
S2 and τM values are known, proton–proton distances are easy calculated
from the cross-relaxation rates. Also, in the absence of the S2 values, this
parameter can be inserted into the expression of dipolar relaxation when
the measured relaxation rates give unrealistic H−H distances in compounds
with known structures.

In many cases, the correlation times of the global and internal motions are
comparable. Such motions can be described by the effective correlation times
τEFF. Then:

J(ω) = (2/5) τEFF/(1 + ω2 τEFF
2) (8.19)

The τEFF values can be obtained from the σij(NOE) (or σij(TROE)) terms and
r(H−H) distances calculated with the help of the ISPA method. In the absence
of the r(H−H) distances, the σij(NOE) and σij(TROE) measurements lead to
calculations of the τEFF via:

σij(NOE)/σij(TROE) = (10 + 42ω2 τEFF
2 − 32ω4 τEFF

4 − 32ω8 τEFF
8)/

(10 + 63ω2 τEFF
2 + 96ω4 τEFF

4 + 16ω8 τEFF
8) (8.20)

All these approaches have been used to determine proton–proton distances
in the trisaccharide molecule (Figure 8.15) dissolved in D2O and D2O/DMSO
mixtures [13]. Figure 8.16 illustrates the TROE, NOE and regular 1H NMR
spectra recorded in a D2O solution at room temperature. The normalized
NOE (and TROE) integral intensities, measured as functions of mixing times
under different conditions, are shown in Figure 8.17(a). At short mixing
times, the cross-relaxation terms are quantitatively determined by the slopes
of linear sections in Figure 8.17(b). The NMR spectra, recorded in a D2O
solution, show positive NOEs and TROEs. In accordance with Figure 4.4,
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Figure 8.15 The molecular structure of the trisaccharide investigated by the NOE
and TROE experiments in D2O and D2O/DMSO solutions [13]



H...H Distances in Intermediates 115

5.0 4.8 4.6 4.4 4.2 4.0 3.8 3.6 3.4 δ

(a)

(b)

(c)

Figure 8.16 TROE (a), NOE (b) and traditional 1H NMR spectra of the trisaccharide
(Figure 8.15) in D2O solution at room temperature (600 MHz). The TROE and NOE
spectra are recorded at selective excitation of the H1 proton in the methyl glucoside
(g) residue. (Reproduced with permission from T. Rundolf, L. Erikson, G. Widmalm.
Chemistry. A European Journal, 2001; 7: 1750,  John Wiley & Sons, Inc.)

overall molecular tumbling corresponds to a fast motion regime. In this
case, the concept of the effective correlation times can be used to calculate
the r(H−H) distances. In contrast, NOEs and TROEs are negative and
positive, respectively, in D2O/DMSO solutions. This situation corresponds
to slower molecular tumbling. The calculated proton–proton distances are
between 2.14 and 3.27 Å in a good agreement with the X-ray structure of the
trisaccharide. Finally, it must be emphasized that errors in the experimental
determinations of the cross-relaxation rates are close to 5%. In turn, these
errors lead to 1% errors in r(Hi−Hj) calculations.

8.4 H...H Distances in Intermediates

The dihydrogen-bonded species are good illustrations showing the method-
ology in studies of intermediates by the NMR relaxation technique. These
species are formed when hydride ligands of transition metal hydrides act as
proton acceptors in the proton transfer reactions:

M−Hδ− + δ+HX ⇀↽ MHδ−...δ+HX ⇀↽ M(H2)
+ X− (8.21)

The final products of these reactions are dihydrogen complexes. It is obvious
that a key question in characterization of the proton transfer along dihy-
drogen bond is the H−H bond length. Like normal H-bonds, the Hδ−...δ+H
bonding shows a weak or medium strength (−�H0 of � 7–8 kcal/mol) [14].
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Figure 8.17 Experimental NOE (solid lines) and TROE (dashed lines) curves as a
function of mixing time obtained for the H1g/H2g pair and used as the reference
interaction in the ISPA distance calculations. (a) TROE curves: open upward tri-
angles, D2O at 600 MHz; open circles, D2O/DMSO-D6 at 500 MHZ; open squares,
D2O/DMSO-D6 at 600 MHZ; NOE curves; full upward triangle, D2O at 600 MHz; full
squares, D2O/DMSO-D6 at 600 MHZ; full circles, D2O/DMSO-D6 at 500 MHZ. The
corresponding initial linear regions are shown in (b). (Reproduced with permission
from T. Rundolf, L. Erikson, G. Widmalm. Chemistry. A European Journal 2001; 7: 1750,
 John Wiley & Sons, Inc.)

For these reasons, the formation of MHδ−...δ+HX bonds is fast on the NMR
time scale, even at the lowest temperatures. In addition, isolation of the
Hδ−...δ+H adducts is very difficult.

1H NMR can use two target nuclei (M−1H and 1H−X) to probe the
reversible reactions of Equation (8.21). However the acidic components
HX are usually self-associated in solutions and therefore M−1H reso-
nances are preferable. These resonances are averaged between M1H and
M1Hδ−...δ+HX positions, even at the lowest temperatures, while the more
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energetic formation of dihydrogen complexes can be stopped on the NMR
time scale. The latter provides separate observations of the M(H2)+ reso-
nances. We demonstrate how to determine H−H distances in dihydrogen
bonds under these conditions by measuring 1H T1 relaxation times.

Figure 8.18, as an example, summarizes the 1H NMR data collected in
a CD2Cl2 solution of individual hydride complex (triphos)Ru(CO)H2 at
200 MHz [15]. The hydride ligands in this complex are magnetically equiv-
alent and show a single 1H resonance with a relatively long 1H T1 min time.
According to the T1 criterion, this time corresponds closely to the classical
dihydride structure. NMR frequencies and a natural abundance of 99Ru
nuclei are very low and for these reasons, the ruthenium–hydride dipolar
coupling is negligible. Hence, 0.178 s are controlled by hydride–hydride,
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δ = −7.32 ppm
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δ = −7.86 ppm

T1min = 0.119 s

Figure 8.18 1H NMR data collected for CD2Cl2 solutions of hydride complex
(triphos)Ru(CO)H2 (triphos = MeC(CH2PPh2)3) and its H−H adduct with hexaflu-
oro-2-propanol at 200 MHz and 200 K (arrows show the corresponding dipole–dipole
interactions)
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hydride–proton and hydride–phosphorus dipole–dipole interactions. It has
been established that the formation of dihydrogen bonds is accompanied
by high- and low-field shifts of M1H and 1HX resonances, respectively [14].
In full accordance with this rule, low-temperature addition of a two-fold
excess of hexafluoro-2-propanol (as a proton donor) to a CD2Cl2 solution
of the Ru hydride causes temperature-dependent high-field shifts of the
hydride resonance from −7.32 to −7.86 ppm (Figure 8.19). The plot of the
δ versus temperature reaches a plateau at 200 K. It is obvious that equilib-
rium (Equation 8.21) is completely shifted to the dihydrogen-bonded adduct
at this temperature. Note that the hydride chemical shift in individual
complex (triphos)Ru(CO)H2 is practically independent of the temperature
(Figure 8.19).

The hydride resonance, observed in the presence of the alcohol at 200 K,
is averaged between two magnetically nonequivalent and equally populated
positions. Then the chemical shift of the hydride ligand, involved in dihydro-
gen bonding, is calculated as −8.29 ppm via: δ(RuH)OBS = 0.5 δ(RuH)FREE +
0.5 δ(RuH−HOR). The variable-temperature 1H T1 data, collected for the
hydride resonance in the presence of the alcohol, show a 1H T1 minimum
(1H T1 min

OBS = 0.119 s) at 200 K, thus characterizing the dihydrogen-bonded
adduct. For a fast exchange one can write:

1/T1 min
OBS = 0.5/0.178 + 0.5/T1 min

OBS(RuH−H) (8.22)
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Figure 8.19 Variable-temperature chemical shifts of the hydride resonance in a
CD2Cl2 of (triphos)Ru(CO)H2 in the absence (squares) and presence (circles) of
hexafluoro-2-propanol. (Reproduced with permission from V. I. Bakhmutov et al.
Canadian Journal of Chemistry. 2001; 79: 479,  Canadian National Research Council)
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Table 8.5 Dihydrogen bond lengths obtained for some
hydride systems by the 1H T1 relaxation measurements
in solutions

System r(H−H) Å

(triphos)(CO)2Re H... HOC(CF3)3 1.83
(triphos)Ru(CO)(H)H. . .HOCH(CF3)2 1.81
(PMe3)2(NO)(CO)2WH. . . HOCH(CF3)2 1.77
PP3Os(H)H. . . HOCH2CF3 1.96

where 0.178 s correspond to the minimal 1H T1 time, measured in the
individual dihydride, and the T1 min

OBS (RuH−H) is a minimal relaxation
time of the hydride ligand, involved in dihydrogen bonding. According to
Equation (8.22), T1 min

OBS (RuH−H) is calculated as 0.0894 s. The obtained
value is notably smaller than that in the individual dihydride due to an
additional hydride–proton dipolar coupling (see Figure 8.18). This additional
relaxation rate, 1/ T1 min(RuH−H), governed by the hydride–proton dipolar
coupling, is expressed by:

1/T1 min(RuH−H) = 1/T1 min
OBS(RuH−H) − 1/0.178 (8.23)

and calculated as 0.183 s. Finally, this value gives a r(H−H) distance of 1.81 Å
via Equation (8.12). This distance, being smaller than the sum of the van der
Waals radii of H atoms, supports the presence of H−H bonding interactions.
The same method, applied to other hydride systems, gives similar H−H
distances (Table 8.5).

8.5 Analyzing the Errors in 1H T1
Determinations of Internuclear Distances

As we have shown, exponential nuclear relaxation is treated by standard
procedures to give relaxation times with errors of �5%. Since rates of
dipole–dipole relaxation 1/T1 are proportional to the inverse sixth power
of internuclear distances, 5% errors lead to errors in r(H−H) or r(X−H)
calculations of less than 1%. These simple estimations are quite valid for
molecular systems with isotropic motions. Anisotropic molecular reorienta-
tions increase 1H T1 times (see Chapter 6) leading to ‘effectively’ increased
internuclear distances calculated on an isotropic assumption. Thus, an incor-
rect mode of the motion, applied in calculations, results in additional errors.
Since, a priori, the character of molecular motions is unknown, let us investi-
gate these errors by using, for example, an ellipsoidal model.

Take a symmetric ellipsoidal molecule with a pair of protons, separated
by 2 Å, and calculate via Equation (6.5) the 1H T1 min times at ν0 = 200 MHz
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for ρ values varying from 1 to 2, 5, 10, 50 and ∞. The calculations give
1H T1 min times of 330, 336, 367, 396, 430 and 1320 ms, respectively. In
turn, recalculations of r(H−H) distances in the isotropic approximation
(see Equation 8.12) lead to 2.000, 2.005, 2.035, 2.061, 2.089 and 2.518 Å,
respectively, compared with the initial value of 2 Å. Compound IrH5(PPri

3)2
with the bulky trans-located phosphorus ligands can be taken as a typical
ellipsoidal molecule. A crude calculation of its moments of inertia I, ignoring
the contributions from small hydrogen atoms, gives an I||/I⊥ ratio of 0.41 [6].
In this connection, the ρ value of 5 can be a reasonable upper limit of the
anisotropy. In this case the T1 min value of 367 ms (ρ = 5) corresponds to an
effective r(H−H) distance of 2.035 Å. In other words, the H−H distance of
2 Å will be ‘observed’ as 2.035 Å, producing an error of 2%.

The concept of the correlation time distribution can be also used for
estimations of errors in r(H−H) calculations. It has been experimentally
established that the symmetric Fuoss–Kirkwood distribution with β = 0.7
(see Equation 6.8) describes molecular motions of macromolecules, such as
polyethylene glycol 200 or polyoxymethylene. Calculations of T1 relaxation
times at 200 MHz via Equation (6.8) for a pair of protons, separated by 2 Å,
demonstrate that the 1H T1 min time increases by 25% on going from β = 1 (an
isotropic model) to β = 0.7. Even in this situation, the H−H distance of 2 Å
will be ‘observed’ as 2.08 Å, i.e. with an error �4%. Thus, in the context of
internuclear distance calculations, 1H T1 min data can be successfully treated
by assuming isotropic molecular motions. Finally, it must be emphasized that
this important conclusion, allowing us to avoid the problem of how to model
the motion, is absolutely valid for r(H−H) calculations only near T1 minima
(see the curves in Figure 6.3). In contrast, for high-temperature regions (i.e.
at 1 � ωH

2τc
2) the motional anisotropy leads to much greater increases in

T1. It is easy to show that, for example, even at ρ = 5 and 1 � ωH
2τC

2 the
distance of 2 Å will ‘observed’ as 2.28 Å, leading to an error of 12%.
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Among numerous quadrupolar nuclei, deuterium is of greatest interest for
many reasons. First, hydrogen, being one of the most widely distributed
chemical elements, is present in compounds belonging to quite different
classes. Second, the quadrupole moment of 2H nuclei is relatively small
and therefore the 2H NMR spectra are well detected. Third, relaxation experi-
ments, carried out on two magnetic isotopes, 1H and 2H, provide independent
data completely characterizing X−H bonds in terms of bond lengths as well
as bonding modes. Fourth, direct 2H T1,2 relaxation measurements in solu-
tions of the 2H-labeled compounds are standard, simple and convenient. In
addition, they do not require special NMR techniques. Even in the absence
of a deuterium NMR probe, the 2H relaxation experiments can be performed
via a channel of deuterium stabilization.

9.1 How to Determine DQCC Values

Nuclear quadrupole coupling constants and their variation as a function
of molecular structure are objects of solid-state investigations by NQR.
Application of this method for 2H nuclei is problematic because of their

Practical NMR Relaxation for Chemists Vladimir I. Bakhmutov
 2004 John Wiley & Sons, Ltd ISBNs: 0-470-09445-1 (HB); 0-470-09446-X (PB)
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small quadrupole moments. For this reason, the solid-state and solution
NMR techniques became a unique tool for determinations and studies of
quadrupole parameters at deuterium.

Solid-state NMR [1] provides direct measurements of DQCC values. A
typical powder 2H NMR spectrum of a static sample is shown in Figure 9.1.
The shape of the signal exhibits the so-called quadrupolar splitting, marked
as �ν. This splitting and a static DQC constant, (e2qQ/h), are interconnected
via the relation:

�ν = 3/4(e2qQ/h) (9.1)

The measurements of the �ν values are particularly convenient for DQCC
determinations in the absence of intensive molecular motions occurring on
the time scale of quadrupole interactions. Fast molecular motions cause
reorientations of eqZZ vectors, partially (or completely) average quadrupole
interactions and strongly affect the shape of 2H NMR lines. For example, fast

∆ν

Figure 9.1 Powder static 2H NMR spectrum of a system, containing a D−X bond
with an axially symmetric electric field gradient at deuterium. The spectrum consists
of two doublet patterns corresponding to two spin transitions (0 → 1 and −1 → 0)

eqZZ

D

C C

Figure 9.2 A fast molecular rotation around the C−C bond, reorienting the eqZZ
vector and averaging quadrupole interactions at D. The averaging effect depends on
the angle formed by the rotational axis and the direction of the principal electric field
gradient component, eqZZ
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diffusion around the C−C bond (see Figure 9.2) leads to a decrease of the
�ν splitting, observed in solid-state 2H NMR spectra. In this situation, the
DQCC value can be calculated via the equation:

�ν = 3/4(e2qQ/h)((3 cos2 � − 1)/2) (9.2)

where � is the angle formed by the rotational axis and the direction of
the principal electric field gradient component, eqZZ (Figure 9.2). When the
e2qQ/h frequencies and frequencies of molecular motions are comparable,
then the DQCC determination requires the so-called full line shape analysis
carried out with the help of specialized NMR programs [2]. The reliability
of such calculations depends strongly on the signal-to-noise ratios in the
experimental 2H NMR spectra. Note that even in the case of 2H-labeled com-
pounds, the good signal-to-noise ratios in solid-state 2H NMR spectra are
often problematic because of the relatively long 2H T1 times or a low content of
deuterium. Nevertheless, solid-state 2H NMR is a unique tool determining the
spatial extension of the electric field gradients. In fact, the asymmetry param-
eter η dictates line shapes of deuterium resonances in the solid state. For
example, the spectrum in Figure 9.1 corresponds to an axially symmetric elec-
tric field gradient. Asymmetric gradients show shapes that are more complex.

Quadrupolar parameters DQCC and η can be obtained by theoretical
calculations. Any molecular orbital calculation results in an electric charge
density distribution. Wave functions and nuclear locations give elements
of the electric field gradient at deuterium. Finally, a calculated eqZZ value,
expressed in atomic units, can be converted into DQC constant For example,
DFT (B3LYP/6-31G) computations of deuterium quadrupolar parameters
in organic molecules [3] are usually in good agreement with experimental
data if DQCC values are calculated with the help of the so-called calibrated
deuterium quadrupole moment via the equation:

DQCC = eqZZ(au) 636.5(kHz au−1
) (9.3)

The orders of DQCC magnitudes are demonstrated in Table 9.1 where
simple organic molecules are taken as examples.

Table 9.1 Experimental and calculated (B3LYP and
MP4) deuterium quadrupole coupling constants (kHz)
at D in simple organic molecules

Molecule B3LYP MP4 Experiment

CF3D 167.4 152.1 170.8
DCN 204.6 201.9 200.6
DBr 145.7 146.9
DCl 186.5 186.7 188.8
CH3D 193.1 189.6 191.48
DF 354.7 354.8 354.24
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9.2 DQCC Values from 2H T1 Measurements
in Solution (Fast Motion Regime)

Quadrupole interactions completely dominate relaxation of nuclei with spins
>1/2 when charge distributions around these nuclei are asymmetric. In the
case of deuterium, this statement can be verified by experiments on the iso-
topomeric hydride/dihydrogen systems depicted in Figure 9.3 [4]. Hydride
regions of 2H and 1H NMR spectra of these transition metal hydride com-
plexes show two well-resolved resonances and thus T1 times can be accurately
measured for the terminal and dihydrogen ligands. Owing to a very short
D−H distance (0.92 Å) in the (D−H) ligand, deuteron–proton dipole–dipole
interactions could give a remarkable contribution to the (D−H) relaxation rate
in the partially deuterated complex PP3Ru(DH)D [4]. However, in spite of the
short internuclear distance, the 2H T1 times, measured for the (D2) and (DH)
ligands, are identical within the limits of error (Table 9.2). That is why the 2H
T1 relaxation is applied as an excellent tool for studies of quadrupole param-
eters and molecular motions in solutions, liquid crystals and the solid state.

In a high-temperature zone (i.e. at 1 � ωQ
2τc

2), the rate of deuterium
relaxation, 1/T1, is:

1/T1 = 1.5π2(DQCC)2(1 + η2/3)τc (9.1)
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Figure 9.3 The rhenium hydride/dihydrogen complex and its partially-deuterated
derivative, illustrating complete domination of quadrupole interactions in the deu-
terium relaxation

Table 9.2 Variable-temperature deuterium T1 relaxation times
(s) measured in a CH2Cl2 solution of isotopomers PP3RuD3 and
PP3Ru(DH)D (Figure 9.3) at 61.402 MHz

Complex Ru(D2) or Ru(D−H) RuD T(K)

PP3RuD3 0.0586 0.0165 180
PP3Ru(DH)D 0.0545 0.0145 180
PP3RuD3 0.0780 0.0158 200
PP3Ru(DH)D 0.0815 0.0168 200
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To determine DQCC values from 1/T1, the molecular motion correlation
times τc should be found independently, for example, by relaxation experi-
ments on other nuclei (1H, 13C etc.) located in the same molecule. It is obvious
that the asymmetry parameter η cannot be determined via the relaxation data.
By definition, this parameter varies between zero and one. Therefore even in
the absence of a proper knowledge of the η, an uncertainty in DQCC values,
calculated from 2H T1 times, is �10%. In the case of simple chemical bonds
D−X the ambiguity in the η is significantly less. Actually in most such bonds
(for example, CD3X (X=F, Cl, Br, I), CD3CN and D2CO [4, 5]) the electric field
gradient tensors at D are practically axially symmetric (η <0.2). In addition,
the principal components eqZZ usually lie along these bonds.

Figure 9.4 shows the data collected for the 2H-labeled Os cluster in toluene-
H8 at 223 K. The 2H T1 times of the terminal and bridging hydride ligands
are different [6]. Anisotropic molecular tumbling (see Chapter 6) could cause
this effect. However, the T1 times, measured for both ligands at the 1H
frequency, are identical (see Figure 8.11) and thus motions of the cluster
seem to be isotropic. Parameters of the motions, Ea and τ0, found by the
variable-temperature 1H T1 measurements (Figure 8.11), lead to calculation
of a τC value at 223 K. The latter, by assuming η = 0 in Equation (9.1),
results in DQCC values of 86.4 ± 1.5 and 60.1 ± 2.0 kHz for the terminal and
bridging D-ligands, respectively. According to the DFT calculations of the
Ru, W and Os hydrides [7] (Table 9.3) and the solid-state 2H NMR spectra
of complexes MnD(CO)5, Cp2MoD2, Cp2WD2 and Cp2ZrD2, the electric field
gradient tensors at the terminal D ligands are actually axially symmetric. In
contrast, the tensors at bridging D ligands can deviate significantly from axial
symmetry. For example, η = 0.31 in binuclear systems [R4N][DMr2(CO)10]
(M=Cr, W) [5]. However even at η = 0.31 the 2H T1 time of the Os−D−Os

D

D

T1 = 0.026 s, 223 K, 61.46 MHz
DQCC = 86.4 kHz

DQCC = 60.1 kHz

(CO)3Os Os(CO)4

Os(CO)4

T1 = 0.05 s, 223 K, 61.46 MHz

Figure 9.4 2H T1 times and deuterium quadrupole coupling constants measured for
the hydride ligands in the 2H-labeled Os cluster in toluene-H8 at 223 K
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ligand (0.05 s) gives DQCC = 63.3 kHz (instead of 60.1 kHz, obtained in the
η = 0 approximation).

Figure 9.5 illustrates another approach to DQCC determinations, based on
T1 times, measured for reference 2H nuclei. The Ru tetrahydride represents a
hydride/dihydrogen system where the terminal and (H2) ligands undergo a

Table 9.3 Major components of the electric field
gradient tensors eqZZ and the asymmetry param-
eters η calculated by the DFT (B3LYP) method

Compound eqZZ (au) η

D2 −0.397 0.01
WD(NO)(CO)2(PH3)2 −0.1044 0.078
OsD(D2)(CO)Cl(PH3)2 −0.1830 0.085
PP3Ru(D2)D+ −0.1314 0.056
PP3Os(D2)D+ −0.1490 0.053

Ru

D
D

D

D*

PPh2C6H3D2

PPh2C6H3D2

PPh2C6H3D2

Ru

D
D

D*

D

PPh2C6H3D2

PPh2C6H3D2

PPh2C6H3D2

2H T1 = 21 ms

2H T1 = 128 ms

Figure 9.5 T1 times, measured for Ru−D and ortho-D resonances of the aromatic
rings in a toluene-H8 solution of the Ru hydride/dihydrogen complex at 290 K and
30.7 MHz. Under these conditions, the complex undergoes a fast hydride/dihydrogen
exchange, leading to the observation of an averaged hydride resonance
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fast exchange on the NMR time scale. Under D2 atmosphere, ortho-protons of
the aromatic rings and the Ru−H hydrogens change for deuterium [8]. Both
resonances are well observed in the room-temperature 2H NMR spectrum
and show different 2H T1 times. At η = 0, the 2H T1 times depend on
DQCC values at D in the C−D and Ru−D bonds. Since the quadrupole
coupling constant for aromatic deuterons is known from solid state 2H NMR
(182 KHz), the DQCCD−Ru value is calculated as 68.7 ± 3.0 KHz.

Farrar et al. [9, 10] have suggested an alternative method for measure-
ments of DQCC values in liquids. This indirect method can be applied for
molecular systems containing a deuterium capable of hydrogen bonding (for
example, the OD or ND bonds). For systems with OD groups, it has been
established that the H-bond formation affects the deuterium quadrupole
coupling constant that is related to the hydrogen bond distance as:

DQCC(OD) = 310 − 600/r3
OD−O (9.2)

where 310 is the DQCC(OD) value in the gas phase. Farrar calculated (ab
initio) chemical shifts and DQCC values in H-bonded clusters of methanol
and showed that these magnitudes correlate:

DQCC(OD)(kHz) = 284 − 15.3 δ(OH)(ppm) (9.3)

Thus, the DQCC value can be found via the experimentally measured chemi-
cal shifts, δ(OH), for example, in CCl4 solutions with a variable concentration
of methanol. Then, the 2H T1(OD) times, measured in these solutions, and
the calculated DQCC(OD) values give the correlation time τC as a func-
tion of concentration C (see Table 9.4). If viscosities of the solutions are
measured independently, the Stokes–Einstein–Debye model, or other mod-
els [9] allow one to estimate the sizes of H-bonded clusters (see parameter a
in Equation 1.13).

On the other hand, Farrar’s method, applied for molecular systems with
two or more 2H-labels, allows one to establish the character of molecular
tumbling in solution. For example, DQCC values, determined by this method

Table 9.4 Viscosities η, relaxation times T1, chemical shifts δ(OH), deuterium
quadrupole coupling constants DQCC, and the correlation times τC, for various
mole fractions C, of methanol in CCl4

C η (cp) T1 (s) δ(OH) (ppm) DQCC (kHz) τC (ps)

0.0026 0.888 1.720 0.35 278 0.51
0.012 0.886 0.700 0.83 271 1.31
0.029 0.882 0.308 1.76 257 3.33
0.209 0.860 0.172 4.38 217 8.38
0.504 0.828 0.170 4.72 211 8.89
1.000 0.537 0.292 4.81 210 5.25
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Figure 9.6 The structure of formamide, undergoing anisotropic molecular motions

in liquid formamide (Figure 9.6) led to correlation times τC, which are
different for reorientations of the cis-N−D, trans-N−D and C−D vectors: 6.3,
9.2 and 5.2 ps, respectively (295 K). It is obvious that molecular tumbling in
neat liquid formamide is anisotropic.

9.3 DQCC Values via 2H T1 min Measurements
in Solution

Theoretically, the plots of ln(T1(Q)) versus 1/T are V-shaped and go through
minima at τc = 0.62/ωQ. Under these conditions, Equation (4.23), written for
deuterium relaxation, converts to:

DQCC = 1.2201 (1 + η2/3)−1/2(νD/T1 min)
1/2 (9.4)

where νD, DQCC and T1 min are measured in MHz, kHz and seconds,
respectively. Thus, at η = 0, 2H T1 min times give DQCC values directly.

In solution, the minimal T1 times can be located by the variable-temperature
relaxation experiments for molecular systems with relatively slow motions
on the scale of NMR frequencies. This situation is realized in solutions
of bulky compounds or viscous media, studied at 1H NMR frequen-
cies. For example, dilute solutions of transition metal hydride complexes
show 1H T1 min times at temperatures between −60◦ and −90◦C and at
1H NMR frequencies of 300–500 MHz. It is obvious that, owing to the
smaller gyromagnetic ratio of deuterium relative to hydrogen, 2H T1 min
times can be reached for the same complexes at significantly lower tem-
peratures. It is easy to show that relaxation times of molecules, placed
in a magnetic field of 9.39 T (i.e. νH = 400 MHz and νD = 61.4 MHz),
will be minimal at τc = 2.5 × 10−10 and 16.0 × 10−10 s for protons and
deuterons, respectively. If a 1H T1 min time for a molecule is observed,
for example, at −70◦C and the activation energy of molecular reorienta-
tions is 2.5 kcal/mol, then a 2H T1 min time for the same molecule can be
observed only at −117◦C. Smaller activation energies will require lower
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temperatures which are, however, restricted by the freezing points of reg-
ular organic solvents. Applications of organic solvents in mixtures, such
as, for example, CH2Cl2 : CFCl3 in a 1:1 ratio, can extend the diapason of
the temperature experiments. Another approach is based on investigations
of concentrated solutions. Owing to the higher viscosity of such systems,
the effective τC and Ea values increase. For this reason, T1 min locations are
shifted towards higher temperatures. For example, a concentrated CD2Cl2
solution of the hydride complex [Ru(H)(H2)(dppe)2] [BPh4] shows a 1H
T1 min time at 274 K (Table 9.5). The 1H T1 minimum in a dilute solution of
the same system is located at 40◦ lower [11]. Similar effects are observed in
toluene solutions of the dihydride (PCy3)2ReH2(NO)(CO) [12]. In addition,
it should be emphasized that the T1 min times, measured in dilute and con-
centrated solutions (or in concentrated solutions of different solvents), are
practically identical. This experimental fact is a very important argument
for quantitative interpretations of T1 min times measured in concentrated
solutions.

The 2H T1 min times and DQC constants, determined in solutions of tran-
sition metal hydride complexes, are collected in Table 9.6. As can be seen,
DQCC values (varying between 55 and 87 kHz) depend on the nature of
metals and ligand environments. The chemical meaning of DQCC variations
is not a subject of this book. Note however that the DQC constant can be
used as a measure of the ionic character of D−X bonds [4, 12]. According
to such an interpretation, for example, the W−D bond in complex trans-
WD(CMes)(dmpe)2 shows a surprisingly high ionicity (i = 0.84–0.85) close
to that in the LiD molecule. The latter is independently supported by an
unusual reactivity of the W−D bond.

Table 9.5 Conditions for locations of minima in variable-temperature T1 min curves
obtained at proton and deuterium frequencies in dilute (D) and concentrated
(C) solutions of the hydride complexes

Complex T1 min/ν (s/MHz) T(K) Solution

(PCy3)2ReH2(NO)(CO) 1H: 0.0960/200a 207 D, toluene-d8
1H: 0.0936/200a 206
1H: 0.144/300 243 Cb, toluene-d8
2H: 0.0142/46.04a 203 C, toluene-h8
2H: 0.0154/46.04a 203
2H: 0.0139/46.04a 183 C, CH2Cl2
2H: 0.0147/46.04a 183 C, CH2Cl2

[Ru(H)(H2)(dppe)2]+ 1H: 0.020/400 203 D, CD2Cl2
1H: 0.020/400 273 C, CD2Cl2
2H: 0.181/61.45 193 C, CH2Cl2

aMeasured for two different resonances
b100–150 mg/ 1 ml
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Table 9.6 DQCC values for terminal hydride ligands in transition metal hydride
complexes. Data obtained via Equation (9.4) from 2H T1 min times measured in solution

Compound

2H T1 min (ms)/
DQCC (kHz) νD (MHz) T(K) Solvent

[Ru(D)(D2)(dppe)2][BPh4] 15/79 61.45 193 CH2Cl2

[Os(D)(D2)(dppe)2][PF6] 14/81 61.45 193 CH2Cl2

[(triphos)RhD3] 16.5/83.2 76.75 190 CH2Cl2

[(triphos)IrD3] 10.1/95.0 61.45 190 CH2Cl2

[Os(D)(D2)(CO)(Cl)(PPri
3)2] 9.0/87.3 46.04 195 Toluene-H8

[PP3RhD2][CF3COO] 21.7/73.9 76.75 220 THF
[PP3RhD2] 20.2/75.2 76.75 190 THF
[PP3CoD2] 19.5/76.5 76.75 210 THF
(PMe3)2ReD2(NO)(CO) 14.0/70.0 46.04 173 Toluene-H8

16.1/65.3 46.04 173 Toluene-H8

(PMe3)2WD(NO)(CO)2 22.7/55.0 46.04 178 Toluene-H8

(PPh3)2WD(NO)(CO)2 22.5/55.2 46.04 203 Toluene-H8

(PEt3)2MnD(NO)2 21.5/56.4 46.04 186 Toluene-H8

(PEt3)2MnD(CO)3 15.4/66.7 46.04 183 Toluene-H8

cis-(PMe3)4ReD(CO) 12.4/74.4 46.04 163 CH2Cl2

trans-(PMe3)4ReD(CO) 15.3/66.8 46.04 163 CH2Cl2

9.4 Errors in DQCC Determinations

Deuterium relaxation in solutions of compounds with relatively low molec-
ular weights (non-polymer molecular systems) is monoexponential and
therefore 2H T1 min times are determined with errors �5%. In turn, the rate
of nuclear relaxation is proportional to the second power of the quadrupole
coupling constant. If molecular tumbling is isotropic, then calculations via
Equations (9.1) and (9.4) give DQCC values with errors �2.2%. Larger errors
can appear when an isotropic approximation is applied for systems with
anisotropic motions. By analogy with the 1H dipole–dipole relaxation in
symmetric ellipsoidal molecules (see Chapters 6 and 8), these errors are par-
ticularly significant in high- and low-temperature zones where they depend
strongly on the motional anisotropy, ρ (see Figure 6.3). In contrast, the
errors in T1 min zones are smaller and they are less sensitive to the motional
anisotropy. To make the considerations more quantitative, take ρ = 5 as a
reasonable upper limit of the motional anisotropy for regular compounds.
Then it is easy to show that on going from ρ = 1 (isotropic motions) to
ρ = 5 the 2H T1 min time increases by 10%, leading an effective DQCC value
reduced by 5–6%. Thus, if the character of molecular tumbling is unknown,
a better accuracy cannot be reached, even in DQCC determinations based on
2H T1 min times.

Figure 9.7 shows the variable-temperature 2H T1 data, collected in a con-
centrated toluene-H8 solution of the complex ReD2(CO)(NO)(PCy3)2. As it
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Figure 9.7 Variable-temperature 2H T1 data, ln (T1) versus 1/T, collected for the
D ligands of complex ReD2(CO)(NO)(PCy3)2 in a concentrated toluene-H8 solution
at 46.06 MHz. (Reproduced with permission from D. Nietlispach, V. I. Bakhmutov,
H. Berke. Journal of the American Chemical Society 1993; 115: 9191.  1993 American
Chemical Society)

is seen, the 2H T1 times deviate from the symmetrical V-shaped curve (the
solid line), obtained for isotropic molecular tumbling. The deviations are
particularly remarkable in the T1 min range and the low-temperature section.
Such effects are typical of solids, glasses and viscous liquids and are usually
interpreted in terms of correlation time distributions [13]. However, it is
interesting that the 1H relaxation in dilute solutions of ReH2(CO)(NO)(PR3)2
corresponds well to the isotropic behavior (see Figure 8.7). In this connec-
tion, we do not consider a correlation time distribution as a real physical
origin of the deviations, observed in concentrated solutions (Figure 9.7). We
use this concept as a convenient mathematical model for estimations of
errors in DQCC determinations. If an X−D bond, having a DQCC value
of 100 KHz and an axially symmetric electric field gradient at D (η = 0), is
placed into a magnetic field of 7.05 T (νD = 46.06 MHz), then in the presence
of the symmetric Fuoss–Kirkwood distribution the 2H T1 relaxation rate
is [13]:

1/T1 = {2.958 (DQCC)2β/(2πνD)}{(2πνDτC)β/(1 + (2πνDτC)2β)

+ 2(4πνDτC)β/(1 + (4πνDτC)2β} (9.5)
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where β is the width of the distribution, T1 is measured in seconds and DQCC
and νD is expressed in Hz. At β = 1, Equation (9.5) corresponds to isotropic
motions and gives 2H T1 min = 6.86 ms. Decreasing the β parameter from 1 to
0.9, 0.8 and 0.7 results in an increase of the 2H T1 min time to 7.54, 8.42 and
9.55 ms, respectively. These times, treated in an isotropic approximation (i.e.
via Equation (9.4)), give DQCC values of 95.4, 90.1 and 84.7 kHz versus initial
100.0 kHz. In other words, the deuterium quadrupole coupling constants are
underestimated by 5, 10 and 18% with increasing width of the distribution.

The best way to determinations of DQC constants in the presence of
correlation time distributions is fitting the experimental T1 times to the
corresponding models of the motion. It is obvious that the method requires
a large mass of experimental data, particularly in low-temperature regions.
However, the latter is problematic for liquids and solutions where low-
temperature experiments are restricted by freezing points. In this situation,
reliability of the fitting procedures is questionable, particularly in the absence
of a detailed knowledge of molecular dynamics in concentrated solutions.
For estimations of possible β values, affecting final results, consider the
data available in the literature. Nuclear relaxation in 1,2,3,4-tetrahydro-
5,6-dimethyl-1,4-methanonaphthalene, actually classified as an organic glass-
forming liquid, deviates from the model of isotropic motions. Treatments of the
relaxation data in the framework of a correlation time distribution lead to the
β values lying between 0.9 and 0.8 [14]. Viscous glycerol also shows a quite
narrow correlation time distribution with β = 0.97 [15]. According to the
2H T1 data (Figure 9.7), treated in an isotropic approximation, molecules of
(PCy3)2ReD2(NO)(CO) are reoriented in a concentrated toluene solution with
an activation energy of 4.0 kcal/mol [12]. Multinuclear relaxation, providing
determination of the τC(T1 min) values at 1H, 2H, 13C and 31P frequencies
(Figure 9.8), result in a slightly larger Ea value (4.6 kcal/mol). Thus if the
symmetric Fuoss–Kirkwood correlation time distribution is actually present,
then its β value is calculated as: 4.0/4.6 = 0.87. Fitting the 2H T1 times,
measured in a toluene solution of the Os cluster (see Figure 9.4) [16], to
Equation (9.5) also gives a narrow correlation time distribution: β = 0.94.
All these data allow one to assume that, in spite of the absence of detailed
knowledge of molecular dynamics in concentrated solutions, DQCC values,
calculated via an isotropic approximation, can be underestimated by only
5–6%. This conclusion is supported by good agreements between the solution
and solid-state data in Table 9.7. For example, a concentrated CHCl3 solution
of ruthenium hydride [RuD(η6-toluene)(Binap)] [CF3SO3] shows a 2H T1 min

time of 16 ms at 76.8 MHz. The corresponding DQCC value is calculated via
Equation (9.4) as 85 kHz. The 2H MAS NMR spectra of the solid hydride,
recorded at 76.8 MHz and at different spinning frequencies, give 89 kHz. As
can be seen, even in this case the difference is less than 5%.

Finally, it should be added that activation energies of molecular motions
in viscous liquids can become temperature dependent. In other words, the
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Figure 9.8 Variable-temperature T1 data (T1 in seconds) for a toluene solution of
complex ReD2(CO)(NO)(PCy3)2: solid circles, 31P, 121.4 MHz; solid squares, 1H-Re,
300 MHz; triangles, 13CH2, 75.4 MHz; open circles, 2H-Re, 46.04 MHz. (Reproduced
with permission from D. Nietlispach, V. I. Bakhmutov, H. Berke, Journal of the American
Chemical Society 1993; 115: 9191.  1993 American Chemical Society)

Table 9.7 DQCC values (kHz), determined by the 2H T1

technique in solution and the solid-state 2H NMR spectraa

Compound Solution Solid State

trans-WD(CMes)(dmpe)2 34.1 34.8
(PMe3)2WD(NO)(CO)2 55.0
Cp2WD2 54
(PEt3)2MnD(NO)2 56.4
(PEt3)2MnD(CO)3 66.7
MnD(CO)5 68.1
[Ru(D)(D2)(dppe)2][BPh4] 79.0 75
CD2 groups 164b 167
[RuD(η6-toluene)(Binap)] 85 89
[CF3SO3]
aDQCC values calculated from the quadrupolar splitting via
Equation (9.1)
bFound for CD2 groups in the (dppm) ligand of complex [Cp*Ru(D)
(Me)(dppm)]
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Ea can increase on cooling. Theoretically, the effect is expressed via the
Vogel–Fulcher–Tamman (VFT) equation:

τC = τVFT exp{EVFT/[R(T − T0)]} (9.6)

where T0 is close to the glass transition temperature. Good examples of
this behavior are viscous glycerol and 1,2,3,4-tetrahydro-5,6-dimethyl-1,4-
methanonaphthalene [14, 15]. It is obvious that application of Equation (9.6)
instead the usual exponential function can be used to increase the accuracy
of DQCC calculations.
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In the previous chapters, we have shown that nuclear relaxation in solu-
tions of molecular systems undergoing isotropic motions (or systems with
an insignificant motional anisotropy) is a reliable tool for determinations
of internuclear distances and quadrupole coupling constants. Vice versa,
known internuclear distances or deuterium quadrupole coupling constants
provide accurate predictions of 1H or 2H T1 times. However, this situa-
tion changes if target nuclei are more mobile than whole molecules and
undergo additional motions, which are fast on the time scale of molecular
tumbling. Phenomenologically such motions partially average dipolar (or
quadrupolar) coupling without a reorientation of the whole molecule. As a
result, the observed T1 time increases. Table 10.1 shows the minimal 1H T1
times (T1 min(OBS)), measured in solutions of two polyhydride molecules at
500 MHz. As can be seen, the T1 min times (1H T1 min(calc)), calculated on the
basis of the H−H and H−P distances in the neutron diffraction structures
[1], are significantly shorter. Note that the calculations have been performed
for ‘immobile’ hydride ligands and the term ‘immobile’ corresponds to a
situation when the hydrogen atoms participate only in molecular tumbling.
It is easy to show that simple anisotropic motions of the hydride molecules
cannot explain the large disagreements in Table 10.1. In the case of the irid-
ium pentahydride, an alternative reason for a four-fold T1 difference could

Practical NMR Relaxation for Chemists Vladimir I. Bakhmutov
 2004 John Wiley & Sons, Ltd ISBNs: 0-470-09445-1 (HB); 0-470-09446-X (PB)
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Table 10.1 Calculated and experimental minimal 1H T1 relaxation times (s, 500 MHz)
obtained for the hydride ligands in two classical hydrides, IrH5(PPri

3)2 and
[ReH8(PPh3)]−

Hydride T1 min(calc) T1 min(obs) T1 min(obs)/T1 min(calc)

IrH5(PPri
3)2 0.161 0.599 3.72

[ReH8(PPh3)]− 0.121 0.490 4.04

H

P(Pri
3)

P(Pri
3)

H 

H

H 

H Ir

Figure 10.1 Motions of the hydride ligands as a fast ‘autonomous rotation’ of the
polyhydride ring, causing a four-fold elongation of 1H T1 times in the iridium hydride

be a fast (on the scale of molecular tumbling) ‘autonomous rotation’ of the
polyhydride ring [2, 3], shown in Figure 10.1. The vectors, connecting pairs
of hydrogen atoms, are perpendicular to the rotational axis and then the
Woessner equation predicts a four-fold 1H T1 increase.

Both examples illustrate the high sensitivity of nuclear relaxation to fast
internal motions. The purpose of this chapter is to show how the fast
internal motions affect internuclear distances (or deuterium quadrupolar
parameters), calculated on the basis of a simple isotropic model, and how to
modify the spectral density functions to account for such motions.

One of the simplest molecular models illustrating a high intramolecu-
lar mobility is a pair of hydrogen atoms, binding to a metal center in
the W dihydrogen complex W(H2)(CO)3(PPri

3)2 (Figure 10.2). According
to the neutron diffraction data [4], the hydride atoms in the complex
are separated by 0.82 Å. In the absence of internal (H2) motions this dis-
tance gives, via Equation (8.12), a minimal relaxation time, 1H T1 min(H2), of
0.00157 s (νH = 200 MHz) compared with 0.0040 s measured experimentally.
It is obvious that, in the absence of knowledge of the internal dynam-
ics, calculations of H−H distances in such systems will require significant
corrections [5].



1H T1 Times and H−H Distances with Fast Vibrations and Librations 141

W

R = 0.82 Å

Figure 10.2 Dihydrogen ligand with ultra-fast vibrational and librational motions of
the hydrogen atoms (R is an equilibrium internuclear distance; the Z-coordinate is
along the H−H bond)

10.1 1H T1 Times and H−H Distances in the
Presence of Fast Vibrations and Librations

Ultra-fast stretching, bending and torsional motions are general properties
of chemical bonds and are always present in investigated objects. Note
however that the effects of these motions on calculated internuclear distances
depend on the nature and conditions of the experiment. For this reason, the
distances, determined by the solid-state NMR technique, by NMR relaxation
in solutions and by neutron diffraction, are different.

Figure 10.2 shows vibrational and librational motions in the (H2) ligand of
the W dihydrogen complex with amplitudes �Z, �X and �Y, respectively. In
the presence of stretching motions, the orientation of the vector connecting
two nuclei is unchanged. In contrast, librations reorient this vector. Under
these conditions, an H−H distance (0.82 Å in the figure) becomes an equi-
librium internuclear separation, marked as R. Owing to the nature of dipolar
coupling, the vibrations and librations lead to observation of an effective
internuclear separation, marked as REFF. Henry and Szabo [6] have analyzed
the influence of vibrational/librational motions on internuclear distances
determined via dipolar NMR relaxation or lineshapes in the solid-state NMR
spectra. It has been established that the REFF distance is constantly longer
than the equilibrium internuclear distance. According to Henry and Szabo,
the REFF value can be expressed, as a function of R and �:

REFF � R + [< �Z > −(2 < �Z
2 >)/R] + [(1/2R)(< �X

2 > + < �Y
2 >)]

(10.1)

The first term in the equation corresponds to the vibrational averaging of
dipolar coupling. The second term reflects the librational effects. Variations
in �Z, �X, and �Y amplitudes in Equation (10.1) from 0.01 to 0.02 and
0.05 Å allow one to express quantitatively the influence of the motions on the
effective internuclear distances REFF determined by relaxation measurements.
The REFF values, shown in Table 10.2, correspond to 1H T1 min(REFF) times of



142 Spin – Lattice 1H and 2H Relaxation in Mobile Groups

Table 10.2 Effective H−H distances REFF and 1H T1 min times at 200 MHz for the
dihydrogen ligand with equilibrium internuclear distance 0.820 Å in the presence of
vibrational and librational motions of the hydrogen atoms

�Z (Å) �X = �Y (Å) REFF (Å) T1 min(REFF) (s)
[T1 min(REFF) − T1 min(R)]/

T1 min(REFF) (%)

0.01 0.01 0.830 0.00169 7.0
0.02 0.02 0.839 0.00180 12.8
0.02 0 0.839 0.00180 12.8
0.05 0.05 0.867 0.0022 28.6
0.05 0 0.864 0.00215 26.9

0.00169, 0.00180 and 0.00215 s (νH = 200 MHz) via Equation (8.12). In turn, at
R = 0.82 Å, the 1H T1 min (R) time is calculated as 0.00157 s. As can be seen, the
high-amplitude motions cause significant increases in 1H T1 min and the H−H
distances will be overestimated. For example, at �Z = �X = �Y = 0.05 Å, the
effective 1H T1 min time results in 0.867 Å, requiring a 5.4% correction for the
vibrational/librational motions.

The problem of the corrections of internuclear distances, calculated from
relaxation data, has a common character. However, quantitatively, the cor-
rections will be different for different chemical bonds and molecules. For
example, the influence of vibrations on the dipolar C−H coupling is small,
and does not depend on the nature of molecules and their environments. It
has been found that the vibrations in C−H bonds reduce the dipolar coupling
constant by 3% and thus the effective C−H bond lengths increase by 1%
only. In contrast, librational motions, reorienting the dipolar C−H vectors,
are dependent on the nature of molecules. In common case, they can cause
significant effective elongations of the C−H bonds up to 5.6% [6].

In addition, dihydrogen ligands are mobile, even in the solid state. There-
fore, the neutron diffraction data collected in the solid state, also require
corrections. However in contrast to nuclear relaxation, neutron diffrac-
tion underestimates H−H distances [7]. For example, the H−H distance of
0.82 Å, found in the neutron diffraction structure of dihydrogen complex
(CO)3(PPri

3)2 W(H2), should be longer by few hundredths of an angstrom.
In fact, the solid-state 1H NMR signal of this complex has been fitted to the
Pake doublet line with r(H−H) = 0.890 ± 0.006 Å [8].

10.2 1H T1 Times and H−H Distances in the
Presence of Fast Rotational Diffusion

A C3V rotation of CH3 groups as well as a free rotation of dihydrogen ligands
(rotational diffusion) around the axis in Figure 6.2, is well established by
variable-temperature NMR spectra in solution and the solid-state [9]. In
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most cases, rotational diffusion occurs with rate constants >105 –106 s−1 and
thus it is a fast process on the NMR time scale. However, on the time scale of
molecular tumbling, the process can be slow. In this case, the (H2) rotation
does not affect nuclear spin–lattice relaxation and such (H2) ligands are
considered as immobile ones.

When the rotational correlation time τROT is much shorter than the corre-
lation times of molecular tumbling (τROT � τMOL) and activation energy of
the rotation is smaller than that of molecular tumbling, then the (H2) unit
behaves as a free rotor with θ = 90◦ (Figure 6.2). In this case, the Woessner
spectral density function [10], written for a T1 min time, leads to equation:

r(H−H) = 4.611 (T1 min/ν)1/6 (10.2)

where r, T1 min and ν are measured in Å, seconds and MHz. respectively. The
coefficient, 4.611, is the result of a four-fold elongation of the 1H T1 time in the
presence of free rotation (compare with the value of 5.815 in Equation 8.12).

The decrease of dipolar coupling due to a fast rotation is a common
phenomenon in nuclear relaxation. However, the effects are quantitatively
different. For example, theoretically, a fast CH3 diffusion (Figure 6.2) can
lead to reducing the 13C−1H dipolar coupling by factor of 9. In this case the
angle θ is equal to 109◦ and coefficient (3 cos θ2 − 1)2/4 in Equation (6.6) is
calculated as 0.11. That is why in most cases, 13CH3 T1 times are quite long.

To show practically the problem of H−H distance determinations in
mobile groups, consider Table 10.3 [11]. These data compare H−H bond

Table 10.3 H−H bond lengths (Å) in dihydrogen complexes determined in the solid
state (SS) and in solutions from the 1H T1 min times for fast-spinning (FS) and immobile
(IM) dihydrogen ligands

Complex r(H−H)FS r(HH)IM r(H−H)SS

Os(H2)H(dppe)2
+ 0.99 1.25 0.95

Ru(H2)H(dppe)2
+ 0.885 1.12 0.89c

trans-Os(H2)I(NH4)+ 1.207 1.52 1.21c

Mo(H2)(CO)(dppe)2 0.99 1.25 0.735a

0.88b

0.85c

Cr(H2)(CO)3(PPri
3)2 0.78 0.99 0.86b

0.84c

W(H2)(CO)3(PPri
3)2 0.76 0.96 0.82a

0.89b

0.85c

Nb(H2)(C5H4SiMe3)2(PMe2Ph)+ 0.93 1.17 1.17c

trans-HIr(H2)Cl2(PCy3)2 0.74 0.94 0.85c

a Neutron diffraction distance; should corrected for libration to the range 0.80–0.88 Å
b Solid-state 1H NMR
c Determined from the correlation r(H−H) = 1.42–0.0167JHD
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lengths in dihydrogen complexes, obtained from 1H T1 min times in solutions
and diffraction methods in the solid-state. The relaxation data have been
interpreted in terms of fast- and slow-spinning ligands. Undoubtedly, the
first three complexes have dihydrogen ligands of the fast-spinning nature. In
fact, a free rotation model gives, via Equation (10.2), H−H distances in very
good agreement with the solid-state data.

According to the method of inelastic neutron scattering, the energy barrier
of a (H2) rotation in solid Mo(H2)(CO)(dppe)2 is as low as 0.7 kcal/mol.
Reorientations of such molecules in solution require remarkably higher
energies (see Table 1.4). Thus the 1H relaxation in Mo(H2)(CO)(dppe)2 can be
treated in the framework of a free rotation model. Then, the 1H T1 min time of
0.02 s, measured at 200 MHz, gives 0.99 Å compared with an unrealistically
long distance (1.25 Å) expected for an immobile dihydrogen ligand (see
Equation 8.12). Nevertheless, the H−H distance in the solid state (0.88 Å)
is still shorter. It is probable that the value of 0.99 Å requires an additional
correction for vibrational/librational (H2) motions.

Rotation of the (H2) ligand in solutions of complex
Nb(H2)(C5H4SiMe3)2(PMe2Ph)+ can be stopped on the NMR time scale
at low temperatures [12]. Thus, the (H2) rotation is slow on the time scale of
molecular tumbling. Actually, the 1H T1 min time, measured in this complex
as 0.020 s (300 MHz), gives 1.17 Å via Equation (8.12) in good agreement
with structural data in the solid state.

The 1H T1 min(H2) times in complexes Cr(H2)(CO)3(PPri
3)2 and trans-

HIr(H2)Cl2(PCy3)2 lead to the unrealistically short H−H bond lengths,
calculated in the approximation of a fast-spinning model [13]. Even with-
out corrections for vibrational/librational motions, the H−H distances
are very close to 0.75 Å in molecular hydrogen. Immobile (H2) ligands
(Equation 8.12) give more plausible distances (0.99 and 0.94 Å) to account
for vibrational/librational (H2) motions. All the examples demonstrate that
determinations of H−H distances in rapidly moving molecular fragments
require detailed information about the character and rates of internal motions.
It is obvious that, in the absence of these details, uncertainties in r(H−H)
calculations are quite large.

Comparison of the spectral density functions in Equation (6.6) and (4.5)
shows that nuclear relaxation in immobile and mobile groups is not distin-
guishable phenomenologically. In the both cases, plots of the ln(T1) versus
1/T are symmetric and V-shaped. The situation changes under the condition:

1/τ(H2) � 1/τMOL ≈ ωH (10.3)

It is easy to show that in this case the plots of the ln(T1) versus 1/T become
asymmetric and sensitive to (H2) motions [5, 14]. Similar effects have been
observed for relaxation of ellipsoidal molecules in Chapter 6 (see Figure 6.2
at ρ = 10 and 50).
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10.3 The Spectral Density Function
for High-amplitude Librations

The solid-state 1H NMR spectra of complex W(H2)(CO)3(PPri
3)2 directly

show (H2) librations. The librations sweep out an average angle of ± 16◦,
even at 100 K and below [4]. To describe nuclear relaxation in such systems
quantitatively, Morris and Wittebort [5] have considered librations in a pair
of protons as reorientations of the dipolar H−H vector in the limits of the
angle amplitude, �, (see Figure 10.3) at a constant internuclear distance. If
the librations are fast on the time scale of molecular tumbling (i.e. τC(lib)
� τC(mol)), then the angle � can be incorporated into the expression of the
relaxation rate to give the spectral density function:

J(ωH) = 0.25 (τc(mol))/(1 + ωH
2τc

2(mol))+
+ 0.75 (1 − 4 < �2 >)(τc(mol)/(1 + ωH

2τc
2(mol))

J(2ωH) = 0.25(τc(mol)/(1 + 4ωH
2τc

2(mol))+
+ 0.75 (1 − 4 < �2 >)(τc(mol)/(1 + 4ωH

2τc
2(mol)) (10.4)

At � = 0◦ a dihydrogen ligand is immobile and Equation (10.4) coverts to the
Bloembergen–Purcell–Pound spectral density function. According to Morris
and Wittebort, in the presence of ultra-fast librations, H−H distances can be
calculated via the minimal 1H T1 times by the equation:

r(H−H) = C(�)(T1 min/ν)
1/6 (10.5)

where T1 min and ν are measured in seconds and MHz, respectively. In
turn, coefficients C(�), reflecting the influence of ultra-fast librations, are
computed at variations in the � amplitudes (Table 10.4).

As we have shown, the H−H bond length calculations for the fast-spinning
and immobile ligands in complex W(H2)(CO)3(PPri

3)2 from the solution 1H
T1 min time disagree with the solid-state data (Table 10.3). Take the model
of a librating dihydrogen ligand and calculate the �. For an immobile (H2)

P

CO

H H P

Φ

CO

W

Figure 10.3 Ultra fast librations of the dihydrogen ligands in complex
W(H2)(CO)3(PPri

3)2. The librations are limited by the angle amplitude, �



146 Spin – Lattice 1H and 2H Relaxation in Mobile Groups

Table 10.4 Librational correc-
tions C(�) calculated on the
basis of Equation (10.4) at dif-
ferent amplitudes � [5]

� (◦) C(�)

0 5.82
9.05 5.74
12.8 5.66
15.7 5.57
18.1 5.48
20.2 5.37
22.2 5.26
25.6 4.98
28.6 4.59
Fast-spinning 4.611

ligand, the 1H T1 min time of 0.004 s (200 MHz) gives 0.96 Å via Equation (8.12)
compared with 0.89 Å, found in the solid state. Then, a simple combination
of Equations (8.12) and (10.5) leads to C(�) = 5.401. According to Table 10.4,
the latter corresponds to an angle amplitude �, between 18 and 20◦. Note
that the solid-state 1H NMR spectra of W(H2)(CO)3(PPri

3)2 have shown (H2)
librations with amplitudes � of ± 16◦ at 100 K. A slight increase of � on
going from the solid state to solutions is plausible, and thus the librating
model is supported experimentally.

10.4 90◦ Jumps in a Four-fold Potential

By definition, the H−H vector in a fast-spinning (H2) ligand can take any
orientation in the plane perpendicular to the rotational axis. However, in
many cases a dihydrogen ligand occupies two possible positions for energetic
reasons (Figure 10.4). Usually, the energy barrier between the positions is
quite low and thus the H−H vector undergoes fast 90◦ jumps in the four-fold
potential. Note that spin populations in these states can be different.

Morris and Wittebort [5] have analyzed nuclear relaxation in such a system
in terms of a superposition of two states, A and B (Figure 10.4). In both
states, the H−H vector undergoes isotropic reorientations with molecular
motion correlation times τc(mol). Under these conditions, the spectral density
function, depending on rates of A/B transformations, is expressed by:

J(ωH) = (PA
2 − PAPB + PB

2)(τc(mol)/(1 + ωH
2τc

2(mol))

+ 3PAPB[τc(mol) + (kA + kB)τc
2(mol)]/

{[1 + (kA + kB)τc(mol)]2 + ωH
2τc

2(mol)} (10.6)
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HH

H 

H

A

B

W

W

Figure 10.4 Schematic representation of 90◦ jumping dihydrogen ligands

where PA and PB are the populations of A and B states, PA + PB = 1 and kA
and kB are the corresponding rate constants. If the k values are small (case a):

kA + kB � 1/τc(mol) (a)

kA + kB � 1/τc(mol) (b) (10.7)

then Equation (10.6) converts to the Bloembergen–Purcell–Pound spectral
density function. In case b, the second term in Equation (10.6) transforms
to zero and the function is simplified. Incorporating the function into the
expression for the 1H T1 min time leads to:

r(H−H) = C(P)(T1 min/ν)
1/6 (10.8)

In turn, the C(P) factor is:

C(P) = 5.815 (PA
2 − PAPB + PB

2)1/6 (10.9)

One can show that 90◦ jumps and a free rotation model are identical at
PA = PB = 0.5.

Consider application of this formalism for complex W(H2)(CO)3(PPri
3)2

where 1H T1 min = 0.004 s at 200 MHz. As we have shown, the H−H bond
length of 0.96 Å is calculated from the T1 min time for an immobile dihy-
drogen ligand compared with 0.89 Å, measured in the solid state. Then, a
combination of Equations (8.12), (10.8) and (10.9) gives PA = 0.7.

An analysis of Equation (10.6) shows that at kA + kB � 1/τc(mol) the plots
of ln(T1) versus 1/T are symmetric and V-shaped. However if the equilibrium
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constant, K = PA/PB, depends strongly on the temperature, then the variable-
temperature relaxation curves can deviate from the symmetrical V-shapes.
This effect can be observed experimentally.

To conclude this part, it must again be emphasized that, in the absence
of knowledge of internal molecular dynamics, accurate determinations of
internuclear distances in flexible systems are not possible because commonly
nuclear relaxation in solutions does not distinguish the types of motions. In
this context, relaxation in the solid state has significant advantages. First,
the temperature diapason is practically unrestricted. Second, the type of
internal molecular motions can be directly established from the character
of the relaxation curves. For example, a tunneling rotation of CH3 groups
is well identified as an anomalous 1H T1 behavior in the field-dependent
experiments [15]. The experiments require special NMR techniques providing
the field-cycling procedures: (a) saturation of proton magnetization with a
comb of radiofrequency pulses at magnetic field BNMR; (b) rapid switching
to a new magnetic field BR; (c) evolution of the magnetization in this field
BR; (d) rapid magnetic field switching to BNMR; (e) measurements of the
magnetization by pulses at field BNMR. Some examples of the variable-field
relaxation experiments on solutions will be considered in Chapter 11.

10.5 Deuterium Spin – Lattice NMR Relaxation
in Mobile Molecular Fragments

Spin–lattice relaxation of deuterium is completely governed by quadrupole
interactions and at isotropic molecular motions, the relaxation rate is:

1/T1 = (3/10)π2(DQCC)2(1 + η2/3)

× (τc/(1 + ωD
2τc

2) + 4τc/(1 + 4ωD
2τc

2)) (10.10)

where DQCC is the static deuterium quadrupole coupling constant and η

is the asymmetry parameter of the electric field gradient at deuterium. The
term ‘static’ is relative to DQCC values determined in static molecules. The
V-shaped plots of ln(T1) versus 1/T go through minima (T1 min) and then:

1/T1 min = 0.672 (1 + η2/3)(DQCC)2/νD (10.11)

where T1 min, νD and DQCC are measured in seconds, MHz and kHz,
respectively. Note that, in most chemical bonds, the η parameter is close to
zero. Therefore, at the known static DQCC values, Equation (10.11), gives
good predictions of 2H T1 min times, and vice versa, the 2H T1 min times
provide determinations of the DQCC. The task of this part is to show
how this expression changes in the presence of fast internal motions. Good
models for these considerations are (D2) ligands in dihydrogen complexes.
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In fact, they can be classified as immobile, fast-spinning and 90◦ or 180◦

jumping ligands.
An immobile (D2) ligand. Even in the case of immobile X−D bonds, the X

and D atoms undergo ultra-fast vibrational/librational motions. According
to the theory of quadrupole interactions, the electric field gradient at D
depends on the X−D bond length (see Equation 4.22) and the principal eqZZ

component is along this bond. Then, by analogy with nuclear relaxation in
a pair of protons, the vibrations and librations in X−D bonds will partially
average the quadrupolar coupling and thus DQCC values, determined by
2H T1 min measurements, will be effectively reduced. Henry and Szabo have
shown that this effect can reach 6% of the DQCC [6] and thus the measured
magnitudes should be corrected.

180◦ Jumps of (D2) ligands in solids. It has been established that dihydrogen
ligands are mobile, even in the solid state and at low temperatures: hydrogen
atoms can change their positions due to 180◦ jumps shown in Figure 10.5.
It should be noted that orientation of the dipolar H−H vector in the (H2)
ligand, lying along the H−H bond, does not change due to this type of 180◦

jump. For this reason, this motion does not effect the 1H T1 time. In contrast,
the eqZZ component at D in a (D2) ligand deviates from the D−D direction.
Under these conditions the 2H NMR relaxation rate 1/T1(EX) is:

1/T1(EX) = (9/160) (1 + η2/3) (sin 2α)2

(DQCC)2(τEX/(1 + ωD
2τEX

2) + 4τEX/(1 + 4ωD
2τEX

2)) (10.12)

where 2α is the angle formed by principal eqZZ components at two deuterons
and τEX is the correlation time of the exchange [16]. When the 2H T1 time in
Equation (10.12) reaches a minimum, it can be rewritten as [17]:

1/T1 min(EX) = 0.0128 (1 + η2/3) (sin 2α)2 (DQCC)2/νD (10.13)

M

eqZZ

D D

D D

M

α

180° ñ flip

Figure 10.5 180◦-Jumps of a (D2) ligand around the axis perpendicular to the
D−D bond
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A free (D2) rotation in solution. In solution, 2H T1 times depend on molecular
tumbling (the molecular motion correlation times τC) and internal high-
amplitude (D2) motions. At slow internal motions on the ωD time scale,
dihydrogen ligands are immobile and their relaxation behavior corresponds
to Equation (10.10) or (10.11). In fast-spinning dihydrogen ligands, D−D
bonds undergo a free rotation (Figure 10.6), correlation times of which are
significantly shorter than the τC. Nuclear relaxation in such free rotors is
described by the Woessner spectral density function. For 2H T1 times, the
Woessner equation gives:

1/T1 min(ROT) = 0.168 (3 cos2 α − 1)2 (1 + η2/3) (DQCC)2/νD (10.14)

where α is the angle formed by the principal electric field gradient component,
eqZZ, and the rotational axis.

(D2) librations in solution. By analogy with librations of (H2) ligands in a
two-fold potential, fast (D2) librations with amplitudes � (Figure 10.7) will
affect 2H T1 min times according to:

1/T1 min(LIB) = 0.672 F(α, φ)(1 + η2/3) (DQCC)2/νD (10.15)

α

Free rotation

eqZZ

M

D D

Figure 10.6 A dihydrogen (D2) ligand undergoing free rotation around the axis,
perpendicular to the D−D bond

MD D
Φ

M

D

D

α

Figure 10.7 Ultra-fast (D2) librations in a dihydrogen ligand. The librations are
limited by the amplitude angle, � (α is the angle formed by the eqZZ vector and the
motional axis)
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where factors F(α, φ) can be calculated at variations in the α and φ values
[18] by analogy with the spectral density function suggested by Morris and
Wittebort (see Equation 10.4).

180◦ jumps in solution. Topologically, 180◦ reorientations of the (D2) ligand
in Figure 10.5 correspond to displacement of the principal eqZZ component
by the angle 2α. If fast 180◦ jumps occur in solution this (D2) system can be
regarded as two equally populated states, which undergo isotropic motions
[19]. Then, the 2H T1 min can be written as:

1/T1 min(180◦
) = 0.672 C1 (1 + η2/3) (DQCC)2/νD (10.16)

where C1 = 0.25(1 + 3 cos2 2α). It is seen that at α = 0 Equation (10.16) trans-
forms to Equation (10.11). Note that, according to Morris and Wittebort, 90◦

(H2) jumps in a four-fold potential and a fast (H2) rotation are equivalent
when H−H orientations do not have an energetic preference. Therefore, we
do not deal with this case.

The Equations (10.11) to (10.16) show that fast internal motions increase
2H T1 min times. It is important that the resulting effect depends on the nature
of motions and the DQCC, α and η values. It is obvious that the quadrupolar
parameters cannot be accurately determined by the 2H T1 relaxation when
the nature of internal motions is unknown. Therefore in most cases, 2H
T1 experiments are focused on studies of molecular motions in solutions
of 2H-labeled compounds containing simple chemical bonds (for example,
2H−C, 2H−N). Since in this case, the deuterium quadrupole parameters are
well established and the eqZZ components are lying along the chemical bonds,
the T1 values can be easy fitted to the corresponding motional model.

It can be demonstrated, however, that, even in the presence of many uncer-
tainties, 2H T1 min data can still provide some useful conclusions. First, the
uncertainty connected with the unknown η parameter seems to be insignif-
icant because the (1 + η2/3) factor changes from 1 to 1.33 only. Therefore
we take η = 0 as a good approximation. Second, when α in these equations
approaches the magic angle (54◦) and amplitudes φ (Figure 10.7) are high,
then the rotational and librational motions have a maximal influence on the
2H T1 min times. In the case of 180◦ jumps, the 2H T1 min will be longest at α = 45◦

(see Equation 10.16). As the DQCC in Equations (10.11) and (10.14) to (10.16)
remains constant, these mentioned conditions lead to the maximally possible
T1 min increases by a factor >4, by 4 and by 2.8 caused by the rotation, 180◦

jumps and librations, respectively. From the elongating factors it can be
concluded that the dihydrogen ligands in dihydrogen/hydride complexes
can be classified as fast-spinning ones if the 2H T1 min increases by a factor >4
on going from D to (D2). This conclusion is true because the DQCC values
in (D2) ligands are higher than in (D) ligands (see below) and this relaxation
criterion can be used for structural formulations of hydride systems, even in
the absence of additional data.
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The complex Ru(D2)Cl(dppe)2
+ illustrates determination of internal (D2)

motions in solution, based on quadrupolar parameters, obtained by solid-
state 2H NMR. According to the solid-state 2H NMR spectrum recorded
at 5.4 K, the tensor of the electric field gradient in the solid complex
Ru(D2)Cl(dppe)2

+ is axially symmetric (η = 0.1), its principal component,
eqZZ, strongly deviates from the D−D bond (α = 45◦) and the static DQCC
value is equal to 107 kHz [20]. The 2H T1 min time in the solid complex is
measured as 0.161 s at 61.45 MHz (for convenience, all the T1 times to be
discussed are converted to the 2H NMR frequency of 61.45 MHz). Then, the
exact DQCC, α and η values lead to a 2H T1 min value of 0.42 s, expected
for an 180◦ jump diffusion (Equation 10.13). The predicted time is longer
and therefore the (D2) motions are a combination of two-site jumps and a
rotational diffusion. For example, they could be a combination of 180◦ jumps
with 90◦ jumps in a four-fold potential. Owing to fast molecular tumbling,
the 2H T1 min in solutions of this complex [21] is shorter than in the solid state
(0.047 s and 0.161 s, respectively). Morris and Wittebort have classified the
(H2) ligand in Ru(H2)Cl(dppe)2

+ as a fast-spinning one on the basis of 1H T1
NMR data in solution. However, the solid-state quadrupolar parameters and
a free rotation model, applied for a solution of Ru(D2)Cl(dppe)2

+, predict
a long 2H T1 min time of 0.128 s against 0.047 s measured experimentally. In
contrast, an 180◦ jump model, applied for a solution (Equation 10.16) leads to
a shorter 2H T1 min time (0.032 s). Thus, internal (D2) motions in solutions of
Ru(D2)Cl(dppe)2

+ are again a combination of rotational diffusion with 180◦

jumps (probably in a ratio of 0.4/0.6).
The hydride and dihydrogen ligands in solutions of the complex

RuD(D2)(dppe)2
+ show 2H T1 min times of 0.015 and 0.181 s, respectively

[21]. Even in the absence of exact quadrupolar parameters, these data reveal
the fast-spinning nature of the (D2) ligand to be in good agreement with
formulation based on the 1H T1 NMR relaxation [5]. It has been established
that (D2) motions in Ru dihydrogen complexes can be probed by static DQCC
magnitudes taken from DFT calculations and corrected as 107–117 kHz [17].
Then, orientation of the eqZZ component at D in the dihydrogen ligand of
RuD(D2)(dppe)2

+ is calculated via Equation (10.14) as α = 46–48◦.
Solutions of dihydrogen complex Ru(D2)Cp*(dppm)+ show 2H T1 min of

0.019–0.021 s. According to the 1H T1 NMR relaxation data [5], 1H iso-
topomeric complex Ru(H2)Cp*(dppm)+ is one of the innumerous examples,
containing an immobile (H2) ligand on the time scale of molecular tum-
bling. Table 10.5 lists the 2H T1 min times calculated at DQCC = 107–117 kHz
(taken from DFT computations of Ru dihydrogen systems) for the static,
180◦ jumping and librating (D2) ligands. It is obvious that the (D2) ligand
is not static in Ru(D2)Cp*(dppm)+ at the deuterium frequency. That is why
the deuterium T1 min time (0.014–0.018 s) in the classical dihydride isomer,
RuD2Cp*(dppm)+, is shorter than that in the dihydrogen isomer. Since 180◦
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Table 10.5 2H T1 min times (61.45 MHz) calculated for static (T1 min) and moving
dihydrogen ligands at different DQCC values

Complex T1 min(DQCC) T1 min180◦(DQCC)a T1 minLIB(DQCC)b

Ru(D2) 0.00799 (107) 0.0320 (107) 0.0224 (107)
0.00645 (119) 0.0258 (119) 0.0180 (119)

a Calculated as a maximally long T1 min time at α = 45◦
b Calculated as a maximally long T1 min time at φ = 23◦ and α = 54◦

Table 10.6 Geometries and orientations of the principal components the EFG tensors
at D in the dihydrogen ligands of some dihydrogen complexes

Compound r(D−D) (Å) r(M−D) (Å) DMD (◦) 2α (◦) θ (◦)

W(D2)(CO)3(PCy3)2 0.89 1.9 27 68 104
RuD(D2)(dppe)2

+ 0.94 1.81 30 92–96 105
OsD(D2)(dppe)2

+ 0.96 1.74 32 80–84 106
Ru(D2)Cp*(dppm)+ 1.1 1.66 38 64–72 109
Os(D2)Cl(dppe)2

+ 1.22 1.58 45 40–66 113
40–72

2α

D

M

θ
D

Figure 10.8 Orientation of the principal components of the electric field gradients
at D (dashed arrows) determined for dihydrogen ligands by the 2H T1 relaxation
measurements in account for fast internal (D2) motions (angles θ and 2α are formed
by two MDD bisectors and eqZZ vectors, respectively)

jumps do not affect 1H T1 times, they contribute to the deuterium relaxation
rate in Ru(D2)Cp*(dppm)+. Then, Equation (10.16) results in α values in the
range 32–36◦. Thus in spite of uncertainties connected with the high internal
mobility of dihydrogen ligands, 2H NMR relaxation leads to an important
chemical conclusion: the principal components of the electric field gradients
at D in dihydrogen ligands are oriented closer to the M−D directions (see
Table 10.6 and Figure 10.8) illustrating large contributions of metal atoms
to (H2) bonding. Finally, it must be emphasized that the data discussed
illustrate a higher sensitivity of deuterium relaxation to motions with respect
to proton relaxation.
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By analogy with protons and deuterons, relaxation of other nuclei can be
successfully used to solve the following problems: experimental determi-
nations of chemical shift anisotropies and quadrupole coupling constants
(QCC), when direct methods (solid state NMR and NQR, respectively) are
not available; investigations of weak interactions such as complexation and
association or hydrogen bonding; identifications and studies of chemical
exchanges and molecular motions. Methodologies of these investigations
are quite different and depend on the nature of nuclei and relaxation
mechanisms. This chapter includes multinuclear direct and indirect relax-
ation measurements, determinations and interpretations of cross-correlation
relaxation rates, combinations of T1 and T2 experiments and the variable-field
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relaxation measurements. The best way to introduce this topic is to show
typical examples involving nuclei of different nature. Among them, 205Tl,
103Rh, 119Hg and 59Co seem to be important in organometallic chemistry,
23Na and 27Al illustrate relaxation studies of association and complexation
and 14N, 15N and 13C are often used as target nuclei in investigations of
biomolecules.

11.1 Chemical Shift Anisotropies and Nuclear
Quadrupole Coupling Constants from T1
Times of Heavy Nuclei in Solution

In spite of the fact that chemical shift anisotropies �σ characterize magnetic
properties of nuclei, the �σ values depend on local environments of nuclei
and connect with the symmetry of compounds. Thus, they can provide
important chemical information. Since the chemical shift anisotropy affects
lineshapes in NMR spectra of solid static samples, solid-state NMR is a
direct way to CSA determinations. If however, for some reason, the solid-
state NMR spectra are unavailable, nuclear relaxation in solution becomes a
unique method for CSA studies.

The CSA mechanism is dominant in relaxation of heavy nuclei such as
205Tl, 195Pt, 207Pb, 57Fe and 103Rh. In spite of this dominance, CSA con-
tributions should correctly evaluated from total relaxation rates because
dipole–dipole and/or spin–rotation interactions can be also significant. At
fast molecular motions (see Equation 5.6 at 1 � ω2τc

2), the rate of CSA
relaxation is:

(T1)
−1

CSA = (2/15) γI
2 B0

2 (�σ)2 τc (11.1)

If the total relaxation rate (T1)
−1

OBS increases linearly with the square of
the applied magnetic field B0 in variable-field experiments, then the CSA
contribution (T1)

−1
CSA, can be evaluated via the proportionality

(T1)
−1

(CSA)(B
(1)) = [(T1)

−1
OBS(B

(1)) − (T1)
−1

OBS(B
(2))]

× [1 − (B(2))/(B(1))2]−1 (11.2)

where B(1) and B(2) are the strengths of the applied external magnetic field.
This feature is observed, for example, in relaxation of 103Rh nuclei in complex
Rh(COD)(tetrakis(1-pyrazole)borate) [1]. It is easy to show that the plot of
the (1/T1OBS) versus B0

2 (see Table 11.1) is actually linear and has a small
intercept. The latter is a good evidence for the negligibly small contributions
from other mechanisms: CSA contributions to the total 103Rh T1 relaxation
rates are calculated as 92 and 97% at magnetic fields of 7.05 and 11.75
T, respectively. It is obvious that a �σ(103Rh) value can be calculated via
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Table 11.1 103Rh T1 relaxation time in a CDCl3 solution of
Rh(COD)(tetrakis(1-pyrazole)borate) measured as a function of
the applied magnetic field strength B0 at 298 K

B0 (T) 103Rh T1(OBS) (s) B0
2(T2) 1/T1(OBS) (s−1)

7.05 0.886 49.7 1.13
9.39 0.510 88.17 1.96
11.75 0.334 139.06 2.99

Equation (11.1) if the correlation time τC is known. Since olefin carbons in
the Rh complex relax completely by dipole–dipole C−H interactions, their
relaxation rate is:

1/T1(C−H) = N (µ0/4π)2 γH
2 γC

2 h̄2 r(C−H)−6 τC (11.3)

where N the number of hydrogens attached to the carbons. Then the 13C
T1 time, measured for these carbons, and C−H distances of 1.09 Å give
τC = 5.2 × 10−11 s. The latter finally leads to �σ(103Rh) = 6500 ppm [1].

205Tl T1 times in solutions of thallium compounds are shown in
Table 11.2 [2]. The 205Tl relaxation depends strongly on the applied magnetic
field in the first four thallium compounds. The CSA mechanism is dominant
and thus �σ values are determinable (310–1300 ppm). In the case of other
compounds, the variable-field effects on T1 are insignificant. 205Tl nuclei relax
simultaneously by the spin–rotation and CSA mechanisms. For this reason,
�σ determinations are not possible.

In the presence of pronounced dipole–dipole interactions, CSA contri-
butions can be accurately evaluated from total relaxation rates by partial
deuteration of the samples or NOE measurements in combination with
variable-field experiments. Spin–rotation contributions can be estimated
if spin–rotation constants are known. Multinuclear NMR experiments
on 3,5-dichlorophenylmercury cyanide in DMSO solutions illustrate the
methodology, based on NOE measurements. It follows from the data in

Table 11.2 205Tl NMR spin–lattice relaxation times T1 (s) in acidic water solutions
(HClO4) of compounds Tl(X)n(H2O)m−n

(3−n)+ at different magnetic fields

Compound 115.4 MHz 230.8 MHz 288.5 MHz Intercept (s−1) �σ(ppm)

TiCl2+ 0.19 0.06 1.4 1300
TlCl2

+ 0.18 0.042 −0.52 1600
TlCl3 0.48 0.116 −0.096 960
TlCl4

− 0.57 0.40 1.51 310
TlBr2

+ 0.39 0.27
TlBr3 0.93 1.08
TlBr4

− 0.80 1.20 1.28
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Table 11.3 Relaxation times (T1, s), the NOE enhancements (η) and chemical shift
anisotropies, �σ, measured for 13C, 15N and 199Hg nuclei, in 3,5-dichlorophenylmer-
cury cyanide with 13C and 15N labels in the CN group (DMSO-d6)

Cpara Cmeta Cortho 13CCN
15NCN

199Hg

T1(4.7 T) 0.42 9 0.76 4.1 11.5 0.06
T1(11.7 T) 0.42 0.78 0.75 2.3 0.01
η(4.7 T) 1.75 0.2 1.75 0
�σ ppm 360 ± 30 500 ± 40 3245 ± 260

(338.2)a (637)a

aValues calculated at the DFT(B3LYP) level

Table 11.3 that the carbon resonances in the phenyl ring show large positive
NOE enhancements (1.75), close to a maximal value (η = 1.99). In addition,
the 13C T1 values are independent of the applied magnetic field. Thus, the 13C
relaxation of the phenyl carbons is completely governed by dipole–dipole
carbon–proton interactions. In contrast, the 15N and 13C T1 times in the CN
group and also the 199Hg T1 values are field dependent. At the same time, the
NOEs are invisible. It is obvious that the CSA mechanism is dominant in the
relaxation of all the above nuclei and their T1 times give the �σ(13C), �σ(15N)
and �σ(199Hg) values in good agreements with DFT(B3LYP) calculations.

Experiments on the cobalt cluster shown in Figure 11.1 illustrate NQCC
determinations for heavy nuclei by T1 measurements in solution [3]. The com-
plex has a C3v structure with nonequivalent apical and basal cobalt atoms and
shows two signals in the solid-state 59Co NMR spectrum. Linewidths of the
resonances are estimated as 50 and 350 kHz. A two-pulse Hahn-echo exper-
iment allows one to determine quadrupolar parameters (QCC = 12.4 MHz

Co

Co Co
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CO

CO

CO

CO

OC

OC

O
C

C
O

OC

O
C

O
C

C
O

(a)

(b) (b)

(b)

Figure 11.1 The structure of the cobalt cluster with the magnetically non-equivalent
apical and basal cobalt atoms (Co(a) and Co(b), respectively)
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Table 11.4 Variable-temperature 59Co spin–lattice relaxation times (ms)
determined for apical and basal Co atoms in the cluster Co4(CO)12 at
59Co NMR frequency 71.21 MHz (CDCl3)

T (K) Apical (δ = −670 ppm) Basal (δ = −2030 ppm)

291 1300 21.8
302 1560 26.8
312 1820 28.6
320 2040 35.0

and ηCo = 0.32) for the narrower signal, assigned to apical cobalt atoms.
Because of the big broadening, no quadrupolar parameters can be obtained
for basal Co atoms. In contrast to the solid state, both signals are well
detected in 59Co NMR spectra in a CDCl3 solution and their T1 times are accu-
rately measured (Table 11.4) (note however that, owing to an apical/basal
exchange, occurring at T > 260 K, the 59Co relaxation is not exponential and
the inversion recovery data require special treatment [3]). The relaxation rate
for 59Co nuclei (I = 7/2) can be expressed via Equation (11.4),

1/T1(
59Co) = (2π2/49) CQCC τC (11.4)

where the constant CQCC is defined as QCC2(1 + η2/3). In an isotropic
approximation, the motion correlation times, τC, are identical for the apical
and basal nuclei. Then Equation (11.5), combined with the solid-state NMR
data for the narrow line and the solution 59Co T1 measurements, leads to
QCCbasal = 100 MHz.

CQCC(basal) = CQCC(apical) {T1(apical)/T1(basal)} (11.5)

11.2 Multinuclear Relaxation Approaches to
Complexation, Association and H-bonding

As we have shown in the previous chapters, nuclear relaxation is very
sensitive to molecular motions. Under extreme narrowing conditions (i.e.
at 1 � ω2τc

2), the plots of ln(T1) versus 1/T are linear and their slopes
correspond to activation energies Ea of molecular motions. When individual
components interact, a complex formed moves more slowly through the
medium, requiring larger activation energy. The latter, being an energetic
measure of intermolecular interactions, is observed by variable-temperature
relaxation experiments. If the interactions lead to complexes of two or more
types, plots of ln(T1) versus 1/T can show several distinct linear regions. This
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Figure 11.2 Variable-temperature relaxation rates of 23Na nuclei, measured in a
molten mixture of NaCl, AlCl3 and 1-methyl-3-ethylimidazolium sodium chloride
(Figure 11.3): Na 0.22 MEI 0.76 AlCl4. (Reproduced from W. R. Carper, J. L. Pflug, J. S.
Wilkes. Inorganica Chimica Acta 1992; 193: 201, with permission from Elsevier)

situation is illustrated in Figure 11.2 where relaxation of 23Na nuclei shows
three linear sections as good evidence for complexation.

One of effective approaches to studies of association in solutions is the
so-called multiple spin probe method. The method consists of the standard
variable-temperature T1 measurements for target nuclei, belonging to differ-
ent individual components. If one of the nuclei relaxes by the dipole–dipole
mechanism (DD), for example 13C, and the other nucleus is quadrupolar (Q),
then relaxation rates R1(DD) and R1(Q) can be expressed by:

R1(DD)/a = R1(Q)/b (11.6)

where a = N (µ0/4π)2 γH
2 γC

2 h̄2 r(C−H)−6 and b = 0.3π2 [(2I + 1)/I2 (2I −
1)] (QCC)2(1 + η2/3). It is obvious that Equation (11.6) is valid when the
correlation times τC of the both target nuclei are identical or, in other words,
the components form a complex. If this statement is true, then plotting the
R1(DD) rates versus the R1(Q) rates will lead to a linear dependence with zero
intercept. This feature is observed for relaxation of 13C and 23Na nuclei in
molten salts, containing NaCl, 1-methyl-3-ethylimidazolium sodium chloride
(MEICI) (Figure 11.3) and AlCl3 [4]. On heating from 0◦ to 70◦C, the 13C
T1(DD) times, measured for carbons C(4,5) and C(2) in MEICI, reduce from
5.50 to 0.55 s, correlating well with the 23Na T1(Q) times (changing from 0.017
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Figure 11.3 The molecular structure of 1-methyl-3-ethylimidazolium sodium chlo-
ride (MEICI)

to 0.003 s) obtained for NaCl. The complexation is independently supported
by 23Na R1 and 27Al R1 measurements. Finally it should be emphasized
that molecular volumes of the complexes formed can be characterized in
terms of the Stokes radii by combination of T1 experiments with viscosity
measurements.

A typical hydrogen bond is shown in Figure 11.4 where B is the proton-
accepting center and the α angle is close to 180◦. The B centers usually
contain quadrupolar nuclei (14N or 17O), relaxation of which is sensitive
to hydrogen bonding. Methodologically relaxation studies of H-bonded
systems can be considered by using pyridine/phenol mixtures in CCl4
or CHCl3 as examples [5]. Preliminary experiments, carried out on the
individual pyridine in CCl4, show a very small increase of the 14N T1 time
from 1.59 to 1.64 ms at decreasing the pyridine concentration from 1.0 to
0.05 M. The effect certainly connects with a decrease of the solution viscosity.
In contrast, an addition of phenol to a 0.5 M CCl4 solution of pyridine is
accompanied by a strong decrease of the 14N T1 time from 1.59 to 0.23 ms
(Table 11.5). This effect is direct evidence for H-bonding. In fact, similar
experiments, carried out on 14N nuclei of pyridine in the presence of anisole
or 2,6-di-tert-butylphenol, did not reveal the pronounced 14N T1 effects. The
former cannot form H-bonds while the second compound has sterically
hindered OH groups. In addition, the presence of phenol in solutions of
benzaldehyde and acetonitrile (weaker proton acceptors than pyridine) does
not perturb the 17O, 13C and 14N T1 times (Table 11.5).

Quantum-chemical calculations at the HF/6-311G(d,p) level predict a 20%
decrease of the nitrogen quadrupole coupling constant in pyridine on going to

A H

B 

α

Figure 11.4 Schematic representation of a typical hydrogen bond where B is the
proton-accepting center
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Table 11.5 Room-temperature 14N, 17O and 13C T1 times in the individual proton
acceptors and the H-bonded systems in solutions. The η values (NOE) are determined
by 13C and 13C{1H} NMR experiments. XHB are molar fractions of H-bonded complexes
found by IR spectra (reproduced with permission from A. Bagno et al. Chemistry. A
European Journal. 2000; 6: 2915

Acceptor/solvent 14N T1 (ms) 17O T1 (ms) 13C T1 (s) 13C T1(DD) (s) η

Pyridine/CCl4 1.59 18.6 (C-4) 30.8 (C-4) 1.2
+ Phenol; XHB = 0.82 0.23 2.6 (C-4) 3.1 (C-4) 1.7
Pyridine/CHCl3 1.05 12.8 (C-4) 17.0 (C-4) 1.5
+ Phenol; XHB = 0.82 0.35 3.9 (C-4) 4.3 (C-4) 1.8
Acetonitrile/CCl4 2.43 34.0 (CN) 450 (CN) 0.15
+ Phenol; XHB = 0.79 0.82 18.4 (CN) 229 (CN) 0.16
Benzaldehyde/CCl4 1.95 16.2 (CO) 21.2 (CO) 1.7
+ Phenol; XHB = 0.76 1.58 9.8 (CO) 11.7 (CO) 1.7

complex PhOH. . . NC5H5. Since the 1/T1(Q) rate is proportional to the square
of the quadrupole constant (see Equation 4.23), the 14N T1 time expected for
this complex, should be longer than that in free pyridine. The observed effect
is opposite and hence molecular dynamics prevails over the QCC change.
For the same reason, the total and dipolar 13C T1 times, measured for carbons
C(4) in pyridine, decrease strongly in the presence of phenol (Table 11.5).

Experiments on 15N–substituted mono- and binuclear Pt amine cations
[Pt(15NH3)4]2+ and [{Pt(15NH3)3}2NH2(CH2)4NH2]4+ (Figure 11.5) illustrate
how 15N T1 times change at cation/anion interactions between the Pt com-
plexes with nucleotide 5′-guanosine monophosphate (5′-GMP) [5]. The data
in Table 11.6 show a consistent decrease of the 15N T1 times when the con-
centration of 5′-GMP increases. As can be seen, the binuclear Pt complex
demonstrates the bigger T1 effects. Finally, note that these interactions can
serve as a model of the approach of Pt-amine species to DNA.

11.3 23Na Relaxation in Solutions of Complex
Molecular Systems

In contrast to small organic or inorganic molecules, complex molecular
systems (for example, biological or polymer compounds) often show slow
and fast reorientational motions on the NMR frequency scale. According to
a two-step relaxation model, such motions are responsible for appearance
of slow (S) and fast (F) relaxing components in NMR decays, collected
experimentally. Under these conditions, the transverse and longitudinal
magnetizations can be expressed by equations:

MX = MX
0[a exp(−t/T2F) + b exp(−t/T2S)]

(MZ − MZ
0) = −MZ

0[c exp(−t/T1S) + d exp(−t/T1F)] (11.7)



23Na Relaxation in Solutions of Complex Molecular Systems 163

NH3

NH3

Pt

+2

H3N(a)

H2N

NH3(b)

NH3(a)

Pt 

+4

H2N

H3N(a)

NH3(a)

NH3(b)

Pt

(CH2)4

H3N

H3N

Figure 11.5 Structures of cationic 15N–substituted mono- and binuclear Pt amine
complexes, [Pt(15NH3)4]2+ and [{Pt(15NH3)3}2NH2(CH2)4NH2]4+

Table 11.6 15N T1 times (s), measured for platinum complexes in the
presence of the mononucleotide 5′-GMP (guanosine-5′-monophosphate) in
buffered aqueous solutions at 25◦C

Pt{(15NH3)4]2+ [{Pt(15NH3)3}2NH2(CH2)4NH2]4+

[Pt]/[5′-GMP] T1 T1(N(a)) T1(N(b))

41.3 18.4 14.9
4/1 41.3 17.4 11.9
2/1 37.6 15.3 11.6
1/1 34.0 13.5 10.6
1/2 28.5 10.0 8.1
1/4 22.3 8.0 6.6
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where a, b, c and d are portions of the corresponding components and
therefore a + b = 1 and c + d = 1. It is obvious that treatments of these NMR
decays require procedures for separation of two superimposed exponentials
(the so-called F and S separations) by a convenient mathematical method.

Relaxation of 23Na nuclei in water solutions of DNA is a typical example
of the two-step behavior and illustrates well the methodology of relaxation
applications for this field [7]. Owing to interactions between anionic sites
of DNA and sodium ions (or other cationic species), DNA molecules are
stabilized in solution. Thus, the sodium ions exist in bound (B) and free
(F) states. This statement is basic to the so-called two-site relaxation model.
An exchange between the B and F states is very fast on the NMR time scale
and for this reason, the relaxation rates, 23Na ROBS, measured experimentally,
are averaged:

ROBS = PFRF + PBRF (11.8)

where P and R are the populations and the relaxation rates in the corre-
sponding states, respectively. It is obvious that the ROBS measurements at
variations in DNA/23Na ratios can eventually give the number of bound
sodium ions.

In the framework of this two-step relaxation model, applied for DNA/23Na
systems, quadrupole interactions at 23Na are rapidly averaged to a small (but
nonzero) value due to fast motions and then the quadrupole coupling is
effectively averaged out to zero by slow motions, for example, segmental
motions within DNA molecules or radial translation diffusion of the bound
sodium ions. Under these conditions, the slow and fast components of the
23Na NMR relaxation, R1S, R1F, R2S and R2F, can be expressed as:

R1S = (1/20)(e2qQ/h̄)2 J(2ω0)

R1F = (1/20)(e2qQ/h̄)2 J(ω0)

R2S = (1/40)(e2qQ/h̄)2 [J(ω0) + J(2ω0)]

R2F = (1/40)(e2qQ/h̄)2 [J(0) + J(2ω0)] (11.9)

The spectral density functions J in Equations (11.9) have their usual meaning
(see Section 8.3). Therefore, at relatively low magnetic fields, all the molecular
motions can correspond to the extreme narrowing limit (i.e. 1 � ω2τc

2) and
then the 23Na relaxation is monoexponential and the ROBS rates show only fast
components. In this situation, a study of the association in 23Na/DNA water
solutions is strongly simplified. On the other hand, the low-field relaxation
data provide no information about the dynamics of DNA molecules. In
contrast, at high magnetic fields, the molecular motion correlation times
τC, affecting the 23Na relaxation, are not short compared with the inverse
Larmor frequency. One can show that at ω0τC > 1.5, the slow and fast
components of spin–spin relaxation rates, 1/T2F and 1/T2S, differ sufficiently
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Figure 11.6 Decrease of the normalized enhancement of the 23Na relaxation rate upon
addition of ethilidium bromide in 2.6 and 6.2 mM NaDNA solutions. (Reproduced
with permission from M. Case et al. Biophysical Chemistry 1996; 59: 133.  John Wiley
& Sons, Ltd.)

to be accurately separated, for example, by deconvolution of lineshapes
observed in the 23Na NMR spectra. Then the R2F and R2S values give R1S
and R1F, respectively. Thus, the experiments at high magnetic fields are more
informative. Methodologically, the studies of DNA/23Na systems consist
of titration of DNA with NaCl or NaDNA with multivalent competitors.
Figure 11.6 illustrates an example of such a titration where the rate of the
23Na spin–lattice relaxation in NaDNA molecules undergoes a ten-fold
decrease at additions of ethidium bromide [8]. It is obvious that the observed
effects directly connect with the appearance of free sodium ions which can
be determined quantatively.

11.4 Character of Molecular Motions from 17O
and 2H T1 Relaxation in Solution

Quantitative characterization of molecular motions with the help of relax-
ation of quadrupolar nuclei is not a simple task, particularly when quadrupo-
lar parameters at target nuclei are unknown or they can change with
temperature. The simplest example is liquid water, forming H-bonds.

The motion correlation times of water molecules could be determined
by 2H and 17O T1 times via the standard equations. According to the data
of Farrar et al. [9], the 2H and 17O T1 times, measured in 99% deuterium-
labeled water with the natural abundance of 17O nuclei, ranged from 0.2
to 0.57 s (275–310 K) for deuterium and from 2.5 to 17.2 ms (275–355 K)
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for oxygen. Nuclear quadrupole coupling constants at 17O and 2H in iso-
lated water molecules are well known: QCCD = 308 kHz (ηD = 0.14) and
QCCO = 10.2 MHz and (ηO = 0.75). However, owing to hydrogen bonding,
the electronic structure of molecules and hence the quadrupole parameters
at deuterium and oxygen change. Under these conditions, determination
of the rotational correlation times from the 2H, 17O T1 measurements
requires accurate knowledge of the temperature-dependent QCC values.
The B3LYP/6-31+G* calculations of oxygen and proton chemical shifts
and also oxygen and deuterium quadrupole coupling constants in nine H-
bonded water clusters, modeling the liquid water, have revealed the QCC/δ

correlations:

QCCD = −15.97 δH + 309.88 (11.10)

QCCO = 0.0893 δO + 9.9573

The temperature-dependent 17O and 2H chemical shifts, obtained experi-
mentally, can be combined with Equations (11.10) to give the QCC values as
a function of temperature:

QCCD = 0.134 T + 206.4 (11.11)

QCCO = 0.00405 T + 7.74

As mentioned above, the 2H and 17O T1 times have been measured between
275 and 350 K. According to Equations (11.11), in this temperature range,
the oxygen and deuterium quadrupole coupling constants vary from 8.85 to
9.16 MHz and from 243 to 253 kHz, respectively. Then, these QCC values
and the corresponding T1 times give the τC values: τC(2H2O), ranging from
5.8 ps (275 K) to 0.86 ps (350 K), and τC(D2

17O), changing from 4.4 ps (275 K)
to 0.64 ps (350 K). As can be seen, the τC(2H2O) and τC(D2

17O) times are not
identical, and thus molecular motions in liquid water are anisotropic.

11.5 Two-dimensional T1 and T1ρ NMR
Experiments

Two-dimensional (2D) NMR, providing magnetization transfers and obser-
vation of chemical shift correlations, has great advantages in studies of
complex molecular systems, such as polymers or biologically important
molecules. Motion of these systems is an important aspect of their chemical
behavior. It follows from Figure 4.2 that relatively slow molecular motions
can be probed by T1 and T1ρ measurements. In the case of complex systems,
the T1 or T1ρ pulse sections can be incorporated into the basic 2D NMR pulse
sequences [10]. Under these conditions, volumes of cross-peaks, observed
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in the chemical shift correlation NMR spectra, will depend on time delays
τ varied in the T1 or T1ρ sections. Then, fitting the volumes of these cross-
peaks, for example, to monoexponential decays (i.e. V(τ) = V(τ=0) exp(−τ/T),
where T is the relaxation time) gives the T1 or T1ρ values [10]. Note that these
experiments require application of a three-channel NMR probes.

Figure 11.7 shows the 2D NMR pulse sequences employed for T1 or
T1ρ measurements at the deuterium frequency in aqueous solutions of the
13C/2H double-labeled 2′-deoxyadenosine, 1A, and the corresponding thymi-
dine derivative, 2T (Figure 11.8). Here pulse sections A and B serve for T1
and T1ρ determinations. Since the compounds contain 13CHD groups, the
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Table 11.7 Comparison of T1 and T1ρ times
for 2H nuclei in 2H(C-2′) groups of compounds
1A, 2T (Figure 11.8) and oligo-DNA in aqueous
solutions at 11.7 T and 298 K

Compound T1 (s) T1ρ (s)

1A 39.7 ± 0.6 39.7 ± 0.6
2T 57.2 ± 0.5 55.0 ± 0.9
Oligo-DNA
3A 6.34 ± 0.20 1.69 ± 0.14
4T 6.72 ± 0.35 1.62 ± 0.09
7A 7.39 ± 0.37 1.36 ± 0.07
8T 9.22 ± 0.44 1.83 ± 0.099

NMR experiments have been performed with the 1H−13C−2H−13C−1H
polarization transfer at C-2′ centers (see the step between points a and
b where τ1 = 1/4J(13C−1H), � = 1/2J(13C−1H) and ε = 1/4J(13C−2H). The
compounds have been enriched with 13C and therefore the 13C−13C splitting
should be eliminated (see the TCC delay). WALZ and GARP pulses have
been applied for decoupling of 2H and 13C nuclei, respectively. Finally, the
volumes of the cross-peaks have been fitted to monoexponential decays. The
2H T1 and T1ρ data, collected by these experiments, are listed in Table 11.7.
As can be seen, compounds 1A and 2T show very similar T1 and T1ρ times.
This result is expected because both molecules are not big, and undergo
fast molecular motions on the frequency scale of 2H NMR. The situation
changes when compounds 1A and 2T are incorporated into the oligo-
DNA: 5′d(1C2G3A4T5T6A7A8T9C10G)2

3′
(3). As seen, the 2H T1ρ times in the

nucleotide residues of the oligo-DNA are much shorter than 2H T1. This
effect reveals the presence of slow motions in the big molecules. Add that the
T1/T1ρ ratios in all the nucleotide residues are different. Thus, the dynamic
behavior of A and T residues differs significantly at the level of fast and slow
molecular motions.

11.6 Chemical Exchange in Complex Molecular
Systems from 15N Relaxation in Solution

We have already noted that slow chemical exchanges lead to broadened NMR
signals and the linewidths do not depend on the magnetic field strength. In
contrast, the broadenings become field-dependent at fast exchanges, result-
ing in averaged signals. If molecules have relatively small molecular weights,
and populations of the exchanging states are comparable, then the presence
of chemical exchange can be easily established by appropriate methods (see
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Chapter 3). In the case of systems of high molecular weights (polymers,
biomolecules etc.), this task is not simple. In fact, owing to the presence of
backbone and side-chain motions, multiple conformation states or numerous
distinct magnetic environments, such systems give very complicated NMR
spectra. All these circumstances require other approaches to identification of
the exchanges.

Dynamics of protein molecules in solutions covers a large region of
characteristic times lying between 10−12 and 104 s. Fast molecular motions
with the correlation times from 10−12 to 10−9 s are in focus of T1, T2 and NOE
measurements. Slow motions with τC values of 10−6 –10−3 s can be studied by
T1ρ experiments. Rates of chemical exchanges in proteins are comparable with
frequencies of molecular motions and their correlation times are between
microseconds and milliseconds. Since the chemical exchanges are critical for
protein biological function, it is important to reveal molecular sites, involved
into the exchanges. In spite of the fact that protein molecules can be enriched
with 15N or 13C, helping the detection of NMR spectra, resonance lines
of exchanging molecular sites are strongly broadened and their intensities
are weakened.

Usually, the contribution of a chemical exchange REX to the transverse
relaxation rate R2(15N), is:

REX = R2 − R2
0 (11.12)

where R2
0 is the natural transverse relaxation rate, governed by dipole–dipole

and/or chemical shift anisotropy interactions. In the case of protein mole-
cules, populations of exchanging states are different and therefore, even at a
slow chemical exchange, only one resonance (corresponding to a major pop-
ulation) can be detected. Under these conditions, it is important to establish
whether the R2 is greater than the R2

0 expected for relaxation mechanisms
other than chemical exchange [11].

Details of pulse sequences, applied for studies of chemical exchanges in
solutions of proteins, can be found in the literature [11]. With these pulse
sequences the relaxation rates R2 (rather than lineshapes) are measured
via line intensities in NMR decays where evolutions by chemical shift and
scalar coupling are suppressed. The latter is reached by incorporation of the
Hahn-spin-echo, Carr–Purcell–Meiboom–Gill and spin-locking (R1ρ) pulse
sections. However, it must be emphasized that the train of 180◦ pulses,
operating in CPMG experiments (see Equation 2.12), partially reduces the
chemical exchange contributions. Therefore, measurements of R2 values, as
phenomenological relaxation rates, by the Hahn-echo sequence:

90◦x′ –τ–180◦y′ –τ (echo detection)– (11.13)

are preferable. The REX rates are calculated via Equation (11.12), when the
R2

0 and R2 values are determined. In turn, the R2
0 values can be obtained by

experiments with full suppression of exchange effects. If, for some reason,
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an exchange is much slower than 1 ms, application of the CPMG pulses with
delay times τ of 1 ms completely suppresses exchange effects. Alternatively,
the R2

0 values can be obtained on the basis of magnitudes (R2 − R1/2),
measured by the variable-field experiments. Here R1 is the longitudinal
relaxation rate and the R2 rate is determined with help of the CPMG
pulses [12]. This approach, however, requires application of three or more
static magnetic fields. Finally, when exchange processes operate on the
microsecond time scale, the R2

0 rates can be obtained as 1/T1ρ values,
measured by spin-locking experiments.

It follows from the above considerations that the choice of pulse sequences
applied for R2

0 measurements depends on the rates of exchange. In the
absence of such information, R2

0 values can be obtained via cross-correlations
between the 15N CSA and 15N−1H dipole–dipole relaxation mechanisms.
Phenomenologically, these cross-correlations are observed as different trans-
verse relaxation rates measured for two lines in the 15N−H doublets. The 2D
NMR pulse sequence, applied in these experiments, includes the Hahn-echo
pulse section, leading to determination of the transverse cross-correlation
rate, σ2 (DD,CSA) [11]. Technically the pulse sequence operates twice for
each Hahn-echo time. The first experiment selects for in-phase coherence
with signal intensity I1. The second experiments selects for anti-phase coher-
ence with signal intensity I2. Then, the σ2 (DD,CSA) value is calculated via
the equation:

σ2(DD,CSA) = −(1/τHE)tanh−1[I1(τHE)/I2(τHE)] (11.14)

where τHE is the Hahn-echo time equal to n/J(15N−1H) and n is a posi-
tive integer.

11.7 R1/R2 Method
In spite of the essentially different origin of the spin–spin and spin–lattice
relaxation mechanisms, fast molecular motions (ω2τC

2 � 1) equalize T1 and
T2 times. However, the equality T1 = T2, is violated at slower molecular
motions with τC values ranging typically between nanoseconds and millisec-
onds. Under these conditions, the relaxation rates R1 and R2, measured at
different temperatures, can be computed to give all the unknown parameters
in the relaxation equations [13]. For example, relaxation rates of quadrupolar
nuclei are:

R1(Q) = 1/T1 (Q) = (3/100)π2(2I + 3)[I2(2I − 1)]−1(e2qzzQ/h)2(1 + η2/3)

× [2τc/(1 + ωQ
2τc

2) + 8τc/(1 + 4ωQ
2τc

2)] (11.15)

and:

R2(Q) = 1/T2(Q) = (3/200)π2(2I + 3)[I2(2I − 1)]−1(e2qzzQ/h)2(1 + η2/3)

× [6τc + 10τc/(1 + ωQ
2τc

2) + 4τc/(1 + 4ωQ
2τc

2)] (11.16)
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It is obvious that, at ωτC > 1, T2 is shorter than T1. Then, a combination of
Equations (11.15) and (11.16) leads to the expression:

R1(Q)/2R2(Q) = [1/(1 + ωQ
2τc

2) + 4/(1 + 4ωQ
2τc

2)]

/[3 + 5/(1 + ωQ
2τc

2) + 2/(1 + 4ωQ
2τc

2)] (11.17)

In turn, the expression can be rewritten:

ωQ
4τc

4 + [3.0833 − 0.6667(2R2(Q)/R1(Q))]ωQ
2τc

2

− 0.4167(2R2(Q)/R1(Q)) + 0.8333 = 0 (11.18)

enabling calculation of the correlation time. Also, at R2 > R1, the solution of
Equation (11.18) is a single positive τC value. Then, assuming η = 0, this value
can be used for calculations of the e2qzzQ/h constants via Equation (11.15). It
should be noted that the condition ωτC > 1 can be realized, for example, in
viscous media.

The R1/R2 approach has been used to analyze 27Al relaxation in a molten
salt formed by LiCl and ethyl aluminum dichloride in a 1:1 ratio. Figure 11.9
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Figure 11.9 27Al nuclear quadrupole coupling constants (QCC, full circles) in MHz
and effective molecular motion correlation times (open circles) for 1:2 LiCl – EtAlCl2

versus temperature (◦C). (Reproduced with permission from W. R. Carper. Concepts
in Magnetic Resonance 1999; 11: 51.  John Wiley & Sons, Ltd.)
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Figure 11.10 The MOPAC (PM3)-optimized structure of the complex, formed at an
addition of LiCl to EtAlCl2. (Reproduced with permission from W. R. Carper, Concept
in Magnetic Resonance 1999; 11, 51.  John Wiley & Sons, Ltd.)

shows the computed aluminum quadrupole coupling constants in the tem-
perature region between −12◦ and 65◦C. As can be seen, on cooling (from 65◦

to 10◦C), the e2qzzQ/h value slightly increases. Then, decreasing the temper-
ature from 10◦ to −12◦C leads to the opposite effect. The data allow one to
conclude that the insertion of LiCl into an EtAlCl2 dimer (Figure 11.10) alters
the C2h symmetry of the dimer, producing a species of a higher symmetry.

By analogy, these considerations, applied for proton–proton dipole–dipole
interactions, lead to the relationship:

R1/R2 = [2/(1 + ωH
2τc

2) + 8/(1 + 4ωH
2τc

2)]/[3 + 5/(1 + ωH
2τc

2)

+ 2/(1 + 4ωH
2τc

2)] (11.19)

Again, this equation can be solved iteratively to obtain the τc value. The latter
eventually provides calculations of H−H distances. Similar expressions can
be deduced for heteronuclear dipole–dipole interactions [13].

11.8 Cross-correlation Relaxation Rates
and Structures of Complex Molecular
Systems in Solution

In section 11. 6 we have shown how cross-correlation relaxation rates can
be used to establish and investigate the chemical exchanges in complex
molecular systems. Here we are concerned with the structural aspects of
cross-relaxation measurements. Knowledge of backbone dihedral angles φ

in protein molecules allows one to deduce their secondary structure in
solution. In turn, the dihedral angles are related to angles θ, characterizing
mutual orientations of two successive C−H bond vectors (see Figure 11.11).
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Figure 11.11 A fragment of the backbone of a protein. The θ angle is subtended
between two bond vectors 13Cα(i-1)–Hα(i-1) and 13Cα(i)–Hα(i) in successive amino
acids. The � angle is the dihedral angle between the planes defined by the atoms
Hα(i-1), 13Cα(i-1), 13Cα(i) and 13Cα(i-1), 13Cα(i), Hα(i). (Reproduced with permission
from E. Chiarparin, P. Pelupessy, R. Ghose, G. Bodenhausen. Journal of the American
Chemical Society 2000; 122: 1758.  2000 American Chemical Society)

When proteins are labeled with 15N and 13C isotopes, the θ angles dictate
the cross-correlation relaxation rates, R1(θ), originating from interference
between carbon–proton dipolar couplings in two neighboring C−H bonds
according to:

1/T1(θ) = R1(θ) = (µ0h̄/4π)2r(H−C)−6γH
2γC

2(2/5)

× S2τC(1/2)(3 cos2 θ − 1) (11.20)

where S2 is the Lipari–Szabo order parameter and r(H−C) can be taken as
1.12 Å [14].

Details of 2D NMR pulse sequences, serving for R1(θ) determinations,
can be found in the literature [14]. Here, it is be noted that they include
magnetization transfers from the amid protons H(N) to 15N and then to
13C(α) nuclei in the same and the previous residue. Then, the R1(θ) rate can
be obtained via the equation:

I(2)/I(1) = [exp(R1(θ)T) − exp(−R1(θ)T)]/

[exp(R1(θ)T) + exp(−R1(θ)T)] = tanh(R1(θ)T) (11.21)

where I(1) and I(2) are the signal intensities measured by two independent
2D NMR experiments, and T is the relaxation delay. In these experiments,
the evolution under scalar couplings during the relaxation time period is
different. In experiment (1), all scalar couplings are refocused. In experiment
(2), two J(C−H) couplings are active. According to Chiarparin et al. [14],
the relaxation delays T should be either very short (∼6 ms) or a multiple
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of the 1/J(Cα-Cβ) values (∼25 ms) in order to avoid losses because of
evolution by the 13C–13C coupling. The measurements and an analysis of
the R1(θ) values in each pair of the C−H vectors result in calculations the
dihedral angles. Finally, by analogy, the dihedral angles can be obtained by
studies of cross-correlations between the 15N−H and 13C−H dipole–dipole
interactions.

11.9 Variable-field Relaxation Experiments
In contrast to small molecules, systems of high molecular weight can violate
the condition of fast molecular tumbling, ω2τC

2 � 1, even at high tempera-
ture. For this reason, nuclear relaxation is field dependent and therefore the
variable-field relaxation measurements become a useful tool for studies of
molecular dynamics in solution. Figure 11.12 shows the variable-field relax-
ation rates R1, calculated by Redfield for two favorite nuclei in biopolymers,
15N and 31P, according to the dipolar and CSA mechanisms [15]. The 15N
R1 curves (Figure 11.12a) were obtained for a typical amide fragment of
a theoretically rigid protein with a slowly exchanging proton and a rota-
tional correlation time of 5 ns. The 31P R1 curves (Figure 11.12b) reflect the
relaxation behavior of a phosphate group in a small DNA duplex with
rotational correlation time of 4.2 ns. The correlation time of an internal fast

R
1 

se
c−1

R
1 

se
c−1

1.5

2

0.5

1

0

8

7

6

5

4

3

2

1

0
0 5 10 15

Field (T)

0 5 10 15

Field (T)

CSA

L.F. CSA

H.F.
CSA

Dipolar

Dipolar

Total Total

15N Amide 31P Diester

(a) (b)

Figure 11.12 Field dependence of NMR relaxation rates expected for macromolecules:
(a) 15N relaxation rate for a typical peptide amide in a protein; (b) 31P relaxation rates
for a phosphodiester group in small DNA duplex. (Reproduced with permission
from A. G. Redfield. Magnetic Resonance in Chemistry 2003; 41: 753.  John Wiley &
Sons, Ltd.)



Variable-field Relaxation Experiments 175

motion in the duplex was taken as 200 ps. The CSA contributions have been
calculated in terms of the �σ(15N) and �σ(31P) values equal to 160 ppm.
The curve H.F.CSA corresponds to the 31P CSA relaxation rate for a fast
internal motion of the phosphate group and the curve L.F.CSA is the 31P
CSA contribution from the remaining CSA after averaging over this motion
due to overall molecular tumbling. According to the calculations, the two
nuclei show different variable-field phenomena and thus they can poten-
tially provide important information about molecular mobility. For example,
the influence of fast internal motions on 31P relaxation rate is particularly
strong at high fields. It is obvious that such effects could be studied with the
use of several NMR spectrometers working at different NMR frequencies.
However, a detailed analysis of the spectrum of motions is impossible in
the absence of measurements at low magnetic fields. This statement is well
illustrated by experimental measurements carried out for the low-field signal
in the 31P NMR spectra of an aqueous solution of the DNA octamer duplex
(dGpGpApApTpTpCpC)2 (see the points in Figure 11.12b). As can be seen,
these points are well fitted to the motional model of a phosphate group sug-
gested above. Finally, note that technically the measurements can be made
with field-cycling NMR spectrometers containing switched coil magnets or
an apparatus providing a pneumatic shift of a sample from the center of a
standard magnet to any position, under computer control [15].

Besides information about the character of molecular motions, the variable-
field experiments can be used in studies of chemical exchange. As has been
mentioned, the T1ρ times are sensitive to exchange processes occurring in
solutions of proteins on the time scale between µs and ms. Note that rotating-
frame experiments lock magnetization of a sample along the direction of
the effective radiofrequency field operating at frequency ωE. Under these
conditions R1ρ values depend on the amplitude of the applied field. Then,
measuring the R1ρ as a function of ωE (so-called relaxation dispersion),
leads to determinations of the kinetic parameters of exchange. In fact, the
contribution REX to the total relaxation rate (see Equation 11–12), caused by
the presence of a two-site exchange, is:

REX = kEXPAPB δAB
2/(kEX

2 + ωE
2) (11.22)

where kEX is the exchange constant, PA and PB are populations of the two
states and δAB is the chemical shift difference. Note that the variable-frequency
R1ρ experiments can be made on 13C or 15N nuclei of protein molecules, with
variation in the ωE between 150 and 1000 Hz and suppression of 1H coupling
and cross-relaxation processes [16].

Finally Figure 11.13 shows an example of proton variable-frequency exper-
iments. Here the frequency-dependent 1H R1 relaxation rates are measured
for the protons of water and DMSO in a serum albumin protein solution [17].
The relaxation dispersion profiles reflect the situation when few solvent
molecules are binding to protein molecules and this effect is observed by
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Figure 11.13 Nuclear magnetic relaxation dispersion profiles for water protons and
protons of DMSO recorded simultaneously in an 11.7% solution of bovine serum
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Resonance 1999; 140: 172.)

relaxation of protons in bulk water (or DMSO) due to fast exchanges between
the free and bonded states. Methods of treatment of the relaxation dispersion
data, providing determinations of the number of water molecules binding to
proteins can be found in the literature [18].
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Organic and inorganic species, containing paramagnetic metal ions, are
widely used in NMR as shift reagents. Owing to action of unpaired electrons,
the chemical shift differences of nuclei increase and, for this reason, the com-
plicated NMR spectra are simplified. These species play an important role
in determinations of molecular sites interacting with metal centers or inves-
tigations of different covalent and noncovalent intermolecular interactions.
Qualitative and quantitative studies of exchange processes are the third field
for applications of paramagnetic complexes. Such investigations are carried
out over a wide range of compounds, from small organic molecules to met-
alloproteins. In addition, paramagnetic ions are cofactors for a number of
biologically important processes and therefore structures of paramagnetic
complexes are of great interest. Finally, systems, containing paramagnetic
metal ions, are an important class of contrast agents for magnetic resonance
imaging, currently applied for clinical diagnosis.

12.1 Theoretical Basis of Paramagnetic
Relaxation Enhancement

The rate of nuclear relaxation increases in the presence of a dissolved
paramagnetic ion and this effect is named the NMR paramagnetic relaxation

Practical NMR Relaxation for Chemists Vladimir I. Bakhmutov
 2004 John Wiley & Sons, Ltd ISBNs: 0-470-09445-1 (HB); 0-470-09446-X (PB)
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enhancement. The physical origin of the phenomenon consists of interaction
between magnetic moments of an electron and a nucleus:

µS = −ge βe S (12.1)

µI = γ h̄ I (12.2)

where ge is the electron g–factor (2.00232) and βe is the Bohr magneton
(9.2741 × 10−24 J T−1). In the presence of the external magnetic field, both
magnetic moments precess around its direction and thermal fluctuations
in the dipole–dipole interactions cause nuclear relaxation. Such a situation
occurs, for example, in organic Cu(II) complexes where an unpaired electron
is located in the Cu atom (S = 1/2, I = 3/2) and target nuclei belong to a
metal-bound ligand.

Theoretically, for the paramagnetic Cu(II) complexes, rates of the nuclear
relaxation, R1,2(I), are expressed by:

1/T1(I) = R1(I) = R1(I)DIP + R1(I)CON + R1(I)CURIE

1/T2(I) = R2(I) = R2(I)DIP + R2(I)CON + R2(I)CURIE
(12.3)

where RDIP, RCON and RCURIE are the dipolar, contact and Curie contributions,
respectively [1]. The dipolar contribution is given by the Solomon equations:

R1(I)DIP = (2/15) (µ0/4π)2 γI
2 ge

2 βe
2 S(S + 1) r(I–S)−6

× [3τC/(1 + ωI
2τC

2) + 7τC/(1 + ωE
2τC

2)]

R2(I)DIP = (1/15) (µ0/4π)2 γI
2 ge

2 βe
2 S(S + 1) r(I–S)−6

× [4τC + (3τC/(1 + ωI
2τC

2) + 13τC/(1 + ωE
2τC

2)] (12.4)

where S is the electron spin, ωI and ωE are the nuclear and electron Larmor
frequencies, r(I–S) is the electron-nucleus distance and τC is the correlation
time. The correlation time can be defined as 1/τC = 1/τR + 1/τE, where τE is
the electron spin relaxation time and τR is the molecular rotational correlation
time. It is obvious that at τR � τE, the τC is controlled by the τE and vice
versa, the τC is governed by the τR at τE � τR. Table 12.1 lists the electron
relaxation times for some paramagnetic metal ions [2] where τ1E times cover
the range from 10−7 to 10−13 s. Note that the molecular rotational correlation
times, being a function of the size of molecules, are between 10−11 and 10−6 s.

The contact contributions, arising from delocalization of the unpaired spin
density in a metal-bound ligand, are given by the expressions:

R1(I)CON = (2/3) S(S + 1) (A/h̄)2 (τE2/(1 + ωE
2τE2

2)

R2(I)CON = (1/3) S(S + 1) (A/h̄)2 (τE1 + (τE2/(1 + ωE
2τE2

2)) (12.5)

where A is the hyperfine coupling constant, characterizing the scalar elec-
tron–nucleus interactions, and τE1 and τE2 are the longitudinal and transverse
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Table 12.1 Electron relaxation times for different paramagnetic metal ions,
τE, and linewidths �ν expected for stable paramagnetic complexes

Ion
Electronic

configuration S τE (s) �ν (Hz)

Ti3+ d1 1/2 10−10 –10−11 20–200
VO2+ d1 1/2 10−8 10 000
V3+ d2 1 10−11 50
Mn3+ d4 2 10−10 –10−11 150–1500
Ni2+ d8 5–6 coord 1 10−10 500

d8 4 coord 1 10−12 5
Cu2+ d9 1/2 10−8 –10−9 1000–5000
Gd3+ f 7 7/2 10−8 –10−9 20 000–200 000

electron spin relaxation times, respectively. Emphasize that by the definition,
reorientational molecular motions do not affect the contact terms. Finally at
S = 1/2, the Curie contribution is:

R1(I)CURIE = (1/40) (µ0/4π)2 (ωI
2 ge

4βe
4/k2T2) r(I–S)−6

× (3τR/(1 + ωI
2τR

2)

R2(I)CURIE = (1/80) (µ0/4π)2 [ωI
2 ge

4 βe
4/k2T2) r(I–S)−6

× (4τR + 3τR/(1 + ωI
2τR

2)] (12.6)

where k is the Boltmann constant and T is the absolute temperature.
As it follows from the theory, structural interpretations of paramag-

netic relaxation rates require previous separations of three contributions
R1(I)DIP, R1(I)CURIE and R1(I)CON because only two of them contain the r(I–S)

parameter. Comparison of Equations (12.4) and (12.6) shows that the Curie
contribution to the R1(I) relaxation rate can be significant at τC = τE and
τE � τR. If the τC time (Equation 12.4) is controlled by τR, then the Curie
contribution is negligibly small. Actually, it is easy to show that under these
conditions R1(I)DIP/R1(I)CURIE = ∼1000. In practice this situation occurs in
the case of small and medium-size ligands (τR = 10−11 –10−10 s) coordinated
with the Cu2+ or VO2+ ions, the τE values of which are of the order of
10−8 –10−9 s (see Table 12.1). On the other hand, such a favorable τR/τE ratio
can result in a ‘negative spectroscopic effect.’ In fact, if the rotational mech-
anism dominates the correlation time τC, i.e. τC = τR, and the latter is quite
long, then NMR lines of target nuclei broaden considerably. For example,
compare in Table 12.1 the broadening effects, which can be caused by the
coordination with Ti3+ and VO2+ ions.

The contact contribution in Equation (12.3) can be evaluated experimen-
tally by comparison of the R1(I) and R2(I) times measured in the intermediate
motional region, i.e. at ωEτC > 1 > ωIτC. If the contact mechanism actually
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dominates, then the R2(I) rate is much higher than R1(I). In the slow- or
fast-motion regimes, the R1(I) and R2(I) times are not informative in this
context. In such cases, the upper limit of the contact contribution is usu-
ally estimated via Equation (12.5) for the known τE and A values. Then
the obtained magnitude can be compared with the R1(I) rate, measured
experimentally.

Solomon’s theory adequately describes nuclear relaxation occurring in
organic radicals where electrons, centered on paramagnetic metal ions, have
spins of 1/2 (such as Cu(II)). The main principle of this theory consists of a
Zeeman quantization of both the nuclear and electron spin motions in the
presence of the external magnetic field B0:

HI = HZeem = −µIB0

HS = HZeem = −µSB0 (12.7)

In other words, the spin vector S, like the nuclear vector I, undergoes a
Larmor precession around the B0 axis. However the assumption is physically
inappropriate for electron spins S � 1 [3] taking place in many transition
metal ions in their regular oxidation states (see, for example, ions Ni2+, Mn3+
or Gd3+ in Table 12.1). Owing to orbital contributions, electrons with S � 1
are subject to the zero-field splitting interactions HZFS. When the zero-field
splitting is comparable to or larger than the Zeeman splitting, the electron
spin motion becomes complicated and quantized along the molecule-fixed
coordinate axis, but not along the external magnetic field B0. The latter has
a great influence on nuclear relaxation. As a result, the zero-field splitting
interactions and the Zeeman interactions are summarized:

HS = HZeem + HZFS (12.8)

Theoretically, in the zero-field splitting limit, i.e. at HZeem � HZFS, nuclear
paramagnetic relaxation differs strongly from that in the Zeeman limit. For
example, in the case of electrons with spins S = 1 and a cylindrical symmetry
of the zero-field splitting tensor, the paramagnetic relaxation enhancement
is a sum of longitudinal (R1Z) and transverse (R1⊥) contributions, i.e. R1 =
R1Z + R1⊥, where:

R1Z = (8/3) (µ0/4π)2 ge
2βe

2 �(θ) r(I–S)−6 J(ωI) (12.9)

�Z(θ) = (1/3)(1 + P2 cos(θ))

R1⊥ = (4/3)(µ0/4π)2ge
2βe

2�(θ)r(I–S)−6J(ωD)

�⊥(θ) = (1/6)(2 − P2 cos θ)

The θ in Equations (12.9) is the polar angle, formed by the interspin I–S vector
and the principal axis of the zero-field splitting tensor (for the meaning of the
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z

θµs

1 + P2 (cos θ)

Figure 12.1 Angular function, �Z(θ) = (1/3) (1 + P2 cos(θ)), describing the angular
variation of the square of the dipolar field of the dipole moment µS located at the
origin and oriented along the Z-axis. (Reproduced from R. Sharp, L. Lohr, J. Miller.
Progress in Nuclear Magnetic Resonance Spectroscopy 2001; 38: 115, with permission
from Elsevier)

�(θ) function see Figure 12.1). Equations (12.9) emphasize the main feature
of relaxation in the zero-field splitting limit. Actually, the relaxation rate
in the Zeemans’ limit depends on I–S distances, but not on the I–S vector
orientation.

Since NMR relaxation is a function of the magnetic field strength, relaxation
data can be presented as a field dispersion profile or, in other words,
as a plot of R1 versus the Zeeman field strength (or Larmor frequency)
at a constant temperature. It has been mentioned already that in such
experiments, NMR relaxation measurements are conducted over a wide
range of static field strengths B0. At the low end, the fields are several
orders of magnitude lower than the typical magnetic fields applied for the
high-resolution NMR experiments. Note that modern field-cycling magnets
provide T1 measurements in the B0 range from 10−4 to 2 T. The upper end
of this range can be extended up to B0 > 10 T using the regular high-field
spectrometers. Thus for electrons with S � 1, it is possible to create conditions
where the zero-field splitting is much larger than the Zeeman interactions.
Figure 12.2 illustrates the R1 field-dispersion profiles, calculated by Sharp
et al. [3] at different θ values for S = 1 and the cylindrical zero-field splitting
tensor. As can be seen, the relaxation rates strongly depend on orientations of
the interspin I–S vector at low magnetic fields. At the same time, the θ effects
become invisible at high magnetic fields where the Zeeman interactions
dominate. Hence, the magnetic field-dependent relaxation data can provide
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Figure 12.2 Relaxation rate R1 dispersion profiles for S = 1 in the cylindrical
zero-field splitting limit at three θ values. (Reproduced from R. Sharp, L. Lohr,
J. Miller. Progress in Nuclear Magnetic Resonance Spectroscopy 2001; 38: 115, with
permission from Elsevier)

uniquely sensitive experimental probes of the finer aspects of the spin level
structure. Finally, Sharp et al. emphasize that each spin value has unique
aspects requiring separate consideration. These aspects can be found in the
original paper [3].

Solomon’s equations (12.4)–(12.6) show that the influence of unpaired
electrons on nuclear relaxation depends of the nature of target nuclei. Since
nuclei, other than protons, possess smaller magnetic moments, their dipolar
interactions with unpaired electrons will be weaker. The rate of nuclear
dipolar relaxation is proportional to the square of the γI constant and
therefore these reducing effects are significant. For example, at identical
nucleus–electron distances, the paramagnetic relaxation rate enhancements,
observed for protons and 15N nuclei, will be related as ∼100:1. Add also
that line widths of 15N resonances are expected to be significantly smaller.
The same γI

2 effects on going from protons to nitrogen or oxygen nuclei
are valid for contact contributions R1,2

CONT (see Equation 12.5). On the other
hand, nitrogen and oxygen atoms can directly coordinate with paramagnetic
metal centers, leading to increasing the electron spin density around 17O,
15N nuclei. Then the A/h̄ value and the corresponding contact contribution
increase with respect to protons in spite of the lower γI constants. Note that
for such nuclei as 15N, 19F or 17O, the A/h̄ values are particularly big. In
this case, the contact mechanism can become dominant and lead to greatly
broadened NMR signals.
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12.2 Paramagnetic Relaxation Rate
Enhancements in the Presence
of Chemical Exchange

Equations (12.4)–(12.6) indicate the influence of electron spin relaxation and
molecular rotational reorientations on nuclear relaxation. The third type of
motion affecting the relaxation is a chemical exchange with a correlation time
τM. This exchange appears when the complex, formed by a paramagnetic ion
and an organic ligand, is chemically unstable. Figure 12.3 compares ranges
of typical values for τE, τR and τM correlation times. It is seen that the τM

time, as a function of metal–ligand bond strength, can be indefinitely long (a
slow chemical exchange) or as short as 10−10 s (a fast chemical exchange). It is
obvious that a fast exchange maximally reduces the paramagnetic relaxation
rate enhancements, measured experimentally.

In solutions, a nuclear spin, located in organic ligand L and interacting with
a paramagnetic center, is involved in an exchange between the diamagnetic
(free) and paramagnetic (metal- bound) states [1]:

LFREE + M ⇐⇒ LM−BOUND (12.10)

In the case of a 1:1 coordination, rate constants of the association and
dissociation reactions τF

−1 and τM
−1 are mutually connected via:

τF/τM = PF/PM

PF + PM = 1

τE

τM

τR

Sec 10−9 10−11 10−13 10−5 10−7 

Figure 12.3 Electronic relaxation times τE in paramagnetic ions, molecular rotational
correlation times τR of the paramagnetic complexes and correlation times τM of
exchange between free and M-bound states
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where P is the corresponding mole fraction. Finally, the temperature depen-
dence of the τM is expressed by:

τ−1
M = (kT/h) exp(−�G �=/RT) (12.11)

where �G �= is the free energy of activation.
It is obvious that exchange (12.10) averages the measured spin–lattice

relaxation rates completely or partially. Phenomenologically, the relaxation
rate enhancement R1r = 1/T1r, caused by a paramagnetic ion, is defined as:

R1r = R1 − R1F (12.12)

Here, the R1 and R1F values are measured in the presence and the absence
of paramagnetic ions, respectively. Then, the rate of nuclear relaxation in the
bound (paramagnetic) state can be determined via the R1r by the equation:

R1r = PMR1M[τM
−1/(R1M + τM

−1)] (12.13)

Thus, the exchange rate is a limiting factor for a transfer of the paramagnetic
influence to the diamagnetic state. An analysis of Equation (12.13) shows
that only in the fast exchange limit, i.e. at R1M � τM

−1, the registered para-
magnetic effect R1r is directly related to R1M. In other cases, interpretations
of the R1r values require independent knowledge of the exchange rates.
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Figure 12.4 Temperature dependence of R1r (see Equation 12.13 coupled 12.4, 12.11)
calculated for a correlation time τC = 5 × 10−10 s and a molar fraction of bound
ligand of 0.01 by assuming a = 0.82 nm in Equation (1.14). Calculations performed
at R1M � τM

−1 for r(I–S) = 0.25 nm and �G �=/R = 10 000 K (1), at R1M ∼ τM
−1 for

r(I–S) = 0.35 nm and �G �=/R = 8000 K (2) and at R1M � τM
−1 for r(I–S) = 0.60 nm

and�G �=/R = 6000 K (3). (Reproduced with permission from E. Gaggelli, N. D’Amelio,
D. Valensin, G. Valensin. Magnetic Resonance in Chemistry 2003; 41: 877.)
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One of the possible approaches to τM
−1 determinations is based on variable-

temperature R1r measurements. In fact, under extreme narrowing conditions
(ωHτR � 1), the rotational correlation time τR depends on the temperature
and the radius of molecules, as shown in Equation (1.14). The temperature
dependence of the exchange rate τM

−1 is governed by Equation (12.11). If
both expressions are incorporated into Equation (12.13), then the plots of R1r
versus T will depend on the relaxation and exchange parameters simultane-
ously. Figure 12.4 illustrates the exchange effects on the R1r curves obtained
for parameters shown in the caption. Thus the R1r temperature dependence
is helpful in determining the exchange region and hence the exchange rate.
However, this is impossible if the extreme narrowing conditions do not apply
for the free ligand (i.e. ωHτR � 1).

12.3 Structural Applications of Paramagnetic
Relaxation Rate Enhancement

Since nuclear paramagnetic relaxation is very sensitive to the distances
separating the target nuclei and paramagnetic centers, decreases in T1 and T2,
measured for several nuclei in the same molecule, can range from negligible
to very large. Thus, multinuclear relaxation is a powerful instrument for
structural characterization of chemical compounds. However, measurements
and interpretations of spin–lattice relaxation times are preferable because
of intrinsic difficulties in measuring transverse relaxation times and the
stronger influence of contact interactions on R2(I) values.

Protons, often the target nuclei in structural studies, can form multi-spin
systems with a nonexponential NMR relaxation (see Chapter 3). In such
cases, the T1 times can be estimated by using selective or nonselective inver-
sion recovery experiments [4]. In this connection, it is important to establish
which T1 values (selective or nonselective) are more reliable for r(I–S) deter-
minations. In fact, when all spins in a multi-spin system are simultaneously
excited (nonselective excitation), they can give large cross-relaxation contri-
butions. This effect is particularly significant in intermediate and slow-motion
regimes. Banci and Luchinat [4] have analyzed the relaxation behavior of a
spin system including two different protons A and B, and a paramagnetic
metal center M. It has been established that at R1(A–M) = R1(B–M), a nonse-
lective inversion leads to an exponential recovery of the A (or B) magnetization.
In addition, this recovery is absolutely identical with that obtained in the
absence of the B proton i.e. for an isolated A/M pair. In contrast, a selec-
tive excitation of the A (or B) proton results in a faster and nonexponential
magnetization recovery. It is probable that immediately after nonselective
inversion, no magnetization transfer is possible between protons A and B
and, hence, the recovery of the A magnetization is governed by interac-
tions with the paramagnetic center M. The same calculations, carried out
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for R1(A–M) �= R1(B–M), lead to nonexponential magnetization recoveries
after selective and nonselective inversion. However, nonselective recovery
was a better approximation to the case of an isolated A/M pair. Thus, deter-
minations of metal–nucleus distances by nonselective T1 measurements are
more reliable.

To illustrate the methodology of structural investigations, consider asso-
ciation of organic substrates with the paramagnetic Cu(II) complex 1, ({(R)-
7,8,15,18-tetrahydro-5,10-bis(2′-methoxyethoxy-5′-methylphenyl)-7-(p-trime
thylammoniophenyl)dibenzo[e,m]-[1,4,8,11]tetra-azacyclotetradecine-16,17-
dionato(1-)-N6N9N15N18}copper(II) chloride [5]). Tables 12.2 and 12.3 show
the 1HT1 and1HT2 data,collectedforaqueoussolutionsofproline(Figure 12.5)
in the absence and in the presence of complex 1. As can be seen, the proline
relaxation times are strongly affected by addition of complex 1. The effects
are particularly significant for the α−H and δ−H protons. Thus, the pro-
line coordination is chemioselective in contrast to the molecules, shown in
Table 12.4. Here, on addition of complex 1 the relaxation rates of all the protons
increase similarly.

Table 12.2 1H T1 times (s) in proline molecules measured at 200 MHz in the absence
and the presence of Cu(II) complex 1 in aqueous solution. (Reproduced with permis-
sion from Y. N. Belokon’ et al. Journal of the Chemical Society Dalton Transactions 1990;
1873.  The Royal Society of Chemistry)

Time
(295 K) NCu/NP α β1 γ + β2 δ2 δ1

T2 0 2.53 2.20 2.15 1.93 1.84
T2 5 × 10−4 0.18 0.47 0.57 0.22 0.21
T1 0 3.44 1.91 2.77 2.22 2.02
T1 10−4 0.92 1.66 1.96 1.37 0.93
T1 5 × 10−4 0.20 0.88 1.07 0.48 0.26
T1 10−3 0.11/0.12 0.65/0.63 0.79/0.77 0.29/0.31 0.16/0.16
T1 5 × 10−3 0.08/0.08 0.54/0.47 0.68/0.57 0.22/0.21 0.12/0.10

Table 12.3 Changes in the 1H spin–lattice relaxation rates in proline caused by
addition of Cu(II) complex 1, calculated using the values from Table 12.2. (Reproduced
with permission from Y. N. Belokon’ et al. Journal of the Chemical Society Dalton
Transactions 1990; 1873.  The Royal Society of Chemistry)

NCu/NP α β1 γ + β2 δ2 δ1

10−4 0.80 0.08 0.15 0.28 0.58
5 × 10−4 4.64 0.61 0.58 1.63 2.35

10−3 8.48/8.16 1.03/1.08 0.91/0.94 3.02/2.83 5.92/5.86
5 × 10−3 11.76/12.53 1.34/1.63 1.12/1.39 4.12/4.36 8.20/9.41
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Figure 12.5 The structure of the proline molecule (schematically)

Table 12.4 Spin–lattice relaxation times (s) for the pro-
tons of different compounds in the presence of Cu(II)
complex 1 at NCu/NP = 5 × 10−4 (Reproduced with per-
mission from Y. N. Belokon’ et al. Journal of the Chemical
Society Dalton Transactions 1990; 1873.  The Royal Society
of Chemistry)

Compound α β γ

Prolylamine 5.51 5.60 5.43
Prolylamine/1 0.62 1.15 2.03
Propanoic acid 5.00 6.17
Propanoic acid/1 3.23 3.77
Butanoic acid 2.61 2.73 2.82
Butanoic acid/1 2.04 2.16 2.27

By assuming fast exchange (Equation 12.10), Equation (12.13) is rewrit-
ten as:

1/T1M = (NP/NCuQ)(1/T1 − 1/T1F) (12.14)

where T1 is the measured relaxation time; T1M and T1F are the relaxation
times in the paramagnetic proline/complex 1 and in the free proline molecule,
respectively; NP and NCu are the molar concentrations of the proline and
complex 1; Q is the proline/complex 1 ratio. The T1M values, calculated
from the data of Table 12.3, are constant in the range NCu/NP = 10−4 –10−3.
This result supports the assumption of a fast exchange of the proline in the
coordination sphere of complex 1. When the NCu/NP ratio is larger than
5 × 10−3 : 1, the T1M time begins to change, indicating the appearance of
uncoordinated Cu(II) centers in the solution.

Since the electron spin relaxation time for the copper ion is 10−8 s and the
magnitude of (A/h̄)2 can be taken as 1012 –1014 Hz, and since the lifetime of a
nucleus in the first coordination sphere of the metal may safely be assumed
to be greater than 10−8 s, then contact contribution R1,2

CONT is calculated as
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101 s−1. The estimated magnitude and the insignificant differences between
the T1 and T2 times in Table 12.2 show the contact contributions to be
negligible. Thus, the T1M relaxation times, obtained via Equation (12.14), can
be used for calculations of interatomic distances.

The proton–copper and carbon–copper distances are calculated via the
equation:

r(Å) = C {T1M[3τC + 7τC/(1 + (1.71 × 1019 ωI
2 τC

2))]}
1/τC = 1/τE + 1/τM + 1/τR (12.15)

as a simplified form of Equation (12.4), where C = 539 and 340 for protons
and carbons, respectively. It has been mentioned that the τC values for small
and medium-size ligands, coordinated with Cu (II) centers, are controlled
by the rotational molecular correlation times τR. For systems with molecular
sizes similar to the 1:1 proline/complex 1 adduct, the τR value is 10−10 s.
Then, the T1M times lead to r(H−Cu) distances shown in Table 12.5. As can be
seen, these distances are independent of the concentration of complex 1 up to
NCu/NP = 5 × 10−3. Finally, the structure of the adduct, created on the basis
of the H−Cu distances (Figure 12.6), agrees well with the C−Cu distances

Table 12.5 Distances (Å) between the proline protons and Cu(II) of complex 1 in the
mixed complex. (Reproduced with permission from Y. N. Belokon’ et al. Journal of the
Chemical Society Dalton Transactions 1990; 1873.  The Royal Society of Chemistry)

NCu/NP α β1 γ + β2 δ2 δ1

10−4 3.38 ± 0.25 4.96 ± 0.35 4.46 ± 0.35 4.02 ± 0.3 3.56 ± 0.25
5 × 10−4 3.29 ± 0.25 4.62 ± 0.35 4.66 ± 0.35 3.92 ± 0.3 3.49 ± 0.25

10−3 3.37 ± 0.25 4.71 ± 0.35 4.82 ± 0.35 4.01 ± 0.3 3.56 ± 0.25
5 × 10−3 4.10 ± 0.25 5.76 ± 0.35 5.91 ± 0.45 4.89 ± 0.4 4.30 ± 0.35
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Figure 12.6 The fragment of the complex formed by proline and ({(R)-7,8,15,18-
tetrahydro-5,10-bis(2’-methoxyethoxy-5’-methylphenyl)-7-(p-trimethylammoniophe-
nyl)dibenzo[e, m]-[1,4,8,11]tetra-azacyclotetradecine-16,17-dionato(1-)-N6N9N15N18}-
copper(II) chloride. The structure is established by the 1H and 13C NMR relaxation
measurements in D2O



Ligand Exchange via Paramagnetic Relaxation Rate Enhancement 191

Table 12.6 13C spin–lattice relaxation times (s) of pro-
line in the absence (T1F) and the presence of Cu(II)
complex 1 (T1) and C−Cu distances r (Å) in the mixed
complex at NCu/NP = 5 × 10−4

α β γ δ CO2
−

T1F 6.43 5.02 6.81 5.29 100
T1 2.55 3.90 4.68 2.55 15
r 3.1 4.0 3.7 3.2 4.0

evaluated from the 13C T1 times (Table 12.6). Note that the structure exhibits
a preference for an envelope conformation of proline molecules.

12.4 Kinetics of Ligand Exchange via
Paramagnetic Relaxation Rate
Enhancement

As we have shown, chemical exchange processes affect the relaxation rate
enhancements. If r(I–S) distances, electron spin relaxation times and the
constants A are known, then relaxation measurements directly result in
exchange rates. However, under some conditions and assumptions, the
kinetic parameters of exchange processes can be obtained, even in the absence
of r(I–S), τE and A data. This approach is based on T1 and T2 times, determined
at different temperatures and different concentrations of paramagnetic ions,
and on measurements of paramagnetic shifts in the NMR spectra. Hyperfine
interactions with the unpaired electrons affect chemical shifts of neighboring
nuclei and this influence is measured as paramagnetic shifts. Usually, the
paramagnetic shifts consist of the Fermi contact (FC) contributions caused
by appearance (delocalization) of the unpaired spin density on target nuclei,
and the pseudo-contact shifts, (PC) due to through-space electron–nucleus
interactions:

δ = δFC + δPC (12.16)

13C NMR experiments in aqueous solutions of D-gluconic acid (com-
pound L) and the copper(II) perchlorate (compound M) forming the complex
shown in Figure 12.7 [6], illustrate the method of investigation. The variable-
temperature 13C T1, T2 times and 13C paramagnetic shifts (�ω, expressed in
frequency units) have been obtained at different concentrations CL where
CL � CM. Since in the presence of a ligand exchange all the measured mag-
nitudes depend on the sets of parameters at both paramagnetic (T1M, T2M
and �ωM) and diamagnetic (T1F, T2F and 0) sites and on exchange rate 1/τM,
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Figure 12.7 Structure of the complex formed by D-gluconic acid with Cu(II) in a
water solution. (Reproduced from T. Gajda et al. Inorganica Chimica Acta 1998; 275,
130, with permission from Elsevier)

following Swift and Connick one can write:

1/T1r = (1/T1 − 1/T1F)/PM = 1/(T1M + τM)

1/T2r = (1/T2 − 1/T2F)/PM = (1/τM){(1/T2M
2 + 1/T2MτM + �ωM

2)/

((1/T2M + 1/τM)2 + �ωM
2)} (12.17)

Here PM = 2CM/CL and �ωM is the chemical shift in the paramagnetic
complex, formed by L and Cu(ClO4)2. If the pseudo-contact contribution is
negligible, then the paramagnetic chemical shift can be expressed via the
equations:

�ωr = �ω/PM = �ωM {(1 + τM/T2M)2 + �ωM
2τM

2}−1 (12.18)

�ωM/ωC = 2π AC µM (S(S + 1))−1/2/3kγCT (12.19)

where µM is the electronic magnetic moment and ωC is the Larmor frequency
of 13C nuclei. Note that the magnitudes of 1/T1r, 1/T2r and �ωr can be
determined experimentally from least-squares plots of 1/T1, 1/T2 and �ω

versus PM at constant temperature.
Rates of nuclear relaxation, 1/T1M and 1/T2M, in the paramagnetic complex

can be expressed via Equations (12.4). The equations are greatly simplified
at τM � τE � τR and ωE

2τE
2 � 1 converting to:

1/T1M = 2 × 10−14 µM
2γC

2 τR/5r(C−M)
6 (1 + ωC

2τR
2)

1/T2M = (7/6) (1/T1M) + 4π2 AC
2 S(S + 1) τE/3 (12.20)

Equations (12.20), (12.17) and (12.19) can be combined with τ = τ0 exp(�E/
RT) (for τM and τR times) to express the dependences of the T1r, T2r and �ωr
parameters on the temperature. Note that the electron relaxation rate 1/τE
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Table 12.7 13C T1 relaxation date, carbon–copper distances and A constants obtained
for complex CuL2 of D-gluconic acid in water at 298 K

Parameter C(1) C(2) C(3) C(4) C(5) C(6)

1/T1r (s−1) 2175 2410 502.5 158 132 52.5
1/T1M (s−1) 2987 3449 536 161 134 53
r(C−M) (Å) 2.81 2.76 3.72 4.52 4.96 5.79
A (MHz) 0.98 0.97 0.17 0.13

can be taken in these expressions as K/τR with the constant K independent of
the temperature and the frequency. It is obvious, however, that direct fitting
of the experimental data to such theoretical equations is impossible because
of a great number of unknown parameters: AC, τ0M and τ0R, �ER, �EM, K and
r(C−M). However, a search of the parameters can be narrowed by increasing
a number of nuclei involved in the relaxation experiments.

An analysis of the 13C NMR data, collected for L at variations in CM
concentrations, shows a very important feature: the ligand exchange is slow
on the NMR time scale for the C(1) and C(2) carbons (�ωM

2τM
2 � 1) and

moderately fast for the C(3) and C(4) resonances (�ωM
2τM

2 ∼ 1). In the
first case 1/T2r = 1/τM and thus the τM times can be calculated from the
spin–lattice relaxation measurements at any temperature. Then, the standard
temperature set of the τM values gives τ0M (3.0 × 10−12 s) and activation
energy parameters of the exchange: �EM = 43.4 kJ/mol, �H �= = 45.9 kJ/mol,
�S�= = −7.6 e.u.

The paramagnetic shifts, �ωM, of C(3) and C(4) nuclei can be obtained
simply as a high-temperature limit for Equation (12.18) (i.e. �ωr = �ωM) and
thus the corresponding AC values can be calculated. Then, the 1/T1M values
are determined as 1/T1M = (T1r − τM)−1 and thus all the data lead to C−M
distances, listed in Table 12.7. The structure of the paramagnetic complex,
deduced on the basis of the C−M distances, is shown in Figure 12.7. Finally,
a similar approach can be applied to more complex molecules, for example,
Gd(III)- and Mn(II)-coordinated adenosine triphosphate, studied by 1H and
31P relaxation measurements [7] or Cu(II)-coordinated histidine-containing
peptides [1].

12.5 Longitudinal Electron Relaxation Time
at Paramagnetic Centers from
Variable-high-field NMR Experiments

The theory emphasizes that relaxation of electrons, located at paramagnetic
centers, plays an important role in the NMR behavior of nuclei neighboring
these centers. Moreover, under some conditions, quantitative interpretation
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of T1 and T2 times, measured in the presence of paramagnetic species, is
impossible without precise knowledge of the electron relaxation times. On the
other hand, knowledge of electronic relaxation can give chemically significant
information, particularly in the case of biological systems. It is known, for
example, that the biological function of metalloproteins is governed by the
geometric and electronic features of their metal sites. In turn, these features
affect relaxation of the unpaired electrons. Thus, measuring the electron
relaxation rates in metalloproteins is a direct way of understanding the
structure and biological function of such systems.

Nuclear relaxation in Cu(II)-containing protein molecules can be expressed
in general form [8] as:

R1ρ = (2/5)(µ0/4π)2γI
2ge

2βe
2S(S + 1)�2(3τC/(1 + ωI

2τC
2)) (12.21)

where τC has its usual meaning (τC
−1 = 1/τ1E + 1/τR + 1/τM) and � is a

parameter, depending on metal–nucleus distances and the fraction of the
unpaired electron spin delocalized to the ligand. The single field-dependent
component in this equation is 1/τ1E. For this reason, if rates of nuclear relax-
ation change in variable-field NMR experiments, then electron relaxation
times can be directly determined from the R1ρ values.

Ma and Led [8] demonstrate the effectiveness of this approach with the
help of 1H, 13C NMR experiments on blue copper proteins. Figure 12.8
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Figure 12.8 Frequency dependence of the paramagnetic 1H relaxation rates for:
Leu(14) Hδ (squares); Val(41) Hγ (circles); and Leu(59) Hδ (triangles) in Anabaena
variabilis plastocyanin (schematic). Data for 400, 500 and 750 MHz
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displays the field effects obtained for some protons in Anabaena variabilis
plastocyanin. As can be seen, the plots of the R1ρ versus ωI

2 are not linear.
Furthermore, similar effects are observed for 13C nuclei. This nonlinearity is
compatible only with a variation of τC at the given field diapason. According
to independent data, the exchange rate, 1/τM, is small in the protein molecule
and therefore it can be ignored. The molecular rotation correlation time τR is
as long as 6.2 ns at 298 K. Thus, the electron relaxation rate dominates in the
τC

−1 term. It is easy to show that the ratio R1ρ (11.7 T)/R1ρ (17.6 T) for a target
nucleus depends only on the value of the spectral density function. Thus,
only two different R1ρ (11.7 T)/R1ρ (17.6 T) values are needed for the 1/τ1E
determination: one from a 13C nucleus and one from 1H nucleus. Then, the
electron spin relaxation rates at the two magnetic fields can be calculated by
a least-squares fit of Equation (12–21) to the experimental R1ρ (11.7 T)/R1ρ

(17.6 T) ratios obtained for 13C and 1H nuclei. Finally, the calculations give
1/τ1E values of 5.8 × 109 and 2.6 × 109 s−1 at 11.7 and 17.6 T, respectively.
This method does not require knowledge of the structure of the proteins.
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Concluding Remarks

Because of the wide range of applications of nuclear magnetic resonance
in chemical practice, many undergraduate chemistry courses include the
theoretical basis of the NMR spectroscopy. However, a chemistry course is
not complete if it does not consider and discuss the basic principles of NMR
relaxation. This book attempts to explain the relaxation phenomenon from
the point of view of a chemist, and focuses on the theory and methodological
aspects of nuclear relaxation as an independent and powerful tool in chemical
studies. Discussing relaxation approaches to different chemical topics and
interpretations of relaxation data, we have tried to avoid the situations when
graduate students and postdoctoral fellows consider nuclear relaxation as a
‘black box.’ Thus, this material can be easy incorporated into undergraduate
and graduate teaching.

Finally, for more advanced reading we recommend the following original
reviews and papers:
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