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Single-chain simulations of densely branched comb polymers, or ‘‘molecular bottle-brushes’’ with
side-chains attached to every~or every second! backbone monomer, were carried out by off-lattice
Monte Carlo technique. A coarse-grained model, described by hard spheres connected by harmonic
springs, was employed. Backbone lengths of up to 100 units were considered, and compared with
the corresponding linear chains. The backbone molecular size was investigated as a function of its
length at fixed arm size, and as a function of the arm size at fixed backbone length. The apparent
swelling exponents obtained by a power-law fit were found to be larger than those for the
corresponding linear polymers, indicative of stiffening of the comb backbone. The probability
distribution function for the backbone end-to-end distance was also investigated for different
backbone lengths and arm sizes. Analysis of this function yielded the critical exponents, which
revealed an increase in the swelling exponent consistent with values found from the molecular size.
The apparent persistence length of the backbone was also determined, and was found to increase
with increasing branching density. Finally, the static structure factors of the whole bottle-brushes
and of their backbones are discussed, which provides another consistent estimate of the swelling
exponents. ©2004 American Institute of Physics.@DOI: 10.1063/1.1651052#

I. INTRODUCTION

Molecular bottle-brushes are comb polymers with a high
density of branches along the main chain~or backbone!.
Typically, such polymers are obtained by polymerization of
an end-functionalized macromonomer,1,2 and therefore they
often carry a side chain per backbone monomer, so that no
flexible spacer is present between adjacent branch points. If
such a backbone carries sufficiently long arms, it displays an
unusual rigidity characterized by an enhanced persistence
length, despite the intrinsic flexibility of its chemical
units.1,3–7 This stiffness is related to the excluded-volume
interactions among the side chains, and therefore it depends
on their length. Because of this feature, amphiphilic molecu-
lar bottle-brushes carrying diblock copolymer side chains
were used as templates for producing gold nanowires and
clusters by loading the inner blocks with HAuCl4 and sub-

sequently reducing the salt to the metallic state.5,8 Moreover,
the enhanced backbone stiffness of these molecules produces
two-dimensional local ordering on a surface,4 and lyotropic
main-chain liquid crystals.3 A similar behavior was also
found in related systems where end-functionalized oligomers
strongly associate to linear polymers through hydrogen
bonds.9 The resulting system is akin to a bottle-brush where
the side chains are held in place by interactions weaker than
covalent bonds, and yet strong enough to induce mesomor-
phic behavior in the melt up to at least 80 °C.

Schmidtet al.1,5,8provided many experimental results on
bottle-brushes by light-scattering and atomic force micros-
copy, and probed their use as templates for nanotechnologies.
Some computer simulations were also carried out on these
molecules, including both on-lattice10,11 and off-lattice6,12

methods. In particular, the MC simulations of ten Brinke
et al.12 focused on the possible lyotropic behavior of these
systems, investigating the molecular aspect ratio, although
only at a fixed backbone length. Theoretical analysis of this
issue13 has shown that the aspect ratio of bottle-brushes
should increase with the arm length slightly faster than pro-
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portionally, so that lyotropic behavior may be expected only
asymptotically. Earlier, the influence of branching on the be-
havior of comb polymers had been investigated by Birshtein
et al.,14 through scaling methods assuming a roughly con-
stant aspect ratio. We point out here that there is a substantial
disagreement among the experimental, simulation, and theo-
retical studies concerning, for instance, the swelling expo-
nent relating the molecular size to the backbone length. This
exponent was theoretically predicted to be the same as in
linear chains,13,14 in keeping with some computer simu-
lations,11 but in clear disagreement with other ones10 and
with experimental results.1 A similar disagreement was also
found for the swelling exponent relating the arms size to
their length.5,10,13

From a theoretical and computational viewpoint, mo-
lecular bottle-brushes comprise a subset of branched poly-
mers, for which generic techniques were developed by our
Milan and Dublin groups, irrespective of the connectivity of
the macromolecular architecture.15–17 In the past, we suc-
cessfully applied these techniques to studies of stars and den-
drimers, both homopolymers and copolymers.15,16,18 Given
that there are still open issues and some controversy about
the conformational behavior of molecular bottle-brushes, we
carried out an independent study of these systems. In particu-
lar, in addition to a new estimate of the swelling exponents
and of the backbone stiffness, we investigated in detail both
more advanced statistical observables, such as the probabil-
ity distribution functions~PDF! and the critical exponents
associated with them, and the static structure factors of the
whole molecule or of its backbone, that may be directly com-
pared with appropriately designed experiments after suitable
labeling. To the best of our knowledge, a systematic study of
these quantities has not yet been carried out so far.

A well-tested approach based on Monte Carlo simula-
tions in continuous space is applied here to study flexible
homopolymer bottle-brushes in a good~athermal! solvent.
As we are interested in the generic features of bottle-brushes,
we use a coarse-grained bead-and-spring model, assuming
no intrinsic rigidity for the backbone or the side chains. The
inter-bead potential is simply described through hard-sphere
interactions, so that we indeed have an athermal system,
equivalent to a self-avoiding walk with the connectivity con-
straints. In the next section, we briefly summarize the model
and the simulation methodology, and define the relevant ob-
servables and the procedure used to estimate their standard
errors. Afterwards, we discuss our results in terms of~i! the
molecular size and its dependence on the backbone and arm
length; ~ii ! the probability distribution function of the back-
bone end-to-end-distance and the relevant critical exponents;
~iii ! the apparent persistence length of the backbone and the
molecular aspect ratio;~iv! the static structure factors of the
whole molecule and of the backbone.

II. SIMULATION METHOD

We adopt a bead-and-spring model with a hard-sphere
interaction potential to describe excluded-volume interac-
tions ~athermal solvent!. The system Hamiltonian is given by

H5
kBT

2,2 (
i; j

r i j
2 1

1

2 (
iÞ j

V~r i j !, ~1!

wherer i j 5uX i2X j u, X i being the vector position of theith
bead. In Eq.~1!, the first sum accounts for the harmonic
springs between connected beads, indicated byi; j , and the
second one for the pairwise interaction potential. For a hard-
sphere potential,V(r ) is given by

V~r !5H 1` if r ,d,

0 if r .d,
~2!

where d is the sphere diameter. With the definition of the
spring constant in Eq.~1!, the mean-square distance between
connected beads in a random walk is^r i ,i 11

2 &53,2. In the
following, we use the reduced unitskBT51 and,51, and
taked5, as a convenient choice.

We consider comb polymers withNb backbone beads
and f arms, each comprisingNa beads, evenly distributed
along the backbone. It is useful to define the branching den-
sity m5 f /Nb , so that the total number of beads isN5Nb

1 f •Na5Nb(11m•Na). Here, we study highly branched
comb polymers withm50.5 and 1 ~neglecting the end
beads!, indicated for brevity as low- and high-density~or LD
and HD! bottle-brushes. Note that form50 and forNa50
we obtain a linear chain with the same length as the corre-
sponding comb backbone.

We employ the Monte Carlo method in continuous space
using the standard Metropolis algorithm as described in de-
tail in previous papers.15 The procedure involves random lo-
cal moves of a randomly selected bead with a minimum
displacement of 0.05~in , units! adjusted to achieve an ac-
ceptance ratio of 0.5, which helps to avoid nonergodicity
issues in the phase-space sampling. We carried out long
simulation runs ofQ independent samples, collecting a large
numbert of almost independent configurations after equili-
bration to calculate the statistical averages. Thet configura-
tions were separated by a large number of sweeps (;N2, a
sweep corresponding toN attempted moves!, but in principle
could still display residual correlations affecting the esti-
mated standard errors. Let us denote asAi

j , i 51,2,...,t, j
51,2,...,Q the value of the generic observableA in the ith
configuration of thejth sample. If all theQt values ofAi

j

were uncorrelated, then the average value ofA would be

^A&5
1

Qt (j 51

Q

(
i 51

t

Ai
j ,

the dispersion of its distribution

s2~A!5
1

Qt (j 51

Q

(
i 51

t

~Ai
j2^A&!2

and the standard error on^A&dA5As2(A)/Qt. However, if
there is any correlation between thet configurations of theQ
independent samples, then there is a statistical inefficiency
s.1 such that actuallydA5As2(A)•s/Qt. In order to esti-
mates, we group thet configurations of a given run inl b

blocks, each comprisingtb configurations (t5 l b•tb) and
calculate the average
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^A&b5
1

tb
(
i 51

tb

Ai

and variance

s2~^A&b!5
1

l b
(
b51

l b

~^A&b2^A&!2.

Upon increasing the block length, we expect the correlation
within each block to decrease so thats2(^A&b);1/tb

for large tb due to the central limit theorem. Therefore,
we can estimate19 s from the relationship s
5 lim

tb→1`
@tbs2(^A&b)/s2(A)#. An example of such esti-

mate is reported in Fig. 1, whereA is the molecular radius of
gyration. All standard errors in the following were corrected
for statistical inefficiency according to this procedure.

The average quantities characterizing the molecular size
are the mean-square interbead distances,^r i j

2 &, and the back-
bone mean-square end-to-end distance,^Rb

2&, and radius of
gyration, ^Sb

2&, the latter being given by the mean-square
distance of the backbone beads from their center of mass,

^Sb
2&5

1

2Nb
2 (

i , j 51

Nb

^r i j
2 &. ~3!

Analogous expressions can be used to characterize the arms,
with an a subscript, or the whole molecule, with no sub-
script.

Another important quantity, not easily accessible experi-
mentally, is the probability distribution function~or PDF! of
the distance between the generic bead pairi , j , which is ob-
tained through the expression

gi j ~r !5^d~r i j 2r !&5
1

4pr 2
^d~ ur i j u2r !&. ~4!

In the following, we focus on the PDF for the backbone
end-to-end distance, wherer i j 5Rb .

The chain stiffness is characterized through the persis-
tence length along the backbone. Among the possible defini-

tions of persistence length, we adopt the following one, in
terms of the projection of the backbone end-to-end vectorRb

on the generickth spring20

l pers
~k! 5 K r k,k11

ur k,k11u
•RbL . ~5!

In general,l pers
(k) may depend on the spring location within the

main chain.
Finally, the static structure factor of the backbone is ob-

tained from the expression

Sb~q!5
1

Nb
2 (

i , j 51

Nb

g̃~ uqu!,

~6!
g̃~q!5^exp@ iq•~X i2X j !#&

5
1

2p2 E0

`

r 2gi j ~r !
sin~qr !

qr
dr,

q being the scattering vector@q5uqu54p sin(u/2)/l, u be-
ing the scattering angle andl the radiation wavelength#,
while the double sum is performed over thei , j bead pairs of
the backbone. An analogous expression can be written for
the whole molecule dropping theb subscripts.

III. RESULTS AND DISCUSSION

A. The molecular size

The backbone mean-square end-to-end distance^Rb
2&

and radius of gyration̂Sb
2& are shown in Fig. 2 as a function

FIG. 1. An example of the estimate of the statistical inefficiencys for three
LD bottle-brushes withNa55 beads per arm. The three cases correspond to
Nb510 sampled fort51000 configurations~filled triangles!, and Nb570
sampled for a total oft51000 and 5000 configurations~empty and filled
circles!, the number of blocks being in all casesl b>10. Here the observable
A is the molecular radius of gyration, whiletb is the number of configura-
tions sampled in a block~see text!.

FIG. 2. The mean-square backbone end-to-end distance^Rb
2& and radius of

gyration ^Sb
2& plotted as a function of the backbone lengthnb for linear

chains~squares! and LD and HD bottle-brushes~circles and triangles! with
Na55 beads per arm. The solid lines are the power-law fitting curves ac-
cording to Eq.~7!, the best-fit parameters being in Table I. In all cases, the
error bars are smaller than the symbol size.
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of the backbone lengthnb5Nb21 for the LD and HD
bottle-brushes at a fixed arm length,Na55, in comparison
with linear chains. It can be seen that bottle-brushes have a
much larger size than linear chains of the same backbone
length, the more so the larger is the branching density due to
the repulsive interactions among the arms that force the
backbone to assume a slender shape. Of course, this effect
becomes stronger both with a larger arm density, and with
longer arms due to their larger excluded volume.

The data points in the figures cannot be fitted by theo-
retical equations valid for stiff chains such as the wormlike
model. Therefore, they were simply fitted with the power law

^X2&5ax•nb
2nx, ~7!

whereX is eitherRb or Sb , andnx the corresponding swell-
ing exponent. The best-fit values ofax andnx ~solid lines in
Fig. 2! are reported in Table I with their standard errors.

For linear chains,nR is equal to the current best theoret-
ical and simulation results of the Flory exponent,17,21 while
nS is slightly smaller because it reaches its asymptotic value
more slowly. Therefore, the values in Table I may still be in
the crossover region. In fact, for finite chains the mean-
square radius of gyration can still be affected by topologi-
cally close bead pairs not yet in the asymptotic regime. On
the other hand, bottle-brushes show much larger exponents
~see Table I! even withNa55 beads per arm only, while for
shorter arms the swelling exponents are closer to the linear-
chain value. It may also be noted that at short backbone
length both^Rb

2& and ^Sb
2& are smaller than the value pre-

dicted by Eq.~7!: this feature, particularly evident in the HD
bottle-brush, reflects a crossover towards a compact molecu-
lar topology somewhat reminiscent of star polymers.

Another interesting quantity is the plot of the mean-
square distances among the beads^r i j

2 & as a function of their
topological separationu i 2 j u. Considering the backbone
beads, these plots provide a check of the swelling exponents,
because in analogy with Eq.~7! we expect a power law re-
lationship

^r i j
2 &5ai j •u i 2 j u2n i j ~8!

with n i j equal tonR andnS in the long-chain limit. A typical
result for linear chains and for LD and HD bottle-brushes
with an arm length ofNa55, is shown in Fig. 3, while the
fitting results~solid lines! are reported in Table I. In all cases
the exponentsn i j are consistent with those of the whole
backbone. In particular, for linear chainsn i j lies betweennS

andnR , thus confirming thatnS reaches the asymptotic value

more slowly. Moreover, these results produce again the large
value of the swelling exponent of bottle-brushes.

A recent lattice simulation study11 appears to be in con-
flict with our results. In fact, for similar backbone lengths
and branching density, a swelling exponentnR50.588(65)
was reported, equal to the Flory exponent of linear chains
~the value in parentheses is the standard error on the last
significant digits!. While lattice artefacts, which are known
to be difficult to deal with for branched systems, cannot be
ruled out, the reported exponent is quite surprising in view of
our results, even in the presence of the large error margin. On
the other hand, other lattice simulations using the bond fluc-
tuation model yielded different results consistent with ours.10

In particular, for HD bottle-brushesnS was found to increase
with the arm length from 0.60~1! for Na50 ~linear chain! up
to 0.97~5! for Na564, with a value of 0.69~1! for Na54 that
nicely agrees with our value in Table I.

Interestingly, our swelling exponents do reasonably
agree with the experimental results of Schmidtet al.1 at a
constant arm length. These results were fitted with the
wormlike-chain model, even though some discrepancies
were apparent at ‘‘low’’ molar masses. However, we can ana-
lyze the same data in terms of a power-law relationship in
the ‘‘high’’-molar-mass region either graphically, or by fit-
ting the wormlike curve employing Schmidt’s parameters.
Notably, we obtain an apparent exponent that increases from
0.60 to 0.63 up to 0.68 for arms with 28, 38, and 54 mono-
mers, in fair agreement with our results.

As for the arm length, the mean-square end-to-end dis-
tance^Ra

2& can also be expressed through a power-law de-
pendence on the number of bondsna ,

^Ra
2&5aarm•na

2narm ~9!

in analogy to what done for the backbone. We first point out
that most arms display a uniform size within a given bottle-
brush independent of their location along the main chain,
apart from those close to the free ends, and independent also

TABLE I. The fitting parameters of Eqs.~7! and ~8! for linear chains and
LD and HD bottle-brushes withNa55 beads per arm. The standard errors
on the last significant digit~s! are reported in parentheses.

^Rb
2& ^Sb

2& ^r i j
2 &

aR nR aS nS ai j n i j

Linear 3.04~6! 0.588~2! 0.570~6! 0.570~1! 3.73~1! 0.5770~5!
LD 2.80~5! 0.678~2! 0.438~8! 0.674~2! 3.823~3! 0.6639~1!
HD 3.2~4! 0.707~17! 0.51~5! 0.703~11! 4.28~3! 0.707~1!

FIG. 3. The mean-square distance between backbone beads^r i j
2 & plotted as

a function of their topological separationu i 2 j u for the linear chain~lower
curve! and LD and HD bottle-brushes~central and upper curve, respec-
tively! with Na55 beads per arm. The backbone comprisesNb5100 beads
and the starting bead isi 520 (Nb570 andi 515 in HD bottle-brush!. The
straight lines are the fits to the power law of Eq.~8! neglecting the terminal
20 beads~15 in HD bottle-brush! to avoid end effects~visible as a slight
downturn at largeu i 2 j u due to the larger swelling of the central portions!.
The best-fit parameters are in Table I. In all cases, the error bars are smaller
than the symbol size.
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of the backbone length, suggesting that the interarm repul-
sion is essentially local. The best-fit parameters in Eq.~9! for
an LD bottle-brush withNb520 are aarm53.24(4) and
narm50.608(3), slightly but significantly larger than the
linear-chain value~see Table I!. The increase ofnarm above
0.588~2! due to the interarm repulsions is much less than that
found for the backbone, but it agrees with the value 0.60~1!
previously obtained with the bond fluctuation model.10 On
the other hand, this exponent is not as large as the value of
0.682 recently found by other simulations,6 or the theoreti-
cally predicted13 one of 0.75.

It should be stressed that our swelling exponents for the
bottle-brush backbone are apparent ones, being slightly de-
pendent on its length. This feature is particularly evident for
the HD bottle-brush at smallnb ~see Fig. 2!, where the mol-
ecules bear some similarity to star polymers due to their
short backbone length. Thus, the exponents may change
somewhat in the asymptotic limitNb→`. In fact, general
theoretical arguments suggest that then exponent of linear
chains and of comb polymers with finite side chains should
eventually coincide. These arguments rely on the observation
that for a fixed arm length the comb diameter, conveniently
defined as 2̂Ra

2&1/2, is independent of the backbone length,10

as pointed out after Eq.~9!. Therefore the ratio between the
backbone contour length and the diameter diverges forNb

→`, making the molecule akin to a linear chain. Accord-
ingly, the influence of side chains can be described purely via
effectively renormalizing the persistence length of an equiva-
lent linear chain. Clearly then, a semiflexible chain would
become totally flexible if the number of links tends to infin-
ity but the persistence length remains finite, andn would
eventually be 0.5882 for both topologies. A rigorous proof of
this argument could only be obtained by an accurate renor-
malization group study, but this task is not easy, given that
one must somehow retain the finite arm length. Moreover, it
is possible that the effective semiflexible linear chain idea
may be somewhat flawed due to nonlocal effects mediated
by the arm volume interactions. On the other hand, our re-
sults suggest that in bottle-brushes with a very large branch-
ing density such limit might only be reached for huge back-
bone lengths, well outside the experimentally accessible
range. Therefore, while the above limit is of great interest
academically, it may be irrelevant in practice.

We now consider the dependence of the overall molecu-
lar size on the arm lengthNa for a fixed backbone length
Nb . We report again results obtained for the mean-square
end-to-end distance of the backbone,^Rb

2&, using short LD
bottle-brushes withNb510 and 20 beads. The results shown
in Fig. 4, normalized by the corresponding linear-chain value
^Rb

2& lin , indicate that the interarm repulsions significantly in-
crease the molecular size with increasingNa , up to an
asymptotic constant value, with a corresponding backbone
stiffening. The data points can be fitted by the saturation
curve, ^Rb

2&/^Rb
2& lin511A@12exp(2Na /B)#. This expres-

sion correctly reduces to unity forNa50, while A gives the
relative increase of̂Rb

2& over ^Rb
2& lin in the asymptotic limit.

The fitting parametersA and B, reported in the figure cap-
tion, depend on the backbone length and on the branching

density, but we cannot extract general relationships apart
from saying that they increase withNb .

The saturation curves of Fig. 4 are certainly affected by
the short backbone length, which prevents an unbound in-
crease in̂ Rb

2& and produces an almost starlike behavior of
the molecules at largeNa . However, though large, the
present values still indicate a coiled backbone conformation
with some apparent stiffening. While the backbone behaves
as a coil at scales beyond the persistence length, it does not
compare to a semiflexible linear chain of the same persis-
tence length, as said before. For instance, conformations of
the latter would never exhibit any sharp turns, which would
be energetically rather unfavorable, whereas our Hamiltonian
does not really penalize the backbone for doing a few sharp
turns. Thus, a semiflexible linear chain is not fully equivalent
to the comb backbone.

B. The probability distribution functions

The probability distribution function~PDF! of the dis-
tances among the bead pairs,gi j (r ), was defined in Eq.~4!.
For convenience, we report it in the reduced dimensionless
form

ĝi j ~ r̂ !5^r i j
2 &3/2gi j ~r !, r̂ 5r /^r i j

2 &1/2. ~10!

In this way, the reduced PDF satisfies the double normaliza-
tion conditions17

E
0

1`

dr̂ r̂ 2ĝi j ~ r̂ !5E
0

1`

dr̂ r̂ 4ĝi j ~ r̂ !5
1

4p
. ~11!

We focus here on the reduced PDF of the end-to-end dis-
tance, indicated asĝR( r̂ ). This function is shown in Fig. 5
for two linear chains and two LD bottle-brushes of different
backbone length. In keeping with previous theoretical and
simulation results,17,22–24we fitted the data points with the
function

ĝR~ r̂ !5A0• r̂ q0 exp~2B0• r̂ d0!. ~12!

FIG. 4. The normalized mean-square backbone end-to-end distance of two
LD bottle-brushes with different backbone length plotted as a function of the
arm lengthNa . The normalization factor̂Rb

2& lin is the mean-square end-to-
end distance of the corresponding linear chain. The solid lines are the best-
fit saturation curveŝRb

2&/^Rb
2& lin511A@12exp(2Na /B)# with fitted values

A50.277(6) and B52.1(1) for the shorter, andA50.89(3) and B
54.7(4) for the longer comb. The horizontal asymptotes are shown with
dashed lines.
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In principle, ĝR( r̂ ) is expected to follow a simple power-law
dependence23 at small r̂ @ ĝR( r̂ )} r̂ q0# reflecting the correla-
tion hole at the origin due to the self-avoiding condition, and
a power-law times a stretched exponential@ ĝR( r̂ )} r̂ q0

•exp(2B0•r̂
d0)# at larger̂ , theq0 exponent being somewhat

different in the two limits. However, in practice the single
Eq. ~12! provides an excellent picture of the overall behavior
of ĝR( r̂ ).17,22 Here the 0 subscript is meant to indicate the
backbone end-to-end distance, following des Cloizeaux’s
notation,24 while 1 and 2 subscripts are used to indicate the
end-to-center and center-to-center distances. Due to the nor-
malization conditions, the constantsA0 andB0 have known
expressions, but are treated here as fitting parameters just as
q0 andd0 for simplicity.

For linear chains,d0 turns out to be independent of the
backbone length~see Table II!, and takes the average value

of 2.42~2!. Moreover, we checked that within the statistical
accuracy, it is also equal tod1 ~end-to-center beads! andd2

~center-to-center beads!, in keeping with theoretical
predictions.25 Using for d the relationship

d5~12n!21 ~13!

we obtain a new estimate for the Flory exponent,
n50.587~4!, in excellent agreement with what obtained by
the power-law fit of Eq.~7! to the mean-square end-to-end
distance~see Table I!. As for q0 , it weakly depends on the
backbone length and cannot be unambiguously extrapolated
to an asymptotic value. However, the value for the long lin-
ear chain with 100 beads is in good agreement with the the-
oretical value 0.271~2!.21 From q0 ~see Table II!, we can
estimate the critical exponentg. Two relationships were ob-
tained for flexible linear chains,23,24

q05
gA21

n
, ~148!

q05
3n2gB21/2

12n
. ~149!

The former expression is the short-distance version, relevant
to describe the contact probability density, whereas the latter
one applies to the long-distance tail of the PDF, which is
obtained more accurately by our simulations. In turn,g
yields the number of self-avoiding walksZn for a chain with
n segments (n→`),

Zn;Zng21mn ~Z,m5const!. ~15!

Using the fitted values ofq0 and n, given by Eq.~13!, we
obtain two different values ofg via Eqs.~148! and~149!, with
gA weakly decreasing andgB increasing with chain length.
However, for the largest chain, the values match within the
standard error, close to the theoretical value21 g51.160~2!.
Additionally, for linear chains our values ofq1 andq2 ~end-
to-center and center-to-center beads! are 0.47~1! and 0.84~2!,
again in close agreement with previous simulation17 and the-
oretical results.24,26

The PDF for the backbone end-to-end distance of LD
bottle-brushes display a maximum at largerr̂ than linear
chains, and become broader, but their overall shape is quali-
tatively similar, and is again well reproduced by Eq.~12!
~solid curves in Fig. 5!. The best-fit parameters reported in
Table II show that bothd0 and q0 are larger than in linear
chains. Assuming that Eqs.~13! and ~14! also apply to the
comb backbone, we can derive the apparent critical expo-
nentsn and g shown in Fig. 6. The swelling exponentn,
much larger than for linear chains, is fully consistent with the
value previously found for the power-law dependence of the
backbone size. Again, this exponent weakly depends on the
backbone length, and when plotted versusNb

21 @see Fig.
6~a!# it can be linearly extrapolated forNb

21→0 to an
asymptotic value of 0.706~7!, even larger than that found for
finite chains~see Table I!. Fromq0 and Eqs.~14! we derive
two values ofg that show a different dependence onNb @see
Fig. 6~b!#, and do not converge to a common value. There-
fore, no extrapolation forNb→` can be attempted, and the
asymptotic value ofg for bottle-brushes requires further

FIG. 5. The probability distribution function for the end-to-end distanceRb

of a linear chain withNb550 and 100 beads and for an LD bottle-brush
with two backbone lengths (Nb550 and 100 beads! and an arm length of
Na55 beads. The data were obtained with 1.53105 and 3.03105 indepen-
dent samples for the linear chain, and with 4.03104 and 2.03104 indepen-
dent samples for the LD bottle-brushes. The solid lines are the fitting curves
obtained with Eq.~12! with the parameters reported in Table II.

TABLE II. Exponents of the PDF for linear chains and LD bottle-brushes
with Na55 beads per arm@see Eq.~12!#. The standard errors on the last
significant digit are reported in parentheses.

Nb

Linear LD

d0 q0 d0 q0

10 2.42~3! 0.38~4! 2.62~4! 0.64~4!
20 2.41~3! 0.38~3! 2.90~3! 0.91~3!
30 3.05~4! 0.93~4!
50 2.41~2! 0.32~2! 3.17~6! 0.80~5!

100 2.45~2! 0.26~2! 3.33~8! 0.41~6!
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study. We have also analyzed the PDF of the distances in-
volving inner backbone beads in the LD bottle-brush with
Nb5100 backbone beads andNa55 beads per arm. The data
were again well fitted by Eq.~12!, producing the exponents
q1 , d1 ~end-to-center beads! and q2 , d2 ~center-to-center
beads!. The resulting values areq151.21(5) and q2

51.9(2), showing a pronounced widening of the correlation
hole, with an upward curvature at smallr̂ , unlike that found
for the end-to-end beads. As for thed exponents, we ob-
tainedd153.18(5) andd253.04(9), which are not signifi-
cantly different and are both very close tod0 ~see Table II!,
suggesting that they may attain a common value just as in
linear chains.

Finally, we note that theq0 exponents of Table II imply
that the detailed shapes of the PDF curves for linear chains
and bottle-brushes reflect quantitative differences basically
related to the width of the correlation hole at the origin,
which depends both on the branching density and on the
arms length. In fact, Fig. 7 shows that the maxima shift to
larger distances upon increasing the arm length, with a wider
correlation hole that would be even larger if we usedr in-
stead ofr̂ 5r /^Rb

2&1/2 due to the increase of̂Rb
2& with in-

creasingNa . The shift of the maxima brings about also a
peak sharpening, so that the distribution of the end-to-end
distance becomes narrower, with smaller fluctuations around
the average value. This feature is consistent with an apparent

backbone stiffening induced by the interactions among the
side chains which increase with the arm length.

C. The backbone persistence length and the molecular
aspect ratio

The average projection of the end-to-end vectorRb on
the generickth backbone spring yields the backbone persis-
tence lengthl pers

(k) @see Eq.~5!#. This quantity is plotted vsk in
Fig. 8 for linear chains and LD bottle-brushes of different
length. Due to the greater freedom of the free ends,l pers

(k) is
larger for inner springs, where it develops a well-defined
plateau. The average plateau value defines the effective per-
sistence lengthl pers, which increases with the backbone
length, whereas in ideal models it is a local property inde-
pendent of molar mass. Thus,l pers is affected by excluded-
volume interactions among topologically distant beads, but it
provides nonetheless a good measure of apparent stiffness. In
Fig. 9, l pers is plotted as a function of the number of back-
bone springsnb for linear chains and LD and HD bottle-
brushes at a fixed arm length showing the larger stiffness of
bottle-brushes. Moreover,l pers does increase with increasing

FIG. 6. ~a! The Flory exponentnR extracted via Eq.~13! from thed expo-
nent obtained by fitting the PDF in Fig. 5, plotted vsNb

21. The values apply
to LD bottle-brushes withNa55 beads per arm and were fitted neglecting
the right-most data point. From linear extrapolation toNb

21→0, we obtain
nR50.706(7).~b! The critical exponentg extracted via Eqs.~14! from the
fitting q0 exponent of the PDF in Fig. 5 plotted vsNb for the same bottle-
brush as in panel~a!. The solid curves are drawn as a guide for the eye.

FIG. 7. The probability distribution function for the end-to-end distanceRb

of a linear chain and two LD bottle-brushes with different arm lengths and a
backbone withNb520 beads. The data were obtained with 1.03105, 5.0
3104, and 3.63104 independent samples, from top to bottom, and the solid
lines are the fitting curves obtained with Eq.~12!.

FIG. 8. The persistence lengthl pers
(k) obtained through Eq.~5! for the linear

chain ~lower data points! and the LD bottle-brushes withNa55 beads per
arm ~upper data points! as a function of the spring locationk within the
chain (k51 andk5Nb21 are the terminal spring! for different backbone
lengths.
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branching densitym at a fixed arm lengthNa ~see Fig. 9!, but
also with increasingNa at a fixedm and nb to a constant
value ~results not shown!.

Interestingly, for the linear chain,l pers has a power-law
dependence onnb ,

l pers5a•nb
j , ~16!

where a51.61(8) andj50.18~1!, confirming that it is in-
deed affected by excluded-volume interactions. In fact, con-
sidering that for linear chains with a contour lengthL@ l pers

we have ^Rb
2&52Ll pers, we obtain ^Rb

2&53.22(8)•nb
11j ,

where both the Flory exponentnR5(11j)/250.59(1) and
the prefactor agree with the parameters of Table I. On the
other hand, no satisfactory power-law relationship holds for
bottle-brushes, while for instance both an exponential satu-
ration curve and a logarithmic-growth curve reasonably fit
the data points, possibly showing crossover effects due to the
limited range ofNb . However, if we normalize the bottle-
brushes persistence lengths through the corresponding linear
chain, the resulting ratiol pers

brush/ l pers
lin shows a saturation behav-

ior ~see Fig. 10!. This ratio is larger than unity, indicating an
increased stiffness due to the interarm repulsion, and is well
reproduced by the functional form

l pers
brush/ l pers

lin 5A1B@12exp~2nb /C!# ~17!

for both bottle-brushes. The very existence of a plateau for
this ratio indicates that the effect of the good-solvent expan-
sion onl persis asymptotically the same in linear chains and in
bottle-brushes. In turn, this behavior suggests that the addi-
tional backbone stiffening in bottle-brushes compared to lin-
ear chains is basically local, and accordingly, the same
asymptotic behavior and Flory exponent should eventually
be attained.

We additionally report in Fig. 11 the aspect ratio, defined
asl pers/D, whereD is the molecular diameter, taken as twice
the average root-mean-square end-to-end distance of the
arms, i.e.,D52 ^Ra

2&1/2. Because of the uniform value of
^Ra

2& mentioned before, and hence ofD, the aspect ratio
steadily increases with increasing backbone length at a fixed

arm size similar to the increase ofl pers in Fig. 9, possibly to
an asymptotic constant value. The aspect ratio is larger at
larger branching density, but it barely exceeds unity. Recent
simulations12 reported a persistence length strongly increas-
ing with the arm length, but with an aspect ratiol pers/D that
was constant for flexible side chains, and sharply increasing
for stiff arms. It should be remembered here that when the
aspect ratio exceeds a value of 10 in a semiflexible chain,
lyotropic behavior is predicted.6,27,28Clearly, no such behav-
ior is expected with the present simulation parameters.

In this context, however, it should be pointed out that the
definition of l pers is by no means unique, and different defi-
nitions or different ways of calculating it from simulation
results may lead to rather different values. For instance, ten
Brinke et al.12 initially attempted to estimatel pers by fitting
the calculated radius of gyration to the wormlike expression,
thus obtaining values quite similar to ours. However, they
also obtained a different value from the plots of the correla-
tion function ^cosqij& of the bond angles formed by the
backbone segments as a function of their topological separa-
tion. Under the simplifying assumption of a simple exponen-
tial decay, at least for not-too-close segments, this procedure

FIG. 9. The persistence lengthl pers, given by the average plateau value of
the data in Fig. 8, plotted as a function of the number of backbone springs
nb for linear chains and LD and HD bottle-brushes withNa55 beads per
arm. The power-law fit for linear chains, according to Eq.~16!, is shown
with the solid curve. No satisfactory power law holds for the bottle-brushes,
whose data points are smoothly connected by dashed lines as a guide for the
eye.

FIG. 10. The ratiol pers
brush/ l pers

lin plotted as a function of the number of back-
bone springsnb for LD and HD bottle-brushes. The solid lines are the
best-fit curves of Eq.~17! with A50.6(2), B51.5(1), C519(5) for LD,
andA50.3(4), B52.7(3), C515(5) for HD bottle-brushes.

FIG. 11. The molecular aspect ratiol pers/D, D being the molecular diam-
eter, plotted as a function of the number of backbone springsnb for the LD
and HD bottle-brushes at a fixed arm lengthNa55. The solid lines are
drawn as a guide for the eye.
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yielded much larger values ofl pers. Accordingly, we adopted
the same procedure, and calculated the same correlation
function, averaged over all the possible positions along the
backbone, through the expression

^cosq i j &5
1

nb2u i 2 j u (
i 51

nb2u i 2 j u

^ui "uj&, ~18!

where ui5r i /ur i u is the unit vector associated with theith
spring. The plot of̂ cosqij& versusu i 2 j u is reported in Fig.
12 for a linear chain and an LD bottle-brush. Following ten
Brinke et al.,12 we fitted the linear portion of the semiloga-
rithmic plot to a simple exponential, exp(2ui2ju/lpers), thus
obtaining a different estimate ofl pers. The best-fit lines,
shown on the plots, yieldedl pers512.2(4) for the linear
chain, and 14.6~2! for the LD bottle-brush. Though clearly
dependent both on the assumed exponential decay and on the
fitting range, both values are much larger than those previ-
ously obtained, and in full agreement with previous results.12

We finally mention that we are presently carrying out new
simulations of LD bottle-brushes with the arm beads having
a diameter twice as large as the backbone beads. Preliminary
results indicate larger persistence lengths, equal to 14.5~3!
using our former procedure or to 17.4~1! using the latter one.
It is thus possible that by modifying the microscopic model,
for instance by introducing an intrinsic backbone stiffness
and/or increasing the bead diameters we may reproduce the
observed lyotropic behavior of bottle-brushes.3,4

D. The static structure factor

We finally turn to the static structure factorS(q). Note
that, experimentally, if the side chains do not provide any
contrast with the solvent, one can measure the backbone
scattering only,Sb(q). Hence, we report this quantity in Fig.
13~a! for a linear chain and LD and HD bottle-brushes with
Na55 beads per arm, as a function ofq in a double loga-
rithmic plot. At largeq, we expectSb(q) to scale asSb(q)
}q21/n, as indeed manifested by the best-fit lines, providing
an additional estimate of then exponent. The resulting values

are 0.5872~2! for the linear chain, 0.7067~3! for the LD and
0.786~1! for the HD bottle-brush. Such values well agree
with those reported in Table I or extrapolated from Fig. 6,
being only slightly larger for the HD bottle-brush.

A different display of the static structure factor is shown
in Fig. 13~b!, where we plotq^S2&1/2S(q) as a function of
q^S2&1/2 considering both the whole molecule and the back-
bone only. For the whole molecule, the LD and HD bottle-
brushes display a sharper peak than the corresponding linear
chain simply due to the increased concentration of mono-
mers near the branch points, with only a minor difference
between the two bottle-brushes in spite of the different
branching density. Conversely, the structure factor of the
bottle-brushes backbone,Sb(q), is larger than for the corre-
sponding linear chain, owing to the greater expansion and to
the backbone stiffening. In this case, some difference be-
tween the two bottle-brushes is apparent. The format of Fig.
13~b! was chosen because at largeq such thatq• l pers.1, stiff
chains should display a rodlike behavior, withS(q) propor-
tional to q21, so thatq•S(q) should decrease to a constant
value. No such behavior is obtained from our simulations
down to the shortest observation distance, roughly corre-
sponding to the average spring length. This result is consis-

FIG. 12. The average cosine of the angle between thei , j backbone springs
plotted as a function of their topological separation mediated over all the
positions of the first spring according to Eq.~18! for the linear chain~bottom
data! and for the LD bottle-brush withNa55 ~in both cases,Nb5100). The
solid lines are the best fits obtained with a simple exponential in the range
10,u i 2 j u,30 for the linear chain, and 10,u i 2 j u,40 for the LD bottle-
brush.

FIG. 13. ~a! The static structure factor due to the backbone only plotted as
Nb•Sb(q) vs q in double logarithmic scales for the linear chain~dotted
curve!, and the LD and HD bottle-brushes~solid and dashed curves! with
Na55 beads per arm and a backbone withNb550 beads. The thin dotted
lines are the best fits to the power lawSb(q)}q21/n. ~b! The static structure
factor for the linear chain and the LD and HD bottle-brushes plotted as
q^S2&1/2 S(q) as a function ofq^S2&1/2. The two curves below the dotted
curve of the linear chain show the structure factor of the whole bottle-
brushes~all beads are scattering centers!, and the two curves above it the
structure factor of the backbone only~the arms do not give any contrast with
the solvent!, ^S2&1/2 being herê Sb

2&1/2.
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tent with the relatively small persistence length previously
discussed, and indicates once more that, with the present
parameters, our bottle-brushes do not follow the wormlike-
chain behavior. On the other hand, such behavior for the
bottle-brush backbone has been experimentally observed by
neutron scattering in a poly~chlorovinyl ether! grafted with
polystyrene using matching conditions for the side chains.29

While our bottle-brushes are probably too short for a direct
comparison, we believe that our choice of the same bead
diameter for the backbone and for the arms, as well as the
lack of any intrinsic backbone stiffness yields a larger flex-
ibility than observed in Ref. 29.

IV. CONCLUDING REMARKS

In this paper we report the results of a continuous space
Monte Carlo simulation of molecular bottle-brushes adopting
a bead-and-spring model with a hard-sphere potential to ac-
count for excluded-volume interactions. We are thus in the
athermal regime of a pure self-avoiding walk with topologi-
cal connectivity constraints. We first focus on the global
properties such as the backbone mean-square end-to-end dis-
tance and radius of gyration, and interbead distances, and
then on the probability distribution functions of the distances
among the beads, on the apparent persistence length of the
backbone, and, finally, on the static structure factor. We find
that the molecular size shows a power-law dependence on
the backbone length with a swelling exponent much larger
than in linear chains. This feature is attributed to the interarm
repulsions due to the large density of branching, that can be
relieved somewhat by an apparent backbone stiffening. An
independent estimate of the swelling exponents extracted
from the probability distribution functions for the backbone
end-to-end distance is fully consistent with the results ob-
tained from the power-law fit, as does the estimate obtained
from the static structure factor at large scattering vector.

On the other hand, we have some evidence suggesting
that these results may still be in a crossover region, while the
asymptotic behavior would be reached only for huge back-
bone lengths. Some evidence of such crossover comes from
the plots of the backbone persistence lengthl pers of bottle-
brushes, which is larger than in linear chains due to the stiff-
ening induced by the interarm repulsions. However,l pers as-
ymptotically increases with the backbone length in the same
way as in linear chains, and therefore it eventually becomes
independent of topology, apart from a trivial scale factor
@here we refer to the model-independent definition of persis-
tence length given in Eq.~5!#. Therefore, the same behavior
should eventually be shown by linear chains and comb poly-
mers, although bottle-brushes would achieve the asymptotic
behavior only for huge sizes, possibly outside the experimen-
tal range. From the theoretical viewpoint, this is still an un-
solved and complicated issue, since it requires establishing
the critical exponent for the backbone size at a finite arm
length.

We also determined the probability distribution function
for the backbone end-to-end distance and estimated the criti-
cal exponents of bottle-brushes. We also showed that in these
systems the correlation hole widens with the length of the
side chains, a feature consistent with the backbone stiffening.

On the other hand, the static structure factor of the backbone
Sb(q) does not become proportional toq21, q being the
momentum transfer, unlike what expected at largeq for stiff
chains and what has been observed experimentally by neu-
tron scattering. Moreover, the backbone stiffening with a
constant molecular diameter at a fixed arm length increases
the molecular aspect ratio, which however is not large
enough as to suggest a lyotropic behavior, unlike what is
found experimentally in some cases, possibly due also to
packing effects. On the other hand, by changing the model
parameters such as the bead diameter ratio for the backbone
and the side chains, as well as by adding an intrinsic bending
potential, we can achieve a further stiffening of the back-
bone. We hope to address these issues in a future work.
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