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Coil to Globule Transition: 
 
This follows “Giant Molecules” by Alexander Yu. Grosberg and Alexei R. Khokhlov (1997). 
 
The Flory Krigbaum expression for the free energy of a self-avoiding chain is given by, 
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Equation (1) can be rewritten using the coil expansion coefficient, α,  
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where B is the second virial coefficient,  
 
B = V0 1− 2χ( )           (4) 
 
Finding the minimum in the free energy expression, equation (3), yields the most probable value 
for α,  
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The virial expansion of the enthalpic interactions is given by, 
 

 
U α( ) = VCoilkT n2B + n3C + ...⎡⎣ ⎤⎦ ≈VCoilkTn

2B  kTR
3Bz2

R6
=
z1 2BkT
2α 3l 3

    (6) 

 
where n is the segmental density in the coil and VCoil is the volume of the coil.  The second virial 
coefficient describes binary interactions and the third virial coefficient describes ternary 
interactions.  In dilute conditions we can ignore the higher order interactions and use only the 
second virial coefficient.   
 
The Flory-Krigbaum approach is calculated for coil expansion, α ≥ 1, and for dilute conditions.  
This means that χ ≤ ½ or T ≥ 2Δε/k or θ.  When T < θ the coil will collapse.  This occurs when a 
protein folds, DNA folds into the nucleosome and chromosome, and when RNA folds.  
Polyelectrolytes and charged gels can also show coil collapse into a globular (3-d) state.  
Polymer physics can describe this behavior using functions extended from the original approach 
of Flory and Krigbaum by Stockmayer, Lifshitz and others.  First, in coil collapse the third virial 
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coefficient, C in equation (5), is retained because the concentration is higher in the collapsing 
coil.  Under this condition the second virial coefficient, B in equation (4) is negative but the third 
virial coefficient is positive.  This is because, according to Grosberg and Khokhlov, “in general 
the higher the order of interaction the wider the range where they are effectively repulsive 
(positive)” since the volume excluded is proportional to the number of interacting particles 
(repulsive part) while the attraction (from charge or hydrophopic/hydrophilic interactions or van 
der Waals interactions) are related to surfaces and are proportional to m2/3.   
 
Grosberg and Khokhlov’s figure 8.6 shows a model for chain collapse that explains the entropic 
behavior in terms of blobs of g* chain units associated with a confined chain.  We can consider 
the collapsed chain as composed of z/g* collapsed blobs each with an energy kT. 
 

 
 
The entropy part of equations (1) and (3) also changes in coil collapse.  The coil must fit into a 
size R* = α z1/2 l.  We consider an ideal chain that could fit in this size.  This chain would have a 
mass g* such that g* = R*2/l2.  The chain is composed of z/g* segments that can fit in the 
collapsed coil size R*.  The entropy associated with confinement of the coil is composed of z/g* 
chains each of which contributes kT to the entropy so, 
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In the absence of confinement (coil collapse) the expression was, 
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and a sum of these terms (approximation), 
 

 
−TS α( ) = −TS α( )⎡⎣ ⎤⎦Confinement + −TS α( )⎡⎣ ⎤⎦Expansion  kT α 2 +α−2( )     (9) 

 
The total expression for the free energy of a collapsing coil is given by the sum of equation (9) 
and equation (6) including the third virial coefficient, 
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Which works for both expansion and collapse.  Finding the minimum in this free energy yields 
the most probable value for α, (equivalent of equation (5)), 
 
α 5 −α = x + yα−3           (11) 
 
where x is related to B and is given by, 
 
x = K1Bz
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and y is related to C and is given by, 
 
y = K2C l6            (13). 
If α is small you can neglect the terms on the left hand side of equation (11) and solve for R, 
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so the structure is 3-d or globular.  Other interesting features of equation (11) including its 
prediction of a collapse transition, under certain conditions, are made by Grosberg and 
Khokhlov. 
 
Equation (11) can be understood by plotting the coil expansion factor, α, versus the reduced 
temperature function x for fixed values of y as shown in Figure 8.3 from Grosberg and Khokhlov 
reproduced below.  In this figure, at large y the chain is flexible and the coil only slightly 
collapses on cooling (smaller x).  The theta temperature occurs at x = 0.  For rigid chains with a 
small value for y, the curve shows three values for a given x just below the θ-temperature.  
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Equation (11) corresponds to points where the derivative of the free energy is 0.  These can be 
minima or maxima and when 3 points are seen for a given x this reflects two minima separated 
by a maxima.  So for these values a transition is observed from a coil state for large α, to a 
globular state reflected by 3d structures as indicated by equation (14).   
 

 
 
For fixed values of x we can plot the free energy, equation (10), as a function of α, Figure 8.4 
from Grosberg and Khokhlov reproduced below.  This clearly shows two minima and a maxima.  
For any value of x there is a global minimum associated with the thermodynamically most 
favored state, either a coil or a globule.  The α for the most favored state can be mapped as a 
function of x, Grosber and Khokhlov’s Figure 8.5 below, for the values of y used in Figure 8.3.   
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For rigid chains (chain persistence versus chemical diameter) a dramatic transition is seen 
between the coil and globule states.  This is a first order transition (a discrete transition).  For 
flexible chains (in terms of the persistence versus chemical diameter) the chain shows a gradual, 
continuous transition with no discrete change in size.   
 
 


