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ABSTRACT: Single-chain Monte Carlo simulations were carried out, in continuous space, of polymers
with various topologies (branched and linear) in the good solvent. Using an inherently flexible bead-
and-spring model, the backbone of linear polymers with either linear or dendritic side-groups attached
was found to be elongated, indicative of an induced stiffness. This “topological stiffness” was compared
to the “intrinsic stiffness” of semiflexible linear polymers in terms of various observables. Semiflexible
comb polymers, which contained both types of stiffness, were also considered.

1. Introduction

Even early simulations of comb-branched polymers
in good solvent have indicated that the backbones of
these polymers tend to be stretched compared to their
linear counterparts.1 This stretching is widely accepted
to be due to steric repulsion between the side-chains.
To minimize this repulsion, comb-branched polymers
seem to adopt conformations in which the backbone is
slightly elongated compared to the coillike conforma-
tions of flexible linear polymers. This elongation in-
creases the separation between side-chains, although
it does involve a loss in conformational entropy for the
backbone.

Actually, when the backbone is relatively short, comb-
branched polymers may adopt starlike conformations
wherein the side-chains are able to “wrap” around the
flexible backbone without too much repulsion between
side-chains.2 However, when the degree of polymeriza-
tion of the backbone is increased, elongation becomes
preferable. This phenomenon of elongation has been
treated theoretically by Denesyuk3 for the related brush
polymers. In the latter, star polymers are grafted onto
the backbone instead of linear side-chains. The back-
bone stretching results in its certain rigidity, even for
intrinsically flexible polymers. This stiffness can be
distinguished from the “intrinsic” stiffness that all
polymers have at an atomistic level because of the
bonded interactions because it depends on the topology
of the polymer, and thus it is referred to as the
“topological” stiffness.

The intrinsic stiffness of linear polymers, usually
discussed in terms of the persistence length, lp, and the
Kuhn segment length, lK, is discussed in many standard
books on polymers.4-6 However, often the stiffness that

is experimentally determinable6,7 also contains contri-
butions from factors other than the intrinsic stiffness.
One example is the repulsive excluded volume interac-
tions that even linear polymers demonstrate when in
good solvents.8,9 This is the contribution that makes
linear chains “self-avoiding” in a good solvent. We will
refer to it as the “linear chain excluded volume contri-
bution” (LCEVC). While the intrinsic stiffness, in effect,
acts purely through the connectivity of the polymer, the
excluded volume contribution acts through three-
dimensional (3D) space, although it is also strongly
affected by the connectivity.8 Recent years have also
seen an interest in understanding the contribution of
the “electrostatic” stiffness because of the Coulombic
repulsion between like charges for polyelectrolytes.10-12

In addition to the intrinsic stiffness and LCEVC, comb-
branched polymers appear to have an additional topo-
logical stiffness contribution, as previously mentioned,
which is similar in origin to the LCEVC although, in
the branched polymers studied here, the LCEVC term
is typically smaller in magnitude.

Because of the synthesis of high-density comb poly-
mers, the topological stiffness of the backbones of comb-
branched and related polymers has become increasingly
relevant. For instance, in 1989, Tsukahara et al. suc-
cessfully polymerized methacryloyl end-functionalized
polystyrene macromonomers with extremely high de-
grees of polymerization (DP ≈ 1000).13 “Poly(macromono-
mer)s” such as these can be considered as comb-
branched polymers, where each monomer in the back-
bone contains a side-chain. They were analyzed exten-
sively in terms of viscosity measurements, X-ray scat-
tering, light scattering, scanning force microscopy (SFM),
small angle neutron scattering (SANS), and GPC/
MALLS by the groups of Tsukahara, Schmidt, and
others,14 and it was found that the backbones adopted
stiff, almost rodlike conformations, as indicated by the
measured Kuhn length of lK > 1000 Å. This extended
structure of the backbone has been attributed to a
topological stiffness caused by the extensive overcrowd-
ing of the side-chains, which are only separated by a
contour length of l ) 2.5 Å along the backbone. The side-
chains themselves are moderately long, meaning that
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these polymers adopt curved cylindrical conformations
with diameters of, e.g., d ≈ 70-150 Å, leading to their
description as “molecular bottlebrushes”.13-15

A similar phenomenon to the induced rigidity of the
backbones of these comb polymers has been observed
experimentally for another recently synthesized type of
polymer, which we will call “poly(dendron)s”. These
polymers comprise a linear “backbone”, with numerous
side-groups attached, which are dendritic in nature, i.e.,
highly branched.16,18-28

Poly(dendron)s are related to the relatively mod-
ern class of polymers called dendrimers.29 Dendri-
mers typically comprise a core focal point to which
several (typically two to four) “dendrons” (regularly
branched groups in which each “generation” of
branching involves introducing a new branch point to
every unbranched branch) are attached. Poly(dendron)s
have a linear backbone to which the dendrons are
attached instead of a single core molecule. Hence, we
will use the term poly(dendron) to describe these
polymers, as has also been used by Kaneko et al.16

It should be noted, however, that there are cur-
rently many different names used in the literature
for these polymers,17 e.g., dendronized (linear) -
polymers,18-20 monodendron-jacketed linear polymers,21

side-chain dendritic polymers,22 architectural copoly-
mers,23 wormlike dendrimers,24 or rodlike dendri-
mers.25

Much of the work on these polymers is still on
synthetic approaches. However, many groups are now
beginning to evaluate their properties.19,21,22,26,27 Cur-
rent experimental results and synthetic approaches
have been reviewed in several recent articles.20 The
most striking observation is the rigidity of the back-
bones, which can be pronounced enough to allow direct
observation when adsorbed on a surface via, e.g.,
SFM.21,26 Rigidity has also been observed in solution via
SANS.26,27 Presumably, this stiffening of the backbone
of these poly(dendron)s is another example of a topologi-
cal stiffness. However, despite the experimental evi-
dence, any rigorous evaluation of these systems by
either theory or simulation is currently limited to a
recent study by Christopoulos et al.19

In contrast, the poly(macromonomer) systems have
been widely studied by both theory3,30,31,38 and simula-
tions.32-38 Most of these studies have used a flexible
model for both the backbone and the side-chains,3,30,32-35

although recent studies have considered the cases of
semiflexible backbones with flexible side-chains,31 flex-
ible backbones with semiflexible side-chains,37 and
semiflexible backbones with rigid side-chains.38 The use
of a flexible model assumes that the stiffness induced
by the presence of side-chains can be distinguished from
the intrinsic stiffness of the polymer. However, it should
be noted that even linear polymers that are intrinsically
flexible show a persistence of length in the good solvent.8
Unfortunately, until now, there does not appear to have
been any attempt to directly compare the intrinsic and
topological types of stiffness, which we shall attempt
in this paper for different systems. With this in mind,
the stiffness of the backbones of intrinsically flexible
poly(macromonomer)s and poly(dendron)s will be com-
pared to the stiffness of linear, semiflexible polymers
of the same length via Monte Carlo simulation data. To
evaluate how the intrinsic stiffness modifies the topo-
logical stiffness, we will also consider poly(macromono-
mer)s with semiflexible backbones.

2. Technical Details and Nomenclature

The results reported in this paper have been obtained
via coarse-grained Monte Carlo simulations on the basis
of the Metropolis algorithm39 in continuous space, as it
has been previously used by our group to describe
various different branched and/or semiflexible topolo-
gies, and we refer the interested reader to refs 32,40,
and 41 (and references therein) for further technical
details.

We describe the potential energy of our systems via
the following Hamiltonian:

where Xi are the monomer coordinates and l is the
characteristic bond length. Here, κij and λijk are the
constants that are predefined at the start of a simula-
tion.

The first term represents the connectivity of the
polymer with harmonic springs of nonzero strength κij
introduced between any unique pair of connected mono-
mers (which we denote by i∼j). We define here κij ≡ 3
for all bonded pairs, for easy comparison with the
standard Edwards model5 of a Gaussian chain.

We model the intrinsic stiffness of the polymers via
the second term, which involves the square of the
discretised local curvature of the chain, as defined in
the Frenet-Serret basis, although our definition differs
in the normalization factor.42 It should be noted that,
for our systems, the λijk constants may be nonzero only
between two consecutive bonds (i ≈ j ≈ k). Increasing
these nonzero λijk values increases the intrinsic stiffness
of the polymers. However, if λijk ) 0, this corresponds
to an intrinsically flexible model.

For most of this paper, we will treat our branched
systems with λijk ) 0 so that any rigidity they may
demonstrate will be entirely due to excluded volume
effects. For comparison, we will also report results from
linear polymers with increasing λijk. It should be noted
that when λijk ) 0, the diameter, d, of a “monomer” is
comparable to the intrinsic Kuhn length of the polymer
in an ideal solution. Finally, we will discuss some
representative branched systems with increasing λijk in
the backbone. These systems will hence possess both
intrinsic and topological stiffness (as well as LCEVC).

The excluded volume effects are modeled via a hard-
core potential term, Uij

(HC)(|Xi - Xj|), in the potential,
defined as zero if |Xi - Xj| > d and infinity otherwise.
Hence, these polymers can be described as being in the
good, athermal solvent. For convenience, we describe
all lengths in terms of the monomer diameter, which
we define as d ) l ≡ 1, and energies in units of kBT.

For consistency, in this study, the degree of polym-
erization of all of the linear polymers is N ) 48, and
the number of monomers in the backbones, Nb, of all of
the branched polymers is also Nb ) 48. This is a
relatively short length for the simpler topologies such
as the linear chains, but the systems can become quite
large for the chains with bulky side-groups, which are
the main interest here.

For the branched polymers, the number of spacers,
S, between each side-group along the backbone ranged

H

kBT
)

1

2l2
∑
i∼j

κij(Xi - Xj)
2 +

1

2l2
∑

i≈j≈k

λijk(Xi + Xk -

2Xj)
2 +

1

2
∑

ij,i*j

Uij
(HC)(|Xi - Xj|) (1)
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from 0 to 3 monomers. We considered systems where
the first monomer in the backbone has a side-group.
However, this means that the last S monomers of the
backbone are left bare, and so it is possible to compare
bare end monomers and end monomers with side-groups
by comparing the “first” and “last” monomers. For the
comb polymers, the length of the arms, Na, was either
5 or 10 monomers. The dendrons of the poly(dendron)s
are denoted by D, the number of monomers before a
branch point, and G, the number of generations of
branching, using the same nomenclature that we have
previously used for dendrimers.40

Linear polymers with different flexibilities were
considered by changing the bending penalty constants,
λijk, in the range 0 (flexible)...5, 10 (semiflexible).

Finally, to illustrate the effects of combining both
intrinsic and topological stiffness, comb polymers were
also considered with semiflexible backbones. For these
polymers, the arms were flexible and of length Na ) 5.
The bending penalty of the monomers in the backbone
was λijk ) 0. . . 3, 5, 10.

3. Results

Snapshots taken from equilibrated MC simulations
of linear polymers with various bending penalties are
illustrated in Figure 1, while snapshots for various
intrinsically flexible, branched polymers are illustrated
in Figure 2. One can obtain a simplistic, yet qualitative
understanding of the systems studied in this paper from
these figures. In Figure 1, one can see that increasing
λijk does indeed reduce the number of sharp bends along
the chain, and hence makes the chain “straighter” with
a greater correlation between consecutive monomers

along the chain, i.e., a greater persistence length. For
the branched polymers illustrated in Figure 2, it can
be seen that the elongation of the backbone arises in
an attempt to minimize the steric congestion between
the side-groups and that this elongation becomes
more pronounced the greater the congestion is, e.g., the
backbone of the S ) 0, D4G2 poly(dendron) in Figure
2f appears more elongated than the backbone of the
S ) 0, D1G2 poly(dendron) in Figure 2d. Obviously,
increasing the distance between side-groups along the
backbone, i.e., S, reduces this congestion, as can be seen
by comparing, e.g., the comb polymers in Figure 2a and
b or the poly(dendron)s in Figure 2e and f (D1G4 and
D4G2 dendrons are similar in size, and hence degree of
congestion). We note that Christopoulos et al. found
that increasing the generation to G ) 5 increased the
steric congestion to such an extent that buckling of
the backbone began to diminish its elongation.19 We did
not observe this phenomenon, although we only studied
up to G ) 4. However, the model used by Christopoulos
et al. had fixed bond lengths, while our model (eq 1)
does allow some bond stretching. This model therefore
involves an additional method to diminish the conges-
tion.

3.1. Static Structure Factors. The static structure
factor is a useful observable, because it can be readily
obtained from light and neutron scattering techniques.6
Moreover, by selective deuteration, it is possible to
obtain the partial structure factors of the backbone from
SANS experiments. Indeed, Lecommandoux et al. have
done this for poly(chlorovinyl ether) comb polymers with
polystyrene side-chains.14

Figure 1. Typical snapshots, from Monte Carlo simulations, of linear polymers (48 monomers long) in the good solvent with
increasing bending penalty constants (λijk in eq 1). λijk ) 0 corresponds to the intrinsically flexible case, while larger values
correspond to an increasing intrinsic rigidity of the polymer. Unless specifically stated, the diameter of the spheres in all the
snapshots reported in this paper correspond to the excluded volume diameter of the monomer beads, d.
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The static structure factor (SSF), S(q), is defined as
follows:

where tilde indicates the 3D Fourier transform, q is the
scattering momentum or wavenumber,

and gij
(2)(r) is the monomer-monomer radial distribu-

tion function,

It is convenient to report static structure factors using
rescaled Holtzer forms,

In Figures3 and 4, we present SSFs of the various
systems from this study in the Holtzer form. One can
say that 1/q corresponds to the “probing distance”, where
q is the scattering vector length, i.e., the scattering S(q)
is predominantly due to correlated particles at a dis-
tance 1/q.6 The Holtzer forms are relevant here because
S(q) ∝ q-1/ν for large q, and in particular, S(q) ∝ q-1

when qlp > 1, where lp is the persistence length because
on these length scales, the polymer behaves as a rigid
rod with ν ) 1. Hence, by plotting q ‚ S(q) against q,
i.e., using Holtzer plots, a plateau should be reached at
the persistence length. One should realize, however,
that the scattering data obtained from these simulations
is basically meaningless for length scales smaller than
the monomer diameter, i.e., when about q̂ g 2π.

In Figure 3a, a complete plateau is only observed for
the most rigid of the semiflexible polymers, where λijk
) 10. For large values of q̂, the comb backbones appear
better modeled as semiflexible polymers. Indeed, as the

Figure 2. Typical snapshots, from Monte Carlo simulations, of various comb polymers and poly(dendron)s (see the legend) with
the backbones 48 monomers long in the good solvent. The spheres of the side-groups are hidden here for visual clarity of the
backbone.

S(q) )
1

N
∑
ij

g̃ ij
(2)(|q|) (2)
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qr
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number of spacers, S, is reduced, the backbones are
modeled better by polymers with increasing values of
λ, suggesting an increase in the overall stiffness of the
polymer. However, for smaller values of q̂, the back-
bones seem better modeled as flexible polymers. This
indicates a substantially different scattering behavior
for intrinsically stiff and topologically stiff polymers,
which should be experimentally observable.

In Figure 3b, we can see that increasing Na increases
the scattering for larger q̂ values (3 e q̂ e 7), as does
increasing λijk, suggesting that increasing Na does
indeed increase the stiffness (although there has been
some discussion as to the possibility that the increase
in stiffness with increasing Na is quickly saturated30,34,35).
However, for both polymers, there does seem to be a
slight oscillatory behavior, which does not occur for the
linear cases, the origin of which is not clear yet.

In Figure 4, poly(dendron)s of increasing generation,
with S ) 0, are considered. It can be seen that the D1G3

and D1G4 plots seem to reach plateau values, indicative
of a strong rigidity. However, again, the plots are sub-
stantially different from the plots for linear polymers,
suggesting an experimentally achievable approach to
comparing the intrinsic stiffness of semiflexible, linear
chains to the topological stiffness of poly(dendron)s.

3.2. Correlation Function Plots. Although useful
for comparing simulations with experimental data, the
SSFs are quite complex in interpretation and not very
intuitive. Fortunately, there are more intuitive observ-
ables that can be calculated from simulation data. We
will consider two of these widely used observables in
this paper, the first of which is the correlation function
of the bond angles formed by the backbone as a function
of their topological separation,

where s ∈[0, N - 2] is the separation (in number of
bonds) along the backbone, and ubi ≡ rbi/|rbi| is the
normalized bond vector between monomer i and mono-
mer i + 1. Hence, by definition, the correlation for s )
0, i.e., the self-term, is exactly unity: 〈cos θ(0)〉 ≡ 1. For
a truly random walk, consecutive vectors are completely
uncorrelated, and hence 〈cos θ(s > 0)〉 ) 0, i.e., all
directions are equally probable. In contrast, for a
completely rigid rod, all vectors have the same direction
and 〈cos θ(s > 0)〉 ) 1. For a semirigid polymer, the
correlation should fall from one to zero with increasing
separation, and a definition for the persistence length
can be obtained from the rate of this decay.4-6 For a
Kratky-Porod “wormlike chain”,4,43 the decay is strictly
exponential in nature,4

where τ is the Kratky-Porod persistence length.4
With this in mind, the 〈cos θ(s)〉 data for the semi-

flexible, linear polymers were fitted to eq 8 in Figure 5.
The Kratky-Porod model provided reasonable fits for
the polymers with larger bending penalties, e.g., λijk g
4. However, for smaller values of λijk, the decay in 〈cos
θ(s)〉 for large values of s did appear to be slower than

Figure 3. Comparison of the rescaled static structure factors,
Ŝ(q̂), of the backbones of various comb polymers against those
for various semiflexible linear polymers, obtained from MC
simulation results. The lengths of all the backbones and linear
polymers were 48 monomers. The dash-dotted lines cor-
respond to linear polymers with bending penalties of λijk ) 0,
1, 2, 3, 4, 5, 10 (from bottom to top). The relative statistical
errors of all the Ŝ(q̂) plots reported in this paper are smaller
than resolution can distinguish because of the extensive
averaging inherent in the function and so are not included.
(a) Side-chains of the combs were 5 monomers long. The
labeled lines correspond to scattering curves for backbones
with spacers of S ) 0...3 (top to bottom). (b) Side-chains of the
combs were either 5 or 10 monomers long, but there were no
spacers along the backbone, i.e., S ) 0.

Figure 4. Comparison of the rescaled static structure factors,
Ŝ(q̂), of the backbones of various poly(dendron)s of increasing
generation against those for various semiflexible linear poly-
mers, as in Figure 3. The number of spacers between dendrons
along the backbone was S ) 0.

〈cos θ(s)〉 ) 〈 1

N - 1 - s
∑
i)1

N-1-s

ubi ‚ ubi+s〉 (7)

〈cos θ(s)〉 ) exp(-s
τ ) (8)
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a fitted exponential one, suggesting the Kratky-Porod
model is only accurate for the more intrinsically rigid
polymers. The relationship between λijk and τ is reported
in the inset of Figure 5. It is interesting to note that in
the intrinsically totally flexible case (λijk ) 0), τ ) 0.569
( 0.017 > 0. This is due to the LCEVC discussed in
Section 1 and agrees with Schäfer and Elsner’s observa-
tion that intrinsically flexible linear polymers do have
a significant persistence length in the good solvent.8

We should note that the data for larger values of s do
appear noisier, which is understandable because the
degree of averaging is smaller in eq 7 and also the
degree of precision required is correspondingly higher
for the smaller values of 〈cos θ(s)〉 on these log-linear
plots, although exact values for the error bars are more
difficult to estimate.

Attempts to apply the Kratky-Porod model to the
backbones of comb polymers have been carried out by
Saariaho et al.33-35 and also recently by our group.32

Figure 6 plots further attempts to apply this model to
the backbones of both comb polymers and poly(den-
dron)s. Although the standard exponential equation did
not provide good fits, if one excluded the first few values
of s (s e 3) from the fitting, one could obtain reasonable
fits by the following equation:

where 0 < a < 1 is the y-intercept.
The problem with this fitting is that if one extrapo-

lates the model to s ) 0, a value of 〈cos θ(s)〉 is obtained
which is less than one, i.e., a. This disagrees with the
earlier statement that 〈cos θ(0)〉 ≡ 1. Attempts have
been made to explain this discrepancy in terms of
different “characteristic length scales”.33-35 Saariaho et
al. suggested that the backbone of these systems may
be rather flexible at small length scales and become
extended on a larger length scale only. They suggest
that this explains the strong decline in 〈cos θ(s)〉 for
small values of s,33 which they claim represents the local
small length scale flexibility of the backbone. However,
in this context, we should note that both eqs 8 and 9
assume that the stiffness along the chain is uniform.
While the assumption of a uniform stiffness is a valid

one for the Kratky-Porod wormlike chains, the branched
and linear chains studied here do not have a uniform
stiffness along the length of the chain, e.g., “end effects”
are obviously less evident in the middle of the chain!
However, the definition of 〈cos θ(s)〉 treats, for example,
the end and middle vectors as contributing equally to
the mean values. The polymers with large bending
penalties, e.g., λijk ) 5 or 10, should have a more uniform
stiffness, and perhaps this is why they are better
described by the exponential equation of the Kratky-
Porod model. To remove the contribution of the “end
effects” from 〈cos θ(s)〉, one could neglect the contribution
of the end vectors to eq 7. However, again, this would
assume that the rest of the chain demonstrates a
uniform stiffness, which is not always the case, as will
be later illustrated for branched polymers. Hence, for
the rest of this paper, we will consider another observ-
able that can illustrate the dependence on position
within the chain.

3.3. Persistence Length Plots. The other observ-
able we shall consider in this paper gives another
definition of the persistence length attributable to Flory,
through the projection of the end-to-end vector, RBb, on
the segment vector rbk:

Figure 5. Attempts to fit 〈cos θ(s)〉 for several semiflexible,
linear polymers (λijk ) 2, 4, 5, 10) to the Kratky-Porod model
via eq 8. The dashed lines correspond to the obtained fittings.
The values of τ obtained from the fittings of these (and other
values of λijk) are plotted in the inset with respect to the
bending penalty, λijk.

〈cos θ(s)〉 ) a exp(-s
τ ) (9)

Figure 6. Attempts to fit 〈cos θ(s)〉 for various (a) poly-
(dendron)s and (b) comb polymers via eq 9. The dashed lines
correspond to the obtained fittings.

〈lp
(k)〉 ≡ 〈 rbk

|rbk|
‚ RBb〉 (10)
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〈lp
(1)〉, i.e., the projection onto the first segment, is the

definition typically used to describe the persistence
length.4 However, 〈lp

(k)〉 has been found to depend
strongly on k,8,32 and so plots are reported here for the
whole range of 1 e k e 47.

The persistence length plots for linear polymers with
various different bending penalties are reported in
Figure 7. As has been previously noted,32 the free ends
of the polymers have a greater freedom, hence reducing
the 〈lp

(k)〉 values for small values of k and N - k.
However, the plateau for intermediate values of k that
occurs for small values of λijk is less evident for increas-
ing values of λijk and, indeed, is not present at all for
λijk ) 10. This may be because the chains considered
here are not sufficiently long (N ) 48 monomers) for
the plateau to develop for the more rigid chains, but this
issue could only be resolved by studies of much larger
systems.

It can be seen that increasing the bending penalty
increases the rigidity of all parts of the chain substan-
tially, e.g., 〈lp

(1)〉 for the λijk ) 10 case is still comparable
to the maximum 〈lp

(k)〉 value for the λijk ) 5 case.
However, topological stiffness appears to have a differ-
ent behavior for the 〈lp

(k)〉 plots, as can be seen in Figure
8, where poly(dendron)s with dendrons of different size
(and hence steric congestion) are compared. For inter-
mediate values of k, the plots of the topologically stiff
backbones and the intrinsically stiff polymers are quite
similar, e.g., the D4G2 case is quite similar to the λijk )
10 case for 8 e k e 39. However, for small values of k
and N - k, the 〈lp

(k)〉 values are substantially dimin-
ished for the poly(dendron)s compared to the semiflex-
ible, linear polymers. This suggests that the end effects
are more significant for topological stiffness than for
intrinsic stiffness, which is significant experimentally.
For instance, this may explain the experimental obser-
vation that short comb polymers behave more like star
polymers than “bottlebrushes”,2 i.e., the backbones of
short comb polymers are relatively flexible. This can also
be qualitatively seen by considering the relatively
flexible end-groups of the D4G2 polydendron illustrated
in Figure 2f.

Figure 9 illustrates the 〈lp
(k)〉 plots for increasing

generations of branching of the dendrons (D ) 1 and

S ) 0). Increasing the number of generations increases
the stiffness of the backbones in a manner similar to
increasing the number of spacers, D, within the den-
drons. This is to be expected because increasing either
term increases the steric congestion caused by the
dendrons. It can be seen that for all of these examples
of topologically stiff polymers (Figures 8 and 9, as well
as Figures 10 and 11, which we shall discuss shortly),
the 〈lp

(k)〉 values are larger than in the case of the λijk )
0 linear flexible chain in Figure 7. However, it is
important to realize that this topological stiffness is
most pronounced on the monomers directly connected
to the side-groups. This can be seen in Figures 10 and
11, where we consider the effects on increasing the
number of spacers between the side-chains along the
backbone, S, for D1G3 poly(dendron)s (Figure 10) and
combs with Na ) 10 (Figure 11a) and Na ) 5 (Figure
11b). First, it can be seen that increasing S decreases
the overall topological stiffness. This is not surprising
because the relative concentration of the bulky side-
chains is reduced, lowering the amount of steric conges-

Figure 7. The persistence length plots, 〈l p
(k)〉, obtained via eq

10, versus segment number, k, for various semiflexible, linear
polymers, each of length 48. The strength of the intrinsic
stiffness is varied between polymers by increasing the strength
of the bending penalty, λijk from 0 (bottom)...5, 10 (top).

Figure 8. The persistence length plots, 〈l p
(k)〉, versus segment

number, k, as in Figure 7 for various poly(dendron)s with
increasing number of spacers, D, within the dendrons. For
comparison, the persistence length plot for a linear, flexible
polymer, and a linear, semirigid (λ ) 10) polymer with the
same number of monomers as in the backbone of the poly-
(dendron)s is included.

Figure 9. The persistence length plots, 〈l p
(k)〉, versus segment

number, k, as in Figure 7 for various poly(dendron)s with
increasing generation number, G. For comparison, the persis-
tence length plot for a linear, flexible polymer with the same
number of monomers as in the backbone of the poly(dendron)s
is included.
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tion they cause. Second, we notice that increasing S
introduces a steplike phenomenon to the 〈lp

(k)〉 plots,
especially pronounced for small values of k and N - k.
The monomers that are directly connected to the side-
chains are more restricted than that of their neighboring
monomers. Hence, for every S + 1 monomers, there is
an increase in 〈lp

(k)〉. It should be noted that, although
〈lp

(k)〉 is larger for monomer bonds directly connected to
side-chains, the side-chains also affect the neighboring
monomers because their 〈lp

(k)〉 values are larger than
that of their linear, flexible chain counterparts, even for
S ) 3. The exception to this are the last S bonds, which
have similar 〈lp

(k)〉 values to their linear, flexible chain
counterparts. This is because there is no side-chain
attached to the N ) 48 monomer, when S > 0, although
there is a side-chain attached to the N ) 1 monomer.

3.4. Fitting the Persistence Length Plots. As we
have discussed above, one can define “persistence
length” as4 〈lp

(k)〉, or as the arithmetic mean value of
〈lp

(k)〉 over all k, or as the average over the plateau
region of 〈lp

(k)〉. More generally, we can look at the
persistence length histogram, i.e., the probability
w(lp

(k)), which we shall discuss later on.
We have previously commented32 that the greater

freedom of the free ends reduce 〈lp
(k)〉. Hence, if one

were not interested in the end effects, the first two
definitions may be less relevant. In this case, one could
average over the plateau region for middle values of k,
which has been observed for various polymers.32 How-
ever, this plateau does not always occur, particularly
for the more rigid polymers that were studied in this
paper. Because each of these definitions can provide
substantially different values, we have reported here
the whole plots of 〈lp

(k)〉.
Schäfer and Elsner have recently calculated a rela-

tively simple, asymptotic scaling form for the excluded
volume contribution to the stiffness of linear fully
flexible chains in the good solvent via the renormaliza-
tion group and ε-expansion.8 They have predicted the
result,

where a is a constant, N is the number of monomers,
and ν is the swelling exponent.4,5 This appears to fit the
simulation data here quite well (see the λijk ) 0 plot in
Figure 12) with the apparent value of ν ) 0.618 ( 0.002
(see Table 1).

However, as it is not known how to write a field-
theory formulation for a semiflexible homopolymer with
a fixed persistence length λp (no matter how exactly
defined), especially at a finite N, there are no renor-
malization group results available for the rest of the
systems studied here other than the fully flexible linear
chain.

For a finite λp (which depends on the chemical
structure of a homopolymer and its external conditions),
one could measure the mean-squared radius of gyration
Rg

2 and find the apparent exponent of its dependence on
the degree of polymerization, N, in a certain range of
values for the latter via the law Rg

2 ∼ N2ν. As one
increases λp from a fully flexible case, the apparent
exponent ν will change from its value νflex close to the
Flory exponent νF (subject to a small finite-N correction)
toward the value νrod ) 1 of a rigid rod. Clearly,4 if λp is
fixed and Nf∞, we shall recover the statistical behavior
of a fully flexible chain with ν ) νflex. However, if we
take N f ∞ and λp f ∞ so that the latter is of the order

Figure 10. The persistence length plots, 〈l p
(k)〉, versus seg-

ment number, k, as in Figure 7 for various D1G3 poly-
(dendron)s with different numbers of backbone spacers, S. For
comparison, the persistence length plot for a linear, flexible
polymer with the same number of monomers as in the
backbone of the poly(dendron)s is included.

〈lp
(k)〉 ≈ a(k(N - k)

N )2ν-1
(11)

Figure 11. The persistence length plots, 〈l p
(k)〉, versus seg-

ment number, k, as in Figure 10 for comb polymers with (a)
Na ) 10 and (b) Na ) 5 and different numbers of spacers
between the side-chains along the backbone. For comparison,
the persistence length plot for a linear, flexible polymer, and
a linear, semirigid (λ ) 5) polymer with the same number of
monomers as in the backbone of the poly(dendron)s is included.
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of the contour length of the chain, we also shall obtain
the result for a rigid rod, ν ) νrod ) 1. Thus, the
apparent value of ν depends on both λp (which is known
and fixed for a given polymer under certain external
conditions) and N.

Interestingly, although eq 11 was obtained for the
intrinsically flexible linear case (i.e., the LCEVC) only,
we found reasonable empirical fits for many of the other
systems studied here. Fitting parameters for these
systems are reported in Table 1 and some of the fits
are illustrated in Figure 12. Although the scaling
obviously does not account for the steplike behavior
observed in 〈lp

(k)〉 for branched polymers with S > 0 (see
Figures 10 and 11b), the S ) 0 branched polymers do
seem to be quite well described by eq 11. Indeed, the
values of the apparent exponent ν obtained for the comb
polymers do have some similarities with values esti-
mated by other means.32

As eq 11 does not, strictly speaking, apply to semi-
flexible polymers, it tends to overemphasize plateaus
for middle values of k and to overemphasize the end
effects, which are not as dominant for the semiflexible
polymers. This is particularly evident for the λijk ) 10
plot in Figure 12. Indeed, the best fits that could be
obtained for these systems did not demonstrate a
substantial increase in apparent ν values with increas-

ing λijk (see Table 1), which should take place for more
rigid chains4,5 but only an increase in the prefactor a.

3.5. Intrinsically Semiflexible Backbones. For the
purpose of distinguishing different types of stiffness, in
the previous sections, the branched polymers were
assumed to be intrinsically flexible. For the highly
branched poly(macromonomer)s, it seems reasonable
that a Kuhn length of the polymer could have more than
one arm attached.33 Hence, if one is to characterize these
systems more completely, one should include an intrin-
sic stiffness, as has been done recently.31,37,38

Hence, in this section, we will discuss some prelimi-
nary results from simulations of comb polymers with
intrinsic stiffness. Because this study is limited to the
characteristics of the backbone, and to allow a more
direct comparison with the other systems that have been
studied in this paper, the intrinsic stiffness was only
introduced in the backbone.

Figure 13a illustrates the 〈lp
(k)〉 plots for various comb

polymers with Na ) 5, S ) 0, and λijk ) 0, 1, 2, 3, 5, 10.
With increasing λijk, the plots show an increasing
similarity to their linear counterparts in Figure 7. This
is more obvious if one subtracts the 〈lp

(k)〉 values of
these linear counterparts from the plots in Figure 13a,
as has been done for three values of λijk (1, 5, and 10) in
Figure 13b. It can be seen that the relative contribution
of the topological stiffness to the total 〈lp

(k)〉 plots is
somewhat diminished for the more intrinsically stiff
combs. Although, even for the λijk ) 10 case, the
topological stiffness does increase the total stiffness
when compared to its linear counterpart in Figure 7.

It is not clear at this stage if this dampening of the
total stiffness is due to (a) an actual physical reduction
in the topological stiffness, i.e., if the combs are more
elongated because of the intrinsic stiffness, then the
steric congestion may be less problematic; (b) some sort
of saturation effect, whereby the stiffness of the back-
bone is approaching a maximum (if the persistence
length is greater than the length of the backbone); or
(c) some other effects. However, from Figure 14, it does
appear that the steplike behavior observed in Figure
11 for comb polymers, with S > 0 spacers between side-
chains along the backbone, is diminished with increas-
ing λijk. Indeed, it is not at all apparent for λijk ) 10.

Figure 12. Attempt to fit several of the persistence length
plots, 〈l p

(k)〉, via eq 11. Linear polymers with bending penalties
of λijk ) 0, 5, and 10, a D1G4 poly(dendron) with S ) 0 spacers
along the backbone, and a comb polymer with arms of length
Na ) 10 and S ) 0 spacers were considered. The plotted lines
represent the best fits for eq 11.

Table 1: Fitting Parameters for Eq 11 of the 〈l p
(k)〉 Plots for

Various Representative Polymers

polymer a ν

Comb Polymers
Na ) 5 3.89 0.694
Na ) 10 5.04 0.713

Poly(dendron)s
D1G1 3.223 0.679
D1G2 4.164 0.691
D1G3 6.294 0.704
D1G4 7.76 0.717

Linear
λ ) 0 1.90 0.618
λ ) 1 2.96 0.606
λ ) 2 4.19 0.609
λ ) 3 5.51 0.617
λ ) 4 6.68 0.625
λ ) 5 7.90 0.630
λ ) 10 (weak fit) 13.8 0.620

Figure 13. (a) The persistence length plots, 〈l p
(k)〉, versus

segment number, k, as in Figure 10 for comb polymers with
Na ) 5, S ) 0 are presented in the inset for increasing values
of λijk for the monomers in the backbone. In (b), the 〈l p

(k)〉 plots
for the linear, semiflexible polymers in Figure 7 are subtracted
from the corresponding plots in (a) for λijk ) 1, 5, 10.
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Because this steplike behavior is an effect of the
topological stiffness, this suggests that the topological
stiffness does become reduced somewhat for intrinsically
stiff combs.

3.6. lp
(k) Histograms. One can obtain a better un-

derstanding of the 〈lp
(k)〉 plots if one considers their

probability distributions, i.e., the histograms, for specific
values of k. Figures15 and 16 illustrate these histograms
for several different systems, for both k ) 1 (at the end
of the chain) and k ) 24 (a middle monomer).

Comparing the semiflexible, linear λijk ) 10 polymer
(Figure 15a) and the D4G2, S ) 0 poly(dendron) (Figure
15b), one can better understand the similarities and
differences previously mentioned in Section 3.3 through
an analysis of the histograms. Although the k ) 24
histograms are quite similar, for the k ) 1 case, the
D4G2 histogram is shorter and broader, leading to a
smaller average value of 〈lp

(k)〉 for D4G2. It appears that
the end monomers (k ) 1) of the semiflexible, linear
polymer are more restricted than that of their poly-
(dendron) counterparts, i.e., their bond vectors are more
likely to lie along the direction of the average end-to-
end vector, RBb, i.e., lp

(1) > 0. In contrast, the vectors of
the end monomers in the poly(dendron) show substan-
tial lp

(1) < 0 populations, emphasizing the relatively
flexible ends of the poly(dendron)s. However, the lp

(1) <
0 population is still substantially smaller than the lp

(1)

> 0 population, leading to a positive 〈lp
(k)〉 average (see

Figure 8).
In the middle of the poly(dendron), k ) 24 (see Figure

15b), we find the vectors predominantly lie along the
direction of the average end-to-end vector, RBb, as for the
linear semiflexible case (see Figure 15a) with the largest
population for lp

(24) ) 30, suggesting that these vectors
are much more restricted, which is not surprising
because we have already seen that the backbone is
elongated. It should be noted that there is still a
significant lp

(24) < 0 population for both the poly(den-
dron) and the semiflexible, linear polymer.

In Figure 16a, we consider a linear polymer with no
intrinsic bending penalty, i.e., λ ) 0. If the chain was a
totally flexible, random walk, then one would predict
identical, symmetric curves for all values of k, with the
lp

(k) < 0 and lp
(k) > 0 populations exactly canceling each

other on average, yielding 〈lp
(k)〉 ) 0. However, in the

good solvent, the excluded volume introduces a bias to
the lp

(k) distribution, i.e., the LCEVC. For instance, we
notice that the lp

(k) histograms are no longer identical
for all k. The k ) 24 vector is on average more aligned
with RBb than the k ) 1 vector, leading to the larger 〈
lp

(k)〉 value for k ) 24 compared to k ) 1. Also, we notice
that even for the k ) 1 case, the lp

(1) < 0 population is
smaller than the lp

(1) > 0 population, leading to a
positive 〈lp

(k)〉 average.
Finally, we note that the S ) 0 comb polymer in

Figure 16b is quite similar to the D4G2 poly(dendron),
albeit it appears to be slightly more flexible, e.g., the
lp

(24) < 0 population is slightly more pronounced for the
comb. However, that does not indicate whether poly-
(dendron)s are stiffer than comb polymers or vice versa,
because the Na ) 10 arms are less sterically hindering
than the D4G2 (Ndendron ) 28) dendrons.

4. Concluding Remarks

The main aim of this paper was to compare the
“topological stiffness” of polymers with side-groups to
the “intrinsic stiffness” of linear, semiflexible polymers.

Figure 14. The persistence length plots, 〈l p
(k)〉, versus seg-

ment number, k, as in Figure 10 for comb polymers with Na )
5, S ) 1, and increasing values of λijk for the monomers in the
backbone.

Figure 15. The histograms l p
(k) values (i.e., the probability

w(l p
(k))) for k ) 1 and k ) 24 for (a) the λ ) 10 semiflexible,

linear polymer and (b) the D4G2 poly(dendron).
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This study was carried out because of the current
interest in the rigidity of the backbones of polymers that
have large numbers of side-chains, but should otherwise
be quite flexible. Hence, comb polymers and poly-
(dendron)s with an intrinsically flexible bead-and-spring
model were studied via Monte Carlo simulations in the
good solvent. The behavior of the backbones of these
branched polymers was then compared to that of linear
polymers (of the same length) with various degrees of
stiffness introduced by an additional bending penalty
term in the model. This bending penalty was used as a
model for the intrinsic stiffness of semiflexible polymers.
Finally, the behavior of the backbones of branched
polymers which also had this bending penalty was
considered.

The scattering functions of the various polymers
studied here were calculated to allow future comparison
with experimental results. The backbones of the “topo-
logically stiff” branched polymers appear to have sub-
stantially different scattering behavior to “intrinsically
stiff” linear polymers. For instance, for large values of
the scattering vector, the branched polymers appeared
best modeled as semiflexible polymers, while for smaller
values, they appeared better modeled as flexible poly-
mers. This suggests a difficulty in using current simpli-

fied scattering models to describe the rigidity of this
class of polymer.

The correlation functions of the bond angles formed
by the bonds of the backbones as functions of their
separation along the backbone were also considered. It
was found that the more rigid intrinsically stiff polymers
had similar exponential decays to those of Kratky-
Porod wormlike chains. However, none of the other
systems could be easily modeled by similar exponential
decay patterns. We now realize that this is due to the
fact that the branched and linear polymers studied here
do not have a uniform stiffness along the chain. The
Kratky-Porod model assumes an average uniform
stiffness, which explains why the more uniformly stiff
polymers studied here had some Kratky-Porod behav-
ior.

Because of this difficulty, the systems were also
studied via an observable lp

(k), which can illustrate the
dependence of the stiffness on the position within the
chain, i.e., the projection of the end-to-end vector on the
different segment vectors. For the intrinsically stiff,
linear polymers, it was found that increasing the
bending penalty increases the rigidity of all the vectors
in the chain substantially, although the rigidity was
greatest in the middle of the chains. For the middle
vectors, the topologically stiff backbones showed a
similar rigidity to the intrinsically stiff polymers. How-
ever, the “end effects” were substantially more pro-
nounced for the topologically stiff polymers, with the end
segments appearing quite flexible, something which has
experimental relevance.

Interestingly, increasing the number of monomers
along the backbone between side-chains resulted in a
steplike phenomenon to these plots because of restric-
tions of the monomers directly connected to the side-
chains and their neighbors.

For topologically stiff comb polymers, which also had
an intrinsic stiffness in their backbones, it appears that
the relative contribution of the topological stiffness to
the total stiffness is somewhat diminished, although
even for the most intrinsically stiff cases studied here,
the topological stiffness appeared to increase the total
stiffness.

Finally, to gain a deeper understanding of the end-
to-end vector projection plots, the histograms (prob-
ability distributions) of lp

(k), were considered for four
representative cases. By analyzing these histograms,
one can appreciate the subtleties in distinguishing
between the traditional description of a polymer’s “stiff-
ness” and the different types of restrictions of different
segments along the chains. Indeed, for the middle
segments, the vectors of both poly(dendron)s and stiff
linear polymers lie predominantly along the direction
of the end-to-end vector. However, for the end segments,
the poly(dendron) vectors have significant probabilities
of lying in the opposite direction, leading to an average
vector closer to zero.
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G. R.; Moorefield, C. N.; Vögtle, F. Dendritic Molecules:
Concepts, Synthesis, Perspectives; Verlag-Chemie: Weinheim,
1996; Tomalia, D. A.; Naylor, A. M.; Goddard, W. A., III.
Angew. Chem., Int. Ed. Engl. 1990, 29, 138; Mekelburger,
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