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Star shaped polymers :
a model for the conformation and its concentration dependence

M. Daoud and J. P. Cotton

Laboratoire Leon-Brillouin, CEN Saclay, 91191 Gif sur Yvette Cedex, France

(Reçu le 6 août 1981, accepté le 30 octobre 1981)

Resume. 2014 Nous présentons un modele qui décrit la conformation de polymères branchés en étoile en tenant
compte de la variation radiale de la concentration en monomères ~(r).
Pour une étoile isolée, lorsque r augmente (r = 0 au centre de l’étoile), ~(r) est d’abord une constante (r  f1/2l)
puis varie comme (r/l)-1 pour f1/2 /  r  f1/2 03BD-1 l avant de se comporter comme (r/l)-4/3 (r &#x3E; f1/2 v-1 l);
ou f est le nombre de branches de l’étoile, N le nombre de monomères par branches, 03C5 et l étant respectivement le
volume exclus et la longueur associée à un monomère. Dans ces trois domaines il est montré qu’une branche est
toujours en extension relativement à la taille qu’elle aurait si elle était isolee.
Lorsque la concentration est supérieure à celle de recouvrement, la conformation d’une étoile est essentiellement
définie par deux longueurs : ~(c) le rayon à l’intérieur duquel les branches des autres étoiles ne peuvent pénétrer;
il définit un domaine où la conformation de l’étoile est analogue à celle d’une étoile isolée. Au-delà de ~(c), l’inter-
pénétration des branches fait intervenir une longueur d’écran 03BE(c) très analogue à celle rencontrée pour des solutions
semi-diluées de polymères linéaires.
Dans tous ces domaines la variation de la taille des étoiles est prévue en fonction de N, f, v et c.

Abstract. 2014 We propose a model giving the conformation of a star shaped polymer by taking into account the
radial variation of the monomer concentration ~(r).
For an isolated star when increasing r (at the centre of the star r = 0), the variation of ~(r) is first given by a constant
value (r  f1/2 l) then has a (r/l)-1 variation (for f1/2 /  r  f1/2 03BD-1 /) and finally a (r/l)-4/3 variation (for
r &#x3E; f1/2 03BD-1 l); where f is the number of branches, N the number of monomers in a branch and 03BD and l are the
excluded volume and the length associated to a monomer. For all these cases, it is shown that the size of a branch
is always larger than that of a linear polymer made of N monomers.
Beyond the overlapping concentration the star conformation is obtained from two characteristic lengths essen-
tially : ~(c) a radius inside which the branches of the other stars do not penetrate, this radius defines a domain
where the conformation of a star is similar to that of an isolated one. Beyond ~(c) the interpenetration of branches
is characterized by a screening length 03BE(c) very similar to that found for semi-dilute solutions of linear polymers.
For all these regimes the variation of the size of a star is predicted as a function of N, f, v and c.
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1. Introduction. - Star shaped polymers have
received a continuous attention over a long time [1].
Experimental efforts have been made in order to cha-
racterize these branched polymers using light scat-
tering [2, 3] or intrinsic viscosity measurements [4].
Most of the theoretical work was done to determine
the conformation of a star polymer in its unperturbed
state [5-7]. But difficulties appear when the tempe-
rature corresponding to this state has to be defined.
Thus the Flory temperature [8] 0 for which the exclud-
ed volume effects between monomers cancel is different
from the temperature OA2 ( 0) for which the second
virial coefficient vanishes [9]. Moreover, the confor-
mation of stars in more concentrated solutions -

above the overlap concentration - has not been
studied to our knowledge. We attempt here to predict
the swelling properties of a star as a function of the
quality of the solvent and the monomer concen-
tration c. This problem was studied for linear polymer
chains [10, 11] ] and we will use some of its results.
We will see that even the conformation of a single star
includes different regimes for the following reasons :
let us consider a uniform star made of f branches
joining at the origin. Each branch has N statistical
units of length I. Because all the branches have to

join at the centre, the concentration in this region is
very high. When one gets away from the centre, the
concentration decreases, leading eventually to the

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphys:01982004303053100

http://www.edpsciences.org
http://dx.doi.org/10.1051/jphys:01982004303053100


532

Fig. 1. - A representation of our model : every branch is
made of a succession of blobs with a size ç increasing from
the centre of the star to the outside.

single (linear) chain problem in the outside shell where
the different branches can be considered as being far
apart from each other. Thus, in order to understand
the conformation of a star, one has to take into account
this variation of the local concentration. This is the
aim of the present paper. In order to do this, we will
use some results obtained for semi-dilute solutions of
linear chains [I I]. In the latter case, it was argued that
there is locally a single chain behaviour (for more
details, the reader is referred to references [10] and [11]).
The size ç of the region where this occurs (blob)
depends only on the monomer concentration c, and
is the same within the sample. In the present case, if
we acknowledge the variation of the local concen-
tration with the distance from the centre of the star,
we are led to introduce blobs whose size also depends
on this distance. We suppose there is a spherical
symmetry around the centre : all the blobs at a given
distance from the central point have the same size
j(r) (see Fig. 1). What this means is that - as for linear
chains - we drop the hypothesis of a constant value
of the swelling parameter a. Furthermore, we assume
that its value depends on the distance to the centre.
This will lead us to a decreasing value of a(r) when r
decreases, with swollen blobs outside and a deswelling
when one goes towards the centre. In fact we will see
that the sizes of the blobs can be deduced from one of
them by a simple similarity around the central point
of the star.
The model and the configuration of a single star

will be discussed in section 2, where we evaluate the
local swelling of ç(r), and the radius of a star in different
cases depending on the quality of the solvent and the
length of a branch. We also discuss briefly the notion
of theta temperature in this section. Section 3 extends
the model to more concentrated solutions where
different stars overlap.

2. The model. - Let us consider a uniform star
made of f branches. Every branch has N statistical
units of length I. We will use spherical coordinates,
the centre of the molecule being at the origin. As we

said above, we expect the local monomer concentra-
tion qJ to be dependent on the distance r to the centre
of the molecule. (Note that qJ(r) is rather the pair
correlation function between the centre of the star
and a monomer in a branch.) By analogy to linear
molecules [I I we may say that a branch of the star
has locally, around a point at a distance r from the
centre, a single (free) chain behaviour in a region of
size ç(r) which we call a blob. This size depends on the
local concentration qJ(’). As we expect the latter to
increase with decreasing values of r, we are led to the
model shown on figure 1 : we define blobs with a size
increasing as we go from the centre of the molecule
to the outside. In the following we wish to calculate
(p(r) and ç(,). In order to do this, we define a local
swelling parameter a(r) at distance r

where jo is the unperturbed size, if the chain were
ideal [8, 10]

and n(r) is the number of statistical units in the blob
at distance r.
We stress the main difference between this approach

and the previous theories : whereas it was usually
supposed that there is a uniform swelling of the mole-
cule, we suppose that the blob is much more expanded
in the outside than inside : a is also a local parameter
that depends on the distance to the centre.

2.1 THE SWOLLEN REGION. - As we said above,
inside a blob, every branch behaves as a single chain.
Thus in a good solvent and for large distances, we
suppose that this local behaviour is swollen. By ana-
logy to the single chain problem [8, 10], we suppose

where v = 2 - x is the monomer excluded volume

parameter [8, 10], and x the usual Flory interaction
parameter [8] (not to be confused with the distance
X(c) to appear later on in section 3). The blob represen-
tation provides another relation between a, n and qJ.
Inside a blob, we have n monomers, so that the dimen-
sionless concentration qJ(’) is

and, from (2), (3) and (5)

Equations (3) and (6) are the usual Flory results for
large values of the swelling parameter a. The diffe-
rence is that they apply here to the blobs instead of the
whole chain as usual. Note also that a, n and j in the
previous relations depend on r. In order to get this
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dependence, we need another equation. A natural
hypothesis to make at this level is the following :
consider the volume between the spheres of radius r
and r + ç. We know that a volume ç3 in this shell
corresponds to a blob. We are going to suppose that
the whole shell contains f blobs. An argument for this
hypothesis is that because the inner side is more
concentrated than the outer, there is a natural tendency
of a branch to « diffuse » towards the outside. The
situation here is very similar to what was found for
linear polymers grafted on a plane [12, 13]. (The only
difference lies in the symmetry which is here spherical.)
Thus we have

Note that this discussion is also valid for the unswollen
case considered below.

Combining (3) to (8) we get

Note that equation (10) for the size of the blob’is a
direct consequence of our hypothesis equation (8)
and equation (4) for the local concentration (/).
The results, equations (9) to (12) show that the

swelling ratio a is indeed a decreasing function when r
decreases and that in the same time the size of the blob
decreases.

2.2 THE UNSWOLLEN REGION. - Let us now turn
to smaller distances and thus smaller values of a. When
the distance to the centre is sufficiently small, a beco-
mes of order unity. Extrapolating the asymptotic
behaviour, relation (11), to a = 1 we get the cross-
over distance, between the swollen regime discussed
above and a regime where the blobs are unswollen

For distances smaller than rl, the blobs are not

swollen anymore. Then we have, instead of (5) and (6)

Taking (8) into account we find

Several points are noteworthy : first, has the same
dependence in both regimes. This is a direct conse-

quence of our assumption equation (8). Second, it is

interesting to look at the single chain limit, when f
goes to unity. Then r, - v-’ I corresponds to the
temperature blob that was introduced for linear
chains [14, 15] inside which the chain has an ideal
behaviour. For distances larger than ’1 the excluded
volume effects are present. In the same way, (p(r) goes
to the pair correlation function of the linear chain [16J.
Finally it is interesting to note that in both the swollen
and unswollen regimes, the size of a blob at any distance
(larger than r2l sec below) can be obtained from the
size of a reference blob by a simple similarity around
the centre of the molecule :

2. 3 THE CORE. - When we look at still smaller
distances to the centre of the star, we reach a distance r2
below which the concentration is unity. From (12)
we get

Note that for this distance both ç and n are of order
unity. The blob coincides with the statistical unit.
This central region which we call the core is typical
of a star. When f goes to unity, it coincides with the
statistical unit. The number of elements on a branch
in the core is

Note that if f - N 2 the core is the whole star. Then
the radius is

Relation (16) is important because it clearly shows
that if the number of branches is sufficiently high, the
structure of the branches is stretched. This result seems
to be natural : when f increases there is less and less
space left for the local wriggling of the chains. It is also
included in our model where every branch is repre-
sented roughly as a linear succession of blobs (see
Fig. 1). In the core the blob is just a monomer, and the
branch is stretched

2.4 THE RADIUS. - Thus we find three different

regimes for increasing values of the distance r to the
centre. The corresponding density profile is shown
on figure 2.
- For r  r2, in the core, there is a constant density.
- For r2  r  r, the concentration is high

enough to screen out the excluded volume interaction.
- For large distances (r &#x3E; rl) the excluded volume

effects are present within a blob.
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Fig. 2. - The density profile. Three regions appear. In the
core (r  r2 fl) the density is constant. In this region
the structure is completely stretched. In the intermediate
region (r2  r  r, _ f1/2 v-1 I), because the concentration
is high the blobs are ideal : (p(r) - r-1 f’ . In the outside
region the excluded volume effects are present inside the
blobs. The length x(c) is discussed in section 3.

We can then evaluate the radius of a star by the
condition

giving

and, for very long chains (or high temperatures) we get

Equation (19) disagrees with a recent theory by
Khokhlov [22].

For shorter branches (f112 v-2 » N &#x3E; f1/2), even
in a good solvent the different branches do not reach
the region (2.1) where the excluded volume effects
are present. These are screened by the concentration.
Then the last term in equation (17) does not contribute
anymore. Neglecting the contribution of the core to
the radius we find

Although relation (20) exhibits an « ideal » behaviour
because of the molecular weight dependence, the

presence of the factor fl/2 shows that the radius is in
fact larger than it would be for a single linear chain :
the branch is more stretched than an ideal chain.
This will be discussed in section 2.5.

Finally, for short enough branches (N  /1/2) the
star reduces to the core which has been discussed
above.

2.5 DISCUSSION AND COMPARISON WITH EXPERI-

MENTAL RESULTS. - Our central results, equations (19)
and (20) (see table I), clearly show that the radius of a
star is much smaller than the radius of a linear chain
with the same molecular weight. This qualitative result
is consistent with experimental measurements [2, 17].
In order to have a more precise confirmation of the
model, we calculate the ratio g of the radius of a star
by the radius R, of the equivalent linear chain. From
equation (19) we get

in a good solvent, for long branches. g is thus a decreas-
ing function which can be measured quite easily when
the branches are sufficiently long (N &#x3E;&#x3E; f ll2 V-2).

Table I. - Dependence of the radius R as a function of
the number f of rays, the number N of monomers per ray
and the excluded volume v of a monomer.

This prediction is compared to the measured values
of radius of gyration obtained [2] for star shaped
polymers with polystyrene branches. Table II shows

Table II. - Variation of gr/5 for star shaped poly-
styrene. R is the radius of gyration of stars, R, is that of
linear polymer with molecular weight fMw. The data
are obtained from reference [2].
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a constant value of gf4/5 (within an accuracy of 10 %
which confirms the predictions of the relation given
just above.
On the other hand, the radius of a star is much larger

than that of a single chain of N monomers isolated in
the solvent. This is true even for a shorter branch,
or a theta solvent (1). We can see this more clearly if
we consider the case R - rl. This corresponds to a
sufficiently high functionality of the central point or to
a small excluded volume parameter (r, _ fl/2 V- 1)

Then (17) reads, always neglecting the contribution
from the core

Eliminating f or v between (21) and (22) gives

Thus although we are in a regime where the chain
seems to be ideal, c£ relation (20), the structure is

actually stretched Note however that the radius (23)
is much smaller than the completely elongated chain
length L = Nl, as shown by the factor v(  1) in (23).
This result is not surprising : our model considers
every branch to be made of a linear succession of blobs,
even at the theta temperature. This naturally brings
us to the discussion of the temperature effects. Let us
suppose that the excluded volume parameter is pro-

portional to the temperature difference v - T 0 00
Let us then consider a long star molecule in a good
solvent and decrease v, or T. Relation (13) shows that
the border-line of the region where the blobs are ideal
increases

There is a value Vc for which all the blobs are gaussian.
From what we have seen above,

The corresponding temperature is higher than the one
for which a single linear chain crosses over to the
theta behaviour [18,19]. However, it is very important
to realize that although the blobs are ideal, the branch
itself is stretched [see (23)]. Thus the conformation
of the chain at the theta temperature is very different
from that of a gaussian chain. Let us call go the ratio
of the radius of the star at T = 0 by the radius R10 of
the equivalent linear gaussian chain

(1) By theta solvent we mean that of a linear chain. Thus
a star made of polystyrene is swollen in cyclohexane for
instance.

Table III. - Variation of gof1/2 for star shaped polyiso-
prene. The experimental values of go are obtained from
reference [3].

This prediction can be tested with the careful experi-
mental results obtained [3] with star shaped polymers
of polyisoprene with f = 4, 6, 8, and 12. The value
for go f112 as function of f are given in table III showing
that equation (25) is rather well verified [23]. For f = 4
the experimental value of go fl/2 is greater than the
other ones. This discrepancy might possibly originate
from the fact that go is obtained from viscosity measu-
rements and hydrodynamic effects are probably not
negligible for low f values.

Concerning the temperature effects let us insist on
the fact that at the theta temperature, the conformation
of a branch has nothing to do with a gaussian chain.
In other terms it is misleading to use unperturbed
dimensions of the branches in order to predict the
theta dimension of a star shaped polymer. This has
already been suggested previously [9, 20].

Because of the presence of the core, the temperature
at which a branch reaches its unperturbed dimensions
can be obtained only for temperatures below 0, when
the interaction between monomers of the branches
becomes attractive (v  0). Then the blobs start

collapsing and the size of the branched polymer can
reach a dimension comparable with that of an isolated
branch in a theta solvent. This is not of great interest

(in our opinion) because it hides the structure of the
star. Thus we will not discuss the « theta temperature »
any longer and conclude that at the theta temperature
the radius of the star is larger than its unperturbed
value, in agreement with previous theoretical and

experimental work [9, 17, 20, 21] and turn now to the
concentration effects.

3. The concentration effects. - In the previous
section, we have considered the properties of a single
star shaped polymer, i.e. very dilute solutions. When we
increase the monomer concentration c, we expect
these properties to hold basically, except for correction
terms, as long as the stars are far apart from each other.
So we expect a cross-over to occur for the different

properties around the overlap concentration c*

where the branches of different stars start overlapping.
In the following, we will consider the properties of
solutions of stars with concentration within the semi-
dilute range, 1- 3 &#x3E;&#x3E; c &#x3E; c*. Let us note that we find
different expressions for c* depending on the length
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of every branch. Using the asymptotic expressions we
found in last section for the radius of a star, we get

Note that (26c) corresponds to the case when the stars
reduce to their central core, thus never allowing any
overlap.

In the other two cases (26a and b), there is an overlap
of the branches of different stars. As a result, one might
imagine the solution in the following way : around the
centre of a star there is a region of space with size X
where the star has a single star behaviour. For dis-
tances larger than x, because of the overlap of the
different stars, there is a screening of the interaction
and the size of the blob is controlled by the (average)
concentration c. This concentration blob just cor-
responds to the size of the « star blobs » we considered
in the previous section, for a distance x. In other terms
we may say that the blobs are controlled by the « star
effect » for distances below X and by the concentration
(so that their size is constant) for distances larger
than x.

In order to determine x and ç(c), we have to compare
the monomer concentration c to the local concen-
tration g(r) around the centre of a star (see Fig. 2).

3 .1 GOOD SOLVENTS. - Let us first consider the case
when the length of the branches is sufficiently long or
when the temperature is high enough (N &#x3E; f1/2 v- 2).
Then the condition for the equality of the local and
average concentrations reads

leading to

So starting from the centre of a star, we find that for
distances smaller than x there is a single star behaviour.
For distances larger than x, because of the overlapping
of the different branches, the concentration effects
dominate. We can then define a concentration blob
with size j(c) equal to that of a star blob for r - x.
From (10) and (27) we get

Note that we find the same law as for a solution of
linear chains with same concentration [11]. There
is however a basic difference between the linear chains
and the stars : in the latter case, there is an extra

length x. Around the centre of every star, there is a

region with size x where the star has a single star
behaviour. For distances larger than x, there is an

overlap of the branches and the solution looks like a

Fig. 3. - Representation of a branch of a star shaped polymer
in the semi-dilute regime.

solution of linear chains. The corresponding repre-
sentation of this model is shown on figure 3.

3.2 THETA SOLVENT. - The situation described
in the preceding section may happen as long as x is
larger than r 1 (see Eq. (13) and below). For shorter
branches or lower temperatures (f112  N  fl/2 v- 2)
we have seen in section 2.2 that the star blobs are not
swollen any more. Using then (13) instead of (13) for
the local concentration, we find

leading to a concentration blob size

Note that these results also hold when the concen-
tration c is large enough. The cross-over concen-
tration c** between the two regimes is obtained by
comparing (27) to (27) :

Here again, we find that this cross-over concentration
is the same as the one between good and theta solvents
for semi-dilute solutions of linear chains [19]. As long
as we are interested in properties far from the centre
of the stars, the two cases are very comparable.

3.3 THE MELT. - Finally, when the concentration
goes to unity, the region where the stars do not overlap
reduces to the core

while the size of the blob goes to the step length.
At this point, a subtle distinction has to be made

between stars with long or short branches : in all the
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preceding (Eq. (27) and below) we have explicitly
supposed that the monomer concentration far from
the centres of the star is c. This is valid as long as the
branches are very long (N &#x3E;&#x3E; f1/2) so that the concen-
tration increases around the centre of a star can be
considered as a fluctuation. When the branches are
not very long, this becomes more and more approxi-
mate because a non negligible fraction of the monomers
is located in the central part with size x. One would
then have to define an effective concentration T in the

overlapping regions, lower than the total monomer
concentration. This will not been done here.

3.4 RADIUS. - Let us now turn to the radius of
the star, which is the same as that of a branch. We have
seen above that for concentrations above c*, our
model consists in two successive regions around the
centre of a star : a first region with size x where the
behaviour is the same as for a single star, followed by
a region where the concentration effects dominate
and where we have blobs with a constant size ç(c),
so that we expect a behaviour identical to that of linear
chains in the latter region. Because of this structure,
we do not expect scaling to hold Instead, we are going
to suppose that the total radius of the star is just the
sum of the two contributions discussed above.

where Rb is the radius of the outer part of a branch,
made of blobs with equal size j(c). This part can be
considered as a linear chain made of(N - n) elements,
where n is the number of units in x. Then, the radius
of this part is [10, 111 ]

and is independent of f
The number of elements n in the region with size X

where the behaviour is the same as for a single star
can be obtained for instance by applying relation (19)
for the radius : if we suppose this part to be large, i.e.
the concentration not to be too high

we find

leading to

for a star in a good solvent and in the semi-dilute
regime.

Relation (34) allows us to define two different

regimes depending on the relative value of the two
terms : for lower concentrations the first term, x,
dominates the second, while the latter is more impor-
tant for higher concentrations. Comparing these two

terms, we are led to introduce a cross-over concentra-
tion c, between the two regimes

and we have

Note however that except for high values of the
branching f, cl and c* are close to each other so that it
might be difficult to observe (36a) experimentally
because of the narrowness of the region where it is valid
For lower temperatures or shorter branches

(Nf v2  1), there is no swelling of the blobs, neither
in the star like region, x, nor for the concentration
blobs. Using then (27) instead of(27) we get

for a star at temperatures around theta and in the
semi-dilute regime.

Here again, we can define a concentration ce
above, which separates a regime in which the first
term in the right hand side of (34) is dominant from a
higher concentration regime in which the second term
is important

Finally, if we vary the temperature, or the excluded

volume parameter, v - T - 0 comparison of equa-0
tions (34) and (34’) shows that we cross over from the
good solvent to the « theta » solvent behaviour when

Finally, in the melt the structure is made of the cores
immersed in large regions where the different branches
overlap strongly and behave like linear chains

Note that when the branches become shorter, the core
becomes more important and the overlap of different
star decreases.

4. Conclusion. - We have studied the behaviour
of a star shaped polymers in dilute and semi-dilute
solutions. For a single star, our model defines a blob
with size ç(r) increasing as we go from the centre of the
star to the outside. The basic hypothesis is that in the
region between the spheres with radius r and r + ç
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there are only f blobs. This is a generalization of what
is assumed for chains grafted on a plane [12, 13].
When the molecular weight of a branch is high, and in
a good solvent we find a radius R - N’I’f’l’ L This
result might be compared with the result of a crude
Flory type theory : We have two contributions to the
free energy :
- an elastic term

where we supposed that the elastic constant of a
branch is related to the unperturbed dimensions,
- an interaction term evaluated by considering

that we have Nf interacting elements in a volume Rd

Minimizing the free energy leads to

in agreement with what was found above in a good
solvent, equation (19), but in disagreement with (20)
for a theta solvent.

In fact, a careful examination of the results of last
section leads us to draw some analogy between a star
with f branches made of N elements each and a linear
chain made of Nf’ 12 elements interacting with an
excluded volume parameter vf- 1/2. Then, if we adopt
this analogy, the two contributions to the free energy
are

leading of the results quoted in section 2 (relations (19)
and (20)). However this analogy may also be misleading
because of the same reasons as discussed above : The
stretched structure is hidden, as are the complications
arising around the theta temperature. Also, we do not
really expect any scaling relation to hold, as would be
the case if there were a deep analogy between the two
problems.

For higher concentrations, c &#x3E; c*, the branches of
different stars overlap. We are then led to define two
different regions when the distance r to the centre
of a star is varied :

- For small distances, r  x, the behaviour is the
same as for a single star.
- For larger distances, the behaviour is the same

as for linear chains. The size of the blobs is independent
of f and depends only on the monomer concentration.

The radius of the star, which is taken equal to that of
a branch has a contribution from these two regions
(see Eqs. (34) and (34)). Note that when the size of the
branches decreases, so does the amount of overlap.
When f - N 2 there is no overlap, and we have a
solution of hard spheres. Every branch then is comple-
tely stretched.

These predictions can be tested by light or neutron
scattering experiments using stars with one branch
labelled.
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