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this band in a derivative of this octane would 
indicate that the atomic group whose motion is 
responsible for the band has been changed by 
the added terms, while the persistence of the 
band would indicate that the added terms are 
not connected to that group in such a way as to 
interfere with its motion. 
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1. INTRODUCTION 

RECENTL Y some articles have been pub­
lished dealing with the behavior of polymers 

of the coiling type suspended in a flowing liquid.1 

One of the issues is to establish a physical reason 
for Staudinger's rule according to which the 
intrinsic viscosity of polymer solutions should be 
proportional to the molecular weight of the 
polymer. I would like to present here a detailed 
picture of the motion of the polymer molecule 
and its parts, which makes it easy to see why the 
rule should hold for the very simplified model 
currently substituted for the actual molecule. 

2. MOTION OF THE POLYMER MOLECULE 

The model is as usual a number of identical 
atomic groups connected to each other by rigid 
links, the consecutive ones making a definite 
angle with each other and able to turn freely 
around each other. It is also assumed that each 
of these groups is acted upon by a frictional 
force fv if in a solvent flowing along with the 
velocity v and that neither the links suffer friction 
from the medium nor any interaction between 
the different groups exists, due to their individual 
disturbance of the general flow. 

The velocity of the liquid in a rectangular 
x, y, z system of coordinates may be represented 

1 John G. Kirkwood, J. Chern. Phys. 14, 180,347 (1946); 
H. A. Krarners, J. Chern. Phys. 14,415 (1946), a sequence 
to an article by J. J. Hermans, Physica 10, 777 (1943). 

by the vector V with the components 

{

az=vx 
V= O=Vy 

O=Vz 

(1) 

as it would result for instance from the motion of 
a plate in the x,y-plane moving with a constant 
velocity in the x-direction at a constant distance 
above another parallel plate at rest. The velocity 
gradient in the z-direction is a. 

A polymer molecule suspended in this liquid 
will be set in motion by the frictional forces 
acting upon each atomic group of the chain. If 
now we confine our attention to the center of 
gravity of the molecule, it can easily be seen 
that this center of gravity (apart from its 
irregular Brownian motion) will move with the 
velocity of the liquid as it is at the position 
where this center is momentarily situated. In 
this way we have taken care of the condition 
that the sum of all the forces acting on the whole 
molecule, averaged over all the configurations 
the chain can acquire is zero. 

Let us now take the center of gravity as the 
origin of our system of coordinates. Equation (1) 
will then represent the relative velocity of the 
liquid with respect to this center and will appear 
as represented in Fig. 1. It is evident from Fig. 1 
that the still remaining frictional forces will now 
tend to rotate the molecule as a whole around 
the y-axis. Call the angular velocity of such a 
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rotation w. A group at the position x, y, z will, 
due to this rotation, have a velocity v with the 
component, 

{

WZ 

v= 0 
-wx 

(2) 

and the frictional force acting on such a group 
will be F=f(V -v). In the steady state we will 
have to satisfy the condition that the average 
moment of this force around the center of 
gravity is zero. The instantaneous moment M 
has the components 

{

fW ~ xy 
M = f[(a-w) ~ Z2_ W ~ X2J, 

-f(a-w) ~ yz 
(3) 

the summation extending over all the groups of 
the molecule. Since in the average the products 
xy and yz are zero and 

Av (x2)=Av (z2)=Av (';>, 
in which r is the distance of the group from the 
center of gravity, the average moment wiII only 
have a component in the y-direction and this 
wiII be equal to 

AV(MY)=f(a-2w)AV(~r;>. (4) 

In the steady state this average moment has to 
be zero and so we conclude that the molecule 
rotates as a whole with an angular velocity 

w=a/2. (5) 

But even ~o the liquid will stilI have relative 
velocities with respect to the different groups. 
For one of them this relative velocity V -v, will 
have the componen ts 
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FIG. 1. Relative velocity of the medium with respect to 
the center of gravity of the molecule before rotation. 

sen ted in Fig. 2. The frictional energy-losses con­
nected with this flow will appear in the form of 
an increased viscosity of the solution. 

The flowlines themselves are hyperbolas with 
the equation 

Z2 - x2 = const. 

and the absolute value of the velocity 

is constant on circles around the y axis, in­
creasing proportionally with the distance from 
this axis. 

3. ENERGY LOSSES 

In the flow represented by Fig. 2 and Eq. (6) 
t he frictional force on one of the group~ is 

2 

V-v= 0 (6) and since this force is in the direction of the 
velocity, the work in unit time for one group is 

a 
-x 
2 

as follows from (1) and (2) with w=a/2. 
The flow lines of this relative flow of the liquid 

through the skeleton of the molecule are repre-
If n is the number of molecules per cc, the 
increase in energy losses per sec. and in 1 cc 
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due to the presence of polymer molecules will in 
the average be equal to 

This increase makes itself felt by an observable 
increase of the macroscopic viscosity from a 
value TJ to a higher value TJ ' . Now in a medium 
of viscosity TJ the total energy loss per sec. and 
per cc for a velocity distribution as represented 
by Eq. (1) is 

(8) 

This is easily checked by realizing that if one of 
the two parallel plates of surface S at a distance 
h is moving with the velocity v = ah with respect 
to the other, which is at rest, the frictional force 
on the upper plate is F= TJaS and the displace­
ment of this plate per unit time is v=ah. Con­
sequently the total amount of work dissipated 
in the volume Sh per sec. is Fv = TJa2Sh. If due 
to the presence of the polymer molecules the 
medium acts as if the viscosity is increased from 
TJ to TJ' , the corresponding increase in dissipated 
energy will be 

(9) 

Equations (7) and (9) represent the same quan­
tity in two different forms, so we conclude that 

It can now already be seen at once that the 
increase in viscosity will be proportional to the 
square of the number of links contained in the 
chain of the molecule. I t is well known that the 
average of the square of the distance from 
beginning to end of the chain is proportional to 
N, denoting by N the total number of links. From 
this it follows immediately that the average of 
the square of the distance of one of the groups 
from the center of gravity of the whole molecule 
will also be proportional to N. On the other hand 
the number of terms in the sum of Eq. (10) is 
N + 1. Neglecting terms of the relative im­
portance 1/ N against 1, we thus come to the 
conclusion that the sum is proportional to N2. In 
a qualitative way this dependence is caused by 
the fact that in longer molecules the average 
distance of each group from the center of gravity 
is larger. Consequently each group comes into a 

-X 

FIG. 2. Relative velocity of the medium with respect to 
the center of gravity of the rotating molecule. 

region in which the rel~tive velocity of the 
medium with respect to the rotating molecule is 
also larger. Increasing the length of the molecule 
therefore means not only increasing the number 
of centers which contribute to the energy losses 
but also increasing at the same time the indi­
vidual energy loss due to each center. 

4. INTRINSIC VISCOSITY 

In order to complete the calculation indicated 
in Eq. (10), we have to know what the average 
square of the distance is of one of the groups 
from the center of gravity. Obviously this aver­
age will depend on the position of the group in 
the chain and we expect that for a group in the 
middle it will be smaller than for a group near 
the end of the chain. This is confirmed by a 
calculation not reproduced here, which although 
somewhat more involved proceeds along the 
same lines followed in calculating the average 
square of the distance from beginning to encl, 
which is 

l+p 
R2=--Na2 • 

I-p 
(11) 

In Eq. (11) a is the length of a link and p is the 
cosine of the angle between two consecutive 
links (t for C-C bonds). 

If we number the N + 1 groups of the chain 
from 0 to N and concentrate our attention on 
group number P, it is found that the average 
square of the distance of this group from the 
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center of gravity is 

The factor in front of the brackets being equal 
to R2, we see that for 1'=0 or I'=N (the ends of 
the chain) r2=tR2, whereas a minimum value is 
reached for 1'/ N = t (the middle of the chain) 
equal to r2 = l2R2. Substituting (12) in (10) and 
performing the summation, which within the 
limits of accuracy can be represented by an 
integral, we find 

1 1 + P v=N [ 1 I' ( I' )] 
TJ'-TJ=~nf--Na2 L --- 1--

6 I-p v=o 3 N N 

1 l+p II 
=~nf--N2a2 [t-H1-~)]d~ 

6 1-p 0 

1 1+p 
=-nf--N2a2. 

36 1-p 

(13) 

From the increase in viscosity we obtain the 
relative increase in dividing by TJ and the intrinsic 
viscosity [TJ] in dividing by the concentration, 
which is nNm if m is the mass of one of the groups 
of the chain. The final result for the intrinsic 
viscosi ty is 

1 f/TJ 1+p 
[TJ]=----Na2, (14) 

36 m 1-p 

which represents Staudinger's rule that the 
in trinsic viscosi ty is proportional to Nand 
therefore to the molecular weight of the whole 
molecule. Should we represent each group by a 
sphere of radius p and apply Stokes law, ac­
cording to which in this case f = 67rTJP, we will 

find 
7r pR2 

[TJ]=--. 
6 m 

(14') 

As is evident from the definition of [TJ] it has 
the dimension of a specific volume and this is 
according to the theory represented here by the 
quotient of a volume which is 7r/6 times the 
product of the radius of the sphere, representing 
each group multiplied by the average square of 
the distance from beginning to end of the chain, 
divided by the mass of a single group. In order 
to show by an example that the order of mag­
nitude is correct we take a polymer of molecular 
weight 500,000, each single group having the 
molecular weight 50. We now have N = 10,000 
and with a = 1.54A (the C - C distance) it follows 
that R2=47,400.1O-16 cm2. Since m=82.10-24 g 
we find that in order to explain a supposedly 

. observed intrinsic viscosity [TJ] = 100 cc/g (which 
in the customary practical units, 1 g ahd 100 cc, 
corresponds to the intrinsic viscosity (1) it is 
necessary to represent each group by a sphere 
of radius p = 0.33A. 

As to the streaming double refraction, which 
may be expected from the model, it is immedi­
ately evident from Fig. 2 that in a second 
approximation the molecule will in the average 
lose its central symmetry, be elongated in the 
direction AA, and compressed in the direction 
BB. With bonds having different polarizabilities 
parallel and perpendicular to their direction this 
will lead to observable double refraction of the 
solution in motion with axes under 45° against 
the direction of flow. At the same time it is also 
evident with respect to the viscous behavior of 
the solution that in a second approximation and 
due to the distortion of the molecule propor­
tionality between the shearing stress and the 
velocity gradient will cease to exist. 


