
Segmental Density of Polymers
DOI: 10.1002/anie.201209228

Is the Universal Law Valid for Branched Polymers?**
Albena Lederer,* Walther Burchard, Anna Khalyavina, Peter Lindner, and Ralf Schweins

In the years between 1908 and 1910 Albert Einstein[1] derived
his famous equation for the increase of the solvent viscosity if
spherical particles are added to a liquid. This equation may be
written in terms of intrinsic viscosity, but may also be
expressed in terms of molar mass and the Avogadro number
NA [Eq. (1); R is the radius of a hard sphere].
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Evidently the left and the right sides in Equation (1) have the
same dimension, and therefore, the parameter FEinstein = 10 p/
3 is a dimensionless quantity. Several years later, Staudinger
noticed that the easily measurable intrinsic viscosity is an
excellent quantity to describe solution properties of linear
polymer chains using the Flory–Fox equation [Eq. (2); Rg is
the radius of gyration].[2]

h½ � ¼ FF

R3
g

M
ð2Þ

In this equation again [h] and R3
g=M have the same dimension,

and consequently the Flory parameter FF seems to fulfill the
characteristics of a universal quantity, at least for linear
chains. Such universality is however questionable as it has
been observed that FF slightly decreases if a good solvent is
used instead of a poorer solvent, and this decrease is
correlated with the increased swelling of the coil chain.[3] In
practice this important observation is often neglected and the
original FF parameter is still used for rough characterization
of macromolecules and is known as the “universal constant”.

Herein we show in real systems that there is a significant
correlation between the FF parameter and the degree of
branching. Thus, FF turns out not to be a universal constant,
but actually varies with the macromolecular topology.

For the evaluation of the influence parameters such as the
degree of branching, molar mass, and functionality, a series of
model polymers is required in which only one structural
parameter is varied. Owing to the very broad molar mass and
the superimposed branching distributions, a reliable elucida-
tion of branching parameters is nearly impossible. Specific
findings with natural and synthetic polymers led only to
a complex and vague view of the scaling characteristics.[4]

Complementary results were obtained by computer simula-
tions.[5] We are in the position to analyze this behavior with
hyperbranched (hb) structures and to extract particular
information with regard to their highly branched character
using a portfolio of different degrees of branching for fixed
chemical structure, molar mass, and functionality. The inter-
pretation of the molecular shape, density, or self-similarity
can be determined by viscosity measurements and scattering
methods.

The observed intrinsic viscosity is often expressed by
a power-law behavior with an exponent of ah, which includes
scaling information. One possibility is the Kuhn–Mark–
Houwink–Sakurada (KMHS) dependence of the intrinsic
viscosity on the molar mass [Eq. (3)].

h½ � ¼ KhMah ð3Þ

Typically, the value of the KMHS exponent is related to
the shape and compactness of a polymer in a certain solvent.
In numerous investigations, values of 0.3<ah< 0.5 were
found for hb polymers.[4a] Depending on the solvent quality,
values of 0.5<ah< 0.8 were found for linear random coils.
For hard spheres values close to zero are typical.

Substantial information on the size of the molecules can
be obtained by scattering techniques. Static light scattering
(SLS) gives the radius of gyration, Rg, and dynamic light
scattering (DLS) gives access to the hydrodynamic radius, Rh.
At sufficiently large Rg> l/20 an angular dependence occurs
and permits the determination of Rg. Unfortunately, the
wavelength of the visible light is too long to allow the
detection of sizes typical for hyperbranched macromolecules
(Rg< 10 nm). Therefore, we use small-angle neutron scatter-
ing (SANS), which by working at very small scattering angles,
covers wavelengths between 0.5 and 2 nm.[6]

Similar to the KMHS relationship, the molar mass
dependence of the gyration radius includes the evaluation
of the scaling parameter, n, in Equation (4).

Rg ¼ KMn ð4Þ
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The same relationship should be valid for the hydro-
dynamic radius, since in the ratio of Rg and Rh [Eq. (5)] the
molar mass cancels out.

1 �
Rg

Rh
ð5Þ

Thus, 1 should remain constant[7] but is also related to the
segmental density in the polymer.[8] Calculations predict that
this value should be approximately 1.22 for hyperbranched
polymers.[4c] Values of 1 = 0.78 and 1 = 1.78 correspond to
hard sphere and linear coil in a good solvent, respectively.[4c,9]

Measurements of the molecular size in dilute solution
additionally yields quantitative values for the degree of
branching in long-chain branched polymers (that is, polymers
with branches that are long chain), as calculated by Zimm and
Stockmayer.[10] These considerations are based on the appar-
ent shrinking when a linear chain is transformed into
a branched one of the same molar mass. This size reduction
can be estimated by direct measurement of the radii of
gyration Rg for the branched and linear chains leading to
a molar mass dependent contraction factor g as defined by
Equation (6).

g ¼
R2

g;branched

R2
g;linear

Mj ð6Þ

The contraction factor is a function of the number of
branches n per monomer unit and depends on the function-
ality of the branch points. For monodisperse trifunctional
branched fractions, Zimm and Stockmayer[10] derived the g
parameter as a function of branching points n and obtained
Equation (7).

g ¼ 1þ n
7

� �1=2
þ 4n

9p

� ��1=2

ð7Þ

The intrinsic viscosity is a function of the size of the
molecules, as described by the Flory–Fox equation [Eq. (2)],
thus the size reduction can be also expressed by the ratio of
the intrinsic viscosities of the branched and linear polymer
[Eq. (8)].

g0 ¼ h½ �branched

h½ �linear
Mj ð8Þ

We performed SANS and dynamic light scattering to
determine the global parameters of aliphatic–aromatic poly-
esters with degrees of branching from 0 to 50% (DB = 0 to 0.5
according to Frey et al.[11]). We investigated two series of
polymers, 1) with non-polar tert-butyldimethylsilyl groups
and 2) with polar OH groups, to evaluate the influence of
the functionality type on the scaling parameters n and ah. Our
controlled synthesis path yields polymers with unique proper-
ties: the number of functional groups per monomer unit is
unity. This number remains the same for all branching
degrees.[12] This goal was achieved by protecting one of the
two B groups in an AB2 monomer, and after polymerization
the protecting groups were removed. In this way silyl-

functionalized (SY) series and OH-functionalized series
were available (Scheme 1).

The radii of gyration and the hydrodynamic radii of both
series are listed in Table S1 of the Supporting Information and
are plotted in Figure S1. Independent of the functionality
type, Rg and Rh differ significantly from each other at low
degrees of branching, but at high DB values (!50 %) Rg and
Rh approach similar values. This effect stands in direct
correlation to the segmental density of the polymers. It can
be described by the structure-dependent ratio 1 [Eq. (5)],
which is related to the segmental density of the molecule. We
obtained values of 1 from 1.2 to 1.4 for the OH samples and
0.98 to 1.2 for the SY samples (Figure 1). The 1 value for the

linear polymers lies in the expected range for linear coils,
whereas the hyperbranched OH-50 approaches the theoret-
ically predicted 1 = 1.22.[4c] For SY-50 we obtain 1 = 0.98,
which corresponds to the experimental values observed for
glycogen and amylopectin.[8, 13]

The aim of our work was to check the universality of the
Flory–Fox equation [Eq. (2)] for molecules of branched
topology. The F parameter could be calculated by Equa-
tion (2) using the intrinsic viscosity (Table S1) together with
the radii of gyration. The results are plotted in Figure 2. The

Scheme 1. Variation of the branching degree from linear to hyper-
branched structures for polyesters with different functional groups.

Figure 1. Dependence of the branching parameter 1 on the degree of
branching for SY- and OH-terminated samples. The lines correspond
to tentative fits to the measurement points.
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plot contains additionally the values of FFlory = 2.86 �
1023 mol�1 for random coils[14] of linear chains and FEinstein =

13.57 � 1024 mol�1 for hard spheres.
For the hyperbranched OH samples nearly no variation

with the DB was found but the values are greater by the factor
of 7 than the Flory parameter for random coils. For the
SY samples the F parameter clearly increases with the degree
of branching. Even at DB = 0, a value six-times larger than
that predicted by Flory was found for polystyrene in a good
solvent.[3] For both sample series a close correlation to the
behavior of the apparent density dapp ¼ ð3=4pÞM=R3

g is
observed (Figure S5). The results for the OH end-groups
are difficult to interpret but most likely the polar groups can
undergo strong intramolecular interactions. Whatever the
interpretation of the OH samples may be, the conclusion is
that the F parameter is not a universal parameter but
depends on the topology of the macromolecules.

The non-universality of the F parameter has consequen-
ces for another relationship, which was assumed to be
universal for macromolecules. We continue our interpretation
with the elucidation of the correlation of the contraction
factors to the degree of branching, as described in Equa-
tions (6)–(8). Measurements of the intrinsic viscosity are
much easier to perform than those of the radius of gyration.
Therefore, it would be helpful to have a relationship, which
allows us to calculate g from the g’ factor. For the calculation
of g from Equation (6), we used fractions from the linear SY-0
and the hyperbranched SY-50 polymers (see Supporting
Information). For most of these fractions the molar mass
was too low so that the Rg could not be accurately measured
as a function of the molar mass. Therefore, we used the molar
mass dependence of Rh and transformed it into Rg as outlined
below. The fractions were characterized by dynamic light
scattering. The molar masses and radii are listed in the
Table S2. The Rh versus molar mass dependencies of both
series, as well as the corresponding values of g are shown in
Figure S2.

Stockmayer and Fixman[15] noticed that with the assump-
tion of universality for F a power-law correlation between g’
and g should be observed since [h] is related to R3

g and g to R2
g

which leads to g0 / g3=2, a dependence which has never been
found by experiments. Zimm and Kilb[16] tried to solve the
hydrodynamic behavior of branched samples to find the
correlation between g’ and g, but they had to make
assumptions for the hydrodynamics, and found g0 / g1=2.
These two values for the exponent 1.5 and 0.5, can be
considered as the two possible limits in a range that would be
realized by branched samples. This fact induced Kurata[17] to
assume the power law in Equation (9) with an exponent e yet
to be determined by experiment.

g0 / ge ð9Þ

At that time star molecules with up to 12 arms were available.
The experimental data with these star-macromolecules were
found to be in the range around e� 0.6.[18] Some years later
star molecules up to 128 arms became available. Roovers
et al.[19] carried out highly accurate measurements on g’ and g
and clearly demonstrated an increase of the exponent from
fairly low values to e� 1 when the number of arms was
increased from 3 to 128. Thus, Stockmayer and Fixman
conclude that the ratio Fbranched/Flinear�F* in Equation (10)
must be larger than 1.

g0 ¼
FbranchedR3

g;branched

FlinearR3
g;linear

¼ F*ðgÞg3=2 ð10Þ

This relationship includes the non-universality of F*. There-
fore we cannot expect e to be a universal exponent, but
e could be constant, that is, independent of the molar mass,
though depending on the degree of branching. To demon-
strate this conjecture, the molar mass dependence of g and g’
has to be determined. We investigated this by using two
approaches:

1) The radius of gyration can be obtained from the
measurement of the hydrodynamic radius, then multiplying
these data by 1, where 1 was determined from the samples
measured by SANS (see Supporting Information). Together
with the measured 1 values for SY-0 and SY-50 (shown in
Table S1 and Figure S3) the molar mass dependence of g1 is
obtained through Equation (11).

g1 /M�0:40 ð11Þ

2) In the second approach we estimated the number of
branching points using the Zimm–Stockmayer Equation (7),
where we used the correlation that the number n of branching
points is proportional to the degree of branching. We then
obtained Equation (12).

gn /M�0:44
w ð12Þ

The two estimations of g1 and gn according to points (1)
and (2) lead to somewhat different exponents but can be
considered to lie within the experimental errors.

On the other hand, the contraction factors g’ were
calculated from the previously determined KMHS depend-
encies for SY-0 and SY-50,[12] listed in Table S1 and shown in
Figure S2. From the molar mass dependencies of the intrinsic

Figure 2. Dependence of the Flory–Fox parameter on the degree of
branching for SY- and OH-terminated samples.
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viscosity the molar mass dependence of g’ is obtained as
Equation (13).

g0 /M�0:34
w ð13Þ

We have to recall that both g and g’ require the
comparison of the radii and viscosity of branched and linear
polymers of the same molecular mass. Thus it was necessary
to use the molar mass dependencies, because it is not possible
to prepare samples of exactly the same molecular mass. Note
that the dependence of g� from the molar mass is �0.34 which
is higher than the predicted exponent of �0.5 for g [see
Eq. (7)].

Based on this information we can estimate the e exponent
by using used the generalized Equation (10) and obtained for
SY-50 Equation (14).

g0 / g0:77
n ð14Þ

We extended our calculations of e to the series of
polymers with branching degrees between 0 and 50 %. The
dependence on DB of the exponents from Equations (12) and
(13) is shown in Figure S4. The dependence of the exponent
e on DB is shown in Figure 3.

Between DB 0.15 and 0.50 the e exponent has only a small
decrease with a decreasing degree of branching, and taking
into account the experimental errors we could estimate hei=
0.72� 0.05. Below DB = 0.15 a large decrease towards e = 0
takes place. The behavior of both series is similar but the
OH exponent lies consistently below that of SY. Apparently,
at large degrees of branching a certain universality of the
e exponents, that is, independence of the branching density,
can be stated. However, this certainly does not hold for the
less-branched samples.

To our knowledge this is the first visualization of e as
a function of the statistical branching degree. The question
arises why does e decrease and, in particular, what is the
meaning of e = 0? A look at Equation (10) makes it clear that
the F* parameter must also have a power-law correlation of

d = e�1.5 to the g parameter. In the limit of e!0 we find g’=
g = 1 and h½ � ¼ Flinear

R3
g

M. This leads us to the conclusion that in
every case at DB = 0, the e exponent must become zero and
the somewhat unexpected decrease of e is a sensible finding.
What remains is to find an explanation for why the OH data
are consistently lower than those from the SY series. A
indication is given by looking at F*(g). If we assume
a constant Flinear for linear chains this gives Equation (15)
because g� 1.

F*ðgÞ / Fbranched / 1 gð3=2�eÞ ð15Þ

The decrease of g, and thus, an increase of DB causes an
increase of Fbranched. This increase is quite substantial, as may
be demonstrated by some experimental findings. Luca and
Richards[20] obtained d =�1.22, Kurata et al.[18] and Weiss-
m�ller and Burchard[21] d =�0.9, and in this study d =�0.76
and �0.73 for the OH and the SY samples at DB = 0.5. To
recall, Zimm and Kilb predicted d =�1 and Stockmayer and
Fixman d = 0. These data seem to suggest that the approx-
imate hydrodynamic calculations by Zimm and Kilb are
correct and probably describe the limit of very high branching
densities.

The slight deviation of our results to the previous studies
could be explained by the particularly low segmental mobility
in the aliphatic–aromatic hyperbranched polymers.[22]

In conclusion, an increase of the e exponent corresponds
to an increase of Fbranched in the molar mass dependence of the
intrinsic viscosity, caused by the branching density. Thus the
main finding in our study is:

The F parameter is not a universal quantity but rather
a function of the branching density.

Going back to the Zimm and Kilb theory it is the
segmental density which perturbs the hydrodynamic flow and
this segmental density is evidently controlled by the degree of
branching. This fact influences the interpretation of size
determination by common analytical techniques, for example,
size exclusion chromatography. A number of investigations
were focused on the validation and improvement of the
universal calibration approach.[23] Successful identification of
the factors influencing this relationship could give a new
possibility for calculating the radius of gyration even for
branched polymers. Our result is of significant importance for
describing common hyperbranched systems, in which the
distribution of the molar mass is usually accompanied by
a distribution in the branching degree. Therefore the devel-
opment of multidimensional separation techniques has a high
priority in the analysis of branched polymers. Recently,
Radke et al.[24] were successful in separating statistically
branched polymers depending on the branching degree by
using liquid chromatography under critical conditions. This
innovative approach together with our results will in future
enable a facilitated distinction of the effect of different
structural parameters on the solution and material properties
of hyperbranched polymers.
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Figure 3. Dependence of e [Eq. (9)] as a function of the degree of
branching (DB) for SY- and OH-terminated samples. The lines are not
fits but are to guide the eye.
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