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Synopsis

We investigate the concentration dependence of the characteristic relaxation time of dilute polymer
solutions in transient uniaxial elongational flow. A series of monodisperse polystyrene solutions of
five different molecular weights �1.8�106�M �8.3�106 g/mol� with concentrations spanning
five orders of magnitude were dissolved in two solvents of differing solvent quality
�diethylphthalate and oligomeric styrene�. Optical measurements with a capillary breakup
extensional rheometer of the rate of filament thinning and the time to breakup in each fluid are
used to determine the characteristic relaxation time. A criterion for a lower sensitivity limit is
introduced, in the form of a minimum concentration cmin necessary for experimental resolution of
the effects of polymeric viscoelasticity. This criterion is validated by experiment and comparison to
numerical calculations with a multimode bead-spring dumbbell model. These calculations also
rationalize previous paradoxical observations of extensional thinning in fluid threads of ultradilute
polymer solutions in which stress relaxation apparently occurred faster than predicted by the Zimm
theory. Above this minimum sensitivity limit we show that the effective relaxation time of
moderately dilute solutions �0.01�c /c*�1� in transient extensional flow rises substantially above
the fitted value of the relaxation time extracted from small amplitude oscillatory shear flow and
above the Zimm relaxation time computed from kinetic theory and intrinsic viscosity
measurements. This effective relaxation time exhibits a power-law scaling with the reduced
concentration �c /c*� and the magnitude of the exponent varies with the thermodynamic quality of
the solvent. The scaling of this “self-concentration” effect appears to be roughly consistent to that
predicted when the dynamics of the partially elongated and overlapping polymer chains are
described within the framework of blob theories for semi-dilute solutions. © 2006 The Society of
Rheology. �DOI: 10.1122/1.2357595�
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I. INTRODUCTION

The critical overlap concentration of polymer coils, denoted c*, is one of the most
important characteristic values of a polymer solution. It is generally accepted that at
concentrations c /c*�O�1� the steric and frictional interactions of neighboring polymer
coils are negligible and the rheological response of the fluid is solely governed by the
sum of the deformation and hydrodynamic interactions of the isolated polymer coils and
solvent which comprise the polymer solution. When these conditions exist, the theoretical
description of a dilute solution given by the Rouse/Zimm theory is expected to be valid.
At higher concentrations the solution becomes semidilute and eventually entangled de-
pending on the degree of overlap of adjacent coils and their molar mass.

Graessley �1980� provides a simple definition of c* that is widely accepted for de-
marking the boundary separating the physical and rheological definition of dilute and
semidilute polymer solutions

c* =
0.77

���
, �1�

where ��� is the intrinsic viscosity of the polymer solution which depends on the molar
mass of the chain according to the Mark–Houwink–Sakurada equation ���=K���M

a,
where K��� is a constant and the power-law index 0.5�a�0.8 varies with the quality of
the solvent.

However, the definition of diluteness in Eq. �1� is only applicable for polymer coils
that are not deformed greatly beyond their equilibrium configuration �for example in
small amplitude oscillatory shear �SAOS� flow�. In extensionally-dominated flow fields,
at conditions which satisfy the coil-stretch transition ��̇�=1/2� a polymer coil becomes
highly extended, leading to an increased interaction volume within which the chains may
overlap, as reported by Dunlap and Leal �1987�. Consequently polymer-polymer interac-
tions are possible even at concentrations c /c*�O�1�. The improper use of a near-
equilibrium definition to characterize dynamic changes in conformation and the associ-
ated rheological responses to deformation has lead to the recent introduction of the term
“ultradilute” solution and a concentration of ultradilution, c�, below which polymer so-
lutions remain truly dilute even when the polymer chains are deformed well beyond their
equilibrium state �Harrison et al. �1998��.

Characterization of the rheological properties of dilute and ultradilute solutions has
rarely been carried out in extensional flows, because the extensional rheometry of poly-
mer solutions has proven to be an experimental challenge far more complex than per-
forming rheological measurements in a steady or dynamic shear flow. The challenge in
characterizing extensional flows is to create and not disturb a homogeneous flow field
while employing a liquid whose rheological properties are simple enough that they can be
compared with theory. Consequently, new methods for the quantitative study of dilute
polymer solutions in extensional flows are desired. Recent developments in non-invasive
experimental methods for characterizing extensional flow fields are reviewed in the
monograph by Nguyen and Kausch �1999�.

The first mechanical studies of the state of stress for polymer solutions in a well-
defined uniaxial flow field were made by Sridhar et al. �Matta and Tytus �1990�; Sridhar
et al. �1991�� using the filament stretching device. A comparison of different approaches
for realizing this type of experiment �Anna et al. �2001�� showed for the first time the
possibility of quantitative determination of the transient extensional viscosity for well-
characterized dilute solutions in a purely uniaxial flow field. A recent overview of fila-
ment stretching rheometry is given in �McKinley and Sridhar �2002��. Filament stretching
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instruments are complex and expensive and, furthermore, reliable experiments are very
difficult for low viscosity fluids with zero shear-rate viscosities less than �0.5 Pa s due to
inertial and gravitational effects �McKinley and Sridhar �2002��. Recent studies of jet
breakup �Christanti and Walker �2001�� and drop pinch-off �Amarouchene et al. �2001�;
Cooper-White et al. �2002�� as well as the groundbreaking work of Entov and co-workers
�Entov et al. �1988�; Bazilevskii et al. �1990, 1997�; Entov and Hinch �1997�� have
demonstrated the efficacy of capillarity-driven thinning flows for the determination of
transient extensional material functions. Capillary-thinning devices have been developed
recently by a number of laboratories �Liang and Mackley �1994�; Kolte and Szabo
�1999�; McKinley and Tripathi �2000�; Stelter and Brenn �2000�; Anna and McKinley
�2001�; Bazilevskii et al. �2001�; Stelter et al. �2002�� and the dynamics of the elasto-
capillary thinning process are reviewed in McKinley �2005�.

It is important to note the distinctions between the dynamics of capillary thinning and
those of filament stretching rheometry for dilute polymer solutions. For example, Gupta
et al. �2000� investigated the effects of varying the concentration and molar mass of
dilute and semidilute polystyrene solutions on the extensional stress growth in filament
stretching experiments. In order to ensure elastic stresses were large enough to be mea-
sured accurately and in order to overcome gravitational effects, they had to perform the
tests at large extension rates �̇, corresponding to Weissenberg numbers Wi=�0�̇�1
where �0 is the longest relaxation time of the polymer solution. In this limit, the chain
deformation becomes increasingly affine, and Brownian dynamics simulations and ex-
periments both show that the measured curves of the transient extensional viscosity begin
to superpose and approach a single limiting curve as a function of strain �Larson �2005��.
It is thus very difficult to probe directly the effects of concentration changes on the
longest relaxation time of the solution. By contrast, the theoretical analysis by Entov and
Hinch �1997�, in conjunction with supporting experimental data �Anna and McKinley
�2001��, shows that the elastocapillary balance achieved in capillary-thinning experiments
results in a natural stretching rate of �̇=2/ �3�0� or, equivalently, a Weissenberg number
Wi=�0�̇=2/3. This self-selected value is just sufficiently above the critical value of 0.5
�corresponding to the coil-stretch transition� to keep the polymer chain stretching such
that the growing elastic stress balances the increasing level of capillary pressure in the
thinning cylindrical thread. All of the shorter relaxation modes in the chain experience the
same elongation rate �̇, corresponding to Weissenberg numbers below 0.5, and conse-
quently their contributions to the material response decay. The dynamics of elastocapil-
lary thinning are therefore controlled directly by the longest relaxation process which
corresponds to the relaxation-controlled unraveling of the entire chain. Capillary thinning
and break-up experiments thus provide a convenient means for probing chain-chain in-
teractions as a function of polymer concentration through measurements of the charac-
teristic time scale of the solution in a strong extensional flow.

Several investigations of transient elongational behaviour have been reported for a
range of different polymers and molar masses �Liang and Mackley �1994�; Bazilevskii et
al. �1997�; Stelter and Brenn �2000�; Anna and McKinley �2001�; Anna et al. �2001�� in
semidilute to dilute solutions. Recently Bazilevskii et al. �2001�, Stelter et al. �2002� and
Tirtaatmadja et al. �2006� have studied flexible polymers in dilute and ultradilute solu-
tion, finding that the characteristic relaxation time extracted from capillary-thinning or
jet-thinning experiments continues to depend strongly on the concentration even below
the critical overlap concentration c*, in contrast to expectations of the Rouse/Zimm
theory. In addition, Bazilevskii et al. and Tirtaatmadja et al. observed a power-law de-
pendency of the relaxation time on the concentration. Similar power-law variations of the
rheological properties for apparently dilute aqueous polymer solutions have also been
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observed by Kalashnikov �1994� and by Tam and Tiu �1993�. We also note that whereas
Stelter et al., Tirtaatmadja et al., and Christanti and Walker �2001� all reported relaxation
times that exceeded the expected relaxation time from the Zimm theory, Bazilevskii et al.
�2001� also found that for very dilute solutions �down to concentrations as low as
0.2 ppm� the power-law scaling lead to relaxation times that fell below the predicted
Zimm relaxation time.

In order to resolve this discrepancy, the present paper focuses on a detailed investiga-
tion of the capillary-thinning dynamics and breakup for dilute and ultradilute monodis-
perse polymer solutions. In order to quantitatively analyze the elastocapillary thinning
process and extract the longest relaxation time for very dilute solutions it is first neces-
sary to reconsider carefully the fluid dynamics of filament thinning, in particular to
answer the question of how much of the tensile stress in the thinning thread is carried by
the polymer and how much by the solvent. In other words, we seek to understand under
what physical conditions a coil-stretch transition that occurs on the molecular scale can
affect the resulting macroscopic fluid dynamics. This provides an effective distinction
between a dilute and an ultradilute polymer solution for this particular flow configuration.

In this paper we present experimental investigations of capillary thinning using high
molar masses and nearly monodisperse polystyrene samples �1.8�M �8.3
�106 g/mol�. The chains are dissolved in two different high and low viscosity solvents
with qualities ranging from good �diethylphthalate� to near theta conditions �styrene
oligomer� over a range of concentrations spanning five orders of magnitudes. We thus
investigate the elongational response under semidilute, dilute, and ultradilute conditions.
In addition, numerical calculations �using a multimode FENE-P formulation� of the tran-
sient stress evolution in the thinning filament are used to determine the relative contri-
bution of the polymer chains to the overall stress balance as a function of concentration
and molar mass. This enables us to determine the lower sensitivity limit of the capillary-
thinning technique and to identify systematic discrepancies that can arise under very
dilute conditions.

II. EXPERIMENT AND ANALYSIS METHODS

A. Sample preparation

The polystyrene samples were provided by Polysciences Inc., Warrington, PA, �sample
A: Mw=1.8�106 g/mol, and sample D: Mw=6.0�106 g/mol�, Polymer Laboratories,
Amherst, MA �sample C: Mw=5.7�106 g/mol and sample E: Mw=8.3�106 g/mol�,
and also Polymer Standard Services, Ontario, NY �sample B: Mw=2.8�106 g/mol�.
Molar mass Mw and polydispersity Mw /Mn were verified by size exclusion chromatog-
raphy with a multiangle light scattering detector. Two different batches of oligomeric
styrene with a degree of polymerization of �5 �Piccolastic A-5 Resin� as a solvent for
Boger fluids were provided by Hercules, �Wilmington, DE�. The diethylphthalate �DEP�
solvent was supplied by Merck, �Darmstadt, Germany� and used as received.

The solutions of polystyrene in styrene oligomer �Boger fluids� were prepared in two
different ways:

�a� Sample A �0.166 wt % �, sample B �0.025 wt % �, and sample D �0.107 wt % �
were prepared by adding the polymer to the oligomer at room temperature and placing
the samples in an oven at 100 °C, without stirring �samples A and D� and with repeated
agitation �sample B�, until the polymer dissolved over several weeks.

�b� Sample C �0.25 wt % � and sample E �0.1 wt % � were prepared by dissolving the
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polymer in minute amounts of toluene, mixing with the oligomer and continuous evapo-
ration of the toluene at 10 Pa pressure under steady agitation of the sample at 50 °C over
several weeks, controlling the evaporation process by weight.

The different concentrations used in the experiments were achieved by diluting the
above samples with the respective batch of Piccolastic A-5.

Preparation of the polystyrene/DEP solutions involved dissolving the respective
amount of polymer in the solvent. Homogenization was achieved by slow continuous
agitation over a period of time not shorter than 7 days.

The relevant physical data of the solutions are compiled in Tables I and II. The
intrinsic viscosities ��� of the polystyrene/diethylphthalate solutions were determined
using a micro-Ubbelohde viscometer with a No. IIc capillary ��=0.95 mm� �Schott-
Geräte GmbH, Mainz, Germany�. The intrinsic viscosities for the polystyrene in styrene
oligomer solutions �Boger fluids� were calculated from the respective Mark–Houwink–
Sakurada equation. The finite extensibility parameter L was calculated from molecular
parameters as described in Sec. II D. The solvent viscosities �s of the Boger fluids were
determined from fitting Eqs. �2� and �3� to SAOS data. A noticeable difference in solvent
viscosities between the first batch �used for samples A and D� and the second batch of
styrene oligomer �used for samples B, C, and E� is observed. The slightly higher solvent
viscosity of the solutions of sample B in comparison to solutions of samples C and E in
the same batch of styrene oligomer is most likely attributable to inexorable aging and
polymerization of the oligomeric solvent due to residual traces of initiator in the polymer
and/or ultraviolet light during the longer preparation process of solutions of sample B.
The solvent viscosity �s of the diethylphthalate was measured in steady shear via cone
and plate rheometry. Surface tensions 	 were experimentally determined using a Krüss
K10ST Tensiometer �Hamburg, Germany�.

B. Shear rheology

The rheology of the test fluids in both steady and dynamic shear flow was investigated
using an AR1000 N rheometer as well as two Rheometric Series ARES �TA Instruments,
Newcastle, DE� with cone and plate fixtures, �=40 mm, cone angle=0.04 rad.

TABLE I. Physical parameters of the polystyrene solutions in the near-theta solvent styrene oligomer �Boger
fluids�.

Sample Mw / �g/mol� Mw /Mn ��� / �cm3/g� L �s / �Pa s� 	 / �N/m� 
 / �kg/m3� �z / �s�

A 1.80�106 1.02 63.7 73 33 0.0378 1026 0.64
B 2.84�106 1.13 82.2 90 51 0.0378 1026 2.01
C 5.67�106 1.09 121.1 126 40 0.0378 1026 4.64
D 6.00�106 1.22 125.0 130 33 0.0378 1026 4.18
E 8.27�106 1.13 150.0 151 40 0.0378 1026 8.35

TABLE II. Physical parameters of the polystyrene solutions in the good solvent DEP.

Mw / �g/mol� Mw /Mn ��� / �cm3/g� L �s / �Pa s� 	 / �N/m� 
 / �kg/m3� �z / �s�

8.27�106 1.13 601 95.0 0.011 0.0375 1118 0.0107
5.67�106 1.09 464 81.1 0.011 0.0375 1118 0.0057
2.84�106 1.13 283 59.9 0.011 0.0375 1118 0.0017
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The longest relaxation time �0 �as measured by shear flow experiments� was obtained
by fitting the predictions of the Rouse/Zimm model for dilute solutions to the measured
linear viscoelastic moduli G���� and G����. For Boger fluids with an oligomeric solvent,
an additional weak elastic contribution of the solvent to the total measured loss and
storage modulus must be included

G� =
�s�s�

2

1 + ��s��2 +
cRT

Mw
�
i=1

Nmodes � ��0��2

i4+2�̃ + ��0��2� , �2�

G� =
�s�

1 + ��s��2 +
cRT

Mw
�
i=1

Nmodes � ��0��i2+�̃

i4+2�̃ + ��0��2� , �3�

where R=8.314 J /mol K is the universal gas constant, � is the angular frequency, T is the
absolute temperature, and �s is the relaxation time of the oligomeric solvent �Mackay and
Boger �1987��. The longest relaxation time �0 is connected to the Zimm spectrum �i with
a number of modes Nmodes by a recursion relationship

�i =
�0

i2+�̃
for i = 1,2, . . . ,Nmodes, �4�

where �̃ is a measure of the hydrodynamic interaction between the segments of the
polymer chain and the surrounding solvent. This parameter can be related to the hydro-
dynamic interaction parameter h* of the Zimm model via a correlation originally pub-
lished by Thurston �Bird et al. �1987��

�̃ = − 1.40�h*�0.78. �5�

For negligible hydrodynamic interactions �h*=0� the Rouse spectrum is obtained; for
dominant hydrodynamic interactions, as in the case of Boger fluids, the parameter h*

approaches a limiting value of 0.25, resulting in the Zimm scaling of 2+ �̃	1.5. For
polystyrene in the relatively good solvent DEP an excluded volume exponent =0.567,
determined from viscometric measurements of the intrinsic viscosities for the different
molar masses, gives h*=0.14 when applying the approximation 3=2+ �̃. This value is in
good agreement for example with h*=0.15 for polystyrene in the good solvent aroclor as
reported by Amelar et al. �1991�.

The number of modes can be varied depending on the desired resolution of the vis-
coelastic spectrum. The Hookean dumbbell corresponds to Nmodes=1. Amelar et al.
�1991� suggest that the appropriate molecular mass associated with a single spring should
be in the range 5000–10 000 g/mol for polystyrene, resulting in values for the samples
in this report of Nmodes=240–1100. In practice due to the rapid decay of higher modes
and the limited range of frequencies used, a smaller number of modes of 8�Nmodes

�15 is sufficient for the determination of �0 and computation of the linear viscoelastic
properties.

C. Capillary thinning experiments

The capillary thinning experiments reported here were carried out using �i� a CaBER
version1 �Thermo Electron, Karlsruhe, Germany� using circular endplates with a diam-
eter Dp=6 mm, and �ii� a self-built apparatus with endplates of diameter Dp=3 mm. In
each case an approximately cylindrical liquid bridge of height h0 was formed between the
two endplates. Both setups employed a step strain to separate the plates from their initial
distance h0, reaching their final separation hf in 50 ms. The midplane diameter evolution
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was followed using a laser micrometer �CaBER� or a Cohu charge coupled device �CCD�
camera recording at 30 frames/s �self-built apparatus�. The aspect ratio increases from an
initial value �0=h0 /Dp to a final aspect ratio � f =hf /Dp. In the present experiments we
use �0=0.5 and � f =1.3 �CaBER� or �0=1.0 and � f =2.5 �self-built apparatus� to mini-
mize the pertubative effects of gravitational forces and fluid inertia �Slobozhanin and
Perales �1993�� and thus to keep the height h0 of the fluid sample on the order of or below
the capillary length lcap,

h0 � lcap =
 	


g
�6�

with the surface tension 	 and the fluid density 
. For further details on the geometry and
aspect ratios see Rodd et al. �2005�.

D. Numerical calculations of elastocapillary thinning

For numerical calculations of the transient evolution in the filament diameter D�t� we
follow the approach of Entov and Hinch �1997�. The governing stress balance in a
thinning viscoelastic filament, consisting of the product of the solvent viscosity �s times
the extension rate �̇, the axial tensile force Fz, the tensile stress difference arising from
the dissolved polymer ��p, the surface tension 	, and gravitational forces �Eggers
�1997��, is given by

3�s�̇ =
4Fz�t�
�D�t�2 − ��p −

2	

D�t�
+


gD0
2h0

D�t�2 . �7�

This expression can be simplified by noting that, once the gravitational forces are
overcome by the symmetric axial flow induced by capillarity in the necked region, the
last term on the right hand side can be neglected �Kolte and Szabo �1999�; McKinley and
Tripathi �2000��. The numerically calculated evolution of the midfilament diameter D�t�
can thus be compared quantitatively with experimental measurements below a critical
diameter D�0.5lcap. For our systems this constraint corresponds to filament diameters
less than D�1 mm. The evolution of a self-thinning bridge is described by a self-similar
solution and the evolution of the tensile force Fz�t� can thus be related to the rate of
change in the diameter D�t�. McKinley and Tripathi �2000� showed that the coefficient of
proportionality

X =
Fz�t�

�	D�t�
�8�

for the typical experimental conditions in a capillary thinning of a Newtonian liquid is
given by X=0.7127 as determined by Papageorgiu �1995� for self-similar capillary pinch
off of a viscous fluid. However, as the contribution of the elastic stresses becomes large
in comparison to the viscous stresses the filament becomes increasingly cylindrical and
the correction factor X is predicted to approach unity �Entov and Hinch �1997��.

Using Eq. �8�, the force balance reduces to the following “purely local” or “zero-
dimensional” formulation incorporating the viscous stress of the solvent 3�s�̇, the capil-
lary pressure 2	 /D and the additional tensile stress ��p from the polymer

3�s�̇ = �2X − 1�
2	

D
− ��p. �9�
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The polymer contribution ��p is taken here to correspond to a multimode FENE
dumbbell model

��p�t� = �p,zz − �p,rr = �
i

Nmodes

Gifi�Azz,i − Arr,i� . �10�

The tensor A is the ensemble average second moment configuration tensor

A = �
i=1

Nmodes

Ai =
�QQ�
Qeq

2 /3
�11�

of the entire chain normalized with the equilibrium coil size Qeq
2 . In the Rouse-Zimm

theory the contribution Gi to the elastic modulus of each mode is invariant with mode
number and is only a function of the number density of polymer chains in solution �Ferry
�1980��:

G = nkBT =
cRT

Mw
. �12�

The evolution equations for the ith mode of A, using a multimode FENE-P mode
algorithm, are given by

A
�

i = −
1

�i
�f iAi − I� �for i = 1,2, . . . ,Nmodes� , �13�

where A
�

i is the upper convected derivative A
�

i= Ȧi−�vT ·Ai−Ai ·�v with Ȧi denoting the
substantial time derivative and �vT the velocity gradient tensor �Bird et al. �1987��.

The finite extensibility factor f i for each mode is connected to the finite extensibility
parameter L2 for the entire polymer chain by the expressions

f i =
1

1 −
trAi

Li
2

, �14�

Li
2 =

L2

i2 . �15�

The finite extensibility parameter L2 for the entire chain can be fully described in
terms of molecular parameters such as the C–C bond angle � and the number of bonds j
of a monomer unit with molar mass Mu, the characteristic ratio C� for a given polymer
and the excluded volume exponent :

L2 = 3� j�sin �/2�2Mw

C�Mu
�2�1−�

. �16�

The axial and radial deformation components of the constitutive model of Eq. �13�
satisfy the equations

Ȧzz,i − 2�̇Azz,i = −
1

�i
�f iAzz,i − 1� , �17�

Ȧrr,i + �̇Arr,i = −
1

�i
�f iArr,i − 1� . �18�
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The time-varying deformation rate �̇ in a capillary thinning experiment can be ex-
pressed in terms of the rate of necking of the diameter D through the continuity equation
by equating the local velocity gradients at the mid-plane in the axial and radial directions,
leading to

�̇ =
− 2

D
Ḋ . �19�

This expression, when combined with the force balance from Eq. �9� and the definition
of elastic stress in Eq. �10�, defines the overall stress balance

�2X − 1�
2	

D
= 3�s�̇ +

cRT

Mw
�
i=1

Nmodes

f i�Azz,i − Arr,i� . �20�

Equations �17�–�20� form a coupled set of ordinary differential equations that can be
solved numerically to describe the temporal evolution of the midfilament diameter during
capillary thinning. Input parameters are given by the independently measured physical
parameters of the polymer chain and the solution �molar mass Mw, finite extensibility L2,
surface tension 	, density 
, solution viscosity �0, and solvent viscosity �s� and the initial
state of the filament after cessation of the sudden extension �initial diameter D0 and initial
conformation Azz,i

0 �.
We set Nmodes=8 for the following calculations. The �low� number of modes chosen

here is justifiable by noting that during the period when elastic stresses dominate filament
thinning the self-selected Weissenberg number for the flow is Wi=�0�̇=2/3, and is de-
termined by the longest mode �Entov and Hinch �1997��. All other modes Ni for
i�1 are in a relaxed state since their respective Weissenberg numbers �given by Eq. �4��
are below 0.5 until very near the end of the stretching process. These modes therefore do
not contribute significantly to the total stress.

The unknown initial conformation and the initial stretch of the polymer after the step
strain can be estimated according to the procedure proposed by Anna and McKinley
�2001�. We assume that all three terms in Eq. �9� initially balance each other during the
rearrangement of the fluid column at the cessation of the initial stretch. By replacing �̇
=2/ �3�0� in the viscous contribution we obtain

2	

D0
−

2�s

�0
=

cRT

Mw
�
i=1

Nmodes

Azz,i
0 . �21�

For the numerical calculations we assume an even distribution of the initial deforma-
tion over all modes; however, the numerical solutions were not sensitive to the choice of
this initial deformation.

The parameter X in Eqs. �8� and �20� is not constant over time. As the contribution of
the elastic stresses becomes large in comparison to the viscous stresses the filament
becomes increasingly cylindrical and the factor X should approach unity. A self-consistent
determination of the axial force in the filament FZ�t� requires a full one- or two-
dimensional numerical analysis of the thinning dynamics �Yao et al. �2000�; Clasen et al.
�2006�� which is beyond the scope of the present study. The effect of varying X is rather
small; however, for consistency in the numerical calculations, we retain the factor X for
very low polymer concentrations in order to describe accurately the initial part of the
Newtonian flow region. We adjust X and vary the value from 0.7127 for the pure solvent
�c→0� to unity for polymer solutions which show a clear onset of polymeric effects in
the necking process.
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An example of the agreement between experimental measurements of the diameter
evolution and the corresponding numerical calculations is shown in Fig. 1 for a dilution
series of the Boger fluid from sample E �Mw=8.3�106 g/mol�, with the concentration
spanning five orders of magnitude. Similar levels of agreement are obtained for each
dilution series, and we now proceed to examine how to analyze experimental measure-
ments of filament profiles.

E. Determination of relaxation times from elastocapillary regime

Although we have just demonstrated above how it is possible to determine the longest
relaxation time �0 by fitting the entire capillary thinning data, usually a simpler analysis
is employed. As noted by Entov and Hinch �1997� for a viscoelastic polymer solution in
which the chains become highly stretched, Eq. �9� offers the possibility of an elastocap-
illary balance. The viscous stress of the solvent is negligibly small and the filament
becomes a cylindrical thread �X=1�. Provided finite extensibility effects are not important
�L2→��, the decay rate in the measured diameter depends only on the longest relaxation
time and is given by �Entov and Hinch �1997�; Clasen et al. �2006��:

D�t�
D0

= GD0

4	
�1/3

exp�− t/3�0� . �22�

The additional factor of 2−1/3 in the prefactor of Eq. �22�, obtained from a complete
one-dimensional self-similar analysis is missing in the original theory due to a simplify-
ing approximation in the zero-dimensional theory �Clasen et al. �2006��, though this does
not change the exponential decay rate. The longest relaxation time �0 of the polymers
undergoing molecular relaxation-controlled unraveling in the thinning filament can be
easily obtained from this relationship by determining the slope of the linear regime in a
semilog plot as shown in Fig. 1 by the dashed lines. The validity of this approach and its
consistency with other methods has been reported in several publications for a range of

FIG. 1. Comparison of the numerically calculated evolution in the filament diameter �open symbols� with
experimental data from capillary thinning experiments �closed symbols� for a dilution series of the Boger fluid
from sample E �Mw=8.3�106 g/mol� for different concentrations spanning 0.1�c�1000 ppm. In addition the
relaxation times �exp, determined from fitting the elasto-capillary thinning regime �Eq. �22�� of the experiments,
and �num, determined from fitting the numerical calculations �Eqs. �17�–�21�� to the experimental data, are given
for selected concentrations.
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different polymers, molar masses and concentrations in dilute to semidilute solutions
�Liang and Mackley �1994�; Bazilevskii et al. �1997�; Stelter and Brenn �2000�; Anna
and McKinley �2001�; Anna et al. �2001�; Bazilevskii et al. �2001�; Stelter et al. �2002�;
Plog et al. �2005��. In all of these cases, provided there is a sufficiently large polymer
concentration, an elastocapillary balance holds for a long enough period that the expo-
nential decay of the filament can be observed and the data regressed to Eq. �22�.

However, as we show in detail later, the more dilute a solution becomes, the harder it
becomes to detect a distinct regime of purely exponential thinning. This is because the
initial Newtonian flow and the finite extensibility of the polymer chains cannot be ne-
glected during the short intermediate regime of exponential thinning. Nevertheless, linear
fits of experimental data on a semilog-plot to Eq. �22� are often performed even for very
dilute solutions to extract a relaxation time and initially we will follow this procedure.

The numerical calculations described in Sec. II D result in predicted profiles for the
growth in the elastic stress and the decay rate of the filament diameter. The latter expres-
sion can be compared directly with the experimental observations. In cases for which the
exponential decay of the filament could be observed over sufficiently long periods of
time, the longest relaxation time �0 determined from reliable regressions of Eq. �22� to
experimental data and the relaxation time used in numerical calculations coincide as can
be seen for example in Fig. 1 for a concentration of 100 ppm. However, for very low
polymer concentrations the numerically predicted profile, calculated using the apparent
relaxation time obtained from regressing the data in the very brief period of exponential
thinning, does not match the experimentally observed evolution in the filament diameter.
In these cases we use �0 as an adjustable parameter to fit the experiments with the
numerical calculations and thus determine the governing relaxation time �0 for filament
thinning. This discrepancy between an apparent longest relaxation time, determined from
experimental data in the elastocapillary thinning regime according to Eq. �22� �dashed
line�, and the longest relaxation time determined by fitting the numerical calculations can
be observed in Fig. 1 for a concentration of 10 ppm. In Sec. III we will compare �0 as
determined by Eq. �22� to the value obtained by fitting with numerical calculations and
provide a criterion for conditions under which Eq. �22� may be safely used.

III. RESULTS AND DISCUSSION

A. Capillary thinning

We first present our experimental measurements of capillary thinning in viscous oli-
gomeric solvents and in the low viscosity DEP solvent. Figure 2 depicts the temporal
evolution of the midplane diameter that can be determined experimentally. The figure
shows three representative dilution series that demonstrate the critical characteristics of
the thinning behaviour, the complete data set for all of the capillary thinning experiments
can be found in the Appendix.

Figure 2�a� shows the filament evolution of Boger fluids determined by analyzing still
frames captured by a CCD camera. It is evident that the diameter resolution of this
method is lower than that of the laser micrometer shown in Fig. 2�b� for Boger fluids and
in Fig. 2�c� for diethylphthalate solutions. However, determination of the exponential
decay of the diameter with time according to Eq. �22� is still possible using Fig. 2�a�
because the onset of finite extensibility effects occurs below the resolution limit of the
imaging system.

It can clearly be seen from Figs. 2�a� and 2�b�, that at early times the necking behavior
of all solutions follows the thinning behavior of the Newtonian solvent as expected from
the analysis of Entov and Hinch �1997�. The necking is controlled by a viscocapillary
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balance of the viscous stress 3�s�̇ in the force balance of Eq. �9� and the capillary
pressure. In this regime the diameter varies linearly in time

D�t� = D0 −
�2X − 1�	

3�s
t �23�

and the extension rate in the necking filament, given by

FIG. 2. Reduced diameter D /D0 as a function of time t in capillary thinning experiments for several dilution
series of narrowly distributed polystyrene samples. The samples are dissolved respectively in �a� styrene oli-
gomer �Boger fluids�, profiles determined from CCD camera video images of the thinning filament; �b� styrene
oligomer, profiles determined with a laser micrometer; �c� diethylphthalate �DEP�, profiles determined with a
laser micrometer. In addition to the experimental data Fig. 2�b� also shows the theoretical critical concentrations
cmin calculated from Eq. �41� that depicts the minimum concentration for an observable influence of polymer on
the capillary thinning behavior.
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�̇�t� =
2�2X − 1�	

3�s

1

D�t�
�24�

slowly climbs.
The polymeric stress associated with the initial conformation Azz,i

0 �Eq. �21��, that is
caused by the step strain, decays rapidly during the early stages of thinning since the
extension rate is insufficient to keep even the longest mode excited. However, as thinning
progresses the extension rate rises, the polymer coils become extended, and the system
crosses over to a second phase of elastocapillary thinning. In this regime the filament
thins exponentially according to Eq. �22�. It is clear from Fig. 2�b� that this crossover
shifts to earlier times and higher values of D�t� /D0 as the polymer concentration is
raised. Finally, at late times, the finite extensibility limit of the unraveling polymer is
approached and the FENE factor f i �Eq. �14�� in the force balance for the filament can no
longer be neglected and the thinning behavior deviates from the exponential regime of
elastocapillary thinning. In this third phase the decay rate becomes linear again corre-
sponding to a viscous liquid with a very high and anisotropic elongational viscosity
resulting from the fully extended polymer chains. The filament diameter evolves accord-
ing to

D�t� =
	

�E
�tbr − t� , �25�

with tbr the breakup time and �E the steady uniaxial elongational viscosity.
This third phase is not observed for the diethylphthalate solutions in Fig. 2�c� because

the filament diameter drops below the resolution limit of the experiment before the effects
of finite extensibility are observed. The initial phase of viscocapillary thinning in Fig.
2�c� also shows a strong concentration dependence at higher concentrations. This is
because the viscous resistance to thinning is determined by the viscosity of the total
entangled solution rather than by the pure solvent as is the case for dilute or semi-dilute
Boger fluids shown in Fig. 2�b�.

The relaxation times �0 determined by fitting data from the intermediate elastocapil-
lary phase in Figs. 2 and 14 to Eq. �22� are shown in Fig. 3. The relaxation times show
a strong dependence on the concentration and decrease monotonically with decreasing
concentration. To understand the molar mass dependence, one has to keep in mind that
the styrene oligomers used as solvents in this report had different viscosities �Table I�.
Kinetic theory shows that the longest relaxation time of an isolated polymer coil in dilute
solution is proportional to the solvent viscosity

�0 =
1

U��

�p

G
=

1

U��

����sMw

RT
�26�

where U��=�� /�0 is the universal ratio of the characteristic relaxation time �� of a dilute
polymer solution system and the longest relaxation time �0. The numerical value of the
universal ratio depends on the relaxation spectrum of the specific constitutive model
�Öttinger �1996�� �with U��=2.39 for theta solvents to U���1.8 for good solvents�. From
Eq. �26� it can be seen that for a homologous series of polystyrene solutions the slightly
higher relaxation times of the Boger fluid with Mw=5.7�106 g/mol in comparison to
Mw=6.0�106 g/mol are explained by the higher solvent viscosity of the styrene oligo-
mer used in this set of fluids �see Table I�.

In addition to the experimentally determined relaxation times, Fig. 3 depicts graphi-
cally �by broken lines� the expected variation in the critical overlap concentration c* as
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calculated from the molar mass dependence of the intrinsic viscosity �Eq. �1��. These
curves are obtained by extrapolating the observed trends of relaxation times to these
respective concentrations. The intrinsic viscosity is typically measured using an Ubbe-
lohde viscometer of appropriate bore size for the fluid of interest. The Mark–Houwink–
Sakurada relation for polystyrene in DEP, which is a relatively good solvent at T
=25 °C, was determined to be ���=8.1�10−3Mw

0.704 with Mw in the units of g/mol and
��� in cm3/g. However, it is not easy to determine the intrinsic viscosity of the Boger
fluids via a Huggins extrapolation of directly measured shear viscosities because of the
inherent imprecision of shear rheometry and the need to evaluate accurately the differ-
ence �� / ��sc�= ��0−�s� / ��sc� as c→0. Although styrene oligomer should act as an
athermal solvent and result in near-theta conditions �Anna et al. �2001��, so far there have
been no reliable reports of measured intrinsic viscosities for a pure polystyrene Boger
fluid. Solomon and Muller �1996� report intrinsic viscosity measurements of polystyrene
dissolved in a mixture of the theta solvent dioctylphthalate and styrene oligomer. They
obtained an excluded volume exponent  of slightly less then the value of 0.5 expected
for a theta solvent. The poorer solvent quality may be explained by a preferential attrac-
tion of the better of the two solvents in the solvent mixture towards the high polymer, and
the contraction of the coil to reduce its expansion into the poorer-quality solvent �Larson
�2005��. In the following we use a Mark–Houwink–Sakurada relation with the excluded
volume exponent of =0.52 from �Anna et al. 2001� �corresponding to near theta con-
ditions for our Boger fluids� and K���=0.02 in order to determine intrinsic viscosities
from the molar mass for our calculations of the critical concentration from Eq. �1�.
However, the solvent quality of Boger fluids is still not fully understood, and it should be
borne in mind that the calculated Zimm times in the following are imprecise due to this
uncertainty in the intrinsic viscosities.

To circumvent this difficulty in the definition of the critical concentration, in addition
to Eq. �1� we have also included in Fig. 3 a purely geometrical calculation for the coil
overlap conditions in Boger fluids, derived from the mean square size of a polymer coil
in its random walk configuration �Graessley �1980�; Kulicke and Clasen �2004��:

FIG. 3. Relaxation time �0 as a function of the concentration c, determined by regression of the experimental
data in the exponential decaying regime of Figs. 2 and 14 to Eq. �22�. The dashed lines map the variation of
relaxation time �0 with critical concentrations c*. These values were determined by extrapolating the observed
trends of relaxation times to the critical values determined from Eqs. �1� and �27�.
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cRG

* =
Mw

4

3
��RG

2 �3/2NA

. �27�

The radius of gyration RG, assuming near-theta conditions for the Boger fluids, can be
calculated from molecular parameters including the C–C bond length b, the monomer
molar mass Mu, and the characteristic ratio C� for a given polymer �Kulicke and Clasen
�2004��,

RG =
b2C�Mw

3Mu
. �28�

For polystyrene b=0.154 nm, C�=9.6, and Mu=104 g/mol. The critical overlap con-
centrations c* and cRG

* for the solutions of polystyrene/styrene oligomer and c* for the
solutions polystyrene �PS�/DEP studied in the present work are listed in Tables III and IV.

The measured relaxation times for the PS/DEP solutions in Fig. 3 span the range from
close-to, or above, the critical concentration into the semidilute regime, whereas the
measured relaxation times of the Boger fluids lie in a regime below even the most
conservative definition of c*. In these dilute solutions the relaxation times of isolated
coils should be independent of the concentration according to Eq. �26�. In contrast to this
expectation, the experimental relaxation times show a strong and monotonic decrease as
the concentration is reduced to well below the critical overlap concentration. Similar
observations of concentration dependent relaxation times in capillary thinning experi-
ments below c* have recently been reported by Bazilevskii et al. �2001� and Stelter et al.
�2002� for polyacrylamide in water/glycerol mixtures and by Tirtaatmadja et al. �2006�
for polyethylene oxide in water/glycerol mixtures.

TABLE III. Critical concentrations for the polystyrene/styrene oligomer
solutions �Boger fluids� determined from the intrinsic viscosity �Eq. �1��,
the radius of gyration �Eq. �27�� and from Eq. �41�.

Mw / �g/mol� c* / �g/cm3� cRG

* / �g/cm3� cmin/ �g/cm3�

8.27�106 5.1�10−3 7.0�10−3 1.0�10−6

6.00�106 6.2�10−3 8.2�10−3 1.7�10−6

5.67�106 6.4�10−3 8.4�10−3 1.9�10−6

2.84�106 7.0�10−3 1.2�10−2 3.5�10−6

1.80�106 1.2�10−2 1.5�10−2 1.0�10−5

TABLE IV. Critical concentrations for the polystyrene/DEP solutions,
determined from the intrinsic viscosity �Eq. �1�� and from Eq. �41�.

Mw / �g/mol� c* / �g/cm3� cmin/ �g/cm3�

8.27�106 1.6�10−3 8.4�10−7

5.67�106 2.1�10−3 1.5�10−6

2.84�106 3.5�10−3 4.5�10−6
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B. Small amplitude oscillatory shear

Capillary thinning experiments yield the characteristic relaxation-controlled unravel-
ing time associated with strong flows and large molecular deformations. These values
may also be compared to the relaxation times measured for each fluid in weak flows and
small deformation conditions. Lindner et al. �2003� calculated relaxation times for dilute
aqueous solutions as low as 250 ppm from normal stress data fitted to an appropriate
constitutive equation, and found good agreement with the expected Zimm relaxation
times. However, for the Boger fluids investigated in this report the elastic response can be
directly observed to even lower concentrations using small amplitude oscillatory shear
�SAOS� flow �Anna et al. �2001��. The Zimm relaxation times for the polystyrene Boger
fluids have been obtained from regressing the expressions for the linear viscoelastic
moduli G� and G� �Eqs. �2� and �3�� to the measured experimental data. A representative
example of the resulting fits to the oscillatory shear data is presented in Fig. 4�a�. At low
frequencies the elastic modulus is dominated by the Zimm spectrum of the high molar
mass polystyrene solute, allowing for unambiguous determination of the longest relax-
ation time �0, while at high frequencies the response is dominated by the weak elasticity
of the oligomeric solvent.

However, with progressively decreasing concentration, the elastic modulus G
=cRT /Mw of the solute decreases and the contribution of the high molar mass polysty-
rene to the measured elastic moduli is increasingly obscured by the oligomer. This can be
seen in the data presented in Fig. 4�b� for a dilution series of a single molar mass of
polystyrene. Consequently, accurate fitting of the Zimm spectrum is hindered at low
concentrations and the extraction of an accurate longest relaxation time �0 becomes less
robust.

For low frequencies, �s��1, the first term in Eq. �2� can be neglected and the ex-
pression reduces to the pure Zimm spectrum. The longest relaxation times obtained from
the fits for each fluid can then be used to verify the expected scaling of the reduced
storage modulus G�Mw /cRT with the reduced frequency �0�:

G�Mw

cRT
� �

i=1

Nmodes � ��0��2

i4+2�̃ + ��0��2� . �29�

Figure 4�c� shows the reduced moduli for the fluids used in the present study that
exhibited sufficient elastic response from the polystyrene solute to perform satisfactory
fits to Eq. �2�. The underlying Zimm spectrum can clearly be observed in Fig. 4�c� from
the common mastercurve at low reduced frequencies ��0���1.

The longest relaxation times obtained from this analysis are represented in Fig. 5 as
dimensionless values �0 /�Z plotted as a function of c /c* �with c* being the critical
concentration from Eq. �1��. To obtain the Zimm relaxation time �z �assuming a Zimm
spectrum for the isolated polymer coil in a solvent�, the universal ratio in Eq. �26� can
easily be calculated from Eq. �4� to give

U�� =
�i

�i

�0
� �

i

1

i2+�̃
, �30�

where �̃ is given by the Thurston relation, Eq. �5�, giving a Zimm relaxation time �Z of

�z =
1

�i

1

i2+�̃

����sMw

RT
. �31�
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The resulting values of �Z for each fluid are given in Tables I and II. It is clear from
Fig. 5 that at low concentrations the Zimm relaxation time is recovered accurately from
SAOS experiments. Approaching the critical concentration, the relaxation time slowly

FIG. 4. �a� Experimentally observed loss modulus G� �upper curve� and storage modulus G� �lower curve� as
a function of the angular frequency � for a polystyrene dissolved in styrene oligomer �symbols� as well as the
fits of Eqs. �2� and �3� to the experimental data �lines�. �b� Storage moduli G� as a function of the angular
frequency � for different concentrations of polystyrene dissolved in styrene oligomer. In addition the fits of Eq.
�2� to the experimental data are shown �lines�. The lowest �dashed� line depicts the response of the pure
oligomeric solvent which is weakly elastic with �s	6.5�10−4 s. �c� Reduced storage moduli G�Mw / �cRT� as
a function of the reduced frequency ��0 for polystyrenes of different molar masses and concentrations. The
longest relaxation times �0 were determined from fits of Eqs. �2� and �3� to the experimental data as shown in
Fig. 4�a�.
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increases due to the growing importance of intermolecular interactions with increasing
concentration. The form of the mastercurve in Fig. 5 can be rationalized by noting that
the polymeric contribution to the viscosity �p in Eq. �26� can be expanded in the con-
centration as for example by the Martin equation �Kulicke and Clasen �2004��:

�p = �sc���eKMc���, �32�

where KM is the Martin coefficient. In combination with Eqs. �1�, �12�, �26�, �30�, and
�31� this gives a dependence of the longest relaxation with the reduced concentration c /c*

of the form

�0 =
1

U��

����sMw

RT
expKM0.77

c

c*� = �z expKM0.77
c

c*� . �33�

Using this approach, one can also plot the longest relaxation times obtained from the
capillary thinning experiments in their reduced form �0 /�Z as a function of c /c* as shown
in Fig. 6. The superposition of data for different molar masses shows the expected scaling
of the longest relaxation time �0�Mw

3 obtained from the definition of the Zimm relax-
ation time in Eq. �31� with molar mass and solvent quality.

However, comparing this mastercurve to the relaxation times determined from the
SAOS experiments of Fig. 5 �depicted as a broken line in Fig. 6�, two important distinc-
tions are noted. First, the relaxation times in uniaxial extension deviate at much lower
concentrations from the asymptotic value given by the Zimm theory in comparison to the
small amplitude oscillatory shear experiments. In addition, the data in Fig. 5 indicates
that at very low concentrations the relaxation time determined from capillary thinning
appears to fall below the Zimm relaxation time. This puzzling observation is in agree-
ment with observations made by Bazilevskii et al. �2001� for very dilute polyacrylamide/

FIG. 5. Reduced relaxation time �0 /�z as a function of the reduced concentration c /c*, determined from SAOS
experiments and fits of the moduli to Eqs. �2� and �3� for polystyrene of different molar masses dissolved in
styrene oligomer.
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water/glycerol solutions. For an explanation of this peculiar phenomenon, one needs to
examine in greater detail the thinning dynamics at very low concentrations as we show
later.

C. Transient stress evolution

In general, lowering the concentration of a polymer in solution so that the relaxation
time approaches its limiting Zimm relaxation time leads to the question of whether the
flow in the thinning filament is still dominated by the timescale of the polymer or by that
of the viscocapillary flow in the Newtonian solvent. A discussion of these time scales is
given by �McKinley �2005��. For viscous Newtonian fluids the relevant timescale is the
viscous capillary breakup time tvisc=�0D0 / �2	�. The ratio of this time scale to the longest
relaxation time �0 in the polymer defines the elastocapillary number

Ec =
�0

tvisc
=

2�0	

�0D0
. �34�

For elastocapillary numbers below unity, the elastic stresses from the polymeric con-
tribution to the observed flow are negligible compared to the viscous stresses and a
capillary thinning experiment will not allow the extraction of a polymeric relaxation time.
For dilute solutions, the polymeric contribution to the elastocapillary number is princi-
pally through the molar mass dependence of the relaxation time. We therefore expect a
lower limit in the molar mass for a given experimental setup with specified values of the
surface tension 	, solvent viscosity �0, and initial radius.

However, even for Ec�1, observation of a filament thinning process dominated by the
elasticity �as indicated by a corresponding exponential decrease of the filament diameter
according to Eq. �22�� may not be possible if the concentration is not high enough. The

FIG. 6. Reduced relaxation time �0 /�z as a function of the reduced concentration c /c* for several dilution series
of polystyrene Boger fluids determined from capillary break thinning experiments. In addition to the data
obtained in this work, data points for the boger fluids SM1 �2�106 g/mol, ��, SM2 �6.5�106 g/mol, ��, and
SM3 �20�106 g/mol, �� are shown �taken from �7� and �20��. For comparison, also a mean square fit to the
results from the SAOS experiments in Fig. 5 is shown.
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transition from the initial balance of capillary and viscous stresses to the balance of
capillary and elastic forces is progressively shifted to later times, as the polymer concen-
tration c and the elastic modulus G are progressively reduced �see Eqs. �12� and �20��.
Physically, it is clear that if the polymer concentration is too small the elastic stress term
on the right hand side of Eq. �20� cannot balance the squeezing action arising from
capillary pressure. Instead viscous stresses from the oligomeric solvent provide the domi-
nant resistance to thinning. Because the elastic stresses evolve nonlinearly �exponen-
tially� with time, it is not straightforward to determine the crossover conditions from a
simple order of magnitude scaling estimate and instead we turn to numerical calculations.

In the left hand column of Figs. 7�a�–7�c� we show the temporal variation in the
different contributions to the overall stress, obtained from the numerical integration of
Eqs. �17�–�20�, for three different concentrations of the same polymer. The capillary
pressure, which drives the flow, increases monotonically in time and ultimately diverges
at a critical timescale interpreted as the breakup time, tbr. The dashed and dotted lines
show the relative contributions of the viscous and elastic stresses, respectively. As the
concentration is lowered, the transition from a solvent dominated to an elasticity domi-
nated flow shifts to later times during the thinning process. While this shifts the elasto-
capillary regime to smaller radii and therefore towards the lower resolution limit of the
experimental setup, it also means a faster approach to the finite extensibility limit of the
polymer.

In the right hand column of Figs. 7�a�–7�c� we show the individual modal contribu-
tions to the polymer stretch tensor A as a function of time scaled by the longest relaxation
time. For the bulk of the capillary thinning process, the majority of the stress is carried by
the longest mode �i=1�. Exponential decay in the radius corresponds directly to expo-
nential growth in the principal stretch difference Azz,1−Arr,1 of the longest mode. As the
deformation rate diverges close to the singular breakup event, the shorter modes begin to
stretch rapidly and ultimately all modes approach their relevant finite extensibility limit.
Once the higher modes of the configuration A reach their finite extensibility limit, the
flow pattern again crosses over to a Newtonian-like flow behavior. Extraction of a relax-
ation time by a simple exponential fit to Eq. �22� is therefore not possible once finite
extensibility effects start to dominate the flow. At low concentrations, the combined
effects of finite extensibility and a low initial concentration or modulus eliminate the
possibility of a clear elastocapillary balance at the microscale or a macroscopic detection
of an exponential decay regime in this rheometric device, even though there is a well-
defined underlying microscopic relaxation time for the fluid itself. This is also demon-
strated in Fig. 8 by a series of numerical calculations for a progressively diluted polysty-
rene Boger fluid. The longest relaxation time �0 for these calculations is chosen to be
constant for all dilutions and the value is assumed to agree with the Zimm time �z. As one
can see, the breakup times progressively decrease with decreasing concentration. At a
concentration of c=100 ppm �c /c*=0.012� there is a clear region of elastocapillary decay
and a filament decay rate that would agree with the expected rate 1 / �3�0�. However, the
slopes of the curves in the intermediate thinning regime appear to become steeper in the
semilog plot of Fig. 8 and this suggests apparent relaxation times that are below the
Zimm time used for these calculations. This effect is further amplified by a gradual
“smearing out” of the transition from the initial Newtonian thinning to the elastocapillary
regime.

D. The critical concentration cmin

It is clear from the above model calculations that capillary thinning instruments have
a minimum detectable elasticity limit, in much the same way that conventional torsional
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rheometers used in SAOS tests have a minimum value of elastic modulus that can be
reliably detected. The ultimate limit of the capillary thinning experiment for the obser-
vation of the polymeric contribution can be seen in Fig. 7�c�. Even though all modes of
the polymer stretch have reached their finite extensibility limit at late times, the contri-
bution of the viscous stresses from the solvent still dominates the flow behavior. The

FIG. 7. Stress distribution in capillary breakup experiments. Shown are the driving capillary pressure and the
stress distribution between the solvent and the polymer. Results were obtained from numerical calculations for
three different concentrations c of polystyrene in styrene oligomer for a constant Zimm relaxation time. The
initial diameter of the filament was assumed as D0=2.39 mm in accordance with experimental observations.
The filament breakup times were �a� tbr=11.41·�0, �b� tbr=4.81·�0, and �c� tbr=2.82·�0. The right hand side
shows the respective evolution of the chosen 8 modes of the configuration �Azz,i−Arr,i�, with an increasing mode
number i from top to bottom.
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minimum concentration at which the total elastic stress of the fully expanded coils just
balances the viscous stresses of the solvent can be estimated from the force balance in
Eq. �9�.

Following Entov and Hinch �1997�, close to the finite extensibility limit we expect
Azz�Arr and a negligible temporal change of the polymer stretch Azz, the relevant evo-
lution equation �Eq. �17�� then reduces to

2�̇zz,i =
1

�i
f iAzz,i. �35�

This gives for the finite extensibility factor f i:

f i = 2�̇�i �36�

and with trA	Azz a solution for Azz at the finite extensibility limit

Azz,i = Li
21 −

1

2�̇�i
� . �37�

Substituting Eqs. �36� and �37� into the equation for the polymeric contribution to the
stress ��p �Eq. �10�� with Azz�Arr we obtain for the finite extensibility limit

��p = �
i

Nm

2G�̇�iLi
21 −

1

2�̇�i
� . �38�

As the filament radius approaches zero, the stretch rate diverges and the final term
becomes negligible. Also neglecting the marginal contribution of the higher modes of the
spectra for relaxation time �i �Eq. �4�� and finite extensibility Li

2 �Eq. �15�� we finally
obtain the following expression for the polymer stress once the longest mode has reached
its finite extensibility limit:

��p 	 2G�̇�zL
2. �39�

From this we obtain a constant polymer extensional viscosity �E	2G�zL
2 for the

finite extension limit. The viscous stress carried by the solvent will dominate at late times

FIG. 8. Numerical calculations of the diameter D /D0 as a function of the reduced time t /�0 for a dilution series
of polystyrene in styrene oligomer. Even though the longest relaxation time �0 is held constant for all calcula-
tions, only the calculations for the highest concentrations show a profile in accordance with the indicated slope
of exp�−t /3�0� of Eq. �22�.
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if the term 3�s�̇ in Eq. �9� becomes larger than the polymer stress ��p given by Eq. �39�.
The polymer contribution to the total stress is thus only observable in capillary thinning
experiments if

2G�zL
2

3�s
� 1. �40�

Substituting the modulus from Eq. �12�, we derive an expression for the lowest pos-
sible polymer concentration for an observable elastic contribution to a capillary breakup
experiment. We denote this concentration cmin and require

c � cmin =
3

2

Mw�s

RT�zL
2 �41�

or by combining this expression with the Zimm relaxation time given by Eq. �31�:

c � cmin =
3

2

U��

���L2 . �42�

At this critical concentration cmin the extended polymer is still contributing partially to
the overall stress at late times, however, this concentration marks the point below which
the polymer will carry less stress than the solvent even if it is fully extended. It should be
noted that cmin differs from the critical overlap concentration c* for the equilibrium
configuration principally by the factor 1 /L2 since Eq. �42� reduces with Eq. �1� to cmin

=1.94U��c
* /L2 and cmin is therefore orders of magnitude smaller than c*.

The critical concentrations cmin for the polystyrene solutions can easily be calculated
from molecular parameters and are shown in Table III. The value of cmin was also chosen
for the numerical calculation in Fig. 7�c� and it can clearly be seen that at c=cmin the
viscous and polymeric stresses provide the same contribution to the overall stress balance
at late times. The critical concentration cmin is also indicated in Figs. 2�b� and 14�b� in
addition to the experimental thinning data. This theoretical estimate for the critical con-
centration describes quite well the borderline between purely viscous thinning behaviour
and the onset of significant elastocapillary effects for all three molar masses.

E. Relaxation times from numerical calculations

Given these limitations to directly extracting the relaxation time from elastocapillary
thinning, we have also used a different approach to obtain good estimates of the relax-
ation times close to the critical concentration limit cmin given by Eq. �41�. Numerical
integrations of Eqs. �17�–�20� for the filament thinning process with the longest relax-
ation time �0 as the only adjustable parameter are used to obtain the best agreement with
the experimentally measured filament thinning profiles first presented in Fig. 2. Samples
of the resulting best fits to the experimental data are shown for several decades of
concentration and two different molar masses in Figs. 9 and 10. It is clear that excellent
agreement with the measured diameter data can be achieved by adjusting the value of
�0�c�, even though the profiles of the stress evolution are not elastically dominated at low
concentrations.

The relaxation times derived from these numerical calculations in Figs. 9 and 10 can
also be used to regenerate the reduced data or master curve originally presented in Fig. 6.
These new results are presented in Fig. 11 and it is clear that the true relaxation time in
uniaxial extension asymptotically approaches a constant value at low concentrations in
accordance with the concentration-independent relaxation times directly measured with
the SAOS experiments at low concentrations. However, one must note that the constant
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value of the reduced relaxation times obtained from our numerical calculations for mo-
lecular unraveling in uniaxial extension is slightly lower than unity: the average molecu-
lar relaxation-controlled unraveling time from Fig. 11 at low concentrations is a factor of
�1.3 lower than the corresponding Zimm relaxation times. This differential is probably a
consequence of describing the unraveling chain as a suspension of uncoupled dumbbells.
We do this for computational simplicity only; a more realistic description would treat the
chain as a fully coupled set of discrete relaxation modes or through Brownian dynamics
simulations �Doyle et al. �1997�; Ghosh et al. �2001��.

F. Enhanced relaxation times in extensional flow

The relaxation times obtained from the numerical calculations of transient uniaxial
flow at higher concentrations are, as expected, in very good agreement with the relaxation
times directly extracted from the fit of Eq. �22� to the experimental data. Still, these
values are substantially higher than the relaxation times obtained from the oscillatory
shear flow experiments.

This can also be observed in the data presented in Fig. 12 for solutions of polystyrene
in the good solvent diethylphthalate. Since the DEP solutions have a much smaller vis-
cosity than the Boger fluids, the observable range of relaxation times is shifted to higher
concentrations, as determined by the low viscosity limit of the elastocapillary number in
Eq. �34�. For these solutions it is not possible to obtain relaxation times close to the

FIG. 9. Comparison of the numerically calculated diameter evolution with experimental observations for a
dilution series of a polystyrene Boger fluid with a molar mass Mw=2.8�106 g/mol. The initial diameters for
the numerical calculations were taken from the experimental observations. In addition, the calculated evolution
in stress distribution is given for each concentration. The critical concentration from Eq. �41� is cmin

=1.7 ppm.
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Zimm limit by capillary thinning or via SAOS experiments. However, we are able to
determine the numerical value of the constant in the structure-property relationship of Eq.
�32� to be KM =0.35 by regression to the experimental viscometric data as shown in Fig.
13. For these DEP solutions, the intrinsic viscosities can be directly determined and used
in the subsequent calculation of c*. The corresponding prediction for the concentration
dependence of the longest relaxation time �as given by Eq. �33�� is also shown in Fig. 12
by the solid line. Again, it can be seen that the relaxation times determined from capillary
thinning start to rise above the dilute limit at much smaller concentrations than theoreti-
cally expected from Eq. �33�.

The onset point for the increase in the characteristic relaxation times for elongational
flow gives a rough estimate of a critical concentration for ultradilution c�. Below this
concentration �but still above the experimental sensitivity limit cmin� we are able to
observe the presence of the polymer in terms of a delayed breakup time and a deviation
from the thinning behavior of the viscous Newtonian solvent. The relaxation time or,
more descriptively, the molecular relaxation-controlled unraveling time is, in this case,
constant and corresponds to that of the single polymer coil. With further decreases in the
solute concentration the transition to an elastocapillary balance shifts to progressively
later times and smaller filament diameters. It thus becomes increasingly hard to resolve,
given the optical constraints of the experimental instrumentation.

Above the ultradilution point c� the concentration of the polymer coils is high enough
that the long-range interactions between unraveling polymer coils leads to an increase in

FIG. 10. Comparison of the numerically calculated diameter evolution with experimental observations for a
dilution series of a Boger fluid with a molar mass Mw=8.3�106 g/mol. The initial diameters for the numerical
calculations were taken from the experimental observations. In addition, the calculated stress distribution is
given for each concentration. The critical concentration from Eq. �41� is cmin=0.36 ppm.
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the effective relaxation time of the solution. The scaling of the relaxation time with the
reduced concentration in this regime appears to obey the following relation proposed by
Tirtaatmadja et al. �2006�:

FIG. 11. Reduced relaxation times �0 /�z as a function of the reduced concentration c /c*, obtained from best fits
of the numerically calculated diameter evolution to the experiments presented in Fig. 2 with �0 as an adjustable
parameter �hollow symbols�. For comparison, also the results from the SAOS experiments in Fig. 7 are given
�filled symbols�. Also the range of critical concentrations cmin/c* for the different molar masses is indicated by
the rectangle.

FIG. 12. Reduced relaxation times �0 /�z as a function of the reduced concentration c /c* for dilution series of
polystyrene in DEP. In addition, the theoretical concentration dependence of the relaxation time according to
Eq. �33� is shown. Also the range of critical concentrations cmin/c* for the different molar masses is indicated
by the rectangle.
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�0

�Z
�  c

c*�m

. �43�

We determined an exponent of m=0.58 in Fig. 12 for polystyrene in the relatively
good solvent DEP in comparison to m=0.65 observed by Tirtaatmadja et al. �2006� for
PEO in glycerol/water mixtures. In contrast to this, for the polystyrene dissolved in the
near theta solvent of styrene oligomer we obtain an exponent m=0.89 from Fig. 11.

One possible explanation for the dependence of the power-law exponent m on the
solvent quality can be obtained from scaling theory for unentangled semidilute solutions.
In weak flows and for small molecular deformations close to equilibrium, such scaling
theories are expected to hold only for concentrations above the overlap concentration c*.
However, for strong flows, such as those encountered in the present case of capillary
thinning, the pervaded volume occupied by each expanding polymer coil increases rap-
idly due to unraveling. It is thus perhaps reasonable to imagine that we approach a
semidilute state of polymer interaction in which neighboring chains overlap and interact.
In such a regime, the scaling assumptions appropriate for semidilute “blob” theories
should hold �Rubinstein and Colby �2003��. This gives rise to a correlation length �
	bg, where b is the monomer length and g is the number of monomers within the blob.
On length scales shorter than the correlation length intrachain hydrodynamic interactions
dominate; however, they are screened out on larger scales. Once the elongating polymer
chains have expanded to become space filling, the concentration in an individual corre-
lation blob should be equal to the overall solution concentration c�gb3 /�3 and the
correlation length is thus

� � bc
−

3−1 . �44�

The correlation length thus decreases with increasing concentration. Inside a correlation
blob, single chain hydrodynamics dominate and therefore a Zimm relaxation time of the

FIG. 13. Specific viscosity �p /�s as a function of the reduced concentration c��� for solutions of polystyrene
in DEP, determined with capillary viscometric measurements at lower concentrations, and cone-and-plate shear
rheometry at higher concentrations The continuous line gives the best fit to the structure-property relationship
of Eq. �32�.
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form given in Eq. �26� applies. The longest relaxation time �� of a blob is proportional to
the correlation volume �3 �Rubinstein and Colby �2003�� and therefore:

�� 	
�s

kBT
�3 �

�sb
3

kBT
c

−3
3−1 . �45�

On length scales larger than �, the internal hydrodynamic interactions are screened out.
We thus expect Rouse dynamics to dominate the chain-chain interactions of the expanded
and overlapping coils. The relaxation time of the whole chain, consisting of Mw / �Mug�
blobs, each with a relaxation time ��, thus has the following concentration dependence:

�0 	 �� Mw

gMu
�2

�
�sb

3

kBT
Mw

Mu
�2

c
2−3
3−1 . �46�

Finally, the coil overlap concentration can be substituted into Eq. �46� by noting that
c*�Mw

1−3 to obtain

�0

�Z
�  c

c*�
2−3
3−1

. �47�

Comparing the exponent m from Eq. �43� with the exponent mtheory= �2−3� / �3−1�
from Eq. �47� we are able to capture at least the general trend of observed slopes with the
solvent quality as shown in Table V.

Stoltz et al. �2006� have recently investigated finite concentration effects in planar
elongational flow using Brownian dynamics simulations. They also find that hydrody-
namic interactions and excluded volume effects lead to a marked concentration depen-
dence of the extensional rheological properties of supposedly dilute polymer solutions at
concentrations as low as 0.1c*. Our data shown in Figs. 11 and 12 appears to be in good
agreement with such findings.

IV. CONCLUSIONS

In the experiments and calculations reported here, the relaxation times of a series of
model dilute and semidilute polystyrene solutions have been determined over a wide
range of concentrations and molecular weights in both shear flow and uniaxial exten-
sional flow.

It should be noted that the experiments with very dilute solutions presented in this
paper have been performed principally using very viscous solvents. The lack of data for
very dilute �and therefore low viscosity� solutions of PS in DEP is a consequence of the
Ohnesorge number Oh=�0 /

	R0 being much less than unity. It is thus a balance of
inertia and elasticity that controls the filament thinning-process in such solutions �McK-
inley �2005��, resulting in rapid rupture during the stretching phase or the formation of
bead-on-string structures in capillary thinning experiments. These experimental difficul-

TABLE V. Experimental and theoretical exponents m �Eq. �43�� and
mtheory �Eq. �47�� for different solvent qualities.

 mtheory m

PS Boger fluid 0.52 0.80 0.89
PEO in glycerol/water 0.55 0.54 0.65
PS in DEP 0.57 0.45 0.53
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ties associated with low viscosity fluids are discussed in more detail by Rodd et al.
�2005�.

The linear viscoelastic properties of the dilute polystyrene solutions studied in this
work are accurately described by the Zimm model, and the variation of the viscometric
properties in the semidilute regime can be described by correlations such as the Martin
equation. Capillary thinning measurements employing two different instruments show
that in transient uniaxial extensional flow the effective relaxation time—or more accu-
rately the molecular relaxation-controlled unraveling time—is a strong function of the
polymer concentration, even at concentrations well below the conventional coil overlap
concentration c*. Interpretation of this finding must be approached with care because
capillary thinning devices have a minimum sensitivity limit, just as any other rheometric
device. A force balance shows that there is a critical concentration, denoted cmin, below
which polymeric stresses are insufficient to support the elastocapillary balance that is
required for successful and unambiguous determination of the relaxation time.

Numerical calculations show that for concentrations close to cmin the finite extensibil-
ity of the polymer chains and viscous stresses from the solvent lead to a systematic bias
and underprediction of the true relaxation time of the polymer solution being tested. The
widely used “elastocapillary balance”—which defines how the experimentally deter-
mined relaxation time of the solution is extracted—cannot be sustained below this critical
concentration limit due to the magnitude of the underlying solvent stress and the finite
extensibility of the chains. Consequently a spurious concentration dependence of the
macroscopically measured relaxation time is obtained, even though the microscopic prop-
erties of the solution are unchanged.

Provided that the limit c�cmin is avoided, capillary thinning measurements—in con-
junction with numerical calculations—show that the fitted relaxation times are in good
agreement with both the Zimm relaxation times determined from molecular theory and
those obtained from small amplitude oscillatory shear measurements of the linear vis-
coelastic moduli. However, as the concentration is slowly increased over the range cmin

�c�c*, the value of the molecular relaxation-controlled unraveling time characterizing
transient elongation increases substantially above the relaxation time that is predicted
theoretically or measured under near-equilibrium conditions, with the concentration of
ultradilution c� as the onset point of this substantial rise. Recent Brownian dynamics
simulations incorporating excluded volume effects and interchain hydrodynamic interac-
tions in planar elongational flows also show similar finite concentration effects for
0.1c*�c�c* �Stoltz et al. �2006��.

In our analysis of the elastocapillary thinning process, we have relied on the multi-
mode suspension of FENE-P dumbbells proposed by Entov and Hinch �1997�. However,
this relatively simple closed-form constitutive model does not incorporate the progressive
changes in the hydrodynamic interaction �HI� between different segments of an elongat-
ing polymer chain. Neglecting such effects may be unwarranted in the present flow
because we have demonstrated that polymer chains reach their full extension during the
necking process, and the magnitude of the corresponding elastic stress determines the
minimum concentration above which we can measure the extensional rheology of a dilute
polymer solution. The role of conformation-dependent hydrodynamic interaction has
been considered recently by Prabhakar et al. �2006� using a more complex set of finitely
extensible bead-spring equation �the so called twofold normal approximation� in which
the functional form of the evolution equations for the coupled FENE springs have been
carefully verified using Brownian dynamics simulations that incorporate HI. This detailed
study shows that the large changes in the molecular elongation of the chain can lead to
conformational hysteresis; i.e., elongated polymer molecules remain extended even when
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the local extension rate drops below the critical value required for the initial onset of
chain stretching �Schroeder et al. �2003��. This complex hysteretic effect in turn modifies
the elastocapillary thinning process from the single exponential response of Eq. �22�
which corresponds to �̇=2/ �3�0�. However, Prabhakar et al. also show that direct mea-
surement of the rate of change in the mid-plane diameter D�t� can still be used to directly
probe the elastic stress in the elongating fluid filament and thus to measure the transient
elongational viscosity of a dilute polymer solution.

When the characteristic time constant determined experimentally for a wide range of

FIG. 14. Reduced diameter D /D0 as a function of time t in capillary thinning experiments for several dilution
series of narrowly distributed polystyrene samples dissolved in: �a� styrene oligomer, determined from CCD
camera video images; �b� styrene oligomer, determined with a laser micrometer. In addition to the experimental
data, �b� also shows the theoretical critical concentrations cmin calculated from Eq. �41� that depict the minimum
concentration for an observable influence of polymer on the capillary thinning behavior; and �c� DEP, deter-
mined with a laser micrometer.
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molecular weights is normalized with the Zimm time constant, the result is found to
increase according to a power law in the reduced concentration c /c*, with an exponent
that varies with the thermodynamic quality of the solvent. This power-law scaling with
the reduced concentration appears to be approximately consistent with treating the dy-
namics of unraveling and overlapping polymer chains within the framework of blob
scaling theories for semidilute solutions.
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APPENDIX

The following Figs. 14 present the complete data set of capillary thinning experiments.
Figures 14�b� and 14�c� show the same data on two different time scales in order to
capture the marked change in the relaxation time associated with changes in the polymer
concentration c from 5�104 ppm in DEP to 0.1 ppm in the viscous oligomer.

FIG. 14. �Continued�.
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