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CROSS-OVER IN POLYMER SOLUTIONS
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Résumé. 2014 La fonction de corrélation de paire P(r) pour les polymères en solution a été mesurée
par diffusion de neutrons aux petits angles dans l’intervalle 3 RG ~ r ~ I où RG est le rayon de
giration et l la longueur du monomère. A la température thêta cette fonction est décrite par la loi
de Debye 1/r. En bon solvant (limite haute température) et à la limite de la concentration nulle,
S. F. Edwards prédit que cette fonction est uniformément proportionnelle à r-4/3.
Cependant le résultat expérimental montre que pour des concentrations assez élevées ou pour des

températures intermédiaires la fonction P(r) présente les deux comportements. On trouve qu’ils sont
séparés par des longueurs de cross-over r* qui dépendent de la température et de la concentration.
Le scaling de r* est relié au scaling de la longueur de corrélation 03BE et du rayon RG dans le diagramme
température-concen tration.

Abstract. 2014 Using a small-angle neutron scattering experiment, we measured the pair correlation
function P(r) in polymer solutions in the interval 3 RG ~ r ~ l, where RG is the radius of gyration
and I the step length. At the theta temperature, this function is known to follow the characteristic
Debye law P(r) ~ r-1. In good solvents (high temperature limit) and in the limit of zero polymer
concentration this function is uniformly proportional to r-4/3, as predicted by S. F. Edwards.
We observe however, that at higher concentrations or intermediate temperatures, P(r) exhibits

both characteristic behaviours, depending on the range of r. The cross-over distances r* which
separate the patterns are found to depend upon concentration and temperature. The scaling of r* is
related to the scaling of the screening length 03BE and the radius RG in the temperature-concentration
diagram.
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1. Introduction. - We examine the monomer-

monomer pair correlation function of flexible polymer
coils dispersed in a solvent. The statistics of such coils
is often given in terms of the step length 1 and the

average squared radius of gyration ( RG ). However,
in the reciprocal space defined by the scattering
vector

where A is the radiation wavelength and 0 the scatter-
ing angle, there is a domain in between the Guinier
range qRG  1 and the submonomer range ql &#x3E; 1

which is very appropriate for the investigation of
polymer statistics. In this intermediate range

scattering experiments reveal the asymptotic behaviour
of the pair correlation function in the limit of infinite
molecular weight. In this range universal laws can be
considered, in contrast to the more detailed [1] infor-
mation obtained from diffraction patterns, which is
specific to each polymer species.

Earlier results were reported concerning these
laws [2, 3]. Recent neutron scattering experiments
have, however, brought new evidence. We therefore
find it appropriate to give here a general survey of
these results. The observation which we wish to

discuss is the cross-over or change of behaviour.
A well-known example of cross-over in polymer
solutions is found in the scaling of  RJ) with
molecular weight M. For the isolated coil in a good
solvent, theory [4, 5] predicts that the coil.is swollen
with respect to the random walk configuration when M
is sufficiently great. Below a given value M*, the coil
returns to a configuration which has the essential(*) Collège de France, Paris.
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observable characteristics of a random walk. The

vicinity of M * is characterized by a change of beha-
viour of the coil configuration.
The space M, T, C (Fig. 1), where T is the tempe-

rature and C the monomer concentration (g cm- 3)
is in fact partitioned into regions in which RG has
characteristic scaling laws in these three variables

(Table I) (Refs. [6, 30]). As one goes from one region
to another, the scaling law changes smoothly from
one pattern to another. There are thus several cross-
overs in the polymer solution diagram [7]. Although
the change of behaviour in the cross-over region was
acknowledged in the literature [29], it was never
studied as such. There are two reasons why a special
interest in this problem is being developed at the
present time.

FIG. 1. - Temperature concentration diagram for flexible polymer

solutions. i = T201303B8 is the reduced temperature and C the monomer
concentration. This diagram is partitioned into different regions ;
region I’ is the Flory’s theta or tricritical range. By increasing the
temperature there is a cross-over to the region I, the dilute or
critical range. The cross-over line is given by equation (2.6).
Region II is the semi-dilute (critical) range and C* is the cross-
over line (eq. (3.2)). Region III is a tricritical domain (theta semi-
dilute regime) limited by lines C** - 1 ! symmetric with respect
to C axis. Regions IV and V correspond to the domain where the
chains are totally collapsed and demixing occurs (after Daoud

and Jannink ref. [6]).

1) Recent progress [8] in the theory of critical
phenomena has shown that there are characteristic
exponents associated with the cross-over between
critical and tricritical behaviour [9].

2) Recent progress in neutron scattering tech-

niques [10,11,12] has allowed a precise observation
of the coil pair correlation function, in dilute as well
as in semi-dilute solutions, over the entire intermediate

TABLE 1

Scaling of the squared end to end distance  R 2 

M is the molecular weight, C the concentration (g cm-3) and the
reduced temperature 1: = (r - 0)/0. (After Daoud and Jannink [6].)

range of reciprocal space q. The variable q is not just
one more parameter like M, T or C. It in fact bears a
precise relation to the cross-over phenomena which
helps us to understand a particular aspect of polymer
statistics.

The first is currently being studied and will be

published elsewhere [13]. We will be concerned here
with two experimental observations of the pair
correlation function in the temperature-concentration
diagram.

2. Remarks on the pair corrélation function. - The
pair correlation function for a set of N points, repre-
senting the monomers of a single polymer, each of
which is at a position ri (i = 1, ..., N) is defined to be

were ( ) denotes the average over all configurations.
It is customary to consider the second moment of this
function, which is related to the average squared
radius of gyration  R G. However there is more
information in (2.1) than in RG and we shall be

particularly interested in the r dependence of this
function. The Fourier transform of P(r)

is directly measurable in a scattering experiment. The
usual problem associated with (2.2) is the accurate
calculation of the inverse Fourier transform from a set
of data, which are limited in reciprocal space by the
experimental conditions. In the case where the
scatterer is a single polymer chain of N segments

 (we shall denote the scattering law by S1(q)), there is a
more subtle relation between (2.2) and the terms of
the sum (2.1), arising from the linear arrangements of
the monomers and which can easily be seen from the
alternative way of writing (2.2) (valid when edge
effects are negligible).
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Here the running index n measures the distance
between two monomers (i, j ) along the chain. It is
sometimes called the chemical distance, in contrast to
the actual distance rj. As will be shown, the para-
meter n plays an important role in the understanding
of cross-over in polymer solutions. The q dependence
of the scattering law S1(q) is determined directly by
the scaling of  rn &#x3E; with n. Suppose that there exists a
particular n, called nc, such that the scaling below ne is
different from the scaling above nc’ We may split (2. 3)
into two significant terms

where

Obviously si reflects the scaling below nc, i.e. the
correlations of smaller chemical distances. If we
consider a value q of reciprocal space in the range

we see from inspection of (2.4), that the contribution
of S1 to Sl is greater than Sli. Conversely, in the
range

The contribution of Sli is dominant. Thus from the

analysis of S1 (q) we are able to derive the behaviour
of  rn ) with n, as n increases through nc’

There is a large body of evidence supporting the
hypothesis that the scaling of  r’ &#x3E; changes around a
characteristic value nc’

1) In a good solvent, in the limit of zero concentration,
it is well-known [4] that the excluded volume interac-
tion v swells the coil only if

This condition expresses in fact the Ginzbourg crite-
rion of the critical phenomena [14]. It can be written
in the neighbourhood of the theta temperature 0 [4]

where i is the reduced temperature 1: = (T - 0)/0.
The important step to the understanding of the

cross-over phenomena is the extension of condi-
tion (2. 6) to any chemical distance n  N. At a given
temperature i for which (2. 6) holds, there is a charac-
teristic ne

such that all distances  rn &#x3E; (n &#x3E; ne) are swollen and
all distances  rn &#x3E; (n  ne) are unperturbed. Defining

then the mean end-to-end distance is

where v is the excluded volume exponent (v = 3/5).
Using (2. 7) and (2. 8) formula (2. 9) yields :

which is a known result [6, 7].
2) In a good solvent, but in the semidilute regime,

the excluded volume interaction v is screened beyond
a characteristic value ncc by the finite density of coil
segments. Here, the distances rn ) for n  ncc are
swollen, and the distances r’ &#x3E; for n &#x3E; ncc are

unperturbed, in contrast to the change of behaviour
around n,,. Previous calculations [15] have shown
that ncc varies with segment concentration C as

Defining

we have

or by (2.11) and (2.12)

which was observed in a small-angle neutron scattering
experiment [15].

3) Combining 1) and 2) in a semidilute solution
we have 

until now, the existence of nc and ncc was derived as a
theoretical hypothesis, which agrees with the obser-
vation of the law (2 .10) and (2.14). In the next section
we present experimental evidence for the existence of
these different behaviours.

3. Experimental study of température and concen-
tration cross-overs. - We have investigated by Small-
Angle Neutron Scattering cross-overs predicted by
the theory [6] in region 1 (dilute solutions) and region II
(semidilute solutions) of the temperature-concentra-
tion diagram (Fig. 1). The special features of the

scattering technique are amply described in recent
papers [10,11,12]. All measurements are performed
on a small-angle scattering spectrometer of the
Laboratoire Léon-Brillouin set on a cold neutron

guide of the EL3 reactor at Saclay [10]. The incident
6LE JOURNAL DE PHYSIQUE. - T. 39, N° 1, JANVIER 1978
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TABLE II

Samples used in cross-over studies

(p) Samples E to J contain 0.005 g cm-3 of PSD chains of same molecular weight as PSH.
(b) The theta temperature of this system is 38 °C [27].
(C) See table III.

wavelength, defined by a pyrolitic graphite mono-
chromator, is Â = 4,70 ± 0,04 A. Precise definition
of angular divergency is achieved by using linear

grids and is fixed at a value of 12 min. The scattering
vector range set by inequalities (1.1) lies between

Samples are solutions of polystyrene in different
solvents and are listed in table II. The useful signal is
obtained by subtracting the scattered intensity of the
proper solvent from the scattered intensity of the
solution. In the following studies we are concerned
only with the q dependence of the scattering functions
and not with the precise determination of the cons-
tants.

3. 1 CONCENTRATION CROSS-OVER. - This cross-

over is observed in region II of the diagram (Fig. 1),
i.e. for solutions in good solvent and in the semidilute
range. Two series of experiments were done :

(i) With solutions of deuterated polystyrene (PSD)
in carbon disulfide (samples A to D, table II). In this
case the scattered intensity is proportional to the
Fourier transform of the pair correlation function of
any two monomers in the solution. This function will
be called S(q, c).

(ii) The contrast factor [16] between protonated
polystyrene (PSH) and carbon disulfide is very weak.
If few PSD chains are dispersed in this solution, the
scattered intensity is then proportional to the Fourier
transform of the pair correlation function of two
monomers of the same labelled chain S1(q, c). These
samples are samples E to J listed in table II.

Apart from sample A which is a dilute solution
used as a reference in the data interpretation, the

concentration in these samples is greater than the
overlap concentration C*. This concentration is
defined as the point for which the different coils, taken
as spheres of radius RG, are touching. This condition
for a monodisperse solution of polymers of length N is

Below C * we are dealing with dilute solutions, and the
length dependence of RG is

using this relation, (3.2) gives

Above C* (semidilute range), the coil formed by n
consecutive segments will be expanded by excluded
volume interaction if the following inequality holds
(see (2 .11 ))

The pair correlation function has been derived by
Edwards [5] as

leading to the Fourier transform

For elements with n greater than ncc, screening effects
occur and the behaviour of 5;1 (q) is of a random coil
type which is simply deduced from the Debye [17]
form :

The existence of the length Çc defined by equa-
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tion (2.12) means that there is in the reciprocal space
a cross-over length q* - 03BEc 1 with a concentration

. dependence derived from (2.11) and (2.12)

When the concentration varies, the S, (q, c) function
takes a random coil form for q less than q* and
excluded volume form for q greater than q*. In the
language of critical phenomena we are dealing with a
spatial cross-over.
The expression for Sl(q, c) can be obtained by the

following argument. For a single chain of N mono-
mers this function is expressed as the first term of a
cumulant expansion of (2 . 2) :

where rij, the distance between monomers i and j, is
only a function of the difference i - j 1. Neglecting
end effects as in (2.2)

Using the concept of the characteristic length nec (2 11),
it is possible to split the summation in (3. 6) into two
parts : one for elements such n  ncc where excluded
volume effects exist and one for ncc  n  N where
these effects vanish :

where

and

taking Z = ncclN and neglecting the N term in (3. 7)
a straightforward calculation gives the result

where

and y are incomplete gamma functions [18]. The
formula (3. 8) describes the spatial cross-over between
random coil form (q  q*) and excluded volume
form (q &#x3E; q*). It can be shown that setting Z = 1
in (3. 8) gives the excluded volume form first derived
by Weill, Loucheux and Benoit [19]. On the other hand
Z = 0 leads to the Debye formula [17], or the random
coil form.
The S(q c) function can be derived from Sl (q, c).

As a first step, consider the scattering law S10(q, c) for
a single coil without excluded volume interaction.
The random phase approximation (RPA) applied [20]
to the semidilute solution, with excluded volume
interaction gives

This expression accounts partially for the observed
results. We found however that replacing S1 o(q, c) by
S 1 (q, c) in the numerator of (3.9) improves the
agreement with the data. We have therefore considered
the interpolation formula

We found no reference in the literature for the justi-
fication of such a substitution. However there are two

possible ways leading to formula (3.10). The first
approach consists of improving the RPA along the
lines of reference [21]. In the second, following
reference [22], we consider S1 (q, c) in (3.10) as the
form factor of the coil and the remaining term as the
contribution of the arrangement of the centres of
mass. A recent scattering experiment [23] on coils
labelled only around the centre confirms qualitatively
the behaviour q2/(q2 + x2) (see also ref. [24]).

Results. - The inverse of the intensity scattered
by samples E to J (see table II) is displayed on figure 2
versus q5l’. The total concentration appears on the
right of each curve. The scattered intensity is due
to 0.5 percent of PSD chains and hence corresponds
to S1(q, c).
The points are the experimental data and the solid

curves represent the result of the calculation by
formula (3.8). The agreement is excellent and the
theoretical cross-over point is indicated by vertical
arrows. For large concentration there is some data
scatter, but the behaviour for q &#x3E; q* is clearly a
straight line. Thus it cannot be due to chain stiffness,
leading to a downwards curvature in this representa-
tion. When the total concentration increases, the
behaviour of S1(q, c) changes gradually from an
excluded volume form (straight line) to a random coil
form (upwards curvature). The cross-over point q*
goes from the low to the large value of the scattering
vector with a concentration dependence given by (3. 5).
These q* values are collected in table II.
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FIG. 2. - Plot of the inverse scattered intensity versus the scattering
vector raised to the power 5/3 for samples E to J (see table II).. 
The total concentration C is indicated on the right. Each solution
contains a concentration of 0.005 g cm-3 of PSD chains. Open
and closed points are experimental data. Solid lines are the result
of calculation using formula (3.8). Vertical arrows show the

theoretical cross-over point.

FIG. 3. - Inverse of the scattered intensity versus the squared
scattering vector, for sample C ( x ) and sample F (+). The lower
solid curve is calculated by formula (3.8). The upper curve is

the result of equation (3.10) when using for Sl(q, c) the theoretical
result (formula 3.8). The solid points are the result when using

experimental data of sample F.

Since formula (3. 8) gives good agreement with
the experimental data, we have used it to calculate

S(q, c) by formula (3.10). The result for sample C
(C = 0.04 g cm- 3) is the upper curve of the figure 3,
where the inverse of the scattered intensity is plotted
versus the squared scattering vector. Measured points
are denoted by x and solid çurve represents equa-
tion (3 .10). Closed points are the result of the calcula-
tion when using data of sample F (CT = 0.04 g cm- 3)
in this equation, in place of the theoretical values. For

comparison, the lower curve is the theoretical func-
tion S1(q, c) (Eq. (3.8)) and crosses are data from
sample F. This figure shows that the agreement with
data of sample C is good for large q values but there
exist disagreements for very low q values. It has been
shown [3] that this effect is due to the finite molecular
weight.
The behaviour of the S(q c) function is then not well

described by equation (3.10). It can be noted that
formula (3. 8) giving the S1 (q, c) function is the sum of
two functions if we use the cross-over point value q*

this form suggests a better representation of the
function by reference to the homogeneous function
approach [25].

In the magnetic analogy [26] it has been shown
that S(q, c) corresponds to the longitudinal correlation
function of the magnetic problém [28]. This function
is a homogeneous function of appropriate reduced
variables near the critical point [25]. In the polymeric
problem the reduced variable will be q/q*. In the high
concentration range, i.e. for C greater than C*, S(q, c)
is a Lorentzian [15]

1 where A is a constant at a given concentration and K is
the inverse of the screening length 03BE By reference to
this form, the homogeneous function will be

where F(x) is the cross-over function. This function is
unknown, but behaves asymptotically as

The value of K can be extracted from the plot of the
inverse scattered intensity versus the squared scatter-
ing vector. Then it is possible to plot the function
F(q, c) = (q2 + x2) S(q, c) versus ql/3 where S(q, c) is
the actual measured function. According to (3.13) the
cross-over will appear in this figure as a plateau
followed by a straight line with a positive slope.

Results of this operation are shown on figure 4 for
samples A to D (table II). Sample A is the dilute solu-
tion for which S(q, c) behaves as q- 5/3 and is used as a
reference in this figure. Sample D is a semi-dilute
solution and S(q, c) has the lorentzian form (3.11),
represented here by a plateau. Between these two
extreme behaviours, data for samples B and C exhibit
the spatial cross-over. The vertical arrows indicate
the cross-over point q* defined as the intersection of
the asymptotes. This figure shows clearly that S(q, c)
is well-described by the homogeneous function (3.12).
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FIG. 4. - Display of the F(q, c) function (eq. (12)) versus q113 for
samples A, B, C, and D. Full lines are obtained by a least squares
fit method. Vertical arrows indicate the cross-over points. Note

the change of origin for samples C and D.

FIG. 5. - Plot of the cross-over point q* versus concentration on
a log-log scale. Horizontal dashed lines correspond to the limits
of eq. (3.1). Vertical dotted lines are the lower limit for the concen-
tration range, corresponding to the overlap concentration C*
(eq. (3.2)). CM is the maximum of this range given by the intercept
of the maximum q value and experimental curve (eq. (3.14)) ;
the two points correspond to experimental values (samples B and C

table II).

Experimental values of q* so determined are

displayed on figure 5 versus concentration in a log log
plot. These values agree well with the predicted
concentration dependence (3.5). The equation of the
straight line is

Experimentally there exist two limits for the obser-
vation of this concentration cross-over :

(i) The spatial range given by (3.1) (horizontal
dotted lines).

(ii) The concentration range limited at the lower
limit by C* (vertical dotted line with symbols) and at
the upper limit by the maximal concentration CM given
by the intercept of the upper q limit and line (3.14).
Comparison of q* values collected in table II shows

that for the same concentration (i.e. samples B and E)
the cross-over point of S(q, c) is higher than the
cross-over point of S1 (q, c).

3.2 TEMPERATURE CROSS-OVER. - Observation of
this cross-over was done in region 1 of the diagram
(Fig. 1), i.e. in the dilute range, at constant concentra-
tion, by varying the temperature. The sample is a
solution of protonated polystyrene (PSH) in deu-
terated cyclohexane with a concentration ten times
lower than C *. The characteristics of this sample are
collected in table II (sample K) the 0 point of this
solution is 38 °C [27]. The solvent used in the subtrac-
tion procedure is a mixture of deuterated and proto-
nated cyclohexane in order to compense the large
incoherent background due to the protons of PSH.
Sample holder and temperature control are described
elsewhere [7]. Measurements of sample temperature
are obtained with an accuracy of ± 0.01 °C and the

regulation is within ± 0.05 °C.
In this domain of the diagram, we are dealing with

single chains and excluded volume effects are impor-
tant. In this case the characteristic length nc, (2. 7) is a
boundary between a critical behaviour for elements
n &#x3E; n,, and a random coil behaviour for n  nc.The
description used in part 3.1 applies, but in reverse.
The temperature dependence of the characteristic

length çg (2.8) is derived from (2.7) leading to a
cross-over point varying as

q* -03C4 (3.15)
The correlation function of one single chain can also be
expressed by the same equation as (3. 7)

with the new definition of functions f and gn

R N being now defined by (2.9). Setting Z = nc/N,
the calculation gives
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where X, Y and y have the same definition as in (3. 8).
Equation (3.16) describes the temperature cross-over
of S1(q, 03C4). It is easy to check that in the high tempe-
rature limit (Z = 0), this equation takes the excluded
volume form [19]. On the other hand, at the limit of
region I, given by T - N- lJ2 between the dilute

regime and the theta solvent range the polymeric chain
behaves as a random coil (Z = 1) : (3.16) reduces to
the Debye formula.
An example of scattered intensity by dilute solution

(sample K) is shown on figure 6 for two temperatures
Tl = 67.2 °C and T2 = 41.25 °C corresponding res-
pectively to the reduced temperatures 11 1 = 0.094 8

FIG. 6. - Intensity distribution for sample K (Table II) versus

scattering vector q obtained for two temperatures : open circle
41.25 °C (T = 0.010 4), closed circle 67.2 °C (T = 0.094 8).

FIG. 7. - Inverse of the scattered intensity versus the square of
the scattering vector. Points are experimental data recorded at
different reduced temperatures r as indicated on the right. The
solid curves are the results of calculation using the formula (3.16).

Vertical arrows show the theoretical cross-over point.

Fie. 8. - Homogeneous function (see text section 3) versus q’13
for three dînèrent reduced temperatures (indicated on the left).
The cross-over point is less well-defined than in figure 4 due to
the discontinuity near q = 0. Vertical arrows indicate experimental

cross-over points.

TABLE III

Temperature cross-over point values

FIG. 9. - Plot of the temperature cross-over point versus reduced
température i. Horizontal dashed lines indicate limits of the
observation range given by 10-2  q A-1  10-1. The lower
vertical dashed lines correspond to the condition (2.6). tM is the
maximum value corresponding to the intercept between maximum

value of q* and experimental curve (eq. (3.17)).



85

and’r2 = 0.010 4. One can see from this figure that the
scattered intensity increases with decreasing tempe-
rature at low q values but is temperature independent
at large values. The inverse of the scattered intensity
plotted versus q2 is displayed in figure 7 for different
temperatures between 1 = 0.010 4 and r = 0.094 8
as indicated on the right of this figure. Full lines are
theoretical calculation (equation (3.16)) normalized
to experimental data. Vertical arrows indicate the
theoretical cross-over points. It is difficult to define
this point pjecisely with the data displayed on figure 7,
so we tried to use the homogeneous function descrip-
tion in order to obtain experimental cross-over point
values. Using equation (3.12) with x2 values extra-
polated from figure 7 we have plotted the function F(q)
versus q1/3. An example of these curves for three tem-
peratures is given on figure 8. The typical features as
revealed by figure 4 are present but with an important
modification. At high temperature the function S1(q, r)
varies as q5/3 but in lowering the temperature there is a
departure from this behaviour : the random coil
behaviour appears at large q values and gradually
invades all the range of observation. The cross-over

point, indicated by vertical arrows, goes from the right
to the left of the figure when the temperature goes
down. But as the critical behaviour is in the low

q-value range, the application of formula (3.12)
introduces a discontinuity for q = 0, giving the curved
part of the distribution. The cross-over point is given
by the end of the plateau and the values obtained for
different temperatures are listed in (Table III) together
with the theoretical values obtained from equa-
tion (3.16). The comparison between these values
shows that the experimental cross-over point values
are greater than the theoretical ones. This is not

surprising because the theoretical model requires that
q* = 0 for ’r = N- l/2. Experimental values of the
cross-over points are displayed versus -c values on
figure 9. The data so obtained agree well with a linear
variation with r (3.15) and a least-squares method
gives the following equation

where q* is expressed in inverse angstrôm and r is the
reduced temperature. The range of observation of this
cross-over is also indicated as in figure 5 by dotted
lines.

4. Conclusion. - The existence of characteristic
chemical lengths ne and nee is inferred from the
observed momentum transfer dependence of the

scattering law S1(q). The terminology relevant to the
diagram of figure 1 can be used to describe the effective
distances along the coil. As n decreases through ne,
the behaviour changes from critical to tricritical.
As n increases through nee the behaviour changes from
critical to a mean field type. Further comments are as
follows.

1) The observation of the polymer coil configura-
tion provides a unique example of spatial cross-over,
i.e. a change of behaviour which is controlled by the
chemical distance n.

2) The polymer coil configuration is usually cha-
racterized by the squared radius of gyration RG and
the squared step length l2. However, if excluded
volume effects are to be accounted for properly, it is
necessary to include the characteristic correlation

length 03BE2 (2. 8) and 03BE2 (2.12). These lengths are some-
times used to partition the coil into so-called blobs [13].
The blob concept helps to visualize the effects des-
cribed above; it is however misleading to consider
the coil as a succession of blobs, since the fundamental
quantity is the chemical distance between segments and
not their position.

3) The concept of ne and nee reconciles the pro-
position that there can be only one value for the critical
exponent v, with the observation of the scaling law
of RG as a function of molecular weight. The appea-
rance of intermediate values of the exponent between
v = 3/5 and v = 1/2 can be resolved in the following
expression :

where Z = nc/N.
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