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=(1/4) J:[(S —g)cos(ay — 2y) + 20 cos (oy)

— (3 + a)cos(oy + 2y)]y~ " sin ydy

= na/4, 0<o<1
=n(3-0)8, 1<0<3 4)
=0, ag=3

Equations 3 and 4, when substituted into Eq. 1, lead to Egs. VIII-36 and

VIII-37.
Partial integration of Eq. 2 in the same manner as above yields for any

value of n

o e
I(o)=(n-2)" f [ cos ay sin y + nsinaycos yly~ " P sin""! ydy
0 .

=[2n - 2] J-m[(n 4 a)sin(ay + y) + (v — o) sin (op — )]
0
x y~=Dgin"=t y dy
Hence
2in = 2l(a) =+ o), _(c+ 1)+ (n—0a),_y(cd—1) (5)

The solution of this recursion relation is

1@ == 3 | - ]["“;“2']"-2 ©)

ti(n—1)!

where

(n—e—-2)2<1t<(n-—a)2
This result may be confirmed by substitution of Eq. 6 into Eq. 5. Verifi-
cation, though tedious, is straightforward. Equation 6, when substituted

into Eq. 1, gives Treloar’s' equation, Eq. VII1-39. The correspondence of his
result to the equation of Lord Rayleigh,? Eq. VIII-33, is thus established.
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APPENDIX G

The Porod-Kratky Chain'?

This hypothetical model for a chain molecule incorporates the concept
of continuous curvature of the chain skeleton, the direction of curvature
at any point of the trajectory being random."? It is frequently referred to
as the worm-like chain. The model has had particular appeal for repre-
senting stiff chains, but its use has not been restricted to them alone.

The freely rotating chain, comprising bonds joined at fixed angles 0,
serves as the starting point for definition of the Porod-Kratky chain. The
Porod-Kratky chain is more closely related to the freely rotating chain than
to others treated in detail in the text. The average projection of the kth
bond of a freely rotati ain on the direction of the first bond is /'a*~?,
where /" is the bond length and a = cos @', with 0’ denoting the fixed angle
between successive bonds. Primes are used in order to distinguish bonds
and bond angles of the freely rotating, model chain from the corresponding
quantities for the real chain it is intended to represent. The average sum
of projections of n' of these bonds on the direction of the first bond is'+?

a=1

‘Yl=r.(llﬂl)=r2cl (1)
k=0

where 1,//, is the unit vector on the first bond,

If the chain is made indefinitely long, then X, becomes the persistence
length defined in Chapter 1V (see p. 111) as the sum of the average pro-
jections of all bonds i = 1 to oo on the direction of the first bond. Denoting
the persistence length by a, we have from Eq. |

a=1I/l-a) ()

The persistence length for a real chain is determined by its structure and by
hindrances to bond rotations. It is directly related to the characteristic ratio
C,, (see Eq. 1V-48).

Let the freely rotating chain of finite length considered above be sub-
divided into shorter and shorter bonds in such a way as to maintain the

- constancy-ef-the contour length-L and of the persistence length a at their

predetermined values. Continuation of the subdivision to the limit /7 = 0

and n" = oo yields the Porod-Kratky'? chain of continuously varying
direction. In this limit 1 — « also vanishes, and it does so in the manner
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required by Eq. 2 to maintain a at its specified value. Equation 2 may be
replaced by
a=lim(—![ln ) (3)
I'=0
Through the introduction of a thus defined into Eq. 1, we obtain

X,=1'Y exp(—kl'la) 4)
=jl.exp(-—K]a) dK (5)
= a[l —exp (—L/a)] (6)

with L=n'l'.
Replacement of X, by {r?), as the relevant variable may be accomplished
by relating differential quantities as follows'2: '

d{r*ye = 2{r+dr) =2X, dL (7

The latter relation may be verified readily by considering the increment dL
to be added at the beginning of the chain. Then the magnitude of dr is dL
and its direction coincides with X,. Equation 7 follows at once. Substitution
of Eq. 6 for X, into Eq. 7 and integration yields'+?

{r*Yo/L = 2a[1 — (a/LX(1 — e~ "*)] (8)
In the limit L — o©

({r*>o/L), = 2a 9

Thus, the representation of the hypothetical Porod-Kratky model chain
depends on two parameters @ and L. In order to proceed further, it is
necessary to establish a correspondence between these quantities and
characteristics of the real chain. This step is attended by a degree of arbi-
trariness. A reasonable course is the following. Let L be identified with the
length r,,, of the real chain when fully extended. The ratio L/nl is thereby
established. Note that L = r_,, is less than n/, in general, owing to valence
angle restrictions, these angles being assumed to be fixed.* Second, we so
choose a as to establish coincidence between C_, for the model and for the
real chain. Thus, the limiting value of the characteristic ratio for the model
chain is given according to Eq. 9 by

Cyp = (Lr?)o/nl?), = (L/nl)(2all) (10)

- " . L

*The specification of L in this manner is not without complications in some cases.
If valence angles @ differ for successive skeletal atoms, then the most highly extended
conformation may be nonplanar and its precise geometrical description is not immedi-
ately obvious.
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where / and n are the bond length and number of bonds, respectively, for
the real chain.* The Porod-Kratky relation, Eq. 8, for the second moment
of r may be expressed in like terms as follows:

(r*Yolnl® = C [1 = (Lla)™'(1 — ™) (11)

where L is understood to be related to n according to Eq. 10.
For short chains, or very stiff ones, Eq. 8 may be expanded in the
following series:

{r*>olL = L[1 = (1/3)(L/a) + (1/12)(L[a)* =---],  (Ll@)<1 (12)
For long, or ** flexible,” chains
{r*dolL = 2a[1 — (Lfa)™"],  (Lja) > | (13)
or
(r*Yolnl® = Cu[1 = (L)"'), (Lja) > | (14)

In this limit, the characteristic ratio is linear in L™", orinn™".

Expressions for the fourth and sixth moments of r for the Porod-Kratky
chain have been derived by Hermans and Ullman® and by Heine, Kratky,
and Porod.* Benoit and Doty® have derived the following expression for
the unperturbed radius of gyration of this model chain:

{*Do/L = (a/3){1 — (3a/L)[1 — 2(a/L) + 2(a/L)* — 2(a/L)?’e” "]} (15)
or

(3’)_0)‘:1!’ = ((s¥o/nl?) [ = 3(a/L) + 6(a/L) — 6{a/L)*(1 — e *)] (16)
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*According to Eq. IV-48
(<rdo/nl?)e, = (2a— DI

for a real chain. This expression differs, of course, from that for the Porod-Kratky
model chain as expressed by Eq. 10. The difference arises in part from the inclusion of
the first step (bond) of the real chain which by definition is coincident with the direction
of X 1
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The 'Average Orientation of a Vector within a
Chain of Specified End-to-End Vector r

The following analysis' is addressed to a molecular chain whose end-to-
end vector r is specified within a laboratory reference frame X'YZ. The
“molecule” under consideration may, for example, be the portion of a
network extending from one cross-linkage to the next, as is explained more
fully in Chapter IX, Section 3. In any event, the chain is subject only to the
constraint imposed by stipulation of the vector r separating its ends.

We focus attention on a unit vector v;, affixed to the ith skeletal bond
or unit. If this vector is identified with the direction of one of the principal
components of the optical polarizability tensor a, the results here obtained
are applicable to analysis of the strain birefringence (see Chap. IX, Sect. 3).
Identification of v;, with the transition moment for excitation of group i
by absorption of radiation of a given wavelength provides the basis for
treatment of the dichroic ratio. Finally, the preferential orientation of
a given bond by extension of the chain may be obtained by identifying
the unit vector with the direction of the bond. Whatever the identification
of v;, may be, we seek the average square of its projection on chain vector
r as a function of r. The relationship will be obtained as a series in even
powers of r, by resort to a procedure developed by Nagai.'

Letting (v;,, X) denote the cosine of the angle between v;, and axis X of
the fixed reference frame, we have

(e X0, = 27 [+ [ (0, X)? exp (— E/KT) sin ydydy deo d{}/87* dr
()

where Z, is the configuration partition function for a chain of specified r
(see Eq. VIII-2); x, ¢, and w are Eulerian angles, and {¢} is the set of
internal, skeletal bond rotations; these and other symbols carry the defini-
tions given in Chapter VIII, Section 1.
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The Fourier transform of the integral in Eq. 1 is

Hs:(‘l) - J-ﬂ,- '2,((\';,, x)l)r dr

= @)™" [+ [(v, X)? exp (~ E/KT) exp (iq - r)

x sin y dy dy dw d{¢} (2)

Pursuant to the evaluation of this expression, it will be helpful to define
a new Cartesian coordinate system, xyz, with the z axis taken parallel to
vector q, and the x axis in the Xz plane; the direction of the x axis will
be chosen to make an acute angle with X. The Eulerian angles are con-
veniently defined as in Fig. 1. That is, x and  are the polar and azimuthal
angles, respectively, locating r with reference to q (i.e., z) as the polar axis;
@ measures the rotation of the plane defined by v;, and r from the plane
of r and z. Further, let ®;, be the angle made by v; with r, and let t
denote the angle between q and the fixed axis X (not shown in Fig. 1), i.e.,

cos1=(q, X) =q,/q (3)

where g, is the projection of q on X, and ¢ = |q|. Then a unit vector along
the X axis is expressed in the coordinate system xyz by

sin t
K;’X=[ 0 ] (4)

COsS T

The unit vector v;, expressed in the same coordinate system is

sin y sin ¢ cos ®;, + (cos y sin Y cos w + cos Y sin w) sin @,

sin y cos { cos @y, + (cos y cos ¢ cos @ — sin Y sin w) sin @,
Vi =
cos y cos D, — sin y cos w sin @;,

&)

The cosine of the angle between these two unit vectors is
(v;;, X) = sin t[siny cosy cos®;, + (cos y cos if cos w — sin  sin w) sin @]
+ cos t[cos y cos @, — sin y cos w sin O] (6)

Substitution of Eq. 6 into Eq. 2 and integration over the Eulerian angles
at fixed internal configuration {¢} leads to

H(q) = %J‘ I{sm =4 (%)(3 cos® 7 — 1)(3 cos®> D, — 1)

qr
singr 3cosqr 3singr]| _,.,
) [ qr @?  (qr) “e die} ™
_Ep @ @)t @t
=3 [{[I TR N ]



