Gaussian Probability Function for End-to-End Distance of a Random Walk.

Consider a collection of 1-d random walks that go along the x -axis. We would like to determine the probability of a walk of length R. The walk is composed of n steps of length ℓ. The maximum distance that can be traveled is $\mathrm{n} \ell$.

1) A random walk has a maximum probability of having traversed a distance of $R=0$ since it is equally probable that the walk goes forward as backward. We can arbitrarily set the probability of a walk of distance $\mathrm{R}=0$ at $\mathrm{P}(\mathrm{R})=1$.
2) $P(R)$ must decay from the value of 1 at $R=0$ in both positive and negative x and the decay must be monotonic (no peaks or valleys) and symmetric about 0 (there is no preference to positive or negative walks). $\mathrm{P}(\mathrm{R})$ can only be a function of even orders (powers) of R due to symmetry.
3) We can propose the lowest order approximation from a power-series expansion of $\mathrm{P}(\mathrm{R})$,

$$
\begin{equation*}
P(R)=1-\frac{R^{2}}{k^{2}}+\ldots \tag{1}
\end{equation*}
$$

This function follows rule " 1 " since $\mathrm{P}(\mathrm{R}=0)=1$ and follows the symmetry rule " 2 " since positive and negative R have the same probability. Equation (1) suggests a plot of $P(R)$ versus R^{2}, top axis and blue curve in plot below for $k=100$. This curve intercepts the x-axis at $R=100$ $=\mathrm{k}$.

4) A random distribution of end to end distances, R, will follow the Gaussian distribution which is approximately equal to equation (1) at low values of R / k, $P_{G}(R)=\exp \left(-\frac{R^{2}}{k^{2}}\right)=1-\frac{R^{2}}{k^{2}}+\frac{R^{4}}{2!k^{4}}-\frac{R^{6}}{3!k^{6}} \cdots$
5) Using $\mathrm{P}_{\mathrm{G}}(\mathrm{R})$ we can calculate $\left\langle R^{2}\right\rangle$.

$$
\begin{equation*}
\left\langle R^{2}\right\rangle=\frac{\int_{-\infty}^{\infty} R^{2} P_{G}(R) d R}{\int_{-\infty}^{\infty} P_{G}(R) d R}=\frac{\int_{-\infty}^{\infty} R^{2} \exp \left(\frac{R^{2}}{k^{2}}\right) d R}{\int_{-\infty}^{\infty} \exp \left(\frac{R^{2}}{k^{2}}\right) d R} \tag{3}
\end{equation*}
$$

These integrals require a trick to solve. First the integral is squared in x and y :

$$
\begin{aligned}
& G(\alpha)=\int_{-\infty}^{\infty} \exp \left(-\alpha x^{2}\right) d x \\
& (G(\alpha))^{2}=\int_{-\infty}^{\infty} \exp \left(-\alpha x^{2}\right) d x \int_{-\infty}^{\infty} \exp \left(-\alpha y^{2}\right) d y=\int_{-\infty}^{\infty} d x \int_{-\infty}^{\infty} d y \exp \left(-\alpha\left(y^{2}+x^{2}\right)\right) d y
\end{aligned}
$$

Then Cartesian coordinates are replaced with circular coordinates, r and θ,

$$
\begin{aligned}
& (G(\alpha))^{2}=\int_{0}^{\infty} r d r \int_{0}^{2 \pi} d \theta \exp \left(-\alpha r^{2}\right)=2 \pi \int_{0}^{\infty} r d r \exp \left(-\alpha r^{2}\right) \\
& =\frac{-2 \pi}{2 \alpha} \int_{0}^{\infty}-2 \alpha r d r \exp \left(-\alpha r^{2}\right)=\frac{-\pi}{\alpha}\left[\exp \left(-\alpha r^{2}\right)\right]_{0}^{\infty}=\frac{\pi}{\alpha}
\end{aligned}
$$

The integral in the numerator can be solved by another trick,
$H(\alpha)=\int_{-\infty}^{\infty} x^{2} \exp \left(-\alpha x^{2}\right) d x=-\frac{d G(\alpha)}{d \alpha}$
and since $\mathrm{G}(\alpha)=(\pi / \alpha)^{1 / 2}$, then $H(\alpha)=\frac{\pi^{1 / 2}}{2 \alpha^{3 / 2}}$ so, with $\alpha=1 / \mathrm{k}^{2}$ and $\mathrm{x}=\mathrm{R}$,

$$
\begin{equation*}
\left\langle R^{2}\right\rangle=\frac{\int_{-\infty}^{\infty} R^{2} \exp \left(\frac{R^{2}}{k^{2}}\right) d R}{\int_{-\infty}^{\infty} \exp \left(\frac{R^{2}}{k^{2}}\right) d R}=\frac{H(\alpha)}{G(\alpha)}=\frac{k^{3} \pi^{1 / 2} / 2}{k \pi^{1 / 2}}=\frac{k^{2}}{2} \tag{4}
\end{equation*}
$$

6) So,

$$
\begin{equation*}
P_{G}(R)=\exp \left(-\frac{R^{2}}{2\left\langle R^{2}\right\rangle}\right) \approx 1-\frac{R^{2}}{2\left\langle R^{2}\right\rangle}+\ldots \tag{5}
\end{equation*}
$$

7) We can calculate $\left\langle R^{2}\right\rangle$ from a consideration of the random walk in 1 d which is composed of n steps,

$$
\left\langle R^{2}\right\rangle=\sum_{i=1}^{n} \sum_{j=1}^{n} l_{i} \bullet l_{j}=\sum_{i=1}^{n} l_{i} \bullet l_{i}+\left(\sum_{i=1}^{n} \sum_{j=1}^{n} l_{i} \bullet l_{j}\right)_{\text {for } j \neq i}=n l^{2}+0
$$

so,

$$
\begin{equation*}
P_{G}(R)=\exp \left(-\frac{R^{2}}{2 n l^{2}}\right) \tag{6}
\end{equation*}
$$

8) Equation (6) is not normalized meaning that the integral does not equal 1. To normalize this function we consider a prefactor such that the integral is equal to 1 and solve for this prefactor,

$$
1=\int_{-\infty}^{\infty} K \exp \left(-\frac{R^{2}}{2 n l^{2}}\right)=K\left(2 \pi n l^{2}\right)^{1 / 2}
$$

so the normalized 1d Gaussian probability function is

$$
\begin{equation*}
P_{G}(R)=\left(2 \pi n l^{2}\right)^{-1 / 2} \exp \left(-\frac{R^{2}}{2 n l^{2}}\right) \tag{7}
\end{equation*}
$$

9) A real Gaussian chain is in 3d space rather than in 2d space. But each of the 3 dimensions is independent of the others so the three probabilities just multiply as independent 1d probabilities. This cubes the exponential and adds a factor of 3 to the prefactor as well as changing the power to $-3 / 2$,

$$
\begin{equation*}
P_{G}(R)=\left(2 \pi n l^{2} / 3\right)^{-3 / 2} \exp \left(-\frac{3 R^{2}}{2 n l^{2}}\right) \tag{8}
\end{equation*}
$$

10) Using equation (8) we can calculate any moment of the distribution such as the second moment, $\left\langle R^{2}\right\rangle$,

$$
\left\langle R^{2}\right\rangle=4 \pi \int_{0}^{\infty} R^{4} P_{G}(R) d R=n l^{2}
$$

Where the integral can be solved in a similar way,

$$
U(\alpha)=\int_{-\infty}^{\infty} x^{4} \exp \left(-\alpha x^{2}\right) d x=-\frac{d H(\alpha)}{d \alpha}=\frac{3}{4} \pi^{1 / 2} \alpha^{-5 / 2}
$$

All even order moments of the Gaussian can be solved using this approach.

