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Abstract: Network polymers near their gel point exhibit selfsimilar mechanical behavior, 
as expressed by power law relaxations. The range of selfsimilarity is defined by two limit- 
ing length scales. The upper limit is the correlation length, defined by the linear size of the 
typical cluster, and a lower limit, roughly given by the size of one preformed linear chain, 
i.e., the mean distance between crosslinks. The correlation length increases with the 
approach to the gel point, and diverges at the critical extent of reaction, i. e., the gel point 
where the infinite cluster is formed. Above the gel point, it decreases again with further 
crosslinking. Dynamic mechanical measurements of the complex modulus at the gel 
point show a power law in the frequency dependence over the entire frequency range, 
monitoring selfsimilarity. Swelling effects reduce the fractal dimension of the percolation 
cluster form 2.5 to 2. It is shown how the power law G (co) - co 1/2, found by experiment, is 
connected to the structure of the polymeric cluster. 
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Introduction 

The gel point  (GP) of a chemically crosslinked sys- 
tems is defined as the instant at which the weight aver- 
age molecular weight diverges to infinity (infinite 
sample size) or at which the largest molecular cluster 
extends across the sample (finite sample size). The  
crosslinking po lymer  at the GP undergoes a transition 
from liquid to solid state. This p h e n o m e n o n  is called 
chemical gelation [1]. It will be shown that in the range 
of observation, the transition through the GP occurs 
gradually and that a c o m m o n  limiting behavior exists 
for both the liquid and the solid near the GP. This limit- 
ing behavior is a proper ty  of the "critical gel" or the 
"polymer  at GP". It should be noted that no  independ- 
ent state of matter  exists directly at the GP. The  poly- 
mer  is either still before the GP (viscoelastic liquid) or it 
is already beyond  the GP (viscoelastic solid). Thus  at 
the GP the material is at its "viscoelastic liquid-solid 
transition". 

*) Presented at the "Physikertagung 1987" in Berlin. 

This study is solely concerned with the rheological 
experssion of chemical gelation, not  including the 
effect of gelation on other properties of the polymer.  
The  rheological behavior during gelation is very com- 
plex. However ,  it is well unders tood for the critical gel, 
where it is given by power  law relaxation over a wide 
frequency range or, equivalently, over a wide time 
domain  [2-5]. The  critical gel state can, therefore, be 
used as a reference state for describing the evolution of 
rheology during gelation. This approach will be taken 
in the following. 

Experimental observation of mechanical 
self similarity 

Dynamic  mechanical experiments in small ampli- 
tude oscillatory shear have been performed to measure 
the relaxation behavior of endlinking polydimethylsi-  
loxane and polyurethane.  Experiments near the gel 
point  are difficult to conduct,  since any large strain 
(during sample preparation or transfer, during me-  
chanical measurements)  breaks the molecular struc- 
ture irreversibly. For this reason, the sample in this 
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study were prepared directly in the rheometer (no 
transfer) and any large strain was avoided during the 
mechanical measurements. Details of the sample pre- 
paration are given in Ref. [6]. A simple power law was 
found to govern the dynamic mechanical behavior of 
the critical gel, described by a complex modulus [4, 7] 

G*(CO, Pc) = a S (ico)" (1) 

with 

a = r(1 - n). 

The "gel strength" S depends on the mobility of the 
chain segments (depending on persistency length and 
crosslink density, for instance), it(n) is the usual 
gamma function. The relaxation exponent n may 
adopt values between 0 and 1. However, for stoichio- 
metrically balanced gels the specific value n = 1/2 has 
been found. 

The evolution of rheology can be observed conti- 
nuously during the entire gelation process. Just before 
GP, the polymer is still a viscoelastic liquid. However, 
the approach of the critical gel state is already visible, 
depending on the frequency of the dynamic experi- 
ment. This is shown in Fig. 1, using the dynamic Vis- 
cosity [8] 

= (0 '2 + C," ) l=lco 

as the representative rheological property. At high fre- 
quency (but below the high frequency glass transi- 
tion), power law behavior is exhibited. The sample 
appears to be at the gel point in this frequency window. 
However, deviations from the power law behavior are 
seen as the frequency is lowered and the finite size of 
the largest cluster is recognizable. The low frequency 
behavior is still that of a typical viscoelastic liquid (G' 
co 2, G" - ca in the limit of co --+ 0). We can define a char- 
acteristic frequency, co*, by the intersect of the zero fre- 
quency viscosity 

= 1,7*(co) I 

with the power law of the critical gel. co* divides be- 
tween the gel behavior and the liquid behavior. The 
value of co* decreases with the approach of GP. 

In the post-gel region, p > Pc the polymer exhibits a 
finite equilibrium modulus goo. A characteristic fre- 

P = PC 

log ~J/s -I 

Fig. 1. Dynamic viscosity of a crosslinking polydimethylsiloxane 
near the gel point (data form Ref. [5]) for different extents of reac- 
tion. As described in the text, the power law is already established at 
frequencies larger than a crossover frequency. Above the percola- 
tion threshold (curves O, ZX), the correlation length decreases again 
and the crossover freqency is again shifted to larger values. The vis- 
cosity at the gel point is given by the indicated straight line ([3). The 
measurements for p < Pc are indicated by �9 and �9 

quency ca*, can be defiened again, given by the inter- 
sect ofg~o/co with the power law of the critical gel. Typi- 
cal dynamic viscosities are shown in Fig. 1. At frequen- 
cies above some crossover ca*, the sample exhibks gel 
behavior (power law) and at frequencies below it, the 

(2) sample behaves like a typical viscoelastic solid (G' = 
go, G" - co at co ~ 0). The value of the characteristic fre- 
quency increases with increasing extent of crosslink- 
ing. 

In the evolution of viscoelastic properties, the most 
interesting part of the rheological behavior shifts to 
lower and lower frequencies as the transition through 
the gel point becomes imminent. The shift to lower fre- 
quencies is so pronounced that the actual transition 
through the gel point cannot be observed in an experi- 
ment, since the characteristic frequency has shifted 
below the lower limiting frequency of the rheometer. 
Only far beyond the GP in the post-gel region, does 
the characteristic frequency becomes large again and 

(3) the solid behavior becomes measurable within the fre- 
quency range of our instrument. 

Selfsimilarity seems to be the dominating property 
of the gel near the GP. Cates [9] and Muthukumar [10] 
showed that a material with a selfsimilar structure has 
dynamic mechanical properties which follow a power 
law. Vice versa, it might be concluded that the critical 
gel has a selfsimilar structure. 
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Frequency and scale of observation 

As explained above, the mechanical experiment is 
sensitive to various frequency scales. However, there 
is the basic frequency-length relationship, in the sense 
that high frequency probes smaller length scales, and, 
vice versa (low frequency probes large length scales). 
This is normally ruled by a dispersion relation between 
the frequency of the experiment, co, relaxation time, t, 
and scale of observation, L 

1 
- - ~ t ~ L  ~ . 
(9 

Small frequencies probe molecular times in connec- 
tion with the whole polymer or even larger parts of the 
material (flow properties) while extermely high fre- 
quencies are sensitive to relaxation within one chain or 
even to local jumps of side groups, etc. (ce is an expo- 
nent, specific to the model considered). 

The power law behavior of the critical gel correlates 
to a length scale range. Beyond the five decades of 
power law, which were the entire experimental range 
[7], a lower frequency limit is expected to be given by 
the sample size and an upper frequency limit is given 
by the transition single chain behaivor, i. e. if the fre- 
quency is large enough, length scales much smaller 
than selfsimilar regions are probed, e.g. finding the 
range of a single chain between two crosslinks. Power 
law behavior is found when L has a value in the range 
between this lower and the upper boundaries of 
lengths in the material. This will be discussed in the fol- 
lowing. 

Selfsimilarity hypothesis 

The experimentally observed characteristic fre- 
quency co* corresponds to a correlation length (apart 
from model specific constants) 

which is characteristic for the network structure. Rela- 
tion (5) is quite general. The structure is hypothesized 
to be selfsimilar at scales below ~, as supported by me- 
chanical selfsimilarity (see Fig. 1, 2). Here we see that at 
higher frequencies the power law is already estab- 
lished, while at lower frequencies one still has ordinary 
liquid behavior. This supports the hypothesis given in 
Eq. (5). We will now give a brief description of a pos- 
sible model. The critical gel is treated as a polymeric 
fractal, i. e. a selfsimilar object, in the spirit of Refs. [9, 

10]. ~ has to be identified by the size of the selfsimilar 
regions, i. e. the critical correlation length, as gelation is 
a critical phenomenon [1,11], i. e. ~ - I P - Pc I-~. This 
implies co* ~ 0 if p ~ Pc. 

The evolution of ~ with the extent of reaction is a 
direct expression of the evolution of the network struc- 
ture. The final state, if most of the chains have reacted, 
is a rubber which is formed by a very large number of 
crosslinks and has a finite modulus goo for zero frequen- 
cy. In this study we are not concerned about the short 
distance behavior which is probed only at extremely 

(4) high frequencies far above the frequency window 
given here, but we are more interested in the large scale 
elasticity of a size larger than a single polymeric bond, 
i. e. a chain between two crosslinks or a dangling chain. 

In the pre-gel state, we crosslink molecules into 
clusters which are weak solids of small spatial dimen- 
sion. The size of the finite clusters can be obtained by 
light scattering after a crosslinking reaction has been 
stopped by poisoning the catalyst [7]. The cluster itself 
is an ill-linked piece of macromolecule, which can, 
according to Cates [9], be defined as a polymeric frac- 
tal, with a distribution of"defects" studied in the perco- 
lation problem [11,12], such as loose ends, loops, and 
unreacted crosslink sites. With increased reaction 
time, one gets larger and larger clusters. Assuming 
there are large clusters in the melt of smaller clusters 
and uncrosslinked chains, the mechanical experiment 
is sensitive to the size of a typical cluster. At longer 
reaction times this size becomes larger and larger until 
it extends across the entire sample. The size of the typi- 
cal cluster becomes infinite at the ge lpoin t  where the 
critical gel is formed. There is strong evidence, as 
pointed out in the first section, that the network struc- 
ture of the critical gel is selfsimilar and so only a very 
large length matters. Generally one calls such selfsimi- 
lar objects "fractals" [11,12,15]. The straight line in 
G'(co), G"(co) over all co considered indicates that there 
is no dominant length scale in the problem, i. e. the cor- 

(5) relation length is infhlite and on each scale of observa- 
tion a similar structure can be found. 

The post gel state shows, for the first time, a finite 
equilibrium modulus g~o indicating a certain amount of 
elastic active chains. The system is no longer selfsimilar 
at the whole size. The correlation length decreases 
again (see Fig. 1, p > Pc). Thus, we again have a power 
law at larger frequencies, measuring the correlation 
length, while at lower frequencies typical solid behav- 
ior is present. The interpretation is very simple: as 
more and more chains are linked, one loses the "frac- 
tal information" of the infinite cluster, and highly 
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cross-linked regions appear with a characteristic length 
equal to the distance between two crosslinks. 

This can be summarized intuitively in Fig. 2, which 
suggests a close analogy with the percolation problem 
[1,11-13]. We want to examine the percolation idea in 
more detail. The rigid bonds on the lattice have to be 
replaced by flexible polymer chains [9]. This is the 
main difference from the application of the usual per- 
colation problem [14]. 

Modelling of mechanical behavior near the gel 
transition 

1. Polymer at  the gel point  (critical gel) 

Directly at the percolation threshold, when the 
power law in G' and G" is observed, no length scale 
matters, in contrast to the regimes t < tgel, where the 
size of the typical cluster is the characteristic length 
scale and t > tge~ where the size of the weakly linked 
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Fig. 2. Schematic sketches of three stages during percolation: (a) p 
< Pc: Only finite clusters are present; the correlation length is the 
size of a typical cluster. (b) p = pcc: The correlation length is infi- 
nite. It extends over the entire size of the lattice. The size of the clus- 
ter is infinite. (c) p > Pc: The bonds are filling the lattice more and 
more. The correlation length decreases as the selfsimilar regions 
decrease 

regions dominate. The structure is believed to be selfsi- 
milar (fractal), which means that the same properties 
are found at each length scale, and a power law for the 
mass-size scaling exists [15], m ~ R at~ where dfo 
defines the fractal dimension of the object. Looking on 
the very intuitive picutre in Fig. 3b we see that there 
can be loops within loops on all scales as well as single 
connecting bonds [12] and the structure is, on average, 
selfsimilar on every scale of observation. The elasticity 
of such rigid networks, i. e. where the bonds are con- 
sidered to be rigid, has been studied recently by Berg- 
man [16] and Webman and Kantor [17] but we applied 
their results for describing the critical gel, because they 
assumed that the bonds were rigid. 

In our case there is no rigidity in the object, since the 
bonds are highly flexible Gaussian chains. This affects 
the properties of the system and in general we can 
expect a different fractal dimension dr. This problem 
was solved by Cates [9]. 

The spectral dimension d~, introduced by Mexan- 
der and Orbach [18], is an intrinsic exponent and is 
only sensitive to the connectivity of the fractal. It is 
defined via the density of states of excitations (frac- 
tons), N, which scales like N(c0) - co as- 1 in close ana- 
logy to the usual scaling of N in d Euclidian dimen- 
sions where d~ = df = d. 

The relation (Mexander/Orbach relation) between 
the three basic fractal exponents [18] is d~ = 2dfo/d~o. 
The physical meaning of dwo is as follows: Suppose 
there is a random walker on the fractal. Measuring the 
mean displacement of the random walker, R, as a func- 
tion of time t, it is found to be R a~~ ~ t; hence, d~o = 2 
gives the Einstein result for classical diffusion. For d~o 
greater than 2, one obtains slow anomalous diffusion. 
In general the exponent d~o can be expressed as [9]: 

d~o = dfo + ~ (6) 

where ~ is the resistance scaling exponent on the frac- 
tal. If we now replace the bonds of the arbitrary "lat- 
tice" fractal by flexible chains, the spectral dimension is 
not changed because it is only determined by connec- 
tivity, which remains constant. 

Combining Eq. (6) and the Alexander/Orbach rela- 
~ds tion, the new d 1 of the polymeric fractal is df 2 - ds 

[9]. In ideal phantom polymer chains, it can be shown 
that for the polymeric case ~ = 2, the final answer is [9] 

2 ds 
2-a " (7) 
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In a polymer chain itself, when all the segments are 
replaced by polymer chains, we get a huge polymer 
chain and the new d t should be the same as the old one, 
which is true for d, = 1, the spectral dimension of a 
linear polymer chain, so d t = 2, as expected. 

Since we are interested in the percolating network, 
the Alexander-Orbach conjecture [18] suggests d~ = 
4/3 for for all Euclidian dimensions d (within an error 
of 2 %). Thus we would obtain d t = 4, which is mea- 
ningless since the largest value of d t is d when all the 
material is closely packed. Nevertheless, this agrees 
with the result of the classical Flory-Stockmayer 
theory, i. e. the solution of the percolation problem in 
the mean field limit. 

The conclusion is that Eq. (7) is of relevance if the 
chains are phantoms and excluded volume interaction, 
etc. has been neglected. The theory should be extend- 
ed to allow for interactions of the polymeric fractal 
with itself and a Flory theory will provide a crude esti- 
mate [9,13,19]. This can be done by minimizing the 
free energy 

(_~)2 M 2 
F = + v-k -  a- (8) 

where v is the excluded volume parameter, and R at 
M. The first part of the free energy accounts for the 
elastic contribution, while the second term is the 
mean-field interaction energy [9,13]. M is the total 
mass in the fractal. This defines a new fractal dimen- 
sion of the self-interacting polymeric fractal [9] 

d + 2  
~ t  = ds d~ + 2" (9) 

Again, if we assume ds = i for a selfinteracting polymer 
chain, we recover the Flory result o~ i = 5/3 in d = 3 
[19]. 

If we now assume that the critical gel is a percolating 
network, wer find for ds = 4/3 

= 2 (10) 

which is in agreement with the results for percolation 
clusters and lattice animals [20]. This result can be 
established since the critical gel is solved in a sea of 
smaller macromolecules, so that excluded volume 
forces are screened (at least) on a length scale of the 
chain itself, but not on the scale of the critical gel, so 
that the polymers remain within Gaussian statistics, 
but not the selfsimilar macromolecule. 

The last point in this section concerns dynamics. In 
the measurements of Chambon and Winter [7], the 
dynamic modulus had the dependence G(co) - (ico)1/2. 
This can be derived very simply by employing dynam- 
ic scaling [21] near tgd. In general, the modulus is given 
by G ~ k B T / V ,  where V is the volume of the system. 
This can generally be written as 

G ~ kt3T �9 (11) 

According to the dynamic scaling hypothesis, there is 
only one time in the system given in terms of frequen- 
cies 

co ~ ka~~ g(k{)  . (12) 

k is the corresponding wave vector in the system; g(x) 
an unknown scaling function. Using k = ~- l, dw = ~r 

fi~ 1 
+ ~, G is found to be G - co ~I + r g- 1 (~ co~-772) and, 
since we have still ideal Gaussian chains, x has to be 
equal to 2, giving 

~f 1 
G - co& + 2 _ co~. (13) 

The value =~1 = 2 has been found previously by 
Muthukumar and Winter [22] by comparing theory to 
experiment. They have not been able to explain the 
discrepancy with the fractal dimension of the percola- 
tion cluster (~ 2.5). Here it is shown that ~ i  = 2 can be 
understood in terms of swelling, due to the reaction 
bath (see also [20]). Moreover, it enters directly into 
the scaling of the dynamic modulus and appears in the 
dynamic experiment, carried out in the reaction bath, 
tOO. 

2. Pre-gel and  post-gel state 

A few remarks should be made about the pre-gel 
state. In the initial part of the experiment, we expect 
that chains are starting to link and small clusters of dif- 
ferent size are formed. The reaction process might be a 
mixture of chemically limited and diffusion limited 
growth, as well as cluster-cluster growth. There is no 
simple way of predicting the cluster size distribution as 
a function of reaction time, but various approaches are 
described in the literature [23]. A scaling approach 
might be possible for describing the diffusion limited 
growth [24] and we refer the reader to the original lit- 
erature. 
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The most important fact for us is that the correlation 
length is increasing with ongoing reaction. Thus the 
size of the selfsimilar regions is increasing. This 
explains why the power law in the modulus is already 
established below the critical extent of reaction, for 
higher frequencies probing shorter distances. 

Not too far below t~el, one is left with larger clusters 
in the solution of smaller clusters and linear chains. If 
the clusters are interacting as fractals, one may apply 
the transparency and opacity argument [24] which 
states that the sum of fractal dimensions of the single 
clusters is larger than the space dimension ; one can ap- 
proximate the clusters by "hard" balls of a radius ~. 
The long-term behavior then becomes similar to that 
of a suspension of balls in a fluid. Here the clusters are 
always opaque, since 2_~r > d, and ~1 > 1.5 in all our 
situations. One may then think of a polydisperse melt 
of fractal microgels [25, 26]. 

The post-gel regime t > tgel may be crudely repre- 
sented by Fig. 2c, where the gel is already described by 
a rubber on some scale. The rubber is a well-linked 
polymer macromolecule. It is clear that the correlation 

1 
length r - (Pc - p)V, (P > Pc), decreases for values of 

P > Pc while the structure leaves selfsimilarity and 
tends to a "lattice structure", as represented in Fig. 2c. 
Clearly, in the crosslinked rubber no lattice exists, but 
this will be equivalent to a well-linked gel. If more and 
more crosslinks are added, the zero frequency shear 
modulus will become proportional to the number of 
crosslinks (if all react and no wasted loops are formed 
[27]). 

Conclusions 

This paper supports the idea of mechanical selfsimi- 
larity, as proposed earlier [2, 22]. The most striking 
result of the experiment is that it is sensitive to the 
structure of the material and the result is that right at 
the percolation threshold, the dynamic modulus ex- 
hibits a power law G(c0) - 091/2 over the entire frequen- 
cy range. The question is whether this result can be jus- 
tiffed by structural properties of the resulting gel. 

We have found from mechanical experiments that 
the structure is dominated by the polymeric nature of 
the network, as proposed by Cates [9]. If we assume 
percolation as the process for the formation of the GP 
network, the fractal dimension of the network is d r = 
4, if the excluded volume is neglected. This d I value is 
far too high, since the material cannot packed more 

densely than the space. Thus the upper limit for the 
fractal dimension is the Euclidian dimension d. 

A more realistic picture is provided if self interac- 
tions of teh polymeric fractal are taken into account. 
Swelling of the fractal gives a decreased fractal dimen- 
sion, as in the case of single polymer chains, where the 
Gaussian chain has a fractal dimension of 2, while d t of 
a swollen chain is approximately 5/3. 

The swelling in our case is much more complicated. 
Since we have the huge network as a fractal itself, ex- 
cluded volume is important. On the other hand, at the 
gel point only a small amount of linear chains have 
reacted to form the fractal. The rest (a large amount) 
act as a solvent for the fractal. The solvent molecules 
are of least of the same length scale as the distance be- 
tween crosslinks. There are only a few small clusters 
left close to the percolation threshold. From this 
assumption we expect that excluded volume interac- 
tions are screened on distances between the crosslins, 
but are present on larger scales up to the size of the frac- 
tal (typically). 

On the level of a Flory argument, this can be con- 
firmed in the same way as Daoud and Family [25, 28] 
did in the case of a solution of a long polymer in small 
macromolecules, by using the free energy 

N 2 1 
F = (n/Ro) 2 + v---~- N~ (14) 

where N is the mass of the fractal as before and Ns the 
mass of the solvent molecule. The appearance of N~ in 
the denominator of Eq. (14) is due to screening of the 
excluded volume forces in dense systems. As long as 
N~ -* N, the Flory argument in Eq. (9) holds. 

However, ifN~ is comparable to N, then the interac- 
tion term changes to 

N 
U ~ ~ r  (15) 

and a new fractal dimension occurs [26] 

D I = (d + 2) as~2. (16) 

For linear chains (d~ = 1), this relation reduces to the 
fractal dimension of the true self avoiding walk in the 
mean field approximation [25, 29]. In our case, N~ is of 
the order of the distance between the crosslinks and 
larger, but not comparable to the infinite cluster. 

The dynamic scaling argument in the gel regime 
seems to be general and is in full agreement with the 
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dynamic scaling hypothesis of de Gennes [13], see also 
[30]. 

The behavior below the gel point is more complicat- 
ed than at the gel point itself. The approximations pres- 
ented here are very crude and should be confirmed by 
future experiments. There are various assumptions in 
the model which require further clarification. The 
most important one is the problem of entanglements as 
a possible interaction between clusters. The presence 
of entanglements might invalidate the tranparency- 
opacity argument and may cause changes in the 
dynamics of the system and the thermodynamic prop- 
erties. We assumed that entanglements are not a seri- 
ous factor in samples with an initial molecular weight 
below the critical one. 

In the post gel regime, selfsimilarity decreases as the 
correlation length decreases. Theory becomes extre- 
mely difficult for the polymer between the gel point 
and the rubber. Most of the rubber is formed far above 
the gel point, and rubber elasticity theory can be 
applied. 
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