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H* + §,0, - HSO,” + § (B)

Slow growth on the original nuclei is how the narrow distribution of particle sizes is obtained,
just as with the colloidal gold described in the preceding section. The formation of sulfur may
be terminated at any time by adding I, to react with the remaining thiosulfate. These monodis-
perse sulfur sols have been studied extensively, notably by V. K. LaMer and coworkers. Since
these particles are nonabsorbing in the visible spectrum, the range of particle sizes that may be
conveniently dealt with is broader than for absorbing particles such as gold. Using the Mie
theory, one can evaluate the scaitering efficiency as a function of R, for particles having a
refractive index relative to the medium of 1.50, which describes the sulfur-water system.

These “monodisperse” sulfur sols are good examples of another light scattering phenome-
non: the higher order Tyndail spectrum. We observed in Section 5.7a that the scatiering cross
section is an irregularly oscillating function of d, at least above a certain threshold value of 3.
Here it should be recalled that the complete theory reduces to the Rayleigh approximation for
very small particles and to the Debye approximation for somewhat larger particles, provided
the refractive index values are in the proper range.

The full solution of the Mie theory provides quantitative information about the depen-
dence of the efficiency factors on f and A. For uniform spheres over some range of refractive
index and size, different colors of light will be scattered in different directions. The sulfur sols
described here have the required properties to display this effect. Therefore, if a beam of white
light is shown through a sample of the dispersion, various colors will be seen at different ¢
values. The resulting array of colors is known as the higher order Tyndall spectrum (HOTS).
Red and green bands are most evident in the sulfur sols, and the number of times these bands
‘repeat increases with the size of the sulfur particles. Therefore the number and angular posi-
tions of the colored bands provide a unigue characterization of the particle size. In the
monodisperse sulfur sols, for example, particles having a radius of 0.30 um are expected to
show red bands at about 60, 100, and 140°, Particles with a radius of 0.40 um, on the other
hand, show red bands at about 42, 66, 105, 132, and 160°. Particle size determinations based
on observations of this sort agree well with those determined from electron microscopy. These
sulfur sols afe quite easy to prepare, and it is interesting to observe the development of higher
orders in the Tyndall spectrum as the thiosulfate decomposition reaction progresses.

It was once thought that the appearance of HOTS was evidence in itself for the presence
of a monodisperse system. The argument was that one particle size would scatter, say, red
light, at a particular angle, whereas another particle size would have the same R, value and
therefore the same scattering behavior for light of a complementary color. The resultant would
be the obliteration of any distinct color: The scattered light would appear white. Although
there may indeed be fortuitous cancellations of this sort at certain angles, it is also possible for
certain bands to reinforce each other. In general, then, it is best to say that polydisperse
systems may show HOTS, but in this case the angular distribution of bands is a characteristic
of the particle size distribution. The angular location and number of bands as determined
theoretically for uniform particles may not be used to interpret the HOTS of a polydisperse

system correctly.

5.8 DYNAMIC LIGHT SCATTERING

As mentioned in Section 5.1, so far we have focused on what are known as static scattering
experiments; that is, the intensities used in the methods discussed until now are time-averaged
intensities at any given angle . In general, however, the intensity accessible in a scattering
experiment depends on time ¢ as well, since the scattering centers are in constant random
motion due to their kinetic energy. The variation of the intensity with time, therefore, contains
information on the random motion of the particles and can be used to measure the diffusion
coefficient of the particles. The measured diffusion coefficient can then be used to determine
the size of the particle. The class of light scattering methods based on the time dependence of
the scattered light intensity is known as dynamic light scattering (DLS), and a large body of
work on various aspects of this technique has appeared in the literature in recent years {Brown

g
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1993; Chu 1991; Schmitz 1990). For example, the dynamic version of the diffusing wave
spectroscopy described in Vignetie V is a form of DLS, although in diffusing wave spectros-
copy the method of analysis is different in view of multiple scattering. Most of the advanced
developments are beyond the scope of this book. However, DLS is currently a routine labora-
tory technigue for measuring diffusion coefficients, particle size, and particle size distributions
in colloidal dispersions, and our objective in this section is to present the most essential
ideas behind the method and show how they are used for particle size and size distribution

measurements.

5.8a Intensity Fluctuations and the Siegert Relation

In a typical scattering experiment, a detector measures the intensity of the scattered radiation
over a period of time, say, £,, in discrete steps of Af (see Figure 5.16a}). As shown in the figure,
the intensity i(s,f) fluctuates around an agverage value because of the random motions of the
scatterers. Until now, we have denoted the average by simply i(s) for convenience. To be
precise, however, the avérage should be denoted by, say, i(s), and this is an average over time,

t, defined as

i(s) = lim = Lﬂ i(s, 1) dt = lim ~ 3 i(s.j¥) (102)
=i '

fp—roo by n—m
where the limit ¢, = oo reminds us that the measurement should be made over a sufficiently
large time for the average to be accurate. -
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FIG. 5,16 Schematic illustration of intensity measurement and the corresponding autocorrelation
function in dynamic Ilight scattering: (2) variation of the intensity of the scattered light with time;
{b) the variation of the atitocorrelation function C(s,#,) with the delay time ¢,.
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Equation (102) also shows how the above time average is measured experimentally. Typi-
cally, the intensity is measured in a set of discrete time intervals, £ = At, 24¢, 34¢, . . ., elc,,
as illustrated in Figure 5.16a, and the arithmetic average shown in Equation (102) is an |
approximation of the average intensity over time £, = nAt, ‘ :

In order to be able to use the fluctuation of the intensity around the average value, we f
need to find a way to represent the fluctuations in a convenient manner. In Section 5.3b in our
discussion of Rayleigh scattering applied to solutions, we came across the concept of fluctua-
tions of polarizabilities and concentration of scatterers and the role they play in light scattering
experiments. In the present section, what we are interested in is the time dependence of such
fluctuations. In general, it is not convenient to deal with detailed records of the fluctuations
of a measured quantity as a function of time. Instead, one reduces the details of the fluctua-
tions to what is known as the autocorrelation function C(s,t;), as defined below:

C(s,t;) = lim —tl— Sﬁ HsDIsE + t)dE = [(5,0)(51)

fn—om n
n

~ tim L 3 i(s,kAni(s, (k + j)Ar) (103) |
ne M k=0
whete 1, = jAt. The last part of the equation shows how the autocorrelation function is
calculated experimentally when the intensity is measured in discrete time steps as illustrated in -
Figure 5.16a. The time ¢, is known as the delay time since it represents the delay in time
between the two signals i(s,kAf) and i(s,(k + j)A) and is equal to jAz (se€ Figure 5.16a). The
function C(s,z,) is obtained for a series of values of 7, by takingj = 0, 1,2, 3, . . ., etc. The
autocorrelation function, as the name implies, is a measure of the correlation between the
intensity i(s,f,) at any time £, and the intensity i(s,#, + ¢,) after a time delgy of f,. The
correlation function obtained from Equation (103) is shown schematically in Figure 5.16b.
Modern dynamic light scattering instruments consist of hardware “correlators” that have a
pumber of channels or registers that keep track of i(s,kAf) for a large number of &’s and
automatically compute the products and the average in the summation term in Equation (103);
see, for example, the schematic representation of a light scattering instrument shown in Fig-
ure 5.5. o
The autocorrelation function has its highest value [i(s,0)]* at z, = 0. For ¢, = oo, i(s,f)

and i(s,? + 1,) become uncorrelated, and it can be shown that C(s,#,) is again independent of i
t, and that it is given by [{(s)]? where /(s) is the average value defined in Equation (102). For ‘
nonperiodic i(s,r), ‘C(s,t;) decreases monotonically from [1'(5,())]5 to [7(s)]?. Therefore, the {

ratio of the autocorrelation function to its asymptotic value [(s)]* can be written as

Cis )
()P
an equation known as the Siegert relation, in which £ is an instrumental constant approxi-
mately equal to unity.
The Siegert relation is valid except in the case of scattering volumes with a very small
number of scatterers or when the motion of the scatterers is limited. We ignore the exceptions,
which are rare in common uses of DLS, and consider only autocorrelations of thé type shown |
in Equation {104). As mentioned above, modern DLS instruments use computer-controlled
correlators to calculate the intensity autocorrelation function automatically and to obtain the '
results in terms of the function g,(s,2,); therefore we only need to concern ourselves here with !

=g(st) =1+ Elgs )| (104)

the interpretation of g,(s,%,).

5.8b Dilute (Noninteracting) Dispersions

5.8b,1 Monosize Spherical Particles: Measuring Diffusion Coefficient

and Particle Size
For dilute dispersions, i.e., those in which the interparticle spacing is so large that there are no
particle-particle interactions, DLS simply measures the intensity fluctuations due to single-
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particle motion. For monosize, spherical particles, one can show rigorously that g,(s, ;) decays
exponentially as follows:

g(s,t;) = exp (—s°Dt) (105)

Here, D, which is the quantity we seek from g,(s.¢;), is the diffusion coefficient of the particle
(and s is the magnitnde of the “scattering vector” defined in Equation {57) ). We can now use
the Stokes-Einstein equation (see Equation {2.32) and the accompanying comment) to obtain
the particle radius Ry, from D: ' ’

£ . (106)

67y Ry
where 7 is the viscosity of the fluid, %, is the Boltzmann constant, and T is the absolute
temperature of the dispersion. The radius R, measured in this manner is usually known as the
hydrodynamic radius (hence the subscript H) since it relies on the Stokes coefficient, 6wyR,—
a result from fluid (or, hydro) dynamics.

The measurement of the diffusion coefficient (and the hydrodynamic radius from D) is
one of the most common uses of DLS, but the method can also be used as a nonintrusive
technique for measuring the viscosity of a fluid. In this case, one uses “probe” particles with a
known radius so that the unknown guantity in the Stokes-Einstein equation is 4. More sophis-
ticated uses of the DLS technique using essentially the above concept are discussed in special-
ized monographs (Brown 1993; Pecora 1985; Schmitz 1990). The diffusing wave spectroscopy
mentioned in Vignette V also measures g,(¢,), but g,(¢,) in DWS is no longer a function of the
angle @ since multiple scattering smiears out the angle dependence of the intensity. As a result,
the theoretical formalisio needed for the analysis of the correlation function differs from what
we have presented above and in Section 5.8b.2.

Example 5.5 illustrates one use of the DLS data.

* L] "

EXAMPLE 5.5 Determination of the Effective Diameter of an Enzyme Using Dynamic Light
Scattering. DLS anaiysis of a dilute solution of the enzyme phosphofructokinase in water at 7
= 293K leads to the following data for the correlation function g.(s,t,):

s, x 107 (m~%s) 0.4 0.8 1.2 1.6 2.0 2.4
gyls.t) 1.75 1.8 1.47 1.375 1.298 1.236
8%, x 10°®(m2s) 2.8 3.2 3.6 4.0 5.0 10.0

0:(8,1) ' 1,188 1.148 1.119 1.093 1.052 1.003

Assume that the enzyme is roughly spherical and that the instrument constant £ in the
Siegert relation is unity and determine the hydrodynamic radius Ry of the enzyme. Given that
the partial molar volume V of the enzyme is 0.74 - 16 ° m%kg and the molecular weight M is
4,78 - 102 kg/mol, determine the “'dry radius” R, for the enzyme and obtain the ratio (B./R.,).
Can the difference between Ry and A, be attributed to the bound water on the enzyme? The
viscosity n of water at 293K may be taken as 0.001 kg/m s.

Sofution: The given DLS data can be used to obtain the intensity autocorrelation function
gq(s,t;) by rewriting the Siegert relation as follows:

In gy(s,t) = In[go(s,ty) — 1]¥* — 1/2In ¢

This leads to

$y x 107" (m™%s) 0.4 0.8 1.2 1.6 2.0 2.4
In gy(s,t,) -0118 -023  -035  —0464 —-058  —0.696
st x 107"(m™%s) 2.8 32 3.6 4.0 5.0 10.0
In gy(s,t) ~-0.81 -0.93  -~1.04 —-116  -245 —29

Equation (105) shows that the plot of in g,(s,t,) versus s, should give a straight line with a
slope equal to the negative of the diffusion coefficient D of the enzyme. A plot based on the
above data gives a straight line with a slope of —~2.88 - 10" m¥s and an intercept of —0.026.
Therefore, the diffusion coefficient based on the data is
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D =288-10""m¥s

{The magnitude of the intercept implies that the instrumental constant £ is roughly 0.95.)
From the Stokes-Einstein relation, Equation (106), we then get

Ry = kaTl{B7qD)
= [1.38:107% (J/K)-293K] + [(67)0.001 (kg/m s) 2.88-10(m?/s)]
= 74.4:10"°m

The “dry radius™ R, can be calculated from

R, = [(Bi4m)VMIN,"®

= [3/47)[0.74-10%m%g)4.78- 10%(kg/mol)/6.02- 10®moi~"]'"?

= 52-10°m
The ratio (R,/A,) is therefore 1.43,
. The source of this 43% difference between the ““dry radius’” and the hydrodynamic radius
is unlikely to be the increase in diameter due to bound water. It is more likely that the shape
asymmetry of the enzyme (i.e., the approximation that the enzyme is effectively spherical) is
the source of the above difference. [ ]

* * -

5.80.2 Effect of Polydispersity: Measuring Size Distribution

The DLS measurements can also be used in more complicated situations, for example, (a)
when interparticle interactions are important, (b) for dispersions with particles of other
shapes, (¢) for monitoring coagulation, and (d) when the dispersion is polydisperse. In all
these cases, a significant amount of modeling is often necessary to interpret the measured
autocorrelation function, and we do not consider them here. Instead, we restrict our attention
to a brief discussion of item (d) above, namely, polydisperse systems, since it is concerned
with a problem of more routine interest. ,

In the case of a polydisperse system, the overall decay of the function g,(s,,) is determined
collectively by the decay rate (i.e., s°D) corresponding to each particle (notice that s2D varies
with the particle size as evident from the Stokes-Einstein relation). In principle, the decay func-
tion in this case can be written formally in a simple manner as a weighted average of all
possible decays:

& (5,t;) = lim ljz; w,(s"D))exp( —5*Dit,) (107)
H—ca =

where wy sz-) is a weighting function determined by the amount of particles in size range f;

that is, the decay of g,(s,z,) for a polydisperse system is an appropriately averaged function of

the monodisperse case given in Equation (105). A number of methods are available for

determining the size distribution from the experimentally determined g,(s,2,). One of the

simplest is based on what is known as the cumulant expansion, i.e., a series expansion of In

&:(8,43), given by
(=)

Z; ki(s) "—F=  inthelimit 7, - 0 , (108)

ing(s.1,)

il

~Dst + &5 g’T + higher order terms

where &, is known as the nth cumulant. Equation (108) also shows that the first-order cumu-
lant is related to the average diffusion coefficients of particles of all sizes (denoted here by D)
and the second-order cumulant to the standard deviation ¢ of the distribution of diffusion
coefficients (see Chapter 1 and Appendix C for a discussion of standard deviation and some
of the related statistical concepts). :

Equation (108) is accurate only for small delay times and, in fact, the higher order terms
obtained experimentally are not usually very reliable because of the “noise” in the data.
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However, it does illustrate how one can determine an average particle size and a measure of
the breadth of the distribution function from experimental data. A plot of [In g{s,4,)/ (st}
against (s%t,) will lead to a straight line for small £, and D and s* can be obtained from the
intercept and the slope of the straight line.

The logic of the above form of g,(s,z,) and additional details are available in advanced
books on DLS, and the above description is meant only to illustrate the basic ideas and one
data-analysis approach. The cumulant analysis is often used as a first step before more ad-
vanced analytical procedures (each of which has its own advantages and disadvantages) are
attempted. Most DLS instruments come with computer programs for the analysis of the size
distribution, but we should bear in mind that each analysis technique has specific, and often
restrictive, assumptions and none is “exact.” As a consequence, the results of size distributions
from DLS are best interpreted as semiquantitative indicators of polydispersity rather than a
true representation of the distribution.

* - *

EXAMPLE 5.6 Cumufant Analysis of Dynamic Light Scattering Data. A polystyrene latex dis-
persion supplied by a manufacturer is claimed to have a ‘'very narrow' size distribution with an
average particle diameter of 62 nm. An analysis of the dispersion using DLS lgads to the
following data for In g,(s,t,). The DLS experiments are conducted at 20°C using a dispersion in
water at a particle volume fraction of 0.005. The wavelength of the laser used and the angle at
which the experiments are conducted correspond to 6.5345 - 10° m ™' for the magnitude of the

"~ Scattering vector s. The viscosity of water at 20°C may be taken as 0.001 kg/m s.

t; % 10° (3) 0.05 0.1 0.15 0.2 0.25
In g(s,t,) —-0.0156 —0.0305 -—0.0457 —0.061 —0.076
t; X 10°(8) 0.3 0.35 0.4 0.45 0.5

In gy(s,t) -0.091 —0.107 —0122 -0.137 —0.152

Check if the specifications supplied by the manufacturer are correct. State any assumptions
you make in your evaluation of the data,
Solution::  Assume that the interparticle forces are negligible. Further, since the volume fraction
of the dispersion used in the DLS experiments is very low, we may assume that the dispersion
is sufficiently dilute and that multiple scattering is negligible.

Equation (108) shows that the cumulant expansion for In gy(s,t,) may be rearranged to give

y=%’_@= _5+92fx with x = s%,

- A plot of y versus x can now be used to obtain D from the intercept and o2 of the diffusion

coefficient from the slope. Using the given data and the given value of s, we prepare a table of
Y versus x:
xx107¥m™2%s) 0.2135 0.427 0.6405 0.854 1.0675

yx10%(m¥s)  -7.08 . —7.14 7435 -704  -7.15
xx 10"%(m™2s)  1.281 14945  1.708 1.9125  2.135
y x 102(m?s) ~740 —-7.16 ~7.44 -713 —7.12

it is clear from the table that the vaiue of y is essentially constant over the entire range of given
delay time. The siope, hence ¢, is clearly negligible, and the intercept is approximately

D =714-10""m%s ,

The use of the Stokes-Einstein relation with the above value of the average diffusion
coefficient leads to a hydrodynamic radius of roughly 30 nm, which is consistent with the
specification of the manufacturer. =

* * -

5.8¢c Dispersions of Interacting Particles:
Mutual and Self-Diffusion Coefficients
Even in the case of monodisperse systems, the observed decay rate of g,(s,%,) {and hence the

diffusion coefficient) in general depends on the angle at which the decay is measured if
interparticle interference effecis exist. In the case of dilute dispersions, in which interactions
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of all sorts among the particles may be neglected, the interference is negligible, and the
diffusion coefficient measured is independent of the angle and is given by the Siokes-Einstein
equation (for spherical particles). This diffusion coefficient is often called the self-diffusion
coefficient (or probe diffusion coefficient) since it represents the unhindered Brownian motion
of a typical particle.

Although the analysis becomes complex for more concentrated dispersions (or even for
dilute dispersions of charged particles, which can interact over very large distances), some
general observations on two limiting cases are useful:

1. Measurements made at large enough values of Q (= sR) and for 7, ~ 0: For ¢, = Q,
the particles have very little time to wander far from their positions, i.e., the encounters
with neighboring particles are negligible. Moreover, for large values of Q (e.g., large s) ihe
interparticle interference is negligible since the range of interference in the observed intensity,
represented by the magnitude of s ™, is small. As a result, the measurements correspond again
to the self-diffusion of the particles.

2. Measurements at low O's; At low O’s, because of the large magnitudes of s, the
measured intensity and its autocorrelation function are dominated by the cumulative diffusion
of the particles. The measured decay rate thus represents the cumulative or mutual diffusion

coefficient D, given by

1 o, :
D, = = 109
" 61r17Rs( BCN>T (109)

where ,,, is the osmotic pressure of the dispersion and ¢y, is the concentration of the particles
in "number of particles/volume of dispersion.” It is the cumulative diffusion coefficient that
appears in the Fick’s laws discussed in Chapter 2, and the diffusion experiments described in
Chapter 2 measure this diffusion coefficient. Thus we have identified another method for
measuring mutual diffusion coefficients for (at least spherical) solutes. For dilute dispersions,
D in Equation (109) reduces to the self-diffusion coefficient. (Note that, for dilute systems,

= cyukeT and (37, /dcy)r = kgT.)

Moreover the influence of the motions of the particles on each other (1 e., when the

motion of a particle affects those of the others because of communication of stress through. .

the suspending fluid) can also influence the measured diffusion coefficients. Such effects are
called “hydrodynamic interactions” and must be accounted for in dispersions deviating from
the dilute limit. Corrections need to be applied to the above expressions for D and D,, when
particles interact hydrodynamically. These are beyond the scope of this book, but are dis-
cussed in Pecora (1985), Schmitz (1990), and Brown (1993). ‘

We have made a note of the hydrodynamic interactions and dther interactions to draw
attention to an important fact, That is, the analysis of the DLS data is often quite complex;,
and a simple use of the single-exponential decay function and the Stokes-Binstein relation is
not always sufficient, although many instruments available on the market use such an analysis
and report an “effective size” for the particles in the dispersion.

REVIEW QUESTIONS
1. Describe briefly what is meani by light scatfering and the mechanism by which molecules
scatter light.

2, Explain what is meant by each of the following terms: (2) electric field, (b) intensity of light;
(c) polarization of light.

3. Whatis Coulomb’s [rw and what are the units of the quantities that appear in Coulomb’s law?

4. Why is light scattering an important tool in colloid science? What is the range of dimensions
of colloidal particles that can be probed by light scattering? Why?

5. What is the difference between static light scattering and dynamic light scattering?

6. How does light scattering differ from x-ray scattering and reutron scattering in terms of
mechanisms as well as the range of interactions and structure that can be probed by each?

7. What is meant by Rayleigh scattering? What are the important assumptions and limitations of

the Rayleigh theory?






