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PART I .  Properties of Macromolecules 

The General Theory of Irreversible Processes 
in Solutions of Macromolecules 

JOHN G. KIRKWOOD, Sterling Chemistry Laboratory, Yak University, 
New Haven, Connecticut 

INTRODUCTION 

The course of irreversible processes in solutions of macromolecules is de- 
termined by the hydrodynamic forces which the large molecules exert on 
the solvent and by the Brownian drift in configuration which the molecules 
experience under the combined action of the frictional hydrodynamic forces 
and of external fields of force, gravitational, centrifugal, electric, or mag- 
netic. Perturbations in the flow pattern of the solvent by the macromole- 
cules, which determine the visco-elastic behavior of their solutions, are 
most conveniently treated by the Oseen method' which is based upon solu- 
tions of the Navier-Stokes equation possessing singularities appropriate 
to the frictional forces exerted on the solvent by the segments of a macro- 
molecule. Macromolecular Brownian motion may be described by a dis- 
tribution function satisfying a generalized equation of forced diffusion in 
molecular configuration space. 

In an earlier investigation,2 we have endeavored to formulate a unified 
statistical mechanical theory of irreversible processes in solutions of macro- 
molecules, based upon these concepts. Following Kramers, the methods 
of Riemannian geometry were employed to formulate a generalized theory 
of Brownian motion in molecular configuration space leading to a general- 
ized diffusion equation. The Oseen method was used in the analysis of the 
perturbations produced in the flow pattern of the solvent and for the de- 
termination of the components of the molecular diffusion tensor. The 
molecular relaxation time spectrum was constructed from the eigenvalues 
of the diffusion operator, and the perturbations in the distribution func- 
tion in molecular configuration space were expanded in the corresponding 
eigenfunctions. It is our purpose here to review the general theory and to 
outline its application to the analysis of a set of structurally significant 
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phenomena, visco-elastic response to applied stresses, flow birefringence 
and the Kerr effect, and dielectric polarization and dispersion. 

Since we shall not attempt to  take molecular interaction into account, 
the applicability of our results is limited to highly dilute solutions. Further- 
more, the schematic character of the molecular model which we employ 
limits the structural details which may be deduced by means of the theory 
from experimental data relating to irreversible processes. Further ad- 
vances in the theory should be directed toward the development of methods 
for treating molecular interaction and toward the exploration of the proper- 
ties of more detailed molecular models. 

GENERALIZED MACROMOLECULAR BROWNIAN MOTION 

We shall adopt the general feature of the pearl necklace model to de- 
scribe the hydrodynamic behavior of a macromolecule in solution in a sol- 
vent of low molecular weight. The molecule is regarded as an array of n 
identical structural units, attached to a rigid or flexible framework, and 
immersed in a structureless fluid continuum, which is supposed to possess 
the viscosity coefficient, refractive index, and dielectric constant of the 
solvent in bulk. Each structural unit of the molecule is assumed to exert 
a hydrodynamic force on the solvent which is proportional to its velocity 
relative to the local particle velocity of the fluid, with a friction constant 
1, in accordance with the theory of Brownian motion. Due to structural 
restraints, fixed bond angles, bond lengths, etc., the molecule will in general 
possess a number of degrees of freedom, v, which is less than 3n. Three of 
its degrees of freedom will be translational, associated with the coordinates 
specifying the position of its center of mass, three will be rotational, as- 
sociated with coordinates specifying its orientation relative to an external 
frame of reference, and v-6 will be internal degrees of freedom associated 
with coordinates specifying the configuration of the n structural units rela- 
tive to each other. In the case of rigid molecules, such as the globular pro- 
teins, the significant degrees of freedom are the six degrees of translational 
and rotational freedom. In the case of flexible molecules, such as the high 
polymers, there are additional degrees of freedom describing internal con- 
figuration, specified, for example, by the angles between the planes de- 
termined by successive pairs of bonds of the skeletal chain of the polymer 
molecule. In general, because of the small amplitude of the motion as- 
sociated with them, we can ignore the influence of vibrational degrees of 
freedom on the hydrodynamic behavior of solutions of macromolecules. 
We shall refer to the v-dimensional molecular configuration space as m- 
space, a point in which will be specified by a conveniently selected set of 
generalized coordinates, q'. . . 4'. The m-space is a sub-space of the com- 
plete 3n-dimensional configuration space of the n structural elements, 
which will be referred to as e-space. If R is the 3n-dimensional vector 
specifying the position of the n structural elements in e-space, we may span 
m-space by the following set of covariant vectors, a,: 
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n 
a, = (bRz/bqq") 

1 = 1  

n 
R = C R '  

1 = 1  

where R' is the projection of R on the 3-dimensional space of element 1, 
and the derivatives are to be taken at  constant values of all other qB and 
subject to the structural restraints characteristic of the molecule. The 
metric tensor of the m-space is given by : 

bR2 bR' gap = c-.-- 
1 = 1 bq" bq@ 

aa = C gapag 
B 

where aa is the contravariant vector reciprocal to a, and Iglaa is the ap- 
propriate minor of the determinant. The explicit determination of the 
elements gap of the metric tensor depends upon a knowledge of the struc- 
tural details of the molecule. 

The probability density f(q,t) of the ensemble describing the statistical 
mechanical behavior of the system, macromolecule-solvent, determines 
the observed value of a function p(q) of the coordinates q as the average 
value : 

+(t)  = s. s 4 cp(glf(q,OIIIdQP (3) 
a 

where the integration extends over all of m-space. In the canonical en- 
semble appropriate for thermodynamic equilibrium, the probability density 
f (q , t )  reduces to: 

(4) . f ~ ( ~ )  = ,Sl Ao - Wo(d 1 

p = l / k T  

where A .  is the configurational free energy of the molecule and Wo(q) the 
potential of average force associated with its internal degrees of freedom. 
For systems departing from equilibrium, the probability density, .f(q,t), is 
determined by the generalized diffusion equation: 

where the X a  are the covariant components of external force, for example, 
external electric, magnetic, or gravitational fields, and the & are the covari- 
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ant components of the hydrodynamic particle velocity of the solvent, un- 
perturbed by the presence of the macromolecule. The quantities DaB are 
the contravariant components of the diffusion tensor in m-space, given by: 

n 

Efa 
= 1  

Da' = kT[(g'lB/{) + T""']; T'lB = C T$ 

where the PB are the contravariant components of the Oseen hydrody- 
namic interaction tensor, 70 is the viscosity coefficient of the solvent, and 
{ is the friction constant associated with the motion of an isolated struc- 
tural unit of the molecule in the solvent. The vectors Rz and R, specify 
the positions of the structural units 1 and s in a common 3-dimensional space 
and Rl, is the distance between them in the specified configuration. 

The determination of the general elements D"' of the diffusion tensor 
requires detailed knowledge of the molecular structure. However, the 
translational components, associated with coordinates q', q2, q3, specifying 
the position of the center of mass in an external rectangular coordinate 
system, may be expressed in general form, by virtue of the relations: 

gab = nsap 

f @ = %  n a = 1 , 2 , 3 ; p = l ,  . . . ,  v (7) 

Equations (6) and (7) lead to the simple result: 

where X; is the component of the distance between units 1 and s along the 
rectangular axis a of the coordinate system to which the position of the 
center of mass is referred. The mean translational diffusion constant, b, 
is equal to one-third of the trace of D""', averaged over the internal coor- 
dinates : 

The sedimentation constant, s, is then given by: 

where M is the molecular weight and N is Avogadro's number. For the 
randomly coiled polymer molecule, consisting of n statistical units of length 
b, we have: 
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Xo = C/d6;3qOb (11) 

where MO is the molecular weight of the statistical unit. This result agrees 
with that obtained by Kirkwood and Riseman' by a less rigorous method. 
Except in sedimentation processes, the translational coordinates are re- 
dundant, since f (q , t )  is independent of them, and equations (3) and ( 5 )  
are valid in the space of the internal coordinates of the molecule with Y 

equal to the total number of degrees of freedom less three, with f(q,l> 
normalized to unity in the internal space alone. 

We shall now investigate the solution of equation (5 )  by the methods of 
perturbation theory. We &st transform equation (5 )  in the following 
manner : 

p(q,t) f (q , t )  = ,i%A*- wo1/2 

L P  - ( W W  = -QP 

The differential operator L is self-adjoint, and therefore possesses a com- 
plete orthonormal set of eigenfunctions Itx: 

L*, + X*x = 0 (13) 

with negative eigenvalues, -A, subject to the boundary conditions of 
single-valuedness and integrability in m-space. We now suppose that 
the operator Q may be expanded in powers of a parameter y, for example, 
the rate shear of the velocity field YO in the solvent, or the strength of an 
externally applied electric field : 

Q = yQ"' + yZQ(2) + . . . (14) 

We further suppose that the function p may be similarly expanded: 
m 

p(q,l) = f 0  + c P ( V  
s = l  

f O  = ,@[Ao- W01/2 (15) 
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where the fist term corresponds to thermodynamic equilibrium and the 
remaining terms describe the departure of the distribution function from 
its equilibrium value as a result of the perturbation Q, given by equation 
(14). Equation (12), (14), and (15) then yield the following system of in- 
homogeneous differential equations for the functions p G )  

Lp(l) - (bp(l)/bf) = - Q ( ” f o  ‘Iz 

Lp‘2’ - (bp(2’/bl) = - Q ( U p ( 1 )  - Q‘”’f0 ‘/a 

Lp(8). - (bp(s)’/bf) = - Q ( l ) p ( S - l )  - Q ( Z ) p - 2  + . . .  (15) 

The function p(’ ) (q , t )  may be expanded in the eigenfunctions Ij/x(q) of the 
operator L in the form : 

p ( ’ ) ( q , t )  = f-+m” G(’)(q,w)e””lw 

BY) = (1/27r) f-$” (Q( l ) fo l ’ /*)Ae- iwtd t  

(Q(l’fO1’’)A = f . . . f 2 /9J . i (q )Q( ’ ) fo  l/zndqa (16) 

Carrying the perturbation calculation to the second order, we obtain for 
the function p ( 2 ) ( q , t )  : 

p ( 2 ) ( q , t )  = s-t” G(2)(q,w)eiot dw 

a 

Perturbations of higher order may be obtained by similar methods. 
values of functions p(q), equation (3), may now be expanded in the form: 

Mean 
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where cp0 corresponds to thermodynamic equilibrium. The techniques 
useful in determining the eigenfunctions #A and eigenvalues - A  of the 
operator L are identical with those employed in the solution of the Schro- 
dinger equation in quantum mechanics. The reciprocals of the A-spectrum 
constitute the relaxation time spectrum, r = 1/X, of the system, a set of 
real positive number, determined by the diffusion tensor Dab. 

VISCO-ELASTIC PARAMETERS 

The visco-elastic properties of solutions of macromolecules are determined 
by the hydrodynamic forces, -Fl, which the structural units of the mole- 
cule exert on the solvent. These forces produce perturbations in the 
velocity field of the solvent, which may manifest themselves not only in an 
increment in the viscosity coefficient but also by imparting a rigidity to 
the solution for time dependent rates of strain. The intrinsic viscosity 
[ v ]  of the solution is related to the hydrodynamic forces F2, exerted by the 
fluid on the structural elements according to the following relation :4 

[7] = N*/lOOM770 

where i is the magnitude of the rate of shear, and V! is the unperturbed 
velocity of the solvent at  the point of location of structural element I rela- 
tive to the velocity of the center of gravity of the molecule. For a simple 
alternating shear of frequency w/2?r,  in direction e, propagated in the direc- 
tion e,, we may write: 

(20) 

where Rot is the position of element I relative to the molecular center of 
mass. According to the Oseen method, as employed by Burgers' and by 
Kirkwood and R i ~ e m a n , ~  the forces Fi, regarded as vectors in the common 
3-space of all structural elements, have been shown to satisfy the following 
set of linear equations: 

vo - - ~ ( R , Z . e ~ ) e ~ e ' ~ ~  ' 

n 

Ft + C C Ti,.F. = {(q - Ui) 
s = 1  

where R,, is the vector distance between elements 1 and s, 1 is unit tensor, 
Ut is the velocity of element I ,  and { is the friction constant of a single ele- 
ment. The velocities Ul are determined by balancing the components of 
the hydrodynamic force in m-space by the corresponding components of 
the diffusion forces, according to the theory of Brownian motion, to obtain: 
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where f is the probability density in rn-space, which satisfies equation (3). 
For alternating shearing strain f exhibits, according to equations (12), 
(15), and (16), a lag in phase relative to the rate of shear in the solvent. 
As a consequence, the function @ possesses both real and imaginary parts. 
and thus [ q ]  also possesses both real and imaginary parts: 

hl = h'l - W'I 

where the real part [q'] is the observed intrinsic viscosity, and the imagin- 
ary part determines the intrinsic rigidity [p ] ,  experimentally observed by 
Mason and Bakers and their collaborators. A detailed application of the 
theory which has been outlined here to the rectilinear pearl necklace mole- 
cule has been carried out by Kirkwood and Auer.6 For a molecule com- 
posed of a set of hydrodynamically resisting elements spaced a t  equal inter- 
vals b on a straight line segment of length L, they obtain: 

1 + 0 2 7 2  
- (1 + uNbL2 

["I = 9000Mo log (L/b)  
6Nk T w2 r 
lOOOM 1 + w2r2 [PI = - 

r = n7&'/18kT log (L/b)  

For stationary viscous flow, w = 0, the rigidity of the solution vanishes 
and [q'] becomes equal to the asymptotic form of Simha's formulas for the 
prolate ellipsoid of eccentricity approaching unity. 

BIREFRINGENCE 
When macromolecules dissolved in optically isotropic solvents are sub- 

jected to external torques, hydrodynamic, electric, or magnetic, their solu- 
tions become birefringent. This phenomenon is known as flow birefring- 
ence when the torque is hydrodynamic and as the Kerr effect when the 
torque is produced by an external electric field. In this section, we shall 
briefly describe the phenomenon of macromolecular birefringence in terms 
of the general theory. 

We suppose each structural unit of the molecule to possess a polariza- 
bility tensor increment QI, dependent on the coordinates qa, in excess of 
the polarizability of the solvent which it displaces. The average polariza- 
bility tensor U of the entire molecule is then given by equation (3) in the 
form : 

a = f.. . f 1/9Qj(Q,t)rIdq" 
a 

In  flow birefringence produced by a simple shear or in the Kerr effect pro- 
duced by a homogeneous electric field, CU is uniaxial. If we denote by the 
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unit vector e, the direction of the streamlines of the solvent velocity field 
in the first instance or the direction of the electric field in the second, the 
birefringence, nl - %, equal to the difference of the principal refractive 
indices in the x, y plane, is given by: 

where no is the refractive index of the solvent, c is the number of macro- 
molecules in unit volume, and G, nww, nEy are the appropriate components 
of the mean polarizability tensor. The tangent of the extinction angle 
x between e, and the principal axis e2 of the dielectric constant tensor in 
the x-y plane is related to ni,,, ni,,, and nzy in the following manner: 

x = , +  = nzz - nwv + . . .  
2nz, 

We consider first the case of flow birefringence produced by a constant 
rate of shear in the solvent, corresponding to the velocity field of equation 
(20) with o equal to zero. We set the perturbation parameter y of equa- 
tion (14) equal to the rate of shear i, and obtain from the last of equation 
(12) : 

Q = $)(I) 

(28) 

For the stationary case, the distribution functions p(l) and p(') of equations 
(16) and (17) reduce to: 

With these distribution functions, we obtain from equations (18) and (25) : 
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The mean values of equation (30) ,  when substituted in equations (26) and 
(27), yield the desired expansions of the birefringence and extinction angle 
in powers of the rate of shear, as sums over the relaxation time spectrum 
of the molecule. 

Birefringence due to the Kerr effect produced by an alternating electric 
field of frequency w, with direction e,  may be treated in the following man- 
ner. The internal electric field E', acting on the macromolecule in a non- 
polar solvent is: 

9 + Z E  E' = ~ 

3 

E = E@, cos wt (31) 

where Eo is the amplitude of the external field and €0 is the dielectric con- 
stant of the solvent. The applied field produces generalized torques Xu 
in m-space which may be derived from a potential, V: 

where p is the electric dipole moment of the molecule, equal to the sum of 
the dipole moments pi of its structural units, and a is again the polarizabil- 
ity tensor. Setting the perturbation parameter of equation (14) equal to 
the amplitude, Eo, of the electric field, we obtain from equations (12) and 
(32) the following perturbation operator : 

Q = Q(')Eo + Q(')E; 

(33) 

Equations (17), (18), and (33) lead to the appropriate mean values of zzz, 
2,,,,, and &,, and these in turn yield the birefringence and extinction angle 
when substituted in equations (26) and (27) .  The rather cumbersome re- 
sulting expressions will not be displayed here. The birefringence is pro- 
portional to the square of the amplitude of the applied field and the ex- 
tinction angle is found to be r / 2 ,  since cZv vanishes by symmetry for all 
field strengths. Thus the two principal axes of the dielectric constant 
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tensor remain parallel and perpendicular to the direction of the applied field. 
The relaxation of the Kerr effects arising from Q(l) and Q@),  the contribu- 
tions of the permanent and induced electric moments, exhibit entirely dif- 
ferent frequency dependence, with the induced component the only sur- 
viving one at very high frequencies. 

DIELECTRIC POLARIZATION AND DISPERSION 

We shall briefly review the application of the general theory to the 
analysis of dielectric polarization and dispersion of solutions of polar 
macromolecules. The principal results of the previous treatment of the 
problem, with special reference to polar polymers, by Kirkwood and 
Fuosd will be shown to be a consequence of the general theory of irreversible 
processes. 

We shall suppose the solution to be polarized by a homogeneous alter- 
nating electric field of frequency w / 2 ~  acting in the e, direction, equal to 
the real part of the complex field E: 

E = e,E&"' (34) 

The internal field E' acting on a macromolecule will be approximated by 
the Lorentz field in the case of nonpolar solvents and by the Onsager field 
in the case of polar solvents. 

E' = Eo'e.e'o 

E ; / E ~  = --- eo + ' ,  nonpolar solvent 
3 

3 €0 E;/E, = -- polar solvent 
2 E 0  + 2' (35) 

where co is the real dielectric constant of the solvent, which will be assumed 
to have negligible dispersion at frequency w. 

The complex dielectric constant increment, A, per molecule k., defined 
by the relation: 

A = lim (dcldc) 
;-0 

(36) e = - ie" 

A = A' - iA" 

where e is the complex dielectric constant of the solution and c is the num- 
ber of macromolecules in unit volume. If we ignore the optical contribu- 
tipn to its polarization and also assume that the polarization of the solvent 
displaced by a macromolecule is negligible, the dielectric increment A is re- 
lated to the average component of the macromolecular dipole moment 
p y  in the direction of the applied field in the following manner: 
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nonpolar solvent 

12*4 
2 4  + 1' 

polar solvent Q e: -- (37) 

The appropriate perturbation function, adequate for the calculation of 
p$) is obtained from equations (12) and (14) by setting the parameter 
y equal to the amplitude E,' of the internal field. 

We then obtain from equations (16), (18), and (27): 

1 @*h' @x 
3kT A 1 + ~ W T X  

_ -  - c  

where Po is the mean square electric moment of the macromolecule in the 
absence of the external field. The real and complex parts of the dielectric 
constant increment, A, are then given by: 

Equation (40) generalizes the results of the earlier treatment of Kirkwood 
and Fuoss and presents them as a consequence of the general theory. 
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Synopsis 

The general theory of irreversible processes in solutions of macromolecules, previously 
formulated by the author, is reviewed. The theory is based upon the Oseen method for 
determining the perturbation in the hydrodynamic flow pattern produced by the fric- 
tional forces exerted by the macromolecule on the solvent, and on a generalized theory of 
Brownian motion in molecular configuration space. Applications of theory to visco- 
elastic behavior, flow birefringence, and the Kerr effect, and to dielectric dispersion are 
presented in outline. 

' 

R6suni6 

La thbrie  de prochs irreversibles dans les solutions de macromolkules, plus tat 
pr&nt& par l'auteur, est rckumh. Elle est fond& sur la mbthode d'Oseen pour la 
dhtermination des variations de I'koulement hydrod ynamique caus& par des forces de 
friction, qui sont e x e r c h  sur le dissolvant par la macromolkule, ainsi que sur une thbrie  
ghnhralis& du mouvement brownien dans I'espace de la configuration molkdaire. 

Les applications de la thhrie  1 la visco-elasticith, 1 la birhfrigence d'koulement et 
I'effet Kerr ainsi qu'B la dispersion dihlectrique ont CtB  Cbauchhs. 

Zusammenfassung 

Die vom Verfasser friiher aufgestellte Theorie irreversibler Processe in Liisungen von 
Makromolekeln wird revidiert. Die Theorie griindet sich auf Oseens Methode zur 
Bestimmung der Storungen im Verlaufe der hydrodynamischen Striimung, welche durch 
von der Makromolekel auf das Lkungsmittel ausgeiibte Reibungskrlfte verursacht sind, 
sowie auf eine von allgetneinste Theorie der Brownschen Bewegung im Raume moleku- 
larer Anordnung. 

Anwendungen der Theorie auf viscoelastisches Verhalten, Stromungsdoppelbrechung 
und Kerreffect sowie dielektrische Dispersion werden in Umrissen vorgelegt. 

Received January 16, 1953 

Discussion 

Professor W. Kuhn (Basel): For some years we have been particularly interested 
in the irreversible processes connected with the orientation of geometrically anisotropic 
particles and with the orientation and deformation of chain molecules in streaming 
solutions. (W. Kuhn and H. Kuhn, Helv. Chim. Acta, 37, 97 (1944); 38, 1533 (1945); 
39, 71 (1946).) 

In the case of very elongated particles in a streaming solution a partial orientation of 
the long axis is taking place, an orientation which gives rise to  angular diffusion of the 
particle axis which is analogous to the ordinary diffusion of particles in a liquid in which 
a concentration gradient exists. Taking this irreversible (angular) diffusion process 
into account increases the heat developed per unit time and volume by a factor of 2. 
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That is, the intrinsic viscosity is twice as high (compared with the case in which only 
the hydrodynamic effects with neglect of the Brownian movement are taken into ac- 
count) if the orientation of the particle axis by the field of flow and the irreversible diffu- 
sion processes competing with the orienting influences are taken into account. This 
factor 2 is of interest. It disappears in the case of very high velocity gradients where 
Brownian movement becomes negligible, a circumstanEe which explains the decrease of 
viscosity with increasing rate of shear in very dilute solutions of geometrically aniso- 
tropic particles. 

For less elongated particles, the factor is smaller than 2 and becomes equal to  1 in the 
case of spheres. The factor 2 is therefore characteristic for small rate of shear and for 
very elongated particles. It would be interesting to  know whether 2 is a general maxi- 
mum value of the factor by which the heat development per unit of time is increased, 
taking the Brownian movement into account, above the value which would occur if the 
effects of the Brownian movement were neglected. The general theory developed by 
Dr. Kirkwood might give an answer to this question. 

Dr. Kuhn was the first to  point out that  the 
hydrodynamic torque on a macromolecule is not zero but equal to  the rotatory diffusion 
torque, and to  show that the intrinsic viscosity is significantly affected by the gradient 
of the orientational distribution function. This was also recognized by Simha (J.  Phys. 
Chem., 44,25 (1940)). However, both Simha and Kirkwood and Auer (J. Chem. Phys., 
3, 281 (1951)) f h d  that the intrinsic viscosity of extremely elongated molecules is four 
times the value obtained with the neglect of rotatory Brownian motion, whereas Dr. 
Kuhn fhds a factor of two. 

Professor J. G. Kirkwood (Yak) : 

I do not know the reason for this discrepancy. 


