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Synopsis

Numerous papers have recently appeared in the literature presenting quantitative comparisons of
experimental linear viscoelastic data to the most recent versions of ‘‘tube’’ models for entangled
polymer melts and solutions. Since these tube models are now being used for quantitative, rather
than just qualitative, predictions, it has become important that numerical prefactors for the time
constants that appear in these theories be evaluated correctly using literature data for the parameters
~i.e., density, plateau modulus, etc.! that go into the theories. However, in the literature two
definitions of the entanglement spacing in terms of plateau modulus have been presented, and
confusion between these has produced numerous errors in the recent literature. In addition, two
different definitions of the ‘‘equilibration time,’’ a fundamental time constant, have also appeared,
creating additional potential for confusion. We therefore, carefully review the alternative definitions
and clarify the values of the prefactors that must be used for the different definitions, in the hope of
helping future authors to avoid such errors. ©2003 The Society of Rheology.
@DOI: 10.1122/1.1567750#
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I. INTRODUCTION

‘‘Tube’’ models are now being used more and more frequently for quantitative calcu-
lations of relaxation processes for polymers of linear, star, and more complex topologies.
Unfortunately, numerous errors have appeared in these calculations due to incorrect or
inconsistent use of the definitions of the key quantities, especially of the entanglement
molecular weight. The objective of this note is to summarize the formulas that allow one
to calculate the parameters of the reptation tube model from measured melt properties,
and discuss alternative definitions of the parameters. Along the way, we will point out,
and correct, some errors made in the literature in the calculation of reptation tube param-
eters. Finally, we will summarize the most common ‘‘canonical’’ lists of definitions and
equations used in tube models, which we commend to those working in this field. Above
all, we urge that all papers published in the future make clear which set of definitions is
being used and that authors take pains to be sure they are used consistently. If authors use
parameter values from tabulations in the literature~especially entanglement spacings!,
they should be sure that their definitions match those of the tabulator, or that they adjust
the tabulated values to make them consistent with the definitions they are using.

II. TUBE PARAMETERS

The tube parameters that we calculate arete , the ‘‘equilibration time;’’tR , the Rouse
orientational relaxation time;td , the ‘‘disengagement time’’~or ‘‘reptation time’’!; Me ,
the ‘‘entanglement molecular weight;’’a, the ‘‘tube diameter;’’ andZ, the ‘‘number of
tube segments’’ per molecule. These quantities are computed via formula to be discussed
below from certain measured or known quantities. These measured or known quantities
include the temperatureT, Boltzmann’s constantkB , and Avogadro’s numberNA , from
which the universal gas constant is obtained asR 5 NAkB . In addition, some properties
of the polymer are required, including the polymer densityr, the monomer molecular
weight M0 , the polymer molecular weightM, and the monomer-based segment lengthb
~which is defined such that the polymer mean-square end-to-end distance isR2

5 Nb2, whereN [ M /M0 is the number of monomers in the polymer!. The radius of
gyration is then given byRg 5 ANb2/6. ~Note that the universal gas constant uses the
same symbol as the polymer end-to-end distance, but the former can always be recog-
nized in that it is immediately followed by ‘‘T’’ for temperature.! Finally, two rheological
parameters are required for calculation of the tube parameters, namely, the plateau modu-
lus GN

0 and the monomeric friction coefficientz. These two quantities have been mea-
sured for many polymer melts and are tabulated in Ferry’s~1980! book, for example.
Up-to-date values of the plateau modulus for many polymers can also be found in Fetters
et al. ~1994, 1999!. As described below, values of the entanglement molecular weightMe
given by Fetterset al.are based on a different definition ofMe than those given in Ferry,
and this has led to errors in published papers that we hope~by publishing this note! to
prevent being propagated or repeated in the future. Also, the formulas presented below
can be applied to entangled polymer solutions, if the plateau modulus and monomeric
friction coefficient are adjusted from the melt values to those appropriate for entangled
solutions. If swelling of the polymer due to excluded volume interactions is not com-
pletely screened out, there may be complications, however.
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III. EXPERIMENTAL CONSIDERATIONS

In addition to the issues discussed here involving tube-model definitions, completely
separate issues arise in determining the plateau modulus and the monomeric friction
coefficient experimentally, and in estimating, and correcting for, errors in these measure-
ments. In principle, the plateau modulusGN

0 can be determined from data on entangled
melts, usually from the value ofG8 in the plateau region, for example at the minimum of
G9, or from an integral ofG9 over frequency. In practice, however, the value ofGN

0

obtained in this way depends on the frequency at whichG8 is evaluated, or from the
upper limit of the frequency integration ofG9, and can depend on polymer molecular
weight, in apparent contradiction to the tube model. However, as was shown in Likhtman
and McLeish~2002!, the tube theory, when contour length fluctuations and constraint
release are properly incorporated, does predict a weak dependence of the apparent plateau
of G8 on molecular weight as approximatelyZ0.1– 0.15, which saturates to reasonable
accuracy between aboutZ 5 150 and 1000. Thus, in principle, the tube model itself,
when all relevant relaxation processes are included, could be used to ‘‘correct’’ the value
of GN

0 obtained from experiments. While these corrections might be rather small, they

affect the value of the entanglement molecular weight that is inferred fromGN
0 , which

can have a large effect on the predictions of the rheology of branched polymers, in
particular. We also note that corrections toGN

0 inferred fromG8 values are even more
important for entangled polymer solutions, which in general have fewer entanglements
per molecule, and therefore, larger effects onGN

0 due to contour length fluctuations, than
do melts. For the monomeric friction coefficientz, there are also difficulties obtaining
values that are accurate in the plateau and terminal regions for entangled melts. More
complete discussion of these issues can be found in Ferry~1980!, in Plazeket al. ~1979!,
in Raju et al. ~1981!, and in Likhtman and McLeish~2002!.

IV. LENGTH SCALES

The various length scales in the problem are depicted in Fig. 1, showingb ! a
! R 5 A6Rg ! L tube ! L. Rather than the ‘‘monomer-based segment length’’b as

defined above, sometimes the ‘‘Kuhn’’ step lengthbK is used, which follows a formula
for the mean-square end-to-end length similar to that ofb, namely,R2 5 NKbK

2 . Here,
NK is the ‘‘number of Kuhn steps’’ rather than the number of monomers, and the number
of Kuhn steps is defined so thatNKbK 5 L, the total polymer length. For synthetic
polymers with a carbon backbone, the ‘‘Kuhn step length’’ is related tob by bK
5 bAC`/0.82Aj and NK is related toN by NK 5 @ j (0.82)2/C`#N, whereC` is the

‘‘characteristic ratio’’ relatingR2 to the numbern 5 jN of backbone bonds and their
length l by R2 5 C`nl 2, and j is the number of carbon–carbon bonds per monomer.
Values forC` are tabulated in Flory~1989! and Fetterset al. ~1994!. The factor ‘‘0.82’’
enters because the tetrahedral bonding angles produce a zig-zag polymer conformation
when the chain is fully extended.

V. FORMULAS FROM DOI AND EDWARDS’ „1986… BOOK

We adopt formulas describing the reptation model directly from Doi and Edwards’
~1986! book. Within the classical Doi–Edwards theory, as described in this book, the
linear shear stress relaxation modulusG(t) is the product of the plateau modulusGN

0 and
a time-dependent functionc(t) that relaxes from unity to zero with timet after a small
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step strain; i.e.,G(t) 5 GN
0 c(t). In Eq. ~7.128! of Doi and Edwards’ book, the relation-

ship between the tube diameter a and the plateau modulusGN
0 is given as

GN
0 5

4

5
nM

b2

a2 kBT, ~1!

where nM is the number of monomers per unit volume of the sample. In Doi and
Edwards’ book, this quantity (nM) is given the symbol ‘‘c,’’ but the symbol ‘‘c’’ has a
well-established use as the mass concentration of polymer, and so here we introduce a
different symbol for the number of monomers per unit volume. For a polymer melt~no
solvent!, nM is related to the polymer density and monomer molecular weight by

nM 5
rNA

M0
. ~2!

This allows us to write the plateau modulus for a melt as

GN
0 5

4

5

rRT

M0

b2

a2. ~3!

Equation~3! is then the basic equation for obtaining the tube diameter a from the plateau
modulusGN

0 . A similar formula is given as Eq.~7.51! by Doi and Edwards, but their
formula is only an approximate scaling relationship and does not include the factor 4/5.

FIG. 1. Illustration of tube model, and the various length scales of the polymer chain and the tube. The blow
up shows a small section of the polymer, modeled as a freely jointed chain. Here,b is the monomer-based
segment length, a the tube diameter~which is equvalent to the tube persistence length!, R the root-mean-square
end-to-end vector,L tube the path length of the tube, andL the fully extended chain length.
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We note also that Eq.~3! holds only for flexible polymers, for which the tube persistence
length is equal to the tube diameter; i.e., for polymers that are already a random walk
even when their lengths are no larger than that corresponding to a single tube segment.

We next obtain the number of tube segments in a polymer of molecular weightM. The
number of tube segmentsZ is chosen so that the random walk describing the tube
conformation has the same mean-square end-to-end length as the real polymer. This
implies that@see Doi and Edwards, Eq.~6.20!#

Za2 5 Nb2. ~4!

Combining this with Eq.~3! gives a relationship betweenZ and the plateau modulus:

GN
0 5

4

5

rRT

M0

Z

N
. ~5!

Doi and Edwards also give a formula forMe , the molecular weight between entangle-
ments, as@Doi and Edwards, Eq.~7.52!#

Me
F 5

rRT

GN
0 , ~6!

where we have superscripted the entanglement molecular weightMe with ‘‘ F’’ to indicate
that this is Ferry’s definition@see Ferry~1980!#, which is used in Doi and Edwards’ book.
This definition was motivated by the relationship between the molecular weight between
cross links and the modulus of a classical rubber network, which follows a formula
completely analogous to Eq.~6!. Since early theories viewed entangled melts as ‘‘tem-
porary’’ rubber networks@Green and Tobolsky~1946!; Lodge ~1968!#, this definition
seemed appropriate. However, the Doi–Edwards tube model differs from ‘‘temporary
network’’ models in that it permits sliding of chains along tubes, which quickly relaxes
some stress that would be retained if entanglement points really acted like cross links that
do not permit such sliding motions. Thus, in view of the reduced stress predicted by the
tube model, it seemed to Fetterset al. ~1994! that a slightly different definition of the
entanglement molecular weight would be more appropriate, and this definition will be
discussed later. Using the Ferry definition, we find from Eqs.~3! and ~6!

a2 5
4

5

Me
F

M0
b2. ~7!

Combining Eqs.~5! and ~6!, we find that

Z 5
5

4

M

Me
F . ~8!

The quantityM /Me
F is sometimes referred to as the ‘‘number of entanglements’’ per

molecule. However, Eq.~8! shows that this is not quite equal to the number of tube
segments per molecule, but ratherZ is 25% larger thanM /Me

F . This difference has
caused confusion in the literature, as discussed below.

The Rouserotational relaxation timetR is given by a formula that is independent of
the tube model@Doi and Edwards, Eq.~4.37!#:

tR 5
zN2b2

3p2kBT
. ~9!
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Note that the terminalstressrelaxation time of the Rouse model is a factor of 2 smaller
than this value of the rotational relaxation timetR ; see the parenthetical comment at the
top of page 115 of Doi and Edwards. The above equation can be rewritten as

tR 5
zZ2a4

3p2kBTb2. ~10!

It is now convenient to define a molecular-weight-independent relaxation time scale,
by settingZ 5 1 in Eq. ~10!, giving the equilibration timete , which is the Rouse
relaxation time of a chain of length equal to one tube segment:

te 5
za4

3p2kBTb2 5 S45D2SMe
F

M0
D2

zb2

3p2kBT
, ~11!

where Eq. 7 has been used to get the second equality. This choice for the definition of the
equilibration time makes the formula 6.106 in Doi and Edwards, which was intended as
a scaling relationship, into the precise definition ofte . Using Eq. 11, oncete is specified
for a given polymer at a given temperature, the Rouse timetR is then given by simply:

tR 5 Z2te 5 S54D2S M

Me
FD2

te ~12!

Finally, we obtain a formula for the reptation disengagement timetd ~without fluc-
tuation correction! from Eq. 6.19 of Doi and Edwards:

td 5
zN3b4

p2kBTa2 5 3Z3te ~13!

The above formulas permit calculation of all the tube-model parameters from standard
polymer properties tabulated in Ferry~1980! and Fetterset al. ~1994!. We note, however,
that the Ferry tabulation of the monomeric friction coefficientz is based on data from the
transition region, and might not be very accurate for calculation of slow relaxation pro-
cesses. Many authors, therefore, feel justified in adjustingte to obtain the best agreement
with linear viscoelastic data for entangled polymers. Adjustment of this one parameter
still leaves plenty of room for rigorous testing of the tube model sincete must in
principle be held fixed when varying molecular weight, chain architecture, or in blending
together different chain architectures.

VI. ALTERNATIVE DEFINITIONS

An alternative definition of the ‘‘equilibration’’ time has been used frequently by
Milner, McLeish, and co-workers@see, for example, Milner and McLeish~1997!#, who
choose it to be the Rouse time of an entanglement segment of molecular weightMe

F ,
rather than of a tube segment. Thus, the Milner–McLeish~MM ! equilibration time is
larger by a factor of (5/4)2 than that given above. Superscripting this choice ofte with
‘‘MM,’’ we have

te
MM 5 S 5

4D 2 za4

3p2kBTb2 5 S Me
F

Mo
D 2

zb2

3p2kBT
. ~14!

We therefore obtain
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tR 5 S45D2

Z2te
MM 5 S M

Me
FD 2

te
MM , ~15!

and

td 5
zN3b4

p2kBTa2 5
15

4 S M

Me
FD 3

te
MM . ~16!

Much confusion and many errors in the literature have been produced because of the
differing definitions ofMe andte , and because of the factor of 4/5 that appears in many
places in the above equations. The key problem is that the number of tube segmentsZ is
not equal to the molecular weight divided by the entanglement molecular weight if one
uses the Ferry definition, given asMe

F in Eq. ~6!. Thus, Pattamapromet al. ~2000! have
made errors of 4/5 or powers thereof, in their calculations of the tube diameter, and the
reptation time, owing to their~incorrect! assumption thatZ is equal toM /Me

F . To avoid
this problem, Fetterset al. ~1994! incorporate the ‘‘pesky factor’’ of 4/5 into the defini-
tion of Me in Eq. ~6!, producing a value ofMe that is only 4/5 as large as that of Ferry.
We will refer to this as the ‘‘G definition,’’ which is given by

Me
G 5

4

5

rRT

GN
0 . ~17!

The ‘‘G’’ definition of the entanglement spacing has been attributed to Graessley
~1980!; however, the formula in this paper by Graessley relatesGN

0 to the number of tube
segments~here,Z!, not toMe . Thus, to our knowledge, the first to propose the definition
in Eq. ~17! for Me is Fetterset al. ~1994!. Nevertheless, we use a superscript ‘‘G’’ for this
second definition to distinguish it from the ‘‘F’’ used for Ferry’s definition, although
without intending to ascribe attribution to Graessley. The ‘‘G’’ definition results in Z
5 M /Me

G , which removes factors of 4/5 from the formulas for the relaxation times,
avoiding a source of possible error. However, one must then recompute and retabulate the
values ofMe , which has been done by Fetterset al. ~1994!. While intended to simplify
matters, this retabulation has led to further errors, because some authors have used values
of Me from Fetterset al., but have employed the Ferry definition ofMe in theoretical
calculations.@An example of this error occurs in Milner and McLeish~1997!#. This
causes only rather modest errors for linear polymers, where small powers of 4/5 end up
erroneously included or omitted, but for star polymers, the errors are large, since the
quantityM /Me appears inside an exponential function for the relaxation time or viscos-
ity.

Therefore,authors must take pains to make sure that the literature value of Me used
in their calculations was determined using the appropriate definition, or is corrected to
account for any difference in definition. The appropriate tube-model formulas that are
consistent with these different definitions, are summarized in Table I.

Finally, we note that other expressions are affected by the definitions ofMe and ofte ,
such as the equation for the ‘‘early time’’ primitive path fluctuations of a star arm~or of
a linear polymer thought of as a ‘‘two-arm star’’!, discussed by Milner and McLeish
~1997!. Milner and McLeish give the formula for this time as

tearly~s! 5
225p3

256 S M

Me
FD 4

te
MMs4, ~18!
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which is taken from Eq.~13! of the Milner–McLeish~1997! paper, combined with their
relationship for the Rouse time in terms of their definition of the equilibration time. The
parameters is the fractional distance from the tip of the star arm (s 5 0) to the branch
point (s 5 1), or to the center of the linear molecule, which is a ‘‘two-arm’’ star. This
result can be converted into theG definition of the entanglement spacing, but we must
also note the difference in definitions ofte . That is, if we change to the definition ofte
in Eq. ~11!, we obtain

tearly~s! 5
9p3

16 S M

Me
GD 4

tes4 5
5625p3

4096 S M

Me
FD 4

tes4. ~19!

TABLE I. Summary of the alternative definitions of tube parameters.

G definitions
~Fetterset al.!

Based on Eq.~17!
for Me and Eq.~19!

for te

F definitions
~Ferry!

Based on Eq.~22! for
Me and Eq.~19! for te

MM definitions
~Milner–McLeish!
Based on Eq.~22!

for Me and Eq.~14!
for te

Me
entanglement
molecular
weight

Me
G [

4

5

rRT

GN
0 Me

F [
rRT

GN
0 Me

F [
rRT

GN
0

Z
number
of tube
segments

Z 5
M

Me
G Z 5

5

4

M

Me
F Z 5

5

4

M

Me
F

te
equilibration
time

te 5 SMe
G

M0
D2

zb2

3p2kBT
te 5 S45D2SMe

F

M0
D2

zb2

3p2kBT
te
MM

5 S Me
F

M0
D 2

zb2

3p2kBT

tR
Rouse
rotational
time

tR 5 Z2te tR 5 Z2te
tR 5 S45D2

Z2te
MM

td
reptation
time

td 5 3Z3te td 5 3Z3te
td 5 3S45D2

Z3te
MM

tearly(s)
early-time
arm
fluctuation
time

tearly~s! 5
9p3

16

3S M

Me
GD 4

tes4

tearly~s! 5
5625p3

4096

3S M

Me
FD 4

tes4

tearly~s! 5
225p3

256

3S M

Me
FD 4

te
MMs4
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TheG definition of Me avoids the bulky prefactors~225/256 or 5625/4096! arising from
a square or a fourth power of 5/4@Likhtman and McLeish~2002!#.

The alternative definitions are summarized in Table I, under the headings ‘‘G defini-
tions,’’ which are followed in a recent paper by Likhtman and McLeish~2002!; ‘‘ F
definitions,’’ which are based on the Ferry definition ofMe and the definition ofte used
in Doi and Edwards; and the ‘‘MM definitions,’’ which are followed in the equations in
Milner and McLeish~1997!.

We note that the ‘‘late-time’’ fluctuation time is also affected by the definitions of the
entanglement spacing and of the equilibration time. The Milner–McLeish~1997! theory
for this relaxation time, in the case of monodisperse star polymers, is

tlate~s! 5 S 2p5

15 D 1/2S M

Me
FD 3/2

3te
MM exp@Ueff~s!#

Hs2~12s!2a1FS4Me
F

15M
D ~11a!G2a/~a11!

G22S 1

a11D J
1/2, ~20!

whereUeff is the effective potential, given by

Ueff~s! 5
15M

4Me
F

12~12s!a11@11~11a!s#

~11a!~21a!
. ~21!

Here,a is the ‘‘dilution exponent’’ of Milner and McLeish, which has been assigned the
values either of 4/3 or unity.G~ ! is the ‘‘gamma function,’’ which in Eq.~20! is raised to
the 22 power. An error of a factor of 2 was introduced into Eq.~20! by Milner and
McLeish ~1998!, but corrected in Frischknechtet al. ~2002; see their footnote 24!. One
missprint that has been carried from paper to paper is a factor ofs2 that has multiplied
both terms in the denominator of Eq.~20!, rather than only the first term, as given
correctly above.

The above pair of equations uses the MM set of definitions forMe and te . When
converted to theG definitions, these equations yield:

tlate~s! 5 S p5

6 D 1/2S M

Me
GD 3/2

te

exp@Ueff~s!#

Hs2~12s!2a1FSMe
G

3M
D~11a!G2a/~a11!

G22S 1

a11DJ
1/2,

~22!

and

Ueff~s! 5
3M

Me
G

12~12s!a11@11~11a!s#

~11a!~21a!
. ~23!

VII. SUMMARY

Recent refinements of the ‘‘tube model’’ for entangled polymer rheology have led to
attempts to compare quantitatively various versions of the model with experimental data
in both the linear and nonlinear regimes. Since many of these comparisons have been
marred by errors and inconsistencies in use of the definitions of the tube parameters, we
have here presented the most commonly used definitions, which we have labeled theG,
the F, and the MM sets. We urge workers in this area in the future to use one of these
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three sets, but by all means to identify their definitions clearly and to avoid inconsisten-
cies in their use. To that end, we have tried to identify the common pitfalls.
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