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ABSTRACT: We analyze the effect of conformational fluctuations of charged flexible polymers in the 
presence of screening. We find that  the fluctuations do not invalidate the classical theory of electrostatic 
persistence length due to Odijk and to Skolnick and Fixman. We show that there are strong local 
fluctuations with wavelength smaller than the screening length K - I .  These fluctuations significantly 
decrease the direct distance between two monomers separated by a contour length smaller than K - ~ ,  
although they do not affect the persistence length on much larger length scales. Our theory accounts for 
the apparent short persistence length recently reported by Barrat and Boyer. 
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I. Introduction 
Charged polymers are quite common in nature. Most 

water-soluble polymers (e.g., biopolymers) consist of 
monomers with ionizable groups. When dissolved in 
water, the ionic groups dissociate, leaving charges on 
the chain. The interactions among the charges then 
tend to elongate the polymer. In the absence of screen- 
ing, the conformation of the chain is known to be 
linearly stretched.lZ2 When screening is introduced, 
either by increased polymer concentration or by addition 
of salt, the situation is much more complicated. A 
crucial concept in describing such a system is the 
charge-induced bending stiffness, or electrostatic per- 
sistence length, independently introduced by Odijk3 and 
by Skolnick and F i ~ m a n . ~  The Odijk-Skolnick-Fix- 
man (OSF) theory considers the electrostatic energy cost 
of bending a long wormlike chain. Such a consideration 
leads to  a bending stiffness proportional to  the square 
of the screening length, which in the dilute limit far 
exceeds the screening length itself. 

While the OSF theory has been reasonably verified 
for stiff polymers such as DNA? there has been quite a 
controversy over whether the theory can be simply 
generalized t o  intrinsically flexible polymers, as was 
done by Khokhlov and Khachaturian (KK).6 Such a 
controversy arises due to a number of reasons: (i) 
Experimentally, there has been no clear confirmation 
of the expected scaling in the asymptotic regime of large 
screening length due t o  difficulties of probing very dilute 
solutions. Experiments are also restricted by finite-size 
effects, since the polymers used are usually not suf- 
ficiently long. Several experiments performed in the 
nonasymptotic regime seem to indicate a deviation from 
the OSF-KK (ii) There are a few recent 
numerical simulations which seem to suggest a persis- 
tence length much smaller than that predicted by OSF- 
KK f ~ r m u l a . ~ J ~  (iii) OSF theory ignores the fluctuations 
in the chain conformation, which might add an impor- 
tant contribution to the bending rigidity. It has been 
argued by Barrat and Joanny ( B J P  that the OSF theory 
is invalidated by fluctuations with wavelengths smaller 
than the screening length. Using a variational ap- 
proach, BJ obtained a persistence length proportional 
to the screening length. Similar conclusions were 
reached by Bratko and Dawson12 and also by Ha and 
Thirumalai13 using also variational approaches. 
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In this paper, we calculate the persistence length of 
charged flexible polymers by explicitly including all 
fluctuations in the chain conformation. We find that 
fluctuations do not change the OSF-KK picture quali- 
tatively, although they do modify the persistence length 
to a slightly smaller value. At length scales much larger 
than the screening length, the fluctuations are just those 
epxected in the OSF-KK picture, while at length scales 
much smaller than the screening length, they become 
much larger than they would be in a simple wormlike 
chain characterized by a persistence length. We analyze 
the numerical simulation data by Barrat and Boyelg and 
show that it is important to consider a local stretching 
effect which has a logarithmic dependence on the 
screening length. With both the local fluctuation and 
the stretching effect included, our theoretical calculation 
agrees quite well with the simulation data. 

11. Fluctuation Correction 

In this section we calculate the effect of thermal 
fluctuations on a flexible polyelectrolyte chain. We 
exploit the fact that these fluctuations are small for a 
weakly screened polyelectrolyte. Joanny and Barrat'l 
used a similar approach to treat intrinsically rigid 
polyelectrolytes. For convenience we treat the case of 
a ring polymer. We first determine the radius varia- 
tionally, thus fixing the linear charge density. Next we 
identify the normal modes of fluctuation away from the 
ring configuration. Finally, we estimate the amount of 
distortion of the ring owing to these normal modes. 

We start by considering a polyelectrolyte consisting 
of N segments, with segment length a. The charges are 
A segments apart, with strength go. Following refs 9 
and 11, we shall not explicitly consider counterions. 
Instead, we consider counterions as providing a screen- 
ing, so that the charges on the chain will interact via a 
screened Coulomb potential, 

(2.1) 

Here ru = Iri - rjl is the distance between two charged 
monomers, K is the inverse screening length, and 1, 
q O 2 / ( & T )  is the Bjerrum length, with E the dielectric 
constant of the solvent. Hereafter, we shall use the 
reduced charge q = qdc1I2 and measure energy in units 
of kBT. We assume that the chain has a bare persis- 
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the electrostatic energy. In writing it, we exploit the 
fact that the bulk of the electrostatic energy is that of 
distant pairs of monomers. At large separations Irl - 
r 2 / > >  6, the monomers can be regarded as a ring-shaped 
cloud of charge with density profile @). The width of 
this ring is the blob size 6. Using these facts, the second 
term in the free energy takes the form shown in eq 2.2. 
At smaller separations Irl - r2 l  5 6 the charge cannot 
be treated as a uniform cloud in this way. However, 
these separations contribute negligibly to the electro- 
static energy, as we show in the Appendix. Thus eq 2.2 
treats the potential energy adequately at all scales. 

Taking the charge density to  be that of a ring of radius 
ro and core size 5, with a smooth distribution inside the 
core, the second term in the above equation takes the 
form 

tence length lo. For flexible polymers, 10 % a. To focus 
on the effect of long-range interaction, we shall also 
neglect the self-avoidance of the monomers. Thus in the 
absence of the charge interaction, the chain would form 
a random coil with radius of gyration RG c- awl2.  

Now consider the chain conformation with charge 
interactions turned on. It is known that for unscreened 
interaction, the chain consists of linearly stretched blobs 
of characteristic size 6;ls2 within each blob the random 
walk configuration is not strongly affected. This leads 
to a radius of gyration proportional to the molecular 
weight, RG eN/Nb, where Nb is the number of 
monomers in a blob. When screening is introduced, one 
expects that this picture of linearly stretched blobs 
should remain valid within a screening length if K - ~  >> 
6. More precisely, it should be so within a persistence 
length 1, with 1, >> 6. In a simple scaling argument, 
one obtains blob size by assuming that the electrostatic 
interaction within a blob is roughly kgT,  giving 6 = 
= a ( l ~ / a ) - ~ ’ ~ A ~ ’ ~ .  

Here we give an alternative derivation of the blob 
length using a more careful consideration of balance 
between the stretching energy (due to entropic effect) 
and the electrostatic energy. Consider a chain of N 
monomers in the form of a ring. If the screening is 
weak, such a chain must form a near-circle of some 
radius ro. The radius ro is that which minimizes the 
freen energy Tdefined by 

Ir,) 

where U = l/2Crj exp(-Klr, - rJl)/lri - r,l. It is 
convenient to use Rouse-mode coordinates & to perform 
the configuration sum {rj}: 

N 

r, = Re [C A,, exp(2xinJiV)l 

Since the ring has little fluctuation at large scales, we 
expect the amplitudes G, for small index n to be nearly 
those of a perfect circle. Thus A0 = 0, A1 = (iro,ro,O), 
and A2 = & = ... = 0. We expect the opposite for high- 
lying models with n of order N.  These describe local 
fluctuations within the chain, at distances where elec- 
trostatic effects are minor. We shall treat the two types 
of modes separately. Accordingly, we first consider a 
ring in which all the mode amplitudes are fmed to 
values describing a circle for n = 0, 1, 2, ..., rima. For 
the moment we do not specify nmax except to anticipate 
that 1 << nmax << N.  Then by summing over the modes 
with n > nmax, we may obtain an effective free energy 
ZdrO). By minimizing this 2& we may find the optimal 
radius ro and hence the thermal blob length 6 and the 
linear charge density along the chain. 

The chief effect of the high-lying modes is to impart 
an entropic elasticity to the ring. The free energy thus 
has the form 

n=O 

The first term is the familiar elastic free energy of a 
random-walk polymer. It is unmodified by the con- 
straints on A,, ..., &,,,, since these represent a vanish- 
ingly small fraction of the modes. The second term is 

-1 
(v) = %( Q2 C, In If_ + C2) (2.3) 6 

where Q = Nq is the total charge on the chain and C1 
and C2 are numerical constants. Notice that there is a 
logarithmic term in the electrostatic energy, depending 
on an upper cutoff length K - ~  and a lower cutoff length 
<* 

Nb1/2. That is, the chain consists of linearly stretched 
blobs of size 6 within which the polymer performs a 
random walk. These two relations combine to give 

We now use the relations 2nr0 = and (/a 

a2N 2zr0 = - 4- (2.4) 

The equilibrium ro is found by minimizing the free 
energy with the constraint eq 2.4, which yields 

-1 - 113 + C3) (2.5) 

In the case where there is no screening, the upper cutoff 
is provided by the size of the polymer; therefore the 
screening length K - ~  in the above equation should be 
replaced by ro. Hence we have 

where CI’ and C3’ are other numerical constants. We 
see that the result is similar to the one obtained using 
simple scaling argument, but with logarithmic correc- 
tions. These logarithmic corrections can be important 
in analyzing the simulation data, as we shall discuss 
later. 

The above calculation enables us to determine the 
local structure of the polymer. On scales much larger 
than 6, we can view the chain as a charged loop with 
core size ( and linear charge density e = qNd6. This 
charged loop will have a circular shape with radius r-0 
when no fluctuation with n < nmax is considered (see 
Figure 1). In the absence of screening, these fluctua- 
tions only slightly distort the circular shape since the 
chain is very stiff due to the charge interactions. Thus 
we may treat the fluctuations as a small perturbation. 
As the screening length is decreased, the persistence 
length decreases and the fluctuations become stronger. 
We shall take the circular loop as our base state and 
consider fluctuations around this base configuration. 
The persistence length must be proportional to  the size 
of the polymer when the fluctuations completely destroy 
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energy change of an n mode that preserves the length 
of the loop with no stretching cost. This is so because 
the two deformations differ only by a A0 = n2An2/(4ro), 
which does not contribute to the quadratic order. It is 
very convenient to work with length-preserving defor- 
mations, since this leaves the core size of the loop and 
local charge density unchanged. It therefore ensures 
nice cancellation of the short-distance divergence (de- 
pending on the cutoff given by the core size of the loop) 
when we subtract the electrostatic energy of the base 
state from the deformed loop. 

Consider the electrostatic energy change due to a 
length-preserving deformation 

Figure 1. Schematic diagram of the base state, where the 
chain forms a circular loop with radius ro and core size 5'. 

the circular loop; i.e., the fluctuation amplitude is 
comparable to the radius. 

To analyze the fluctuation effect, let us consider a loop 
which can fluctuate only in its own plane; the gener- 
alization to  out-of-plane fluctuation is straightforward 
and the effects are minor. In general, an arbitrary 
fluctuation contains both the deformation of the shape 
and local stretching. We simplify the consideration by 
assuming that there is no coupling between stretching 
and deformation; therefore, any stretching will relax to  
a uniform value. With this simplification, the config- 
uration of the polymer can be parametrized by 

nmax 

r(8) = ro + A, cos(n8 + 4,) (2.7) 
n=O 

where r(8) = ro is the base state and A, and 4, are the 
amplitude and phase of the fluctuation of the nth mode. 
The amplitudes A, are closely related to the Rouse 
amplitudes A,, introduced above. Here A0 represents a 
simple uniform stretching. For a given shape, the 
electrostatic energy of the system is 

where Q = Nbq/[ is the line charge density, 

r12 = [r2(8,) + r2(e2) - 2r(0~)r (0~)  cos(el - e2)11/2 
(2.9) 

and the length element dl is given by 

dr  2 dl = [(-I dt? + r2 (8)11" d8 (2.10) 

We shall calculate the free energy cost due to an 
arbitrary deformation given by eq 2.7 to quadratic order 
in A,. Since the free energy is invariant under an 
arbitrary reparametrization 8 - 8 + 68, there is no 
coupling between different modes in the quadratic order, 
i.e., 

(2.11) 

hence we only need to calculate the free energy change 
of a single mode r(8) = ro + An cos(n6). Notice that this 
deformation changes the total length of the loop by 
nn2AnZ/(2ro), so E,, contains contributions from the 
stretching as well as the electrostatic energy. However, 
E, can be calculated by considering only the electrostatic 

We shall use the contour length I as the basic variable 
instead of the angle 8, since the small-length cutoff is 
uniform in terms of the contour length. The change of 
variable is accomplished by combining eqs 2.10 and 2.12, 
and we obtain (to quadratic order in A,) 

with a = Uro. Equations 2.9, 2.12, and 2.13 enable us 
to express U, in eq 2.8 in terms of contour variables a1 
and a2. We then expand eq 2.8 and keep the quadratic 
terms in A,. After some algebra, we find 

exp(-2~r, sin x )  

n2 sin3 x 
E, = nr,e2J'2d.x X 

2 2) (uo' + 2Kr0v'~) + (2Kr0) v' ) 

(2.14) 2 = zr,e I(Kro,n) 

with 

U ' O '  = n4 sin2 x + 
sin2 nx(2 - n2 - sin2 x - n2 sin2 x )  - 

2n sin x sin nx cos x cos nx 

v ' l )  = sin x[sin2 x(n4 - sin2 nx - n2 sin2 nx) + 
(2 - n2) sin2 nx - n cos x sin x sin 2nx1 

v"' = sin2 x(n sin x cos TLX - cos x sin nx)' (2.15) 

For any given n and Kro,  eq 2.14 gives the free energy 
cost in terms of the integral I(Kro,n). The general 
dependence of I(Kro,n) on n and K r o  is complicated but 
can be obtained numerically. Here we examine a few 
simple cases. 

(i) Kro << 1: this is essentially the unscreened case. 
The large-n behavior for E, is 

E ,  - nr0$n2 In n (2.16) 

(ii) K r o  >> 1 and n << KrO: both the size of the loop and 
the wavelength of the deformation A = 2mdn are much 
larger than the screening length. E, can be evaluated 
as a power series in l/(Kro). We obtain 

This E,  has a natural interpretation. Consider a loop 
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Amin: nmax x 2nrdAmin. Notice that modes with n = 0 
and n = 1 are excluded from the sum, since they 
represent merely a dilation and a translation, which do 
not distort the circular shape. 

First let us consider the unscreened case K - ~  = 00. In 
this case, since the large-n behavior is E,  - roQ2n2 In n, 
the summation in the above equation is nicely converg- 
ing, leading to ((dr/ro)2) = a4/(rol~E2). This implies that 
for sufficiently large ro (much larger than the micro- 
scopic lengths), the radial fluctuation will always be 
small compared to  the radius; hence the circular shape 
of the loop is only slightly distorted. Furthermore, 
increasing ro decreases the relative fluctuation. Thus 
we conclude that the persistence length in this case is 
infinity in the asymptotic limit, as it should. 

For a finite screening length, the above picture should 
not change if K - ~  >> ro, since the effect of the screening 
cannot be felt. For K - ~  x ro, the leading behavior for 
E,, does not change for large n (within a factor of order 
of unity). The shape of the polymer is still a well- 
defined circular loop. Therefore we conclude that the 
persistence length I ,  must be much larger than the 
screening length K - ~ .  

Next consider K - ~  << ro. The fluctuation contribution 
from a single long-wavelength mode (n << KrO) is 

2 0 --7 

0 2 4 6 8 1 0  
X 

Figure 2. Scaling functiong(x1 as discussed in the text. The 
dashed line is a curve given by y = x2/4, which matches g(x) 
for small x .  

with a local bending rigidity BO. The bending energy 
UB is given by Jdl  Bdro2, where llro is the local 
curvature. Using this expression, the increase of the 
bending energy due to an n deformation is computed, 
dug  =E,’ (Anlro)2, with E,’ = nBo(n2 - 1)2/ro. Compar- 
ing E, and E,‘, we find that for the charged loop, the 
electrostatic energy cost for a deformation with wave- 
length A >> K - ~  can be simply calculated by using an 
effective local bending rigidity 

(2.18) 

which is exactly the one given by the OSF-KK theory. 
This is expected since the direct charge interaction is 
limited by the screening length; therefore a deformation 
with wavelength longer than K - ~  should be describable 
by a local model. 

(iii) n >> K r o  >> 1: the size of the loop is much larger 
but the wavelength is much smaller than the screening 
length. 

E,  - nroe2n2 In - 
( K 3  

(2.19) 

This energy can be obtained by considering a deforma- 
tion of a straight line with wavelength A. Rewriting the 
free energy cost 6 9 i n  terms of A, we get 

An2e2 K-l  
6 3 -  ro- In 

A2 
(2.20) 

We see that 6.33s extensive with the size and has the 
same form as the energy of a stretched string with an 
effective line tension depending weakly on the wave- 
length and the screening length. Although the defor- 
mation we analyze is restricted to be length preserving, 
the tension term appears because the effective length 
within a screening blob has been changed. 

Combining (ii) and (iii), we find for K r o  >> 1 and n >> 
1, the energy cost has a simple scaling, I (Kro ,n )  = n2g(n/ 
Kro), where g(x)  x2/4 for small x and crossed over to  
ln(x) for large x (see Figure 2). Thus a deformation with 
wavelength much smaller than the screening length 
costs much less energy than that of a bending mode with 
the OSF bending rigidity. 

We now compute the distortion of the loop due to 
fluctuations. Let us consider the radial fluctuation dr 
at a given point. With the general deformation given 
by eq 2.7, we have 

((&I2) nm= ((A,)2> 1 
-- -E- = E - (2.21) 

where nmax is related to the short-wavelength cutoff 

r: n=2 T: n=2En 

which will be order of 1 if ro Q ~ / K ~ ,  giving a I ,  = ro = 
e 2 / K 2 ,  the same as ZOSF. This is not a surprise since ZOSF 
is the length where kBT of energy is needed to bend it 
by an angle of order of 1. 

To calculate the fluctuation correction to the persis- 
tence length due to  short-wavelength fluctuations, we 
define I ,  = ro when ((6r/ro)2) = l/nC;=21/(n2 - 112 = 
1.21/(9n). This definition would give a I ,  = I O S F  if all 
the modes could be described by a bending stiffness Be, 
= ZOSF. However, since the modes with wavelength 
smaller than the screening length are qualitatively 
softer, the persistence length defined above will be 
modified to a value smaller than I O S F .  Let us examine 
the aymptotic regime where K - ~  >> E and K r o  >> 1 and 
see the effect of short-wavelength fluctuations. In this 
regime 

(2.23) 

which yield 

(2.24) 1 

We see that the fluctuations with wavelength smaller 
than the screening length do not destroy the OSF-KK 
result. Since the second sum in eq 2.23 converges as 
nmax - 00, it does not depend on the detail of the short- 
wavelength cutoff. 

To check if the above calculation is self-consistent, we 
calculate the fluctuation correction t o  the distance 
between any given two points separated by an arbitrary 
angle. Such a correction must remain small compared 
to the distance for an undeformed loop in order that the 
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small-amplitude expansion makes sense. Using eq 2.7, 
we find that 

r2(8,,8,) - ro2(el,8,) 
p.. \ =  

I 
1 - cos n(8, - 8,) cos(I3, - 0,) 

sin2(8, - e2)/2 
(2.25) 

where the average over the phase angle $n has already 
been performed. For I31 - 192 - 1, ,!? - (dr/ro)2 << 1 for ro 
<< 1, as we calculated before. The largest relative 
fluctuation is for small distance where 81 - I32 = l/nma. 
In this case the angle-dependent function on the right- 
hand side of the above equation reaches the maximum 
n2, and 

Notice that the second sum in the above equation 
depends on the short-wavelength cutoff Amin. Using eq 
2.5 (with A = 11, we find that for a given cutoff 
wavelength Amin = y e  ( y  blobs), 

We see that for ro << 1, and K - ~  >> 6, if we choose y >> 1, 
then ,L3 << 1; i.e., the small-amplitude expansion is self- 
consistent for deformations with wavelength much 
larger than the blob length. On the other hand, if y is 
chosen to  be -1, then eq 2.27 yields,!? = al), indicating 
that the small-amplitude expansion is no longer valid. 
This is not a surprise since we expect to see large 
fluctuations at the scale of a blob length. Indeed, as 
with the “Pincus blobs” of any stretched chain,14 we 
expect to see order of 1 fluctuation of the angle defined 
by three consecutive blobs. 

The above analysis indicates that we can carry out 
the small-amplitude calculations only down to a length 
of several blobs. Fortunately, we have already treated 
the remaining modes; these are the modes that gave 
rise to  the elastic term in eq 2.2. The balance between 
the elastic term and the electrostatic one simply leads 
to a stretching effect as expressed in eq 2.5. Such a 
treatment is valid as long as Amin << K - ~  (see Appendix). 
It is then obvious that a consistent treatment of both 
long- and short-wavelength modes requires that 1 << y 
<< K - V ~ ,  which is achievable in the asymptotic limit K - ~  

>> 6. 
As noted before, out calculation for the overall shape 

fluctuation (as characterized by ((dr)2)) does not depend 
on the detail of the short-wavelength cutoff; hence the 
result regarding the persistence length remains the 
same with or without the above prescription. Therefore, 
small-wavelength modes do not change the persistence 
length qualitatively. However, as we discussed above, 
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these modes contribute sigrdkantly to the local fluctua- 
tion of the chain. 

To analyze further the effect of these short-wave- 
length modes, we calculate the fluctuation correction to 
the direct distance of the two points separated by a 
contour length Al = 11 - 12 due to all the length- 
preserving deformations with wavelength A > y6. The 
local stretching effect will be included implicitly in the 
relation AI = @n/Nb, while dn is the difference of the 
monomer index between the two points. Combining eqs 
2.7,2.9, and 2.13, the fluctuation correction to the direct 
distance can be expanded in terms of An’s 

where a factor of 2 is included to explicitly count the 
out-of-plane fluctuations. Here the reduced distance x 
is defined as 3c Al/ro, and the function H(n,x) gives 
the contribution of mode n at  x ,  

H(n,x) = 

[4n2 - (8n4 - 12n2 + 4) sin2(x/2) - 
16n2 sin(x/2) 

2(n2 - 1) cos nx - (n + 1)2 cos(n - 1)x - 
(n - 112 cos(n + 1)xI (2.29) 

Notice that eq 2.28 is similar to eq 2.25. The crucial 
difference is that eq 2.28 expresses fluctuations between 
two points separated by a fixed contour length, while 
the former expresses that between two points separated 
by an angle in space. 

We are interested in the case where A1 << ro or x << 1 
so that the slight curvature due to the circular geometry 
is negligible. In this limit, 

1 - -(n2 - u2x3, nx << 1 
H(n,x)= (2.30) 

This implies that all modes with wavelength A << A1 
produce a mere uniform contraction. 

It is instructive to consider first a simple flexible rod 
with bending rigidity Bo. As noted above, the mode 
energies En are given by E, = nBo(n2 - 1)2/ro. The 
summation in eq 2.28 can be divided into two parts 
where H(n,x) has qualitatively different behavior, 
X;% = X:Ci’x + E;;=; hence 

{ - ; z x ,  nx >> 1 

2 

(2.31) 

We see that the second summation does not depend on 
the cutoff wavelength. It is also the main contribution 
to the total fluctuation. An accurate evaluation of the 
sum in eq 2.28 allows us to determine the coefficient; 
we find 

A 7 2  

(2.32) 

in agreement with the general formula (r2) = 4A1Bo - 
8A12[1 - exp(-AI/2Bo)l, which predicts (&(AI)) = -A121 
(12B0) for A1 << BO. 
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For a charged loop, E,, behaves like that of a bending 
mode (with bending stiffness Be8 = ZOSF) for A >> K - ~  

and becomes softer for A << K - ~ .  Since for a given Al, 
the main contribution is from the modes with 2 < 111, 
we expect to see different behaviors as A1 changes from 
a distance much smaller to  a distance much larger than 
the screening length. 

<< A1 << K - ~ .  

Since En and H(n&) change qualitative behavior for n 
= Kro and n = l / x ,  we divide the summation into three 
parts, = + Xi!? + X::%z. The summation in 
eq 2.28 can be estimate% using the asymptotic forms 
for E,  and H(n,x) in the three regions. We obtain 

First let us consider the case where 

A s  anticipated, the results are independent of the radius 
ro in the regime. Thus ro can be taken large enough 
that the loop curvature is negligible. 

From the above equation, we see that the short 
distance fluctuation cannot be characterized by a simple 
bending model (which predicts a A12 dependence). The 
main contributions to the direct distance fluctuation are 
from modes with A < K - ~  , which leads to significant 
bending at a length of a few blobs. 

By similar considerations, we obtain estimates of 
(dr(A1)) for A1 >> K - ~ ,  

Equation 2.34 indicates that the fluctuation at large 
distance is in fact characterized by a bending stiffness 
Beff = ZOSF, except that there is also an overall contrac- 
tion due to short-wavelength fluctuations, which can be 
regularized by choosing an appropriate y .  

The above calculations show that for distance smaller 
than the screening length, the fluctuations get stronger 
due to softening of small-wavelength modes. If we fit 
the data in the regime using a pure bending model, we 
will get a persistence length much smaller than 1 0 s ~ .  

111. Comparison with the Numerical Simulation 
of Barrat and Boyer 

Recently, Barrat and Boyer simulated a simple poly- 
electrolyte model consisting of charged beads connected 
by springs. The interaction between charges is simply 
taken to be a screened Coulomb potential. There seem 
to be indications that the persistence length comes out 
much shorter than that predicted by the OSF-KK 
theory. This simulation shows clearly the chain flex- 
ibility that has led to the recent doubts about the OSF- 
KK theory. Here we shall briefly analyze the simulation 

1 6 1  

o a t  
0 20 40 60 80 100 

N / t Z  
Figure 3. &$I3 as a function of N/c2 for unscreened chains. 
Different symbols represent Barrat and Boyer's simulation 
data with different N(asterisk, N = 50; triangle, N = 100; 
diamond, N = 200; square, N = 400). The solid line is a two- 
parameter fit using eq 2.6. 

data and compare it with our theoretical calculations 
in the previous section. We find that there are two 
important factors which could lead a superficially small 
persistence length: one is the logarithmic stretching 
effect predicted by eq 2.5; another is the fluctuation 
effects due to short-wavelength modes as incorporated 
in eq 2.28. With these effects included, we can give a 
qualitative account of the simulation data. 

In the BB simulation, a crucial quantity studied is 
h(n), defined as h(n) = (R2(n>/a2 - nI1I2, where R2(n) is 
the mean square distance between two monomers 
separated by n bonds. For sufficiently large n, this is 
the same as the (r(A1)) we calculated. BB infer a blob 
length 6 as the inverse of the slope of h(n) at the origin 
(as predicted by a simple linear chain model). They 
estimate the persistence length from the point where 
h(n) starts to deviate from linear behavior. 

We first analyze BB's data for the unscreened case. 
In this case, eq 2.6 predicts that there is a logarithmic 
dependence of &31'3 on N/E2 (all lengths are measured 
in units of a) ,  while simple scaling predicts that 6 1 ~ ~ ' ~  
is a constant. Figure 3 plots as a function of N/C2 
for various N and coupling parameter Zg from the 
simulation. We see that there is a systematic decrease 
of with increasing N/ t2 .  Furthermore, data for 
different N and 1~ fall onto the same curve. A two- 
parameter fit using eq 2.6 gives a good agreement with 
the numerical data. From the fit, we obtain C1= 0.205 
and CS = 0.217. 

In the presence of screening, the blob length 6 is 
affected by the screening length K - ~  according to eq 2.5. 
5 increases with decreasing K - ~ ,  leading to a decrease 
in the slope of h(n) at the origin. To have an estimate, 
we take C1' and C3' to be the same as C1 and C3 obtained 
above. We find for N = 200 and K - ~  = 20, the slope of 
h(n) decreases by about 14%. Such an decrease of slope 
at the origin with the decreasing of screening length was 
observed in the simulation. 

To make more comparisons with the simulation, we 
also compute the function (r(A1)) numerically using eq 
2.28. The contour length A1 is related to monomer 
distance 6n via AI = W E .  We take a loop with radius 
approximately equal to  the persistence length. Conve- 
niently, this radius is so large that the loop curvature 
contributes negligibly. The only input we take from the 
simulation is the blob length which determines the 
initial slope of the curve h(n). This blob length is also 
used to calculate the line charge density. The cutoff 
wavelength Amin = 2nr0/nm, was chosen at a convenient 
value larger than 6, thus in the regime of the validity 
of our expansion. Figure 4 plots (r(6n)) as a function of 
dn for K - ~  >> 20 and K - ~  = 20. The blob size 6 is taken 
t o  be 1.9 and 2.4 for the unscreened and screened cases, 
respectively. The cutoff wavelength Amin is taken to be 
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Figure 4. Direct distance r(dn) as a function of monomer 
separation dn calculated using eq 2.28. The two solid lines 
are for K - ~  = (upper curve) and K - ~  = 20 (lower curve). The 
dashed line is a straight line extrapolated from the initial slope 
of the curve for the screened case. Amin marks the cutoff 
wavelength. All the lengths are measured in units of a. 

M 24. We observe significant bending of the curve due 
to short-wavelength fluctuations. A naive fitting using 
a pure bending model yields lap, x 5.6, much smaller 
than the true persistence length I, M 1 0 s ~  = 58. 

IV. Conclusions 
We have seen that the fluctuations of flexible poly- 

electrolytes have qualitatively different effects depend- 
ing on the wavelength of the deformation. Deformations 
with wavelength larger than the screening length are 
describable by an effective bending model with bending 
stiffness given by the Odijk length, while those with 
wavelength smaller than the screening length (but still 
much larger than the blob length) can be described by 
an effective line tension depending on the screening 
length and wavelength. Fluctuations with even smaller 
wavelengths can be treated by a simple model of 
stretched random walks. These short-wavelength modes 
appear to account well for small apparent persistence 
length reported by Barrat and Boyer. This simulation 
was designed to mimic experimental polyelectrolytes 
like those of refs 7 and 8 and detailed simulation like 
that of ref 10. Thus we believe that these modes are 
the likely source of flexibility seen in all these systems. 
However, our systematic calculation gave no support t o  
the conclusions of refs 11-13 that the short-wavelength 
modes should alter the scaling of the asymptotic per- 
sistence length. These authors use a variational ansatz 
in which the chain at  all scales (heyond 6) is described 
by a bending model. We believe that this ansatz is not 
supported by our explicit findings. 

The stretching effect we discuss in the previous 
sections leads t o  a logarithmic correction to the persis- 
tence length given by OSF-KK theory. Since ZOSF = 
Q ~ / ( ~ K ~ ) ,  where Q is the actual charge density depending 
on the blob length, we expect to see l o s ~  - K - ~  with 
logarithmic correction. Such a correction could be 
important in the nonasymptotic regime where the 
screening length is not sufficiently long. 
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Appendix 
In this appendix, we show that the electrostatic 

energy within a stretched segment of N,  = yNb mono- 
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mers (or y blobs) is negligible compared to the stretching 
energy of the segment provided y << K-l/(. Let R, = ylj 
be the linear size of the stretched segment. Using an 
argument similar to the one which leads to eq 2.3, we 
find the electrostatic energy within the segment 

(A. 1) 
u, = L( Q 2  c, In 3 + c,) 

RC 5 
where Cq is another numerical constant of order of 1. 
Given that the segment is described by a stretched 
random walk, the stretching energy is 

R,2 us = - 
a2N, 

(A.2) 

Using the relations Qc2 = Nc2q2/A2 = NC21B/A2 and R, = 
a2Nc/5 (eq 2.41, the ratio of electrostatic and stretching 
energy is 

The above equation can be rewritten (using eq 2.5) as 

U, C, M R J 3  + C, 
(-4.4) 

which implies UJU, << 1 for R, << K - ~  or y << K - V ~ ;  i.e., 
the electrostatic energy is negligible compared to the 
stretching energy. This is expected since the stretching 
effect is due to the charge interactions of all the 
monomers within a screening length, while U, has the 
contributions only from the monomers within the seg- 
ment. 

Since the Coulomb energy within a segment is small 
compared to the stretching energy, this energy can have 
only a small effect on the configuration of the segment. 
In particular, this energy can only have a slight effect 
on the fluctuations of the end-to-end distance of a 
segment. In any case, including this energy would be 
expected to reduce these fluctuations. 
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