
Molecular Weight and Branching "Drop the idea of large molecules.
Organic molecules with a molecular
weight higher than 5000 do not exist."
—Advice given to Hermann Staudinger
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End group analysis
Lowering of vapor pressure

Ebulliometry (elevation of boiling point)
Cryoscopy (depression of freezing point)

Osmometry (osmotic pressure)

Methods for the Determination of
Molecular Weight

Number Average—Absolute methods

Weight Average—Absolute methods

Light scattering
Neutron scattering
Ultracentrifugation

Relative methods

Solution Viscometry
Size Exclusion Chromatography



Osmotic Pressure
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Schematic diagram of the osmotic pressure experiment.

Osmotic pressure—belongs to a family of techniques that come under the heading of
colligative property measurements.



Osmotic Pressure Analogy to Ideal Gases and Virial Equations
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Schematic plots of PV/NRT versus P.

The Ideal Gas Law

PV
NRT  =  1or

The Idea of Virial Equations

PV
NRT  =  1 + B'P + C'P

2
 + D'P

3
 +   --------

The coefficients B', C', D', etc., are the second,
third, fourth, etc., virial coefficients.

Relationship to Molecular Weight

P VN  = RT N
V  =  # moles

volume   =  w
M 1

V  =  c
Mand Hence: P
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Osmotic Pressure
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Osmotic Pressure

Derivation of a Virial Equation from the Flory–Huggins Equation
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Osmotic Pressure can be related to the chemical potential via the Flory—Huggins equation:

and:

Expanding the Ln term:

Leads to:

This has the same form as the virial equation, but uses the concentration variable Φ   instead of c. 
However, we must be careful because the Flory-Huggins theory does not strictly apply to dilute solutions.

p



Light Scattering Looks fiendishly difficult because of all the equations,
but the Crucial Point  is that we end up with a
Virial Equation similar to that used Osmometry
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Measuring the Viscosity of Polymer Solutions

Most common method used to determine the viscosity of a polymer solution is to measure the time taken to flow
between fixed marks in a capillary tube under the draining effect of gravity.  The (volume) rate of flow, υ, is then
related to the viscosity by Poiseuille's equation:

υ  =  π P r
4

8 η l

where P is the pressure difference maintaining the flow, r and l are the radius and length of the capillary
and η is the viscosity of the liquid.

Relative Viscosity

Defined as the viscosity of a polymer solution divided by that of the pure solvent and for dilute solutions:

where t is the time taken for a volume V of solution (no subscript) or solvent (subscript 0) to flow between the marks.

η
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Relative Viscosity as a
Function of Concentration

A power series, similar to that used in the treatment of
osmotic pressure and light scattering data,
is commonly used to fit relative viscosity data:

η
rel

  =  
η
η

0
  =  1 + [η] c + k c 2  + .. .. ..

Both [η] and k are constants.
    

[η] is called the intrinsic viscosity

(η
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η
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If viscosity measurements are confined to dilute solution, so that we can neglect terms in c   and higher:

Note also that as c goes to zero (infinite dilution), then the intercept on the y-axis of a plot of (         ) against c
is the intrinsic viscosity, [η]:

3

[η]  =  (ηsp

c )
c → 0

ηsp/c

The Specific V iscosity  is defined as:   ηsp =  η
rel

 - 1



Measuring the Intrinsic Viscosity
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Schematic diagram illustrating the
graphical determination of the intrinsic viscosity.
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Schematic diagram illustrating the effect
of strong intermolecular interactions.

Most "extrapolation to zero concentration" procedures have a serious limitation.
Where one would like to perform measurements is at the lowest concentrations possible,

but this is generally where the greatest error in measurement occurs.

In practice, we use two semi-empirical
equations suggested by Huggins and Kraemer

ηsp

c   =  [η]  +  k' [η]
2
 c

ln η
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c   =  [η] + k"[η]
2
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The Mark-Houwink-Sakurada Equation
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K and "a".

The Relationship Between
Intrinsic Viscosity and Molecular Weight

 

If the log of the intrinsic viscosities of a range of samples
 is plotted against the log of their molecular weights,

then linear plots are obtained that obey equation:

[η]  =  KM
a

Note that K and "a" are not universal constants,
but vary with the nature of the polymer,

the solvent and the temperature.



The Viscosity Average Molecular Weight

For Osmotic Pressure and Light Scattering we saw that there is a clear relationship between
experimental measurement and the number and weight molecular weight average, respectively.

  

Viscosity measurements are related to molecular weight by a semi-empirical relationship and
a new average, the Viscosity Average for polydisperse polymer samples is defined.
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And:

By substitution and rearranging we obtain:

Note that the Viscosity Molecular Weight is Not an Absolute Measure as it is
 

a function of the solvent through the Mark-Houwink parameter "a".



Size Exclusion (or Gel Permeation) Chromatography
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Schematic diagram depicting the separation of
molecules of different size by SEC.

For a given volume of solvent flow, molecules of different size travel different pathlengths within the column.
The smaller ones travel greater distances than the larger molecules due to permeation into the molecular maze.
Hence, the large molecules are eluted first from the column, followed by smaller and smaller molecules.



The Calculation of Molecular Weight by SEC
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How Does SEC Separate Molecules ?

Benoit and his coworkers
recognized that SEC separates not
on the basis of molecular weight

but rather on the basis
of hydrodynamic volume of the
 polymer molecule in solution.

Elution Volume

Log
Molecular
Weight

Linear PolyA

Calibration Curves for:
Linear PolyB

Star-shaped 
PolyA

M

Same solvent
Same temperature

VL
A VS

A VL
B

If the molecular weight of monodisperse polystyrenes of different molecular architecture(e.g., linear, star-shaped,
comb-like, etc.) are plotted against elution volume they do not fall on a single calibration curve.
  

In other words, if we had three monodisperse polystyrenes, one linear, one star -shaped and one comb-like,
all with the same molecular weight, they would not come off the column at the same time (elution volume).
  

Similarly, different monodisperse polymers of the same molecular weight generally elute at different times.
Thus, for example, monodisperse samples of polystyrene and PMMA having the same molecular weight
might come off the column at different times.
  

In effect, this means we would require different calibration curves for different polymers and even the same
type of polymer if the architecture is different.
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The Universal Calibration CurveIf we model the properties of the polymer coil
in terms of an equivalent hydrodynamic sphere,
then the intrinsic viscosity, [η], is related to the
hydrodynamic volume V   via the equation:h

[η]  =  
2. 5 A V

h
M

A is Avogadro's number and M is the molecular weight.

Benoit and his coworkers recognized that the product
of intrinsic viscosity and molecular weight was directly

proportional to hydrodynamic volume.
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The Calculation of Molecular Weight by SEC
The Universal Calibration Method
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A universal calibration curve is prepared
using e.g. monodisperse polystyrene standards
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Note: we can simply calculate the intrinsic viscosity
if we can obtain the Mark-Houwink-Sakurada constants,
K     and a    , from the literature for polystyrene in the
same solvent at the same temperature as the SEC experiment.
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Important result because it relates the molecular weight
of the ith species to the hydrodynamic volume of that species

Let us assume that the SEC data was obtained from a
polydisperse sample of PMMA on an SEC instrument using
the same solvent and temperature that was used to prepare
the universal calibration curve from PS standards.

If we have K and "a" for PMMA in the same solvent and
temperature then the "true" molecular weights for the
polydisperse PMMA may be calculated from:
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Long Chain Branching
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Schematic representation of different long chain branches.

Long chain branching can have a major effect upon the rheological and solution properties of polymers.
    

Difficult to quantitatively determine the amount of long chain branching using conventional analytical
techniques, such as NMR or vibrational spectroscopy.
    

Very low concentration of any species that can be attributed to the presence of a long chain branch.
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Long Chain Branching and Mean Square Dimensions

The introduction of only one or two long chain branch points leads to a significant decrease in the
mean-square dimensions of macromolecules compared to linear molecules of the same molecular weight.

 

This statement may be expressed in terms of the ratio of the respective radii of gyration, g.
 

B. H. Zimm and W. H. Stockmayer, J. Chem. Phys., 17, 1301 (1949).
B. H. Zimm and R. W. Kilb, J. Polym. Sci., 37, 19 (1959).

   g  =   
< S 2 >

b

< S 2 >
l

        ( for the same molecular weight)    

Subscripts b and l denote branched and linear molecules
g is a function of the number and type of long chain branch points in the molecule.

  g  =  3f   -   2

f
2    

For Star Shaped Polymers
 

(Functionality f and Equal Arm Length)

For Randomly Branched Monodisperse Polymers
 

(Tetrafunctional)

  g
4
  =   (1 + 

mn
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)
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3 π

 - 1/ 2

   

mn  is the number average number of branch points per molecule



Long Chain Branching—Relation to Intrinsic Viscosity

g, the ratio of the radii of gyration of the branched to linear polymer chain of the same molecular weight,
 is related to the intrinsic viscosity by a branching function, g' :

  g'  =  
[η]

b
[η]

l
      (f or the same molecular weight)  

  g'  =  g 0 .5    

For Randomly Branched Monodisperse Polymers
 

(Empirical Relationship-Kurata et al.)

For Star Shaped Polymers
 

(Theoretical Relationship)

  g'  =  g 0 .6    

The experimentally determined intrinsic viscosity of a branched polymer will be less than that calculated from the
SEC data using the universal calibration curve (which assumes that the polymer chains are perfectly linear).

An appropriate branching function, g'(λ, M) that contains a branching parameter, λ, is defined such that:

[η]
b

  =  g'(λ,  M) [η]
l
  =  g'(λ, M)  KM

a
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Lets say this SEC is from a randomly tetrafunctionally
branched polydisperse polychloroprene (PC)

Using the universal calibration curve calculate the [η]
assuming the polychloroprene is linear
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If K and "a" are known for linear PC, then:

And the theoretical [η] for the polydisperse
PC assuming it is linear is given by:

The experimentally measured [η] will be less than
that calculated for a distribution of linear PC chains
This is the key to a measure of Long Chain Branching

SEC and the Determination
of Long Chain Branching – I
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Experimentally determine [η] for the poydisperse PC



SEC and the Determination
of Long Chain Branching – II
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The same SEC is from a randomly tetrafunctionally
branched polydisperse polychloroprene (PC)

Now use the universal calibration curve calculate [η]
assuming a value of the branching parameter , λ

log J 
= log [η] M 
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M   now has to be determined iteratively from:i

And the theoretical [η] for the polydisperse PC
assuming it is randomly branched

 

with a given value of λ is given by:
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This theoretical value of [η] is compared to the
experimental [η].  The whole procedure is repeated

with different values of λ until: 

     [η]
calculated

 =  [η]
observed

 

Then:
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