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Abstract Branched polymers are among the most impor-
tant polymers, ranging from polyolefins to polysacchar-
ides. Branching plays a key role in the chain dynamics. It is
thus very important for application properties such as
mechanical and adhesive properties and digestibility. It
also plays a key role in viscous properties, and thus in the
mechanism of the separation of these polymers in size-
exclusion chromatography (SEC). Critically reviewing the
literature, particularly on SEC of polyolefins, polyacrylates
and starch, we discuss common pitfalls but also highlight
some unexplored possibilities to characterize branched
polymers. The presence of a few long-chain branches has
been shown to lead to a poor separation in SEC, as
evidenced by multiple-detection SEC or multidimensional
liquid chromatography. The local dispersity can be large in
that case, and the accuracy of molecular weight determi-
nation achieved by current methods is poor, although
hydrodynamic volume distributions offer alternatives. In
contrast, highly branched polymers do not suffer from this
extensive incomplete separation in terms of molecular
weight.
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Introduction

Branched polymers are present in our everyday life as the
main component of plastic bags (polyethylene) and our main
source of calories (starch). Mechanical properties and digest-
ibility are the most important application properties in these
two examples. In both cases, and many others, the branching
significantly influences the application properties [1].

Size-exclusion chromatography (SEC) has a quasi-
monopoly on the molecular characterization of polymers
in general, and this is also true for branched polymers. The
method appeared in the late 1950s and was named gel
permeation chromatography (GPC) [2] or gel filtration
chromatography (GFC) [3]. The group of Benoit revealed
that GPC or GFC separates by hydrodynamic volume [4–
6]. The separation is thus based on size exclusion, which is
why IUPAC recommends using the term SEC instead of
GPC. Further breakthroughs in SEC have been the
development of online detectors, especially light-scattering
detectors [7–9] and viscometers [10, 11], and more recently
mass spectrometers [12]. Although the presence of
branches significantly changes the hydrodynamic volume,
the possible consequences of branching for the separation
of branched polymers by SEC are generally ignored in the
literature. The aim of this review is to discuss the impact of
branching in SEC separation by critically reviewing
findings scattered across 30 years from a number of
different countries and to deal with samples with radically
different applications. This will allow us to discuss the
characterization of branched polymers from SEC data. The
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determination of molecular weight distributions can for
example be plagued by very low accuracy in some cases,
but not in others. Other tools, such as the hydrodynamic
volume distribution, have important but unfulfilled poten-
tial that will also be discussed.

A large number of SEC features are relevant for
branched polymers, but only the most relevant are
discussed in this review. For a more comprehensive
discussion of SEC, the reader is referred to recent literature
[13–16]. SEC is not the only method used to characterize
branched polymers. Most of our current knowledge of
branched polymers actually derives from light scattering,
and has been critically and comprehensively reviewed by
Burchard [17]. However, light scattering requires large
molecular weights and sizes (radius of gyration larger than
12 nm [18]). Current research thus mostly relies on the
hyphenation of SEC or other separation methods with light
scattering [13, 15]. NMR can provide the average degree of
branching per sample in a straightforward way (1H
solution-state NMR of starch [19]) or in a less straightfor-
ward way (13C melt-state NMR of polyethylene [20] and
polyacrylates [21]). Mass spectrometry can be complemen-
tary [22]: it does not separate isomers like those that occur
due to branching, but it does allow the analysis of end
groups and gives information on the mechanism of
formation of branches in the case of the radical polymer-
ization of acrylates [23]. Branching is important for
rheological properties, and rheological studies can thus in
turn characterize the average branching structure, as
illustrated by the work on polyolefins [24, 25]. Finally,
separation methods other than SEC can be used to
characterize branched polymers. Field-flow fractionation
(FFF) [26] will be briefly discussed for very large
polymers, such as starch and polyolefins. HPLC methods
other than SEC will also be discussed, and differences in
separation mechanisms and the potential to separate
according to the branching itself are emphasized. Capillary
electrophoresis has been shown to be able to separate
oligomers according to their structure (tacticity) [27], but
the potential of the method for the separation of branched
polymers is still under investigation.

There are two types of branches: short-chain and long-
chain ones (see Scheme 1). Short-chain branches are

important for the crystallinity of material, as investigated
in depth for polyethylene [28]. Short-chain branching also
plays a key role in process engineering in the case of radical
polymerization [29–31]. However, it has little influence on
the SEC separation in some cases. Long-chain branching
has a more profound and significant impact on SEC
separation. The different definitions of short-chain and
long-chain branching will be discussed in this review.

Separation of branched polymers by SEC

Important prerequisites for SEC: full dissolution, no
adsorption onto stationary phase, no shear degradation,
and an appropriate injection concentration

Dissolution is a necessary and often overlooked step for
meaningful characterization in solution, particularly when
using SEC, to ensure the whole sample is analyzed. This
is especially true for branched polymers such as starch
and polyolefins. Difficulty in obtaining a clear, transpar-
ent polymer solution (suspension) usually leads to the
use of heat, sonication, microwave irradiation, acidic or
basic conditions, or the addition of salt [28, 32–34].
These can lead to the hydrolysis of the polymer chain [35],
and care needs be taken not to degrade polymers during
dissolution and before analysis with SEC. Dissolution
issues can be overcome through the use of different
solvent systems, such as polar organic solvents with
lithium salts for starch and cellulose [34, 36]. This
approach takes advantage of different dissolution mecha-
nisms, for example those for starch in aqueous versus
organic media [34, 35]. For starch in polar organic media,
a visual test of dissolution was shown to be invalid: it is
possible to obtain a clear and transparent starch suspen-
sion from which nothing precipitates upon centrifugation
but within which starch is not completely dissolved [35].
We studied starch dissolution in DMSO with LiBr,
showing the limitations of light scattering and the
successful use of 1H solution-state NMR to quantify the
kinetics [34] and the extent of dissolution [35]. Significant
interactions of the polymer chains with the stationary
phase can lead to a very complex and misleading

Scheme 1a–d Representation of a a linear polymer chain and various branched polymer structures with b long-chain branches (amylose-like), c
short-chain branches (amylopectin-like), and d both short-chain and long-chain branches (polyacrylate- or polyethylene-like)
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separation: the lowest and highest molecular weights can
co-elute and be separated only from the intermediate ones
[37]; the reproducibility is low without the appropriate
additive or appropriate stationary phase [38, 39], etc. Co-
elution can lead to an increase in the measured molecular
weight with elution volume at higher elution volumes,
which has been termed anomalous elution [40–43]. The
presence of branches is not intrinsically a problem when
separating with a size-exclusion mechanism (i.e., by
hydrodynamic volume). This was demonstrated in the
original work from Benoit with different polystyrene
samples including combs and using tetrahydrofuran as
eluent [4], or in the case of linear and branched poly-
ethylenes using 1,2,4-trichlorobenzene as eluent [44].
Some end-groups can, however, favor interactions. In that
case, the validity of universal calibration will be lost when
the number of branches is increased, because the number
of end-groups is increased. A neat example is hyper-
branched polyesters: they follow universal calibration only
after protecting their alcohol end-groups [45].

Some branched polymers have ultrahigh molecular
weights, such as amylopectin in starch [46, 47], alternan
[48], and some polyethylenes [49]. These can be degraded
by shearing during the separation [49, 50]. This has been
reviewed and is qualitatively known. An alternative is to
avoid high pressures by using separation methods without a
stationary phase, such as field-flow fractionation [51, 52].

Very few standards are available to characterize
branched polymers using conventional calibration SEC.
Multiple-detection SEC is thus the tool of choice. However,
the different sensitivities of the different detectors regularly
prevent the determination of molecular weights across the
whole chromatogram due to the low signal-to-noise ratio of
the signal from one of the detectors [1]. This problem is
most often encountered on the low molecular weight side
when light scattering or viscometer signals have a lower
sensitivity than concentration-sensitive detectors such as
refractive-index detectors. Increasing molecular weight at
high elution times can thus be an artefact that is related to
the signal-to-noise ratio and data treatment, even when the
signal-to-noise ratio looks high from a visual observation of
the chromatograms [53]. The effect is observed even with
the most modern and performant equipment, as seen for
example in Figure 13b of a very recent multiple-detection
SEC and FFF study of polyolefins [49]. This effect has also
been called “anomalous elution” [40–43]: the controversy
surrounding this term is discussed extensively on the third
page of [54]. When a large and bimodal size distribution is
measured, such as that of native starch, it may be
impossible to obtain a reliable molecular weight, even
using SEC MALLS. Removing the largest component
(amylopectin or potentially aggregates) using ultracentrifu-
gation allows a reliable molecular weight to be determined

for the amylose component using SEC-MALLS [55]. The
injection concentration thus needs to be high enough to
obtain a sufficient signal over the relevant range of elution
volumes for each detector. However, excessive injection
concentrations may lead to shear degradation in the injector
[50] and to extensive band broadening due to viscous
fingering [56]. Viscous fingering occurs when a viscous
liquid is pushed through a significantly less viscous one
[57]. The critical injection concentration above which
viscous fingering cannot be neglected has been determined
empirically [58], and can be predicted from the following
relation:

h½ � � C � 0:1� Vinj < 0:5 to 1; ð1Þ

where [η] is the intrinsic viscosity in dL g−1, C is the
injection concentration in g L−1, and Vinj is the injection
volume in mL.

In the next sections, we assume that the polymer samples
were fully dissolved, they do not significantly interact with
the stationary phase, they do not significantly shear
degrade, and that the injection concentration is optimal.

How does branching change SEC separation?

The main application of SEC is the determination of
molecular weights. The use of apparent molecular weights
(e.g., pullulan-equivalent or polystyrene-equivalent molec-
ular weights) can induce nonsystematic and significant
errors [59, 60]. The occurrence of branching adds one more
dimension to the complexity of the material, so the use of
apparent molecular weights for branched polymers is not
recommended. Multiple-detection SEC [14] allows true
molecular weights to be evaluated by two independent
methods: viscometry or light scattering. Viscometry enables
the determination of molecular weights using a universal
calibration curve. Light-scattering detectors yield absolute
molecular weights (i.e., no need for a calibration curve)
through low-angle laser light scattering, multi-angle laser
light scattering, or triple detection [61]. Although a
calibration curve is not used for light scattering, validating
with a universal calibration (i.e., a size-exclusion separa-
tion) is strongly recommended in order to avoid co-elution.
It is surprising that very few SEC characterizations have
been validated by determining the molecular weight with
two different methods. Pang and Rudin used this approach
to confirm the reliability of their high-temperature SEC
system for polyethylene [62]. Mueller’s group used this
method to validate the SEC separation of polyisocyanate
and a highly branched polymethacrylate. The case of
polyisocyanate demonstrates the importance of the polarity
of the solvent [63]. The case of the highly branched
polymethacrylate (a copolymer of methyl methacrylate
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(MMA) and 2-(2-methyl-1-triethylsiloxy-1-propenyloxy)
ethyl methacrylate) [64] confirms the suitability of SEC,
viscometry, universal calibration and light scattering for
characterizing highly-branched polymers. We validated the
separation of hydrophobic polyacrylates in tetrahydrofuran
in the case of linear polyacrylates [54]. When produced by
a radical process, polyacrylates are assumed to be long-
chain branched due to an intermolecular chain transfer-to-
polymer reaction. The occurrence, or not, of this transfer
can be detected by an end-group analysis, as demonstrated
by the group of Charleux in the case of the nitroxide-
mediated polymerization of acrylates studied by MALDI-
TOF mass spectrometry [65]. This elegant approach is
however limited to low molecular weights and processes
leading to specific end-groups, and is not applicable in the
case of the conventional radical polymerization used to
produce many coatings and paints. Different types of
branched polyacrylates have thus been characterized using
multiple-detection SEC. However, in this case, viscometry
and light scattering have been shown to lead to significantly
different molecular weights. Viscometry consistently yields
molecular weights that are slightly or much lower than
those determined by light scattering [21, 54, 66]. Note that
molecular weights can also be determined using universal
calibration and the Mark–Houwink–Sakurada relation.
However, this method is not universal, as the Mark–
Houwink–Sakurada relation is not universal; in particular,
it is not valid in the case of statistically branched polymers
[21, 67]. Note also that triple detection combines light
scattering and viscometry results in order to calculate the
form factor through an iterative process. The theoretical
background on the impact of branching on triple detection
is limited. Experimentally, triple detection and LALLS
yield the same molecular weights for branched polyacry-
lates [54], and triple detection has been used to characterize
a number of branched polymers, such as regular stars [68].

SEC suffers from band broadening [69] and its inability
to yield a complete separation such as that obtained with
mass spectrometry [70]. For some branched polymers,
branching causes the separation to be even less complete
in terms of molecular weight. The reasons for this,
limitations of it, and solutions to it are the main focus of
the discussion which follows, especially in relation to the
concept of local dispersity.

Separation of branched polymers

The difference in the molecular weights determined by
different multiple-detection SEC methods was predicted by
Hamielec [71–73]. The reason for it is that the hydrody-
namic volume can significantly vary with the number,
positions and lengths of the branches in polymer chains.
Branching leads to a contraction of the polymer chain in

terms of the hydrodynamic volume. Thus, when a linear
and a branched polymer have the same hydrodynamic
volume, the linear one has a lower molecular weight than
the branched one. Since the separation is based on
hydrodynamic volume in SEC, chains with different
molecular weights can co-elute due to differences in their
branching structures (see Fig. 1). The molecular weights
determined by SEC at each elution volume are then only
local average molecular weights. Hamielec predicted that
light scattering would determine a local weight-average
molecular weight, while viscometry would determine a
local number-average molecular weight [16]. Light scatter-
ing leading to a weight-average molecular weight is
expected from an early theory of the light scattering of
polymers [74]. The case of viscometry is less trivial. Offline
viscometry leads to the determination of a weight-average
intrinsic viscosity and the viscosity-average molecular
weight and not the number-average molecular weight.
However, the use of online viscometry in SEC in
conjunction with a universal calibration curve leads to the
determination of the number-average molecular weight, as
demonstrated by a complete derivation that takes band
broadening into account [75]. This model is completely
consistent with the experimental results: viscometry yields
lower molecular weights than light scattering since number-
average molecular weights are lower than weight-average
ones.

Fig. 1 Schematic representation of three populations of branched
polymers within a SEC chromatogram and the corresponding local
dispersity
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The effect of branching on SEC separation can be
significant but it is variable. Multiple-detection SEC allows
it to be quantified through the local dispersity [21, 54, 75].
Just like the definition of the “conventional” dispersity, the
local dispersity is the ratio of the local weight-average
molecular weight (from light scattering) to the local
number-average molecular weight (from viscometry). Note
that the local number-average molecular weight can also be
determined from double detection when one of the end-
groups can be selectively detected. An elegant and
important example has been demonstrated by the group of
Huber in the case of starch; this method takes advantage of
selective labeling at the single reducing end of each
molecule [76]. Local dispersity can also be determined
using multi-dimensional liquid chromatography. In that
case, SEC needs to be coupled to a method that separates
according to a parameter related to the branching rather
than the size [77–79]. This can be realized using interaction
chromatography [77] or a molecular topology fractionation
method, as done in the case of model star polymers [80].
Using molecular topology fractionation, the SEC co-elution
of linear and star polymers differing by a factor of two in
molecular weight has been observed. The effect is
significant, even though it should be less important for
well-defined branched polymers, as they possess only one
branching topology and the branches have a narrow
molecular weight distribution.

Characterization of branched polymers using SEC

Determination of the molecular weight distribution
and hydrodynamic volume distribution

Local dispersity is significant when the branching creates
heterogeneity; i.e., when there is no more a one-to-one
relation between the hydrodynamic volume and the
molecular weight. When all polymer chains are highly
branched, the heterogeneity is not significant and the local
dispersity is thus low [64]. The distribution of molecular
weights can then be accurately determined using SEC. This
may also be the case with regularly-branched polymers
such as stars. Regular stars can be partially separated from
their arms (before branching or after debranching) using
SEC when the molecular weight of the arms is controlled
during polymerization, for example using RAFT [68].
However, the situation is different for statistically branched
polymers. Local dispersities of more than two have been
measured with multiple-detection SEC for polyacrylates
[54]. This means that the accuracy of the molecular weight
distributions (and the Mn and Mw values for the whole
sample) determined by SEC is low, even when using
multiple detection. The error can be on the order of 100%

for the molecular weight distribution [66]. A quantitative
determination of molecular weights is necessary for
example in the case of kinetic studies [30]. If statistical
branching may be present, it is then important to determine
the local dispersity in order to evaluate the (potentially
large) inaccuracy. However, molecular weights are often
used as relative values; i.e., for comparative studies. In that
case, it is important to realize that the error in the molecular
weight determination is not systematic: the local dispersity
determined on polyacrylates strongly varies within one
sample, in some cases from unity (high accuracy) to values
above two (low accuracy). For comparative studies, we thus
recommend that hydrodynamic volume distributions should
be used instead. These are also very relevant to studies of
polymer flow properties [81]. Hydrodynamic volume
distributions are obtained via the same type of calculation
as molecular weight distributions [75]. SEC hydrodynamic
volume distributions, w(logVh), can be obtained from
conventional single-detector SEC (typically using refractive
index detection) together with either knowledge of the
Mark–Houwink–Sakurada coefficients of the standards
(and only the standards, not the sample) or the use of an
online viscometer. The number hydrodynamic volume
distribution, N(Vh), can be calculated from w(log Vh) and
the local number-average molecular weight, Mn(Vh). N(Vh)
can also be obtained directly from single-detection viscom-
etry (Goldwasser method) [82]. The accuracy of the number
hydrodynamic volume distribution is not lowered by the
presence of branching. Hydrodynamic volume distributions
have been used to perform comparative studies to investi-
gate the mechanism of action of starch branching enzyme.
A comparison of the hydrodynamic volume distributions of
linear and branched glucans was performed [19]. The value
of the local dispersity has never been measured for natural
polymers, including for polysaccharides in which the
presence of long-chain branches is strongly suspected, such
as amylose of starch [83] or arabinoxylans (through ferulic
acids) [84]. The Mw values of different starches obtained by
offline light scattering and SEC-MALLS have been
compared [85]. Starch dissolution was optimized in this
work, and SEC exhibited quantitative starch recovery. No
significant differences in Mw were observed for amylopec-
tin, but a significant difference appeared and increased
when the proportion of amylose in this starch increased.
One possible explanation for this would be a local
dispersity of >1 for the amylose fraction.

Detection of long-chain branching

The substantial impact of branching on the hydrodynamic
volume allows its detection using SEC. Two main methods
are available: comparison with a linear equivalent and local
dispersity measurement. It is also possible to quantify
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branching from a logarithmic plot of the radius of gyration
against the molecular weight [17]. However, strong non-
linearities are often observed experimentally [43], which
are strongly linked to the sensitivity and anomalous elution
controversy described in the previous section.

Branching can be detected by comparing the solution
properties of the branched polymer and a linear equivalent
[17]. This can be done using a number of methods,
including SEC. All of these methods share one main
limitation: the need for a linear equivalent of the same
size. This is a tedious requirement to fulfill in the case of
synthetic polymers such as polyethylene or starch, and is
impossible for amylopectin, which is too large. Different
variables can be used. One of the most popular is the Mark–
Houwink–Sakurada plot. Curvature is observed for poly-
olefins in this plot when branching is present [28, 44]. This
also underlines the invalidity of the Mark–Houwink–
Sakurada relation in the case of statistically branched
polymers. Mark–Houwink–Sakurada parameters have also
been shown to strongly depend on the branched structure in
the case of branched polyacrylates [21, 67]. This method
allows the detection of a high level of branching, as in the
case of the chain copolymerization of a monomer (such as
methyl methacrylate) with a difunctional one, yielding
highly branched polymers and clear differences in the MHS
plots [86]. However, this method has been criticized for its
low sensitivity, which is too low to detect long-chain
branching in cases where the branching has already
changed the rheological properties of the polymer [87–89].

When the detection of low levels of branching is
required, the local dispersity can be measured for poly-
acrylates, as we recently demonstrated. Local dispersity is
sensitive to the heterogeneity introduced by the branches,
not to the amount of branching. Low local dispersities are
thus expected (and observed) for linear polymers as well as
highly branched or regularly branched ones. Polyconden-
sation kinetics simulations also predict that A2 + A3

polycondensation should lead to low local dispersity [90];
i.e., branched polymers which are homogeneous in terms of
molecular weight and branching. In contrast, multiple-
detection SEC showed that large local dispersities are
obtained for statistically branched polyacrylates. The
heterogeneity is sensitive to very low levels of long-chain
branching. Some of the highest local dispersities have been
measured for polyacrylates obtained by controlled radical
polymerization [64, 91] and at very low levels of long-
chain branching [54]. The nonlinearity of the effect of
branching on SEC separation is a limitation when deter-
mining molecular weights, as it introduces a nonsystematic
error. However, this nonlinearity is an advantage when the
detection of low levels of long-chain branching is required,
since it ensures highly sensitive detection. The detection
limit depends on the solution properties and the molecular

weight of the backbone and branches, but it is expected to
be far lower than any other method. The two methods—
comparison with a linear equivalent and measurement of
local dispersity—are thus complementary.

The local dispersity concept can detect any heterogene-
ity, even if it does not arise from branching. Copolymer
composition is another very important parameter [92], and
composition gradients can be detected by measuring the
local dispersity. Differences in the compositions of polymer
blends are important, particularly for a number of industrial
applications, and the local dispersity concept has already
been applied to polymer blends with success [93]. In both
cases, possible variations in the specific refractive index
increment, dn/dc, need to be taken into account as an
additional parameter.

Quantification of long-chain branching

Comparison with a linear equivalent should also enable the
quantification as well as the detection of branching. The
theory developed by Zimm [94, 95] is very popular and has
been extensively and successfully tested in the case of
regularly branched polymers [68]. However, this theory has
a number of limitations when applied in SEC [96]. The
theory assumes that the polymer chain is in a theta solvent,
even though a good solvent is recommended for SEC. The
theory also assumes that the local dispersity is close to 1,
while we have seen that it can significantly deviate from
unity. The theory relates the radius of gyration to the degree
of branching. It does not consider statistical branching with,
for example, a distribution of molecular weights for the
branches. The relation between the radius of gyration and
the hydrodynamic volume or the intrinsic viscosity is
complex in the case of branched polymers. The Flory–
Fox coefficient does indeed change with branching [97].
SEC separation is related to hydrodynamic properties, and
the most precise quantities determined are related to these
hydrodynamic properties. The current theory is thus more
of a fitting tool than a model for the quantification of
branching in statistically branched polymers by SEC.
Accurate quantification of branching may thus be possible
only in the case of polyethylene, which has been exten-
sively studied [17, 62].

Other liquid chromatography methods used to separate
branched polymers

SEC is the most widely accessible method that is used to
separate branched polymers, but its mechanism of separa-
tion is probably not the most appropriate. A number of
publications investigate alternatives: liquid chromatography
at the critical condition (LCCC), and different types of
interaction chromatographies. When separation of linear
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polymers does not occur at the critical condition, some
separation of the branched polymers can be achieved using
LCCC [98]. The critical condition can be tedious to identify
[99] (although it may be available from the literature), and
the recovery is an important parameter that should not be
overlooked [100]. Interaction chromatography is generally
performed using a solvent gradient or a temperature
gradient. A solvent gradient has recently been shown to
successfully separate polyolefins, despite the high temper-
ature and harsh solvents required [101]. Temperature
gradient demonstrated a fast development [102].

A deeper understanding of the separation mechanism is
necessary for HPLC methods to gain in characterizing
power and popularity. Comparative studies of the different
methods are highly valuable, as recently shown [77]. The
dimensionality of a branched analyte is high, with varying
molecular weights, branch lengths, branching topologies,
branch point locations, end-groups, etc. The accurate and
relevant characterization required is not possible using a
single method. Multidimensional liquid chromatography is
thus particularly appropriate for characterizing branched
polymers [78, 79, 103, 104].

Branched polymers

To conclude this review, we discuss the SEC of branched
polymers from a different point of view—the sample, for a
few important examples: starch, polyethylene, polyacry-
lates, and poly(vinyl acetate).

Branching in polyethylene has been identified very early.
Depending on the polymerization process, it exhibits both
short- and long-chain branches [44, 105, 106]. 13C NMR is
the method of choice for quantifying the average degree of
branching in polyethylene [28]. It was recently shown by
Klimke et al. that the most sensitive measurements are
performed in the melt, and a method was developed to
estimate the experimental error in the measurement [20].
13C NMR probes the local environment, and can only
differentiate branch lengths of up to 10 carbons based on
high-resolution spectroscopy in solution [28], or up to 16
carbons based on the relaxation behavior in the melt [107].
The quantification of long-chain branching by SEC is not
as accurate as NMR can be [62]; however, it can access a
larger range of branch lengths and macromolecule sizes. It
also allows changes in the branched structure to be
monitored for different hydrodynamic volumes within a
sample. It allows materials and polymerization processes to
be compared [108, 109]. SEC and NMR are especially
complementary in the case of polyethylene [28]. The local
dispersity has been shown to be very close to unity for
linear polyethylene by Pang and Rudin [62]. This confirms
the reliability of their high-temperature SEC conditions.
They also observed a local dispersity that was very close to

unity for low-density polyethylene (LDPE), except for the
largest molecules. Using the molecular weights determined
by LALLS and viscometry in their Figure 3, the local
dispersity can be estimated to increase up to 2 at the lowest
elution volume before the cut-off indicated by Pang and
Rudin. Multiple-detection SEC may thus allow the detec-
tion of long-chain branching in sparsely branched poly-
olefins using the SEC conditions from Pang and Rudin.

Polyacrylates are the main component of many paints
and coatings in their hydrophobic form [poly(methyl
acrylate), poly(butyl acrylate)s, poly(2-ethylhexyl acrylate),
etc.]. They are the main components of superabsorbents in
their hydrophilic form [or poly(acrylic acid)]. The presence
of branches in radical polymerization processes has been
detected using advanced 13C NMR—extensively in the case
of hydrophobic polyacrylates [21, 22, 110–113], and in a
few instances in the case of hydrophilic polyacrylates [114,
115]. These branches mainly consist of short-chain
branches. The presence of gels or microgels may prevent
meaningful characterization, or at least the characterization
of the whole sample, using SEC [112]. Long-chain
branches have also recently been detected using multiple-
detection SEC [54].

Polyacrylates and polyethylene both possess short and long
branches. It is important to note that the crossover between
short- and long-chain branches has not been clearly defined
and depends on the point of view. When considering the
kinetics of radical polymerization, short- and long-chain
branching usually refers to different types of transfer-to-
polymer reactions [29, 71]. Backbiting leads to short-chain
branches of a defined length (typically two monomer units).
Long-chain branches are attributed to other transfer-to-
polymer processes—intermolecular chain transfer to polymer
and intramolecular transfer to polymer—but not backbiting.
In that sense, long-chain branches can take any length
between one and an infinite degree of polymerization.
However, when some rheological properties such as melt
properties are considered, short- and long-chain branches are
distinguished in a different manner based on the critical
degree of polymerization. Poly(vinyl acetate) obtained by
radical polymerization also possesses some long-chain
branches, as detected by SEC-LALLS [72] and SEC-
MALLS [116, 117].

Starch is not only one of the most abundant polymers on
earth, but also one of the most complex to characterize. Its
two components are branched: amylose has a few long-
chain branches, while amylopectin is highly branched. The
average degree of branching can easily be measured by 1H
NMR in solution [118, 119]. Dissolution is controversial:
aqueous solutions are widely used but generally lead to
incomplete dissolution and recovery as well as nonreprodu-
cible precipitation (known as retrogradation), although
suitable conditions have been identified in some cases
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[120]. Dissolution in a polar organic solvent is also
controversial. Dissolution and SEC in dimethyl sulfoxide
(DMSO) have been used for 25 years [121], while dimethyl
acetamide has also been tested with some success [122].
Wet DMSO (DMSO with 5–10% water) has been shown to
swell starch granules more rapidly than dry DMSO [123].
The dissolution itself may occur more rapidly in the
absence of water [34]. There is some indication that
universal calibration may be valid for the SEC of starch
in aqueous eluents [124]. The very large size of amylopec-
tin should prevent the analysis of native starch using SEC,
and FFF is preferred by different groups [51, 52]. However,
recent SEC work using fluorescent labeling and detection
indicates that the molecular weight of amylopectin is orders
of magnitude lower than commonly considered, and has led
to the hypothesis that amylopectin is some kind of stable
aggregate [76]. Despite the difficulties and controversies
involved, knowledge of the branching structure of starch
has been advanced based on the capacity of some enzymes
to selectively and efficiently debranch starch. SEC can then
be used to determine the molecular weight distribution of
the branches [125], although capillary electrophoresis and
ion chromatography may be more accurate [126]. However,
chemical debranching processes have been criticized for
their low reproducibilities and the potential for artefacts
when tested on synthetic regular stars [68].

Conclusion

SEC is an even more powerful tool for characterizing
polymers than usually stated in the literature. However, a
monodimensional separation faces immediate limitations
when analyzing a multidimensional sample. Branched
polymers are characterized by the degree of branching,
the branching topology, the distribution of the molecular
weights of the branches, and the distribution of molecular
weights of the polymer chains. This is why SEC, even
using multiple detectors, yields the molecular weights of
branched polymers with highly variable accuracy: typically
high for highly or regularly branched polymers, but lower
for statistically branched polymers. To characterize a
branched polymer by SEC, one must first understand its
separation. While a qualitative understanding is now
available, and is summarized in this review, very little
quantitative information is available. Multiple-detection
SEC and the concept of local dispersity have important
roles to play in the quantification of branching by SEC and
the complete and accurate characterization of branched
polymers.

The concept of local dispersity, discussed in this review
in relation to the SEC of branched polymers, also applies to
other polymers and methods. Linear copolymers can exhibit

local dispersity due to compositional fluctuations (in the
case of copolymers) [92], or other factors. Local dispersity
can also play a role in other separation techniques where
separation is based on size, such as field-flow fractionation
or hydrodynamic chromatography.
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