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Abstract. Since it was first proposed in 1982, the Daoud and Cotton (DC) model for star-shaped polymers
was intensively used also for self-assembled copolymers and small colloids grafted with long polymers. We
try to clarify the position of the DC model and focus on the star partition function which plays a central
role in self-assembly and gives access to the star-star interaction. While the predicted star-star interaction
agrees with scattering data by Likos et al. (Phys. Rev. Lett. 80, 4450 (1998)), an extensive simulation by
Hsu et al. (Macromolecules, 37, 4658 (2004)) does not recover the prediction for the partition function.
We try to reconcile this seemingly conflicting results. We discuss star-star interactions, star free energy
in θ-solvents, mixing of A/B branches in copolymer stars, within or beyond the Daoud and Cotton blob
model.

The seminal paper by Daoud and Cotton [1] was pri-
marily motivated by available light scattering and viscos-
ity data acquired for star-shaped polymers (called stars
below) in good solvent and aimed at describing the poly-
mer conformations. Shortly after, Witten and Pincus ap-
plied the model to describe the interaction between col-
loids protected by long grafted polymers which were rep-
resented as stars [2]. Twelve years later, Likos and Richter
put Witten’s results to a test by scattering experiments [3]
measuring the structure of a semi-dilute star solution.
Their conclusion was very appealing, since the predictions
from the asymptotic Daoud and Cotton (DC) model were
found to apply for functionality p = 18 and expected to
hold [2] down to functionality p = 2, definitively out-
side the asymptotic regime. The robustness of the DC
prediction for the star-star interaction is widely accepted
nowadays [4]. An early review on star-shaped polymers [5]
discusses experiments and simulations, the latter showing
qualitative agreement with the DC model. As a matter of
fact, the DC model attracted continuous attention over
the past decades underlining the fast growth of soft mat-
ter physics and, more recently, of biophysics and medi-
cal sciences. Recent citing works deal with star-shaped
polymer synthesis [6], star interactions [7,4], branched
polymers [8,9], dendrimers [10,11], complexation [12],
gels [13], colloids and colloidal crystals [14,15], nanocom-
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posites [16], flow of star-shaped polymer solutions [17],
biophysical systems [18,19].

A heroic, and to our knowledge still the most extended,
simulation of the star partition function was performed by
Hsu, Nadler and Grassberger somewhat later [20]. These
data were interpreted as not supporting the DC model.
From the start, the DC model had to face renormaliza-
tion group calculations using ε-expansion, (ε = 4− d with
d the dimension of space) [21–24]. As already pointed
out by Witten and Pincus, the range of validity of the
ε-expansion must become narrow as the functionality in-
creases. Nonetheless, in 3d, the ε-expansion turns out to
give good estimates for p = 1, 2, . . ., but, for large p, the
expansion parameter is rather εp [23], restricting the do-
main of application.

The DC model considers stars in the excluded vol-
ume regime of high enough functionality for branches to
strongly interact and stretch out (fig. 1). In its minimal
form, the DC model has the appeal of simplicity. The star
corona is seen as a sea of correlation blobs of size ξ in-
creasing when the distance to the star center increases.
As showns in fig. 1, the blobs almost do not interpene-
trate and are pervaded by one branch each. Adopting the
Pincus approximation for brushes where all free branch
ends are constrained to lie at the periphery, each sphere
of intermediate radius r and area ∼ rd−1 is bearing p
blob sections of area ξ(r)d−1, which sets the blob radius
ξ(r) ∼ rp−1/(d−1). Further neglecting the interaction be-
tween blobs, the free energy F in thermal units is obtained
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Fig. 1. Two-dimensional sketch of a star within the Daoud
and Cotton blob model. The blobs are represented by blue
circles with size ξ increasing proportionally to the distance
r to the center. Two arm configurations are shown as thick
red wavy lines. (Colorized version of the original Daoud and
Cotton 1982 drawing.) In the text, the radius Rmin of the core
(hatched blue) is set to a monomeric size for convenience and
its influence not discussed in detail.

by blob counting F ∼
∫ Rmax

Rmin
pd/(d−1)/rddrd. As a result,

F ∼ pd/(d−1) log N , where log Rmax ∼ log N has been in-
serted. We recast the free energy and partition function
of the DC star as

F = αdp
d

d−1 log N ; Zp = Nγp−1,

with γp − 1 = −αdp
d

d−1 , (1)

where we adopted the standard notation for the critical
exponent of the partition function. We expect the DC
model to apply asymptotically for p � 1. The constant
αd depends on the dimension of space.

The star partition function exponent γp has been ob-
tained exactly in 2d, thanks to conformal invariance [22]
as γp −1 = (−9p2 +27p+4)/64. This result is compatible
with the 2d DC model, which it supports. It further gives
the value α2 = 9/64 ≈ 0.14. The 2d results also show a
rather sluggish approach of γp − 1 to the DC asymptote
which is approached by less than 10% only for p ≥ 18
(see footnote1). At the onset of this regime, the extra free
energy per branch (as compared to a free chain) is about
2.3 log N in thermal units. Assuming that αd is a smooth
function of d we expect α3 to take a value close to α2.

The field theoretical approach [22] demonstrates a
powerful factorization property of the partition function.
Following ref. [22], the star partition function factorizes
in contributions of its vertices, the central vertex of or-
der (number of legs) p and the peripheral vertices of or-
der 1 for the free ends. Each vertex of order n contributes
its vertex exponent σn to the star exponent γp − 1 =
σp + pσ1. In 2d the vertex exponents are known exactly

1 The subdominant (linear in p) term is also divergent and
convergence to the asymptote is only seen in log-log scale.
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Fig. 2. Daoud and Cotton model in 2d. The plot of the oppo-
site central vertex exponent −σp and star exponent −(γp − 1)
as a function of the star functionality (number of branches) p in
log-scale evidences a common asymptotic power law (9/64)p2.
The central vertex exponent (filled symbols) approaches the
asymptotic DC law (dashed line) faster than the star exponent
(open symbols). The shown values of functionality p range from
4 to 40 for the central vertex exponent.

Table 1. Values of the vertex exponent in 3d, restricted to 3
significant digits, according to the simulation data in ref. [20].

p 1 2 3 4 5 6

σp 0.0786 0 −0.193 −0.479 −0.849 −1.29

p 7 8 9 10 12 14

σp −1.80 −2.38 −3.01 −3.71 −5.16 −6.97

p 16 18 20 24 30 40

σp −8.90 −11.0 −13.2 −18.2 −26.8 −43.7

p 50 60 70 80

σp −64.1 −87.2 −114 −143

σn = (2− n)(9n + 2)/64. The vertex exponent σp reaches
to the same DC asymptote −(9/64)p2 as the star expo-
nent. It is clear that the DC model ignores the peripheral
vertex exponents and rather describes the central vertex.
The convergence of the central vertex exponent to the DC
is indeed faster, as shown in fig. 2.

Let us now turn to stars in 3d. A priori branches see
each other less than in 2d and the DC behavior should
be shifted to higher functionality than in 2d (where we
retained p ≥ 18). In the absence of exact analytical results,
we rely on the simulation data of ref. [20] summarized in
table 1.

The central vertex exponent and the star exponent are
ploted in fig. 3 as a function of the functionality p in log-
log scale. The plot is very similar to the one for 2d in
fig. 2. The convergence is again sluggish, more so for the
star partition function exponent. As anticipated, higher
star functionality is needed to approach the DC limit (for
the same 10% criterion, p > 40). The approximate deter-
mination of the coefficient α3 (see eq. (1)) from the data
gives α3 ≈ 0.20 close to the exact value (9/64 ≈ 0.14) of
α2. In our opinion, the data shown in table 1 support the
DC model but demonstrate that high star functionality
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Fig. 3. Daoud and Cotton model in 3d. The plot of the oppo-
site central vertex exponent −σp and star exponent −(γp − 1)
as a function of the star functionality (number of branches) p in
log-scale evidences a common asymptotic power law 0.20p3/2.
The central star exponent (filled symbols) approaches the
asymptotic DC law faster than the star exponent (open sym-
bols). The shown functionalities p are: 4, 5, 6, 7, 8, 9, 10, 12,
14, 16, 18, 20, 24, 30, 40, 50, 60, 70, 80. Exponents are taken
from the simulation data in ref. [20], see table 1.
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Fig. 4. Daoud and Cotton model vs. first-order ε-expansion.
The plot of the central vertex exponent σp as a function of the
star functionality (number of branches) p. The first-order ε-
expansion result is shown (blue dashed line) together with the
Daoud and Cotton prediction (green solid line) and simulation
data (filled symbols). The first-order RG fits the data at low
functionality, while Daoud and Cotton fits at high functional-
ity. The shown functionalities p are: 1, 2, 3, 4, 5, 6, 7, 8, 9,
10, 12, 14, 16, 18, 20, 24, 30, 40, 50, 60, 70, 80. Exponents are
taken from the simulation data shown in table 1.

is needed to meet the prediction. For low functionality p,
the known RG results must be accurate, we know they
are for p = 2–4 and the associated contact exponents. As
using higher-order ε-expansion (without re-summation) is
not always helpful we stick to the first-order expansion
σp = p(2−p)

16 ε + . . ., where we insert ε = 1. Figure 4 indeed
shows that the one-loop RG result describes well the data
up to p ∼ 5. Re-summation of the ε-series was proposed
early by Schäfer [23] for moderate functionality. Some of
the obtained values were later successfully compared to
simulation data in ref. [20], where the agreement extends
to p = 9. At this stage it is somehow puzzling that the bi-
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Fig. 5. Interaction between two excluded volume stars. Am-
plitude of the logarithmic interaction according to the Daoud
and Cotton (DC) model (green dashed line) and to the vertex
exponents from simulation data (filled symbols). DC performs
surprisingly well at low functionality where it should not apply.

nary star interaction gained from the DC model was found
accurate for all functionalities [3].

A, by now classical, scaling argument relates the par-
tition function of a system of two stars Z(2)(r) with their
centers a distance r apart to the partition function of iso-
lated stars. The expression for Z(2)(r) must then crossover
smoothly from the product of the single star partition
functions for distant non-interacting stars (r > 2R) to the
partition function of a star cumulating the branches of
both stars when their centers (almost) coincide. Specializ-
ing to two identical stars, Z(2)(r) ∼ Z2

p × ( r
R )x, where

the power x is fixed by the condition, Z(2)(b) ∼ Z2p,
with b a monomeric size (to keep things simple). As-
suming R ∝ Nνb with ν the swelling exponent (in 3d
ν ≈ 0.588), where powers of p are neglected, we arrive
at x = (2σp − σ2p)/ν. This corresponds to the repulsive
effective pair potential:

U = −kBT
2σp − σ2p

ν
log

r

R
, for r � R. (2)

The extreme case r ∼ b is relevant to the barrier oppos-
ing star fusion [25]. We will come back to intermediate
lengthscales and refinements at low compression below.
For stars in the DC limit the amplitude βd = 2σp−σ2p

ν

of the potential in eq. (2) simplifies to β̃dp
d/(d−1) with

β̃d = αd(−2 + 2d/(d−1))/ν, which evaluates to β̃3 = 0.28
(3d) and to β̃2 = 3/8 ≈ 0.37 (2d). The amplitude of the
interaction is plotted in fig. 5 against the functionality
p according to the 3d simulation data shown in table 1.
The highest accessible functionality is p = 40 (2p = 80).
The DC prediction for interactions works quite well at
low functionality, where DC does not work for the star
partition function itself. The reason is that the difference
of the data for σp (table 1) and the DC estimate is al-
most linear in p between p = 1 and p = 20, tentatively
σp ≈ −α3(p3/2 −

√
2p), which satisfies σ2 = 0, as is shown

in fig. 62. A linear in p contribution to σp is not relevant to
2 We do not have any deep argument for this heuristic ex-

pression. A linear in functionality p correction to the DC model
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Fig. 6. Simulation data for the vertex exponent after ref. [20]
(filled symbols) compared to the Daoud and Cotton prediction
(green dashed line) and to the empirical formula adding a lin-
ear in functionality term to the DC prediction so as to match
σ2 = 0 (blue solid line). The fair accuracy of the empirical
formula rationalizes the success of the DC prediction for the
interaction for stars of low functionality outside the DC limit
for the partition function.

the interaction. There is a pretty large regime where DC is
inaccurate for the interaction, essentially because σp and
σ2p do not follow the same law (fig. 6). The above scaling
argument implicitly assumes that there is no other length
scale in the problem than the star radius R, or at least
that “compression” goes beyond any other intermediate
length scale.

Triplet interactions were found generally attractive but
of lesser importance [26].

At this stage it must be noted that an alternative ap-
proach to the pair interaction, which complements eq. (2)
and seems suited for the interaction of stars in semi-dilute
solutions where stars overlap, has been built from the star
structure according to the DC model. The main idea there
is that curvature is almost irrelevant in the, say, outer half
of the star [27] (fig. 7).

The pair interaction is obtained from the structure
of the stars and the interaction of the equivalent flat
grafted layers [28], which is not captured by the DC model.
The largest correlation length in the DC blob construc-
tion ξ = R/

√
p now characterizes the outer flat poly-

mer brush of grafting density 1/ξ2. The (much) larger
correlation length ξ0 characterizes the outer edge of the
equivalent flat brush. According to the strong stretch-
ing theory for excluded volume brushes [28] and to its
correction for edge fluctuations ξ0 ∼ N2ν/3ξ1/3, alto-
gether this leads to the correlation length in the star edge
ξ0 ∼ ξpν/3 ∼ Rp−1/2+ν/3. When two flat brushes are
moderately pushed against each other, they barely overlap
much less than the reduction of their distance beyond con-
tact and merely compress. (There is no interpenetration
at all in the strict strong stretching limit.) The compres-
sion energy per unit area has been obtained in ref. [28]

may perhaps arise, for example, from the free end distribution
entropy, but cannot be retained here as it does not fit for large
p values.

Fig. 7. Daoud and Cotton blob model augmented by the al-
most flat outer corona. The outer flat corona corresponds to
a grafting distance ξ between chains. The polymer concentra-
tion is quantitatively decreasing with the height z, which goes
beyond the standard (DC-like) Pincus blob model. For sim-
plicity, the flat brush is shown with uniform blob size, except
for the outermost ones. Unlike in the standard blob model,
not all branches participate in the outermost blob layer. Those
branches reaching there are quantitatively more stretched in
the core of the brush. The correlation lengths ξ(r), ξ and ξ0

introduced in the text are shown.

as
Fflat ∼ ξ−2

0 (Δh/ξ0)(3+4ν)/(3−2ν),

for a reduction of distance Δh beyond contact. The total
repulsion between stars, which interact over an area A ∼
RΔh, reads

U ∼ p
3−2ν

6

(
Δh

ξ0

) 6+2ν
3−2ν

∼ p3/2

(
Δh

R

) 6+2ν
3−2ν

. (3)

This expression applies for ξ0 < Δh < R and pro-
vides a smooth transition between an interaction A/ξ2

0

for Δh ∼ ξ0 and p3/2 for Δh ∼ R. The later is compati-
ble with eq. (2). Equations (2) and (3) provide a scaling
description of the pair interaction over the whole com-
pression regime within the DC limit. As a matter of fact,
the external blob size ξ0 is rather large ξ0 ∼ Rp−1/2+ν/3,
where the exponent is close to −0.304. The intermediate
regime described by eq. (3) only extends over a factor ≈ 3
in Δh for p = 40, but the interaction steeply increases,
roughly as (Δh)3.9 by a factor ≈ 79. Experiments on semi-
dilute star solutions should detect the intermediate regime
eq. (3) close to the overlap concentration. While deeper in
the semi-dilute regime the scaling result (eq. (2)) should
apply with its DC form being accurate at both low and
high functionalities. As explained earlier the success of the
DC result at low functionality might be a bit fortuitous.

A remarkable feature of the DC model is that the ex-
ponent of the partition function and the central vertex
exponent only depend on the dimension of space. In par-
ticular, their derivation is independent of the quality of
the solvent. (The star radius R does of course depend on
the quality of the solvent.) As a matter of fact, the same
power law behavior of the partition function is obtained at
the θ-temperature taken here as the temperature, where
the effective two-body interactions vanish,

F θ
p ∼ p3/2 log N (DC at the θ-point). (4)
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As noted previously [29], this is at odds with the available
RG result [22] F θ

p ∝ p3 log(log N). We reached the conclu-
sion that the RG result describes stars with unstretched
arms and applies for log N � p2 (either exponentially
long branches or low functionality) while the DC type of
result describes somewhat crowded stars with stretched
branches and applies for higher functionality and mod-
erately long branches (the typical case). A slightly aug-
mented result [29] explicitly accounts for the renormalized
three body interaction,

F θ
p ∼ p3/2 log N

(1 + κ log N)1/4
, (5)

where the Ginzburg parameter κ measures the strength
of the three body interaction3. Equation (5) for the free
energy describes stars with stretched branches. It dif-
fers from the DC by a logarithmic factor and matches
DC in the mean-field regime (small κ). Equation (5) ap-
plies for moderate branch length/high functionality up to
log N ∼ p2 where it crosses over to the critical regime
(RG) with unstretched branches, for κ log N � 1 with
log(log N) replaced by 1. The above relies on local micro-
scopic monomer-monomer interactions, pseudo-potentials
(δ-potentials). There are corrections to eq. (5) from higher
moments of the microscopic potential other than its vol-
ume integral. For details see ref. [29].

Over the last decades the Self-Consistent Mean-
Field (SCMF) theory was developed and was successfully
applied to describe weakly fluctuating polymer-phases
(or meso-phases). The sometimes analytically tractable
strong stretching limit of it [30,31] comes very close to
the DC model in spherical (or cylindrical) symmetry. In
the strong stretching limit [30–32] the polymer configura-
tion is uniquely defined by its end position(s) and the end
distribution becomes the main ingredient of the theory.
For star-shaped polymers free chain ends are totally ex-
cluded from the vicinity of the center in the strong stretch-
ing approximation, which makes the problem difficult and
only approximate solutions are known. The exclusion zone
problem has been explicitly addressed in cylindrical geom-
etry [33].

Recent theoretical work also addresses stars with two
type of branches differing by chemistry (fig. 8). This is di-
rectly linked to the polymer-A/polymer-B/solvent ternary
mixture problem [34] which turns out pretty rich. The
case where both polymers are in a common good sol-
vent but repel each other can also be considered in the
DC model and local A/B separation can be studied.
As blobs almost do not interpenetrate, the A/B inter-
action is drastically reduced. The number of contacts
between neighboring A and B blobs of monomer con-
tent g ∼ ξ1/ν , reads ∼ (g/ξ3)ggσ4 and involves the ver-
tex exponent σ4 ≈ −0.479 [20], which accounts for the
fraction of inter blob contacts. Let χ be the interaction
between A/B monomers. The interaction between A/B

3 The Ginzburg parameter κ = 22a3/(2π)2 only depends on
the dimensional effective third virial coefficient a3.

A B

Rmix

Fig. 8. Schematics of a star with two types of branches: A
and B, which are represented as blue and orange. Branches are
separated closer to the center and mix beyond Rmix.

blobs can be written as χg−χs [34], with the exponent4
χs = 3ν − σ4 − 2 ≈ 0.243. As the integral of the A/B
interaction between blobs over the homogeneous DC star
FA/B is dominated by the vicinity of the center, it has no
N dependence but a large p dependence:

FA/B ∼ χφAφBp3/2+χs/(2ν)

(
Rmin

b

)−χs/ν

, (6)

where φA(B) = pA(B)/(pA + pB) is the fraction of A(B)
branches. Within the DC regime, the expression of FA/B

essentially depends on the functionality. (Rmin may be mi-
croscopic ∼ b.) The critical χ-parameter χ� is defined by
FA/B/p ≈ 1, more precisely χ�p1/2+χs/(2ν)R

−χs/ν
min ∼ 1.

The exponent of p has two contributions: the first term
(1/2) accounts for the number of blobs per arm within a
scale of Rmin, and the second term stands for the contribu-
tion of the A/B interaction per blob. Separation between
antagonistic branches of A- and B-type stars at the center
and extends outward for increasing χ. Assuming mixed
A/B branches beyond the crossover distance Rmix from
the center,

χp1/2+χs/(2ν)R
−χs/ν
mix ∼ 1,

holds (Rmix ≥ Rmin by construction). Finally separation
affects the whole star for Rmix = Rmax, where the star
radius is given by Rmax = Nνp1/2−ν/2.

There is extended work by von Ferber [35] on the field
theoretical side exploring all fixed points of ref. [34]. The
main output is the vertex exponent σ(pA, pB) for a star
with pA,B branches of type A, B at all fixed points (com-
mon good solvent and mutual repulsion, common theta
solvent and mutual repulsion, . . . ). As such, without re-
summation, the results are valid in 3d for p ∼ 1 and
complement the DC model. Long-range, power law, corre-
lated structural disorder can change the universality class

4 The seminal paper [34] does not give the simple scaling ar-
gument but provides a strictly equivalent expression involving
a less transparent critical exponent.
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of polymers. Stars in random media were considered re-
cently and the influence of long-range correlated disorder
analyzed [36].

Star adsorption on a flat interface can be considered
within the DC model. Single star adsorption was ana-
lyzed by Halperin and Joanny [37]. There it is shown how
the star progressively flattens for increasing adsorption
strength. In the intermediate state the star takes a som-
brero shape where the free star structure is retained close
to the center. The authors fail to describe the plateau
of the isotherm. A more recent mean-field theory on ad-
sorption of branched polymers does not exhaust the prob-
lem [38]. It would be worthwhile to try and apply our
increased knowledge on adsorption layers to this problem.

Considerable efforts were put in the elucidation of the
star structure [5] both in dilute and semi-dilute or concen-
trated solutions. Neutron scattering [5,39] and X-ray scat-
tering [40] have been used intensively. In parallel, models,
usually derived from DC, were developed [41,42,39]. The
form factor of linear chains in the critical excluded vol-
ume regime turns out to be rather complicated [43] and
involves des Cloizeaux contact exponents. The same holds
true for excluded volume stars of low functionality. Even
in the DC limit, some intra-blob/inter-blob contributions
do involve contact exponents (see above for the inter-blob
contacts).

In this short paper, we tried to clarify the position of
the Daoud and Cotton model for star polymers. The DC
model has been often underestimated by theorists from
the very beginning. In contrast, its simplicity attracted a
lot of attention from experimentalists. Many experiments,
a few of which are cited in this paper, found that the DC
model performs well, sometimes outside its expected range
of validity. There is a substantial correction to the vertex
exponent from the DC model at low functionality. The cor-
rection is almost linear in functionality and cancels out in
the interaction. This explains the success of the DC model
for the interaction at low functionality. The linear in func-
tionality correction to DC should not be confused with an
asymptotic correction valid at high functionality, as is the
case in 2d. There is a wide intermediate regime where the
star under consideration and the star with double func-
tionality do not follow the same law and the DC predic-
tion for the interaction is inaccurate (between p = 20 and
p ∼ 60, the upper limit is not precise from the data). The
available data for the vertex can be tentatively fitted by
the DC type of formula σp = α3p

3/2 with α3 ≈ 0.20 for
p ≥ 50 and the heuristic formula σp = α3(p3/2 −

√
2p),

enforcing σ2 = 0, for p ≤ 20, both of which lead to the
pair interaction U = β3p

3/2 log(R/r) with β3 = 0.28, for
a distance between centers r much smaller than the star
radius R (r � R). The DC model, or simple variants of it,
also allows to discuss separation in copolymer stars. For
A/B copolymer stars with homogeneous branches we pre-
dict separation of A/B branches closer to the center and
mixing of branches in an outer corona, see fig. 8. The DC
model also applies to stars in θ-solvent where it is pre-
dicted to perform better than available RG results but for
low functionality or exponentially large branches.

Finally the scattering function of stars or solutions of
stars can also be described in the DC model. Its expression
usually involves the swelling exponent ν. We suggest that
it should also contain vertex exponents like σ4 or the asso-
ciated contact exponents introduced by des Cloizeaux [21].

This work originated from discussions with M. Daoud. We
would like to dedicate it to the memory of Jean-Pierre Cot-
ton.
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zlawek, Eur. Phys. J. E 2, 311 (2000).
27. A.N. Semenov, J.F. Joanny, A.R. Khokhlov, Macro-

molecules 28, 1066 (1995).
28. S.T. Milner, T.A. Witten, M.E. Cates, Macromolecules 21,

2610 (1988).
29. A. Johner, EPL 96, 46004 (2011).
30. A.N. Semenov, Sov. Phys. JETP 61, 733 (1985).
31. Y.B. Zhulina, V.A. Pryamitsin, O.V. Borisov, Polym. Sci.

U.S.S.R. 31, 205 (1989).
32. S.T. Milner, T.A. Witten, M.E. Cates, Europhys. Lett. 5,

413 (1988).
33. R.C. Ball, J.F. Marko, S.T. Milner, T.A. Witten, Macro-

molecules 24, 693 (1991).

34. J.F. Joanny, L. Leibler, R. Ball, J. Chem. Phys. 81, 4640
(1984).

35. C. von Ferber, Y. Holovatch, Phys. Rev. E 56, 6370 (1997).
36. V. Blavatska, C. von Ferber, Y. Holovatch, Condens. Mat-

ter Phys. 15, 33603 (2012).
37. A. Halperin, J.F. Joanny, J. Phys. II 1, 623 (1991).
38. A. Johner, J.F. Joanny, J. Phys. II 6, 511 (1996).
39. G. Volet, L. Auvray, C. Amiel, J. Phys. Chem. B 113,

13536 (2009).
40. G.M.E. Pozza, S. Crotty, M. Rawiso, U.S. Schubert, P.J.

Lutz, J. Phys. Chem. B 119, 1669 (2015).
41. C.M. Marques, D. Izzo, T. Charitat, E. Mendes, Eur. Phys.

J. B 3, 353 (1998).
42. L. Auvray, private communication. About at the same time

as ref. [41] was worked out, Löıc Auvray circulated a cal-
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