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Accurate estimation of the polymer coverage
of hairy nanoparticles

Makoto Asai, Dan Zhao and Sanat K. Kumar *

Understanding and predicting the mechanisms underpinning the self-assembly of polymer-grafted

nanoparticles (PGNPs) are important for controlling the engineering applications of these novel materials.

The self-assembly of these materials is driven by their surfactancy, i.e., by the fact that the (inorganic)

nanoparticles energetically dislike the (organic) polymer tethers. In previous work we developed a model in

which a grafted polymer chain was treated as a rigid equivalent sphere (ES) which was impenetrable to the

NPs, but completely penetrable to other ESs. This description, along with a geometric analogy with patchy

particles, allowed us to facilely explain the self-assembly of PGNPs. However, since we model an ES as being

completely penetrable to other ESs but impenetrable to the NPs the physical correspondence between a

‘‘real’’ grafted polymer and an ES is not clear. The application of the ES model to experiments and to

computer simulations has therefore seen limited success, and only qualitative agreement has been obtained.

In this paper, we develop a more realistic description, termed the modified ES (mES) model, based on the

work of Daoud and Cotton on curved polymer brushes, which takes the impenetrability of the individual

chain monomers into account. While this approach increases the complexity of our formalism, we find that

the resulting mES model quantitatively captures computer simulation results on the structure of the PGNPs

and also quantitatively explains their self-assembly over a broad range of conditions.

Introduction

A central challenge in improving the properties of polymer
nanocomposites is to control the spatial dispersion of the
nanoparticles (NPs).1–4 One particularly facile approach is to
graft the NPs with polymer chains.5–8 It has been found that
these grafted NPs behave akin to surfactants due to the dislike
between the typically hydrophilic cores and the hydrophobic
corona. This surfactant-like nature causes these tethered NPs to
assemble into a large range of superstructures especially in the low
grafting density, s, limit (typically for s t 0.1 chains per nm2,
see ref. 9), i.e., where the cores are not completely shielded from
other cores by the corona.9–23

To understand this behavior, we have previously developed
the equivalent sphere (ES) model.24 A spherical NP of radius Rn

randomly grafted with f chains was considered, where each
chain was comprised of N catenated monomers. As a signifi-
cant simplification we modeled each grafted polymer as a rigid
ES of radius R. We further assumed that the ES served to
exclude a ‘‘patch’’ on the grafting NP’s surface where the core
of another bare NP cannot contact. It is noted that the second
NP has grafted polymers on its surface as well but for simplicity
we only calculated the excluded area on the NP to another

‘‘bare’’ NP. This is reasonable in the low grafting density regime
studied in the current paper, where the self-assembly of PGNPs
most likely occurs. However, there was no excluded volume
interactions between two (or more) ESs, either on a single NP or
across multiple NPs. This last assumption is based on the fact
that, while excluded volume interactions apply strictly at the
level of two monomers, the centers of mass of two chains can
overlap with only a small free energy cost.25 The fraction (g*) of
the NP surface that is excluded to a second bare NP due to an ES
(or a single grafted chain) can then be derived:

g� ¼ a
2 1þ að Þ (1)

Here, a � R/Rn. When a - N, g* - 1/2, which means that one
ES can cover half of the surface of a NP in this limit. For f grafts
the fraction (S*) of the NP surface that is excluded to a second
bare NP can then be described by analogy to random sequential
adsorption:

dS�

df g�
¼ 1� S� ð0 � S� � 1Þ (2)

That is, we write that S* can only increase if the newly
grafted ES shields unexcluded parts of the surface. This yields
S* = 1 � e�fg*, which we have found to be in good agreement
with our simulation results on NPs literally grafted with ESs.
Thus, we have a means of describing the excluded surface area
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afforded by the grafted polymers on the surface of the NP with
variations in f and a.

We then drew a geometric analogy between NPs grafted with
ES and patchy particles. Regions on the NP surface from which
a second NP is excluded (due to the presence of the ES) are
defined as repulsive patches while the remaining NP surface is
attractive to a second NP. In this representation, thus, the
polymer chains (or the ESs) are abstracted away and only
manifest themselves as an effective (angle and distance depen-
dent) inter NP potential. With this mapping we can predict the
self-assembled structures formed by a particular NP with
knowledge of the S* and the geometric structure of the PGNPs.
Our idea, which has been previously discussed in ref. 24, is
sketched in Fig. 1. When the polymer surface coverage S* is
large, we get well dispersed NPs. As the ES coverage decreases
we first see the formation of small clumps comprised of
2–4 NPs. Further decreases in S* yield linear strings of NPs
and finally two and three-dimensional aggregates. Since this
argument is purely geometrical, we can provide precise values
of S* where these ‘‘structural’’ transitions occur. We do not
have the ability to decide if these are thermodynamic transi-
tions or not.

In ref. 24 we postulated that R = bRg where Rg is the radius of
gyration of the grafted polymer chain in a good solvent and b is
an empirical fitting parameter. Fig. 2(a) uses the naive ansatz
that b = 1 and we see that the ES model only provides
qualitative agreement with experimental data and simulation
results from the literature.24 For example, it is clear that regions
where strings are formed in the Monte Carlo simulations
are predicted to form clumps etc. Clearly, there is room for
improvement in terms of this model prediction.

Instead, we have empirically found that we need to use bE 0.46
to get better agreement with experiments and simulations.24,26

However, it is unclear why we have to use an R that is less than Rg

and whether the factor b = 0.46 is universal. When this information
is absent, the conventional ES model is limited in terms of
structure prediction. Additionally, the model has a major simpli-
fication in that the excluded volume interactions between two
(or more) grafted chains are ignored since the ES are assumed to
be fully penetrable to each other but completely impenetrable to
the core of another NP. We conjecture that dispensing with these
assumptions, by modeling the grafts more realistically, should
allow for a more reliable representation for these systems.27 So,
in this paper, we introduce this improvement to the conventional
ES model. In particular, we use the Daoud–Cotton model for
polymer brushes to more accurately model the polymer chains in
this situation. By validating against computer simulations, we
show that this model provides an improved description of the
structure of these NPs and hence their self-assembly behavior.
Thus, we propose that this modified ES (mES) model can be used
to reliably understand the self-assembly of this class of materials.

Results and discussion
mES model

The basic strategy for constructing the mES model is to more
accurately account for the structural properties of real polymer
brush chains than in the ES model, i.e., to account for the
excluded volume interactions at the level of two monomers.

Fig. 1 Different particle morphologies with increasing polymer surface
coverage, following Asai et al. [ref. 24] (Aggregate) three-dimensional and
(2D-Sheet) two-dimensional aggregates (coordination number Z 4);
(String) one dimensional linear aggregate (coordination number = 2–3);
(Clump) small aggregates including dimers, trimers and tetramers (coordina-
tion number = 1–3); (Dispersed) isolated particles with full surface coverage
(coordination number = 0). The formula for S* for each morphology is
presented in ref. 24.

Fig. 2 Phase diagram of self-assembled structures of PGNPs: (a) based on ES model and (b) based on mES model. f is the number of chains grafted to a
NP, and a is defined in the text.
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According to the Daoud–Cotton picture of a star polymer,28

which can be extended to describe polymer statistics on curved
surfaces,29 the grafting process only weakly changes the effec-
tive chain size, R, i.e., by a factor f�1/5, where f is the number of
grafts. Since R should be a function of N (the degree of
polymerization for the grafted chain) and f, we assume that
an appropriate size of the brush chain follows R(N, f ) = R(N) �
R( f ), that is we assume that the N and f dependences are
separable.

Before considering the f dependency, first, we investigate the
statistics of a single grafted polymer ( f = 1). Let us consider one
free (ungrafted) polymer chain with radius of gyration Rg and
degree of polymerization N. The monomer density at a distance
r from the polymer’s center of mass is30

r rð Þ ¼ ND

4pRD
g

rD�3 (3)

Here D is the fractal dimension of the chain, and we use the

mass balance condition
Ð 2p
0 dj

Ð p
0sin ydy

ÐRg

0 r2rðrÞdr ¼ N. If the
chain were fully collapsed then D = 3 and eqn (3) suggests that
the monomer density profile is constant, as expected. For a
Gaussian chain D = 2 and so the monomer density decreases
with increasing r. We assume that a single grafted chain on the
NP (NP1) surface has the same density distribution about
the center of mass as the ungrafted analog and calculate the
number C(L,Rn,Rg) of monomer units of the polymer over-
lapping with a second bare NP (NP2) of radius Rn which is
placed at a distance L from the center of mass of the polymer
chain (see Appendix Fig. 9). That is, we take a NP1 with a
grafted chain and ask as to how much grafted chain-NP2
overlap this system has when a NP2 is brought to a distance
L from the grafted polymer chain’s center of mass. To calculate
this quantity, the following volume integration should be
performed on the region where the NP2 and the polymer
grafted on the NP1 overlap.

C L;Rn;Rg

� �
¼
ð
r rð ÞdV (4)

While the calculation of this integration is straightforward, it is
mathematically tedious and deferred to Appendix A. However,
illustrative numerical examples of the behavior of this function
are shown in Fig. 3. We assumed 2Rg = N1/D and D = 5/3, which
describes the radius of gyration of coarse-grained Kremer–Grest
chains in good solvent.31 Some general comments are in order.
In general, the overlap function C(L,Rn,Rg) increases with
decreasing L, till it reaches a plateau value at small L. Note
that C(Rn + Rg,Rn,Rg) = 0 in the situation where the distance
between the NP2 and the center of mass of the grafted polymer
chain is L = Rn + Rg or for any larger separations since there is
no overlap. In addition, when Rg r Rn, the chain is completely
inside NP2 when L = 0 and thus C(0,Rn,Rg) = N. On the other
hand, when Rg 4 Rn, the maximum value inC is less than N,
because the chain is not completely inside the NP2 even when
their centers of mass coincide: thus, the NP2 can only overlap
with a part of the polymer chain.

While the discussion above focuses on the overlap between a
polymer chain grafted onto a NP1 and the core of a NP2, the
more important quantity is what fraction of the NP1 surface is
inaccessible to NP2 due to the presence of the grafted chain. To
make this calculation we place NP2 in contact with the surface
of NP1 and calculate the number C of monomer units of the
polymer overlapping with NP2 (see Fig. 4(a)). The distance
between the center of mass of the polymer chain and NP2 is L.
When C Z 1 then this point corresponds to an overlap between
NP2 and the graft – this point is thus excluded to NP2. We now
place the NP2 on several points on the surface: the ratio of the
number of points with CZ 1 to the total number sampled should
be the exclusion area g* for a polymer chain for NP2. Therefore,
we define g* as follows:

g� ¼ 1

4p

ð2p
0

dj
ðp
0

�C � sin ydy (5)

�C �
1;C � 1

0;Co 1

(
(6)

Then, we can determine R using eqn (1). The geometric concept is
shown in Fig. 4(b). We evaluated eqn (5) numerically since it is
difficult to analytically calculate it (Fig. 5(a)–(c)). As a reference, we
also show g* calculated by the ES model. In this case, we used
eqn (1) with b = 1 (R = Rg). This figure critically illustrates the
qualitative errors in our previous ES model. In the ES model, g*
monotonically increases with increasing N and eventually reaches
the theoretical maximum value (= 1/2). This result simply follows
from the fact that there is strict impenetrability between an ES and
the core of a NP2. On the other hand, in the mES model, g* starts
to decrease when N becomes sufficiently large. This is because,
when Rn { Rg, the NP2 cannot overlap with the whole polymer
chain. To illustrate this point, we consider the case when NP1, NP2
and the polymer are collinear, but with NP1 and NP2 being in
contact. Under these conditions, L = Rg � Rn c 0. Therefore, the
center of NP2 will only experience the very low-density perimeter of
the polymer coil. This means that, in the long chain limit, the NP2

Fig. 3 Examples of C. Rn = 7.0. Rg = 3.5, 7.8 and 15.0 for N = 30, 100
and 300.
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and the polymer chain interact minimally leading to small g*
values.

Moreover, we estimated R corresponding to these g* using
eqn (1) (Fig. 5(d)). In the conventional ES model, since R
was assumed to be related linearly to Rg, R depends on only
N (R p Rg p N1/D). However, in the mES model we find that R
depends, not only on N, but also on Rn. Furthermore, in the

limit of large N, R approaches zero, which corresponds to g*
approaching zero. From the above discussion, it is clear that
the initial assumption built into the ES model that R is simply
proportional to Rg, R = bRg, is incorrect.

To prove the validity of the mES model, we performed
coarse-grained Molecular Dynamics simulations using the
Kremer–Grest model.31 We directly measured the excluded area

Fig. 4 Determination of the effective sphere diameter in the mES models. (a) Searching around a grafted polymer to determine the distribution of C. In
the mES model we define the area where CZ 1 as the excluded area, and the ratio of the total excluded area to the NP surface area is g*. (b) Determining
the ES corresponding to g*. Grey area indicates the excluded area, 4pRn

2g* where NP2 cannot contact NP1 in. The dashed line represents the
corresponding ES whose size is determined using eqn (1): R = 2g*Rn/(1 � 2g*). Y is the contact angle between NP1, NP2 and ES, and it follows from
cosY = Rn(Rn + Rg)�1.

Fig. 5 Comparison of mES model with ES model. Comparison of g*: (a) Rn = 3.0. (b) Rn = 7.0. (c) Rn = 14.0. (d) Comparison of R derived from g*
and eqn (1).
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provided by one grafted chain, g*, to the core of a NP2 in the
range of 5 r N r 104 for up to 107–108 MD time steps, long
enough to achieve equilibrium in all cases. We set Rn = 7.0.
Simulation details are described in the Methods Section. First,
we calculate the N-dependence of the Rg of one grafted polymer
chain. We obtained Rg = 0.33N 0.70 (N r 50) and Rg = 0.49N 0.60

(N 4 50). Next, we directly measured g* in the simulations by
tessellating the surface of the NP1 using 4112 points placed at
the vertices of a spherical crystal following the symmetry of a
(20, 20) icosadeltahedron. We fixed the center of NP1 and
performed MD simulations of a single tethered polymer. For each
MD snapshot, we assign pi = 1 if there are polymer beads which
overlap with a NP2 located on the ith point (i = 1,2,. . .,4112) of the
surface of NP1, otherwise pi = 0. By taking the time-average h piit of

pi, we calculate the excluded area ratio as g� ¼
P4112
i

pih it
�
4112.

Fig. 6(a) shows an example of the surface distribution of
h piit. We see that there is a spherical cap-shaped excluded area
formed by a grafted chain on the surface of NP1, indicating that
the geometric concept expressed by eqn (1), commonly used in
the ES and mES models, is reasonable. However, because a
polymer is treated as a rigid sphere in the original ES model,
h piit should be 1 within the spherical cap-shaped excluded area.
In fact, h piit varies gradually as shown in Fig. 6(a). Fig. 6(b) shows
the N-dependence of g*. In the ES model, we calculated g* using
eqn (1) assuming b = 1 (R = Rg). On the other hand, in the mES
model, we calculated g* using eqn (5) without any assumptions.
As a result, the ES model overestimates g* compared to those

measured in simulations, especially as N becomes larger. On the
other hand, we found that g* calculated in the mES model was in
good agreement with those measured in simulations over the
whole range of N, including the non-monotonic dependence of g*
on N observed in simulations. Furthermore, we converted g* to an
effective R, the size of an ES, using eqn (1) as shown in Fig. 6(c).
The size of an ES thus does not monotonically depend on the Rg of
the chain. We thus have a full understanding of the surface
coverage afforded by a single grafted chain.

Next, we account for the effect of multiple grafted chains by
assuming the validity of the Daoud–Cotton ansatz.28 Note that
the separation of the N and f dependence inherent in our
approach is only reasonable when the grafting density is
relatively low, i.e., when the chains are not significantly dis-
torted. We thus estimate the f-dependence of R( f ) as follows.

R = R(N,Rn)�f �1/5 (7)

To confirm the validity of eqn (7), we calculated the f-dependence
of g* of a polymer chain in the range 1 r f r 100 and N = 5, 100,
200 using MD simulations. The images in Fig. 7(a) show examples
of the surface distribution of h piit. We found that as f becomes
larger, the distribution of hpiit becomes narrower. Note that this is
a plot of the probability density associated with one representative
chain out of the f that are grafted to the NP1 surface: as f increases
the distribution of a single chain narrows in space as may be
expected. We converted these g* to R using eqn (1). Fig. 7(a) and (b)
show the f-dependence of g* and R as determined from the
simulations, respectively. We confirm the scaling law: R p f �1/5

Fig. 6 Excluded area of single grafted chain on NP1 surface to a second NP (NP2). (a) An example of the surface distribution of hpiit. We set the following
parameters: Rn = 7.0, N = 200, f = 1, Rg = 11.3. We measured g* = 0.23. Color indicates value of hpiit. (b) N-Dependence of g*. (c) N-Dependence of R
derived using the g* and eqn (1). Error bars show standard error.
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in the large N (Z200)/relatively large f (420) limit. On the other
hand, the scaling law does not work for smaller N and f. According
to Daoud–Cotton theory, polymers are not influenced by the
curvature of the NP surface when the end-to-end distance of the
chains Re { Rn. Indeed, we find that Re E 4.2Rn for N = 200, Re E
2.8Rn for N = 100, and Re E 1.8Rn for N = 50, respectively, suggesting
that we are approaching the limits of this theory for small N.

We directly measured the total excluded area ratio S* in
the simulations with f grafted chains – this corresponds to the

fraction of the NP1 surface that is inaccessible to the NP2 due
to the presence of the grafted chains. In addition, we compared
S* with those predicted by the ES and mES models. In the ES
and mES models, we first calculated R using the hypothetical
relationship, R = bRg and eqn (7), respectively. Note that since
eqn (7) does not work in the region of small f and small N as
discussed in Fig. 7, we used the fitted functions obtained from
Fig. 7(b) as follows: for N = 50, R = 3.45f�0.046 ( f o 30). For
N = 100, R = 4.39f �0.128 ( f o 20). By substituting R into eqn (1),

Fig. 7 Effect of adding grafted polymer chains on the NP1 surface on g* and R. (a) f-Dependence of g*. Note that g* represents the fraction of the NP1
surface that is excluded to NP2 due to presence of a single grafted chain. Pictures shows the surface distribution of hpiit for N = 200 and Rn = 7.0.
The color scheme is the same as in Fig. 6(a). (b) f-Dependence of R. The dashed lines represent eqn (7).

Fig. 8 f-Dependence of S*. Rn = 7.0. (a) N = 50. (b) N = 100. (c) N = 200.
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we calculated g*. Finally, using eqn (2), we calculated S* as
shown in Fig. 8(a)–(c). The mES model shows good agreement
with simulation values of S*, and the difference between the ES
and mES models becomes larger with increasing N. This is due
to the fact that the difference of R between the ES and mES
models is small until N E 50 (see Fig. 6(c)).

Self-assembly

Finally, we examine whether the mES model can quantitatively
explain experimental results and simulation findings for the
self-assembly of this class of PGNPs. To this end, we use the
information on experimental conditions (N, f, Rn) and calculate
the effective R for each condition using the mES model and eqn (1).
Then, using the geometric analogy with patchy particles,24

discussed above in the context of Fig. 1, we predicted the self-
assembled structures formed and compared them with the
morphologies reported. We refer to the following different
systems: (I) polystyrene-grafted silica NPs in a polystyrene

matrix (PS-g-silica NPs),10,32 (II) mixed bimodal polystyrene-
poly(2-vinylpyridine) brush coated silica NPs in a polystyrene
matrix (PS-P2VP-g-silica NPs),32 (III) polystyrene-b-poly(2-
vinylpyridine) block copolymer physically absorbed silica NPs
in a polystyrene matrix (PS-b-P2VP-a-silica NPs),33 (IV) coarse-
grained bead-spring polymer-grafted onto NPs studied by
Monte Carlo simulation (CG simulation).10 In the case of
experiments using polystyrene, we estimated Rg as Rg E a(N/6)1/2,
which is the unperturbed radius of gyration in the melt and a is the
segment length of a polystyrene chain, which was estimated to be
5 Å.34 In case (III), we assumed that since P2VP adsorbs completely
on the surface of NP, Rg of BCP is calculated by only taking the PS
block into account. We show all necessary parameters in Tables 1
and 2. With given Rn, N and f we estimate R by eqn (7), and then
calculate a as a � R/Rn. Fig. 2b shows each sample plotted on the
a–f plane of the theoretical phase diagram of the self-assembly of
PGNPs. We find that self-assembled structures found in simula-
tions of coarse grained models and also three different classes of

Table 1 Experimental conditions and parameters. R, g* and S* are calculated by the mES model

System Rn
a (nm) N a f a Morphologya Rg (nm) R (nm) g* S* a

(I) PS-g-silica NPs ref. 10 7.0 489.68 6.16 String/clump 4.52 2.78 0.14 0.58 0.40
7.0 1517.04 6.16 String/clump 7.95 4.80 0.20 0.71 0.69
7.0 1538.46 30.80 Dispersed 8.01 3.51 0.17 0.99 0.50
7.0 1017.76 30.80 Dispersed 6.51 2.87 0.15 0.99 0.41
7.0 432.07 61.60 Dispersed 4.24 1.62 0.09 1.00 0.23
7.0 1480.77 61.60 Dispersed 7.85 3.02 0.15 1.00 0.43

(II) PS-P2VP-g-silica NPs ref. 32 7.0 998.56 12.32 Clump 6.45 3.45 0.17 0.87 0.49
7.0 1507.44 30.79 Dispersed 7.93 3.49 0.17 0.99 0.50
7.0 1488.24 67.73 Dispersed 7.87 2.97 0.15 1.00 0.42

(III) PS-b-P2VP-a-silica NPs ref. 33 7.0 1425.83 0.62 Aggregate 7.71 6.75 0.25 0.11 0.96
7.0 1425.83 1.23 Sheet/connected 7.71 6.75 0.24 0.27 0.92
7.0 1425.83 6.16 String/clump 7.71 6.75 0.20 0.86 0.67
7.0 1056.17 6.16 String/clump 6.63 5.70 0.18 0.81 0.57

a These parameters were obtained from references.

Table 2 Simulation conditions and parameters. R, g* and S* are calculated by the mES model

System Rn
a (s) N a f a Morphologya Rg(s) R(s) g* S* a

(IV) MC simulations ref. 10 3.75 0 0 Aggregates 0 0 0 0 0
3.75 3 4 Sheet 0.71 0.34 0.04 0.15 0.09
3.75 6 4 Sheet 1.16 0.63 0.07 0.25 0.17
3.75 10 4 Sheet 1.65 0.92 0.10 0.33 0.25
3.75 12 4 Sheet 1.88 1.03 0.11 0.35 0.27
3.75 4 6 Sheet 0.87 0.45 0.05 0.27 0.12
3.75 5 6 Sheet 1.02 0.53 0.06 0.31 0.14
3.75 6 6 Sheet 1.16 0.63 0.07 0.35 0.17
3.75 8 3 Sheet 0.71 0.34 0.04 0.28 0.09
3.75 8 4 Sheet 0.87 0.45 0.04 0.35 0.12
3.75 2 12 Sheet 0.54 0.23 0.03 0.29 0.06
3.75 3 12 Sheet 0.71 0.34 0.04 0.39 0.09
3.75 6 8 String 1.41 0.78 0.09 0.40 0.21
3.75 8 6 String 1.16 0.63 0.07 0.44 0.17
3.75 6 10 String 1.65 0.92 0.10 0.45 0.25
3.75 8 8 String 1.41 0.78 0.09 0.50 0.21
3.75 12 4 String 0.87 0.45 0.05 0.47 0.12
3.75 14 6 Clump 2.09 1.17 0.12 0.51 0.31
3.75 10 8 Clump 1.65 0.92 0.10 0.55 0.25
3.75 6 12 Clump 1.16 0.63 0.07 0.58 0.17

a These parameters were obtained from references.
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experiments are in good agreement with the mES – based theore-
tical predictions over a broad range of a and f values. We therefore
believe that the mES model allows us to capture the self-assembly
behavior of these PGNPs without the use of any adjustable
parameters.

Conclusions

We propose a new calculation method for the surface coverage
afforded by polymer chains grafted on to spherical NP surfaces.
This calculation method can accurately predict the area of the
NP surface that is excluded to another NP by the presence of the
grafted chain. A simple extension of this model by adopting
ideas from the Daoud–Cotton approach allows us to model
NPs with multiple grafts. All of these results are in quantita-
tive agreement with coarse grained simulations. Further, we
draw an analogy of these grafted particles to patchy NPs, and
from there predict the self-assembled structures that are
formed. These results, which therefore have no adjustable
parameters, are in excellent agreement with appropriately
curated previous experiments and simulations. We therefore
propose that the mES model can apparently be used to
quantitatively understand the structure and the anisotropic
self-assembly of this class of polymer grafted nanoparticles.
Importantly, although in the current paper we only focus
on the case of good solvent conditions, our model can be
naturally extended to other solvent qualities (e.g. theta solvent
or poor solvent) by reformulating the Daoud–Cotton model
and the associated scaling laws.

Methods
Simulation model

Grafted polymers are represented using the coarse-grained
bead-spring model of Kremer and Grest.31 Each chain contains
N beads of mass m = 1. All beads interact via the Lennard-Jones
(LJ) potential.

Up rð Þ ¼
4e

s
r

� �12
� s

r

� �6� �
; r � rc

0; r4 rc

8><
>: (9)

where r is the distance between two beads, e is the Lennard-
Jones unit of energy, and s is the bead diameter. We set rc = 21/6s.
Beads along the chain are connected by an additional unbreakable
finitely extensible nonlinear elastic (FENE) potential UFENE(r) =
�1/2klmax

2 ln[1 � (r/lmax)2], with lmax = 1.5s and k = 30e/s2.
We use the expanded LJ potential for pair interactions between
colloid–colloid and colloid–polymer beads as follows;

U rð Þ ¼
4e

s
r� D

� �12
� s

r� D

� �6� �
; r � rc þ D

0; r4 rc þ D

8><
>: (10)

here, we choose D = 4s and D = 2s for colloid–colloid and
colloid–polymer bead interactions, respectively. One end bead
of the grafted polymer is fixed on the surface of the colloid
(grafting point). f grafting points are randomly located on the
surface. NNP(= 43) colloids have different patterns of grafting
points arrangements.

Fig. 9 Schematic of geometric relation between the grafted polymer coil and the NP2. The dashed and solid lines represent a grafted polymer coil
(radius of Rg) and a NP2 (radius of Rn). NP1 which the polymer coil is grafted on is not shown.
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Molecular dynamics simulation

All simulations are carried out using the LAMMPS parallel MD
package. NVT MD simulations are performed in an orthogonal
cubic simulation box. Temperature T is set to 1.0e/kB and is
maintained by a Langevin thermostat with a damping constant
G = 0.01s�1(m/e)�1/2. kB is Boltzmann’s constant. The NPs’
positions are fixed and only the dynamics of grafted polymers
is enumerated. The simulations are run for 106–108 time steps

of length dt ¼ 0:005
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ms2=e

p
to equilibrate the system and then

another 107–108 time steps for each observation.
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Appendix

We will explain the derivation of C, which depends on Rg, Rn and
L. Fig. 9(a)–(e) show 5 different geometric situations to consider.
Here a polymer chain grafted on the surface of a NP1 is drawn as a
spherical sphere with radius of Rg (hereinafter called ‘‘a polymer
coil’’) and it has fractal structure inside the sphere. The integration
range is the overlapping range of two spheres (the polymer coil
and the NP2), and the coordinates within the integration range are
denoted by (r,y,j). ym, rmax and rmin are the maximum angle and
the maximum and the minimum length in the integration range
of y and r, respectively.

(I) Rg r Rn

In this case, we have to consider the following three situations
for the range of L:

0 r L r Rn � Rg: the polymer coil is completely inside the
NP2. As an example, Fig. 9(a) shows a case where L = Rn � Rg.
In this case, eqn (4) becomes:

C L;Rn;Rg

� �
¼ ND

4pRD
g

ð2p
0

dj
ðp
0

sin ydy
ðRg

0

rD�1dr (A1)

As a result, we derive:

C = N (A2)

Rn � Rg r L r Rn: the polymer coil and the NP2 are partially
overlapping and the center of the polymer coil (Op) is inside the
NP2 (On) and vice versa. As an example, Fig. 9(b) shows a case
where L = Rn. In this case, eqn (4) becomes:

C L;Rn;Rg

� �
¼ ND

4pRD
g

ð2p
0

dj
ðym1

0

sin ydy
ðRg

0

rD�1dr




þ
ð2p
0

dj
ðp
ym1

sin ydy
ðrmax

0

rD�1dr

� (A3)

Here, the integration range should be divided into two, corres-
ponding to the first and second term of the right side, respec-
tively. The first and second integration range are represented by
filled and dotted areas, respectively in Fig. 9(b). Here, ym1 is the
maximum angle of integration range of y in the first term of

right side. So cos ym1 = (L2 + Rg
2 � Rn

2)/2RgL and

rmax ¼ L cos y�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L cos yð Þ2� L2 � Rn

2ð Þ
q

. As a result, we

obtain:

C ¼ N

2
1�

L2 þ Rg
2 � Rn

2
� �

2RgL


 �

þ N

4RD
g L D2 � 1ð Þ R

D�1
g Dþ 1ð Þ Rn

2 � L2
� �

þ D� 1ð ÞRg
2

� h

�2 Rn � Lð ÞDðDRn þ LÞ
i

(A4)

Rn r L r Rn + Rg: the polymer coil and the NP2 are partially
overlapping and the center of the polymer coil (Op) is outside
the NP2 and vice versa (Fig. 9(c)). In this case, eqn (4) becomes:

C L;Rn;Rg

� �
¼ ND

4pRD
g

ð2p
0

dj
ðym
0

sin ydy
ðRg

rmin

rD�1dr (A5)

Here cos ym = (L2 + Rg
2 � Rn

2)/2RgL and rmin ¼ L cos y�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L cos yð Þ2� L2 � Rn

2ð Þ
q

. As a result, we can derive:

C ¼ N

2
1�

L2 þ Rg
2 � Rn

2
� �

D2

2RgL D2 � 1ð Þ

�

þ L� Rn

Rg

� �D
DRn þ L

D2 � 1ð ÞL


 �
�

L2 � Rg
2 � Rn

2
� �

D

2RgL D2 � 1ð Þ

#

(A6)

(II) Rn r Rg r 2Rn

0 r L r Rg � Rn: the NP2 is completely inside the polymer coil
and the center of the polymer coil (Op) is inside the NP2. As an
example, Fig. 9(d) shows a case where L = Rn � Rg. In this case,
eqn (4) can be described as:

C L;Rn;Rg

� �
¼ ND

4pRD
g

ð2p
0

dj
ðp
0

sin ydy
ðrmax

0

rD�1dr (A7)

Here, rmax ¼ L cos yþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L cos yð Þ2� L2 � Rn

2ð Þ
q

. As a result, we

derived:

C¼ N

2RD
g L D2� 1ð Þ RnþLð ÞD DRn�Lð Þ� Rn�Lð ÞD DRnþLð Þ

n o
(A8)

Rg � Rn r L r Rn: the polymer coil and the NP2 are partially
overlapping and the center of the polymer coil (Op) is inside the
NP2 (On) and vice versa. This case is geometrically same with a
case of Fig. 9(b), but just different of relative size of Rg and Rn.
The obtained result is equal to eqn (A4).

Rn r L r Rn + Rg: the polymer coil and the NP2 are partially
overlapping and the center of the polymer coil (Op) is outside
the NP2 and vice versa (Fig. 9(c)). This case is geometrically
same with a case of Fig. 9(c), but just relative size of Rg and Rn.
The obtained result is equal to eqn (A6).
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(III) 2Rn r Rg

0 r L r Rn: the NP2 is completely inside the polymer coil and
the center of the polymer coil (Op) is inside the NP2. This case
is geometrically same with a case of Fig. 9(d), just different
of relative size of Rg and Rn. The obtained result is equal to
eqn (A8).

Rn r L r Rg � Rn: the NP2 is completely inside the polymer
coil and the center of the polymer coil (Op) is outside the NP2.
As an example, Fig. 9(e) shows a case where L = Rg � Rn. In this
case, eqn (4) becomes:

C L;Rn;Rg

� �
¼ ND

4pRD
g

ð2p
0

dj
ðym
0

sin ydy
ðrmax

rmin

rD�1dr (A9)

Here sin ym = Rn/L, rmax ¼ L cos yþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L cos yð Þ2� L2 � Rn

2ð Þ
q

,

and rmin ¼ L cos y�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L cos yð Þ2� L2 � Rn

2ð Þ
q

. As a result, we

can derive:

C ¼ N

2RD
g L D2 � 1ð Þ

� L� Rnð ÞD DRn þ Lð Þ þ Lþ Rnð ÞDðDRn � LÞ
n o

(A10)

Rg � Rn r L r Rn + Rg: the polymer coil and the NP2 are
partially overlapping and the center of the polymer coil (Op) is
outside the NP2 and vice versa. This case is geometrically same
with a case of Fig. 9(c), just different of relative size of Rg and
Rn. The obtained result is equal to eqn (A6).

Acknowledgements

The authors thank the National Science Foundation for financial
support of this work. S. K. K. acknowledges the National Science
Foundation through grant DMR-1709061.

References

1 R. Krishnamoorti and R. A. Vaia, J. Polym. Sci., Part B: Polym.
Phys., 2007, 45, 3252–3256.

2 M. E. Mackay, A. Tuteja, P. M. Duxbury, C. J. Hawker, B. Van
Horn, Z. Guan, G. Chen and R. Krishnan, Science, 2006, 311,
1740–1743.

3 R. Krishnamoorti, MRS Bull., 2007, 32, 341–347.
4 A. Bansal, H. Yang, C. Li, K. Cho, B. C. Benicewicz, S. K.

Kumar and L. S. Schadler, Nat. Mater., 2005, 4, 693–698.
5 D. L. Green and J. Mewis, Langmuir, 2006, 22, 9546–9553.
6 A. Bansal, H. Yang, C. Li, B. C. Benicewicz, S. K. Kumar and

L. S. Schadler, J. Polym. Sci., Part B: Polym. Phys., 2006, 44,
2944–2950.

7 C.-K. Wu, K. L. Hultman, S. O’Brien and J. T. Koberstein,
J. Am. Chem. Soc., 2008, 130, 3516–3520.

8 S. E. Harton and S. K. Kumar, J. Polym. Sci., Part B: Polym.
Phys., 2008, 46, 351–358.

9 S. K. Kumar, N. Jouault, B. Benicewicz and T. Neely, Macro-
molecules, 2013, 46, 3199–3214.

10 P. Akcora, H. Liu, S. K. Kumar, J. Moll, Y. Li, B. C.
Benicewicz, L. S. Schadler, D. Acehan, A. Z. Panagiotopoulos,
V. Pryamitsyn, V. Ganesan, J. Ilavsky, P. Thiyagarajan, R. H.
Colby and J. F. Douglas, Nat. Mater., 2009, 8, 354–359.

11 M. Belkin, A. Snezhko, I. Aranson and W.-K. Kwok, Phys.
Rev. Lett., 2007, 99, 158301.

12 M. Seul and D. Andelman, Science, 1995, 267, 476.
13 Z. Tang, Z. Zhang, Y. Wang, S. C. Glotzer and N. A. Kotov,

Science, 2006, 314, 274–278.
14 K. Van Workum and J. F. Douglas, Phys. Rev. E: Stat.,

Nonlinear, Soft Matter Phys., 2006, 73, 031502.
15 S. N. Fejer and D. J. Wales, Phys. Rev. Lett., 2007, 99, 086106.
16 E. Rabani, D. R. Reichman, P. L. Geissler and L. E. Brus,

Nature, 2003, 426, 271–274.
17 S. Gupta, Q. Zhang, T. Emrick, A. C. Balazs and T. P. Russell,

Nat. Mater., 2006, 5, 229–233.
18 J. Oberdisse, Soft Matter, 2006, 2, 29–36.
19 M. Li, H. Schnablegger and S. Mann, Nature, 1999, 402, 393–395.
20 A. K. Boal, F. Ilhan, J. E. DeRouchey, T. Thurn-Albrecht,

T. P. Russell and V. M. Rotello, Nature, 2000, 404, 746–748.
21 C. Pacholski, A. Kornowski and H. Weller, Angew. Chem.,

Int. Ed., 2002, 41, 1188–1191.
22 J. Kao, K. Thorkelsson, P. Bai, B. J. Rancatore and T. Xu,

Chem. Soc. Rev., 2013, 42, 2654–2678.
23 B. Gao, G. Arya and A. R. Tao, Nat. Nanotechnol., 2012, 7,

433–437.
24 M. Asai, A. Cacciuto and S. K. Kumar, Soft Matter, 2015, 11,

793–797.
25 A. A. Louis, P. G. Bolhuis, J. P. Hansen and E. J. Meijer, Phys.

Rev. Lett., 2000, 85, 2522–2525.
26 N. Bachhar, Y. Jiao, M. Asai, P. Akcora, R. Bandyopadhyaya

and S. K. Kumar, Macromolecules, 2017, 50, 7730–7738.
27 M. Asai, D. Zhao and S. K. Kumar, ACS Nano, 2017, 11,

7028–7035.
28 M. Daoud and J. Cotton, J. Phys., 1982, 43, 531–538.
29 K. Ohno, T. Morinaga, S. Takeno, Y. Tsujii and T. Fukuda,

Macromolecules, 2007, 40, 9143–9150.
30 P.-G. De Gennes and T. A. Witten, AIP, 1980.
31 K. Kremer and G. S. Grest, J. Chem. Phys., 1990, 92, 5057–5086.
32 D. Zhao, M. Di Nicola, M. M. Khani, J. Jestin, B. C. Benicewicz

and S. K. Kumar, ACS Macro Lett., 2016, 5, 790–795.
33 D. Zhao, M. Di Nicola, M. M. Khani, J. Jestin, B. C. Benicewicz

and S. K. Kumar, Soft Matter, 2016, 12, 7241–7247.
34 J. Brandrup, E. H. Immergut, E. A. Grulke, A. Abe and

D. R. Bloch, Polymer Handbook, Wiley, New York etc, 1989.

Paper Soft Matter

Pu
bl

is
he

d 
on

 0
4 

Se
pt

em
be

r 
20

18
. D

ow
nl

oa
de

d 
by

 U
N

IV
E

R
SI

T
Y

 O
F 

C
IN

C
IN

N
A

T
I 

on
 4

/1
5/

20
20

 2
:2

5:
50

 P
M

. 
View Article Online

https://doi.org/10.1039/c8sm01311j



