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ABSTRACT: Two colloidal particles, each with f long polymers grafted to it, experience an effective mutual
repulsion in a good solvent. The effective interaction potential depends logarithmically on the separation
between the particles, with a universal coefficient depending on the functionality f. We deduce this coefficient
for / = 1 and 2 using results of des Cloizeaux for interior correlations within a self-avoiding walk. For f »
1 we deduce that this coefficient varies as /®/2, using the semidilute scaling properties of the polymeric “corona”
around a colloidal particle. We show that the repulsive interaction arising from the polymers can be sufficient
to stabilize a dispersion of colloidal particles, despite their inherent tendency to precipitate owing to van der
Waals attractions. The repulsions also give rise to a peak in the scattering structure factor S(q) for concentrations
near the overlap concentration c*. We show that the height of this peak scales as /®/2 and predict a ma-
crocrystalline phase for c near c* and for sufficiently large f.

I. Introduction
One common means of stabilizing large particles in a

solution is by the attachment of polymers to the particles.1
In good solvents, the polymers avoid one another, and this
tends to keep the large particles apart. One may distin-
guish two general ways in which the polymers may be
fastened to a particle. (1) The simplest is adsorption:2 the
surface is constituted so as to attract the monomers. The
overall attraction may easily be made strong enough to
bind a polymer irreversibly to the surface while leaving
most of the monomers away from the surface, where they
may serve as a repelling buffer. The adsorption method,
while simple to realize experimentally, may not have the
desired effect of repulsion. Indeed, adsorbed polymers may
as easily produce a strong attraction as a repulsion.1,3 (2)
An alternative attachment method is grafting. Here, a

polymer is irreversibly chemically attached to a surface,
e.g., at the end of the polymer chain. The chain is chosen
to repel both the surface and other chains. In order to
achieve this, the medium must be a good solvent for the
polymer and must have a lower surface energy than the
polymer against the particle surface. Such grafted chains
produce an unambiguous repulsion between the particles.
The chain conformations and the form of this repulsion
when the polymers are short and numerous have been
studied theoretically.4,5 On the experimental side, a very
similar case of adsorbed block copolymers (one end ad-
sorbing on the surface and the other end repelling the
surface) has recently been investigated.6

Let us briefly review this case of polymers grafted to a

flat surface (Figure 1). We are interested in effects specific
to high molecular weight; accordingly we assume that the
local concentration of monomers is small enough that
detailed packing and interaction effects are unimportant.
Alexander and de Gennes4 have argued that if the mean
distance between grafting points, D, is less than the radius
of gyration of the unattached polymer in good solvent, R0
=  */* , then, the chains will be stretched by the excluded
volume repulsions between them. (Here, N is the degree
of polymerization of the individual chains and “a” is a

typical monomeric dimension.) Their scaling considera-
tions7 yield a brush thickness, L

L/a=N(a/D)2/3 (1.1)

for D < R0. Note (i) the linearity in N, which is typical
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of stretched chains, and (ii) the proper crossover to ex-
cluded volume dimensions as the grafting density dimin-
ishes, D — R0. de Gennes5 considered the force between
two parallel brushes whose grafting surfaces are separated
by a distance h. For h> L, the force is exponentially small
while for h < L, the disjoining pressure,  , is dominated
by the osmotic pressure of the confined chairs, giving8

 /  = D~\L/h)9/4 (1.2)

For a curved surface, with radius of curvature, b, large
compared with the brush thickness, L, the force is weakly
perturbed from (1.2) and may be evaluated in a Derja-
guin-like approximation.1

In this study, we focus on the complementary regime,
where the chains extend far beyond the diameter of the
particle. (Colloidal stabilization by these long chains is
probably rare in practice.) Since this regime concerns

many long polymers attached to a common center, it has
also been studied in the context of copolymer micelles9,10
and many-armed star polymer.11'13 It is generally appre-
ciated that excluded volume effects are magnified by the
large number of arms and that as a result, a solution of
micelles or stars may form a crystalline or glassy ma-
crostructure. The present treatment focuses on the ef-
fective interaction between the stars. We find a surprising
logarithmic dependence of the effective interaction on the
particle separation. The coefficient of the logarithm is
related to universal critical exponents14 of the self-avoiding
walk problem.

For concreteness, we take the particles to be spherical
balls of radius b. We idealize the polymers as self-avoiding
walks of N steps on a lattice of spacing a « b. On each
ball, f of these polymers are grafted; i.e., f points are chosen
with uniform spacing around the ball, and a polymer is
attached to each. Each of these hairy balls has a partition
function Z0, which is the number of mutually avoiding
configurations of the f polymers. We denote the average
radius of gyration of the assembly as R.

If two hairy balls are separated by a displacement r <
R, the total number of configurations Z(r) of the system
is reduced because of mutual self-avoidance; i.e., Z(r) <
Zq. This effect is the basis of the repulsion between the
balls. In a large lattice sparsely filled with such balls at
random positions, a dilute dispersion, the probability P(r)
that two balls are at a displacement r is given by P(r) =
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Figure 1. Polymer chains grafted to a flat surface. The circular
“blobs” have a diameter D equal to the lateral spacing of the chains
on the surface. Each blob contains predominantly monomers of
a single chain.

P(<*>)Z(r) / Z02. Here P(m) is simply the concentration of
balls. Since Z(r) decreases progressively as r decreases,
close approaches are suppressed. One may view this
suppression as arising from a repulsive interaction, U(r),
a potential of mean force, defined by

P(r)/P(°o) = exp[-U(r)/T] (1.3)

Our interest here is in how this repulsion depends on the
chain length N and on the number of polymers per ball,
/, in the regime where the polymers are very large com-

pared to the size b of a ball.
In section II, we discuss these osmotic forces between

a pair of particles and derive the structure of the potential
of mean force. Colloidal stabilization requires that this
effective repulsive potential balances the ubiquitous van
der Waals attraction, V(r), between the spheres. This
competition is considered in section III. Section IV is
devoted to some comments concerning a suspension of
hairy balls at a finite concentration. In particular, we
calculate the osmotic pressure and predict a peak in the
scattering (neutron or X-ray) structure factor in the con-
centration range where the hairs are starting to overlap.

II. Potential of Mean Force
There are two limits where we may readily deduce the

potential of mean force between a pair of hairy balls, (i)
In the small-/ limit where there are only one or two
polymers per sphere, we show that the interaction is re-
lated to certain critical exponents of the excluded volume
problem, (ii) In the opposite limit of large /, we may
discuss how U(r) depends upon / by extending the Alex-
ander-de Gennes4 results for polymers grafted to a flat
surface.

Let us first consider the case / = 1. As we are interested
in discusses r » 6, it is convenient to treat the polymeric
hairs as N' blobs of radius b. If the ends of two such
polymers are fixed at a separation b, the result is essentially
a similar polymer of length 2 '. Its partition function Z(b)
scales with N' just like any self-avoiding chain15

Z(b) « (2N')y~lT2N' (II. 1)

Here the exponent y == 7/6 is a critical exponent of the
excluded volume problem, and the “effective coordination
number"   depends on the detailed construction of the
polymer. From this Z(b), we may infer the form of P(r),
with r = b:

P(r)U ^ Z(b)/Z02
cc (2Ar,)r"lT2JV7(7V,1'-lTJV')2
oc Nn-y (II.2)

The r dependence of P(r) can now be inferred by scaling
arguments. First, P(r) must approach P(°=) if r is of the

Figure 2. Two colloidal particles of radius b, each with a long
polymer grafted to it. Excluded volume repulsion between the
polymers results in an effective repulsion between the colloidal
particles.

order of the chain size R. This radius scales with N ac-

cording to the Flory exponent v (=3/5); i.e., R °c N”. Now,
assuming that P(r) has the scaling form

P(r) =  (=°) ( / ) (II.3)
where  ( ) is an unknown function that must agree with
P(b) (eq II.2) as x -+ b/R. This implies that

 ( ) oc  (7- /- (II.4)
for x < 1. The colloidal stabilization arises because the
local concentration of monomers near a given sphere is
reduced. For this case of a single hair, this reduction is
by a factor P(6)/P(“) «  (b/R) ~ N''1/6. The potential
of mean force (eq 1.3) between two such single-haired balls
(Figure 2) is then

U(r)/T~[(y-l)/v] In (R/r) (II.5)
Note the weak logarithmic dependence on separation of
the spheres for R > r > b.

In a similar manner, in the case when two hairs are
attached to each ball, we can relate the behavior of P(r)
to previously identified polymer exponents.16 des Cloiz-
eaux14 has treated P(r) for two monomers spaced a distance
of order N along a single chain. He finds P{r) <  r6, where
  is another approximately known critical exponent (  ~

0.8 in three dimensions). The same power law describes
P(r) when the monomers in question are on different
chains.16 By the same reasoning employed in the single-
hair case, P(r) also describes two hairy balls for R > r >
b. This again results in a logarithmic potential of mean
force with the prefactor in (II.5) replaced by  , i.e., an
approximate doubling of the interaction for a given sepa-
ration.

We now turn to the limit of many hairs per ball. The
surface area per hair, 4 b2/f, is now a small fraction of the
area of the sphere. The distance D between adjacent hairs
on the surface is then of order b{~112. We denote the ratio
D/b « 1 by ß. The situation is now similar to polymers
on a flat surface.4 The local environment is that of a
semidilute polymer solution with correlation length15  
much smaller than the end-to-end radius of a hair. This
regime many be treated along the lines of the Daoud-
Cotton11 study of many-armed star polymers. Globally,
each hair is stretched out radially away from the chain so
that the lateral separation between hairs at a distance r
from the center is always of order fir. As usual in a sem-
idilute solution, £(r) = fir.

It is useful to visualize this semidilute region using a blob
picture; i.e., we partition space into spherical blobs of
radius |(r) (Figure 3). The surface of the sphere is covered
by / blobs. Above this lies a second shell of / blobls, each
1 + ß times larger than those in the first shell. The blobs
in each subsequent shell are expanded by the same factor.
This continues until all the monomers are contained in the
shell structure. The radius of the sphere plus its corona
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Figure 3. Daoud-Cotton conception of a many-haired ball. In
this (two-dimensional) example the number / of grafted polymers
is 20 and their molecular weight is such that the number S of shells
is 5. The blobs drawn on the picture are constructed as described
in the text. Because of excluded volume effects, each blob contains
predominantly monomers of a single chain.

of polymers is then determined by this construction.
Within a blob, the polymer resembles a self-avoiding walk
which gives a number g of monomers per blob of order g
« ( / )1-'1'. The resulting monomer concentration profile
is then

c(r) « fg(r)[4irr2£(r)] 1

« {ab/Dr)*/3a~2 ( .6)
The overall radius R is then fixed by counting the total
number of monomers in the corona

fN =

J" 4irr2c(r) dr
» (b/Dyi\R/ayi3 (IL7)

or

R/Rq = (b/D)2^ (H.8)

The overall radius scales with hair molecular weight like
a polymer swollen in a good solvent but with an enlarged
effective monomer size arising from the local crowding near
the core. The total number of shells, S, may also be easily
calculated by noting that the number of monomers per
chain per shell is g(r)

N = (D/aY^il + x + x2 + ... + xs)
= (D/o)1/"(xs+1 - l)/(x - 1) (II.9)

where x = (1 + ß) / . For D/b « 1, S becomes

S « v{b/D) In [NiD/bKa/D)1^] (II. 10)

While the number of shells grows linearly with b (for fixed
D), it increases only logarithmically with the hair molecular
weight.

The polymer contribution to the free energy per ball,
F, is then given by T per blob15 multiplied by the number
of blobs fS

F « vTf !2 In [N(D/b){a/D)l>v] (11.11)

If now two such balls are brought within a distance of order

Figure 4. Schematic plot of net interaction potential U{r) be-
tween two colloidal particles stabilized with long grafted polymers,
showing the net effect of van der Waals attraction and the log-
arithmic repulsion discussed in the text.

b of each other, the bulk of the system is similar to a single
ball with 2/ hairs. Then, using (11.11), we find that the
increase in free energy, AF, in this process is AF « F. This
AF is exactly the potential U(r) defined in (1.3). The N
dependence of the probability P{b) is again a power law:

PW/PH «

exp{-AF/T) * (N/^y^iD/a)^ * N^ (11.12)

where 6(f) ~ f¡2. The scaling argument of (II.3) gives the
power law form for P(r) (cf. (II.4))

P(r)/P(®) « (r/fi)W (11.13)

where R is the overall ball radius given in (II.8). For many
hairs (large f), the suppression of close encounters is very
strong. Nevertheless, the potential of mean force only
increases logarithmically with N.

The behavior of 6(f) seen here sheds an instructive
sidelight on des Cloizeaux’s original treatment. His values
of   for small { are based on an expansion in e, the di-
mension of space minus 4. To lowest order in < one finds
that   a e/2 + 0(e2f*). Our deviation of &{f) for large / gives
 (/) oc fd/(d-l) in d-dimensional space, so that   « e3/4/3 in
four dimensions. This contrasts with the leading behavior
in e for fixed f, and gives an insight about how the domain
of validity of the e expansion must shrink as f grows.

III. Steric Stabilization
The stability of colloidal suspensions requires a repulsive

force to balance the van der Waals attraction, V{r), which
always obtains between like objects. For spheres separated
by a distance r (»b), V(r) is given by

V(r) = -A(b/r)e (III.l)
where A is the Hamaker constant,1 which depends on the
polarizabilities of both solid particles and solvent. The
potential of mean force U(r) associated with the “hair-
hair” repulsions discussed in section II leads to the loga-
rithmic form

U{r) = v6{f)T In {R/r) (III.2)
The net effective potential E(r) = V(r) + U(r) is

sketched in Figure 4. Stabilization requires first that the
maximum in the potential energy £max exceeds T so that
the probability of one particle having enough thermal
energy to penetrate into the inner minimum is small.
Second, the depth,  , of the secondary minimum must be
small relative to T, to prevent flocculation into tenuous
aggregates.
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Figure 5. Schematic plot of reduced osmotic pressure Il(Tc) vs.
monomer concentration c. For large functionality / an increasingly
steep rise appears near the overlap concentration c*.

Since the position of the maximum, rmax, obeys rmax «
R, we can write

EmiJT « Mf) In (R/rmJ (III.3)
Thus for many-haired balls (/ » 1) the barrier is suffi-
ciently high to prevent aggregation provided that

R » 6(6A/(7V0))V6 (III.4)
where R is given in (II.8). Even systems with large Ha-
maker constants may be protected against aggregation with
long grafted chains.

The secondary minimum occurs in the vicinity of the
corona edge 0 = R) where the potential of mean force,
U(r), is falling exponentially toward zero. Then, using
(II.8), we find

  = V(R) = -A(b/R)6 « -A(b/-R0)6f6/5 (III.5)
For A «= T, the secondary minimum is shallow compared
to T if the individual hair radius of gyration is much larger
than the ball or if there are sufficiently many hairs. In
general, stabilization may be obtained with either many
short hairs or a few long ones.

IV. Osmotic Pressure and Structure Factor
In this section, we consider the situation where the

suspension contains a finite concentration, cb, of many-
haired balls. Our main results in this regime were dis-
cussed in a separate note.17 The Daoud-Cotton scaling
arguments are extended to allow a calculation of the scaling
regimes of the osmotic pressure,  . In particular, we find
a sharp increase in   at the concentration cb* (~T~3) where
the coronas begin to overlap. This crossover in the con-
centration dependence of the osmotic pressure is predicted
to provoke a peak in the neutron scattering structure factor
near qR «= 1 (q is the scattering wavevector) for cb in the
vicinity of cb*.

In the dilute limit, cb « cb*, the osmotic pressure cor-

responds to a dilute gas
  = Tcb (IV.l)

For semidilute solutions, c > cb*, the hairs entangle and
locally resemble a semidilute linear polymer solution where
the osmotic pressure is given by15

  =   3 (IV.2)
where  /  = (ca3)~3/4, with c being the average monomer

concentration; i.e., c = Nfcb. This semidilute formula
should remain valid as cb decreases until cb*, where we find
II(cb*) = f/2Tcb*. This is a factor /3/2 larger than the
osmotic pressure calculated from (IV.l). This implies a

relatively rapid change in 11(c) in the neighborhood of the

overlap concentration (Figure 5). As the functionality,
f, increases, the jump at c* becomes larger. Many-haired
balls resemble hard spheres.

The jump in the osmotic pressure in the vicinity of c*
implies a sharp decrease in the osmotic compressibility
with increasing concentration in the same region. Thus
at c*, the “quasi-hard sphere”-like resistance to compres-
sion translates to a weak neutron scattering amplitude in
the forward direction. We now argue that this relative
incompressibility engenders a peak in the neutron scat-
tering structure factor S(q) with scattering wavevector q
« "1.

Consider first a dilute solution of hairy balls. The for-
ward scattering structure factor per unit monomer con-

centration18, 5(0), is then simply15 5(0) = Nf. This is
related to the osmotic compressibility [c(dYljdc)Yl by

5(0) = TXdn/dc)"1 (IV.3)
For finite but small q (qR < 1), we are in the normal
Guinier range where S(q) decreases with q2 and gives the
corona radius of gyration, which scales like R. For larger
scattering wavevectors, we are probing the internal blob
structure of the corona, which is essentially the square of
the Fourier transform of the global monomer density
distribution [c(r) a r“4/3]. The main point that we need
here is that the dilute system structure factor is a mono-

tonically decreasing function of q.
For a finite concentration of balls near c* where the

osmotic pressure jumps, we find   /dc == Tf-/2/N or using
(IV.3)

5(0) « Nf1/2 (IV.4)
The strong reduction in the forward scattering amplitude
arises because concentration fluctuations are greatly sup-
pressed near the “hard sphere” packing volume fraction.
On the other hand, for qR > 1, we should recover the
single-chain structure factor. In particular, S(q) for qR ~

1 is given by Nf as discussed in the preceding paragraph.
For qR > 1, S(q) decreases with increasing q. This implies
the existence of a peak in the scattering structure factor
in the vicinity of q =  "1 of relative amplitude
S(q=R~1) /S(0) ~ f!2. In principle, this provides an ex-

perimental method to determine the average ball func-
tionality and corona radius.

V. Concluding Remarks
In this paper, we have considered the interactions be-

tween spherical solid particles with flexible polymers
end-grafted to them. The potential of mean force asso-
ciated with the hairs in good solvents is found to be a

logarithmic function of the interparticle separation and
polymer molecular weight. The prefactor is proportional
to f!2. Thus if one’s aim is to stabilize the particles against
flocculation with the minimal amount of polymer, it is
clearly more efficient to use numerous shorter hairs rather
than few very long ones.

We further predict that there is a fairly sharp jump in
the osmotic pressure at c*, which, in turn, leads to a peak
in the neutron scattering structure factor. Together, the
peak amplitude and position yield structural data relating
to the actual number of grafted hairs per ball and the
extent of swelling of the polymeric corona. This swelling
itself is predicted on the basis of scaling considerations
parallel to those used for star polymers. Indeed, most of
the results of this paper may be taken over to the case of
stars if the core radius is properly defined.

A corollary of the strong peak in the structure factor is
the prediction that a solution of hairy balls or stars at c*
should crystallize into an ordered steric colloidal crystal.
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Applying the empirical Verlet criterion that simple fluids
order when the peak in the structure factor reaches ap-
proximately 3-4, we would expect crystallinity with only
a few hairs. Of course, a glassy phase might intervene and
mask the order but nevertheless we would predict a def-
inite shear modulus for small shear rates.
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ABSTRACT: Explicit size distributions for polymers undergoing degradation are found for systems where
the rate of bond scission depends on total chain length as well as on the position of the bond within the chain.
Previously, the only model solved explicitly was the case of purely random bond scission (by Montroll and
Simha). A new model is solved where chain bonds break preferentially in the center with a parabolic probability
distribution, F(x,y) = xy. Here F(x,y) is the rate of fragmentation of polymers length x + y into chains of
length x and y. A ternary breakup model with equal bond reactivity is also solved. The general solution
is given for the case where the rate of breakup is proportional to the total chain length raised to a power a,
F(x,y) = (x + y)a. When a < -1 it is found that mass is not conserved because of a cascading breakup rate
as the fragments get smaller. The long-time scaling behavior of the models is studied and found to differ
for the different models. Discrete models corresponding to a = -2 and -3 are also solved and help to show
the “shattering” transition is a spontaneous breakup of a fraction of the system into monomers.

I. Introduction
Polymer chains undergo degradation (depolymerization)

through a variety of mechanisms, including shear action,1,2
chemical attack,3 and nuclear, ultraviolet, and ultrasonic
irradiation.4,5 It is of great interest to predict theoretically
the evolution of the size distribution during such processes.
For that purpose, two approaches have been used. One
has been through the use of statistical and combinatorial
arguments, as first used by Kuhn,6 Mark and Simha,7 and
Montroll and Simha8 to solve the equireactivity model, in
which polymer bonds break randomly and independently.
The second approach has been through a kinetic equation
for depolymerization. Such an equation was first intro-
duced by Blatz and Tobolsky9 (in combination with po-
lymerization) and solved for the case of size-independent
polymerization and fragmentation rates. The kinetic
equation of fragmentation was also studied by Jellinek and
White10 and Saito.11 Others who have considered the
problem of depolymerization kinetics include Charlesby,12
Nanda and Pathria,13 Simha and Wall,14 and Simha, Wall,
and Blatz.15 Demjanenko and Dusek16 have recently
considered the problem of random degradation in con-

junction with cross-linking. In all these works, explicit
solutions were found for only the case where the breakup

rate is a constant, or all bonds break with equal probability,
which is essentially the model first solved by Montroll and
Simha 46 years ago. The equireactivity assumption is
analogous to Flory’s model of chain polymerization where
all bonds are equally probable.17

In many polymer systems, however, the breaking of
bonds does not occur randomly but depends upon the
position of the bond within the chain and/or the total
chain length. Experimental studies on systems undergoing
degradation through shear,18 elongation,19 or irradiation4
have found that the bonds in the center of the chains break
preferentially to those at the ends. For many systems, it
has been proposed that the breakage rate along the chains
is a truncated Gaussian distribution.4,20,21 One would also
like to be able to understand the depolymerization kinetics
of these systems. Since the equations are linear, the dis-
crete form of the fragmentation equation can be solved in
principle for any breakup function.10,20 Yet there have
been no cases other than equireactivity where an explicit
solution has been found, and other solutions have been
obtained only numerically with computers. We note that
a form of unequal scission has been considered in detail
by Amemiya22 in connection with cross-linking kinetics.
In his models, inhomogeneity was introduced by having
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