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Quiz 13 Polymer Physics 
April 24, 2020 

 
Diblock copolymers can form an ordered state (lamellar domains of the two blocks for instance), 
usually at elevated temperatures or a disordered state at low temperatures (a more or less normal 
polymer melt).  Even in the disordered state the two blocks tend to segregate leading to 
concentration fluctuations that can be observed by dynamic light scattering or a similar technique 
using synchrotron X-rays (small-angle X-ray PCS).  In these techniques the time dependent 
structure factor S(q,t) is measured which is expected to follow an exponential decay in time.  
S(q,t) as a function of q shows a peak associated with fluctuations associated with the size of the 
blocky fluctuations.  The relaxation time associated with the exponential decay of intensity with 
time at various q’s also shows a peak indicating that relaxations near the size scale of the 
fluctuations are slow, while smaller or larger scale fluctuations are faster.   
 
T. Ghasimakbari and D. C. Morse Dynamics and Viscoelasticity of Disordered Melts of 
Symmetric Diblock Copolymers Macromolecules 52 7762−7778 (2019) discuss the dynamics of 
diblock copolymers in the disordered state.  They performed coarse grain simulations of deblock 
copolymers and obtained S(q,t) and the stress relaxation modulus G(t). 
 

   
                                 Graphical Abstract 
 
a)  The graphical abstract above shows the behavior of G(t) as a function of t/t0 where t0 is the 
Rouse relaxation time.  This is a log-log plot so an exponential decay looks like a knee.  At low 
cN the system is miscible and disordered and approaches microphase separation at higher cN, 
above about 10.5.  Give the Rouse prediction for G(t), compare that with Ghasimakbari’s plot 
and comment on what happens at large cN. 
 
b)  Figure 2 shows the behavior of the block copolymer diffusion coefficient, D, divided by the 

homopolymer diffusion coefficient, D0.  Both diffusion coefficients follow , which is not 
shown in the plot.  Derive this expression and explain the behavior seen in Figure 2 for cN above 
about 10.5. 
 
c)  Ghasimakbari is able to obtain the time correlation function for the end-to-end vector for the 

block copolymers from his coarse grain simulations, , which is 
expected to follow an exponential decay in time following the Rouse theory, 
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.  Define p and tp in this equation with at least two sentences for 
each term. 
 
d)  Ghasimakbari plots the Rouse relaxation times from the diffusion coefficient and from the 
end-to-end vector versus cN in Figure 5.  In the caption he mentions that D = kBT/Nz.  Comment 
on the behavior seen in Figure 5. 

    
 
e) Ghasimakbari mentions that “The Rouse model predicts a power-law decay G(t) ~ t-1/2 at times 
t<<tR followed by exponential decay at times t>tR.”  Explain why this transition occurs.  A 
power-law of -1/2 on a log-log plot can be estimated by drawing by hand a line spanning two 
decades in x and minus one decade in y.  Sketch such a line in figure 18 to verify that the 
transition mentioned by Ghasimakbari occurs in these results.  
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ANSWERS Quiz 13 Polymer Physics 
April 24, 2020 

 
a)  The graphical abstract above shows the behavior of G(t) as a function of t/t0 where t0 is the 
Rouse relaxation time.  This is a log-log plot so an exponential decay looks like a knee.  At low 
cN the system is miscible and disordered and approaches microphase separation at higher cN, 
above about 10.5.  Give the Rouse prediction for G(t), compare that with Ghasimakbari’s plot 
and comment on what happens at large cN. 
 
The Rouse prediction is from Colby Rubenstein: 

 
The exponential decay in time follows Ghasimakbari’s plot at low cN.  At high cN micro-phase 
separation occurs and a modulus enhancement occurs at long times associated with micro-phase 
separation.  The material is behaving like a solid, so this is something like the formation of a gel 
network based on the microphase separated phases. 
 
b)  Figure 2 shows the behavior of the block copolymer diffusion coefficient, D, divided by the 

homopolymer diffusion coefficient, D0.  Both diffusion coefficients follow , which is not 
shown in the plot.  Derive this expression and explain the behavior seen in Figure 2 for cN 
above about 10.5. 
 
The Einstein-Stokes equation predicts that the diffusion coefficient will follow D ~ kT/z = 
kT/(6phRH).  For the Rouse theory z = N zb and RH is the radius of a Rouse unit, b, so D ~ 
kT//(N6phb), where 6phb = zb the friction factor for a single Rouse unit.  Above cN = 10.5 
diffusion slows due to microphase separation that forms a gel network in the sample. 
 
c)  Ghasimakbari is able to obtain the time correlation function for the end-to-end vector for the 

block copolymers from his coarse grain simulations, , which is expected 

to follow an exponential decay in time following the Rouse theory, .  
Define p and tp in this equation with two sentences for each term. 
 
p is the Rouse mode.  In analogy to a guitar string, the first mode is vibration of the entire string 
as a unit, second mode is two half strings independently vibrating, third is three. etc.  Each mode 
is treated as a simple relaxer so a single exponential decay in time with the time constant tp.  tp 
can be determined from  

 
From Colby and Rubenstein. 
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d)  Ghasimakbari plots the Rouse relaxation times from the diffusion coefficient and from the 
end-to-end vector time decay versus cN in Figure 5.  In the caption he mentions that D = 
kBT/Nz.  Comment on the behavior seen in Figure 5. 
 
The relaxation time increases above cN = 10.5 due to the formation of a microphase separated 
network. 
 
e) Ghasimakbari mentions that “The Rouse model predicts a power-law decay G(t) ~ t-1/2 at 
times t<<tR followed by exponential decay at times t>tR.”  Explain why this transition occurs.  
A power-law of -1/2 on a log-log plot can be estimated by drawing by hand a line spanning two 
decades in x and minus one decade in y.  Sketch such a line in figure 18 to verify that the 
transition mentioned by Ghasimakbari occurs in these results.  
 
 
Below the Rouse time, 100 on the x-axis of the plot, the material behaves as a simple fluid.  
Above this point the Rouse relaxations internal to the chain dominated by the Rouse relaxation 
time for the lowest order mode control the time dependent modulus.  This is characterized by an 
exponential decay in the Rouse relaxation time.   
 

 


