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ABSTRACT: Simulations of coarse-grained models are used to
study relationships among chain motion, composition fluctua-
tions, and stress relaxation in unentangled melts of symmetric
diblock copolymers. Measurements of the dynamic structure
factor S(q,t) are reported as a function of wavenumber q, time t,
and χN, where χ is the Flory−Huggins interaction parameter
and N is degree of polymerization. The function S(q,t) is found
to be a nearly exponential function of time, S(q,t) ∝ e−t/τ(q), for
wavenumbers similar to or less than the wavenumber q* at
which the static structure factor S(q) ≡ S(q,t=0) is maximum.
The relationship between the decay time τ(q) and S(q) is used
to define an effective wavenumber-dependent diffusivity D(q) for fluctuations of wavenumber q. The function D(q) is shown to
change very little with changes in χN and to be a monotonically decreasing function of the nondimensional wavenumber qRg,
where Rg is polymer radius of gyration. The linear shear stress relaxation modulus G(t) is inferred from measurements of the
shear stress autocorrelation function. At low values of χN, far from the order−disorder transition (ODT), the modulus G(t)
agrees with predictions of the Rouse model. Near the ODT, G(t) develops an additional slowly decaying feature arising from
slow decay of composition fluctuations with q ∼ q*. The behavior of G(t) near the ODT is predicted nearly quantitatively by a
modified version of the model of Fredrickson and Larson (FL), in which the prediction of the FL theory for the slowly decaying
component is added to the prediction of the Rouse theory for contributions arising from single-chain relaxation, using the
independently measured behavior of S(q,t) as an input to the theory.

1. INTRODUCTION

In a disordered diblock copolymer melt near its order−
disorder transition (ODT), results of rheological and dynamic
scattering experiments reflect the presence of large, slowly
evolving composition fluctuations.1 This paper presents an
analysis of dynamical properties and viscoelastic properties
measured in molecular dynamics simulations of unentangled
symmetric diblock copolymer melts. The degree of repulsion
between the two blocks of the copolymer is controlled by the
quantity χN, where χ is the Flory−Huggins interaction
parameter and N is degree of polymerization. At sufficiently
low values of χN, dynamical and rheological properties of such
a melt are found to be adequately described by the Rouse
model. As χN approaches the value (χN)ODT at the ODT,
however, chain motion and stress relaxation are both affected
by the appearance of long-lived composition fluctuations. The
relaxation of composition fluctuations can be characterized
most directly by measuring the dynamic structure factor S(q,t).
This paper presents and analyzes simulation results for single-
chain dynamical properties, the dynamic structure factor
S(q,t), and the linear shear stress relaxation modulus G(t) in
disordered diblock copolymer melts over a range of values of
χN.

2. BACKGROUND

The dynamical behavior of block copolymer melts can be
probed by measuring tracer diffusion, dynamics of composition
fluctuations, and linear viscoelastic properties. All of these
properties have measured extensively in experiments and
somewhat less extensively in simulations.

Tracer Diffusion. Self-diffusion coefficients of polymers
within diblock copolymer melts and solutions have been
measured by several techniques, including forward recoil
spectroscopy,2 forced Rayleigh scattering3−7 and pulsed field
gradient nuclear magnetic resonance spectrometry.8−12

Tracer diffusion experiments on unentangled diblock
copolymers4 have shown that composition fluctuations do
not drastically reduce the diffusivity in the disordered phase,
even near the ODT. Experiments on highly entangled
polymers4,5 showed a more significant decrease in diffusivity
in the disordered phase near the ODT, as well as in the
lamellar phase, where diffusion becomes anisotropic. Interest-
ingly, experiments on both unentangled and entangled
polymers have shown little or no change in tracer diffusivity
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of symmetric diblock copolymers upon transformation from a
disordered phase to a polycrystalline lamellar phase.2−6

A theoretical model of chain diffusion in ordered and
disordered block copolymers near the ODT was developed in
several papers by Fredrickson and co-workers. Fredrickson and
Milner13 developed a theory of chain diffusion in a weakly
ordered lamellar phase. Barrat and Fredrickson14 used a
combination of single-chain simulations and analytic methods
to analyze the dependence of the diffusivity D⊥ along the
direction perpendicular to the layers for unentangled polymers
in more strongly segregated lamellar phases. These authors
concluded that the decrease in D⊥ should remain modest (less
than about a factor of 2) near the ODT and become more
severe only deeper in the ordered phase. Leibig and
Fredrickson developed a theory of chain diffusion in the
disordered phase near the ODT15 that was shown to be in
qualitative agreement with experiments.5,15

Dynamics of Composition Fluctuations. The dynamic
structure factor S(q,t) in diblock copolymer melts and
solutions has been measured by photon correlation spectros-
copy (PCS) using both optical dynamic light scattering
(DLS)16−24 and, more recently, using small-angle X-ray PCS.25

Most optical DLS experiments on diblock copolymer melts
and solutions have measured S(q,t) only at low values of
wavenumber q, less than inverse polymer coil size. DLS
experiments by several groups16−23 showed evidence of both a
nondiffusive mode, for which the decay rate Γ(q) remains
nonzero as wavenumber q approaches zero, and a diffusive
mode, for which Γ(q) ∝ q2. The nondiffusive mode was well
anticipated by theories of idealized monodisperse block
copolymers. Because it arises from relative motion of A and
B blocks, this mode is sometimes termed an “internal” or
“breathing” mode. The diffusive mode was initially unexpected
but was shown to arise from relative diffusion of fractions of
different molecular weight in a slightly polydisperse melt.20,26

Simulations of strictly monodisperse polymers, such as those
presented here, are expected to exhibit only the internal mode.
One set of DLS experiments on solutions containing an

extremely high-molecular-weight, highly entangled copoly-
mer24 have managed to move the wavenumber q* at which
the static structure factor is maximum into the experimentally
accessible range. These experiments were able to demonstrate
that near the ODT, the decay rate Γ(q) has a minimum at a
wavenumber q very near q*.
X-ray PCS experiments can measure S(q,t) at wavenumbers

of order the inverse coil size in diblock copolymer melts
involving chains of more modest length. Comparison of X-ray
PCS and rheology measurements on a melt of highly
asymmetric sphere-forming diblock copolymers25 led to the
somewhat surprising conclusion that the characteristic
relaxation time for G(t) in this system is 1−2 orders of
magnitude less than the longest relaxation time for S(q,t) in
PCS experiments.
The dynamical random phase approximation (RPA)

provides the best available theoretical framework for predicting
the behavior of S(q,t) in either homopolymer solutions or
diblock copolymer solutions and melts.27−29 The dynamic
RPA formalism can be applied either to unentangled polymers,
by using a Rouse model to describe the motion of individual
chains, or for entangled polymers, by instead using a tube
model. In either case, the dynamic RPA allows relatively
straighforward derivation of predictions for the temporal
Laplace transform of S(q,t). It also provides relatively simple

predictions for a few properties that can be easily evaluated in
the Laplace domain, including the initial rate of decay of the
ratio S(q,t)/S(q, 0) and the mean decay time. Evaluation of
predictions for S(q,t) in the time domain is generally more
complicated. Detailed predictions for S(q,t) in the time domain
have nonetheless been worked out for homopolymer solutions
using a Rouse−Zimm formalism. Predictions for S(q,t) have
also been worked out for highly entangled solutions of diblock
copolymers by Semenov to allow comparison of theory to the
experiments reported in ref 24. We are not aware of any
published computations of the full time dependence of S(q,t)
for unentangled diblock copolymer melts, the case of
immediate interest here.

Linear Viscoelasticity. Rheological measurements are the
most common experimental probe of dynamical phenomena in
block copolymer liquids. Measurements of linear viscoelasticity
are useful, in part, as a way of identifying phase transitions. It
was first demonstrated by Gouinlock and Porter and
Chung30−32 that studies of the temperature dependence of
the storage and loss moduli G′(ω) and G″(ω) can be used to
identify order−disorder and order−order transitions in diblock
copolymers.
Composition fluctuations in the disordered phase also

generate a distinctive signature in the linear viscoelastic
moduli near the ODT. The first experimental evidence of
this rheological signature of fluctuations within the disordered
phase was reported by Bates and co-workers,33−35 who
observed the appearance of a low-frequency shoulder in the
storage modulus of several well-entangled polymer melts.
Neutron scattering experiments on the same set of sample
confirmed the presence of strong composition fluctua-
tions.33,36,37

Fredrickson and Larson38 formulated a theory to explain the
relationship between the long-lived composition fluctuations in
the melt near the ODT and the appearance of the secondary
shoulder in the storage modulus. Their predictions for the
stress relaxation function produces a low-frequency feature in
the complex shear stress modulus, in qualitative agreement
with observations. The work presented here provides a more
quantitative test of the Fredrickson−Larson theory.

Simulation Studies. Relatively few computational studies
of disordered diblock copolymers have focused on character-
izing dynamical or rheological behavior. Of those that have
reported dynamical measurements, most have focused on
tracer diffusion, which is relatively easy to measure. Some of
the earliest simulation studies of the dynamics of diblock
copolymers were lattice Monte Carlo simulations by the
Binder group, some of which characterized chain diffusion.39,40

Fried and Binder also reported measurements of the dynamic
structure factor S(q,t) and used the appearance of a dramatic
slowdown of the relaxation time as a signature indicating near
approach to the ODT.41,42 Pakula et al. used a cooperative
motion algorithm in their Monte Carlo simulation to measure
the center of mass diffusion, bond relaxation, and chain end-to-
end autocorrelation time.43 Murat et al. used molecular
dynamics simulations to study chain diffusion in both the
disordered and ordered phases of diblock copolymers.44

3. SIMULATION METHODOLOGY
The simulations presented here are molecular dynamics
simulations of a simple coarse-grained model of a melt of
symmetric diblock copolymers. The model consider here is
identical with one used in several previous studies of
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equilibrium properties, which is referred to in this earlier work
as model S45,46 or model S1.47,48 The systems studied here are
all melts of symmetric AB copolymers with either N = 16 or N
= 32 beads per chain, with equal numbers of A and B beads. All
pairs of beads with monomer types i and j (which can each
denote A or B) interact via a nonbonded pair potential Vij(r) of
the form originally introduced in dissipative particle dynamics
simulations, for which

i
k
jjj

y
{
zzzV r

r
( )

1
2

1ij ij

2

σ
= ϵ −

(1)

for r < σ and Vij(r) = 0 for r > σ, where r is inter-particle
distance, σ is the range of interaction and ϵij is a parameter
with units of energy. All simulations use ϵAA = ϵBB = 25kBT and
variable values of a parameter α = (ϵAB − ϵAA)/kBT. Here and
hereafter, kB is Boltzmann’s constant and T is absolute
temperature. Consecutive beads in the same chain also interact
via a harmonic bond potential

V r r( )
1
2bond

2κ=
(2)

with κ = 3.406kBT/σ
2.

The simulations presented here are all NVT molecular
dynamics (MD) simulations in a cubic unit cell with periodic
boundary conditions. Results of NVT simulations for the static
structure factor S(q) have been reported previously for this
model in refs 45 and 46, whereas subsequent work that focused
on order−disorder transitions47,48 used constant pressure
(NPT) simulations. All simulations reported here were
performed using a Nose−́Hoover thermostat and a time step
of Δt = 0.005 in natural simulation units in which bead mass,
thermal energy kBT, and σ are all set to 1.
The size of the simulation unit cell and the number of chains

in the system were chosen so as give a concentration of c =
3σ−3 beads per unit volume in all simulations. The length L of
each edge of the cubic unit cell was selected such that L ≈
10Rg0, where R Nb/6g0 = is the random-walk radius of
gyration of homopolymer chains, with α = 0.0. Simulations of
chains with 16 beads contained 2007 chains in a box of length
L = 22.04σ, while simulations of chains with 32 beads
contained 2839 chains in a box of length L = 31.17σ. Values of
N̅ = N(cb3)2 are N̅ = 239 for N = 16 and N̅ = 478 for N = 32.
Simulations for each system are performed over a range of

values of α ranging from α = 0 up to the value at the order−
disorder transition (ODT). Values of an effective Flory−
Huggins parameter are calculated for each value of α using the
calibration that was developed for NVT simulations of model
S1 in ref 46. Hereafter, we use the symbol χe to denote
estimates of the interaction parameter for our simulation
model that have been computed by this method. The value of
α at the ODT was accurately identified for each chain length
by applying the well-tempered metadynamics algorithm
described in previous work by our group,47,48 which is applied
here to NVT simulations rather than the NPT simulations
used in our previous study of phase transitions. SCFT predicts
that symmetric diblock copolymers should undergo a second-
order phase transition at a critical value of χN = 10.495. For
the two systems studied here, we find that the ODT occurs at
α = 4.69 or χeN = 21.72 for chains of N = 16 beads and at α =
2.11 or χeN = 18.45 for N = 32.

4. SINGLE-CHAIN DYNAMICS
We characterize the dynamics of individual polymers within a
disordered melt by measuring the mean-squared displacement
of a bead near the middle of the chain and the autocorrelation
function of the vector that connects the first and last bead in
the chain.

Mean-Squared Displacement and Diffusivity. We
measure the mean-squared displacement g(t) of one of two
beads that are nearest the center of a symmetric diblock
copolymer, i.e., the first bead of the B block, which is bonded
to the last bead of the A block. Let g(t) denote the function

g t tR R( ) ( ) (0) 2= ⟨| − | ⟩ (3)

in which R(t) denotes the position of this center bead. For
large values of t, much greater than the longest internal
relaxation time, the motion becomes diffusive and is given by a
linear function

g t Dt( ) 6= (4)

in which D is the tracer diffusion coefficient of the molecule.
Figure 1 shows the mean-square displacement g(t) for chains

of length N = 16 over a range of values of α or χeN. Both axes

are plotted by using reduced units in which σ, kBT, and bead
mass m are se t to uni ty , g iv ing a t ime uni t

k T m/ / 10 Bτ σ= = . Values of χeN range from χeN = 0 up
values very close to the ODT. The long time behavior of g(t)
becomes linear at sufficiently long times even near the ODT.
The diffusion coefficient D each system of interest has been
extracted by fitting the late time behavior to a linear function of
time.
The Rouse model predicts that the chain diffusion

coefficient in a homopolymer melt should vary with degree
of polymerization N as

D
k T
N

B

ζ
=

(5)

where ζ is a bead friction coefficient. This prediction is
consistent with our results for the homopolymer state obtained
by setting α = χeN = 0. Analysis of the long time behavior of
g(t) at α = 0 yields diffusion coefficients of D = 0.0248 for N =
16 and D = 0.0125 for N = 32 in Lennard-Jones units,
corresponding to nearly equal values ζ = 2.52 for N = 16 and ζ
= 2.50 for N = 32 for the bead friction coefficient.

Figure 1. Mean-squared displacement g(t) of a middle bead plotted
versus time for chains of N = 16 beads, for several values of α or χeN.
Both time and mean-squared displacement are measured in reduced
units in which σ, kBT, and bead mass m are equal to unity. The ODT
for this system occurs at (χeN)ODT = 21.72.
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Figure 2 shows how D varies with χeN for both chain
lengths. In this plot, we show the ratio D/D0 of D to its value

in a homopolymer melt. We denote the homopolymer value by
D0 = D(χeN = 0). The dependence of the ratio D/D0 on χeN is
very similar for both chain lengths, but D/D0 reaches a lower
value at the ODT for the model with shorter chains (N = 16),
for which χeN reaches a larger value at the ODT. In both cases
D/D0 decreases to a value of D/D0 ∼ 0.6 near the ODT.
Figure 2 shows that D/D0 remains near unity while χeN

remains less than the critical value of χeN = 10.5 predicted by
SCFT and that most of the decrease occurs at greater values of
χeN. It is known that the disordered phase develops increasing
strongly segregated but disordered A and B domains over the
range of values of χeN between the SCFT prediction and the
true ODT. The observation that only a modest decrease in D
(∼40%) occurs over this range does not necessarily imply that
the chains can diffuse freely even near the ODT. In a state with
sufficiently strongly segregated A and B domains, we expect the
junction between A and B blocks in each block copolymer to
become constrained to remain near interfaces between A and B
domains. In the absence of entanglements, which do not occur
in the soft-sphere model simulated here, we expect such chains
to be able to move rather freely along these interfaces but only
infrequently hop between neighboring interfaces. Free motion
along AB interfaces is enough to give diffusivity that is a large
fraction of that obtained in the homopolymer state. In the
simple case of polycrystalline lamellar phase with a diffusivity
D∥ for motion parallel to a layer and much lower diffusivity D⊥
for diffusivity along the direction normal to the layers, with D⊥
≪ D∥, we would expect an orientationally averaged diffusivity
D ≃ 2D∥/3. The value of the ratio D/D0 ∼ 0.6 that we obtain
near the ODT is thus comparable to the value of D/D0 ≃ 0.67
what we would expect in a polycrystalline lamellar phase with
D∥ ≃ D0. This is also similar to what we would expect for
diffusion along the nearly minimal surface of a bicontinuous
morphology. The roughly 40% drop in the value of D is thus
consistent with the result one would expect from a crossover
from fully three-dimensional diffusion to two-dimensional
diffusion along interfaces between A- and B-rich domains in a
cocontinuous morphology.
End-to-End Relaxation. We monitor the relaxation of

chain conformations and chain orientation by measuring the
end-to-end vector autocorrelation

E t tR R( ) ( ) (0)e e= ⟨ · ⟩ (6)

in which Re(t) is the vector separation of the first and last bead
of a randomly selected chain at time t.
The Rouse model for a continuous Gaussian chain in a

homopolymer melt predicts

i

k
jjjjjj

y

{
zzzzzzE t

b N
p

t
( )

8 1
exp

p p

2

2
1,3,...

2∑
π τ

= −
=

∞

(7)

where τp = τ1/p
2 and τ1 = ζN2b2/3π2kBT. Here, the sum is

taken only odd values of p = 1, 3, 5, ..., ∞. Note that the
existence of a prefactor of 1/p2 in this sum yields an expression
for E(t) that is dominated by the contribution of the terminal p
= 1 mode, since the prefactor for the p = 3 mode that is already
9 times smaller than that of the p = 1 mode. As a result, we
expect E(t) in a homopolymer melt to exhibit a nearly single-
exponential decay with a decay time τ1.
We first consider the behavior of E(t) in the homopolymer

limit, where α = χe = 0. This limiting behavior is shown for
chains of length N = 16 and N = 32 as the leftmost curve in
Figures 3 and 4, respectively. As expected, in unentangled
homopolymer melts, E(t) exhibits a nearly exponential decay
after a small nonexponential transient, yielding a nearly straight
line in this semilogarithmic plot. By fitting the late time
behavior of E(t) in a homopolymer melt to an exponential E(t)

Figure 2. Tracer diffusivity D normalized by the value D0 in a
homopolymer melt plotted versus χeN for disordered melts of
symmetric diblock copolymers of lengths N = 16 (circles) and N = 32
(squares).

Figure 3. Normalized end-to-end autocorrelation function E(t)/E(t =
0) vs normalized time t/τe0 for chains of length N = 16, for varying
values of χeN. Here τe0 denotes the autocorrelation time for a chain of
the same length in a homopolymer melt (χeN = 0). Values of χeN
shown here range from χeN = 0 to very close to the ODT value,
(χeN)ODT = 21.72.

Figure 4. Normalized end-to-end autocorrelation function E(t)/
E(t=0) vs normalized time t/τe0 for chains of length N = 32, for
varying values of χeN. For N = 32, (χeN)ODT = 18.53.
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∝ e−t/τe0, we have extracted values of the terminal
homopolymer end-to-end relaxation time for each chain
length, denoted here by τe0. The measured value τe0
corresponds to the terminal time τ1 in the Rouse model.
This analysis yields τe0 = 29.64 in LJ time units for N = 16,
with values for the two values of N = 16 and 32 that satisfy the
Rouse scaling τe0 ∝ N2.
Figures 3 and 4 display the dependence of E(t)/E(0) as a

function of the normalized time t/τe0 for each chain length
over a range of values of χeN. Consider the evolution of this
behavior with increasing χeN. Upon increasing χeN from zero,
the decay of E(t)/E(0) is found to change very little until χeN
exceeds approximately the SCFT critical point value of χeN =
10.5. At higher values of χeN, in the range 10.5 < χeN <
(χeN)ODT, E(t)/E(0) relaxes in two stages, with a fast initial
decay at a rate similar to that obtained in the homopolymer
and slower final exponential decay with a relaxation time that
increases with increasing χeN. We define a terminal end-to-end
relaxation time τe at each value of α or χeN by fitting the long-
time behavior of E(t) to an exponential decay, E(t) ∝ e−t/τe.
To examine the relationship between measured values of τe

and diffusivity D, we use the diffusivity D to define an effective
friction coefficient ζ at each value of χeN by setting D = kBT/
Nζ and then define the “diffusion time” τd to be the value of τe
predicted by the Rouse model with this friction coefficient (i.e.,
the predicted value of the longest Rouse relaxation time, τ1).
Values of τe and τd agree very well in the homopolymer state
χeN = 0, confirming the accuracy of the Rouse model in this
limit. Figure 5 shows a comparison of τe and τd as functions of

χeN for both chain lengths, N = 16 and N = 32. The ratio τd/
τe0 is very nearly equal to the inverse of the ratio D/D0. Both
τe/τe0 and τd/τe0 remain very close to unity in the weakly
correlated regime χeN < 10.5, and both increase at higher
values of χeN. The increase in τe/τe0 is, however, much greater
than the increases in τd/τe0 or (equivalently) much greater
than the decrease in diffusivity.
Figure 6 shows the same results for normalized values of τd

and τe plotted vs χa*N, rather than vs χeN. We define the
“apparent” interaction parameter χa* to be the value of χ that

we would infer by fitting the measured peak scattering intensity
S(q*) to the RPA prediction, which gives the definition

cNS q N( ) 2 10.4951
aχ* = [ − * ]−

(8)

The quantity χa*N is a dimensionless measure of the strength of
composition fluctuations. When plotted as functions of χa*N,
values of τd/τe0 and τe/τe0 for two different chain lengths nearly
collapse. The success of this collapse suggests that the
dependence of dynamical properties on χeN in the disordered
phase is controlled primarily by the magnitude of composition
fluctuations.

5. DYNAMICAL STRUCTURE FACTOR
The dynamics of the relaxation of composition fluctuations in
block copolymer melt can be quantified by studying the
dynamic structure factor S(q,t). The function S(q,t) is an
autocorrelation function for Fourier modes of the composition
field. In a symmetric AB block copolymer melt, we define an
instantaneous composition field

t c t c tr r r( , ) ( , ) ( , ) /2A Bψ = [ − ] (9)

at position r and time t, where cA(r,t) and cB(r,t) are the
instantaneous concentrations of particles of types A or B,
respectively, at position r and time t. The Fourier transform of
this field, denoted here by

t d r tq r( , ) e ( , )iq r3∫ψ ψ̂ = − ·
(10)

can also be expressed as a sum over monomer positions

tq( , )
1
2

e
i

i
i

q ri∑ψ ̂ = ϵ− ·

(11)

in which i is a monomer particle index, ri is the position of
monomer i, the sum is taken over all monomers of both types
(A and B) in a system containing many chains, and ϵi is a
factor that is equal to +1 if particle i is of type A and −1 if
particle i is of type B.
The dynamic structure factor S(q,t) for wavevector q and

time separation t is given by the correlation function

S t
V

tq q q( , )
1

( , ) ( , 0)ψ ψ= ⟨ ̂* ̂ ⟩
(12)

in which V is the total system volume. In a homogeneous,
isotropic liquid, S(q,t) depends only on the wavenumber

Figure 5. Evolution of the end-to-end autocorrelation terminal
relaxation time τe and the diffusion time τd with χeN. Both relaxation
times are normalized by the value of τe in a homopolymer melt,
denoted by τe0. The diffusion time τd is defined to be the terminal
internal relaxation time τ1 predicted by the Rouse model by using a
friction coefficient ζ obtained from the tracer diffusivity, by setting D
= kBT/Nζ.

Figure 6. Normalized diffusion time τd/τe0 and end-to-end
autocorrelation time τe/τe0 plotted versus the “apparent” segregation
parameter χa*N ≡ 10.495 − cNS−1(q*)/2.
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q ≡ |q| and time t and so can be expressed as a function S(q,t).
The static structure factor S(q) that is commonly measured by
quasi-elastic small-angle X-ray and neutron scattering is given
by the t = 0 value of the dynamic structure factor:

S q S q t( ) ( , 0)= = (13)

The static structure factor in a diblock copolymer melt has a
maximum at a value q* of order the inverse radius of gyration.
The random phase approximation (RPA) for symmetric
diblock copolymers predicts a value q*Rg0 = 1.95, independent

of χeN, where R Nb /6g0
2≡ . The peak wavenumber q*

measured in simulations and experiments instead generally
decreases slightly with increasing χeN and is typically 10−25%
less than the RPA prediction near the ODT.
Results for S(q,t). Figure 7 shows the decay of the

normalized structure factor S(q,t)/S(q,0) vs normalized time t/
τe0 for chains of length N = 16 at several different values of
χeN, corresponding to different values of the simulation
parameter α. Different lines in each plot show the time
dependence of S(q,t) at several different values of q. The range
of values of q shown in each plot includes the wavenumber q*
at whichS(q) is maximum. In this and all subsequent plots that
show a function of time, we normalize time by the value τe0 of
the end-to-end autocorrelation time at χeN = 0.
The four panels of Figure 7 show the evolution of S(q,t)

with increasing χeN. The upper left panel shows results for χeN
= 0, corresponding to a measurement in a homopolymer melt
in which the two halves of each polymer have been artificially
labeled A and B, analogous to a neutron scattering experiment
in which half of each copolymer is deuterated to provide
scattering contrast. The lower right panel shows results for a
value of χeN = 20.79 close to the value at the ODT. The fact
that the results for each value of q are nearly straight lines in
this semilogarithmic plot indicates that the dependence on

time is nearly exponential over the range of values shown here.
Dashed lines show fits to a simple exponential decay

S q t( , ) e t q/ ( )∝ τ−
(14)

with a wavenumber-dependent relaxation time τ(q) that is
determined independently for each value of q. The nature of
the dependence of τ(q) on q changes qualitatively as χeN is
increased. At χeN = 0, the slowest decay occurs at the smallest
wavenumber shown, qRg0 = 0.51, and τ(q) appears to decrease
monotonically with increasing q. In the other three plots, the
slowest decay shown occurs at values of qRg0 = 1.52 for which
q is relatively close to q*. Near the ODT, the most slowly
evolving Fourier modes are thus those with wavenumber near
q*, for which we obtain values of τ(q) much greater than any
obtained at χeN = 0.
Figure 7 show results for values of q that extend only to

values slightly greater than q*. The range of values for S(q,t)/
S(q,0) in each of these plots was chosen to include the range
over which adequate statistics were obtained for the most
slowly decaying modes, for which statistical accuracy is worst.
Within the range of q and t shown in these figures, the time
dependence of S(q,t) is nearly single-exponential.
Measurements of S(q,t) at higher values of q over a wider

range of values of t show a more complicated time dependence.
Figure 8 shows results for S(q,t)/S(q,0) for N = 16 at a fixed,
relatively large value of qRg0 = 3.28 at several values of χeN.
The comparatively fast decay of correlations at this value of q
allowed us to obtain accurate measurements over a wider range
of values of S(q,t)/S(q,0) than that shown in Figure 7. The
results show that the time dependence is not single-
exponential, particularly near the ODT. At χeN = 0, S(q,t)
shows a modest but clearly measurable deviation from single-
exponential decay at this value of q. Results obtained near the
ODT instead show a rapid, nearly exponential decay of S(q,t)
by ∼1 decade followed by a more slowly decaying tail. Notably,

Figure 7. Normalized dynamic structure factor S(q,t)/S(q,0) vs normalized time t/τe0 for chains of length N = 16 at several values of χeN. In each
plot, the time dependence is shown for several values of the normalized wavenumber qRg0, as indicated by the numbers below each curve. Solid
lines show simulation results, and dashed lines show results of a fit to an exponential time dependence S(q,t) ∝ e−t/τ(q).
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the rate of the initial decay at this relatively high value of q is
approximately independent of χeN, as shown by the dashed
line in the figure, while the rate of decay at longer times
depends very strongly on χeN and is slowest near the ODT.
The decay time associated with this slowly decaying tail of
S(q,t) at q > q* always remains less than the primary decay
time of modes with q ≃ q*. We assume that the fast initial
decay of S(q,t) at high q is the result of an initial relaxation of
composition fluctuations by relaxation of relatively high index
Rouse modes of individual chains in an essentially static
environment of disordered microdomains and that the slowly
relaxing tail is a result of coupling of high wavenumber modes
to the slower relaxation of this microdomain structure.
Our results for S(q,t) for q similar to and less than q* show

almost single-exponential behavior. For the most slowly
decaying modes, with q ∼ q*, our results are limited to values
of S(q,t) for which S(q,t)/S(q,0) ≥ 10−1 by the limited

statistical accuracy of measurements for very slowly evolving
modes. Deviations from single-exponential behavior as large as
those found near the ODT for qRg = 3.28 would, however,
have been easily detectable even this range, and are not seen
for q ≤ q*. Measurements of S(q,t) at q < q* also show much
smaller deviations than those found at qRg0 > 3. Even for the
data shown for higher q near the ODT in Figure 8, the initial
decay of S(q,t) is reasonably well described as a single
exponential for S(q,t)/S(q,0) > 0.1.
Our data thus suggest that S(q,t) is reasonably well

described by a single-exponential decay for q ≤ q*, while the
behavior at higher q is characterized by an exponential initial
decay followed by a small, more slowly decaying tail. We have
thus chosen to define a characteristic relaxation time τ(q) at all
q by fitting the first decade of decrease of S(q,t) at each q to an
exponential, S(q,t) ∝ e−t/τ(q). For data taken at high q near the
ODT, τ(q) should be understood to be the time associated
with the large initial decay, rather than the smaller, more slowly
decaying tail.
Figure 9 displays the dependence of the relaxation time τ(q)

on wavenumber q at four different values of χeN, for chains of
N = 16. To illustrate the relationship between the relaxation
time and static structure, each of these plots also includes
simulation results for the static structure factor S(q), for which
the axis is shown on the right of each plot. Figure 10 show
analogous data for N = 32. At χeN = 0.0, shown in the upper
left plot of Figure 9, the maximum of τ(q) appears to occur at q
= 0. At higher values of χeN, however, τ(q) exhibits a
maximum at a value very close to the position q* of the peak in
S(q) as χeN. At the highest two values of χeN shown here, both
τ(q) and S(q) exhibit a sharp peak, and the peaks in both
curves seem to have the same position and shape. Note that
the maximum value of τ(q) increases dramatically as χeN
increases, increasing by approximately a factor 25 over the
range shown here. Also note, however, that τ(q) and S(q)
exhibit qualitatively different behavior near q = 0 because S(q)

Figure 8. Dynamic structure factor S(q,t) vs time t plotted at a fixed
relatively high wavenumber qRg = 3.28 over a range of values of χeN.
A single-exponential fit to the early time behavior is shown as a
dashed line.

Figure 9. Wavenumber dependence of the structural relaxation time τ(q) (circles, left axis) and the static structure factor S(q) (squares, right axis)
plotted vs qRg0 for chains of length N = 16 at several values of χeN.
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→ 0 as q → 0, but τ(q) appears to approach a nonzero limit as
q → 0. The limiting value of τ(q)/τe0 as q → 0 changes very
little with changes in χeN and remains close to τ(q=0)/τe0 ≃
0.9−1.0 almost independent of χeN. This limiting value
corresponds to the relaxation time of the internal “breathing”
mode seen optical DLS experiments performed with qRg ≪ 1.
Wavenumber-Dependent Effective Diffusivity. We

now consider a simple phenomenological model of the
relationship between S(q,t) and S(q), which we use to define
an effective wavenumber dependent diffusivity.
The field ψ(r,t) is a conserved order parameter and so

satisfies a conservation equation

t
J

ψ ∇∂
∂

= − ·
(15)

in which J(r,t) is a relative monomer flux. Because ψ(r) =
[cA(r) − cB(r)]/2 is a field with units of monomer
concentration, the flux is naturally written as a product

cJ v= (16)

in which c is the total monomer concentration and v is a
relative velocity of A and B monomers. To construct a minimal
model, let us assume for the moment that the velocity v is
related to an exchange chemical potential μ(r) = δF[ψ]/δψ(r)
by a gradient

v
1
ζ

μ∇= −
(17)

in which ζ is an effective bead friction coefficient. We know
from equilibrium linear response theory that Fourier
amplitudes of fluctuations in μ and ψ are related to linear
order in ψ by the relation

k TS qq q( ) ( ) ( )B
1μ ψ̂ = ̂−

(18)

Here, μ̂(q) and ψ̂(q) denote Fourier components of the
deviations of μ(r) and ψ(r) from their values in a
homogeneous reference state, and S(q) is the static structure

factor, which controls the free energy cost of small
composition fluctuations. By substituting eqs 18 and 17 into
eq 15 and expressing the result in Fourier space (by replacing
gradients by factors of iq), we obtain

q t
t

q DcNS q q t
d ( , )

d
( ) ( , )2 1ψ

ψ
̂

= − ̂−
(19)

where D ≡ kBT/ζN is the molecular diffusion constant. Using
this as the deterministic part of the relaxation of ψ(q,t) in a
linear Langevin equation for ψ(q,t) would give a correlation
function S(q,t) with a decay rate S(q,t) ∝ e−t/τ(q), in which

q
Dq cNS q

1
( )

( )2 1

τ
= −

(20)

Because this highly simplified model predicts a decay rate
τ−1(q) ∝ q2/S(q), it naturally predicts the appearance of a
maximum in the relaxation time τ(q) when there is a
sufficiently sharp peak in S(q), as is true near the ODT.
We now generalize eq 20 so as to allow for the existence of a

wavenumber dependent (i.e., nonlocal) effective friction, to
account for the fact that polymers are extended objects. We do
so by replacing D by an unknown wavenumber dependent
function D(q), giving a relaxation rate

q
D q q cNS q

1
( )

( ) ( )2 1

τ
= −

(21)

In what follows, we analyze our data by treating eq 21 as a
definition of D(q) and inferring a value for D(q) at each q from
our measurements of τ(q) and S(q).
To put our expression for D(q) into an appropriate universal

scaling form, we consider the ratio D(q)/D0, in which D0 is the
chain diffusivity in the α = 0 homopolymer state. We also
normalize q by the length Rg0 and normalize τ(q) by the a time
scale τ0 ≡ Rg0

2/D0. This yields an expression for the ratio
D(q)/D0 as

Figure 10. Structural relaxation time τ(q) (circles, left axis) and the static structure factor S(q) (squares, right axis) plotted vs qRg0 for chains of
length N = 32 at several values of χeN.
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D q
D q R q

S q
cN

( ) 1
( )

( )

0
2

g0
2

0τ
τ

=
(22)

The ratio S(q)/cN is known to be a nondimensional function
of qRg0 and the state parameters χeN and N̅. If we assume that
τ(q)/τ0 is also a universal function of these state parameters
and qRg0, it follows that the ratio D(q)/D0 should also be a
universal function of qRg, χeN, and N̅.
Figures 11 and 12 show results for D(q)/D0 vs qRg0 for

chains of 16 and 32 beads, respectively. Values of D(q) were

computed by using measured values of τ(q) and S(q) for all q
in the range shown. Different symbols represent results
obtained at different values of α or χeN.
The results for D(q)/D0 shown in Figures 11 and 12 for

chains of two different lengths are very similar. It is clear from
this similarity that the ratio D(q)/D0 depends very weakly on
N or N̅, when compared at equal values of qRg and similar
values of χeN. The dependence on N̅ appears to be particularly
weak at low values of χeN, as shown by Figure 13, which shows
the almost perfect overlap of results for D(q)/D0 vs qRg for
systems with α = 0 or (equivalently) χeN = 0.
At fixed values χeN and N̅, the ratio D(q)/D0 is a smooth,

monotonically decreasing function of q. This ratio appears to
always approach a nonzero value of D(q)/D0 ≃ 0.18−0.28 as
qRg0 → 0 and also appears to approach a a nonzero limit at
high wavenumbers. A comparison of results for different values
of χeN shows that the function D(q)/D0 changes relatively
little with changes in χeN compared to the much more
dramatic changes seen in both S(q) and τ(q) near the ODT.

Values of D(q)/D0 in the range qRg0 ≃ 1.5−1.8 in which the
peak in S(q) appears to change particularly little with changes
in χeN and have values in the range

D q D( )/ 0.16 0.030* ≃ ± (23)

for χeN ranging from 0 up to to (χeN)ODT for both chain
lengths. Knowledge of this nearly universal value of D(q*)/D0
is sufficient to allow prediction of the longest structural
relaxation time for an unentangled melt from a measurement
or prediction of the absolute magnitude of the peak in S(q)
and knowledge of an estimate of the intrinsic bead friction
coefficient. Notably, the effective diffusivity D(qRg,χeN,N̅) is a
much smoother, simpler function of both qRg and χeN than
either the relaxation time τ(q) or the static structure factor
S(q). The appearance of a sharp peak in τ(q) near the ODT is
thus a very direct result of the appearance of a corresponding
peak S(q).
Our simulation results show that the relaxation time τ(q) for

a monodisperse diblock copolymer melt approaches a finite
value in the limit q → 0. This behavior is peculiar to single-
component block copolyer melts and is qualitatively different
from that obtained in a polymer mixture, for which τ(q) → ∞
as q→ 0. The difference can be explained within the context of
the phenomenological model discussed above. In a thermody-
namically stable polymer mixture, both the structure factor
S(q) and the effective diffusivity D(q) remain finite as q → 0.
As a result, the explicit factor q2 in eq 21, which is
characteristic of diffusive dynamics, yields a relaxation rate
1/τ(q) that vanishes 1/τ(q) ∝ q2 as q → 0. The fact that the
τ(q=0) remains finite here can be understood as a result of the
fact that the diffusivity approaches a nonzero limit, but the
structure factor S(q) of a diblock copolymer melt approaches
zero as S(q) ∝ q2 as q → 0, thus canceling this factor of q2.

Terminal Structure Relaxation Time. The time constant
τ(q) measures the time required for the value of a Fourier
amplitude ψ(q,t) to become decorrelated with its value at an
earlier time. Near the ODT, the modes of largest mean-
squared amplitude and longest relaxation time are those with q
∼ q*. The value of τ(q) for the most slowly decaying modes is
thus a measure of how long it takes for a transient spatial
arrangement of A- and B-rich regions to become re-
randomized. We thus consider the behavior of the quantity

qmax ( )
q

Sτ τ=
(24)

Figure 11. Values of the normalized effective diffusivity D(q)/D0 vs
qRg0 for chains of N = 16 beads.

Figure 12. Values of the normalized effective diffusivity D(q)/D0 vs
qRg0 for chains of N = 32 beads. Values of D(q) are computed from
measurements of τ(q) and S(q), as described in the text.

Figure 13. Values of the normalized effective diffusivity D(q)/D0 vs
qRg0 for homopolymers of N = 16 and N = 32 beads (α = 0.00).
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which we refer to as the terminal structure relaxation time.
This quantity is a function of χeN that increases rapidly with
increasing χeN near the ODT.
Figure 14 shows simulation results for τS normalized by τe0

as a function of χeN for chains of both 16 and 32 beads. At low

values of χeN, well below the SCFT critical value of 10.5, τS is
nearly equal to the single-chain end-to-end relaxation time τe0
and changes rather little with changes in χeN. For χeN between
10.5 and (χeN)ODT, τS increases increasing rapidly with
increasing χeN, reaching a value of 25−30 times greater than
τe0 at the ODT. The simulation results for these two systems
indicate that the ratio of the value τS at the ODT to its value at
χeN = 0 is larger for shorter chains. More generally, this ratio is
presumably larger for smaller values of N̅, for which the degree
of local segregation is larger at the ODT. Figure 15 shows the

same comparison plotted vs the “apparent” interaction χa*N.
The near collapse of results with different chain lengths shows
that the ratio τS/τe0 is a nearly universal function of χa*N.
Figures 16 and 17 compare the behavior of the terminal

structure relaxation time τS, the end-to-end time τe, and the
diffusion time τd, plotted as functions of χeN for chains of
length N = 16 and N = 32, respectively. All three times are very
similar to each other, at low values of χeN. Near the ODT,
however, τS becomes much larger than τe and increases more
rapidly than τe with increasing χeN.

6. LINEAR VISCOELASTICITY
The most common experimental methods for characterizing
dynamical properties of a polymer liquid are measurements of
linear viscoelastic behavior. Measurements of linear viscoelastic
properties also provide an excellent method of identifying
order−disorder transitions in block copolymer melts. Here, we
present measurements of the shear relaxation modulus G(t) of
our simulation model in the disordered phase. The modulus
G(t) characterizes the decay of the macroscopic shear stress
σ(t) after step shear strain of magnitude γ and is given by the
limiting value of the ratio G(t) = σ(t)/γ in the limit of small
strain γ.

Green−Kubo Relation. The results for G(t) presented
here were measured using the fluctuation−dissipation or
Green−Kubo relationship that relates G(t) to fluctuations in
shear stress. In its simplest form, this relationship states that
G(t) for an isotropic liquid is given by the autocorrelation
function

G t
V

k T
t( ) ( ) (0)ij ij

B
σ σ= ⟨ ⟩

(25)

where σij(t) is the instantaneous value at time t of any off-
diagonal component of the stress tensor, with i ≠ j, of a system
of total volume V in thermal equilibrium at time t. To improve
statistics of such a measurement, we use the equivalent
relationship

Figure 14. Terminal structure relaxation time, τS, normalized by the
homopolymer end-to-end relaxation time, plotted versus χeN over a
wide ranged of χeN values, for chains of both 16 and 32 beads.

Figure 15. Normalized terminal structure relaxation time τS/τe0
plotted versus χa*N for chains of both 16 and 32 beads.

Figure 16. Comparison of different relaxation times τS, τe, and τd
plotted versus χeN for systems with N = 16. All times are normalized
by the homopolymer end-to-end relaxation time τe0.

Figure 17. Comparison of different relaxation times τS, τe, and τd
plotted versus χeN for systems with N = 32. All times are normalized
by the homopolymer end-to-end relaxation time τe0.
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G t
V
k T

t( )
10

( ) (0)
i j

ij ij
B , 1

3

∑ σ σ= ⟨ ̃ ̃ ⟩
= (26)

in which σ̃ denotes the deviatoric (i.e., traceless) part of the
symmetric stress tensor, with elements given by

t t t( ) ( )
1
3

( )ij ij ij
i

ii
1

3

∑σ σ δ σ̃ = −
= (27)

where σij(t) is an element of the full stress tensor. Equation 26
can be obtained by noting that the requirements imposed by
isotropy, the traceless symmetric nature of σ̃, and eq 25
together require that ⟨σ̃ij(t)σ̃kl(0)⟩V/kBT = G(t)[δikδjl + δilδjk −
(2/3)δijδkl].
The instantaneous stress tensor σ(t) is given by a sum

ij ij ij
(kin) (vir)σ σ σ= + (28)

of a kinetic component and virial component. The kinetic
stress is given by a sum

V
m v v

1
ij i j
(kin)

, ,∑σ =
α

α α α
(29)

over all particles in the system, in which α is a particle index,
mα is the mass of particle α, and vα,i is the ith component of
that particle’s velocity. The virial compononent for a model
with purely pairwise forces, such as the model used here, is
given by a sum over particle pairs

V
r f

1
ij i j
(vir)

, ,∑σ =
α β

αβ αβ
> (30)

in which rαβ,i is a component of the separation of particles α
and β and fαβ,j is a component of the force between these two
particles.
The autocorrelation function for the traceless symmetric

stress defined in eq 26 has been computed by measuring the
stress every 10 molecular dynamics steps and averaging using
the hierarchical averaging scheme introduced for this purpose
by Likhtmann and Ramirez.49 Our analysis of G(t) does not
explicitly take into account any contributions arising from the
thermostat, which would in any case be of no physical interest.
We have instead attempted to choose a thermostat coupling
constant small enough to have no measurable effect on G(t)
and other correlation functions.
Because the model simulated here relies on a soft pair

potential that allows chains to cut through one another, these
simulations do not exhibit entanglement. The starting point for
our analysis of results for G(t) is thus a Rouse model of
unentangled polymer melts. The Rouse model for a continuous
Gaussian chain in a homopolymer melt predicts

i
k
jjjjj

y
{
zzzzzG t

ck T
N

p t
( ) exp

p

B

1

2

R
∑

τ
= −

=

∞

(31)

in which c is the number concentration of monomers and N is
the number of monomers in a chain, so that c/N is the number
concentration of molecules, and τR is the terminal relaxation
time for stress. The terminal stress relaxation time τR predicted
by the Rouse model is half the relaxation time τ1 for the mode
amplitude of the most slowly decaying Rouse mode, τR = τ1/2.
The terminal relaxation time τe for the end-to-end
autocorrelation function E(t) introduced previously in eq 7

is instead equal to τ1, τe = τ1. The Rouse model predicts a
power law decay G(t) ∝ t−1/2 at times t ≪ τR followed by
exponential decay at times t > τR.

Overview of Results. Figure 18 shows the evolution of the
behavior of G(t) with increasing degree of segregation within

the ordered phase. In this and subsequent plots of G(t) vs
time, time t is normalized by the terminal time τe0/2 predicted
by the Rouse model for a homopolymer, while the modulus
G(t) is normalized by the prefactor ckBT/N that appears in the
Rouse model prediction of eq 31.
At χeN = 0, the simulation model considered here reduces to

a model of a homopolymer melt. We show in what follows that
in this limit the behavior of G(t) is predicted nearly perfectly
by the Rouse model. At relatively low but nonzero values of
χeN, up to χeN ≃ 10, the behavior remains similar to that
found for a hompolymer. Throughout this regime of weak
composition fluctuations, G(t) is characterized by a single
crossover from a power law decay at early times to exponential
decay after a terminal relaxation time, with a crossover time
that increases slightly with increasing χeN.
At higher values of χeN, closer to the ODT, the function

G(t) develops a second feature that is a result of strong
composition fluctuations. At the two highest values of χeN
shown in Figure 18, a second shoulder develops at long times,
which becomes more prominent as χeN increases. We show in
what follows that the decay time associated with this new
feature is approximately the same as the terminal relaxation
time τS for the relaxation of the composition fluctuations.
Figure 19 shows the rheological signature of the

spontaneous formation of lamellar order. The highest two
values of χeN shown in this plot (χeN = 22.02 and χe = 22.26)
are slightly above the value χeN = 21.72 at the equilibrium
ODT. Both of these samples spontaneously crystallized into
lamellar structures. The formation of lamellar order is visible in
our measurement of G(t) by the appearance of a plateau in
G(t) at long times. To explain why a plateau forms in the
lamellar phase, recall that G(t) is measured by measuring an
autocorrelation of the deviatoric (i.e., traceless) part of the
stress tensor, denoted by σ̃. In a lamellar phase with layers
oriented perpendicular to a normal vector n, the system stress
can have a nonzero average uniaxial stress of the form σ̃ =
σ0(ninj − δij/3), in which σ0 is a slight tensile or compressive
stress arising from any mismatch between the actual layer
spacing and the preferred layer spacing at which the tensile

Figure 18. Normalized stress relaxation modulus, NG(t)/ckBT for
disordered melts of chains of length N = 16 over a wide range of
values of χeN. The value at the ODT is (χeN)ODT = 21.72.
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stress vanishes. Such a mismatch will generally arise because
the periodic boundary conditions only allow lamellar align-
ment along specific directions, none of which may allow the
formation of a structure with a spacing exactly equal to the
preferred spacing. Formation of a persistent stress of this form
yields a plateau of magnitude G(t) = Vσ0

2/15kBT as t → ∞ in
the stress inferred from ref 26. The existence of such a plateau
is a finite-size effect, insofar as the stress σ0 would vanish in the
limit L → ∞ of an infinite unit cell, but has a significant effect
on the results reported here.
Weak Correlation Regime: Rouse Model. Figure 20

shows a comparison of Rouse model predictions to results for

G(t) in the limit χeN = 0.0, corresponding to a homopolymer
melt. In this comparison, the time constant τ1 used in the
Rouse prediction was taken to be equal to the terminal
relaxation time τe0 obtained from an independent measure-
ment of the end-to-end autocorrelation function E(t). For a
homopolymer, excellent agreement with the Rouse model is
thus obtained with no adjustable parameters.
Figures 21 and 22 show fits of the Rouse model to results

obtained at relatively low values of χeN = 8.94 and 13.97(α =
2.00 and 3.00), in which the stress relaxation time τR = τ1/2
has been adjusted to fit these data. A similar fit was performed

at χeN = 4.21 (α = 1.0) but is not shown here. These fits yield
values of τ1 that increase slightly with increasing χeN, giving τ1/
τe0 = 1.051, 1.259, and 2.123 at χeN = 4.21, 8.95, and 13.97,
respectively. Allowing adjustment of τR is found to be sufficient
to fit this data for the first three values of χeN = 0.0, 4.21 and
8.94, for which χeN < 10. For χeN = 13.97, however, we can see
an additional shoulder in G(t) beginning to appear at long
times, near the end of the range of times shown here.
The shoulder in G(t) at long times becomes more

pronounced as χeN increases, causing the attempt to fit the
data with a Rouse model to fail closer to the ODT. This can be
seen in Figure 23, where we show a failed attempt to fit results
for G(t) at χeN = 18.35 by the Rouse model.
The time constants associated with the two shoulders in

G(t) differ by an order of magnitude at χN = 18.35 (α = 4.0)
and seem to grow further apart as we increase χN. The
presence of the second shoulder can be understood as a result
of the appearance of transient well-segregated domains in the
disordered melt. Upon exerting an external strain, a diblock
copolymer melt with strong composition fluctuations reacts in
two stages. First, individual molecule relax relative to an
essentially fixed composition profile, which provides the
chemical potential landscape for individual chains. Over a
somewhat longer period of time, collective motion of many

Figure 19. Normalized stress relaxation response, NG(t)/ckBT, for
chains of length N = 16 over a range of values of χeN that spans the
order−disorder transition at (χeN)ODT = 21.72. Measurements of
G(t) in samples that have spontaneously ordered show an elastic
plateau at long times.

Figure 20. Normalized relaxation modulus NG(t)/ckBT vs normalized
time for chains of N = 16 beads at χeN = 0.00, corresponding to
homopolymers. Simulation results are shown by the red dotted line.
Rouse model predictions computed using τ1 = τe0 are shown by the
solid blue line.

Figure 21. Normalized relaxation modulus NG(t)/ckBT vs normalized
time for symmetric diblock copolymers chains of N = 16 beads at χeN
= 8.75 (α = 2.0). Simulation results are shown by the red dotted line.
A fit to the Rouse model computed using τR as the only fitting
parameter is shown by the solid blue line.

Figure 22. Normalized relaxation modulus NG(t)/ckBT vs normalized
time for symmetric diblock copolymers chains of N = 16 beads at χeN
= 13.50 (α = 3.0). Simulation results are shown by the red dotted line.
A fit to the Rouse model computed using τR as the only fitting
parameter is shown by the solid blue line.
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chains leads to relaxation of the composition profile. This
relaxation of composition fluctuations is directly measured by
S(q,t) and is complete only at times longer that the longest
structural relaxation time τS obtained in measurements of
S(q,t). This picture suggests that the terminal viscoelastic
relaxation time should be given by τS, in agreement with our
results. Therefore, we assume that the initial decay and the first
shoulder in G(t) is related to molecular relaxations in a system
of nearly constant composition field, and the second shoulder
is caused by relaxation of residual stress associated with the
slower relaxation of composition fluctuations.
Strong Correlation Regime: Theory. Upon increasing

χeN, the main new feature of viscoelastic behavior near the
ODT is the appearance of a slowly decaying shoulder in G(t),
in addition to the more rapidly decaying shoulder observed at
lower values of χN. The appearance of this feature in G(t) is
consistent with the appearance of a corresponding low-
frequency shoulder in the frequency-dependent storage
modulus G′(ω) in experiments on disorder diblock copoly-
mers near the ODT. Near the ODT, the disordered phase is
characterized by long-lived composition fluctuations. Relaxa-
tion of these composition fluctuations is characterized most
directly by S(q,t), which yields a terminal structural relaxation
time τS much longer than the time required for relaxation of
individual chains in a fixed environment. When a strongly
correlated diblock copolymer melt is subjected a macroscopic
strain, relaxation of stress and G(t) thus proceeds in two
stages: First, over a time comparable to τe0, the distribution of
conformations of individual chains relaxes to a state of local
equilibrium in a nearly constant composition landscape. Over
somewhat longer times, the composition field itself re-
equiibrates, with a terminal time similar τS. The component
of the stress that persists to long times is the stress of a system
in which chains are in local equilibrium in an environment
defined by a more slowly evolving composition field.
In an attempt to model this slowly decaying component of

the stress, we have compared our simulation results to a variant
of the Fredrickson−Larson model (FL) of low-frequency stress
relaxation.38 The original derivation of this model was
presented in the frequency domain by considering an
oscillatory strain and using the response to compute G′(ω)
and G″(ω). Because we use the model here in the time

domain, to predict G(t), we begin by outlining a derivation of
the FL theory in the time domain.

Fredrickson−Larson Theory in the Time Domain. The
Fredrickson−Larson theory attempts to describe linear
viscoelastic behavior at long times or low frequencies in a
melt of very long diblock copolymer near the ODT. It assumes
that the instantaneous stress in this regime can be
approximated by the stress generated from a quasi-equilibrium
free energy F[ψ̂] that is a functional of the slowly relaxing
composition field. The functional F[ψ̂] is further approximated
by a harmonic approximation

F
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where Seq(q) is the equilibrium static structure factor. The
quasi-equilibrium stress arising from this free energy can be
computed using the principle of virtual work by computing the
change in free energy induced by an affine deformation of the
composition field. This yields a stress given to within an
isotropic component by
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as given in eq 2.12 of ref 38, in which we use Seq(q) to denote
the equilibrium value of the static structure factor and

S t S t Sq q q( , ) ( , ) ( )ne ne eqδ = − (34)

to denote the deviation of the instantaneous static structure
factor Sne(q,t) from the equilibrium value. The subscript “ne”
on the symbols Sne(q,t) and δSne(q,t) denotes “nonequili-
brium”, which is used to indicate that Sne(q,t) is the
instantaneous nonequilibrium value of the static structure
factor

S t t Vq q( , ) ( , ) /ne
2ψ= ⟨| ̂ | ⟩ (35)

evaluated at time t after a step strain. The subscript is needed
to distinguish this quantity from the equilibrium dynamic
structure factor S(q,t) measured in section 5, which is instead
given by the equilibrium autocorrelation function S(q,t) =
⟨ψ̂*(q,t)ψ̂(q,0)⟩/V.
To describe relaxation after a step strain, the function

δSne(q,t) is assumed to decay exponentially with time t after a
step strain, giving

S t Sq q( , ) ( , 0 )e t q
ne ne

2 / ( )δ δ= τ+ −
(36)

Here, δSne(q,0
+) is the deviation immediately after a step

deformation, and τ(q)/2 is a wavenumber-dependent decay
time. The time scale τ(q) that appears in eq 36 is taken to be
equal to the relaxation time of the equilibrium dynamic
structure factor S(q,t) measured in section 5. The prediction
that the relaxation time τ(q)/2 for the relaxation of the
nonequilibrium structure factor is half the relaxation time τ(q)
of the correlation function S(q,t) follows from a linear
stochastic model in which each Fourier amplitude ψ̂(q)
behaves like an overdamped Brownian harmonic oscillator
with a decay rate 1/τ(q). Such a model generically gives a
decay rate for quantities such as Sne(q,t) that are quadratic in
the oscillator amplitude that is twice the decay time of the
oscillator amplitude or of the associated equilibrium
autocorrelation function. This is also the reason that in the
Rouse model the stress component associated with each Rouse

Figure 23. Normalized relaxation modulus NG(t)/ckBT vs normalized
time for symmetric diblock copolymers chains of N = 16 beads at χeN
= 18.35 (α = 4.0). Simulation results are shown by the red dotted line.
The blue line shows an unsuccessful attempt to fit this data to the
Rouse model using τR as an adjustable parameter and attempting by
eye to fit the region near the feature indicated by the arrow at τR.
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mode decays with a decay time half of that seen in the
corresponding contribution to the end-to-end autocorrelation
time.
The initial deviation δSne(q,t=0) caused by a small

amplitude step deformation is computed by assuming an
affine deformation of the equilibrium distribution. We consider
a deformation characterized by a strain tensor γ, in which a
material element at r is displaced to r + γr. Assuming that
Sne(q) = Seq(q) prior to the deformation yields

S
S q

q
q qq( , 0 ) 2

d ( )
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j i ijne

eq
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To compute the resulting stress σij, we must combining eqs 33,
36, and 37. After defining a unit vector q̂ = q/q, where q = |q|,
and explicitly carrying out averages over orientation of the unit
vector q̂, we obtain a stress σ(t) = G(t)[γ + γT] characterized
by a modulus
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or, equivalently,
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By taking the Fourier transform of this result, by setting G*(ω)
= iω∫ 0

∞dt G(t)e−iωt, we obtain a corresponding complex
frequency-dependent modulus
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in agreement with the result obtained by Fredrickson and
Larson by considering a small amplitude oscillatory flow.
Rouse/Fredrickson−Larson (R/FL) Theory. The Fre-

drickson−Larson theory was intended to describe the behavior
of G(t) or G*(ω) at very long times, or low frequencies, in
diblock copolymer melts with N̅ ≫ 104 very close to the ODT.
The theory assumes the existence of a large separation between
the terminal relaxation time τS and the time required for local
chain equilibration and was designed to describe only the most
slowly decaying contributions to the stress. The resulting
theory was never intended to be used to describe the behavior
of G(t) at early times or low or intermediate values of χeN.
The simulation data shown here include data over a wide

range of values of time and χeN, in which the separation
between the terminal structural relaxation time and the shorter
time for chain equilibration never exceeds about 1 order of
magnitude. We know that the behavior observed at low and
intermediate values of χeN is well described by a Rouse model
in which we treat the terminal Rouse time as an adjustable
parameter. It appears likely that the first feature in the behavior
observed near the ODT might also be reasonably well
described by a Rouse-like contribution. Because the original
Fredrickson−Larson model assumes local equilibration of the
distribution of chain conformations in a slowly evolving
composition landscape, it cannot describe the Rouse-like
relaxation of G(t) at early times that occurs even in systems
near the ODT and would yield qualitatively incorrect behavior
at all times if applied to systems with lower values of χeN.

To combine the realistic aspects of the Rouse and
Fredrickson−Larson models, we propose an approximation
for G(t) as a sum

G t G t G t( ) ( ) ( )R FLδ= + (41)

Here, GR(t) is a contribution that is computed using the Rouse
model with an adjustable terminal time scale, while δGFL(t) is
the difference between the prediction of the FH model at the
value of χeN of interest and that at χeN = 0. More explicitly

G t G t N G t N( ) ( , ) ( , 0)FL FH e FH eδ χ χ= − = (42)

where GFH(t,χeN) denotes the FL prediction for G(t) at a
specified value of χeN and GFH(t,χeN=0) represents the
corresponding prediction for a homopolymer, with χeN = 0.
By construction, this model reduces to a Rouse model in the
homopolymer limit χeN = 0 and always contains a Rouse-like
feature at early times. In addition, the model contains a
contribution δGFL(t) for which both the magnitude and long
decay time increase gradually with increasing χeN.

Strong Correlation Regime: Analysis of Simulations.
Figure 24 shows a comparison of simulations results at χeN =

19.17 to predictions of the Rouse/Fredrickson−Larson model
for chains of N = 16 beads. The only adjustable parameter in
this comparison is the terminal Rouse relaxation time τR = τ1/2
used in the Rouse contribution to the model, for which we
used τ1/τe0 = 1.34. Both the magnitude and time dependences
of the contribution δδGFL(t) that produces the second
shoulder have been predicted by using information obtained
from measurements of the intermediate structure factor S(q,t).
Note that the predicted behavior of G(t) at times t > τR
appears to be displaced from the measured behavior by a
nearly constant distance on this log−log plot. This theory thus
yields a prediction for the behavior of G(t) near the second
shoulder in which the both terminal time and functional form
of the time dependence are predicted correctly, but in which
the magnitude of G(t) is slightly larger, by a nearly constant
multiplicative factor.
Figure 25 shows a similar comparison of results for G(t) at

χeN = 20.79 to predictions of the Rouse/Fredrickson−Larson

Figure 24. Comparison of the normalized stress relaxation modulus
NG(t)/ckBT to predictions of the Rouse/Fredrickson−Larson model,
for chains of N = 16 beads at χeN = 18.35 (α = 4.00). The indicated
value of τS was obtained from independent measurements of S(q,t).
The terminal Rouse stress relaxation time τR in the Rouse
contribution GR(t) has been treated as an adjustable parameter, for
which we used τR = τ1/2 and τ1/τe0 = 1.34.
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model described above. The model again predicts somewhat
too large a value for G(t) in the vicinity of the second shoulder.
Figure 26 and 27 show the results of a somewhat ad hoc

modification of the Rouse/Fredrickson−Larson model in

which we have simply replaced the original theory by a sum
of the form

G t G t G t( ) ( ) ( )R FLλδ= + (43)

in which the contribution δGFL(t) arising from composition
fluctuations is simply multiplied by an arbitrary factor λ whose
value is chosen to fit the data. A value of λ = 2/3 was used to
generate both Figure 26 and Figure 27, using the same value of
λ for both values of χeN. The fact that this modified theory fits
the data reasonably well shows that the prediction of the time
dependence of the fluctuation contribution is consistent with
our simulation results for G(t), but that the unmodified theory
predicts slightly too large a magnitude for the slowly decaying
shoulder. More specifically, the comparison shows that the
simulation data is consistent with the existence of a terminal
rheological time equal to τS/2, where τS is the terminal
relaxation time obtained from independent measurements of
S(q,t).
Our results show that the Rouse/Fredrickson−Larson

model slightly overpredicts the magnitude of G(t) in the
long time regime in which stress is controlled by relaxation of
composition fluctuations. Because the theory is based on
several approximations, it is not entirely clear which
approximation is the main source of this discrepancy. One
possibility is that the error may be primarily a consequence of
the limitations of the harmonic approximation for the free
energy functional that is used here to compute stress. This
expression for the stress is being applied here to states near the
ODT in which composition fluctuations are known to be quite
strong, and in which anharmonic contributions to the free
energy are thus potentially important. The fact that the model
is based on measured values of the relaxation times τ(q)
inferred from the relaxation of S(q,t) appears, however, to
allow it make meaningful predictions about the spectrum of
relaxation times in G(t).

7. CONCLUSIONS
Simulations of simple bead−spring models have been used to
measure single-chain properties (tracer diffusion, end-to-end
autocorrelation), the dynamic structure factor S(q,t), and the
linear viscoelastic stress relaxation modulus G(t) in the
disordered phase of a symmetric diblock copolymer and to
characterize how these dynamical properties change with
changes in the segregation parameter χN.
These dynamical properties (like equilibrium properties)

behave somewhat differently in a regime in a weakly correlated
parameter regime in which χN < (χN)ODT

SCFT and in strongly
correlated regime in which (χN)ODT

SCFT < χN < (χN)ODT. Here,
(χN)ODT

SCFT = 10.5 denotes the value at which SCFT predicts an
ODT, and (χN)ODT denotes the actual value at the ODT for a
system of finite N̅. In the weakly correlated regime (χN) <
(χN)ODT

SCFT, effects of composition fluctuations are small, and all
of the measured dynamical properties are reasonably well
described by a Rouse model with an effective friction
coefficient that is almost independent of χN. In the strongly
correlated regime closer to the ODT, all dynamical properties
show evidence of the formation of increasingly strongly
segregated transient microdomains. The effects of composition
fluctuations show up much more strongly in some measured
quantities than in others.
The effect of composition fluctuations upon tracer diffusivity

is relatively weak. In the two systems studied here, the value of
the diffusion coefficient at the ODT was 0.55−0.65 of its value

Figure 25. Comparison of the normalized stress relaxation modulus
NG(t)/ckBT to predictions of the Rouse/Fredrickson−Larson model
for chains of N = 16 beads at χeN = 20.79 (α = 4.5). The terminal
Rouse relaxation time in the Rouse contribution GR(t) has been
treated as an adjustable parameter, for which we have used τR = τ1/2
and τ1/τe0 = 1.47.

Figure 26. Comparison of the normalized stress relaxation modulus
NG(t)/ckBT for a melt with N = 16 and χeN = 18.35(α = 4.00) to
predictions of the modified Rouse/Fredrickson−Larson model of eq
43, using a prefactor λ = 2/3.

Figure 27. Comparison of the normalized stress relaxation modulus
NG(t)/ckBT for a melt with N = 16 and χeN = 20.79 to predictions of
the modified Rouse/Fredrickson−Larson model of eq 43, using λ =
2/3.
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in the homopolymer state, at χN = 0. A reduction of
approximately this magnitude would be expected in a system of
unentangled chains, even if chains were forced to follow
interfaces between slowly evolving bicontinuous A and B
domains, as the result of relatively free diffusion of unentangled
chains along AB interfaces.
Composition fluctuations have a somewhat larger effect on

the relaxation of the end-to-end vector. In the strongly
correlated regime, the end-to-end autocorrelation function
E(t) shows evidence of a two-stage relaxation. The rate of
initial relaxation is similar to that seen in the homopolymer and
is assumed to represent the relaxation of chains to a state of
local equilibrium in a nearly fixed composition landscape. The
relaxation time τe associated with the final relaxation reaches a
value at the ODT that is 6−7 times the value obtained in the
homopolymer for the two systems studied here. A somewhat
larger fractional increase is observed for shorter chains, which
reach a somewhat higher level of local segregation before
crystallizing into a lamellar phase. Near the ODT, τe remains
significantly less than the terminal time for the relaxation of
composition fluctuations at the ODT (discussed below). This
implies that the end-to-end vector can relax before the
microdomains have fully randomized. We speculate that final
relaxation of E(t) in an unentangled melt may thus occur in
part via diffusion of chains along tortuous interfaces between
domains in a more slowly evolving composition landscape.
The time dependence of the dynamic structure factor S(q,t)

can be described reasonably well as a single-exponential decay
at wavenumbers similar to or less than the peak wavenumber
q*. Near the ODT, the wavenumber-dependent relaxation time
τ(q) exhibits a peak at q*. We have analyzed the relationship
between τ(q) and the static structure factor S(q) using a simple
phenomenological model in which the relationship between
the relaxation rate τ(q)−1 and the free energy gradient driving
that relaxation is controlled by a wavenumber-dependent
diffusivity D(q). The effective diffusivity D(q) (or inverse
mobility) for composition modes of wavenumber q is a
smooth, monotonically decreasing function of qRg that
depends only modestly on χeN and very weakly on N. The
simplicity of the behavior of D(q) suggests that an empirical
correlation for D(q) might be useful as the basis of a simple
method of estimating τ(q) from knowledge of the static
structure factor.
The stress relaxation modulus G(t) was inferred from

measurements of spontaneous stress fluctuations via the
appropriate Green−Kubo relation. The behavior of G(t) in
the weakly correlated parameter regime χeN < 10 is very well
described by the Rouse model of stress relaxation. Near the
ODT, G(t) exhibits a more slowly decaying shoulder due to
stress that arises from the effect of strain upon slowly decaying
composition fluctuations. The connection between this slowly
decaying contribution to the stress and composition
fluctuations is demonstrated more directly here than in
experiments or previous simulations by showing that the
terminal rheological relaxation time is indeed the same as the
longest relaxation time τS obtained from independent
measurements of S(q,t).
Simulation results for G(t) near the ODT are rather well

described by a slightly modified variant of the Fredrickson−
Larson theory of stress relaxation. The Rouse/Fredrickson−
Larson model to which we compare is obtained by modifying
the original Fredrickson−Larson model so as to guarantee that
Rouse-like behavior is recovered at early times and low values

of χeN. This theory was then evaluated using independently
measured values of the static structure factor S(q) and
relaxation time τ(q) as inputs. The main limitation of the
resulting theory is that it predicts slightly too large a value for
the magnitude of the slowly decaying shoulder in G(t).
The work presented here provides both a relatively simple

description of the behavior of S(q,t) from knowledge S(q), in
terms of an effective diffusivity D(q) that we have characterized
empirically. We have not attempted here to predict D(q) from
first principles. This work also provides partial validation of a
theory that predicts G(t) from knowledge of S(q,t). Taken
together, these results provide a method of estimating expected
structural relaxation times and linear viscoelastic properties in
unentangled symmetric diblock copolymers from knowledge of
homopolymer viscosities or measurements of single-chain
motion (to calibrate friction coefficients) and the static
structure factor S(q).

■ AUTHOR INFORMATION
Corresponding Author
*E-mail: morse012@umn.edu.

ORCID
David C. Morse: 0000-0002-1033-8641
Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
This work was supported by NSF Grant DMR-1310436 using
computational resources of the Minnesota Supercomputing
Institute.

■ REFERENCES
(1) Fredrickson, G. H.; Bates, F. S. Dynamics of block copolymers:
theory and experiment. Annu. Rev. Mater. Sci. 1996, 26, 501−550.
(2) Shull, K. R.; Kramer, E. J.; Bates, F. S.; Rosedale, J. H. Rosedale
Self-diffusion of symmetric diblock copolymer melts near the ordering
transition. Macromolecules 1991, 24, 1383−1386.
(3) Ehlich, D.; Takenaka, M.; Hashimoto, T. Forced Rayleigh
scattering study of diffusion of block copolymers. 2. Self-diffusion of
block copolymer chains in lamellar microdomains and disordered
melts. Macromolecules 1993, 26, 492−498.
(4) Dalvi, M. C.; Eastman, C. E.; Lodge, T. P. Diffusion in
microstructured block copolymers: Chain localization and entangle-
ments. Phys. Rev. Lett. 1993, 71, 2591.
(5) Dalvi, M.; Lodge, T. Diffusion in block copolymer melts: the
disordered region and the vicinity of the order-disorder transition.
Macromolecules 1994, 27, 3487−3492.
(6) Hamersky, M. W.; Tirrell, M.; Lodge, T. P. Self-diffusion of a
polystyrene-polyisoprene block copolymer. J. Polym. Sci., Part B:
Polym. Phys. 1996, 34, 2899−2909.
(7) Lodge, T. P.; Blazey, M. A.; Liu, Z.; Hamley, I. W. Asymmetric
block copolymers in neutral good solvents: self-diffusion through the
ordering transition. Macromol. Chem. Phys. 1997, 198, 983−995.
(8) Fleischer, G.; Fujara, F.; Stuehn, B. Restricted diffusion in the
regime of the order-to-disorder transition in diblock copolymers: a
field gradient NMR study. Macromolecules 1993, 26, 2340−2345.
(9) Anastasiadis, S. H.; Chrissopoulou, K.; Fytas, G.; Appel, M.;
Fleischer, G.; Adachi, K.; Gallot, Y. Self-diffusivity of diblock
copolymers in solutions in neutral good solvents. Acta Polym. 1996,
47, 250−264.
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