
Entangled polymer 
dynamics 

9.1 Entanglements in polymer melts 

The Edwards tube model of polymer entanglements was already discussed 
in Section 7.3.1. The topological constraints imposed by neighbouring 
chains on a given chain restrict its motion to a tube-like region (see Fig. 7.10) 
called the confining tube. The motion of the chain along the contour of 
the tube (the primitive path) is unhindered by topological interactions. 
Displacement of monomers in the direction perpendicular to the primitive 
path is restricted by surrounding chains to an average distance u, called the 
tube diameter. The number of Kuhn monomers in a strand of size equal to 
the amplitude of transverse fluctuations (the tube diameter) is N,, the 
number of monomers in an entanglement strand. For melts, excluded 
volume interactions are screened (see Section 4.5.2) and the tube diameter 
is determined by ideal chain statistics: 

u E h a .  (9.1) 

The tube can be thought of as being composed of N I N ,  sections of size u, 
with each section containing N ,  monomers. The chain can be considered as 
either a random walk of entanglement strands ( N I N ,  strands of size u) or a 
random walk of monomers ( N  monomers of size b). 

The average contour length (L) of the primitive path (the centre of the 
confining tube, see Fig. 7.10) is the product of the entanglement strand 
length u and the average number of entanglement strands per chain NIN,.  

The average primitive path contour length (L) is shorter than the contour 
length of the chain hN by the factor u lh  E because each entanglement 
strand in a melt is a random walk of N,  Kuhn monomers. 

One manifestation of entanglement in long chains (N>>N,) is the 
appearance of a wide region in time (or frequency) where the modulus is 
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almost constant in a stress relaxation (or oscillatory shear) experiment. 
In analogy with crosslinked rubbers, this region is referred to as the rubbery 
plateau, and the nearly constant value of the modulus in this plateau regime 
is called the plateau modulus G,. In analogy with an affine network, whose 
modulus is of order kT per network strand [Eq. (7.31)], the plateau 
modulus is of order kT per entanglement strand [Eq.(7.47)]. The number- 
average molar mass of an entanglement strand is called the entanglement 
molar mass Me. The occupied volume of an entanglement strand with 
molar mass Me in a melt with density p is the product of the number of 
Kuhn monomers per strand N, and the Kuhn monomer volume vo: 

Since monomers are space-filling in the melt, the number density of 
entanglement strands is just the reciprocal of the entanglement strand 
volume, leading to a simple expression for the plateau modulus of an 
entangled polymer melt [Eq. (7.47)]. 

Ge=---- pRT kT h 'kT  
N N--. 

Me voNe voa2h (9.5) 

The number of chains P, within the confinement volume u3 is deter- 
mined from the fact that monomers in the melt are space-filling: 

Table 9.1 shows N, and P, calculated from the measured plateau modulus. 
All flexible polymers have P, cz 20 overlapping entanglement strands 
defining the entanglement volume u3, which is the overlap criterion for 
entanglement in polymer melts. 

Table 9.1 Entanglement parameters for flexible linear polymer melts 

Polyethylene at 140 " C  
Poly(ethy1ene oxide) 

1,4-PoIybutadiene at  25 "C 
Polypropylene at 140 "C 
1,4-Polyisoprene at 25 "C 
Polyiaobutylene at 25 "C 
Polydimethylsiloxane 

Polystyrene at 140 " C  
Pol yvin ylcyclohexane 

dt 80°C 

dt 25 "c 

at  160°C 

2.6 
1.8 

1.15 
0.47 
0.35 
0.34 
0.20 

0.20 
0.068 

1000 
1700 

1900 
5800 
6400 
6700 

12 000 

17 000 
49 000 

7 14 36 320 21 
13 11 37 210 19 

18 10 41 190 19 
32 11  62 380 20 
53 8.4 62 220 20 
24 13 62 500 19 
32 13 74 650 20 

23 18 85 1200 22 
81 14 130 1100 22 
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At first glance, understanding the motion of a polymer in the melt 
is daunting. Since roughly fi other polymers share the pervaded volume 
of a given chain in the melt, chain motion appears to be a difficult many- 
body problem. However, by utilizing the Edwards tube concept, de 
Gennes cleverly reduced this many-body problem to the motion of a 
single chain confined to a tube of surrounding chains. Models that con- 
sider chain motion as being restricted to a tube-like region are referred to 
as tube models. The simplest tube model was proposed by de Gennes in 
197 1 for the motion of linear entangled polymers, and is called the reptation 
model. 

9.2.1 Relaxation times and diffusion 

In de Gennes' reptation model, an entangled chain diffuses along its 
confining tube in a way analogous to the motion of a snake or a worm (see 
Fig. 9.1). This motion of the chain consists of diffusion of small loops, 
along the contour of the primitive path. This curvilinear motion of a 
polymer along its tube satisfies the topological constraints imposed by 
surrounding chains and is characterized by the Rouse friction coefficient 
NC. The curvilinear diffusion coefficient D, that describes motion of the 
chain along its tube is simply the Rouse diffusion coefficient of the chain 
[Eq. (8.12)]. 

kT 
NC D p-. (9.7) 

The time it takes for the chain to diffuse out of the original tube of average 
length (L) is the reptation time: 

Fig. 9.1 
Reptation steps: (a) formation of a loop 
at the tail of the snake and elimination of 
the tail segment of the confining tube; 
(b) propagation of the loop along the 
contour of the tube; (c) release of the 
loop at the head ofthe snake and 
formatioll of a new sectioll of the 
confining tube. 

%---- (9.8) 

Here, Eq. (9.3) was used for the average contour length of the tube. The 
reptation time rrep is predicted to be proportional to the cube of the molar 
mass. The experimentally measured scaling exponent is higher than 3: 

r N M3.4. (9.9) 

We will discuss the possible reasons for the disagreement between the 
simple reptation model and experiments in Section 9.4.5. 

The first part of the final relation of Eq. (9.8) is the Rouse time of an 
entanglement strand containing N ,  monomers: 

(9.10) 
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The ratio of the reptation time rreP and re is the cube of the number of 
entanglements along the chain: 

1 O-lo I 

M (g mol-') 

Fig. 9.2 
Molar mass dependence of the diffusion 
coefficient for melts of hydrogenated 
polybutadieiie at 175 "C.  Data compiled 
in T. P. Lodge Phys. Rev. Lett. 83, 3218 
(1999). 

(9.1 1) 

The chain moves a distance of order of its own size R in its reptation time 
rrep, since this is the time scale at which the tube is abandoned: 

R2 k T N ,  Drep z ~ ~z -- 
rrep C N 2 '  

(9.12) 

The diffusion coefficient of entangled linear polymers is predicted to be 
reciprocally proportional to the square of the molar mass, which also 
disagrees with experiments, as shown in Fig. (9.2): 

D % - w  R2 M-2.3 
r 

(9.13) 

9.2.2 Stress relaxation and viscosity 

The reptation ideas discussed above will now be combined with the 
relaxation ideas discussed in Chapter 8 to describe the stress relaxation 
modulus G(t) for an entangled polymer melt. On length scales smaller than 
the tube diameter a, topological interactions are unimportant and the 
dynamics are similar to those in unentangled polymer melts and are 
described by the Rouse model. The entanglement strand of Ne monomers 
relaxes by Rouse motion with relaxation time re [Eq. (9.10)]: 

re = TON:. (9.14) 

The Rouse model predicts that the stress relaxation modulus on these short 
time scales decays inversely proportional to the square root of time 
[Eq. (8.47)]: 

-112 

for TO < t < re. (9.15) 

The relaxation time of the Kuhn monomer ro is the shortest stress 
relaxation time in the Rouse model, given by Eq. (8.56) with p = N:  

Cb2 Cb2 
67r2kT kT 

To=-%-.  (9.16) 

The stress relaxation modulus at  ro is the Kuhn modulus (kT per Kuhn 
monomer): 

(9.17) 
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Consider for example, a melt of 1,4-polybutadiene linear chains with 
M =  130000gmolp'. The molar mass of a polybutadiene Kuhn 
monomer is Mo= 105gmolp' (see Table 2.1) so this chain has N =  
M/Mo = 1240 Kuhn monomers. At 25 "C, this polymer is 124 K above its 
glass transition and its oscillatory shear master curve is shown in Fig. 9.3. 
The time scale for monomer motion is ro cz 0.3 ns, An entanglement strand 
of 1,4-polybutadiene has molar mass M,  = 1900 gmolp' (see Table 9.1) 
and therefore contains N ,  = M,/Mo = 18 Kuhn monomers. The whole 
chain has N/N,=M/M,=68 entanglements. The Rouse time of the 
entanglement strand re E 0.1 ps [Eq. (9. lo)]. 

At the Rouse time of an entanglement strand re, the chain 'finds out' that 
its motion is topologically hindered by surrounding chains. Free Rouse 
motion of the chain is no longer possible on time scales t > T,. The value of 
the stress relaxation modulus at r, is the plateau modulus G,, which is kT 
per entanglement strand [Eq. (9.5)]: 

The Rouse time of the chain is rR cz 0.5 ms: 

(9.18) 

(9.19) 

In the simple reptation model, there is a delay in relaxation (the rubbery 
plateau) between re and the reptation time of the chain rrep [Eq. (9.1 l)]. By 
restricting the chain's Rouse motions to the tube, the time the chain takes 
to diffuse a distance of order of its size is longer than its Rouse time by a 
factor of 6 N/N,.  This slowing arises because the chain must move along the 
confining tube. The reptation time of the chain rrep = 0.2 s is measured 
experimentally as the reciprocal of the frequency at which G' = G" in 
Fig. 9.3 at low frequency (see Problem 9.8). In practice, this time is 
determined experimentally and ro, T, and rR are determined from rrep. 

Fig. 9.3 
Master curve at 25 "C from oscillatory 
shear data at six temperatures for a 
1,4-polybutadiene sample with 
M,> = 130 000 g mol-'. Data from 
R. H. Colby, L. J. Fetters and 
W. W. Graessley, Mucrotnolmdes 20, 
2226 (1987). 
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The stress relaxation modulus is summarized schematically in Fig. 9.4. 
For long linear chains, the rubbery plateau can span many decades 
in time. 

The diffusion coefficient of the chain is controlled by the reptation time 
[Eq. (9.12)]. The linear polybutadiene chain with A4 = 130 000 g mol-' has 
N =  1240 Kuhn monomers, with Kuhn length b= lOA and coil size 
R = b f l  cz 350A. Since linear polymers move a distance of order their 
own size in their reptation time, the reptation time of t r e P ~ 0 . 2 s  at 
25 "C enables estimation of the diffusion coefficient D M R2/trep E 6x 

m2 s-'. Physically, this means that at  25 "C this polybutadiene chain 
moves about 350 A in a random direction every 0.2 s. 

The stress relaxation modulus in the reptation model is proportional 
to the fraction of original tube remaining at time t (see Fig. 9.1). As time 
goes on, sections of the original tube are abandoned when the chain end 
first visits them. Such a problem is called a first-passage time problem. 
The stress relaxation modulus G(t) for the reptation model was calculated 
by Doi and Edwards in 1978 by solving the first-passage problem for the 
diffusion of a chain in a tube (see Problem 9.6): 

- G  ............... 
- c  5 

j 

, 

T o  ZY Tvq, 
t 

Fig. 9.4 
Schematic representation of the stress 
relaxation modulus of entangled linear 
polymers on logarithmic scales. 

8 1 P2 t G(t) =-Ge 7T2 oddpp2 x -exp(- - ) .  Trep (9.20) 

The longest relaxation time in this model is the reptation time required 
for the chain to escape from its tube 

(9.21) 

where the Rouse time tR is the longest relaxation time of the Rouse model 
[Eq. (8.18)], which is half the end-to-end vector correlation time. 

The main contribution' comes from the first modep = 1 and the function 
is almost a single exponential [Eq. (7.11 l)]: 

G(t) M Ge eXp(-t/trep). (9.22) 

The Doi-Edwards equation [Eq. (9.20)] is the first attempt at  a molecular 
model for viscoelasticity of entangled polymers. It ignores tube length 
fluctuation modes that relax some stress on shorter time scales. These 
modes significantly modify dynamics of entangled polymers, as described 
in Section 9.4.5. 

The reptation model prediction for the viscosity of an entangled polymer 
melt is determined by integrating Eq. (9.20): 

T I =  / G ( t ) d t = - G , x ?  8 1 "  f exp(--)dt=-G,r,,,. P2 t T2 (9.23) x 

Trep 12 0 7r2 o d d p P  0 

' Fraction X / T *  of the terminal relaxation is associated with the first mode with relaxation 
time T , , ~  (bee Problem 9.7). 
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The final result was obtained from the fact that C l/p4 = .ir4/96. Since 

the stress relaxation is nearly a single exponential, the scaling prediction of 
the viscosity as the product of the plateau modulus [Eq. (9.5)] and the 
reptation time [Eq. (9.8)] is nearly quantitative: 

oddp 

3 67 

The viscosity of a polymer melt is predicted to be proportional to molar 
mass for unentangled melts (the Rouse model) and proportional to the 
cube of molar mass for entangled melts (the reptation model). 

M for M <  Mc,  
M3 for M >  M,. (9.25) 

As Fig. 8.17 shows, the critical molar mass M ,  for entanglement effects in 
viscosity [defined in Eq. (8.136)] is typically a factor of 2-4 larger than the 
entanglement molar mass Me [defined in Eq. (9.5)]. As shown in Fig. 9.5, 
the exponent in the entangled regime is -3.4 for all linear entangled 
polymers. This exponent is significantly larger than the prediction of 3 by 
the simple reptation model [Eq. (9.24)]: 

TI z G e t  N M3.4. (9.26) 

The deviations from the 3.4 power law at  low molar masses ( M  < M,) are 
because those chains are too short to be entangled (see Section 8.7.3). The 
deviations at  very high molar mass are consistent with a crossover to pure 
reptation (see Section 9.4.5). 

The simple reptation model does not properly account for all the 
relaxation modes of a chain confined in a tube. This manifests itself in all 
measures of terminal dynamics, as the longest relaxation time, diffusion 
coefficient and viscosity all have stronger molar mass dependences than the 
reptation model predicts. In Sections 9.4.5 and 9.6.2, more accurate ana- 
lytical and numerical treatments of this problem are given with results that 
are in reasonable agreement with the experimental dependence of terminal 
dynamics on the molar mass of the chain [Eqs (9.9), (9.13), and (9.26)]. 

9.3 Reptation in semidilute solutions 

9.3.1 Length scales 

Consider a semidilute solution with polymer volume fraction 4. The 
concentration dependence of the correlation length was discussed in 
Chapter 5:  

MIML 

Fig. 9.5 
Molar inass dependence of viscosity 
for polymer melts reduced by their 
critical molar mass. Open circles 
are polyisobutylene with 
Mc=1400Ogmol~' ,froinT.G.Fox 
and P. J. Flory, J .  Am. Clzem. Soc. 70, 
2384 (1948) and J .  Phys. C h m .  55, 221 
(1951). Open squares are polybutadiene 
with M,= 6700gmol-', from 
R. H. Colby et nl., Mncromoleciiles 20, 
2226 (1 987). Open triangles are 
hydrogenated polybutadiene with 
~ , = 8 1 0 0 g m o l - ' ,  from D. S. Pearson 
et nl., Mucrornoleciiles 27, 71 I (1994). 
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In an athermal solvent the exponent u cz 0.588 and the correlation length 
decreases with concentration as E ~ b q ! - ~ ~ ~ ,  while in a 8-solvent the 
exponent v = 1/2 and the correlation length has a stronger concentration 
dependence < M h4-l [Eq. (5.52)]. The number of monomers g in a cor- 
relation volume t3 was also determined in Chapter 5 [Eq. (5.24)]: 

(9.28) 

In an athermal solvent, the number of monomers in a correlation volume 
decreases with concentration as gMq!-1-3, while in a 6'-solvent a 
stronger concentration dependence is expected with g M qhP2. The chain is 
always a random walk of correlation blobs, with end-to-end distance R 
[Eq. (5.26)]: 

(9.29) 

In a good solvent, the chain size decreases with concentration as 
. In a &solvent (u  = 1 /2) there is no concentration depend- 

ence of chain size, as the chain is nearly ideal at all concentrations 
R M bN'/2. 

To understand the dynamics of entangled solutions, another length 
scale, the tube diameter a, must be specified. Just as in the melt, the con- 
finement volume u3 must contain multiple chains. Entanglements between 
chains are controlled by binary intermolecular contacts. In the athermal 
solvent limit, the number density of binary intermolecular contacts is 
proportional to the reciprocal of the correlation volume EP3 - 43T'/(3T'+ I ) ,  

and the distance between binary contacts is the reciprocal cube root of this 
number density < N 4-T'/(3v I )  . H ence, the correlation length describes the 
distance between binary intermolecular contacts. Tlze tube diameter a in un 
uthermul solvent is proportional to, hut larger tlzan, the correlation length <: 

a ( 4 )  M ~(1)4-"/(~"- ')  M ~ ( l ) 4 - ' " ~  for an athermal solvent. (9.30) 

The tube diameter in the melt, a(1) M h d m ,  is given by Eq. (9.1) in 
terms of the number of Kuhn monomers in an entanglement strand in the 
melt N, (1). Notice that a (1) > h, which makes a > < at all concentrations. 
Since the chain is a random walk of correlation blobs on scales larger 
than <, the entanglement strand is a random walk of correlation blobs, as 
depicted in Fig. 9.6. 

In a 8-solvent, the correlation length is determined by ternary contacts 
Fig. 9.6 between chains (see Section 5.4). This is because the effects of binary 

contacts on the free energy (or osmotic pressure) exactly cancel at the The confining tube in a semidilute 
solution. Thick circles are the 
correlation blobs of the chain. Thin &temperature. The solvent-mediated energetic interaction between 
empty circles are the correlation blobs monomers exactly compensates for the hard core repulsion at the 
of surrounding chains. 6'-temperature. Binary contacts between chains still occur, they simply have 

R--N1/24-0.12 N 
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no effect on the free energy, and this directly leads to nearly ideal chain 
statistics at  all concentrations in a 8-solvent, and the applicability of mean- 
field theory. However, binary contacts still control entanglements between 
chains. The number density of space-filling correlation volumes in a 
8-solvent is given by the mean-field result tP3 - qh3. The same mean-field 
ideas determine the number density of binary intermolecular contacts to 
be proportional to 4’. Just as in the good solvent, the average distance 
between binary contacts is given by the reciprocal cube root of this number 
density, and in a Q-solvent the distance is proportional to I$’/~. Once again, 
we expect the tube diameter to be proportional to, but larger than, the 
distance between binary contacts: 

~(4) M a( 1)4p2I3 for a 0-solvent. (9.31) 

The length scales <, a, and R are plotted as a function of concentration for a 
typical good solvent in Fig. 9.7. All three length scales change their con- 
centration dependences from athermal to ideal at the concentration 
4** M v/b3 separating semidilute and concentrated solutions. 

9.3.2 

The concentration at  which the correlation length < is of the order of the 
coil size R M hN” is the overlap concentration V j ” ,  given by Eq. (5.19): 

En t a n g I e m en t concentration 

(9.32) 

In an athermal solvent I$* M N P o  76, while in a Q-solvent V j *  M N-‘”. 
The concentration at which the tube diameter a [from Eqs (9.30) 

or (9.31)] equals the coil size R [Eq. (9.29)] is the entanglement concen- 
tration qhe: 

1 [N , (  l)/N](’”-’) M [N , (  l)/N]’ 76 

[a( l)/b]3’2N-3/4 M [Ne( l)/N]”4 
for an athermal solvent, 
for a 0-solvent, 

Vje M 

(9.33) 

where N,( 1) is the number of Kuhn monomers in an entanglement strand in 
the melt. Note that the predictions for both solvents are very similar. 

For 4>qhe, entanglement effects control chain dynamics and the 
reptation model must be used as described below. Between the overlap 
concentration and the entanglement concentration (4* < y!~ < 4,), the 
solution is semidilute but not entangled, and the unentangled solution 
model of Section 8.5 describes dynamics. The width of this semidilute 
unentangled regime is given by the ratio of Eqs (9.33) and (9.32): 

4 4 

Fig. 9.7 
Chain size R, tube diameter a, and 
correlation length < in a good solvent 
The bemidilute unentangled regime 15 

4* < 4 < &, the semidilute entangled 
regime 15 (3‘ < (3 < o** and, the 
concentrated regime IS 4** < 4 < 1 

(9.34) & N ( [Ne(  l)]’”-’ M [Ne( 1)]0.76 
( [N,( i ) ]3 ’4 ) /~1 /4  

for an athermal solvent, 
for a 8-solvent. 
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Table 9.1 shows that the number of Kuhn monomers in an entanglement 
strand in the melt state varies over a wide range (7 < N,( 1) < 80) making 
4 < 4,/q5* < 30 for solutions in an athermal solvent. Since the entanglement 
concentration q5, cannot be lower than the overlap concentration q5*, the 
expressions for a 0-solvent [Eqs (9.31), (9.33), and (9.34)] are valid for 
N <  [N,(l)I3. This condition is not very restrictive and it is satisfied for all 
experimental studies to date. 

;i,l J 2.3 

10-5 
0.01 0.10 1 .OO 

4 

Fig. 9.8 
Dilution effect on the plateau modulus 
of linear polymers. Filled diamonds 
are polystyrene in cyclohexane at 
34.5 "C (8-solvent), open squares are 
polystyrene in benzene at 25 "C (good 
solvent), filled circles are polybutadiene 
in dioctylphthalate at 25 "C (near 
8-solvent) and open triangles are 
polybutadiene in phenyloctane (good 
solvent). PS data from M. Adam and 
M .  Delsanti, J .  Phys. Fruncc. 44, 1185 

R. H. Colby et ul., Mncromolecules 24, 
3873 (1991). 

(1983); 45, 1513 (1984). PB ddtd from 

9.3.3 Plateau modulus 

Owing to the fact that the tube diameter is always larger than the cor- 
relation length (a><),  the entanglement strand is a random walk of 
correlation volumes in any solvent: 

(9.35) 

where N,/g is the number of correlation volumes per entanglement strand. 
The above relation can be solved for the concentration dependence of the 
number of monomers in an entanglement strand: 

for an athermal solvent, (9.36) 
for a 8-solvent. 

The two predictions are nearly identical, since 1/(3v - 1) E 1.3. 
The occupied volume of an entanglement strand is t 3 N , / g  M u2<. Since 

the correlation volumes are space-filling in solution, the number density of 
entanglement strands is simply the reciprocal of this volume. Analogous to 
Eq. (9.5), the plateau modulus of an entangled polymer solution is once 
again of the order of kT per entanglement strand, 

$37'/(37'-1) for an athermal solvent, 
for a 0-solvent, 

(9.37) 

where G,(l) is the plateau modulus of the melt, given by Eq. (9.5). The 
predictions for athermal and &solvents are essentially the same (the con- 
centration dependence exponents are = 2.3 in both cases). This interesting 
result is experimentally confirmed, as shown in Fig. 9.8. 

9.3.4 Relaxation times and diffusion 

Topological constraints do not influence polymer motion on length scales 
smaller than the size of an  entanglement strand. In entangled polymer 
solutions, chain sections with end-to-end distance shorter than the tube 



Reptation in semidilute solutions 371 

diameter a move as they would in an unentangled solution. On length 
scales smaller than the correlation length I, hydrodynamic interactions are 
not screened. As with unentangled chains, the relaxation time T~ of the 
strand within each correlation volume is determined by the Zimm result 
[Eq. (8.75)]: 

On length scales larger than the correlation length I but smaller than the 
tube diameter a, hydrodynamic interactions are screened, and topological 
interactions are unimportant. Polymer motion on these length scales is 
described by the Rouse model. The relaxation time re of an entanglement 
strand of N ,  monomers is that of a Rouse chain of N , / g  correlation 
volumes [Eq. (8.76)]: 

for an athermal solvent, 
for a H-solvent. 

(9.39) 

On length scales larger than the tube diameter, topological interactions are 
important and the motion is described by the reptation model with the 
chain relaxation time given by the reptation time: 

(9.40) 

Using Eqs (9.27), (9.28), and (9.36) transforms this into a simple relation 
for the concentration dependence of the reptation time: 

N3 { 43(1-7/)/(37/-1) for an athermal solvent, (9.41) Trep TOP N e ( 1 )  47/3 for a 8-solvent. 

The reptation time has a considerably weaker concentration dependence in 
athermal solvent than in &solvent, since 3(1 - v)/(3v - 1) E 1.6. Note that 
Eq. (9.41) reduces to Eq. (9.20) when 4 = 1. 

The diffusion coefficient in semidilute polymer solutions is determined 
from the fact that the chain diffuses a distance of order of its own size in its 
reptation time: 

for an athermal solvent, (9,42) 
for a &solvent. 

The reptation prediction of the concentration dependence of diffusion 
coefficient in athermal solvent is slightly weaker than in &solvent, since 
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(2 ~ v)/(3v ~ 1) cz 1.85. Figure 8.9 already showed that there is a low con- 
centration regime that is semidilute but unentangled that is described by 
Eq. (8.85). That regime persists for roughly one decade in good solvent, as 
expected by Eq. (9.34). Above the entanglement concentration 4,, the 
athermal solvent prediction of Eq. (9.42) applies for a range of con- 
centration (see Fig. 8.9). At still higher concentrations, an even stronger 
concentration dependence is noted for the two highest concentrations 
in Fig. 8.9, consistent with the H-solvent scaling prediction of Eq. (9.42) in 
concentrated solution (for q5 > 4**): 

4-0.54 

4p7/' 

for 4* < 4 < q ! ~ ~ ,  

for 4** < 4 < I .  
D - [ 4-1.85 for 4e < 4 < 4**, (9.43) 

9.3.5 Stress relaxation and viscosity 

There are three different regimes of polymer dynamics on three different 
length and time scales for an entangled polymer solution in an athermal 
solvent. The stress relaxation modulus of such a solution is shown 
in Fig. 9.9. Two of the regimes are identical to those discussed in 
Section 9.2.2 and the other regime was discussed in Section 8.5. 

Between r0 and the relaxation time of a correlation blob r<, both static 
and dynamic properties are similar to those in a dilute solution. Hydro- 
dynamic interactions are important and dynamics of these small sections 
of chains are described by the Zimm model. The stress relaxation 
modulus on time scales between ro and T( is similar to the Zimm result 
for unentangled solutions discussed in Section 8.5 [Eq. (8.88)]. The 
stress relaxation modulus decays with time as a power law with exponent 
-1/(3u). This time dependence is G(t) - t-0.57 in a good solvent with Flory 
exponent v cz 0.588 and is G(t) - tC2" in a 8-solvent. The stress relaxation 
modulus in this regime decays from the Kuhn modulus Go (kT per 
Kuhn monomer) to the osmotic pressure II [kT per correlation blob, see 
Eq. (8.89)]. 

On intermediate length scales between the correlation length < and the 
tube diameter u, hydrodynamic interactions are screened and topological 
interactions are not important. The dynamics on these intermediate scales 
(for T( < t < T,) are described by the Rouse model with stress relaxation 
modulus similar to the Rouse result for unentangled solutions [Eq. (8.90) 
with the long time limit the Rouse time of an entanglement strand re]. At re, 
the stress relaxation modulus has decayed to the plateau modulus G, [kT 
per entanglement strand, Eq. [(9.37), see Fig. 9.9)]. The ratio of osmotic 
pressure and plateau modulus at  any concentration in semidilute solution 
in athermal solvents is proportional to the number of Kuhn monomers in 
an entanglement strand in the melt. In 8-solvents this ratio is considerably 
smaller and concentration dependent: 

n ...............; 
8 q 
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Fig. 9.9 
Schematic representation of the stress 
relaxation modulus of an entangled 
polymer solution in an athermal solvent 
on logarithmic scales. 

(9.44) n for an athermal solvent, 
Ge 
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At the Rouse time of an entanglement strand L, the chain in semidilute 
solution ‘finds out’ that it is trapped in the confining tube. The stress 
relaxation modulus between T~ and the reptation time zrep is almost con- 
stant and equal to the plateau modulus (see Fig. 9.9). At the reptation time 
[Eq. (9.41)], the stress relaxation modulus decays to zero exponentially 
[Eq. (9.22)]. 

The polymer contribution to the viscosity of an entangled polymer 
solution is estimated as the product of the plateau modulus [Eq. (9.37)] and 
the reptation time [Eq. (9.41)]: 

N3 [ 43/(3v-l)  for an athermal solvent, 
~ ~ 1 s  z Ge~. , ,p  z ~ 1 s  ~ 

[Ne(  l)]’ 414’3 for a 8-solvent. 

(9.45) 

The concentration dependence of viscosity is rl - 43-9 in an athermal solv- 
ent with Flory exponent ~ ~ 0 . 5 8 8  and rl-qh4.7 in a 8-solvent. The 
14/3 E 4.7 exponent is demonstrated for poly(ethy1ene oxide) in water at  
25.0 “C in Fig. 8.1 1.  There are two different scaling regimes for the specific 
viscosity in an athermal solvent, corresponding to unentangled and 
entangled semidilute solutions: 

Data for different molar masses of the same polymer species combine 
into a single plot in good solvent [Fig. 9.10(a)] if specific viscosity 
rjsp = ( r j  - vs)/rjs is plotted as a function of reduced concentration 4/4*. 
This simple data collapse works in a good solvent because the correlation 
length and the tube diameter are proportional to each other, with the same 
concentration exponents. The line in Fig. 9.10(a) has the slope of 3.9 
expected by Eq. (9.46) for semidilute entangled solutions. 

In a 0-solvent, the correlation length E and the tube diameter n have 
different concentration dependences [< M /qP1, Eq. (9.27), with u = l /2 
and U M U  (1) 4P2 ’, Eq. (9.31)]. The simple plot of relative viscosity 
rl/rls vs. 4/4* will only collapse data for different molar masses in unen- 
tangled solutions, but not in entangled solutions in a 0-solvent. 

Construction of a reduced data plot for the viscosity of entangled solutions 
of a given type of polymer in 0-solvents requires plotting rls,/N2’3 as a 
function of reduced concentration, as demonstrated in Fig. 9.10(b). This 
complicated form of data reduction is a direct consequence of the two 
length scales u and < having different concentration dependences in 
&solvent. The line in Fig. 9.10(b) has the slope predicted by Eq. (9.47). 

Fig. 9.10 
Concentration dependence of viscosity 
in semidilute solutions of polystyrene at  
35 “C. (a) Solutions in the good solvent 
toluene have 4/4* reduce data for 
different molar masses to a universal 
curve, using data from M. Adam and 
M. Delsanti, J .  Phys. Froncc. 44, 1 185 
(1983). (b) Solutions in the 8-solvent 
cyclohexane must have specific viscosity 
divided by N2” for 4/4* to reduce data 
to a universal curve, using data from 
M. Adam and M. Delsanti, J .  Plzys. 
France, 45, 15 13 ( 1  984). 
Open triangles are M = 171 ~ ~ ~ g m o l - ’ ,  
filled triangles are M = 422 000 g mol-’, 
open circles are M = 1 260 000 g mol-I, 
filled circles are M =  2 890 000 gmol-’, 
open squares are M = 3 840 000 g mol-’, 
filled squares are M =  6 770 000 g mol-I, 
and open inverted triangles are 
M = 20 600 000 gmol-’. 
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The entangled viscosity data in both good solvent and 6’-solvent show 
stronger concentration dependences than predicted by the simple reptation 
model. The steeper experimental slopes are consistent with the additional 
relaxation modes discussed in Section 9.4.5 (see Problem 9.14). 

In order to construct a universal plot for the viscosity of all entangled 
polymer solutions in a given class of solvent, it is necessary to also multiply 
the ordinates of Fig. 9.10 by [Ne(1)I2 because different polymers have 
different numbers of Kuhn monomers in their entanglement strands in the 
melt (see Table 9.1). Such universal plots have indeed been constructed 
successfully in the literature. 

Fig 9.11 
Frame (a) shows a two-dimensional 
model of a chain in a permanent 
entanglement network: a giant snake in 
a forest. Frame (b) shows two students 
reeling-in the ends of the snake to 
construct the primitive path. 

Fig. 9.12 
A long-exposure photograph of the 
giant snake in the forest clearly defines 
its confining tube. 

9.4 

9.4.1 

Chains in polymer melts and entangled polymer solutions form an effective 
entanglement network. Since chains in melts and solutions are free to 
diffuse, the entanglements they form with their neighbours are temporary 
and have finite lifetime. Any given chain can disentangle from its neigh- 
bours by its own motion (reptate away) or by the motion of its neighbours. 
Effects of the motion of surrounding chains on the dynamics of a given 
chain will be discussed in Section 9.5. 

A simple case to consider first is a single chain diffusing through a net- 
work, where the network only imposes permanent topological obstacles2 
that retard the motion of the chain. Consider an ideal chain in an array of 
fixed topological obstacles. A two-dimensional schematic representation 
of this problem, a giant snake in a forest, is presented in Fig. 9.1 la.  The 
snake randomly meanders through the forest and each of its conforma- 
tions are assumed to be as likely as any other (an ideal snake). If the snake 
gets tired of being in a certain conformation, it is difficult for it to get into a 
completely different one because of the trees in the forest. These trees 
constrain this poor reptile to move primarily along its contour. Sideways 
excursions, although possible, put the snake into uncomfortable con- 
formations with loops. The topological constraints imposed by the trees 
determine that the preferred path for the motion of the snake is along the 
confining tube. 

The primitive path is the centre line of the confining tube. It can be 
visualized by hiring one smart student and one brave student to reel in the 
snake at its ends (Fig. 9.1 lb). The final contour of the snake, when pulled 
taut, is the primitive path-the shortest path with the same ‘topology’ as 
the original conformation of the snake. A long-exposure photograph of the 
wiggling snake, taken by a curious student, depicts the whole confining 
tube in Fig. 9.12. 

The reptation model assumes the contour length of the primitive path 
is fixed at its average value ( L ) .  In reality, the primitive path length 

Dynamics of a single entangled chain 

Chain in an array of fixed obstacles 

* Real networks can lead to correlation and excluded volume effect& on chain conforma- 
tion that we ignore here. 
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L fluctuates in time as the chain (or snake) moves. A full description of 
chain dynamics requires knowledge of the probability distribution of the 
primitive path lengths. This problem has been solved exactly by Helfand 
and Pearson in 1983 for a lattice model of a chain in a regular array of 
topological obstacles, but here we present a simple estimate of the prob- 
ability distribution of primitive path lengths. 

If an ideal linear chain is confined to a cylindrical pore of diameter a,  it 
occupies a section of the pore of length M h a  [Eq. (3.47)]. Entangled 
chains occupy a much longer length of confining tube ( L )  M h N l a  >> 
h a ,  making them strongly stretched. The source of this stretching is 
the entropy gain at  each tube end because each end segment of the prim- 
itive path is free to choose from multiple possible directions. This entropy 
gain leads to an approximately linear contribution to the free energy of a 
chain in a confining tube3 of order k T  per primitive path step, 
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L 
Fen,(L) E -TkT- ,  

U 
(9.48) 

where 'Y is a numerical constant of order unity. This approximately linear 
potential can be thought of as arising from nearly constant entropic forces 
of order kTjn acting on the chain at  the tube ends. The chain in its confining 
tube is effectively under a tension kT/a and can be represented as an array 
of Pincus blobs of size n (see Section 3.2.1). Stretching an ideal chain along 
the contour of its tube to length L raises its free energy by ykTL2/(2Nh2),  
where y is an effective dimensionless spring constant of order unity. The 
total free energy of a chain in a tube is the sum of these two effects: 

y k T L 2  L 
F ( L )  M ~ - T k T -  

2Nb2 n 

y k T  I L 2  - 2'YNh2 (TNh2\*1 - k T T 2 N h 2  
L +  ~ 

N N- 

2Nh2 70 ya 2ya2 

ykT k i T 2 N  
M-(L-  ( L ) )  

2Nh2 27 Ne 
(9.49) 

In the second line of Eq. (9.49), the term kTY2Nb'/(2ya') was added 
and subtracted so as to complete the square inside the square brackets, in 
order to recover the expression for the equilibrium tube length ( L )  M 

'Y"h2/(yu) [Eq. (9.3)]. This quadratic approximation for the free energy 
of tube length fluctuations around the average value (L )  was first pro- 
posed by Doi and Kuzuu in 1980: 

7kT F ( L )  = -(L - (L ) )2  
2Nh2 

(9.50) 

The constant term k T r 2 N / ( 2 y N , )  in Eq. (9.49) does not affect the 
dependence of the free energy F(L) on the contour length L of the primitive 

' The contribution to the free energy is not strictly linear because for each primitive path 
length L, the entropy of not only the ends, but of the rest of the chain in an entanglement 
network needs to be considered. 
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path. The quadratic approximation of the free energy leads to a Gaussian 
probability distribution of the tube length L for a chain with Nmonomers: 

1 

Fig. 9.13 
Arm retraction of entangled star 
polymers demonstrated by an octopus 
in a fishing net. The circles are 
permanent topological constraints. 

(9.51) 

The average length of a tube with diameter u is ( L )  M u N / N ,  [Eq. (9.3)]. 
A typical fluctuation in the tube length corresponds to a free-energy 
change of order F(L)  - F ( ( L ) )  M k T  

(9.52) 

Thus, a typical tube length fluctuation is of the order of the root-mean- 
square end-to-end distance R of the chain and the confining tube has a wide 
range of typical lengths: 

(9.53) 

These thermal fluctuations of the tube length are the basis of the Doi 
fluctuation model, leading to significant modifications of reptation dyna- 
mics for entangled linear chains. Linear chains in a permanent network 
relax stress by abandoning tube sections via tube length fluctuations and 
reptation. Since the branch point of a branched polymer prohibits its rep- 
tation, branches relax only by fluctuations in tube length. For this reason, 
we next consider relaxation of simple branched polymers: star polymers 
(next section), H-polymers and comb polymers (Section 9.4.3). Star poly- 
mers in particular relax primarily by fluctuations in tube length. The ideas 
of tube length fluctuations and reptation will be combined in Sections 9.4.4 
and 9.4.5 to treat linear polymers relaxing in a permanent network. 

9.4.2 Entangled star polymers 

All the discussions of entangled polymer dynamics above were limited to 
linear chains. The molecular architecture of the chain (star vs. linear vs. 
ring) significantly modifies polymer dynamics. Snake-like reptation is 
impossible forflarm star polymers because they would have to dragf'- 1 
arms along the tube of a single arm, significantly reducing the entropy of 
the star polymer. Therefore, the branch point of a star is usually localized 
in one cell of an entanglement net. Stars relax stress and diffuse by arm 
retractions, which are large (exponentially unlikely) fluctuations of the 
tube lengths of their arms. This is analogous to an octopus entangled in an 
array of topological constraints (a fishing net), sketched in Fig. 9.13. 

The easiest way for the octopus to change the conformation of any of 
its arms without crossing the obstacles, represented by gray circles in 
Fig. 9.13, is by retracting that arm. Such arm retraction reduces the 
length L ,  of its primitive path by forming loops. In Section 9.4.1, we 
demonstrated that such conformations with primitive path reduced by 
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more than the root-mean-square fluctuation R from its equilibrium length 
(L , )  are exponentially unlikely [Eq. (9.5 l)]. Arm retraction by distance 
s = (La) - L, along the contour of the tube can be analysed as a thermally 
activated process in an effective potential U(s) = F(LJ (see Fig. 9.14). This 
potential is typically approximated by a parabola [Eq. (9.50)]: 
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ykT(L,  - ykT s2 U ( s )  M - --- 
2 Nab2 2 Nab2' 

(9.54) 

The number of Kuhn monomers in each arm of the star is N,  and the 
effective spring constant of this harmonic potential is y. Most of the time, 
the length La of the confining tube of an arm is close to its equilibrium value 
(L,) with deviations from it I , F ~  5 R = h a  [Eq. (9.53)] corresponding to 
an effective potential change of order kT. 

Occasionally, there are large atypical fluctuations of the tube length 
(with Is1 = IL - (L)l >> R) that are exponentially unlikely [Eq. (9.51)] 
because of the restricted number of conformations that allow such a state. 
The probability of the tube length to be reduced by s can be estimated by 
the Boltzmann weight in the effective potential U(s) [Eq. (9.51)]: 

(9.55) 

The average time between these large fluctuations ~(s) is inversely 
proportional to their probability p(s): 

(9.56) 

The coefficient in front of the exponential depends on the degree of poly- 
merization N of the arm as well as on the magnitude of arm retraction ,F, but 
the average retraction time is dominated by the exponential [Eq. (9.56)]. 
For these large tube length fluctuations, it is important to remember that 
the quadratic potential [Eq. (9.50)] and the related Gaussian distribution 
[Eq. (9.5 l)] are approximations valid for small tube length fluctuations 

1 L - ( L )  I << L. The probability of large tube length fluctuations deviates 
from the simple Gaussian form [Eq. (9.51)]. For example, Eq. (9.51) pre- 
dicts that the probability for the primitive path to be reduced to L = 0 and 
for the chain to form a single loop is exponentially low in the number of 
entanglements per chain (exp[-yN/(2Ne)]). The actual probability indeed 
has an exponential dependence on the average number of entanglements 
per chain, 

( ?"a) p(N,O) - exp --- , 
2 Ne 

(9.57) 

- (b) 0.7 
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Fig. 9.14 
(a) Effective potential for arm retraction 
for an entangled star polymer. The 
thin curves are harmonic 
approximations for small and large 
arm retractions. (b) Numerical results 
for the dependence of the effective spring 
constants -{ (solid curves) and y' (dashed 
curves) on the number of Kuhn 
monomers per entanglement strand on 
square (two-dimensional) and cubic 
(three-dimensional) lattices. 

but with a different coefficient in the exponential y' # y. 
The relaxation time of a star in an array of fixed topological obstacles 

is equal to the time it takes to completely retract its arms, written here 
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by including the power law ‘prefactor’ in the number of entanglements 
per arm:4 

Fig. 9.15 
Storage modulus (filled symbols) and 
loss modulus (open symbols) for linear 
1,4-polybutadiene with 
M, = 160 000 gmol-’ (squares) and a 
6-arm star 1,4-polybutadiene with 
M ,  = 77 000 gmol-’ (circles), both at a 
reference temperature of 28 “C. The 
linear polymer was chosen because it’s 
molar mass is approximately the span 
molar inass of the star polymer. Data 
courtesy of L. Archer. 

The relaxation time of a star grows exponentially with the number of 
entanglements N,IN, per arm and is independent of the number of arms f in 
the star. The coefficient in the exponential is weakly dependent on the 
relative amount of arm retraction s/(L), changing from y at small retrac- 
tions to y’ at full retraction, because the harmonic potential is only an 
approximation of the actual potential. For polystyrene (with N, = 23), the 
cubic lattice model predicts the spring constant of the harmonic potential 
to increase from y = 0.63 for abandoning the first few tube sections to 
y’=O.75 for complete retraction of the arm s =  (La) [see Fig. 9.14(b)]. 
However, this small change of y to y ’ changes the relaxation time of strongly 
entangled star polymers enormously. For example, a star with N J N ,  = 100 
entanglements per arm changes its relaxation time by a factor of 
exp(6) = 400. 

The stress relaxation modulus is proportional to the average fraction of 
entanglements per arm that have not yet relaxed by having the free end of 
the arm visiting that tube section. If s is the length of the tube that has been 
retracted and relaxed during time t = ~ ( s )  then the stress relaxation modu- 
lus at time t is 

(9.59) 

where G, is the plateau modulus [Eq. (9.1 8)]. The stress relaxation modulus 
of a star polymer has a time dependence similar to that of a linear polymer 
with molar mass 2 Ma (the span molar mass of the star polymer) for times 
shorter than the Rouse time of the span, as shown in the frequency 
dependence of the complex modulus in Fig. 9.15. At the terminal time T ‘ , ~ ~ ,  

I I I I I I I I I I I I  
10-7 I O - ~  I O - ~  10-l lo1 loi lo5 I (  

aTo [rads] 

See the Appendix of L. J .  Fetters, et nl., Mucrotnoleculm 26, 647 (1993). 
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there is of order one unrelaxed entanglement left per arm and the stress 
relaxation modulus is lower than the plateau modulus by the number of 
entanglements per arm: 
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The viscosity of entangled stars can be estimated as the product of the 
relaxation time and the terminal modulus: 

m 

& 104 
e 

10' 

102 

10' 

100 

(9.61) 
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The main feature is the exponential growth of the viscosity with the 
number of entanglements per arm N J N , .  Another interesting feature of 
the viscosity of entangled stars is that it is independent of the number of 
arms f. An experimental verification of this prediction is presented in 
Fig. 9.16. Viscosity of three-arm stars is - 30% lower than for stars with 
the same arm molar mass, but larger number of arms f'> 4. This effect 
might be due to additional diving modes of a branch point down the tube of 
a three-arm star (see Problem 9.28). 

Naively, one may think that for a branch point to hop between neigh- 
bouring entanglement cells, f -  2 of the arms must simultaneously retract, 
forming essentially linear tube and f -  2 large loops. This simultaneous 
retraction is an extremely unlikely event and its probability is the product 
of the already very low retraction probabilities for each of thef- 2 arms. 
The problem with this naive approach is that it is indeed hard for an 
octopus to put on a sweater by pulling in all arms and then pushing 
them all out at  the same time. It would be much easier for the octopus to 
retract one arm at a time. This way, in several steps of arm retraction it 
could form a favourable arrangement of tubes near the branch point for a 
successful hop of this branch point between neighbouring cells of an 
entanglement net. 

1 10 0 s 10 1s 20 2s 
M,IM, M J M ,  

Fig. 9.16 
Viscosity of polyisoprene star polymers 
with various numbers of arms at  60 "C. 
The left plot shows that viscosity is only 
a function of the number of 
entanglements per arm and that the 
viscosity of entangled linear 
polyisoprene (line with M a  = M / 2 )  is 
always lower. The right plot shows that 
Eq. (9.61) describes all star polymer 
viscosity data with the effective spring 
constant of the quadratic potential 
y' = 0.96. Data from L. J .  Fetters c't nl., 
Mucrornolecules 26, 641 (1993). 
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Fig. 9.17 
(a) Diffusion coefficients of three-arm 
star hydrogenated polybutadienes at 
165 "C. The slope determines 7 '  =0.82. 
(b) The product of viscosity and 
diffusion coefficient is inversely 
proportional to the number of 
entanglements on each arm. Data are 
from C. R. Bartels et ul., 
Mncromoleciiles 19, 785 (1986). 
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Linear polymers move a distance of order of their own size during their 
relaxation time, leading to a diffusion coefficient D E R2/t  [Eq. (9.12)]. 
However, the diffusion of entangled stars is different because at  the time 
scale of successful arm retraction, the branch point can only randomly hop 
between neighbouring entanglement cells by a distance of order one tube 
diameter a.  For this reason, diffusion of an entangled star is much slower 
than diffusion of a linear polymer with the same number of monomers: 

(9.62) 

The main feature of the diffusion coefficient of stars [Eq. (9.62)] is its 
exponential dependence on the number of entanglements per arm N J N ,  
related to the arm retraction time tarnl. This prediction is in good agree- 
ment with experiments, as illustrated in Fig. 9.17(a) for diffusion of three- 
arm star hydrogenated polybutadienes. The product of viscosity [Eq. 
(9.61)] and diffusion coefficient [Eq. (9.62)] decreases with the number of 
entanglements per arm: 

V D  E G(tarin)a 2 N - Ne 
N ,  

(9.63) 

as shown in Fig. 9.17(b). 

0 

Fig. 9.18 
(a) Entangled comb polymer with q = 7 
branches and N, monomers per branch 
and a backbone (thick line) with 
Nhb monomers. (b) Reptating backbone 
of a comb with Nhh inonoiners (thick 
line) and q ~ 2 = 5 high friction points 
(black circles) in its confining tube 
(dashed lines). 

9.4.3 H-polymers and combs 

The arm retraction mechanism of star dynamics can be applied to other 
entangled branched polymers, such as H-polymers and comb polymers 
(see Fig. 1.5) in an array of fixed topological obstacles. In the simplest case, 
all side branches of an H-polymer or a comb polymer are the same and 
contain N ,  monomers (Fig. 9.18). The delineation of the comb into the 
backbone (thick line) and branches is done so that the ends of the backbone 
coincide with the branch points at  the two ends of the polymer. 
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The retraction time of an arm r21rm in an array of fixed obstacles is the 
same as the relaxation time of a star polymer with N ,  monomers per arm 
[Eq. (9.58)]. On time scales shorter than rClrnl, the branch points are loca- 
lized and cannot move between neighbour cells of the entanglement net. 
The branch points begin to hop between neighbouring cells of the entan- 
glement net on the time scale of arm retraction r21rm. Similar to star poly- 
mers, the length scale of these hops is of the order of the tube diameter a, 
allowing the effective friction coefficient for motion of the branch points to 
be determined by the retraction time of an arm: 
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(9.64) 

The backbone of the polymer moves by reptation along the contour of 
its tube, with curvilinear diffusion dominated by the branch point 
friction <br. An H-polymer is the simplest comb polymer with q = 4  
branches per molecule. For any trifunctional comb polymer (424)  the 
number of branch points is q ~ 2 since each end of the backbone has two 
branches. The total number of monomers in the reptating backbone is 
Nbb. We assume that branches are well-entangled, so that the branch points 
dominate the friction: 

( 4  ~ 2)Chr <(Nhh  + qNa), (9.65) 

where C is the monomeric friction coefficient and Nbb + qN, is the total 
number of monomers in the whole chain. The curvilinear diffusion coef- 
ficient of the backbone along its confining tube is given by the Rouse model 
[Eq. (9.7)] with friction from the q ~ 2 branch points: 

(9.66) 

The length of the confining tube of the backbone is Lbb % aNbb/Ne leading 
to the reptation time of the backbone: 

(9.67) 

The diffusion coefficient of entangled H-polymers and combs is the mean- 
square size of the backbone divided by its reptation time: 

(9.68) 

The stress relaxation modulus of combs and H-polymers consists of an 
arm-retraction part at shorter times ( t  < rarnl) and a reptation part at 
longer times (ran,, < t < rrep). 

9.4.4 
On time scales shorter than the relaxation time of an entanglement 
strand re, the sections of a linear chain involved in coherent motion are 

Monomer displacement in entangled linear melts 
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shorter than the entanglement strand and are not aware of the topological 
constraints. Since hydrodynamic interactions are screened in polymer 
melts, the motion on very short time scales t < T~ is Rouse-like with mean- 
square monomer displacement given by the subdiffusive motion of the 
Rouse model [Eq. (S.SS)]. 

([?(t) ~ ?(0)12) E b2 (T:> - ‘ I2 for t < re. (9.69) 

On longer time scales t > T ~ ,  topological constraints restrict polymer 
motion to the confining tube. Displacements of monomers tangential to 
the axis of the tube (primitive path) on length scales larger than the tube 
diameter u are suppressed by surrounding chains. Monomer displacement 
along the contour of the tube is unconstrained and follows the subdiffusive 
motion of the Rouse model [Eq. (S.SS)] dong  the przzztzve path. 

For times shorter than the Rouse time of the chain ( t < r n ) ,  each 
monomer participates in coherent motion of a chain segment consisting of 

neighbouring monomers. The time-dependent curvilinear coordin- 
ate of a monomer along the contour of the tube is s ( t )  (Fig. 9.19). The 
mean-square monomer displacement along the tube is of the order of the 
mean-square size of this section in three-dimensional space [Eq. (S.SS)]: 

Fig. 9.19 
Curvlllnedr dlspldcement of monomer 
(labelled by a dark circle) along the 
contour of the tube between two 
conformations IS AA Only a short 
bection of the tube 15 shown 

( [ s ( t )  - s(0)I2) M h2 for re < t < TR. (9.70) 

Since the tube itself is a random walk with step length a, the mean-square 
displacement of a monomer in three-dimensional space ( A r 2 )  is the pro- 
duct of the step length a and the contour length displacement J(as‘,: 

(a+ E ad@?). (9.71) 

Thus, the mean-square monomer displacement in space exhibits a weak 
one-fourth power law in time when the chain is confined to a tube: 
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( [ y ( t )  ~ 1”(0)12) z z a’(:) 
for Te < t < r R .  

(9.72) 

This time dependence is slower than for unrestricted Rouse motion 
[Eq. (8.58)] because displacement along the contour of the tube leads to a 
smaller displacement in space [Eq. (9.71)]. At the Rouse time of the chain, 

(9.73) 

each monomer participates in coherent Rouse motion of the whole chain 
along the tube. The mean-square displacement of a monomer along the 
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tube at the Rouse time of the chain is of the order of the mean-square size of 
the whole chain: 

([s(TR) - s(O)I2) M h2N M R2. (9.74) 

Note that the root-mean-square magnitude of these fluctuations is in 
perfect agreement with the value of tube length fluctuations derived above 
[Eq. (9.52)]. Even though this magnitude seems large, it is a small fraction 
of the contour length of the tube [Eq. (9.3)]: 
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(9.75) 

At times longer than the Rouse time tR, all monomers move coherently 
with the chain. The chain diffuses along the tube, with a curvilinear dif- 
fusion coefficient given by the Rouse model D, M R2/tR:  

2 t N t  
TR N e m  

( [ s ( t )  ~ s(O)] ) M D,t M h2N-  M u2-- for t > t ~ .  (9.76) 

In entangled polymer melts this diffusion occurs along the contour of the 
tube, with the mean-square monomer displacement in space determined 
using Eq. (9.71): 

( [?( t )  ~ 7(0)]2) M uJ ( [ s ( t )  ~ s(O)l2) 

This curvilinear motion continues up to the reptation time rrep where the 

uN/N,. At times longer than the reptation time ( t  > rrep) the mean-square 

mass of the chain and is a simple diffusion with diffusion coefficient D 

There are four different regimes of monomer displacement in entangled 
linear polymer melts, shown in Fig. 9.20. The t1'4 subdiffusive regime for 
the mean-square monomer displacement is a unique characteristic of 
Rouse motion of a chain confined to a tube, which has been found in both 
NMR experiments and computer simulations. 

< 
?$ 

chain has curvilinearly diffused the complete length of the tube, of order 

displacement of a monomer is approximately the same as the centre of 
j j  

T o  rc TI< h p  

[Eq. (9.12)]. Fig. 9.20 
Time dependence of the mean-square 
monomerdis~lacement~redictedb~ the 
reptation for a Of lollg 
entangled linear chains, on logarithmic 

9.4.5 Tube length fluctuations 

Displacements of monomers at the two ends of the tube are unrelated 
to each other on time scales shorter than the Rouse time of the chain 
( t  < tR). These incoherent curvilinear displacements lead to tube length 
fluctuations [Eq. (9.70)]: 
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Doi was the first to point out that the decrease of tube length due to these 
fluctuations leads to partial relaxation of stress. The stress relaxation 
modulus G ( t )  is not quite constant in the rubbery plateau, but decreases 
slightly with time. The weak time dependence of the stress relaxation 
modulus corresponds to the rate at  which sections of the tube are vacated 
by the fluctuating chain. Subdiffusive Rouse dynamics along the contour 
of the tube [Eq. (8.58)] implies a t ’ ’4 time dependence of vacated sections of 
the tube [see Eq. (9.70)]: 

z G G ,  1 - -  (:) (y4’ - 

The last relation made use of the fact that ( L )  M a N I N ,  M h N l a  and 
T, z TON;. The tube length fluctuations grow and the stress relaxation 
modulus decreases up to the Rouse time of the whole chain [Eq. (8.17)]. 
Consequently, the stress relaxation modulus at  the Rouse time of the chain 
is lower than G,: 

The final result was obtained using Eq. (9.19) ( T ~ / T ,  M (N /NJ2)  and p is a 
coefficient of order unity. The fraction J W N  of the tube is vacated, and 
therefore relaxed, at  the Rouse time of the chain by tube length fluctua- 
tions. The modulus at  the relaxation time of the chain is also lower by the 
same factor: 

1 AEl. (9.81) G(t, ,p) M G, 1 - / I  N 

Since the distance that the chain must diffuse along the tube has been 
shortened by tube length fluctuations, the relaxation time is shorter than in 
the Doi-Edwards reptation model [Eq. (9.8)]: 

The stress relaxation modulus then decays exponentially at  the reptation 
time [Eq. (9.22)]. The terminal relaxation time can be measured quite 
precisely in linear viscoelastic  experiment^.^ Hence, Eq. (9.82) provides the 
simplest direct means of testing the Doi fluctuation model and evaluating 

The modulus scale typically has a f 5 %  uncertainty owing to imperfect sample geometry 
which also affects viscosity but not relaxation times. 
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the parameter p, as shown in Fig. 9.21. Requiring each data set to have an 
intercept of unity in Fig. 9.21 provides a correction to Eq. (9.21) for esti- 
mating ro. We conclude from Fig. 9.21 that p E 1 .O, based primarily on 
computer simulations of the repton model (Section 9.6.2.6) because the 
experimental data are noisy owing to the usual *5% uncertainties in 
determination of molar mass. 

Recall that Fig. 9.3 showed the linear viscoelastic response of a poly- 
butadiene melt with M/Me E 68. The squared term in brackets in Eq. (9.82) 
is the tube length fluctuation correction to the reptation time. With p = 1 .O 
and N / N e  = 68, this correction is 0.77. Hence, the Doi fluctuation model 
makes a very subtle correction to the terminal relaxation time of a typical 
linear polymer melt. However, this subtle correction imparts stronger 
molar mass dependences for relaxation time, diffusion coefficient, and 
viscosity. 

Tube length fluctuation modes significantly modify the rheological res- 
ponse of entangled polymers. The effect of these modes is most clearly 
observed in the shape of the loss modulus G” (w). The Doi-Edwards 
equation ignores tube length fluctuations and predicts an almost single 
exponential stress relaxation modulus with small contribution from higher 
order modes [Eq. (9.21)]. The corresponding loss modulus is obtained 
from the Doi-Edwards equation by integration using Eq. (7.150) (see 
Problem 9.8): 

3 85 

(9.83) 

In the rubbery plateau (for 3 5 wrrep 5 300 in Fig. 9.22), this Doi-Edwards 
reptation prediction gives G” - w - ” ~ .  In contrast, a single exponential 
G(t)  leads to G” N w-‘ at high frequencies. The shorter time modes, cor- 
responding to p = 3, 5 ,  7 , .  . . , make the reptation prediction of the loss 
modulus larger than that of a single exponential relaxation at high fre- 
quencies. The Doi fluctuation model has even more relaxation in the 
rubbery plateau, with G” - w - “ ~  for frequencies larger than the reciprocal 
of the Rouse time of the chain (see Problem 9.36). Experimental data 
appear to obey a power law that is independent of polymer species (see Fig. 
9.22) but with an intermediate exponent6 (GI’ N wPo 3 ) .  At higher fre- 
quencies, differences between the two polymers are noted (particularly in 
G”) that are consistent with their 20% difference in M/Me that creates a 
factor of 1.8 difference in rreP/re. These differences show up at  high fre- 
quency because the normalization of the axes in Fig. 9.22 requires overlap 
at  low frequencies. 

In Fig. 9.23(a), the loss moduli of two nearly monodisperse 
polybutadiene samples are simultaneously fitted by the predictions of the 
Doi-Edwards reptation model [Eq. (9.83)]. Experimental peaks are much 

Longitudinal Rouse modes of the chain along the tube may affect the value of this 
exponent. 
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Fig. 9.21 
Experimental verification of the Doi 
fluctuation model using data for 
polystyrene as open squares, from 
S. Onogi et nl., Mucrotnolcmles 3, 
109 (1970) and A. Schausberger et nl., 
Rheol. Actu 24, 220 (1985), 
polybutadiene as open circles from 
R. H .  Colby et nl., Mucrotnolc~culc~s 20, 
2226 (1987) and filled circles from the 
repton model described in 
Section 9.6.2.6, courtesy of 
D. Shirvdnyants. The line is Eq. (9.82) 
with p = 1.0. 
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Fig. 9.22 
Oscillatory shear data for two nearly 
monodisperse linear polymers with 
M I M ,  = 40, reduced by their terminal 
loss modulus maximum. Triangles are 
the storage modulus G’ and circles are 
the loss modulus G“. Filled symbols 
are for polybutadiene with 
M,> =70900gmol-’ (M/Mc=37) 
from M. Rubinstein and R. H. Colby, 
J.  Chew. Phys. 89, 5291 (1988). Open 
symbols are for polystyrene with 
M,,  = 750 000 g inol ’ (MIM, = 44) 
from A. Schausberger et ul., 
Rheol. Actu 24, 220 (1985). 
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Fig. 9.23 
Simultaneous fit of loss modulus 
data for the two monodisperse 
polybutadiene samples a t  30 " C  by 
(a) the Doi-Edwards equation and 
(b) the Doi tube length fluctuation 
model. Lines are the fitting results. 
Open circles are data for 
M =  355 OOOgmol-'. Filled squares 
are data for M = 70 900 g mol-'. 
Data from M. Rubinstein and 
R. H. Colby, J .  Clzem. Plzys. 89, 
5291 (1988). 
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Fig. 9.24 
Dependence of viscosity, reduced by the 
cube of molar mass, on the number of 
entanglements per chain. Filled circles 
are data from the 'Repton model' 
of Section 9.6.2, courtesy of 
D. Shirvanyants. Open symbols are 
experimental data for the three 
polymers in Fig. 9.5, shifted parallel to 
the vo/Mi  axis to coincide with the 
'Repton model' data. The curve is the 
Doi fluctuation model [Eq. (9.84)] with 
p = 1 .o. 
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broader, especially at high frequencies (short times). The breadth of 
the experimental peaks of the loss modulus increases with decreasing 
molar mass. This comparison suggests that the Doi-Edwards equation 
underestimates stress relaxation by ignoring tube length fluctuation modes 
[Eq. (9.79)]. The complete stress relaxation modulus due to motion of a 
chain in its tube consists of two parts: 

(1) Rouse modes of the chain, including tube length fluctuations and 
longitudinal Rouse modes, are active at  times shorter than the Rouse 
time of the chain. 

(2) Reptation modes are active at  times longer than the Rouse time of the 
chain. 

The results of models that include tube length fluctuation modes 
[Fig. 9.23(b)] are in much better agreement with the experimentally meas- 
ured loss modulus G" (w) of monodisperse melts than the prediction of the 
Doi-Edwards reptation model [Eq. (9.83)]. Tube length fluctuation cor- 
rections predict that the loss peak broadens with decreasing molar mass 
because the fraction of the stress released by fluctuations is larger for 
shorter chains. 

The viscosity can again be estimated as the product of the terminal 
modulus and the reptation time: 

(9.84) 

Doi's estimate of the effect of tube length fluctuations [Eq. (9.84)] predicts a 
molar mass dependence that approximates rl - N3 over a reasonable 
range of molar masses. Viscosity data from experiments and Repton model 
simulations are compared with the predictions of the Doi fluctuation 
model in Fig. 9.24. The Doi fluctuation model with p = 1.0 (solid curve) is 
in good agreement with both experimental and simulation data for 
M >  10Me. The data exhibit departures from the 3.4 power law (dashed 
line in Fig. 9.24) for long chains (A4 > 3O0Me) that are well described by the 
Doi fluctuation model. 
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Other computer simulations, such as the Evans-Edwards model of a 
chain in an array of fixed obstacles (described in detail in Section 9.6.2) 
exhibit fluctuations of the tube length and also find stronger molar mass 
dependences of relaxation time r N M 3  3*0 and diffusion coefficient 

than the simple reptation model without tube length fluc- 
tuations [Eqs (9.8) and (9.12)]. These results of computer simulations of a 
single chain in an array of fixed obstacles are in good agreement with 
experiments on entangled polymer solutions and melts over the entire 
range of molar masses covered by simulations ( M <  600Me). Tube lengtlz 
fluctuations are responsible for the stronger nzolar nzass dependences of dij- 
fusion coejjicient (Fig. 9.2), relaxation time [Eq. (9.9)], and viscosity 
(Fig. 9.5) than predicted by the sinzple reptation model. 

D M-2 4*0 1 
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9.5 Many-chain effects: constraint release 

In Section 9.4, the motion of a single chain in an array of fixed topological 
constraints was discussed. Such models apply to dynamics of a chain in a 
network or in a melt of extremely long chains. In a melt of shorter chains, 
the topological constraints that define the confining tube are formed by 
neighbouring chains, which also move along their respective tubes. As 
chain B moves away, the topological constraint it once imposed on chain A 
disappears (Fig. 9.25). A new set of conformations is now available for 
chain A. A third chain moves in and imposes a new topological constraint 
on chain A. The constraints hence fluctuate in time, keeping the time- 
average total number of topological Constraints imposed on a given chain 
by its neighbours constant. As some neighbours move away and remove 
their constraints from a given chain, others move in and place new con- 
straints on it. 

The exchange of neighbours and their topological constraints imposed 
on a given chain leads to a modification of the tube that a given polymer is 
confined to and is called constraint release. When a neighbouring chain B 
moves away, chain A can explore an additional volume of the order of an 
entanglement mesh size a3. If a new chain C moves in, it can locally confine 
chain A to this new volume, changing the conformation of the tube of A. 
This process can be modelled by a local jump of the tube, analogous to an 
elementary move of the Rouse model. The rate of these local jumps of the 
primitive path is reciprocally proportional to the lifetime r of the topolo- 
gical constraints. Thus, constraint release leads to Rouse-like motion of the 
confining tube and its primitive path. 

Fig. 9.25 
Constraint release mechanism: when 
chain B reptates away, it releases 
the constraint on chain A.  Later, this 
constraint is replaced by chain C, which 
confines chain A in a displaced tube. 
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9.5.1 Relaxation times and diffusion 

Consider a single linear chain with P monomers in a melt of shorter 
N-mers. The P-mer has two relaxation mechanisms occurring simultan- 
eously: 

(1) Single-chain motion of the P-mer within its confining tube by reptation 

(2) Constraint release as a Rouse motion of the tube confining the P-mer. 

Whichever process relaxes the chain faster is the one that controls terminal 
dynamics. 

The constraint release process for the P-mer can be modelled by Rouse 
motion of its tube, consisting of PIN, segments, where N,  is the average 
number of monomers in an entanglement strand. The average lifetime of a 
topological constraint imposed on a probe P-mer by surrounding N-mers 
is the reptation time of the N-mers rrep(N). The relaxation time of the tube 
confining the probe chain by constraint release is the Rouse time of PIN, 
tube segments [Eq. (8.17)] with segment relaxation time rrep (N> dictated by 
the reptation time of the surrounding N-mers: 

and tube length fluctuations. 

(9.85) 

The diffusion coefficient of a P-mer in a melt of N-mers can be written as 
a sum of contributions from each of these two types of motion, assuming 
that each contributes independently to diffusion: 

R2 R2 
D%- +-. 

r r e p  (p) rtuhe  
(9.86) 

The reptation time of the P-mer is rr,,(P) and the constraint release time 
q u b e  given in Eq. (9.85). The faster of the two types of motion controls the 
diffusion of the P-mer. For constraint release to significantly affect term- 
inal dynamics, the Rouse relaxation time of the confining tube q u b e  must be 
shorter than the reptation time of the P-mer rrep(P): 

(9.87) 

Very long P-mers have the constraint release time [Eq. (9.85)] shorter than 
their reptation time.7 Such very long P-mers relax and diffuse by constraint 
release (Rouse motion of their tubes) before they get a chance to reptate 
out of their confining tubes. For shorter P-mers, the reptation time rreP(P) 
is shorter than the constraint release time rtube and reptation dominates 
the diffusion of these chains. Reptation certainly dominates diffusion in 
monodisperse solutions and melts (for P = N ) .  

Constraiiit release controls the terininal relaxation in the reptatioii model if 
PIN, > (N/N,)’ and in the Doi fluctuatioii inodel if (PIN,)’ > (N/N,)’ 
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Experiments on diffusion of deuterated polystyrene into a melt 10-15 

10-'6 

7 
mz 10-17 

; l o - l ~  

of hydrogenated polystyrene (Fig. 9.26) confirm the crossover assumed 
in Eq. (9.86). For very long matrix chains (large N), the terminal dynamics 
of the P-mer are controlled by reptation and consequently the diffusion 
coefficient of the P-mer only depends on the molar mass of the P-chains 
and is independent of N :  

A~ . & . . A  ....... ~. . . A  

.A a. .. ~ . .  . ~~ .~ 

10 100 1000 1 0 - y  ' ' " " " !  ', ' " " " :  ' ' " " " :  ' 
(9.88) NINe 

On the other hand, if the matrix chains are short enough (small N )  con- 
straint release controls the terminal dynamics of the P-chains [Eq. (9.85)] 
and the diffusion coefficient of the P-mers depends strongly on N :  

for small N .  
R2 D%- 

rtube 
(9.89) 

The solid line in Fig. 9.26 is the crossover between Eqs (9.88) and (9.89), 
and divides the data nicely into a regime of constraint release control, 
where D is strongly dependent on N / N e  for short-chain matrices [described 
by Eq. (9.89)] and a regime of reptation control, where D is independent of 
N for diffusion into long-chain matrices [described by Eq. (9.88)]. 

9.5.2 Stress relaxation 

Constraint release has a limited effect on the diffusion coefficient: it is 
important only for the diffusion of very long chains in a matrix of much 
shorter chains and can be neglected in monodisperse solutions and melts. 
The effect of constraint release on stress relaxation is much more important 
than on the diffusion and cannot be neglected even for monodisperse 
systems. Constraint release can be described by Rouse motion of the tube. 
The stress relaxation modulus for the Rouse model decays as the reciprocal 
square root of time [Eq. (8.47)]: 

G ( t )  - ( t / T ) - " 2 .  (9.90) 

Thus, a finite fraction of the stress relaxes by constraint release at  time 
scales of the order of the constraint lifetime in the Rouse model of con- 
straint release. This is also the time scale at which the stress relaxes by 
reptation in monodisperse entangled solutions and melts. Both processes 
simultaneously contribute to the relaxation of stress. Therefore, constraint 
release has to be taken into account for a quantitative description of stress 
relaxation even in monodisperse systems. The contribution of constraint 
release to stress relaxation in polydisperse solutions and melts is even more 
important as will be discussed below. 

Fig. 9.26 
Diffusion coefficient of trace amounts of 
deuterium-labelled polystyrene P-mers 
into polystyrene N-mer melts at 174 "C 
for six P-mers: open circles 
M= 55  OOOgmoI-'; filled circles 
M = 1 10 000 g inol-'; open squares 
M =  255 OOOgmol-'; filled squares 
M = 520 000 g inol-'; open triangles 
M=915000gmol~';  and filled triangles 
have M=2000000gmol~ ' .  Data froin 
P. F. Green and E. J .  Kramer, 
Mncromolecules 19, I108 (1986). 

9.5.2.1 
Single-chain models, such as the DoikEdwards reptation model [Eq. (9.21)] 
or the Doi tube length fluctuation model, assume a linear contribution to 

Stress relaxation in binary blends 
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the stress relaxation modulus from each component of a polydisperse 
system: 

(a) 3 5 

Fig. 9.27 
Comparison of the loss modulus data for 
three blend compositions of the two 
polybutadiene samples in Fig. 9.23 at  
30 "C with the predictions of 
(a) Doi-Edwards reptation model and 
(b) self-consistent constraint release 
model. Dotted lines are the predictions 
and open circles are the data for 
oL = 0.882. Solid lines and filled squares 
are for q5L = 0.768. Dashed lines and 
open triangles are for oL = 0.638. Data 
from M .  Rubinstein and R.  H. Colby, 
J .  Cheni. Phys. 89, 5291 (1988). 

(9.91) 

where V J N  is the volume fraction of N-mers and GN(t) is the single-chain 
stress relaxation modulus of N-mers. For a binary blend of long (L) and 
short (S) chains, these models predict a simple linear addition of the 
stress relaxation moduli of the two components weighted by their volume 
fractions: 

However, many experiments observe that the amount of stress relaxed at  
the time scale of the reptation time zs of shorter chains is much larger than 
the volume fraction of short chains. This is shown in Fig. 9.27(a), where the 
loss moduli of binary blends are compared with the predictions of 
Eq. (9.92) using the Doi-Edwards reptation model predictions for G(t) 
[Eq. (9.21)] for the GL(t) and Gs(t) relaxation functions. Recall from 
Section 7.6.5 that the magnitude of G"(w) directly reflects the amount of 
relaxation occurring at each frequency w. Hence, Eq. (9.92) strongly 
underestimates the amount of relaxation occurring when the short chains 
relax [the high-frequency peak in G"(w)]. 

Some of the stress relaxed at  time scale rs occurs by release of constraints 
imposed on long chains by short ones, which makes a significant con- 
tribution to the stress relaxation at  the reptation time of the short chains rs. 

Topological constraints are often assumed to be puivuise entanglements 
between chains. There are three types of these pairwise entanglements in a 
binary blend: between two long chains (L-L); between two short chains 
(S-S), and between a short and a long chain (S-L). If the dynamics of each 
chain along its tube is approximated by the Doi-Edwards reptation model, 
there are two time scales in the problem-reptation times of long (rL) and 
short (rs)  polymers. The constraint on a given chain, caused by a long 
neighbour, has lifetime rL, while the constraint imposed by a short neigh- 
bour has lifetime rs.  The constraint release process in a binary blend can be 
represented by a Rouse model with two mobilities of the effective beads: 

(1) slow, corresponding to entanglements with long chains; 
(2) fast, corresponding to entanglements with short chains. 

These two mobilities can be assumed to be randomly distributed along 
the tube with relative concentrations corresponding to the probabilities of 
entanglement with a chain of each type. The simplest assumption is that 
these relative concentrations are proportional to the volume fractions of 
each type of chain (for pairwise entanglements). 

The combined stress relaxation modulus for both reptation and con- 
straint release of a binary blend is 
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