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ABSTRACT: The renormalized elasticity Jheory for jsolated flexible polymers developed recently by de Gennes is 
extended to the case of strong elongation ( Z / R F  >> 1,Z is the average end-to-end length in response to a uniform ten- 
sion and R F  is the excluded volume Flory radius !fa free coil). I t  is shown that, in this regime, the elastic restoring 
force f is nonlinear in the distortion and varies as Z3/’ in three dimensions. The consequences of this behavior are dis- 
cussed for: (1) the coil-stretch transition in strong shear flows and (2) elastic neutron scattering. 

I. Introduction 
There has been considerable recent success3 in the use 

of scaling theory to interpret elastic neutron scattering on 
dilute and semidilute polymer solutions in good solvents. The 
purpose of this paper is to extend these ideas to the study of 
some steady state properties of dilute but “strongly stretched” 
polymers in the presence of excluded volume interactions. By 
“strongly stretched”, we mean that if the chain experiences 
an external tension f, that the resulting end-to-end extension z exceeds the Flory radius of the unperturbed coil, but does 
not yet become comparable to the fully extended length Nu 
(N is the number of monomers, each of length a) ,  in which case 
strong nonlinearities and nonuniversal behavior associated 
with short range interactions between neighboring monomers 
come into play. Thus our strong stretching regime is delimited 
by the inequality 

(1.1) 

where u is the Flory exponent ( u  = 3/5 in three dimensions). 
de Gennesl has shown that, in the presence of excluded 

volume interactions, the usual purely entropic elastic constant 
of a weakly distorted polymer coil is renormalized leading to 
a restoring force 

NY < z / a  << N 

f = ~ ( ~ B T Z ) / R F ’  (1.2) 

where the excluded volume renormalization is the substitution 
of the Flory radius4 RF E Nua for the ideal chain radius RO = 
N%. However, as the chain stretches, its average monomer 
density decreases leading to a weakening of the excluded 
volume effect. Thus for sufficiently large external forces, we 
expect to eventually recover ideal behavior with 2 0: N rather 
than z 0: NZy as given by (1.2), This crossover will be described 
in terms of a competition between a “tensile screening length” 
Et = (/3f)-l and the Flory radius RF. For weak stretching RFIE 
<< 1, the de Gennes result (eq 1.2) should be correct; for 
stronger stretching with RF/& >> 1, we expect to find a modi- 
fied elastic behavior with 2 0: N.  To find the stress-strain 
relationship in this limit, we are tempted to employ a scaling 
argument. Let us assume that the average end-to-end sepa- 
ration may be written as 

where @ ( x )  is a yet unknown function. For x << 1, @ ( x )  N x ,  
in order to recover (1.2). For x >> 1 (but the inequality 1.1 still 
satisfied), we assume @ ( x )  0: x p  where p is determined by the 
condition, z 0: N. This immediately leads to p = u-l - 1 
and 

z 0: f(l/l,)-l (1.4) 

which, for u = 3/5 ,  gives z a f2/3 instead of the usual linear 
Hooke’s law. A more microscopic derivation of these results 
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based on self-avoiding walks on a lattice is given in section 11. 
The concept of the tensile screening length Et is also useful 

to describe elastic x-ray or neutron scattering, and is discussed 
in section 111. For Qft > 1 [Q = (q2  + 4 cos2 8.$t-z)1/z is an ef- 
fective scattering wavevector taking into account a change in 
metric due to stretching and 0 is the angle between q and f], 
we expect to find the usual excluded scattering intensity5 I 0: 
Q-l/”. For strong screening Qft < 1, we recover the Benoit6 
ideal chain result I 0: Q-2. 

Finally in section IV, the nonlinearity already coming into 
play a t  moderate extensions described by (1.4) is shown to 
strongly reduce the shear rate separation between the “first 
order transition” and continuous transitionlo regimes be- 
tween coiled and highly stretched conformations in ultra-high 
velocity gradients. 

11. Stress-Strain Relationship 
This section is devoted to a microscopic derivation of the 

scaling arguments of (1.3) and (1.4) leading to the nonlinear 
(f 0: z3l2) restoring force in the strongly stretched limit (RF 
> Et). Consider the function I’,(r) which is the number of in- 
dependent self-avoiding walks of n steps connecting the origin 
and the point r on a three-dimensional lattice. This function 
is proportional to the end-to-end distribution function for the 
excluded volume problem.’ It has been s h o ~ n ~ , ~  for large r ,  
that its Laplace transform 

m 

r p ( r )  = rN(r)e-NP (11.1) 
N=O 

behaves similarly to the transverse spin correlations in the 
vicinity of a magnetic phase transition 

rp(r) N A(a/r)e-Kr (Kr > 1) (11.2) 

where A is a function of p and the inverse correlation length 
K = a- ’ (p - pC)” where pc is the critical value of p where 
J r p ( r )  d r  diverges. In the presence of an external tension, the 
appropriate normalized statistical weight WN(r) is then 

WN(r) = rN(r)eZ/Et/JrN(r)eZ/€t d r  (11.3) 

leading to 

= JZW,(r) d r  (11.4) 

Using (11.1)-(11.3) and performing the spatial integrations, 
we arrive a t  (1.3) with 

} (11.5) 
d 

@ ( x )  z x - 

Replacing the sum by an integral, we easily verify the scaling 
behavior in the previous section. Note that for an ideal chain 
u = lh, @ ( x )  0: x ,  independent of Et, as expected (of course, al- 
ways with the limitation < Nu). 

For the transverse size of the coil, it  is easily verified by a 
similar calculation that the following scaling argument is 
justified. Let us write for the mean square extent 
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r12 = R F ~ ~ ( R F / ( ~ )  (11.6) 

where 0 ( n )  is a function of the scaling variable RF/[t such that 
O(0) = 1; for RF/& >> 1 we expect to recover ideal behavior 
with r L 2  E N .  Assuming O(x) - nr (x >> l), we are then led to 
r = u-1 - 2. Thus, in the strongly stretched regime, the cross 
section diminishes as 

FL2 0: f--113. (11.7) 

In this regime, combining (1.4) with (11.7), we see that the 
volume only grows as f1/3 instead of linearly as in the absence 
of excluded volume effects. 

These results may be of some significance for rubber elas- 
ticity as well as modifying the coil-stretch transition as dis- 
cussed in section IV. 

111. Stat ic  S t r u c t u r e  Fac tor  
Elastic neutron or X-ray scattering essentially measures 

the Fourier transform of the monomer density distribution, 
P b ) ,  

(111.1) 

where q is the scattering vector. In order to determine this 
quantity for stretched chains, we shall again make use of 
scaling arguments based on the tensile screening length con- 
cept. 

Z(q) = Re (Sp(r)eiwr d r ]  

For ideal chains, Benoit6 has shown that  

Z ( q )  (1 (92 + 4tt-2 cos2 i q -1  (111.2) 

where 8 is the angle between q and f. For f = 0 but in the 
presence of excluded ~ o l u m e , ~  

Z ( q )  a q-"3 (111.3) 

As indicated in the Appendix, the structure factor is a function 
of an effective square scattering wave vector defined by 

qz = q2 + 4tt-2 cos2 B (111.4) 

We expect that for weak stretching QFt >> 1 

Z(q) 0: q-l" (111.5) 

while for strong elongations, @Et << 1, we recover ideal behavior 

I(q) 0: r2 (111.6) 

In other words, we have "tensile blobs", similar to those in 
unstretched semidilute solutions? of radius tt within which 
excluded volume effects are maintained; for distances ex- 
ceeding &, the polymer behaves as an ideal coil of units of size 
Et. Connecting (111.5) and (111.6) by a scaling function 
S ( ( q & ) - l ) ,  we write 

I(q) = @-'/"S[(@Ft)-'] (111.7) 

where S ( 0 )  = 1 and S(x) - x' for large x such that (111.6) is 
recovered. The scaling exponent r = 2 - u-l = 3s. Thus in the 
ideal regime we predict that I(q) E f113 for fixed q. Note that  
this latter limit only obtains when q is essentially perpen- 
dicular to f ,  and 9.5 <: 1. In the Appendix, we rederive these 
results with the aid of the self-avoiding walk distribution used 
in the previous section. 

IV. Coil-Stretch Transi t ion 
I t  has been recognized for some timelo that under the in- 

fluence of ultra-high-velocity gradients there is a transfor- 
mation from a coil to a nearly completely stretched confor- 
matin of polymer chains. This effect is the cause for the in- 
crease in viscosity of dilute polymer solutions under high- 
velocity gradients. Subsequently de Gennes2 pointed out that 
as the polymer distorts into a cigar-shaped conformation the 
shear is more effective in distorting the molecule because the 

screening by the hydrodynamicll interactions is reduced. For 
ideal chains this leads to an onset of the coil-stretch transition 
a t  smaller shear rates and a sharp first-order type hysteretic 
transition. In this section we discuss the modifications of the 
de Gennes theory2 that occur when excluded volume inter- 
actions are included. There are basically two effects which 
came into play (both having the tendency to suppress the 
separation between first- and second-order transitions): (1) 
the Zimm relaxation time for ideal chains 

TO z v R o 3 / 6 ~ k T  (IV.1) 

where v is the solvent viscosity and Ro N N1/2a becomes larger 
due to the excluded volume swelling of the molecules;' Le., Ro 
is replaced by R F ;  (2) the nonlinear stress-strain relationship 
of sections I and I1 forces the transition to higher shear rates. 

We shall restrict our attention to the case of two-dimen- 
sional longitudinal gradients where the first-order transitional 
behavior is most pronounced. We shall follow closely the 
notation and methodology of ref 2. In the presence of a shear 
rate tensor S ,  the current associated with the end-to-end 
distribution function W(r) is 

(IV.2) 

where D is a diffusion constant which has a form for cigar- 
shaped molecules intermediate between the Zimm and 
Rowel2 values, Do and D, respectively, 

D z Dr[1 + (Do/D~)(RF/Z)] 

J = S r W  + D[(f/kT)W - CW] 

(IV.3) 
where 

Dr = kBTB/N (IV.4) 

is the Rouse diffusion constant valid in the free-draining limit 
where hydrodynamic effects are neglected (B is the monomer 
mobility in the solvent) and is independent of excluded vol- 
ume effects; the Zimm diffusion constant is 

Do = R~'70-l (IV.5) 

and is therefore proportional to RF-' or N-Y.  For 2 > R F ,  the 
form (IV.3) is a reasonable interpolation formula between the 
hydrodynamic regime for 2 - R F  and the free-draining limit 
for strongly stretched chains. The force f in  (IV.2) is essentially 
that  discussed in sections I and 11, i.e., f E .2 for 2 < R F  and 
f 0: Z3'* for 2 > R F .  For steady state longitudinal gradients, 
div J = 0 is equivalent to J = 0, which essentially gives a 
one-dimensional equation of the form 

a wiaz = - F ( z )  w (IV.6) 

where 

F ( Z )  = - P f ( Z )  - (S/D)Z; S = Szz (IV.7) 

The solution to (IV.6) is 

W ( Z )  = Woexp [ - J Z F ( Z )  dZ] (IV.8) 

where Wo is a normalization constant. Thus we may interpret 

as an effective potential energy. For 2 < R F ,  using (1.2) and 
D N Do, we find 

(IV.10) PV(2)  = ( R F - ~  - S/Do)(Z2/2) 

S > D & F - ~  = io-' 

for 

(IV. 11) 

where i o  is the renormalized Zimm relaxation time; we see 
clearly the instability toward a fully stretched configuration. 
For Z > R F ,  we have 
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F ( Z )  z (RF-lZu)l/l--v - (S/Do)(Z2/RF) (IV.12) 

The effective potential energy then has a minimum a t  Z* in 
this region when F(Z*)  = 0, 

Z*/RF z (S?0)(1-v)/(3u-2) z (S io) -z  (IV.13) 

Clearly the minimum is in the stretched regime only for Si0 

< 1. This is to be compared with ( S T O ) - ~  for ideal chains. The 
critical shear rate S* for a first-order transition occurs with 
V ( Z * )  = 0. This leads to 

S * i o  (D0/D,)(3u-2)/(1-v) (IV. 14) 

For ideal chains ( i o  = TO,  v = l/2), this gives the de Gennes’ re- 
sult2 that S* 2 TR-’ = D,/Ro2 << ~ 0 - l .  In fact TOS* - N-ll2. 
For excluded volume chains, S* 3 ( ? o T R ) - ~ / ~ ,  and ?OS* - 
(?o /TR) ’ /~  - N-1/5. Note that in both the ideal and excluded 
volume cases S* N-2 ,  but with excluded volume swelling 
of the molecule, the second- and first-order transitions occur 
much closer together. 
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Appendix 
This Appendix is concerned with an alternate derivation 

of the static structure factor results of section 111. The essential 
assumption here is that p(r) is given by the sum of end-to-end 
distribution functions Wn(r), (11.3), 

N 

n=O 
p(r) 2 E Wn(r) (A. 1) 

This is not exact because the space filling character of a dis- 
tribution of various length chains is not identical with the 
correct p(r).  However, we believe that (A.l )  should reproduce 
the appropriate scaling behavior. The scattering intensity may 
then be written as 

N 

n = O  
Z(q) = Re Z Wn(q) 
Wn(q) = yn(q)/yn(O) (A.2) 

where Wn (q) is the Fourier transform of W n  (r) and 

yn(q) = Jrn(r)e(iq+bf).r  d r  (A.3) 

Using (11.1) and (11.2), we find 

(A.4) 

where ( 4 1 ,  q 1 1 )  are respectively the components of q perpen- 
dicular and parallel to f. From the structure of Z(q), (A.l-A.3), 
we note that, quite generally, the dependence of the structure 
factor on the applied force only appears through (/3q.f)2 and 
thus Z(q) is only a function of q j ,  eq 111.11. For qRF >> 1, which 
is the limit of interest for information on monomer distribu- 
tion within the coil, 

- L11’2u + nFt-l/u] (A.5) tt2 
Summing over a ,  we obtain 

1 

I q2[1 - 2i cos O(qtt,-’] - ‘I 1/2u - tt-l/” 
tt2 

Z(q) = Re 

(A.6) 

Expanding the denominator using the binomial theorem we 
rediscover the results of section 111. 
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