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Abstract

Silk is a semidilute solution of randomly coiled associating polypeptide chains that crystallize following the stretch-induced disruption, in the
strong extensional flow of extrusion, of the solvation shell around their amino acids. We propose that natural silk spinning exploits both the
exponentially broad stretch distribution generated by associating polymers in extensional flow and the criterion of a critical concentration of
sufficiently stretched chains to nucleate flow-induced crystallization. To investigate the specific-energy input needed to reach this criterion in
start-up flow, we have coupled a model for the Brownian dynamics of a bead-spring-type chain, whose beads represent coarse-grained
Gaussian chain segments, to the stochastic, strain-dependent binding and unbinding of their associations. We have interpreted the simulations
with the aid of analytic calculations on simpler, tractable models with the same essential physical features. Our simulations indicate that the
associations hamper chain alignment in the initial slow flow, but, on the other hand, facilitate chain stretching at low specific work at later,
high rates. We identify a minimum in the critical specific work at a strain rate just above the stretch transition (i.e., where the mean stretch
diverges), which we explain in terms of analytical solutions of a two-state master equation. We further discuss how the silkworm appears to
exploit the chemical tunability of the associations to optimize chain alignment and stretching in different locations along the spinning duct:
this delicate mechanism also highlights the potential biomimetic industrial benefits of chemically tunable processing of synthetic association
polymers. © 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons
Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1122/8.0000411

I. INTRODUCTION

The manufacturing of both natural and artificial polymer-
based fibers relies on flow-induced crystallization in nonlin-
ear rheological conditions [1–6]. The energy input required
by this process may be significantly reduced in natural silk-
spinning, though the mechanism by which this efficiency is
achieved has been far from clear [7]. There is evidence,
however, that locally tailored macromolecular interactions are
involved [8–11]: The silk protein, of which the conformation
in solution closely resembles a random coil [12], self-
assembles in flow in aqueous conditions under energy
requirements orders of magnitude lower than its synthetic
counterparts [7]. It has been hypothesized that flow-induced
stretching of the chain disrupts a solvation layer and, in turn,
enables crystallization to commence [7,13,14]. This mecha-
nism was supported by molecular dynamics (MD) simula-
tions [15–18] and was employed to induce crystallization of
synthetic poly-ethylene oxide by flow at similarly low ener-
getic requirements as silk, however, at much higher molecular
weight and/or strain rates [13]. The low-energy mechanism for
natural silk-spinning, therefore, remains to be identified. Clues
may be present in the subtle electrostatically modified rheo-
physics of associating polymers [19–28].

We previously found, in collaboration with Laity and
Holland, that the silk protein exhibits calcium bridges that act

as intermolecular reversible cross-links [8,9]. Such associations,
sometimes referred to as “stickers” that can be in a bound/
closed or unbound/open state [19], shift the alignment-to-stretch
transition to smaller strain rates by replacing the usual Rouse
relaxation dynamics for “sticky-Rouse” relaxation [19–28].
Inspired by these observations, we envision a mechanism of
flow-induced crystallization (FIC) where the reversible network
is initially equilibrated (in Stark contrast to the typical
mechanism for the solgel transition of associating polymers,
where shear flow breaks metastable intramolecular associa-
tions and facilitates the formation of an intermolecular
network [29–31]). In our case, strong flow stretches the
“bridging” strands between the stickers [32,33]. This
stretch, in turn, aligns the strands at the scale of the Kuhn
segments (in which water-soluble systems may disrupt the
solvation layer [7,13]), so nucleating crystals as structural
elements within (silk) fibers. It will turn out that such a
picture contains within it a mechanism for the super-
efficiency of natural silk-spinning through a surprisingly
strong heterogeneity in the chain stretch distribution.

While this mechanism seems plausible, it is not evident
how this process may be controlled and/or optimized by
the number of stickers per chain and by their lifetime.
Intriguingly, however, it has been observed that the
Bombyx mori silkworm tunes the sticker lifetime and,
hence, the (non)linear rheology, before and during spin-
ning through local chemical control variables. Prior to
pupation, i.e., when the silkworm is not required to spin a
cocoon, the silk is stored in the gland at high viscosity
using long sticker lifetimes [8,9]. When pupation
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commences, potassium cations are added to decrease the
sticker lifetime and reduce the viscosity [8,9].

We first hypothesize, as schematically indicated in Fig. 1,
that the decrease in the sticker lifetime decreases the specific
work needed to align the chains in the direction of the flow
field well upstream from the spinnerette. The group of
Holland also discovered that the structural features of the silk
fiber are significantly enhanced through a gradient in the pH
along the spinning duct, suggesting an exquisitely controlled
local rheology [34]. While lower pH may induce partial
folding of the protein [12], it is also expected to enhance the
lifetime of the stickers. Crucially, inspired by our previous
finding that broad conformational distributions emerge due
to the stochastic nature of binding and unbinding stickers
[10,11], we, therefore, hypothesize second that crystallization
may be initiated by reaching a critical concentration of highly
stretched chain segments. This would require significantly
less energy input than for stretching the entire population of
chain segments.

To theoretically investigate this hypothesis, we focus our
attention on the flow-induced preparation of the conditions
for crystallization (rather than crystallization itself ). We are,
in particular, interested in the specific critical work,

W(ts) ¼
ðts
0
σ : κ dt, (1)

required to induce FIC after a period time ts during which the
system is subjected to the (experimentally controllable) trans-
pose of the (local) velocity-gradient tensor κ ¼ ∇vT and the
(local) stress response σ. The integral is taken in the (local)
Lagrangian co-moving frame of a fluid element. In experi-
mental works (see [35–37] and citations therein), the shear
rate and duration ts render the specific work a control vari-
able (W � σxy _γts) that controls the number of nuclei

generated in the system. As the efficiency to converse the
energy input into nucleation events is rather limited (esti-
mated � 1% [37]), it is worth investigating how the energy
loss may be reduced, e.g., by making use of intermolecular
associations.

Clearly, the formation of nuclei must be controlled by the
underlying molecular conformations. In particular, strong
flow aligns and stretches chain segments and thereby reduce
the entropic penalty of crystallization, ΔS. Hence, the nucle-
ation rate increases as J / exp(�ΔS=kB), where one may
assume TΔS/ EW , with E being the efficiency of reducing
the chain entropy by flow [37]. We argue that in strongly het-
erogeneous systems, i.e., with broad conformational distribu-
tions, it is not the ensemble-averaged change in the entropy
[38,39], but the local changes, i.e., the outliers in the tail of
the distribution [10,11], that will determine the nucleation
rates. Hence, by controlling the distribution, the overall effi-
ciency of the process may be optimized. These broad distri-
butions emerge for sticky polymers in strong flow, which we
focus on in the present work; other examples are nonsticky
linear polymers in shear [40–42] and ring polymers in exten-
sion [43–45].

To calculate the specific work in Eq. (1), one could in
principle determine the stress response, σ, to the transpose of
the velocity-gradient tensor, κ, using MD simulations, where
the interactions between stickers are modeled using attractive
potentials. At this level of computational detail, sticker disso-
ciation may occur following attempts to escape the attractive
potential through molecular vibrations [46,47]. These MD
simulations are, however, computationally very demanding,
as the dissociation events are quite rare. However, because of
this rarity of events, the local equilibration of the chains
enables a much simpler description of the chain dynamics in
terms of the fraction of closed stickers, p and their lifetime,
τs [19]. In a coarse-grained picture, this sticker lifetime is an
elementary rather than an emergent time scale. This allows a
description of the problem in terms of the dynamics of a
single chain in a crowded environment [10,11,48–50], an
approach similar to the modeling of entangled polymers
through slip-link and slip-spring models [45,48,51–56],
where the generation and destruction of entanglements are
modeled as elementary processes.

While there is no unique way of formulating a coarse-
grained single-chain model [57], all variants of bead-spring,
slip-link, and slip-spring models can be written in the general
form

ζ i
@Ri

@t
¼ Fintra,i þ Fthermal,i þ Fflow,i þ Fnetwork,i, (2)

where i is a chain segment at position Ri that is thermally
equilibrated at the relevant time scales [58]. We will refer to
this chain segment as a “node” of an elastic network, which
may represent a nonsticky segment of a chain (a purely
frictional “bead”), a segment with a reversible association
(a “sticker”), or it may be an entangled segment (a
“slip-link” or a “slip-spring”). Which of these representa-
tions is invoked manifests itself in the definition of the fric-
tion coefficient, ζ i, the (friction-dependent) thermal forces,

FIG. 1. Schematic representation of the gland of a B. mori silkworm, where
extensional flow initially aligns at low deformation rates and subsequently
stretches the intrinsically disordered silk protein at higher rates. Within the
interpretation of a sticky-reptation model, we hypothesize that the experi-
mentally observed gradients in the pH serve to control the lifetime of inter-
molecular cross-links locally within the process, which, in turn, minimizes
the energetic requirements to deform the network and induce fiber
crystallization.
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Fthermal,i, and the network forces, Fnetwork,i. For instance, in
classes of models where nodes move affinely with the flow
field, the network force exactly cancels the sum of the
(conformation-dependent) intramolecular force and the
thermal force, Fnetwork,i ¼ �Fintra,i � Fthermal,i. This “rigid-
network approximation” is tacitly invoked in the slip-link
model by Hua and Schieber [51] and in our recently pub-
lished model for sticky polymers in a rigid network [10,11].
Within Likhtman’s slip-spring model, the slip-spring may
diffuse within a potential energy landscape that represents
the elastic compliance of the entangled network [55]. In the
present work, we will account for the compliance experi-
enced by the stickers in a reversible network.

In the following, in Sec. II A, we present the usual intra-
molecular, thermal, and drag forces that act on single chains.
To capture how the stickers modify the intermolecular forces
(i.e., the “elastic compliance” of the surrounding network)
and the segmental drag, we present a nonspatially explicit
multichain approach. In Sec. II B, we present a two-state
master equation that generates analytical predictions of the
impact of sticker opening and closing on both the steady-state
and transient stretch distributions of the chains, which
enables us to interpret our simulated data in Sec. III. By first
mapping the results in the linear flow regime to the analytic
sticky-reptation (SR) model, in Sec. III A we discuss how the
stochastic nature of sticker opening and closing and the
elastic compliance affects the linear rheological data. Then,
in Sec. III B, we show how a broad steady-state distribution
of chain conformations emerges in strongly nonlinear flows
of shear and extension. By simulating the transient emer-
gence of these distributions in start-up flow in Sec. III C, we
show that the stickers initially hamper the collective align-
ments of the chains in mildly nonlinear aligning flows, but
facilitates the emergence of stretched outliers. In Sec. III D,
we discuss how these outliers may reduce the critical specific
work for FIC. In the discussion and conclusions of Sec. IV,
we use our findings to interpret the experimental observa-
tions of silk spinning and argue that the chemical tuning of
associations is indeed a promising mechanism to control the
FIC of artificial materials.

II. MODEL AND THEORY

A. Brownian dynamics of sticky polymers in flow

In this section, we will present a coarse-grained descrip-
tion of associating polymers, where the dynamics of sticker
opening and closing will depend on the number of open and
closed stickers in a nonspatially explicit collection of chains.
Any linear polymer that consists of N monomers may be dis-
cretized using a number of nodes, Nnodes, see Fig. 2. We use
the wording “node” to emphasize that the node may not just
represent a traditional, frictional bead of a bead-spring
model, but may also represent a sticker that can be in an
open or closed state or a slip-link or slip-spring (which,
unlike traditional beads, may fluctuate in numbers). Each
node i is located at a spatial coordinate Ri relative to the
center of mass of the chain. The strand between neighboring
nodes i and iþ 1 has an end-to-end vector Q ¼ Riþ1 � Ri

and contains a fraction Δsi ¼ Ns,i=(N þ 1) of all the

monomers in the chain. At this level of coarse graining, the
friction of each node is given by

ζ i ¼ Nζ0

Δsi�1 þ Δsi=2, for i ¼ 1,
(Δsi�1 þ Δsi)=2, for 1 , i , Nnodes,
Δsi�1=2þ Δsi, for i ¼ Nnodes,

8<
: (3)

with ζ0 being the monomeric friction. The assumption that
the dangling chain ends are relaxed may be released by
explicitly modeling the position of the chain ends and setting
Δsi ; 0 at i ¼ 0 and at i ¼ Nnodes [59].

The equilibrium structure of the chain in quiescent condi-
tions is determined by the end-to-end distance of the sub-
strands, jQij ¼ λb(ΔsiN)

1=2, where the stretch ratio λ obeys
the equilibrium distribution

P(λ) ¼ 4πλ2 2π=3ð Þ�3=2exp � 3λ2

2

� �
: (4)

This distribution emerges as a consequence of the intramo-
lecular and thermal forces in Eq. (2).

In order to derive the intramolecular spring forces, we
consider the spring force of the entire chain of N monomers
with a mean stretch ratio of unity

Fstrand
intra ¼ 3kBT

bN1=2
ks(λ; λmax)(1� λ), (5)

where

ks(λ; λmax) ¼ (3λ2max � λ2)=(λ2max � λ2)

(3λ2max � 1)=(λ2max � 1)
, (6)

approximately captures the anharmonicity of the spring force
due to the finite extensibility of the substrand [60]. For the
substrands i, the harmonic spring force is larger than that of

FIG. 2. (color online) The theory in Sec. II A applies to sticky entangled
polymers that are parameterized using the locations of M nodes. Each node
may be a bead (green disk), a sliplink/entanglement (blue ellipses), a closed
sticker (orange disk), or an open sticker (orange circles). All nodes are
assigned a friction ζ i that depends on the fraction of monomers of the chain,
Δsi, that reside in each of the M þ 1 substrands, see Eq. (3). In general, the
number of beads and entanglements may fluctuate during a simulation. In
the present work, we focus on the physics of the stickers and fix the number
of beads and do not include any entanglements.
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the full chain and the maximum stretch ratio is smaller.
This is captured by the renormalization Fintra 7! Fintra,i,
N 7! ΔsiN, and λmax 7! Δs1=2i λmax ; λmax,i. The direction of
the force exerted by spring i on node i is Qi=jQij, while the
direction of this force acted upon node iþ 1 is �Qi=jQij.
Hence, the net intramolecular force exerted on node i is

Fintra,i ¼ Fstrand
intra,i�1

Qi�1

jQi�1j
� Fstrand

intra,i
Qi

jQij
: (7)

The thermal force is given by the equipartition theorem

hFthermal,i(t)i ¼ 0, (8)

hFthermal,i,α(t)Fthermal,i,β(t
0)i ¼ 0, for α = β, (9)

hFthermal,i,α(t)Fthermal,i,β(t
0)i

¼ 2kBTζ iδ(i
0 � i)δ(t0 � t), for α ¼ β, (10)

with α, β ¼ x, y, z being the Cartesian coordinates and kBT
being the thermal energy.

The force acted upon the nodes by flow is, provided that
our coordinate system moves with the flow field, given by

Fflow,i ; ζ i
@Ri

@t

����
flow

¼ ζ iκ � Ri, (11)

where κ is the transpose of the velocity-gradient tensor,
which in extension and shear is given by

κ ¼ 1
2

2 _ε 0 0
0 � _ε 0
0 0 � _ε

0
@

1
A, κ ¼

0 _γ 0
0 0 0
0 0 0

0
@

1
A, (12)

respectively. As the coordinate system moves with the flow
field, the spatial quantities of physical interest to calculate are
the deformation of the individual substrands,

@Qi

@t

����
flow

¼ κ �Qi, (13)

using which we recursively obtain the drift of the nodes as

@Riþ1

@t

����
flow

¼ @Qi

@t

����
flow

þ @Ri

@t

����
flow

: (14)

The value of the first entry, @R1=@t, is adjusted to fix the
center of mass of the chain (this assumes that the center of
mass moves affinely with the flow field).

The dynamics of the chain conformation depends on the
state of the stickers through the network force, which, in
turn, depends on the dynamics of sticker opening and closing
and so, finally, on the chain conformation itself. In particular,
when chain segments are highly stretched, the network forces
may cause the stickers to dissociate. To obtain these forces,
we simulate multiple chains and track the collection of open

and closed stickers. When sticker i from chain A and sticker j
from chain B are closed to form a pair, the friction coeffi-
cient, the thermal force, and the network force are modified
until the sticker pair opens again. The friction coefficient of
both nodes becomes ζAi þ ζBj , where ζAi and ζBj are given by
Eq. (3), and the thermal forces are given by the equipartition
theorem Eq. (10) as before, but with this modified friction
coefficient. The network forces are now given by

FA
network,i ¼ FB

intra,j, and by FB
network,j ¼ FA

intra,i: (15)

Hence, the paired stickers i and j have an identical
friction coefficient and experience the same net force
FA
intra,i þ FB

intra,j þ FA
thermal,i (where FA

thermal,i ¼ FB
thermal,j).

Crucially to forced sticker dissociation, the net force that acts
on the closed sticker pair is

Fstic ¼ jFA
intra,i � FB

intra,jj, (16)

which we assume, as in other cases of forces temporary
unbinding, lowers the activation energy for sticker dissocia-
tion as

Eact ¼ E0
act � ‘Fstic, (17)

with E0
act being the activation energy in quiescent conditions

and ‘ being the typical length scale associated with sticker
dissociation [11]. We remark that the (apparent) activation
energy obtained from experiments using the Arrhenius-type
equation [24] τs ¼ ν�1exp(Eact=kBT), for the sticker lifetime
with ν an attempt frequency, may be much larger than this
activation energy for dissociation. This is due to fast sticker
recombination processes [9,61] or due to the mixing of
various mechanisms of sticker opening and closing, such as
bondswapping [11,62].

For now, we assume a well-defined pairwise association-
dissociation reaction whose equilibrium condition is described
by the detailed balance p=(1� p)2 ¼ K0 exp(� ‘0Fstic), with
K0 being the equilibrium constant in the absence of any chain
tension. Here, the free energy ‘0Fstic . 0 captures the shift in
detailed balance (i.e., the fraction of closed stickers decreases
with an increase in chain tension), while ‘Fstic in Eq. (17)
modifies the rate by which the equilibrium is reached. Indeed,
in terms of transition state theory, we may write the opening
and closing rates as kopen ¼ νexp([θ‘0Fstic � E0

act]=kBT) and
kclose ¼ νK0 exp(�[(1� θ)‘0Fstic þ E0

act]=kBT), respectively,
where ‘ ; θ‘0, and where θ [ [0, 1] is the so-called
Brønsted–Evans–Polanyi coefficient [63]. While its value may
be determined using experiments or atomistic simulations, we
know that θ must be larger than zero in order to capture
strain-induced sticker dissociation [29–33]. We argue that the
rheological physics of a reversible polymer network does not
necessitate exact knowledge of θ: When a sticker opens, it
may freely diffuse and find conditions to bind to another
sticker that is not subject to the influence of strongly stretched
chain segments: association will typically take place in condi-
tions where the activation barrier is equal to that in quiescent
conditions. Indeed, in our simulations, we find that the mean
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fraction of open stickers in conditions of strong flow remains
similar to the fraction in quiescent conditions, despite noticable
acceleration of sticker dissociation.

These arguments have enabled us to conveniently set
‘ ¼ ‘0 and θ ¼ 1; the latter avoids the need for on-the-fly
calculations of association rates during our simulation. We
have implemented the opening and closing of stickers using
a kinetic Monte Carlo (kMC; also known as a Discrete Event
Simulation) scheme, where after a time interval Δt a sticker
is opened or closed with a probability (1� exp[�kopenΔt]) or
(1� exp[�kcloseΔt]), respectively. In our simulation algo-
rithm, shown in Fig. 3 and discussed in detail in Subsection 1
of the Appendix, we take time steps during which the chain
conformations are approximately fixed and for which the
time-independent (but conformation-dependent) rates of
sticker opening and closing are calculated. The dynamics
of the stickers is simulated during the time step using a kMC
scheme. This essentially creates and destroys constraints in a
similar way as in the slip-link model [54], but where the con-
straints physically represent closed stickers instead of entan-
glements (hence, our approach may be generalized using
appropriate kMC algorithms [64–66] to go beyond the unen-
tangled chains with pairwise association and dissociation of
stickers focused on in the present work, and also capture
entanglements, stickers that dimerize through bondswapping,
and stickers that may assemble into larger aggregates). After
this step of “constraint-dynamics,” the Brownian dynamics
are solved, the conformations are updated, and the next time
step is commenced.

B. Approximate theory in transient extensional
flow: Two-state model

The dynamics of sticky polymers is complicated by the
fact that a polymer with Zs stickers can be in 2Zs different

states, as each individual sticker can be either opened or
closed. An instructive simple case is a chain with Zs ¼ 2, as
the chain is either completely free to relax when either of the
stickers is open (state 1) or can only be extended by flow
when both stickers are closed (state 0). Hence, we can accu-
rately distinguish between an extension state where the
polymer is unable to relax and a relaxation state where the
polymer is able to relax. Using this “two-state” description,
we previously discovered that stickers give rise to enormous
stretch fluctuations in extensional flow below the strain rate
at which the mean stretch diverges, i.e., below the “stretch
transition,” which are described by the steady-state power-
law stretching distribution [10],

P(λ)/ λν, with ν , 1 andfor λ � 1: (18)

It turned out that this two-state prediction, which is exact for
chains with two stickers, also described the steady-state
stretch distribution for chains with multiple stickers. In the
present work, we recapitulate our previous analysis of the
steady-state situation and extend it for transient start-up flow.
In all of this analysis, we will consider a single relaxation
mode of the polymer at time scales beyond the relaxation
time of the surrounding network; hence, we invoke the rigid-
network approximation in this entire section.

The starting point is to consider a chain in two states
where the chain is either unable to retract (state 0) or is free
to retract (state 1). The opening rate is kopen, and the closing
rate is kclose. The time development of the probability distri-
bution of the stretch ratio is described by [10]

@P0

@t
¼ � @

@λ
_ελP0½ � � kopenP0 þ kcloseP1, (19)

FIG. 3. Flow chart of the algorithm to simulate the conformational dynamics of sticky polymers and the dynamics of sticker association and dissociation
(detailed discussion: see Subsection 1 of the Appendix).
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@P1

@t
¼ � @

@λ
_ελþ 1� λ

τR

� �
P1

� �
þ kopenP0 � kcloseP1, (20)

with τR being the bare Rouse time of the chain without stick-
ers. In this equation, we have neglected the high-frequency
relaxation modes of the polymer as well as the (potentially
much slower) relaxation of the surrounding network; the
latter is justified in view that the network rapidly stiffens
with an increasing strain. To approximate this equation
analytically, we first make the substitution y ; ln λ,
so @Pi=@λ ¼ (1=λ)@Pi=@ ln λ ; exp(�y)@Pi=@y. Similarly,
@λPi=@λ ¼ Pi þ @Pi=@y. Inserting this into the governing
equations gives

@P0

@t
¼ � _ε

@P0

@y
� _εþ kopen
� �

P0 þ kcloseP1, (21)

@P1

@t
¼ � _εþ e�y � τ�1

R

� � @P0

@y
þ kopenP0

� kclose þ _εþ e�y � τ�1
R

� �
P1: (22)

The nonlinear contributions can then be omitted by consider-
ing the limit of large stretches where their contribution to the
distribution is exponentially small, i.e., we approximate
e�y � 0, which is equivalent to λ � 1.

In steady state, the left-hand side of the equation is zero
and the equations can be cast in the form dP=dy ¼ A � P,
with P ¼ [P0, P1]T and A a constant 2 by 2 matrix. The sol-
ution of this system of first-ordinary differential equations is
given by [10]

Peq
0 ¼ cλν , (23)

Peq
1 ¼ kclose

kopen

_ε

( _ε� τ�1
R )

Peq
0 , (24)

with c being the normalization constant (its value can in prin-
ciple be determined by releasing the approximation e�y � 0),
and with the exponent of the power-law distribution given in
terms of physical parameters by

ν ¼ �1þ kclose
(τ�1

R � _ε)
� kopen

_ε

¼ �1þ 1
(1� _ετR)

p

(1� p)
τR
τs

� 1
_ετs

: (25)

[this is one of the eigenvalues of Eqs. (21) and (22); the
other eigenvalue is �1 and is unphysical as a distribution of
the form λ�1 cannot be normalized.] The value of this
stretching exponent diverges if the bare stretch transition at
_ετR ¼ 1 is approached from small strain rates. However,
because of the physics of the stickers, actual divergence
already occurs at lower strain rates: At _ετR ¼ (1� p), the
exponent becomes ν ¼ �1 and the stretch distribution can
no longer be normalized. Depending on the sticker lifetime,
at smaller strain rates the exponent may reach a value

ν ¼ �2 if the “sticky Weissenberg number” (1� p) _ετR
reaches unity; here, the mean stretch diverges. While the
mean stretch is finite for smaller strain rates, the variance of
the stretch diverges for ν � �3, which happens if (1� p) _ετR
becomes larger than 1=2 [10], at which point (considerably
slower than the bare stretch transition) we expect a long tail
of very high stretched chains to develop in the distribution.

This analytic approach can be extended to predict the tran-
sient dynamics of the distribution in start-up flow. As we will
show, the late-stage dynamics in which the tail of the distri-
bution “fills up” is independent of the initial conditions. In
those late stages, the distribution reaches a steady state for
stretches below a certain “front,” λ*(t) (above which the dis-
tribution function has a value of zero), which shifts to high
stretch values over time. The precise number of chains with a
certain stretch also depends on the width of this moving
front. We assess analytical predictions on the front position
and width using the two-state model using solutions in an
early- and late-stage regime, where the time scale is, respec-
tively, much shorter and much larger than the sticker lifetime.
While the long-time regime will slow down the progression
of the front due to sticker opening, in the early-stage regime
we will obtain an upper limit of the rate by which the front
moves.

In the early-stage regime, we approximate the stretch distri-
bution using the Dirac-delta distribution ( justified by the very
wide long-time distribution), Pi(t ¼ 0, λ) ¼ ciδ(λ� λ*(0) at
λ*(0)), from which it can be easily seen that the distributions
shift initially, when pure advection dominates over sticker
dynamics, to higher stretches for the closed state, P0(t, λ)
¼ c0δ(λ� λ*(0)exp[ _εt]) and retract to smaller stretches for the
open state P1(t, λ) ¼ c1δ(λ� λ*(0)exp[�(τ�1

R � _ε)t]). This
suggests that the “front,” λ*(t), of any distribution with finite
P0, shifts exponentially in time to higher values through
λ*(t) ¼ λ*(0)exp[ _εt].

To develop an analytic approximation for the long-time
limiting behavior of the sticky polymers in start-up flow, we
consider some point in time t0 � τSR where sufficient stick-
ers have opened to facilitate chain relaxation and assume that
the stretch distribution has reached a steady-state for small
stretches λ , λ*(t0) but is empty for larger stretch ratios.
Here, λ*(t0) can be thought of as the establishment of
the “front” of the stretch distribution at later times moving to
higher stretches. In the following, we will show that the
ansatz of this moving front is indeed a good approximation for
the tail of the transient stretch distribution and that for later
times t . t0, further convergence of the stretch distribution
takes place in the range of stretches λ*(t0) , λ , λ*(t), where
the “front” of the distribution shifts to high stretch values as
ln [λ*(t)=λ*(t0)]/ _ε(t � t0). Assuming that λ*(t0) � 1, the
steady-state portion of the distribution is negligibly affected by
the loss of small-stretch contributions to the tail of the distribu-
tion [see discussion around Eq. (A11) in Subsection 2 of the
Appendix], and for any time t0 . t0 the λ , λ*(t0) portion of
the stretch distribution becomes independent of time beyond
t . t0. The constancy of the distribution at λ*(t0) provides a
fixed-boundary condition. Hence, this problem essentially
models the dynamical response to a unit step and lends itself
to an analysis through a Laplace transform to give a solution
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for the distribution at each stretch ratio λ of the form
exp(�sτ(λ))=s, which is the Laplace transform of a time-
dependent function that becomes nonzero at the time τ(λ). The
inverse function λ(τ) is then the trajectory of the “front” of
the distribution. In Subsection 2 of the Appendix, we detail
the Laplace transform of Eqs. (21) and (22) with the boundary
condition in this long-time regime, which as a solution gives

P0(t, λ*(t)) ¼ c
λ*(t)
λ*(t0)

� �ν

Θ(ν0 ln [λ*(t)=λ*(t0)]� _εt), (26)

P1(t, λ*(t)) ¼ kclose
kopen

_ε

( _ε� τ�1
R )

P0(t, λ), (27)

with ν being the “steady-state stretch exponent” in Eq. (25)
and with

ν0 ¼ 1� 1
1�Wi

þ 1

1�Wisticky

� �
(28)

being the “dynamic stretch exponent,” which controls the
growth of the front of the distribution as

λ*(t) ¼ λ*(t0) exp
_ε(t � t0)

ν0

� �
: (29)

In this equation, Wi ¼ _ετR and Wisticky ¼ _ετSR are the
(extensional) Weissenberg numbers of the chain without and
with stickers, respectively; within the two-state model,
τSR ¼ (1� p)=kopen, see discussion under Eq. (25). Upon
approaching the stretch transition Wisticky ¼ 1 where the
mean stretch diverges, ν0 � 0 indicates “critical slowing
down,” as the (late-stage) front of the distribution becomes
immobile. For chains with strong stickers (1� p)τs � τR at
the strain rate Wisticky ¼ 1=2 where the variance of the
stretch diverges [see discussion under Eq. (25)], we find
ν0 � 2, which indicates that the late-stage measure of the
front is shifted from the early-stage measure for the outliers
by a factor 2. We have also checked that the moving front is
narrow for small strain rates Wisticky , 1=2. In Subsection 2
of the Appendix, we provide more analytical analysis of the
two-state model to estimate the width of the front (relative to

its extent) as Δrel /
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pWiWisticky=(1�Wisticky)

q
, where

Δrel � @[P(λ, t)=Peq(λ, 1)]=@ ln λ
� ��1

= ln λ. As we shown in
Subsection 2 of the Appendix, typically this width is
Δrel � 1, and the front of the distribution is narrow even
close to the stretch transition.

III. RESULTS

A. Linear dynamics

We have verified the physics of our model in the linear
viscoelastic regime by first simulating nonsticky chains of
fixed length but a varying number of beads from M ¼ 4 to
64 (the beads are regularly along the backbone of the
polymer, so Δsi ¼ 1=(M þ 1) for all i). Figure 4 shows that
the choice of the number of beads has a negligible influence

on the time evolution of the mean-square displacement,
MSD, of the center of mass and is in all cases in agreement
with the theoretical prediction

MSD ¼ 6Dt, (30)

where the diffusivity, D, is for nonsticky polymers given by
the bare Rouse diffusivity

DR ¼ 1
3π2

hRei2
τR

: (31)

Moreover, the inset of Fig. 4 shows that also the
end-to-end-distance, Re, is distributed according to the physi-
cal equilibrium result of Eq. (4).

For times shorter than the Rouse time of strands between
stickers, i.e., for t , τR(Zs þ 1)�2, the dynamics of a sticky
polymer are governed by the same Rouse diffusion as non-
sticky chains, see Fig. 5(a). For later times than that, the
motion of the polymer is subdiffusive until the sticky-Rouse
time τSR, which is approximately given by [19]

τSR ¼ τsZ
2
s 1� 9

p
þ 12

p2

� ��1

: (32)

Focusing on the crossover from early-stage bare Rouse diffu-
sion to subdiffusive motion, one would expect this crossover
to occur at the point in time where the substrands between
stickers have just relaxed and where further relaxation
requires sticker dissociation. Indeed, we find this is the case
within the rigid-network approximation. However, for the
elastically compliant network, the closed stickers themselves
are able to diffuse. The friction experienced by the closed
sticker depends on the level of deformation of the surround-
ing network, which is initially small. As the sticker diffuses
further, a larger portion of the surrounding network is
deformed and the contribution of “next-neighbor” stickers

FIG. 4. MSD of the center of mass of a nonsticky polymer against time (the
main panel) and the time-averaged end-to-end length (Re) distribution (the
inset). The number of real monomers per chain is fixed, while the level of
coarse-graining is varied through varying the number of beads, M, per chain.
The symbols and solid black curves represent the simulations and the theory,
respectively.
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starts to contribute to the friction. Clearly, the increase of the
friction increases rapidly beyond a certain characteristic dis-
tance. It is unknown what this distance might be, but it is likely
to be strongly dependent on the topology of the network. The
plateau value in Fig. 5(a) shows that for our simulations this
happens to occur when the MSD of the center of mass of chain
is approximately 10, i.e., when the center of mass of the chain
has diffused 3–4 times its end-to-end distance.

The elastic compliance not only affects the subdiffusive
motion of the chain, but also the sticky-Rouse diffusivity
DSR ¼ DRτR=τSR at times beyond the sticky-Rouse time.
While the analytical expression for the sticky-Rouse diffusiv-
ity accurately describes our simulations within the rigid-
network approximation, we find that it overestimates the
diffusivity of chains in an elastically compliant network. We
have investigated the consequence of this to the interpretation
of linear viscoelastic data, which are often used experimen-
tally to estimate the number of associations per chain, by
calculating the dynamic moduli G0 and G00 against the fre-
quency ω in Fig. 5(b). The data shown include nonassociat-
ing unentangled chains (Zs ¼ 0) and the unentangled sticky
chains of Fig. 5(a); i.e., chains with Zs ¼ 10 stickers within
the rigid-network approximation and with an elastically com-
pliant network. The simulated data (symbols) were obtained
from the relaxation modulus, G(t), through the multiple-tau-
correlator algorithm discussed in [67]. To obtain the dynamic
moduli G0 and G00, we have used the finite-element approach
from [68]. We have compared the data to the sticky-Rouse
model (curves), which is given by

G(t) ¼ G0

XN
p¼Zsþ1

exp � 2p2t
τR

� �

þ G0

XZs
p¼1

exp � 2p2t
τsZ2

s

� �
: (33)

In this equation, the first summation captures the high-
frequency bare Rouse modes (the number of Kuhn segments,
N, truncates the highest frequencies) and the second

summation captures the sticky-Rouse modes. The modulus
G0 is proportional to the number density of monomers and to
the thermal energy.

Figure 5(b) shows dominance of bare Rouse relaxation at
high frequencies, where all moduli will approach (in princi-
ple) the scaling relation G0, G00 / ω1=2. Discrepancies, such
as a roll-off of G00 at high frequencies, emerge due to the
finite number of modes/beads that are included in the simula-
tions. At decreasing frequencies, the moduli of the nonsticky
chains (triangles) decrease rapidly, while the moduli of the
sticky chains reach a plateau value that ranges down to
ω ¼ 1=τs. Within the rigid-network approximation (closed
circles), the modulus of the plateau is G0(ω) ¼ G0Zs in agree-
ment with the sticky-Rouse model in Eq. (33) for Zs ¼ 10.
However, if the network is elastically compliant (open
circles), the plateau value decreases and is better described if
the theory would be adjusted with an apparent number of
stickers Zs ¼ 4 (dashed curves). At lower frequencies
ω , 1=τs, the moduli rapidly decrease. In the simulations,
the moduli decrease much more rapidly than in the theory, as
also noted earlier in [50]. We find that this terminal relaxa-
tion time (we remind the reader that this relaxation time is
for unentangled chains entirely determined by sticker relaxa-
tion, i.e., not by SR [22,24]) is even further reduced for the
chain in an elastically compliant network. Consequently, the
peak of the dynamic modulus G00 is much narrower than in
the theory. We have estimated that the shape of this peak is
best described by Zs ¼ 4 within the rigid-network approxi-
mation and Zs ¼ 3 for the compliant network. This clearly
indicates that analysis of the dynamic modulus peak in rheo-
logical data (which is required when high frequencies are
experimentally inaccessible [9]) provides an underestimate of
the actual number of stickers per chain.

To obtain a wider view of the impact of the elastic com-
pliance on the dynamics of chains with various numbers of
stickers and sticker lifetimes, we have calculated the diffusiv-
ities of various chains within the rigid-network approxima-
tion and with a compliant network in Fig. 6. Panel (a) shows
that the predictions of [19] describe our simulations well
within the rigid-network approximation for chains with

FIG. 5. Linear rheology of a sticky chain with Zs ¼ 10, p ¼ 0:9, τs ¼ 200τR within the rigid-network approximation (open symbols) and with this approxima-
tion released (closed symbols). (a) MSD of the center of mass against time. (b) Storage, G0, and loss, G00, modulus in units of G0 against the frequency, ω,
plotted for the chain in (a) as well as for an nonsticky chain (triangles). There is fair agreement with the analytical sticky-Rouse model in Eq. (33) (solid
curves) for the sticky chain within the rigid-network approximation for the nonsticky chain. For the sticky chain with an elastically compliant network, the
plateau modulus decreases to that of the theory with Zs ¼ 4 (dashed curves).
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5, 10, 20 stickers with various sticker lifetimes, in particular,
in the regime where the sticky-Rouse diffusivity scales with the
sticker lifetime as DSR ¼ DRτR=τSR / 1=τsZ2

s , see Eq. (32).
Panel (b) shows that upon releasing the rigid-network approxi-
mation this scaling behavior persists, but rescaled with a prefac-
tor � 4. While this scaling regime is reached for the chains
with more than five stickers (i.e., above the percolation thresh-
old for network formation), this is not the case for the chains
with two stickers. Within the rigid-network approximation, this
originates from the fact that at sticker lifetimes a plateau is
reached where the chains with all stickers open dominate the
dynamics. Without the rigid-network approximation, the chains
cluster into linear “supramolecular” dimers, trimers, etc. through
an exponentially decaying cluster-size distribution [69], which
implies a distribution of diffusivities that strongly differs from
that predicted by the sticky-Rouse model. Hence, while our
simulation approach accounts for the elastic compliance of the
percolating network, it also captures the contributions of cluster
diffusion near and below the percolation threshold for network
formation.

B. Nonlinear dynamics: Steady state

Ordinary Gaussian polymer melts and solutions of narrow
molecular-weight distribution exhibit broad conformational

distributions in shear flow due to dynamic stretching, tum-
bling, and recoiling of the chains [40–42]. In extensional
flow, however, such chains do not tumble and recoil, and
their stretch distributions are narrow, see Fig. 7(a). Perhaps
surprisingly, by incorporating stickers into the chain these
stretch distributions become much wider, see Fig. 7(b). This
figure shows that the sticky chains exhibit an enormous dis-
persity in the chain stretch, as well as occasional hairpin con-
formations [Fig. 7(b)]. These are caused by the stochastic
binding and unbinding of stickers, where the network forces
may occasionally act in the opposite direction of the drag
forces exerted by flow.

To go beyond these qualitative observations, we have
quantified this phenomenon using steady-state stretch distri-
butions of polymers at various extension and shear rates in
Fig. 8. We have selected nonsticky polymers (Zs ¼ 0) and
sticky polymers below (Zs ¼ 2) and above (Zs ¼ 5) the per-
colation threshold for network formation: the chains with
only two stickers may only assemble into high-molecular
weight chains, while chains with five stickers may branch
into percolating networks. We have modeled the physics of
the stickers using the same description as in our previous
work on chains that are prealigned in the flow field [11]. We
have summarized the associated parametrization in the
caption of Table I. In extensional flow, above the sticky

FIG. 6. Sticky-Rouse diffusivity, DSR, against the sticker lifetime, τs for chains with Zs ¼ 2, 5, 10, 20 stickers with p ¼ 0:9 within a rigid network (a) and a
compliant one (b). The symbols are our simulation results, and the curves represent the sticky-Rouse model in [19]. The units are given in terms of the bare
Rouse diffusivity DR and the bare Rouse time, τR.

FIG. 7. Representation of simulated chain conformations in extensional flow for _ετR ¼ 2 for nonsticky (a) and sticky (b) polymers. While the variations in
stretch are narrow for nonsticky polymers, these variations are broad for the sticky polymers: when a sticker in a retracting chain segment binds to a neighboring
chain segment, this may disrupt the neighboring chain. The scale bar represents approximately a length 50Re, which is 65% of the fully extended chain.

FLOW-INDUCED CRYSTALLIZATION OF SILK 523



Weissenberg number, Wisticky ¼ _ετSR, with τSR being the
sticky-Rouse time we expect divergent stretching (albeit that
real divergence is obstructed by the maximum chain extensi-
bility λmax ¼ 75). We have calculated the sticky-Rouse time
as τSR ¼ [DR=DSR]τR, with the ratio between the sticky and
the bare diffusivity as presented above in Fig. 6. The relevant
results are summarized in Table I.

Equation (4) shows that in all cases the equilibrium stretch
distribution for zero-flow conditions (black curve) is
approached for small strain rates. For nonsticky chains
(Zs ¼ 0), a broad stretch distribution with a cutoff set by λmax

emerges in shear due to the dynamic stretching, tumbling,

and recollapsing of the chains. In extensional flow, the
distribution broadens only within a narrow range of strain
rates 0:9 , _ετR , 1:1 around the bare stretch transition,
Wi ¼ _ετR ¼ 1. Beyond the stretch transition, the stretch dis-
tribution is narrow and Gaussian and approaches λmax with
an increasing strain rate. This behavior qualitatively changes
upon incorporating stickers.

Figure 8 shows that the steady-state stretch distributions in
shear are similar to those of the nonsticky chains, while in
extensional flow the distributions of sticky polymers are
remarkably distinct from the nonsticky ones. In contrast to
the nonsticky polymers, the sticky polymers show broad

FIG. 8. Simulated steady-state stretch distributions of the end-to-end distance, Re, for various extension [(a), (c), and (e)] and shear [(b), (d), and (f )] rates for
a linear unentangled, nonsticky (Zs ¼ 0), and sticky (Zs ¼ 2 and Zs ¼ 5) polymers. For these simulations, τSR � τs ¼ 10τR (see Table I for all parameter
values). The black curve represents the contour-length fluctuations in quiescent conditions, given by Eq. (4).
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stretch distributions in steady-state extensional flow over a
broad range of flow rates. We have observed this behavior
previously in simulations where the chains were prealigned
in the flow field and where we invoked the rigid-network
approximation [11]. Our current simulations show that this
phenomenon persists when these approximations are
released, but also show a dynamic coexistence of stretched
chains, relaxed coils, and hairpins. Interestingly, there is a
qualitative similarity between the distributions of the chains
with two or five stickers, despite the fact that these are below
and above the percolation threshold for network formation,
respectively. This indicates that the enormous reduction of
the chain retraction rate due to the stickers does not necessi-
tate network formation: the formation of high-molecular
weight assemblies suffices.

We also find that the large fluctuations in stretch below
the formal stretch transition carry over from case of two
stickers per chain to multiple stickers [11]. (The stretch tran-
sition is defined at the condition _ετSR ¼ 1, with the
sticky-Rouse time obtained from the sticky-Rouse diffusivity
of Fig. 6 as τSR ¼ τRDSR=DR.) In particular, we find that for
small strain rates and large stretch ratios λ the stretch distribu-
tion has a power-law tail [see Eq. (18)] of which the width is
set by a _ε-dependent stretch exponent ν (see Sec. II B). We
have determined the stretch exponent from the distributions
of the chains with two and five stickers (we discuss the
numerical method in Subsection 3 of the Appendix) in exten-
sional flow with and without the rigid-network approxima-
tion and finite extensibility and plot these against the strain
rate in Fig. 9. As anticipated, we have been able to map the
stretch exponent of the chain with two stickers onto the ana-
lytical result in Eq. (25). To achieve that, it has to be taken
into account that the open state of the chain can be achieved
by opening either of the stickers; hence, τs in Eq. (25), which
models the simultaneous opening of all stickers, is replaced
by τs=2, and results in

ν ¼ �1� 1
(1� _ετR)

p

(1� p)
2τR
τs

þ 2
_ετs
: (34)

For chains with multiple stickers, no such analytic theory is

yet available; however, we do find a qualitative agreement of
the increasing power-law exponent with an increasing strain
rate.

For the chains with two and five stickers and with a frac-
tion p ¼ 0:9 of closed stickers, we also simulated the stretch
distributions while including finite extensibility and an elasti-
cally compliant network. Finite extensibility implies that
there is a cutoff of the power-law tail, which becomes appar-
ent with increasing (less negative) ν. Since the fluctuations in
λ diverge for ν � �3, this cutoff has a significant effect on
the tail of the stretch distribution upon approaching ν ¼ �3.
Figure 9 does confirm a broadening power-law stretch distri-
bution for the chains in a compliant network, but shifted to
higher strain rates, as expected from the faster sticky-
diffusion rates from Fig. 4.

C. Nonlinear dynamics: Transients

In our pursuit to understand the FIC of associating poly-
mers such as the silk protein, we are interested in capturing
the macroscopically observable stresses in start-up flow, and
to interpret crystallization rates in terms of the chain confor-
mations that underlie these stresses. To address these chal-
lenges, in this section, we will present the time-dependent
rate-normalized transient shear stress, σxy= _γ, and extensional
stress (σyy � σrr)= _ε, with the stress tensor (in units of energy
per molecule) given by

σαβ ¼ 3kBT
b2N

X
i¼1

Δsi�1ks,i
Qα,i

Δsi�1

Qβ,i

Δsi�1
: (35)

Focusing first on the results for nonsticky chains with a
finite extensibility λmax ¼ 75 in Figs. 10(a) and 10(b), we
reproduce the well-known qualitative features of their stress
transient [57]. For small Weissenberg numbers, _ετR , 1,
_γτR , 1 the polymers are able to relax, while for large strain
rates there is an overshoot in shear flow, which is related to

TABLE I. In our simulations of sticky polymers in nonlinear flow
conditions, we use as parameters p = 0.9 as the fraction of closed stickers (in
quiescent conditions), a sticker lifetime τs = 10τR, an activation energy Eact

= 8kBT, and a sticker dissociation length of ℓ = 1 nm. The maximum
extension ratio of the chain is λmax = 75. The intramolecular forces in
Eq. (5) are calculated by assuming a total number of N = 5525 Kuhn
segments and a Kuhn length of b = 0.4 nm. As we focus on chains with
Zs = 2 and 5 stickers, we here tabulate the ratio between the bare Rouse and
sticky-Rouse diffusivities, [DR/DSR], and relaxation times, [τR/τSR]. The
diffusivities were determined in Fig. 6, and the sticky-Rouse time is
calculated as τSR = [DR/DSR]τR [19].

Polymer model DSR/DR τSR/τR

Zs = 2 (rigid) 0.0949 ± 0.0002 10.54 ± 0.02
Zs = 5 (rigid) 0.021 56 ± 0.000 04 46.38 ± 0.09
Zs = 2 (compliant) 0.4331 ± 0.001 2.309 ± 0.005
Zs = 5 (compliant) 0.1050 ± 0.0002 9.52 ± 0.02 FIG. 9. (color online) Stretch exponent ν of the power-law tail of the stretch

distribution P/ λν for simulations of polymers with Zs ¼ 2 (circles) and 5
stickers (squares), within the rigid-network approximation (closed symbols)
and using elastic compliance and finite chain extensibility (open symbols).
The solid curve is given by the two-state model in Eq. (34) with τs ¼ 10τR
(see Table I for all physical parameter values). For ν . �3 (horizontal line),
the fluctuations in stretch diverge; this leads to a cutoff in the stretch distribu-
tion for chains with finite extensibility, see Fig. 8.
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the onset of tumbling and recollapsing of stretched chains,
and in extensional flow there is a sharp increase in the exten-
sional stress until a plateau due to the finite extensibility of
the chains is reached. Because of the thermal fluctuations
and dispersity in the initial chain conformations, Fig. 10(b)
shows broadening of the stretch distribution at early times.
At late times, when all chains are aligned (at the level of the
beads), a sharp peak emerges at high stretches near the
maximum extensibility λmax.

This sharp peak in the stretch distribution is a fingerprint
for nonsticky linear polymers in extensional flow and will
not be visible for the sticky polymers, as we will now show
for Zs ¼ 5. We plot the resulting start-up stresses and stretch
distributions in Figs. 10(c) and 10(d).

Qualitatively, we find similar shear and extensional vis-
cosities as in the nonsticky case, although there is now no
distinctive overshoot in shear flow. In extensional flow, the
stresses at long time scales have shifted to higher values
because of the contribution by the reversible cross-links.
Further, while nonsticky polymers show strain hardening
only for _ετR . 1, the sticky ones also show strain hardening
for smaller strain rates _ετs . 1. For strain rates smaller than
that we identify large fluctuations in the transient extensional
stress, which are caused by temporary exponential stretching
of chain segments between closed stickers that rapidly retract
to a near-relaxed state when the stickers open [10]. For strain

rates 0:3 , _ετs , 0:5, these fluctuations fill up a power-law
distribution whose stretch exponent is depicted in Fig. 9. For
higher rates, the finite extensibility causes a truncation of this
power law tail.

The dynamics by which the stretch distributions evolve in
extensional flow above the stretch transition ( _ετs ¼ 2) is
shown in Fig. 10(d). At early times, the stretch distribution
closely resembles the equilibrium distribution of Eq. (4). As
time proceeds, the distribution broadens exponentially with
time as ln λ/ _εt until the steady state is reached after a time
_ετ / ln λmax. This is in qualitative agreement with the predic-
tions of the two-state model that we derived in Eq. (29) of
Sec. II B.

D. Critical specific work

Now that we have captured how stickers lead to broad
stretch distributions, we will investigate how these distribu-
tions affect the critical work for FIC. The usual predictor for
FIC is the “Kuhn segment nematic order parameter,”
P2,K [ [0, 1]. If P2,K ! 1 (see, e.g., [3]), virtually all chains
are aligned at the level of the Kuhn segments, i.e., they are
completely extended/stretched in the direction of the flow
field. However, in this case of high chain heterogeneity, we
expect this average measure to be a poor descriptor. We
know that the critical nuclei will be dominated by the small

FIG. 10. (a) and (c) Simulated rate-normalized transient extensional and shear stresses averaged over 50 polymers for the nonsticky (a) and the sticky (c) case.
The sticky polymer exhibits strong fluctuations for _ετs ¼ 0:5, which is below the stretch transition (at _ετs � 1, see Table I). (b) and (d) Transient stretch distri-
bution of the end-to-end distance, Re, in extensional flow for the nonsticky (b) and sticky (d) chain at selected strain rates. The error bars in (d) represent half of
the standard error of the mean. All physical parameter values are given in Table I.
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fraction of highly stretched chains and that it is the oriented
segments in these chains only that promote crystallization.
To model this extremum-dominated physics, therefore, we
will assume that FIC may commence when a critical fraction,
Ps, of chain segments of some length Δs* [ [0, 1] have
stretched beyond a critical stretch ratio Lsλ

*
max , where λ*max

¼ λmax

ffiffiffiffiffiffiffi
Δs*

p
is the maximum stretch of the chain segment

and L*s [ [0, 1] a parameter that may be viewed as proxy for
chain stretch at the Kuhn length of this extremely stretched
chain fraction. Hence, the criterion for FIC may within our
interpretation be formulated as

ðλ*max

Lsλ
*
max

P(λ, ts) dλ � Ps, (36)

where P(:) is the transient stretch distribution function and ts
is the time into the process of startup flow at which the crite-
rion is satisfied. Essentially, this criterion provides a predic-
tion for the time required to form the first nuclei and, hence,
the time ts should not be confused with the fixed time in FIC
experiments [35–37] during which a different number of
nuclei may form depending on the strain rate. A comparison
to those experiments would require knowledge of the physi-
cal relationship between the nucleation rate and the confor-
mational distribution; here, we have proposed a hypothetical

condition that is likely to correlate to a fixed nucleation rate.
For associating polymers, a natural measure for the length of
flow-crystallizable chain segments is Δs* ¼ 1=(Zs þ 1); in
general, however, measures for Ps, Ls, and Δs* will have to
be determined through experimentation and (atomistic) MD
simulations [15–18].

In this section, we will employ simulations with 50 chains
of a fixed number of 11 beads (i.e., with 10 chain segments,
giving Δs* ¼ 1=10), and we will monitor the maximum
stretch among the total of 500 chain segments (i.e.,
Ps ¼ 1=500). The time-evolution of the maximum stretch
will enable us to screen how various values of Ls require a
different processing time ts and a different input of specific
energy. We obtain statistics on this relationship by averaging
our results over five simulations with different initialization
“seeds” of the random-number generator. We will discuss the
implications of the criterion in Eq. (36) by comparing it to a
measure of the (mean-field-type) nematic order parameter.
At our level of coarse graining, the highest resolution of
nematic chain alignment is captured using the nematic order
parameter P2,s [ [0, 1], which is the largest eigenvalue of
the nematic order tensor P2,s ¼ (3huui � 1)=2, where u is
the unit vector tangential to the backbone of the chain.
(We remark that this nematic order parameter is an overesti-
mate of the Kuhn segment nematic order, i.e., P2,s . P2,K.)
In Fig. 11, we have calculated the critical specific work, W ,

FIG. 11. (color online) Nematic order parameter, P2,s and characteristic stretch ratio, Ls, against the specific work (see the main text) for sticky (closed
symbols) and nonsticky (open symbols) polymers in shear (left) and extensional (right) flow. The symbols are obtained from simulations with various strain
rates for a chain with Zs ¼ 5 with an elastically compliant network. All physical parameter values are given in Table I.
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as given in Eq. (1), needed to achieve values of P2,s and Ls
in the range from 0 to 1 for nonsticky (Zs ¼ 0) and sticky
(Zs ¼ 5) chains for various shear and extensional rates.

The top panels of this figure give the nematic order
parameter, P2,s, and the measure for stretch fluctuations, Ls
against the critical specific work. For large values of the criti-
cal work, both measures converge, which suggests that both
measures can interchangeably used as predictors for FIC for
nonsticky chains. We notice that the critical work in shear
(left) and extensional flow (right) shows similar trends well
above the stretch transition (the stretch transition of the bare
chain is _ετR ¼ 1). Just above this transition, the critical work
required is relatively large. This implies a monotonically
decreasing critical work with an increasing strain rate, which
is due to the suppression of energy dissipation by recoiling
of the chains (we discuss this in more detail in Fig. 12). This
is in contrast to the typical behavior in experiments on nonas-
sociating polymers (e.g., the FIC of HDPE [7]), where the
critical work increases with an increasing strain rate. We
argue this discrepancy occurs because we here consider
unentangled rather than entangled chains. Finally, the top
panels of Fig. 11 confirm the expected behavior where the
nematic order parameter (closed symbols) is typically larger
than the stretching parameter (open symbols): with an increas-
ing specific work, the chains first align and then stretch.

This behavior is crucially altered for the sticky polymers,
as shown in the bottom panels of Fig. 11. We find that the
alignment of the chains requires more critical work in both
shear (left) and extensional flow (right), which is due to the
fact that the full alignment of the chains requires the opening
of intermolecular associations. On the other hand, the stretch-
ing of chain segments can take place before global chain
alignment. (Note that the stretch transition is _ετR � 0:1 for
this system, see Table I.) The stretching parameter (open
symbols) follows a sharp sigmoidal dependence against the
critical work and rapidly outgrows the alignment parameter
(closed symbols). This is possible because the stretching
parameter provides information about a fraction Ps ¼ 1=500
of chains in the tail of the distribution, while the alignment

parameter provides information about the mean properties.
This supports our hypothesis that FIC may be achieved at a
small critical specific work by exploiting the stochastic
nature of associating polymers.

Given either a Ls or P2,s criterion for critical nucleation,
we are interested how the strain rate affects how much critical
specific work, W , is needed, and at what time scale, ts this
criterion is achieved. To investigate this, we focus on hori-
zontal lines/cross sections of Fig. 12 (i.e., at fixed values 0:6
and 0:8 of both Ls and P2,s). For the data points along these
lines, we plot the critical work, W , and the time scale, ts, in
Fig. 12. The left panel shows that the time scale scales as
ts /Wi�1, as one may expect and discuss in more detail
below. Below the stretch transition, this dependence becomes
stronger: under these conditions many chain stretches are
attempted, but fail due to sticker opening and lead to energy
dissipation through chain retraction. This crossover between
two regimes qualitatively agrees with that found in Fig. 2 of
the work by Holland et al. on silk [7]; more dedicated
research is needed to investigate this observation.

The right panel of Fig. 12 shows the critical specific work
needed to achieve a certain degree of alignment, P2,s, or of
stretch fluctuations, Ls, in shear (open symbols)
and extensional flow (closed symbols), against the sticky
Weissenberg number. Evidently, a high degree of overall
alignment/nematic order requires much larger specific work
than a small fraction of large stretch fluctuations does, as dis-
cussed in Fig. 11. Having in mind our overarching proposi-
tion that crystallization may occur in response to stretch
fluctuations, we now focus on the measure for Ls. We remark
that for the system we studied, the stretch transition in the
absence of stickers takes is located at Wisticky ¼ _ετSR � 10
(because τSR � 10τR, see Table I). For smaller strain rates,
Wisticky , 10, we find there is a minimum in the specific crit-
ical work near the stretch transition Wisticky � 1. Indeed,
while large stretches are achieved just below the stretch tran-
sition Wisticky , 1 due to long power-law tails in the stretch
distribution [10], many attempt fluctuations are needed
before the required stretch value is achieved. Due to the

FIG. 12. The critical time (left) and the specific critical work (right) against the sticky Weissenberg number, Wisticky ¼ _ετSR, _γτSR, for various Ls and P2,s cri-
teria for the critical condition. The open symbols were calculated in shear and the closed ones in extensional flow. The values are obtained for a chain with
Zs ¼ 5 with an elastically compliant network. It is useful to interpret the strain rates in relation to the stretch transition for the sticky chains in extension at
Wisticky ¼ 1, where the “sticky” Weissenberg number is Wisticky � 10Wi ¼ 10 _ετR, with Wi being the Weissenberg number of the nonsticky chain. This factor
10 is nonuniversal and depends on the number and lifetime of stickers, see Table I for all physical parameter values. The solid curves are given by Eq. (40) for
Ls ¼ 0:6 and for Ls ¼ 0:8.
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energy dissipation of such unsuccessful attempts, the specific
critical work increases with a decrease in strain rates. Above
the minimum, the specific work increases and eventually
reaches a plateau.

We explain the increase in the critical specific work with
an increasing strain rate in terms of the two-state model that
we introduced in Sec. II. We argue that the stress is dominated
by the contributions of stretched chains in the closed state,

σxx(t) ¼ c

ð
P0(λ, t)λ(t)

2 dλ, (37)

with c being the constant, assuming that the open chains are
in a relaxed state. Here, P0(λ, t) is the stretch distribution of
the closed chains, of which we will discuss the dynamics
below. We will then calculate the critical specific work as
W ¼ Ð ts

0 σxx _ε dt. To calculate W , we first will determine ts
using the criterion

ðλmax,i

Lsλmax,i

P0(λ, ts) dλ � Ps, (38)

which, as before, implies a minimum concentration of chains
with a stretch ratio of at least λs ¼ Lsλmax,i. Second, we will
need an expression for the time evolution of the probability
density P0.

To obtain P0, we will assume that all chains that have
(temporarily) opened are sufficiently relaxed compared to the
most stretched chains to have a negligible contribution to the
overall stress σxx. Therefore, we will only take into account
the loss of strongly stretched chains by opening rate kopen and
ignore the contribution of closing events by rate kclose. We
will further use the initial condition P(λ, 0) ¼ δ(1� λ), with
δ(:) being the Dirac delta distribution to represent a narrow
stretch distribution at time t ¼ 0. The dynamical equation in
Eq. (21) then predicts that the Dirac delta distribution in time
shifts to high stretch values along the λ axis, as

P0(λ, t) ¼ δ( ln λ� _εt)λ� 1þ1=( _ετs)ð Þ, (39)

with an amplitude that decreases in time due to sticker
opening (we present the derivation in the first two paragraphs
of Subsection 2 of the Appendix).

Equation (39) shows that the critical stretch and the criti-
cal time are related by ts ¼ ln λs= _ε, which is in agreement
with our simulated results displayed in Fig. 11. We insert this
equation into the expression for the critical specific work,
W ¼ Ð ts

0 σxx _ε dt, and find

W( _ε) ¼ c 1� 1
_ετs

� ��1

	 exp 1� 1
_ετs

� �
ln λs � 1

� �
, for _ε . _εmin, (40)

where _εmin is the minimum strain rate for which the criterion
in Eq. (38) is obeyed. This function is plotted in Fig. 12(b).
It diverges at _ετs ¼ 1 (this divergence is not followed by the
simulation data, because stochastic closing events that

generate new bound chain segments), reaches a minimum, and
then monotonically increases toward a plateau value.
Physically, this plateau value represents the case where the
entire distribution of chains is stretched to reach the critical
stretch value λs. In this case, the concentration of stretched
segments far exceeds the critical concentration, and more
energy has been put into the system then needed. By decreas-
ing the strain rate, an increasing number of stickers are able to
open and the stress is relaxed, in turn decreasing the critical
specific work to achieve the critical condition in Eq. (38). This
supports our proposition that the stochastic nature of the
binding and unbinding of associations enables molecularly
engineer associating polymers to undergo FIC at low energetic
costs. In particular, we have shown, using simulations and an
approximate theory in Eq. (40), that there is an optimum strain
rate at which the critical work for critical stretch is minimized.

IV. DISCUSSION AND CONCLUSIONS

This work has shown that the transient evolution of the
chain-stretch distribution of associating “sticky” polymers in
shear, and especially extensional, flow possesses an
extremely rich structure. The theoretical and numerical inves-
tigations reported here were driven by the observation that
the silk protein (i) undergoes efficient, chemically tunable,
FIC and (ii) can be modeled as an associating/sticky polymer.
Our findings have implications for the interpretation of silk-
spinning data, as well as to the development of novel associat-
ing polymers and the computational modeling tools (we intro-
duced a “sticky” sliplink model and an analytical two-state
master equation, which may be transferable to also address the
peculiar dynamics of ring polymer in flow [43–45]).

Regarding silk rheology, we have theoretically confirmed
our hypothesis that the stickers between chains may reduce the
critical specific work to induce FIC under reasonable assump-
tions for critical crystallization criteria. In our approach, we have
adopted the view that FIC may commence when a sufficient
concentration of chains is aligned at the level of the Kuhn seg-
ments. However, in contrast to the ensemble-averaged approach
where the Kuhn segmental nematic order parameter is measured
as a predictor for FIC, we have assumed that a critical concen-
tration of strongly stretched chain segments in the tail of the dis-
tribution is a sufficient condition for crystallization. Indeed, by
comparing a measure for the stretch fluctuations to the
(ensemble-average) nematic order parameter, we have found
that the stickers hamper initial chain alignment (chain alignment
is slowed down by the need for stickers to dissociate), while the
segmental stretch is facilitated by the closed stickers.
Importantly, our analysis revealed that the incorporation of stick-
ers enables a significant reduction in the input of specific work
needed to achieve large stretch fluctuations and, consequently,
may reduce the energy requirements for FIC.

Focusing on our finding that chain alignment at low, non-
stretching, flow rates requires less specific work in the
absence of stickers (and presumably for low sticker lifetimes)
than with stickers, while the stretching of the chains at high
rates is helped by long sticker lifetimes, we speculate that
control over both the structural aspects of the final material
and over the specific work needed is possible through time-
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or position-dependent sticker lifetimes. We argue this can be
achieved through external chemical control. Indeed, during
its larval life cycle, the silkworm stably stores its silk solu-
tion at a high viscosity, but just prior to silk spinning it
lowers the viscosity through an increase in the potassium
concentration through a decreasing lifetime of calcium
bridges (stickers) [8,9]. This we can now interpret as a mech-
anism to ease chain alignment in flow. Intriguingly, down-
stream the spinning duct the acidity increases [34], which we
expect to increase the stability and hence the lifetime of the
calcium bridges, and hence enhance local chain stretching,
see Fig. 1, which may, in turn, disrupts the solvation layer of
the protein and induce efficient crystallization [7,13,15–18].

While this seems a compelling mechanism for efficient
FIC, it is not yet clear how this process may be optimized.
The experimental accessibility of these and other questions
has come in reach owing to recent advances in controlling the
content of metal cations in silk feedstock [70]. In the case of
B. mori silk, we identified a regular spacing of the negative
charges along the backbone of the chain, with strands of
approximately 500 uncharged amino acids between; the length
of these sticker strands is of the order of the entanglement
molecular weight [9]. The regularity of the spacing and the
coincidental similarity between the number of stickers and
entanglements suggests some degree of evolutionary optimiza-
tion. The functionality of ordered- versus random copolymers
is of high importance from a synthetic polymer chemistry
point of view and needs to be addressed using simulations that
include both associations and entanglements.

We conclude that our modeling approach leaves us well
prepared to investigate the ways in which the evolution of
silk-producing organisms may have exploited the potential
optimal strategies for efficient fiber processing. The next
piece of physics to add to this account of the rheology of
polymers with temporary associations, not only for modeling
silk proteins but also general associating polymers, concerns
the interaction between entanglements and associations in
strong flow. We anticipate that this will further enrich the
ongoing debate in polymer physics on the physics of entan-
glement generation and destruction (i.e., “entanglement strip-
ping”) in nonlinear rheo-physics, as well as continue the
account of how silk-forming organisms point to novel rheo-
physics of flow-induced phase-transformations.
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APPENDIX

1. Algorithm

Because of the large distribution of chain stretch in the
conditions we are interested in, there is also a large distribu-
tion of opening rates; in our previous work, we used small
time steps in which the chain conformation was updated, and
each closed pair had a sufficiently small opening probability.
Here, we significantly improve this algorithm by enabling
much larger time steps between conformational updates, and
during which the stickers may open and close many times,
see Fig. 3.

In our algorithm, we update the chain conformation using
the Brownian dynamics equation from Sec. II A using a time
span Δt. Depending on the opening and closing rates, during
this time span, Δt1 ; Δt, the sticker configuration may be
updated many times or not at all according to a kMC scheme
[64–66]. In every kMC step, the rate at which any opening or
closing event may occur is calculated as WT ¼ Wa þWd,
with

Wa ¼ kaNopen(Nopen � 1)=2, (A1)

the sum of closing rates and

Wd ¼
XNclosed=2

q¼1

kd,q, (A2)

the sum of dissociation rates, where kd,q differs for the differ-
ent sticker pairs due to dispersity in chain tension. In these
expressions, Nopen and Nclosed are the number of open and
closed stickers, respectively; Nopen(Nopen � 1)=2 is the total
number of possible associations, and the index q sums over
all Nclosed=2 pairs of closed stickers. Using this sum of rates,
the time Δt2 at which the first opening or closing event
occurs is

Δt2 ¼ � 1
WT

ln (u), (A3)

with u [ (0, 1] being the uniform random number (our code
uses random numbers using the open-source SFMT library
[71]). If Δt2 exceeds the time span Δt1, no opening or closing
events occurs. However, if Δt2 , Δt1, then a second random
number [ [0, 1] is drawn, and a closing event is selected
with probability ka=WT, and a dissociation event q is selected
with probability kd,q=WT. After updating the configurations
of the stickers, the time span is updated to Δt1 ¼ Δt1 þ Δt2.
The kMC scheme is terminated when Δt2 . Δt1, following
which the chain conformation is updated.

While in the linear rheological conditions we solve the
dynamics using a fixed time step, in strong flow we imple-
mented an adaptive time step to handle the large and fast
fluctuations in stretch that emerge in some parameter regimes
of the system. In every iteration n, the time step for the next
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iteration is updated as

Δtnþ1 ¼ Δtn min
Qi

tolerance
error

� �0:25

, (A4)

where an error and tolerance are calculated for the change of
each end-to-end vector Qi. We defined the error value for
each change in Qi as error ¼ jΔQn

i j=Qmax, with Qmax set by
λmax. For the tolerance value, we use scalar values tol� and
tolþ depending on whether jQn

i j is smaller or larger than a
certain cutoff set by λcutoff , λmax. Above the cutoff, we
avoid numerical instabilities due to the singularity at λmax

by using

ks(λ . λcutoff ) ¼ ks(λcutoff )	 λ

λcutoff

� �α

: (A5)

For continuity of the derivative, α ¼ 4c2=(3� 4c2 þ c4),
with c ¼ λcutoff=λmax; for a cutoff λcutoff ¼ 0:9λmax even this
smooth potential is steep (α � 8) and in practice we use a
softer potential (α ¼ 4).

2. Asymptotic limits of the two-state model

The two-state master equation in Eqs. (21) and (22) has
analytical solutions for early times where advection domi-
nates over the sticker dynamics, and for late times where the
sticker dynamics is fast compared to the rate by which the
deep tail of the stretch distribution fills up. We obtain
these analytical solutions in both cases using the Laplace
transform of Eqs. (21) and (22) in the limit of large stretches
λ . λ* � 1, which is

@~P0

@y
¼ �(kopen þ _εþ s)~P0 þ kclose~P1 þ P0(0, y)=s, (A6)

@~P1

@y
¼ þkopen~P0 � (kclose þ _εþ s� τ�1

R )~P1 þ P1(0, y)=s,

(A7)

where ~Pi(s, y) ; L Pi(t, y)f g is the Laplace transform of Pi for
i ¼ 0, 1 [hence, we have used the standard Laplace transform
of the time derivative L @Pi=@tf g ¼ s~Pi(s, y)� Pi(0, y)]. We
will obtain the early- and late-stage solutions by using differ-
ent initial conditions Pi(0, y) at t ¼ 0 and boundary conditions
that we will discuss below.

Focusing first on the early-stage limit, we consider a
narrow distribution P(λ, 0) ¼ δ(1� λ*) of chain segments
between closed stickers at time t ¼ 0, with δ(:) being the
Dirac delta distribution. For early times, these segments
stretch exponentially with time until the stickers open. To
inspect how these segments evolve, we insert the initial con-
ditions into Eq. (A6), which gives

@~P0

@y
(λ, s) ¼ �(kopen þ _εþ s)~P0(λ, s)þ cδ(1� λ), (A8)

with ~P0(λ, s) being the Laplace transform of P0(λ, s).
The solution is of the standard form ~P0 / exp(�sτ), which
after inverse Laplace transform gives Eq. (39) in the
main text.

To solve Eqs. (21) and (22) in the long-time limit, we
make the useful approximation that at an intermediate time
t ¼ t* the distribution is at steady state for small stretches
λ 
 λ*, while the large-stretch tail of the distribution is unoc-
cupied. Hence, at t ¼ t*, the distribution is given by

P0(0, y) ¼ c0

c
Peq
0 Θ(� yþ y*), (A9)

P1(0, y) ¼ c0

c
Peq
1 Θ(� yþ y*), (A10)

where y* ; ln λ* and Θ is the Heaviside step function.
The prefactor,

c0 ¼ 1þ c
1

1þ ν
e(1þν)y*

� ��1

. 1, (A11)

normalizes the distribution. We now set λ* to a large value,
so c0 � c, and at late times t . t* the filling of the tail of the
distribution (for λ . λ*) occurs with a negligible effect on
the distribution at small stretches.

Of which the solution is of the form

~P0(s, λ) ¼ cþ0 (s)λ
νþ(s) þ c�0 (s)λ

ν�(s), (A12)

~P1(s, λ) ¼ cþ1 (s)λ
νþ(s) þ c�1 (s)λ

ν�(s), (A13)

with ν�(s) and νþ(s) being the eigenvalues given by

ν+ ¼ 1
2 _ε(1� _ετR)

(2 _εþ kopen)(1� _ετR)� _ετRkclose þ s(1� 2 _ετR)
�

+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(sþ kopen(1� _ετR))

2 þ 2 _ετR(s� (1� _ετR)kopen)kclose þ ( _ετRkclose)
2

q �
, (A14)

and where the coefficients, c+i , follow from the boundary
condition at y ¼ y*.

At late times, i.e., for small s, we have
ν�(s) � νeq � (s= _ε)ν0 þ (1=2)(s= _ε)2ν00, where νeq is given by
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Eq. (25), and where

ν0 ;
dν

d(s= _ε)

����
s¼0

¼ 1� 1
1�Wi

þ 1

1�Wisticky

� �
, (A15)

ν00 ; 2pWi
Wisticky

(1�Wisticky))3
, (A16)

are both positive, provided that the sticky Weissenberg
number is sufficiently small, Wisticky ; Wi=(1� p) , 1
[10], where Wi ¼ _ετR is the Weissenberg number of the
chain without stickers.

From the boundary condition, we find that the coefficients
must be of the form c+i / 1=s. As the “+” solution leads to a
non-normalizable solution, however, cþi ¼ 0, and the solu-
tion is

~P0(s, λ) ¼ c

s
(λ=λ*)

ν��(s= _ε)ν0�1
2(s= _ε)

2ν00þO(s3), (A17)

~P1(s, λ) ¼ kclose
kopen

_ε

( _ε� τ�1
R )

~P0(s, λ): (A18)

Finally, after taking the inverse Laplace transform, we have

P0(t, λ) ¼ c
λ

λ*(0)

� �νeq

Θ(ν0 ln λ=λ* � _εt), (A19)

P1(t, λ) ¼ kclose
kopen

_ε

( _ε� τ�1
R )

P0(t, λ): (A20)

Hence, the exponentially extending front of the distribution
is located at the stretch ratio

λ*(t) ¼ λ*(0) exp 1� 1
1�Wi

þ 1

1�Wisticky

� ��1

_ε(t � t*)

" #
:

(A21)

We have checked the validity of our interpretation of a
narrow moving-front by also calculating the width of this
front. To do this, we consider the relaxation function f (t)
¼ P(y, t)=Peq(y) with again y ¼ ln λ, and P and Peq are the
transient and steady-state stretch distributions, respectively. A
narrow front that reaches y at time τ and reaches a steady
state at time τ þ Δ may be approximated by

f (t) ¼
0, for t , τ,
(t � τ)=Δ, for τ 
 t , τ þ Δ,
1, for, t � τ þ Δ:

8<
: (A22)

The Laplace transform of this function is

L{f } ¼ 1
s2Δ

e�sτ 1� e�sΔ
� �

: (A23)

We compare this result to the solution of the two-state model

in Eq. (A14) through a second-order Taylor expansion of the
exponential terms

L{f } ¼ 1
s

1� (τ þ 1
2
Δ)|fflfflfflfflffl{zfflfflfflfflffl}

(ν0= _ε) ln y

sþ 1
2
(τ2 þ 1

3
Δ2 þ Δτ)|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

(ν00= _ε2) ln y

s2

0
BBB@

1
CCCA:

(A24)

From the linear term, we find τ þ Δ=2 ¼ (ν0= _ε) ln y [as
expected from Eq. (29)]. After substitution into the second
term and elimination of this variable, we find the width of
the front to be

Δ ¼
ffiffiffiffiffi
12

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(ν00= _ε) ln y� (ν0= _ε)2 ln y

q
: (A25)

The relative width, compared to the location of the front
(τ þ Δ=2), is

Δrel ;
Δ

τ þ Δ=s
¼

ffiffiffiffiffi
12

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ν00

(ν0)2
� 1

s
: (A26)

The relative width calculated in the time domain also repre-
sents the relative width of the (logarithmic) stretch distribu-
tion,

Δrel ;
y(τ þ Δ)� y(τ)
y(τ þ Δ=2)

: (A27)

Upon approaching the strain rate where the mean
stretch diverges, i.e., at Wisticky ¼ 1, the relative width of the

front diverges as Δrel �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
24pWiWisticky=(1�Wisticky)

q
.

In this equation, the bare Weissenberg number is
Wi ¼ Wisticky(1� p)τR=τs. Hence, if the sticker lifetime is
τs ¼ 10τR and the fraction of closed stickers is p ¼ 0:9 (as in
our simulations), then significant broadening of the front
only happens very close to the stretch transition,
Wisticky . 0:99. This verifies that our approximation of a
narrow front is indeed accurate.

3. Power-law regression

To determine the sticky-Rouse diffusivity, DSR, from the
MSD of the center of mass,

lnMSD ¼ ln (6DSR)þ ln t, (A28)

as a function of time t, and the stretch exponent, ν, from the
probability distribution,

lnP ¼ cþ ν ln λ, (A29)

as a function of the stretch ratio, λ, we write both equations
in the form

y ¼ aþ bx (A30)
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and perform common linear regression. However, because
both power-laws represent asymptotic behavior for large x,
there is also a cutoff value, xcutoff , above which they apply.
We determine the cutoff by minimizing

χ2(a, b, i0) ;
1

Ndata þ 1� i0 � Npar

XNdata

i¼i0

(ydatai � yfiti (a, b))
2

σ2
i

,

(A31)

with respect to a, b, and i0 (note that xi0 ¼ xcutoff ); σ i is the
uncertainty on the simulated y data. Here, we set b ¼ 1 fixed
and the number of free parameters Npar ¼ 1 for extracting the
sticky-Rouse diffusivity from the MSD data. To determine
the stretch exponent (ν) from the stretch distributions, we use
the same approach but leave b as a free fitting parameter and
set Npar ¼ 2.
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