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A nonlinear regularization method for the calculation of relaxation spectra 
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Abstract." It is well known that the relaxation spectrum characterizing the linear 
viscoelastic properties of a polymer melt or solution is not directly accessible by 
an experiment. Therefore, it must be calculated from data for a material func- 
tion. With Tikhonov regularization the relaxation spectrum in the terminal and 
plateau region can be calculated from data for a material function in the cor- 
responding region. Serious difficulties arise however, if the spectrum should be 
determined in a larger range. These difficulties are caused by the considerably 
different contributions at short and long relaxation times. We show that these 
difficulties can be avoided by a nonlinear regularization method. 
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regularization 

1. Introduction 

The relaxation spectrum is a fundamental quantity 
in the linear theory of  viscoelastic fluids. If this spec- 
t rum is known, other material functions can be 
calculated without difficulties. In addition, this spec- 
t rum is often used to study the rheological properties 
of  polymer blends. Unfortunately,  it is not directly 
accessible by an experiment and it must be calculated 
from data for a material function. As this calculation 
requires the inversion of  a Fredholm integral equation 
of  the first kind the determination of  the relaxation 
spectrum is an ill-posed problem and specific methods 
such as Tikhonov regularization (see, e.g., Groetsch 
(1984)) must be used to solve it. 

The application of  regularization methods in 
rheology has been proposed and discussed by Wiff  
and Gehatia (1975), Wiff  (1978), Friedrich and 
Hofmann  (1983), Honerkamp and Weese (1989), 
Honerkamp (1989) and Elster and Honerkamp 
(1991). Elster et al. (1992) have shown that Tikhonov 
regularization is a useful tool for the calculation of  
the relaxation spectrum in the terminal and plateau 
region from data characterizing a material function in 
the corresponding region. However, in many cases the 
time temperature superposition principle (see, e.g., 
Ferry (1980)) can be employed leading to master- 
curves which characterize a material function in a 

larger range. In this case, the calculation of the relax- 
ation spectrum in the corresponding range is con- 
nected with serious difficulties. These difficulties are 
caused by the considerably different contributions in 
the relaxation spectrum: for short relaxation times 
there is a huge contribution characterizing the rheo- 
logical properties in the transition and glassy region 
and for long relaxation times there is a very small con- 
tribution which describes the theological properties in 
the terminal and plateau region. In this article we pro- 
pose a nonlinear regularization method by which the 
difficulties can be avoided. 

The following section includes a short description 
of  the determination of  relaxation spectra with 
Tikhonov regularization. The difficulties which arise 
when this method is applied to rheological data are il- 
lustrated in Sect. 3. In Sect. 4 it is shown that these 
difficulties can be avoided by a nonlinear regulariza- 
tion method. This method was used to calculate the 
relaxation spectra of several polystyrene samples. The 
results are presented in Sect. 5. 

2. Determination of relaxation spectra 
with Tikhonov regularization 

As pointed out in the introduction, the relaxation 
spectrum h( r )  is related to experimental accessible 
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material functions by Fredholm integral equations of 
the first kind. For the storage modulus G'(co) and the 
loss modulus G" (co) these relations are given by (see, 
e.g., Ferry (1980)) 

+c~ 6022.2 
G'(og) = j l+---~-~-r2h(2.)d(ln2. ) 

- o o  

(1 a) 

+ o o  60T 

G"(co) = - = 1  j +(.o27: ~ h ( r ) d ( l n r ) "  (1 b) 

When Tikhonov regularization is used for the 
determination of the relaxation spectrum from data 
for the dynamic moduli, an estimate for the spectrum 
h (r) is defined by the minimum of the quantity 

i = i O'~ --'-~ 1 +-----~2 h (r) d(ln r) 

1 co i r  
+ - -  G~ ' ~ -  h(r)d( ln  r) 

+2  j h(r)  d ( ln r )  , (2) 

where G~ ~, '°  "° "~ . . . .  G n , G ~ . . . . .  G n denote the ex- 
perimental data for G'(o~I) . . . . .  G ' (on) ,  

t t t  G"(co~) . . . . .  G"(co,) and ~ . . . . .  a , , a T ,  . . . .  a ,  are 
the corresponding errors. With an appropriate value 
for the so-called regularization parameter 2, the first 
and the second term on the righthand side of Eq. (2) 
force the result to be compatible with the data. The 
third term leads to a smooth estimate for the spectrum 
h(r). 

The calculations in the following section have been 
performed with the program FTIKREG developed by 
Weese (1992). This program is an implementation of 
a solution method for Fredholm integral equations of 
the first kind based on Tikhonov regularization. It of- 
fers the ability to determine an appropriate value for 
the regularization parameter and to consider positivi- 
ty constraints. Both features have been used to cal- 
culate the relaxation spectra shown in Sect. 3. 

3. Difficulties with Tikhonov regularization 

In order to illustrate the difficulties in the deter- 
mination of relaxation spectra with Tikhonov regular- 
ization a spectrum h(r)  (Fig. l a) has been chosen 
which could represent the linear viscoelastic proper- 
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Fig. 1. Relaxation spectrum (a) and simulated data (b) used 
to illustrate the difficulties in the determination of relaxa- 
tion spectra with Tikhonov regularization 

ties of a polymer melt in the terminal, plateau, transi- 
tion and glassy region. For this spectrum simulated 
data (Fig. 1 b) have been generated by evaluating the 
corresponding dynamic moduli G'  (co) and G" (o9) at 
different values of o~. Then a Gaussian random num- 
ber corresponding to a relative error of 3% was 
added. 

Figure 2 shows the result for the relaxation spec- 
trum calculated with Tikhonov regularization from 
the simulated data. Though the data characterize the 
entire spectrum, only the large peak at short relaxa- 
tion times is well represented. For long relaxation 
times the errors of the spectrum are so large that the 
result is completely unsatisfactory. 

The result is even worse, if the relaxation spectrum 
is calculated from data in the terminal, plateau and 
transition region (10 - 7  S -  1 < 09 < 1 0 - 1  S -  1). In this 
case the data indicate a contribution of the relaxation 
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Fig. 2. Result for the relaxation spectrum calculated with 
Tikhonov regularization from the simulated data. The 
result is plotted on a semi-logarithmic (a) and on a double 
logarithmic (b) scale 

spectrum at short relaxation times, but they 
D\ 10+I characterize the spectrum only for e)max = s<  

r <  COmi ~ = 10+7s (Elster et al. (1992)). Therefore, the 
spectrum calculated with Tikhonov regularization 
(Fig. 3) does not characterize the large peak at short 
relaxation times. In addition, for long relaxation 
times the errors of  the spectrum are very large and 
there is no range in which the regularization method 
leads to satisfying results. 

Finally, the relaxation spectrum has been calculated 
from data in the terminal and plateau region 
( 10  - 7  S -  1 < 09 < 10 - 2  S -  1). In this case the small peak 
can be reconstructed (Fig. 4) and the regularization 
method leads to good results. 

The examples (Figs. 2 - 4 )  indicate that the dif- 
ficulties in the determination of  relaxation spectra 
with Tikhonov regularization are caused by the con- 
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Fig. 3. Result for the relaxation spectrum calculated with 
Tikhonov regularization from the simulated data in the ter- 
minal, plateau and transition region. The result is plotted on 
a semi-logarithmic (a) and on a double logarithmic (b) scale. 
The dashed lines mark the range in which the data charac- 
terize the spectrum 

\ 
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siderably different contributions at short and long 
relaxation times. From a mathematical point of  view 
this is a peculiar property of the relaxation spectrum 
and it can be expected that the difficulties can be 
avoided by taking this property into consideration. 

4. A nonlinear regularization method 

Because of the considerably different contributions 
at short and long relaxation times, the relaxation 
spectrum is usually plotted on a double logarithmic 
scale (see, e.g., Ferry (1980)). This is also the basic 
concept of  the nonlinear regularization method: the 
logarithm of  the spectrum h(~-) = l o g h ( r )  is 
calculated instead of  the spectrum h( r )  itself. 



68 RheologiCa Acta, Vol. 32, No. 1 (1993) 

C" 

10"0•7.5" ~ '20.015.0 

~" 1°°Ill I 

\ 

o o : . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . .  o '  
• _ . . . . . . . .  _ . . . . . . . .  _ ...... _, 104 10 5 106 10 10 10210 '  10 ~ 101 i "1'~ ............................ i 

'7- 

10.0 

C" 

7,5 ~ ~  

2.5 

0 . 0 -  

- 2 . 5  11111111 i i t l l l H  I i i i i l l l l  I i i i  

10-" 10 "~ 10 -210-' 100 10' le 10 ~ 10" i~)5'""i'0"'""1 ') 
T 

7 . 5 -  

5 , 0 -  

b- 

w 

2.5- 

0.0- 

-2.5 , 

T 

Fig. 4. Result for the relaxation spectrum calculated with 
Tikhonov regularization from the simulated data in the ter- 
minal and plateau region. The result is plotted on a semi- 
logarithmic (a) and on a double logarithmic (b) scale. The 
dashed lines mark the range in which the data characterize 
the spectrum 

For the calculation of the logarithm of the spec- 
trum h(2") from data for the dynamic moduli G'(m) 
and G"(a~) not the Eq. (1), but the equations 

+~ (-0222 
G' (a~) = 10h(Od (In 2") 

- i + 0 . ) 2 2 "  2 
(3 a) 

o)  r lOh(r)d(ln r) (3 b) G"(co)= I 1+0922. 2 
-oo 

must be considered. These equations are nonlinear in- 
tegral equations and a nonlinear regularization meth- 
od must be applied to determine the logarithm of  the 
spectrum from experimental data. Nevertheless, the 
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Fig. 5. Results for the relaxation spectrum calculated with 
the nonlinear regularization method from all and from part 
of the simulated data. The dashed lines mark the range in 
which the data characterize the spectrum 
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Fig. 6. Mastercurves for the dynamic moduli G'(co) (a) and 
G"(aO (b) of the six nearly monodisperse PS samples (o 
PS 1, × PS2, + PS3, A PS4, © PS5, [] PS6). The solid 
lines mark the values for the dynamic moduli recalculated 
from the relaxation spectra obtained by nonlinear regular- 
ization (Fig. 7, error bars) 

basic concept of Tikhonov regularization can be 
employed and an estimate for the logarithm of the 
spectrum h(r)  is obtained by minimizing 

v(~)= ~ 1 
i= 117~ 2 

i= 1 0"} 12 

+X h('c) d ( ln r )  . 
- - O 0  

G} a -  ('022"2 lOh(~)d(ln z 
I if- C,02T 2 

°~ir lO~(~)d(ln z)) l  z 
1 + c02r 2 

(4) 

Table 1. Molar mass and polydispersity index of the nearly 
monodisperse PS samples 

Sample M" 10- 3 )9iw/)gi N 

PS 1 39 1.05 
PS 2 70 1.06 
PS 3 128 1.05 
PS 4 275 1.07 
PS 5 770 1.07 
PS 6 3000 1.05 

In addition, an appropriate value for the regulariza- 
tion parameter must be determined. For this purpose 
the SC-method can be used which has originally been 
proposed by Honerkamp and Weese (1990) for linear 
regularization methods. 

The technical details as well as the numerical 
realization of the nonlinear regularization method are 
rather complicated. For 'that reason the easy-to-use 
program NLREG (for NonLinear REGularization) 
has been developed by Weese (in preparation). This 
program was used to perform numerical calculations. 

Figure 5 shows the results for the relaxation spectra 
obtained with the nonlinear regularization method 
from all and part of the simulated data shown in 
Fig. 1 b. The results show that the difficulties illus- 
trated in the preceeding section can be avoided: in the 
range in which the data characterize the relaxation 
spectrum a good estimate for the original spectrum is 
obtained. 

5. Results for some polystyrene samples 

In this section the nonlinear regularization method is 
used to determine the relaxation spectra of six nearly 
monodisperse PS samples and of a commercial PS 
sample. For the commercial PS sample, data for the 
dynamic moduli and the relaxation modulus were 
available. It is therefore possible to compare the results 
for the relaxation spectrum obtained from different 
material functions. The agreement of the results can 
be considered as a test of the nonlinear regularization 
method. 

5.1 Results for six nearly monodisperse PS samples 

The data used in this section have been published by 
Schausberger et al. (1985). They characterize the dy- 
namic moduli of six nearly monodisperse PS samples 
with molar masses between 39"103 and 3000.103 
(Table 1) and were measured at temperatures between 
150 ° and 270 °C. For the determination of the master- 



70 Rheologica Acta, Vol. 32, No. 1 (1993) 

8 ,0 -  

6 . 0 -  

4 , 0 -  

2 .0  ¸ 

PS 1 

:z: 

Z 

I 

I 

1Q -4 l d  3 10 -2 10-' 10 10 I# 1@ 104 I# 10' 10;' 

' f  

o 

2 .0 -  

o.o10 ~' '" '  '''~ ........ , , ,,I,,,,, , 
10 -~ 1(] ~ 10 -2 

PS 2 

m 

I 

I 

I 

Z 

"%-'"q~ o~'''%'''''T~ ............................................. ~o ~ lO' lo ~ 1# W 
T 

F- 
"Z" 

2 .0 -  

PS 5 

= 

I 

I 

I 

I 
I 

8 . 0 -  

~ 4.0 

PS 4 

2.0 z 

Z 

T 

I 

10- ~ 10-' 10 -3 10 -2 l d  10 o 10 10 2 1(? 3 10' 10 5 10 ~ 10 7 

"7" 

8 .0 -  
PS 5 

2.0 m 

m 

I 

I 

o.O~o -~ ...................... ~o-' lO -~ ';;-~'"'i~' ~o ° ......... l O ' i ~  ................... 1~ ~o' ~o° ~o ~ ~o 7 

T 

8 .0  
PS 6 

6.0- I 

1 

2.0- ~ , I  
I z  

' I  

o.o.~ ................... , i,~, ................................................................ ~,,, 
10 ~ 10-' 1(3 3 i ;  -# '"  100 10' 10 ~' 1¢ 1¢ 1¢ l d  107 

f 

Fig. 7. Relaxation spectra of the six nearly monodisperse PS samples calculated with the nonlinear regularization method 
(error bars). For comparison, the corresponding BSW-spectra are also shown (solid line). The dashed lines mark the range 
in which the data characterize the spectrum 

curves the shift procedure proposed by Honerkamp 
and Weese (1973) was used. This shift procedure is a 
mathematical  method for the calculation of  master- 
curves and scaling factors from experimental data 

showing a scaling behavior as, for example, the time- 
temperature superposition principle. The resulting 
mastercurves for the dynamic moduli  are shown in 
Fig. 6. They refer to a temperature o f  T o = 150°C. 
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Table 2. Values obtained by the nonlinear regularization 
method for the regularization parameter 2 and the relative 
error a 

Figure 2 a 

7a 2.03"10 -3 2.17% 
7b 1.10" 10 -4 2.00% 
7c 8.07-10 -5 1.94% 
7d 7.93" 10 -4 1.53% 
7e t.59.10 -3 1.72% 
7 f 3.67-10 -3 2.84% 
9a 1.96.10 -5 1.10% 
9b 3.33.10 -3 0.64% 

The relaxation spectra have been calculated with 
the nonlinear regularization method described in 
Sect. 4. The results are shown in Fig. 7. In addition, 
Table2  includes the values obtained for the 
regularization parameter ~. and the estimates of the 
relative error a. 

When discussing the results it should be kept in 
mind that only in the range marked by the dashed 
lines do the data characterize the relaxation spectra. 
The contributions at shorter (and longer) relaxation 
times depend on the regularization method, but they 
are needed to compensate the contributions of those 
parts of the relaxation spectra which cannot be re- 
solved (Elster et al. (1992)). In this range all relaxation 
spectra show the typical properties of  nearly mono- 
disperse polymer samples: at long relaxation times 
there is a peak which characterizes the terminal relax- 
ation time. With increasing molar mass this peak 
moves towards longer relaxation times. At short 
relaxation times all spectra indicate an enormous con- 
tribution which is due to the glass transition. 

The relaxation spectra calculated with the nonlinear 
regularization method (Fig. 7, error bars) can be com- 
pared with the BSW-spectra (Fig. 7, solid line) of 
Baumgaertel et al. (1990). The BSW-spectra do not 
show a typical peak at long relaxation times. In addi- 
tion, the longest relaxation time of  the BSW-spectra 
is slightly larger than the terminal relaxation time of  
the spectra obtained by nonlinear regularization. 
Disregarding these differences, both spectra show 
roughly the same features. For the samples PS 4, 
PS 5, and PS 6 the agreement between both spectra is 
even quite good. 

5.2 Results for a commercial PS sample 

For the commercial PS sample, data for the dynamic 
moduli and the relaxation modulus were available. 
The data have been measured by Rheometrics on a 

RMS 800 at temperatures between 122 ° and 250°C. 
The corresponding mastercurves are shown in Fig. 8. 
They refer to a temperature of  T o = 180°C. 

The relaxation spectrum could be calculated from 
the data for the dynamic moduli as well as from the 
data for the relaxation modulus. The results are 
shown in Fig. 9. The values for the regularization 
parameter )~ and the estimates of  the relative error a 
are listed in Table 2. 

As the commercial PS sample has a broad molar 
mass distribution the relaxation spectra show no peak 
at long relaxation times. Especially satisfactory is the 
excellent agreement of both relaxation spectra in the 
range in which they can be compared (Fig. 9c). 
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Fig. 8. Mastercurves for the dynamic moduli G'(o)) and 
G"(e)) (a) and the relaxation modulus G(t) (b) of the com- 
mercial PS sample. The solid lines mark the values for the 
dynamic moduli recalculated from the relaxation spectra 
shown in Fig. 9 



72 Rheologica Acta, Vol. 32, No. 1 (1993) 

I0,0 - 

7 5 -  

= 
= 

p 

b ~ l l l l l ~  I i B , , I , I ,  I i i i ~ l , l l  I i l l l ~ l l r l  i ~ l . ~ .  I i i l l l . i  I ~ , l , . ~  I r , i J t l l b  I J H I ~ , , I  I i l l . i .  I i l l l l l l ,  I i l l l ~ l l b  I 
8 10 -~ 10 -6 10 -s 1(}" 10 -3 10 -2 10- 100 10' 1@ 1@ 104 

T 

6. Conclusions 

Using simulated data it has been shown that the dif- 
ficulties in the determination of relaxation spectra 
with Tikhonov regularization can be overcome by ap- 
plying a nonlinear regularization method. With the 
nonlinear regularization method it was possible to 
calculate the relaxation spectra of  six nearly 
monodisperse polystyrene samples f rom data for the 
dynamic moduli. Furthermore,  the relaxation spec- 
t rum of  a commercial polystyrene sample has been 
computed f rom data for the dynamic moduli and 
f rom data for the relaxation modulus. In the range in 
which both data sets characterize the relaxation spec- 
t rum consistent results have been obtained. 

_o 

,---___ 

--i 

2.  5 - 
% 

== 

0 ~. 141~;--71 'Jql;--.l II11;--~I ] ;-- 4 ];--3 I I'i;--'I 'I11'; -I' I[~I;01 [ HI~;I I [ II111) I I I'IIL~I III~I;4 

T 

o I 

I 0 . 0  ~ - 

I 

7 5 -  

S I O " iIIIZ~zzIl~ 

2.5 ~ 

- - ._  
- i  

i - %  

I-= 
i m 
i 
i : 
i 
i 
i 

% 
i 

0"01~ 8 ....................... 10 -7 10 -6 ~ ISIII~ I4I ........................................... I0 ~ I0 -2 I0~ I0 ° 101 } ................ 102 I03' I~[HII4]O 
C "r 

Fig. 9. Relaxation spectrum of the commercial PS sample 
calculated with the nonlinear regularization method from 
data for the dynamic moduli (a) and from data for the relax- 
ation modulus (b), respectively. For comparison, both spec- 
tra are also shown in one plot (c). The dashed lines mark the 
range in which the data characterize the spectrum 

A ckn o wledgemen t 

We thank Dr. Ch. Friedrich, Freiburger Materialfor- 
schungszentrum, and D. Grabowski, Makromolekulare 
Chemic Freiburg, for helpful discussions and Rheometrics 
Inc., New Jersey, for the experimental data of the commer- 
cial polystyrene sample. 

References 

Baumgaertel M, Schausberger A, Winter HH (1990) The 
relaxation of polymers with linear flexible chains of 
uniform length. Rheol Acta 29:400-408 

Elster C, Honerkamp J (1991) Modified maximum entropy 
method and its applications to creep data. Macro- 
molecules 24:310- 314 

Elster C, Honerkamp J, Weese J (1992) Using regulariza- 
tion methods for the determination of relaxation and 
retardation spectra of polymeric liquids. Rheol Acta 
31:161 - 174 

Ferry JD (1980) Viscoelastic properties of polymers. J Wiley 
& Sons, New York 

Friedrich Ch, Hofmann B (1983) Nichtkorrekte Aufgaben 
in der Rheometrie. Rheol Acta 22:425-434 

Groetsch CW (1984) The theory of Tikhonov regularization 
for Fredholm equations of the first kind. Pitman, Lon- 
don 

Honerkamp J (1989) Ill-posed problems in rheology. Rheol 
Acta 28:363 - 371 

Honerkamp J, Weese J (1989) Determination of the relaxa- 
tion spectrum by a regularization method. Macro- 
molecules 22:4372- 4377 

Honerkamp J, Weese J (1990) Tikhonovs regularization 
method for ill-posed problems: A comparison of different 
methods for the determination of the regularization 
parameter. Continuum Mech Thermodyn 2:17-30 

Honerkamp J, Weese J (1993) A note on estimating master- 
curves. Rheol Acta 32:57-64 

Schausberger A, Schindlauer G, Janeschitz-Kriegl H (1985) 
Linear elasticoviscous properties of molten standard 



Honerkamp and Weese, A nonlinear regularization method for the calculation of relaxation spectra 73 

polystyrenes: I. Presentation of complex moduli; role of 
short range structural parameters. Rheol Acta 
24: 220 - 227 

Weese J (1992) A reliable and fast method for the solution 
of Fredholm integral equations of the first kind based on 
Tikhonov regularization. Comput Phys Commun 
69:99-  111 

Weese J (in preparation) A regularization method for non- 
linear ill-posed problems 

Wiff DR, Gehatia M (1975) Inferring mechanical relaxation 
spectra as an ill-posed problem. J Appl Phys 46 
(10):4231 - 4234 

Wiff DR (1978) RQP method of inferring a mechanical 
relaxation spectrum. J Rheol 22 (6):589-597 

Correspondence to: 

Prof. J. Honerkamp 
Fakult~it far Physik 
Universit/it Freiburg 
Hermann Herder Str. 3 
D-7800 Freiburg i. Br. 
Germany 

(submitted on July 10, 1992; 
in revised form November 16, 1992) 


