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1. Introduction 
One of the problems frequently occurring 

in the investigation of the relaxation be- 
haviour of linear viscoelastic materials is 
that  of converting results of dynamic 
measurements into the result of a creep 
experiment, or vice versa. Formally, these 
problems were solved through the theory 
of linear viscoelastic behaviour. According 
to this theory, the interconversion of various 
characteristic functions may be performed 
b y  application of linear integral trans- 
formations. For instance, the calculation 
of loss and storage compliance from the 
creep compliance may be performed by the 
Fourier sine and cosine transformation. 
However, as has been shown elsewhere (1), 
the actual application of those integral 
transformations to experimental data gives 
rise to basic difficulties, and to tedious 
calculations besides. I t  would therefore be 
highly desirable to have simple numerical 
formulae for those interconversions which 
do not involve any integration of the 
function measured. As far as calculation of 
transient response from dynamic response 
is concerned, numerical formulae of this 
type have already been given and discussed 
(1). I t  is the purpose of the present paper to 
discuss the inverse problem, viz. that  of 
numerical calculation of dynamic response 
from creep response. 

We will base our discussions on a material 
which obeys Boltzmann's  superposition prin- 
ciple and has a positive retardation spectrum. 
Under these conditions, the result of a creep 
experiment may  be described by  the creep 
compliance, J(t) ,  as a function of time t; it 
is defined as the strain as a function of time 
produced by  a unit  step in stress at time 
zero. The creep compliance may then be 
written as an integral (1): 

oo 

J(t)  = Jo + f / ( ~ )  [1 - -  e-t/~]d~ + t/v [1] 
0 

where J0 is the instantaneous compliance, 

the viscosity and /(v) a non-negative 
function of 3, the retardation spectrum. 

The result of forced vibration experiments 
may be described by  the storage compliance, 
J'(~o), and the loss compliance, J"(co), as 
functions of the angular frequency, oJ. The 
definition of these quantities is based on the 
steady state response to a harmonic stress 
with unit stress amplitude and with fre- 
quency ~ = o)/2z. Then the strain will 
consist of two harmonic components, one in 
phase with the stress and one lagging behind 
90 degrees with it. The amplitudes of these 
components are, respectively, J'(eo) and 
J"(co). The integral representations for 
J'(oJ) and J"(o~) are (1): 

1 
J'(w) • Jo + S /(T) 1 §  w 2T 2 dr [2] 

0 

J"(o)) = /(~) 1 ~:-~-~ 3 '  d~ + 1/~o ~ .  [3] 
0 

For later use we mention the following 
formula for the finite difference of the creep 
compliance, which is easily found from 
eq. [I]: 

co  

J (2 er t) --  J (a t) = fl(T) e-~tl~ [1 - -  e-~tl~] dr 
0 

+ ~I~- [47 

All four expressions [1] to [4] are similar; 
they contain an integral over the retardation 
spectrum times a function of either o~  or 
t/v which will be called the intensi ty  function 
of the corresponding expression. I f  we intro- 
duce abbreviations x = t/v and x = 1/~ov, 
the intensity functions of expressions [1], [2], 
[3] and [4] become simply: 

Z (x) = 1 - -  exp ( - -  x) [5] 

Z'(x) = x2I(1 + x ~) [6] 

z"(x) = xl(1 + x9 = z" (x)lx [7] 

~ p ( x ; ~ ) = [ 1 - - e x p ( - - o ~ x ) ] e x p ( - - a x ) .  [8] 

*) Ded ica t ed  to  Prof.  Dr.  J.  Meixner, Aachen ,  o n  
t h e  occasion of his 60 th  b i r t hday .  
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In  order to find an approximation for 
J"(co) in terms of the finite difference 
J ( 2  ~ t) - J ( ~  t), we will approximate the 
intensi ty  function Z" (x) of J "  (co) in terms 
of the intensi ty  function V ( x ;  ~) of J ( 2  ~ t) 
- J (~ t). Similarly, to find an approximation 
for J '  (co) in terms of J (t) and finite differences 
of the type  J ( 2 ~ t ) -  J ( ~ t ) ,  we will ap- 
proximate the in tensi ty  function Z'(x) in 
terms of the in tensi ty  functions Z(X) and 
~v(x;~). Once these problems have been 
solved appropriately,  it  will be found tha t  
also the terms outside the integrals in ex- 
pressions [1], [2], [3] and [4] are automatical-  
ly accounted for. In  the resulting expressions 
for the approximation formulae, neither the 
ins tantaneous compliance, J0, nor the vis- 
cosity, r], will occur explicitly. 

2. Numerical Formulae for Calculation of 
Storage Compliance from Creep Compliance 

Various numerical formulae for the cal- 
culation of J'((o) from J ( t )  are listed in 
table 1. All these formulae have one 
feature in common. The calculation is based 
on values of the creep compliance at  t imes 
t h a t  are equally spaced on a logarithmic 
t ime scale. The ratio between these succeed- 
ing times corresponds to a factor of two. 
This type  of sampling of the creep compliance 
had been chosen with regard to the technique 
of creep measurement  employed at  our in- 
s t i tute  (2). Using a logarithmic clock (3), 
the digital registration uni t  of the creep 
apparatus  is act ivated at  the above men- 
t ioned logarithmic sequence of times, viz. 
2 seconds, 4 sec, 8 sec, 16 sec, etc. after the 
s tar t  of the creep experiment.  Therefore, the 
i tem of information needed before those 

formulae can be applied, is just  the one 
obtained by  the digital creep technique. 

For  a discussion we select two formulae, 
viz. the simplest and the most  involved 
formula of table 1. The simple formula is: 

g'(m) ,~  g(t) - 0.86 [g (2 t) - g (t)] = 1.86 J (t) 

-- 0.86 J (2 t) [9] 

where 

co = 2 o~ v = l i t .  

Notwi ths tanding  its simplicity, this for- 
mula  m a y  be quite useful in a number  of 
cases; if the damping 

tan ~ (o~) = J"(a~)/J'(a~) [16] 

at  the point  of consideration is small against  
uni ty ,  formula [9] will be ra ther  accurate.  
For, by  the methods  to be int roduced in 
Section 4, it  will be shown tha t  the relative 
error of formulae [9] will always be bounded 
between - 0.15 (tan 5) and + 0.15 (tan 5). 
Therefore, fo rmula  [9] will have a relative 
error smaller t han  1.5% in all cases where 
tan  ~ is smaller t han  0.10. 

The finite difference, J ( 2 t ) -  J ( t ) ,  oc- 
curring in formula [9] will be approximately 
proportional to the derivative of the creep 
compliance with respect to the logari thm of 
time, taken  at  t ime ]/2 t. Therefore we have 
the  al ternat ive formulat ion:  

J '(~o)  ~ J ( t )  - -  0.257 [ d J ( ~ ) / d  log  ~1~ = ~.41t [9 ' l  

- -  J ( t )  - -  0.592  [ d J ( ~ ) / d  In  ~]~ - 1.~1t �9 

Eq. [9'] m a y  be more familar;  eq. [9] will 
be more useful for practical applications. 

For  large values of (tan (~) more involved 
formulae should be used. The most  com- 

T a b l e  1. N u m e r i c a l  f o r m u l a e  for  c a l c u l a t i o n  of  s t o r a g e  c o m p l i a n c e  f r o m  c reep  c o m p l i a n c e :  J ' (a ) )  , ~  A ' ( t ) ;  t = l /o)  
A ' ( t )  = J ( t )  - -  a [ J ( 3 2  t) - -  J ( 1 6  t) l  - -  b [ J ( 1 6  t) - -  J ( 8  t)] - -  c [ J ( 8  t) - -  J ( 4 t ) ]  - -  d [ J ( 4 t )  - -  J ( 2  t)] 

- -  e [ J ( 2  t) - -  J ( t ) ]  - -  / [ J ( t )  - -  J ( t /2)] - -  g [ J  ( t /2)  - -  J ( t /4 ) l  - -  h [ J  ( t /4)  - -  J (t /8)] 

- -  0 .000715  

~ / b 

- - 0 . 0 9 9 0  

I c 1 
r 

085  _ _ _ _  
0.445 0.376  , 

0 .608 - -  0 .358  

- - 0 . 1 1 9  

10.0108 - 0 . 1 6 8  

0 .0109  -01g 
0.0185 / - - 0 . 1 9 7  

~ ,734 

739 

0 .225  

0 .235 

b o u n d s  for  f o r m u l a  
r e l a t i v e  e r r o r ;  O/o n u m b e r  

14.6 t a n  8;  - -  [9] 
_ _ - -  14.6 t a n  ~3; - -  _ _  

7.8 t a n  6; - -  
_ _ - - 7 . 7 t a n S ; -  

7.5 t a n  6;  5.2 
- 7 . 5 t a n &  - -  9.1__ 

2.1 t a n  (~; 5 .9  
0 .0429  

- -  2.1 t a n  8;  - -  2 0  
8.8 t a n  6 ; 1.5 

- -  1.9 t a n  ~_; - -  1.5 
2.3 t a n  (~; 1.6 

- 2.3 t a n  6 ;_--  1.6__ 
3.1 t a n  6; 0 .8  

0 .0494  
-- 3.1 t a n  6; - -  0 .8  

[10] 

[111 

[12] 

[13] 

[141 

[15] 
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plicated formula  of table 1 is: 

J'(o~) ~.~ J(t)q- 0.0007 [ J  (32 t) - -  J (16 t)] 

- -  0.0185 [J (16 t) --  J (8 t)] 

+ 0.197 [ J  (8 t) - -  J (4 t)] - -  0.778 [ J  (4 t) - -  J (2 t)] 

- -  0.181 [g (t) - -  J (t/2)] - -  0.049 [ J  (t/4) - -  g (t/8)l [15] 

where 

w = l i t .  

We note  t ha t  the difference between J ( t )  
and J ' ( I / t )  is always positive. F r o m  eq. [15], 
this difference is approx ima ted  by  a sum 
of six terms of the finite difference type.  The 
principal t e rm in this sum is the  one pro- 
port ional  to : 

J ( 4 t )  - -  J ( 2  t ) .  

At the left  of  the  principal t e rm are the 
te rms which const i tu te  the long t ime con- 
t r ibu t ion  to J ( t )  - J ' (1/ t ) .  These terms have 
a l ternat ing signs. The magni tude  of their  
coefficients decreases ve ry  fast  with their  
order. At  the r ight  of the  principal  t e rm are 
the  te rms which const i tu te  the  short  t ime 
cont r ibut ion  to J ( t )  - J ' (1/ t ) .  These te rms 
are all positive. Their  coefficients decrease 
also ve ry  fast  with their  order. E v e r y  t e rm 
following the last t e rm in eq. [15] would be 
shifted a factor  of 4 to  shorter  t imes and 
would have a coefficient which is 16 t imes 
smaller t han  the  coefficient of its predecessor. 

The pyramida l  s t ruc ture  of  eq. [15] shows 
t ha t  the  value of J '  (r depends on the value 
of J(t0) a t  point  t o = l/w, and on the deriv- 
a t ive of  the creep compliance with respect  
to the logar i thm of time, in a t ime interval  
a round point  t 0. The behaviour  of J ( t )  for 
t > t o s tronger influences the calculation t han  
does the  behaviour  of  J ( t )  for t < t o . To 
apply  eq. [15], the behaviour  of  J( t )  should 
be known in a finite t ime intervM around t 0, 
viz. f rom to~8 to 32 t 0. 

Eq.  [15] is ve ry  accurate,  wha tever  the 
value of (tan ~) might  be. I t  will be shown 
t h a t  the  relat ive error in this formula  will 
always be bounded between - 0 . 8 %  and 
+ 0 .8%;  moreover  the  relat ive error will 
also be bounded  between - 3.1 (tan 3 ) %  
and + 3.1 (tan ~)%.  These error  bounds 
have been indicated in the  last column bu t  
one of table  1. 

The way  in which formula  [15] was obtain- 
ed is now i l lustrated with reference to fig. 1. 
We s ta r t  with the in tens i ty  funct ion of 
J ( t )  - J ' (1/ t ) ,  which is equal  to:  

;r - z'(z) -- 1/(1 + x~) - exp ( -  x). [173 

This in tens i ty  funct ion is represented by  the 
heavi ly  drawn line in fig. 1. I t  is positive for 
all positive x-va lues  with a m a x i m u m  in the 
vicini ty  of x = 1/2. I t  increases l inearly with 
x for  small x-values and i t  decreases as x -2 
for large x-values. This funct ion is approxi-  
ma ted  by  a sum of six in tens i ty  functions of 
the  finite difference type  in the following 
manner :  

)/(x) - -  Z'(x) , ~  ~0'(x) = a ~(x;  16) -I- b ~(x;  8) 

+ c ~(x;  4) + dy~(x; 2) + ] y~(x; 1/2) 

+ hF(x; 1/8) [18] 

o.11 

0.01- 

0.001 

~ • 

o,oi o,1 ~ i . % _  ~ ~oo 

Fig. 1. I n t e n s i t y  funct ion,  Z(x) - - Z ' ( x ) ,  of  difference 
J(t) -- J'(1/t), a n d  in tens i ty  funct ion,  ~'(x), of  approxi-  
m a t i o n  J ( t ) -  A'(t) to  th i s  difference according to 
fo rmula  [15], p lo t t ed  vs. x. Also shown are t he  in tens i ty  
funct ions  of t he  six finite difference t e rms  in formula  [15] 
which  are used to  cons t ruc t  a p p r o x i m a t i o n  ~'(x) 

(cf. eq. [18]) 

where a, b, c . . .  are constant  coefficients 
which have  been chosen appropr ia te ly .  These 
six te rms are shown in fig. i toge ther  with the 
resulting approx imat ion  ~' (x) [dashed line]. 

Approx imat ion  [18] yields an approxi-  
mat ion  for the  in tens i ty  funct ion )/' (x) by:  

z'(x) ~ z(x) - ~'(x) [19] 

and, therefore,  an approx imat ion  for J'(o)) 
b y  formula  [15]. The relat ive error  of 
approx imat ion  [19] is given by  the funct ion:  

A'(x) ~ [z(x) -- ~'(z) -- Z'(x)]/Z'(x) [20] 

which is called the relative error /unction 
re la ted to the  approximat ion  [15]. The 
reason is t h a t  the  course of  d '  (x) vs. x deter- 
mines the  accuracy  of  the  re la ted approxi-  
mat ion  formula.  

The course of  funct ion d '  (x) vs. x is shown 
in fig. 2. At (x) tends  to  zero for x - >  0 and 
for x -+ oo. I t  shows a n u m b er  of  deviations 
from zero in the  in termedia te  x-region. The 
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Fig.  2. Re la t ive  error func t ion ,  A' (x ) ,  for a p p r o x i m a t i o n  
[15J, vs.  x ;  also shown  is t he  func t ion  x . A ' ( x )  for t he  
same  a p p r o x i m a t i o n  (broken line). M a x i m u m  dev ia t ions  

o f  b o t h  func t ions  f rom zero h a v e  been  ind ica ted  

m a x i m u m  values of these deviations have 
been indicated. All deviations in A'(x)  are 
smaller t han  0.8~o. 

The same figure shows function x .  A'(x), 
which will also be of importance for the 
accuracy of formula [!5]. This funct ion also 
tends to zero for x -+ 0 and for x -+ oo. I t s  
deviations from zero remain smaller than  
3.1%. 

The way  in which the six coefficients 
a, b, c . . .  in formula [15] have been determin- 
ed can now be explained: We imposed two 
sets of three conditions each on funct ion 
A'(x) as follows : 

(1) x A'(x), A'(x) and A'(x)/x should vanish 
a t x  = 0; 

(2) A'(x)  should vanish at the three selected 
x-values:  x = X l ~  x = X2~ X = X 3.  

By the  first set of conditions it is a t ta ined 
tha t  A'(x)  becomes a good approximat ion  

for Z ( x ) -  Z'(x) on the left flank of the 
m a x i m u m  of the intensi ty funct ion [i. e. 
between x = 0 and x = 1/2]. By  the second 
set of conditions it is a t ta ined t h a t  ~v'(x) 
becomes a good approximat ion  for Z(x) 
-Z'(x) near the m a x i m u m  and on the 
upper  par t  of the r ight flank of the m a x i m u m  
of the intensi ty  function. 

Points  x~, x2, x 3 are indicated in fig. 2. 
[[:hey were chosen by  trial and error in such 
a way  tha t  the deviations of A'(x) and of 
x - : ] ' (x)  from zero were minimized and tha t  
the various max ima  and minima in these 
functions are dis t r ibuted as regularly as 
possible. We found as a good choice: x 1 
= 0.673, x 2 --- 1.99, x a = 8.26. 

For  cases on which not  enough knowledge 
is available to apply  formula [15], simpler 
formulae have been listed in table 1. For-  
mulae [13] and [14] are still applicable for 
very  large values of  t an  d. Formulae  [9] to 
[12] should be used for small and inter- 
mediate (tan 6)-values. A more detailed 
comparison of the accuracies of the system 
of table 1 will be given in Section 4. 

The way  in which these formulae were 
derived is similar to t h a t  described above for 
formula [15]. However,  for formulae [13] 
and [14] only the two conditions x A'(x)  = 0 
and A'(x) = 0 were imposed at x = 0; for 
[11] and [12] only one condition was imposed 
at x = 0, viz. x g'(x) = 0 and for [9] and 
[10] x A'(x) was assumed to remain finite for 
x = 0 .  

3. Numerical  Formulae  for Calculation of Loss 
Compliance from Creep Compliance 

Various numerical  formulae for the  cM- 
culation of ,["((~) from J( t )  are listed in 

Table  2. Numer i ca l  fo rmulae  for ca lcu la t ion  of  loss compl iance  f rom creep compl iance :  J"(eo) ~ A " ( t ) ;  t 1/e) 
A " ( t )  = d [ J ( 4 t )  - -  J ( 2 t ) ]  + e [ J ( 2 t )  - -  J ( t ) ]  + / [J ( t )  - -  J(t /2)]  + g [J( t /2)  - -  J( t /4)]  + h [J( t /4)  - -  J( t /8)]  
+ j [J( t /8)  - -  J(t/16)] A- k [J ( t /16) - -  J 

- - 0 . 4 7 0  

- - 0 . 5 0 5  

- -  0.470] 

- -  0.470 

- -  0.470 

- -  0.470 

1.715 

1.807 

1.674 

1.674 

1.674 

/ g 

2.12 

- -  0.902 

- -  0.745 

0.196 0.627 

0.197 0.621 

0.198 0.620 

0.011 

0.012 

0.158 

0.194 

12 .172 

0.172 

~/32)] q- 1 [J(t/32) - -  J(t/64)] ~l- m [J(t/64) - -  J(t/128)] + n[J( t /128)  - -  J( t /256)]  

j k l ~ n b o u n d s  for re la t ive  error;  ~ formula  
numbe~ 

8 [ 1 +  1/( tan 6)]; 26 [21] 
- 8 [1 + 1/(tan a)]; - 262ff_~n a) 

0.7 [1 + 1/( tan d); 2.3 [22] 

1.1 [1 + 1/( tan 6)]; 3~5 [23] 
_ _ _ _ _  - -  1 .3~ tan  6 )__  

0.7 [1 + 1/( tan 6)]; 1.3 [24] 
- -  2.5 [1 + 0 .5/ ( tan  6) ] ; - -  2.7~(tan 4) . . . . . . .  

0.7 [1 + 1/( tan d)]; 2.3 [25] 
- -  ).0475 - -  2.5 [1 + 0 .12/ ( tan  6 ) ] ; - - 2 ~ n .  d' 

0.7 [1 + 1/( tan 6)]; 2.7 [26] 
).0430 0.0122 2.5 [1 + 0 .03/ ( tan  6) ] ; - -  2.7~/(tan(j~ _ _ _  

0.7 [1 + 1/( tan 6)]; 2.7 [27] 
- -  2.7; 2 .7/( tan 6) 
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table 2. The simplest of these formulae 
is: 

J"(oJ) ~ 2.12 [J(t) - J(t/2)] with co = 2 ~ v ~ 1/t. 
[21] 

In this formula, ~ is the angular frequency 
and v is the frequency at which loss com- 
pliance is calculated. The loss compliance is 
approximated by the finite difference be- 
tween the creep compliance at times 1/w and 
1/2 w. This finite difference is approximately 
proportional to the derivative of the creep 
compliance with respect to the logarithm of 
time, taken at the time t/I~2. Therefore, we 
have the alternative formulation: 

J"(~o) ~-~ 0 .638 [dJ(~)/d log ~]t = o.71t 

= 1.47 [dJ(~)/d In ~] t  = 0.Tit = 0.11a/~. 

[21 ' ]  

Formula [21] is a very rough approxi- 
mation. For instance, for (tan 5 ) =  1 the 
error bounds of this formula are + 16~o and 
-16~o. For smaller values of tan ~, the 
error may be even higher. Therefore, for- 
mula [21] should be used only for cases 
where tan 5 (~o) is high. 

A formula which is very similar to [21'] 
has been proposed by H a m o n  (4) for the 
analogous problem of calculating the imagin- 
ary part of the complex dielectric constant, 
e", from the transient dielectric response 
after a step in voltage. H a m o n s  formula 
reads : 

~-~ 1.59 It i(t)]t = 0.10Iv [21"]  
~"(~) e-C/V 

where i(t) is the time-dependent current, C o 
the capacity of the measuring electrodes 
without sample and V the applied voltage. 
In order to translate the dielectric equation 
into the one for mechanical creep, we have 
to replace e" by J "  and the reduced current 
i ( t ) /C o V by d J  (t)/dt. Then H a m o n s  formula 
changes to the form [21'] with slightly 
different constants, viz. 1.59 instead of 1.47 
and 0.10 instead of 0.113~). 

A much better approximation for J"(w)  
can be constructed, if more than one finite 
difference term is used. The second best Of 
the formulae of table 2 involves eight terms: 

J"(o~) ~,, - -  0 .470  [ J ( 4  t) - -  J (2 t)] + 1 .674 i [ J (2  t) 

- -  J ( t ) ]  + 0 .198 [J( t )  - -  J(t/2)] 

-4- 0 .620  [J( t /2)  - -  J(t/4)] + 0.012 [J(t /4) 

- -  J(t/8)] + 0.172 [J(t/8) - -  J (t/16)] 

-4- 0 .043  [J(t/32) - -  J(t/64)] 

-I- 0 .012  [J(t/128) - -  J(t/256)] [2B] 

where 

c o = :  l i t .  

The principal term in this sum is the one 
proportional to 

J ( 2  t) - -  J (t) . 

To the left of the principal term is the term 
which constitutes the long time contribution 
to J" (1 / t ) .  This is the only term with 
negative sign. To the right of the principal 
term are the terms which constitute the 
short time contribution to J" (1 / t ) .  These 
terms are all positive. Their coefficients 
decrease very slowly with their order. For 
instance, the  term proportional to [J(t /128) 

- J( t /256)]  has a coefficient which is still 
7~ of the principal term. The pyramidal 
structure of formula [26] shows that  the 
value of J"(eo) depends on the derivative of 
the creep compliance with respect to the 
logarithm of time in a broad time interval 
around point t o = 1/~o. T h e  behaviour of 
J ( t )  for t < t o affects the calculation much 
stronger than does the behaviour of J( t )  for 
t > t o. To actually apply formula [26], the 
behaviour of J ( t )  should be known from 
to/256 to 4 to, i .e.  from 21/3 decades to the 
left, to 1/2 decade to the right of the point of 
interest. A similar conclusion had elsewhere 
(1, 5) already been drawn from another point 
of view. 

I t  will not always be necessary to know all 
terms in formula [26] with high accuracy in 
order to be able to apply this formulae. I t  
will often be sufficient to know upper bounds 
for the magnitude of the terms far away 
from the point of interest to justify their 
omission. For instance, if we know that  
[J(t/32) - g(t/64)] and [J (t/128) - g(t/256)] 
are not larger than [J(2 t) - J(t)], and if a 
2.5~o error in the calculation of J "  is 
admitted, the last two terms in formula [26] 
may be omitted. 

The way in which formula [26] was derived 
is illustrated with reference to fig. 3. We 
consider the intensity function of J" (1 / t )  
which is Z"(x). This intensity function is 
represented by t h e h e a v i l y  d rawn line in 
fig. 3. I t  is positive for all positive x-values 
with a maximum at x - - 1 .  I t  increases 
linearly with x for small x and decreases as 
x -1 for large x. This function is approximated 

b y  a sum of eight intensity functions of the 
finite difference type as follows: 

! )  B o u n d s  for  t h e  r e l a t i v e  e r ro r  o f ! H a m o n s  f o r m u l a  
are ,  in  % :  , 5 1 ;  1 4 1 1 +  1/( tan(~)]~ 21/ ( tan(~)  a n d  

7.5 [1 + 1 / ( t a n  ($)]; - -  6 3 / ( t a n  3 ) .  
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z"(x) ,~q/'(x) = dv(x, 2) + e~(x; 1) + t~(x;  1/2) 
+ . . .  [28] 

These eight  t e rms  are shown in fig. 3, 
toge ther  wi th  the  result ing a p p r o x i m a t i o n  

ever, for small  va lues  of  t an  8, i t  could yield 
resul ts  which are considerably  too small.  

I t  is possible to give a fo rmula  for J "  (w) 
t h a t  is appl icable  for all values of  ( tan ~), 
however  small  t h e y  migh t  be. This  is 

-1.4% ~ r--$+1.3% I 

C - 1 6 %  

" ~  + 2 1 %  �9 \ , ' . % , . ;  ,: . . . . . . . .  

- -,x, 
- ~ 2 . 7 %  

- - 2 7 % 

- *  , % 

0.01 

Oh 1 10 150 1500 

Fig. 3. In tens i ty  function, Z"(x), of 
loss compliance J"(1/t), and intensi ty 
function, 9"(x), of approximation A"(t  ) 
of J"(1/t) according to formula [26], 
vs. x. Also shown are the  intensi ty 
functions of the eight finite difference 
terms in formula [26] which are used 
to construct approximation ~0"(x) (ef. 
eq. [28]). Indicated are position and  
values of the  maximum relative 
deviations of approximation ~0"(x) 

from Z"(x) 

7 "  (x), the  dashed line. The  re la t ive  error  of  
the a p p r o x i m a t i o n  [28] is g iven b y  the  
funct ion : 

zl"(x) : :  [~"(z) -- Z"(x)]/Z"(x) [29] 

which is called the  re la t ive  error  funct ion 
re la ted  to the  a p p r o x i m a t i o n  [26]. The  func- 
t ion zl"(x) is zero for x = 0. I t  shows a num-  
ber  of  devia t ions  f rom zero in posi t ive  or nega-  
t ive  direction. The m a x i m u m  values  of  these 
devia t ions  have  been indicated in fig. 3. U p  
to ~n x-value of x = 190, all devia t ions  
r emain  smaller  t h a n  2.70/0 . At  x ~ 190, 
however ,  the  app rox i m a t i on  falls shor t  and  
zl"(x) tends  sharp ly  to - 100~ . At  x = 500, 
A " i s  - 25% , a t x  = 1000, A " i s  - 750/0 . 

F o r m u l a  [26] will be a ve ry  good approxi -  
ma t i on  in mos t  cases. We  shall show t h a t  
the  re la t ive  error in this fo rmula  will a lways  
be smaller  t h a n  2.70/0 . The  lower bound  for 
the  re la t ive  error, however ,  depends  in a 
r a t he r  compl ica ted  w a y  on the  va lue  of 
t an  ~ (e~) (see fig. 4). The  re la t ive  error  will 
r ema in  above  - 4 0 / 0  in all eases where  
( tan ($) is in the  0.05 < t a n  6 < c~ region. 
Fo r  ( tan ($)-values smaller  t h a n  0.05, the  
lower bound  for the  re la t ive  error  r ap id ly  
drops.  I t  is, e . g .  - 10~ for t a n 6  = 0.01 
and  - 75% for t an  6 = 0.001. The  conclusion 
is t h a t  fo rmula  [26] will never  yield values  
for J "  (o~) t h a t  are essential ly too high;  how- 

+ 2 0  ~  

0 

- 20 ~ 

- 4 0  ~ 

- 6 0  ~  

. u p p e r  bound 
l 

r bound  

- - - - ~ - -  tan8  
J h L i i i i i i  i i , I I J L I I  i i i w 

0,001 0,01 0.1 

Fig. 4. I l lustrat ion of the  range for the relative error 
in formula [26] as function of value of t an  ~ (o~) 

fo rmula  [27]; it is a s sumed  to consist  of  an  
infinite n u m b e r  of  te rms.  Each  t e r m  follow- 
ing the  one wi th  coefficient n will be shif ted 
a fac tor  of  4 in t ime  scale into the  direct ion 
of shor ter  t imes  re la t ive  to its predecessor,  
and  will have  a coefficient which is exac t ly  
1/4 of  the  coefficient of  its predecessor.  
I n s t e a d  of t runca t ing  the  fo rmula  a t  the  
shor t  t ime  end (as was done for the  o ther  
formulae  of t ab le  2), fo rmula  [27] is as- 
sumed  to be an infinite series. F o r m u l a  [27] 
will t hen  have  a re la t ive  error  t h a t  is cer tain-  
ly bound  be tween  - 2.7% and + 2.7~ for 
all values  of  t an  8. 
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I n  m a n y  cases not  enough knowledge will 
be avai lable  to app ly  the  complete  for- 
mula  [26] or [27]. For  those eases, a n u m b e r  
of  s impler  formulae  has been listed in table  2. 
Of  course, the  accuracy  of those formulae  
will be the  less, the  fewer t e rms  are involved.  
A more  detai led compar ison  of the  accuracies 
of  the  fo rmulae  of table  2 will be given in 
the nex t  section. 

4. Error Bounds for Approximations 

Finally,  we will discuss the  accuracy  of 
the  numer ica l  formulae  given in tables  1 
and  2. To this end we will derive bounds  for 
the  errors  of  those formulae.  The only 
assumpt ions  made  for this purpose  are the  
ones t h a t  were a l ready s ta ted  in the intro-  
duct ion:  va l id i ty  of  the  principle of  super-  
posit ion and  the  existence of a r e t a rda t ion  
spec t rum which is non-negative1). 

Le t  A '  (t) be one of  the  app rox ima t ions  for 
J '  ((o), and  A "  (t) one of the  app rox ima t ions  
for  J"(o~) .  We define the  errors  of  those 
app rox ima t ions  as the  difference be tween the  
a p p r o x i m a t i o n  and  the real  value of the  
quan t i ty .  As all app rox ima t ions  are l inear 
expressions in J ( ~  t) wi th  cons tan t  coeffi- 
cients, the  errors m a y  be wr i t ten  as in tegral  
t r ans fo rma t ions  over  the r e t a rda t ion  spec- 
t rum.  Using eqs. [2], [3], [4], [20] and  [29], 
we find for the  errors~): 

co 

e'(e)) ~ A'(t) -- J'(o~) = f I(T) Z'(x) A'(x) d~ [30] 
0 

o o  

e"(o)) ~ A"(t) -- J"(e)) = f 1(~) z"(x) zl"(x) d~" [3]] 
o 

where A ' ( x )  and A " ( x )  are the  relat ive error 
funct ions defined earlier;  t hey  m a y  be 
ob ta ined  b y  insert ing eqs. [1] to  [8] into the  
corresponding definition of e i ther  table  1 or 
table  2. F o r  a n u m b e r  of  approx imat ions ,  
A'(x), x LJ'(x) and  A " ( x )  have  been p lo t t ed  
vs. x in figs. 5, 6 and  7. 

Fig. 5 shows ~ ' (x)  vs. x for app rox ima t ions  
[13], [14] and  [15]. I n  all cases zJ'(x) vanishes 
for  ve ry  small  x and  for ve ry  large x, wi th  
a n u m b e r  of  m a x i m a  and m i n i m a  in the  
region of  in te rmedia te  x-values.  Therefore,  
zJ'(x) is bounded  for all posi t ive x-values b y  

~) A similar manner of deriving error bounds for 
approximations has been introduced in (1). 

2) The terms in s' and ~", which would arise from 
J0 or 1/~ ~, cancel out in most approximations. In the 
few cases where such a term remains, it is without 
consequences for the argument. 

1 ~ 

- 1 ~  

Ii \ / ", 
@ ~ t ', 

t i /  \', t .--.X ,, 
i I ~ I I /  ' \  ,, 

% ,'1 \ G 
% ,s' \ , 7 - :  ....... (13) 

0.1 1 10 

Fig. 5. The course of relative error functions, zl'(x), for 
approximations [13], [14] and [15], vs. x 

a posi t ive uppe r  bound  and  a negat ive  lower 
bound.  The absolute  values of  bo th  bounds  
are small compared  wi th  uni ty .  

Compar ing  expression [30] wi th  the  de- 
finition of J '  (m) in the  following fo rm:  

co 

J'(~o) = J, + f/(T) X'(x) dr [2] 
0 

we can immed ia t e ly  bound  error s' (eJ) in 
t e rms  of a small  posi t ive or negat ive  fract ion 
of J '  (eJ): 

J'(e)) {zY(X)}min --< ~'(eJ) ~< J'(eo) {A'(x)}n . . . .  [32] 

This leads to a small  posi t ive upper  bound 
i~nd a small  negat ive  lower bound for the  
relat ive error  s ' ( e J ) / J ' ( w )  [cf. column 9 of  
table  1]. 

Fig. 6 shows the  course of  x A'(x) vs. x for 
app rox ima t ions  [9], [10], [11] and  [12]. I t  is 
seen f rom this figure t h a t  also funct ion 
x / l ' ( x )  is bounded  for all posi t ive x-values 
be tween a posi t ive upper  bound  and a 
negat ive  lower bound.  

10% (9) . . . . .  ~". // "'~ 
xX(x) 

o .... ..... ............. 

~ / 
\ / 

o11 1S 
Fig. 6. The course of functions x .  A'(x) for approxi- 

mations [9], [10], [11] and [12], vs. x 

10~163 
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3 0]r 

2 ~ 

1 ~ 

0 

-1 ~ 

-2% 

�9 3 % 

Comparing expression [30] with the de- 
finition of  J "  (o9) in the following form:  

J"(~o) =- - -  + / (T) [Z'(x)/x] dr  [3] 
~or] o 

we can bound  error e' (co) in terms of a small 
fraction of J"(oJ)  = J ' (w)  tan  5: 

J'(w) (tan (~) (x A' (X) }min  ~ S'(r --< J'(v9) (tan ,t) 

• {x A'(X)}max �9 [33] 

This leads to a positive and a negat ive bound 
expressed in (tan 6), as given in column 9 
of  table 1. 

Fig. 7 shows the course of A"(x) vs. x for 
approximat ions  [22], [24], [25], [26] and [27]. 
A"(x) vanishes for ve ry  small values of x; it  
shows a nmnber  of  max ima  and minima in 
the region of in termediate  x-values. However ,  
for each formula1), A"(x) finally tends  to - 1 
for large x-values. The x-value where this 
t ransi t ion takes place, depends on the length 
of  the short  t ime-tai l  of the formula.  Con- 
sequently,  A"(x) is bounded by  a small 
positive upper  bound. However ,  it does not  
have a useful lower bound1). I t  is therefore  
not  possible to apply  the reasoning used 
above to bound  relat ive error d'(o))/J" (oJ). 

g'Cx) 

++~ / 

i i 

22) (24) (25) (26) 
" X 

( 2 7 )  

0.1 1 10 100 1000 

Fig. 7. The course of relative error functions, A"(x) ,  
for approximations [22], [24], [25], [26] and [27], vs. x 

To find effective bounds for both,  e' (~o) 
and  s " (o ) ,  the integral representa t ions  of 
the  errors are rewri t ten  in a slightly different 
way : 

I x#(x) t 
e'(w) : /(r) [Z'(x) + p Z"(x)] / x + p I dr  [34] 

0 

0 

where p and q are assumed to be two arbi tra-  
ry,  but  non-negat ive  numbers.  Formulae  [34] 

~) Except  for formula [27]. 

and [35] are identit ies wi th  expressions [30] 
and [31]. We compare  the errors with the  
integral  representa t ion  of the following linear 
combinat ions of J '  (o~) and J"(~o) : 

J'(~o) + p d"(eg) : J'(e)) [1 + p (tan 6)] 
o~ 

f /(T) [Z'(x) + p Z'(x)]  dT + J0 + p [36] 
o m 7] 

J ' (o))  + qJ'(w) = d'+(cg) [1 + q/(tan 6)] =: 

~ '  1 [37] 0 1(~) [;( '(x) + q z ' ( x ) ]  d~ + q J0 + o)~]q - 

The terms outside the integrals in [36] and  
[37] are positive and of no consequence for 
what  follows. 

The only difference between the integral  
representa t ions  of [34] and [36] on the one 
hand,  and of [35] and [37] on the other  are 
the terms within brackets  in s' and # ' .  Fo r  
positive values of x, these terms have an 
upper  and a lower bound,  which will depend 
on the chosen fixed value of  p or q; therefore  
we m a y  write:  

- - $ ' ( p )  <_ {x A'(x)/[x + p]} ~ se'(p) [38] 
for all x _> 0 

--  U'(q) ~ {A'(x) /[1 + q x]} _< ~ ' (q ) .  [39] 

Though we did not  find a useful lower bound 
o f / l " ( x )  itself, the  absolute value of lower 
bound  - ~" (q) will be small, whenever  the  
value of pa rame te r  q is chosen sufficiently 
large. 

Because of our  assumption tha t  the re- 
t a rda t ion  spect rum is non-negative,  the 
integrands in eqs. [34], [35], [36] and [37] 
are positive or zero for all posi t ive values of 
T respect ively x. Therefore,  inequal i ty  [38] 
together  with eqs. [34] and [36] yield the 
following bounds for the relat ive error:  

- ~'(p) [~ + p (ta,~ ~)] _< ~'(o~)/d'(~) 
~'(p) [1 + p (tan 6)]. [40] 

In  a similar way  we find: 

~"(q) [l + q/(tan 6)] _<_ #'(~o)/J"(~o) 
~< U'(q) [1 + q/(tan ~)]. [41] 

The bounds for relat ive error s'/J' depend 
on the chosen fixed value for p and are in- 
creasing functions of the  value of (tan 5) at  
angular  f requency  w. I f  we repeat  the 
a rgument  for a different  value of p, we 
obtain different funct ions of (tan 6) as 
bounds. I f  the procedure  is performed for 
a whole sequence of p-va]ues between zero 
and infinite, two families of curves result. 
The curves of the one family  all const i tu te  
upper  bounds for e'/J', the  curves of the 
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other family all constitute lower bounds. 
The envelopes of both the families constitute 
most restrictive upper and lower bounds. 

This procedure has been performed on a 
digital computer for all numerical formulae 
listed in tables 1 and 2. Upper and lower 
bounds for the relative errors in those 
formulae are given, as functions of (tan 6), 
in tables 3 to 6. Tables 3 and 4 list upper and 
lower bounds for formulae of the A' (t) type; 
in tables 5 and 6 upper and lower bounds are 
listed for formulae of the A" (t) type. Note 

Table 3. Upper  bounds for relative error, in ~ of 
formulae for calculation of J'(o)) from J(t), as functions 

of tan ~(a~) 

formula [9] [10] [11] [12] [13] [14] [15] 
tan ($ 

0.1 1.5 0.78 0.75 0.9 
0.15 2.2 1.2 0.92 1.3 
0.2 2.9 1.6 1.0 1.5 0.6 
0.3 4.4 2.3 1.2 0.6 1.5 0.8 
0.4 5.8 3.1 1.4 0.8 1.5 0.6 0.8 
0.5 7.3 3.9 1.6 1.0 1.5 0.6 0.8 
0.6 8.8 4.7 1.7 1.3 1.5 0.7 0.8 
0.7 10.2 5.5 1.8 1.5 1.5 0.7 0.8 
0.8 11.7 6.2 1.9 1.7 1.5 0.8 0.8 

1.0 14.6 7.8 2.1 2.1 1.5 0.9 0.8 
1.5 11.7 2.7 3.2 1.5 1.1 0.8 
2.0 15.6 3.2 4.2 1.5 1.3 0.8 
3.0 4.3 5.9 1.5 1.6 0.8 
4.0 5.2 5.9 1.5 1.6 0.8 
5.0 5.2 5.9 1.5 1.6 0.8 
6.0 5.2 5.9 1.5 1.6 0.8 
7.0 5.2 5.9 1.5 1.6 0.8 
8.0 5.2 5.9 1.5 1.6 0.8 

10.0 5.2 5.9 1.5 1.6 0.8 

Table 4. Absolute values of lower bound for relative 
error, in O/o, of formulae for calculation of J'(eo) from 

J(t), as functions of tan ~$(~0) 

formula [9] [10] [11] [12] [13] [14] [15] 
tan 

0.1 1.5 0.77 0.75 
0.15 2.2 1.2 1.1 
0.2 2.9 1.5 1.5 
0.3 4.4 2.3 2.3 0.6 0.6 0.7 0.4 
0.4 5.8 3.1 3.0 0.8 0.8 0.9 0.5 
0.5 7.3 3.9 3.8 1.0 1.0 1.2 0.6 
0.6 8.8 4.6 4.5 1.3 1.i 1.3 0.6 
0.7 10.2 5.4 4.9 1.4 1.3 1.5 0.7 
0.8 11.7 6.2 5.0 1.5 1.5 1.6 0.8 

1.0 14.6 7.7 5.0 1.7 1,5 1.6 0.8 
1.5 11.6 5.1 1.9 1.5 1.6 0.8 
2.0 15.4 5.1 2.1 1.5 1.6 0.8 
3.0 5.1 2.5 1.5 1.6 0.8 
4.0 5.2 2.9 1.5 1.6 0.8 
5.0 5.2 3.3 1.5 1.6 0.8 
6.0 5.3 3.7 1.5 1.6 0.8 
7.0 5.3 4.1 1.5 1.6 0.8 
8.0 5.4 4.5 1.5 1.6 0.8 

10.0 5.5 5.2 1.5 1.6 0.8 

Table 5. Upper bounds for relative error, in ~ , of 
formulae for calculation of J"(w) from J(t), as functions 

of tan (~(~o) 

formula [21] [22] [23] [24] [25] [26] [27] 
tan 

0.01 25.7 2.3 3.5 1.3 2.3 2.7 2.7 
0.015 25.7 2.3 3.5 1.3 2.3 2.7 2.7 
0.02 25.7 2.3 3.5 1.3 2.3 2.7 2.7 
0.03 25.7 2.3 3.5 1.3 2.3 2.7 2.7 
0.04 25.7 2.3 3 . 5  1.3 2.3 2.6 2.6 
0.05 25.7 2.3 3.5 1.3 2.3' 2.5 2.5 
0.06 25.7 2.3 3.5 1.3 2.2 2.4 2.4 
0.07 25.7 2.3 3.5 1.3 2.2 2.4 2.4 
0.08 25.7 2.3 3.5 1.3 2.2 2.3 2.3 

0.1 25.7 2.3 3.5 1.3 2.1 2.2 2.2 
0.15 25.7 2.3 3.5 1.3 2.0 2.0 2.0 
0.2 25.7 2.3 3.0 1.3 1.8 1.8 1.8 
0.3 25.7 2.2 2.4 1.3 1.6 1.6 1.6 
0.4 25.7 2.0 2.1 1.3 1.5 1.5 1.5 
0.5 23.4 1.9 1.9 1.3 1.4 1.4 1.4 
0.6 20.5 1.8 1.8 1.3 1.3 1.3 1.3 
0.7 18.5 1.7 1.7 1.2 1.2 1.2 1.2 
0.8 16.9 1.6 1.6 1.2 1.2 1.2 1.2 

1.0 14.8 1.4 1.6 1.1 1.1 1 . 1  1.1 
1.5 11.9 1.1 1.5 1.0 1.0 1.0 1,0 
2.0 10.5 1.0 1.4 
3.0 9.0 1.3 
4.0 8.3 1.3 
5.0 7.9 1.3 
6.0 7.6 1.2 
7.0 7.4 1.2 
8.0 7.2 1.2 

10.0 7.0 1.1 

that  lower bounds, which are always nega- 
tive, are listed with their absolute values 
only. Illustrations are given in figs. 8, 9, 10 
and 11. 

In figs. 8 and 9, upper and lower bounds 
for the relative error of the formulae of 
table 1 are shown as functions of (tan 6), in 
double logarithmic diagrams. The absolute 
value of all bounds increases with increasing 
value of (tan 6). Consequently, the calculation 
of J'(w) from J(t) will be the more difficult, 
the higher the value of (tan 6). From figs. 8 
and 9 it will be easy to determine the appro- 
priate approximation to be used in each 
particular case. If, for instance, experimental 
accuracy admits calculation of J '  (o~) within 
an error of 1%, formula [9] could be used for 
values of (tan ~) between 0 and 0.07; for- 
mula [10] between 0 and 0.13, formula [12] 
between 0 and 0.5, and finally formula [15] 
for all (tan 6)-values. 

In figs. 10 and 11 upper and lower bounds 
for the relative error of the formulae of 
table 2 are shown as functions of (tan 6), in 
double logarithmic diagrams. The absolute 
value of all bounds decreases with increasing 
value of (tan ~). Consequently, the calcula- 
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Table 6. Absolute values of lower bounds for relative 
error, in ~ of formulae for calculation of J ' ( to)  from 

J(t), as functions of tan 6(to) 

formula [21] [22] [23] [24] [25] [26] [27] 
tan 6 

0.001 76.0 2.7 
0.0015 51.5 2.7 
0.002 39.3 2.7 
0.003 91.7 27.0 2.7 
0.004 76.6 20.8 2.7 
0.005 62.0 17.2 2.7 
0.006 52.2 14.7 2.7 
0.007 45.1 12.9 2.7 
0.008 39.8 11.6 2.7 

0.01 32.5 9.8 2.7 
0.015 84.1 80.5 22.6 7.4 2.7 
0.02 66.8 61.2 17.7 6.1 2.7 
0.03 44.5 41.2 12.8 4.9 2.7 
0.04 33.4 31.2 10.1 4.3 2.7 
0.05 88.2 26.7 25.2 8.3 3.9 2.7 
0.06 76.9 22.3 21.2 7.1 3.5 2.7 
0.07 66.0 19.1 18.4 6.3 3.2 2.6 
0.08 57.7 16.7 16.2 5.6 2.9 2.5 

0.1 85.7 46.2 13.4 13.2 4.7 2.6 2.4 
0.15 59.9 30.8 8.9 9.2 3.6 2.2 2.2 
0.2 46.3 23.1 6.7 7.2 3.0 2.0 2.0 
0.3 32.8 15.4 4.5 5.2 2.4 1.7 1.7 
0.4 26.0 11.6 3.4 4.2 2.1 1.6 1.6 
0.5 22.0 9.3 2.7 3.6 1.9 1.6 1.6 
0.6 19.3 7.7 2.2 3.2 1.8 1.5 1.5 
0.7 17.4 6.6 1.9 2.8 1.7 1.5 1.5 
0.8 15.9 5.8 1.7 2.6 1.6 1.5 1.5 

1.0 13.9 4.6 1.3 2.1 1.5 1.4 1.4 
1.5 11.1 3.1 0.9 1.6 1.4 1.4 1.4 
2.0 9.7 2.3 1.3 1.3 1.3 1.3 
3.0 8.2 1.5 0.9 0.9 0.9 0.9 
4.0 6.5 l . I  
5.0 5.2 0.9 
6.0 4.4 
7.0 3.7 
8.0 3.3 

10.0 2.6 
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Fig. 9. Lower bounds for relative error of formulae of 
table l,  as functions of value of tan 6 (to) 
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table l, as functions of value of tan 6 (~o) table 2, as functions of value of tan 6 (m) 
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tion of J "  (~) from J (t) is the more difficult, 
the lower the value of (tan 6). Consider first 
the upper bound for the relative error as 
shown in fig. 10. Only formula [21] could yield 
results which are considerably too high, 
namely 26% in the worst case. The other 
formulae will never yield results which are 
essentially higher than the real value of 
J"(w).  The relative error always remains 
below 3.5% for formula [23], 1.3~ for 
formula [24], 2.7% for formula [27] etc. The 
difficulty originates from the lower bound 
for the relative error as shown in fig. l l. 
Only formula [27] may be safely used for 
all values of tan ~(o~). The other formulae 
have a (tan 6)-region where they may be 
safely used, and a (tan 6)-region where they 
might yield results which are considerably 
~oo low. If, for instance, experimental 
accuracy admits calculation of J"(o~) with 
an error smaller than 3%, formula [21] should 
not be used; formula [22] could be safely used 
for values of (tan 8) between 1.5 and c~; 
formula [23] between 0.45 and c~; formula 
[24] between 0.65 and ~ ;  formula [25] be- 
tween 0.2 and c~; formula [26] between 
0.075 and c~; and formula [27] for all values 
of (tan ~). 

5. Concluding Remarks 

We would like to emphasize tha t  the 
formulae given in tables 1 and 2 will be much 
more accurate in most practical cases than 
one might conclude from the error bounds 
which have been derived. The error of a 
formula will really attain its bound in the 
most unfavourable situation only, viz. when 
the retardation spectrum consists of one 
sharp line which is situated at the most 
unfavourable place. When dealing with a 
smooth spectrum of retardation times, the 
positive and negative contributions of the 
error function under the integral will cancel 
out for the largest part. In those cases, the 
real error may well be one order of magnitude 
smaller than the bounds. This remark should 
apply especially to the lower bounds of the 
errors of the truncated formulae of table 2. 

Whenever possible, one should start the 
considerations with the complete formula 
(formula [15] for J'(o~) and [27] for J"(w)). 
Then, by using experimental evidence on 
the magnitude of the logarithmic derivative 
of the creep compliance, one should leave 
out all terms with a contribution smaller 
than the experimental error. Often one will 

then end up with a formula which only in- 
volves a small number of significant terms. 

A different procedure is to derive more 
restrictive lower bounds for the relative 
error of the truncated formulae of table 2, 
by using experimental evidence on the 
magnitude of the short time creep behaviour. 
Consider, for instance, formulae [24] and 
denote the error of this formula by s[24]"- 
I t  is possible to express this error in terms 
of the error of formula [27], denoted here 
by [27] , and the finite differences of the 
creep compliance in the short time domain. 
By comparing the definitions of [24] and 
[27] and by using eq. [31] twice, we obtain: 

S'[~41 = e " [ ~ , ]  - -  0 . 0 0 2  [ J ( t )  - -  J( t /2)]  + 0 . 0 0 7  [J(t /2)  

- -  J( t /4)]  - -  0 . 0 1 2  [J( t /4)  - -  J ( t /8 )]  + 0 . 0 2 2  [J( t /8)  

- -  J (t/16)] - -  0 . 0 4 3  [J( t /32)  - -  J ( t /64)]  

- -  0 . 0 1 0 8  [J( t /128)  - -  J ( t / 2 5 6 ) ]  - -  . . .  [42]  

We know bounds for the error # '  [27], viz. : 

- -  0 . 0 2 7  J " ( ~ o )  ~ ~"[27] ~ + 0 . 0 2 7  J " ( o J ) .  [43]  

From the existence of the upper bound for 
formula [21] we derive the following in- 
equality : 

2 . 1 2  
J " ( w )  ~ ~ [ J ( t )  - -  J( t /2)]  = 1 . 6 8  [ J ( t )  - -  J( t /2 ) ] .  

[44 ]  

I f  it is possible to give bounds of the differ- 
ence terms on the right hand side of eq. [42] 
in terms Of [J(t) - J(t/2)], we can immediate- 
ly, by using [43] and [44], derive more 
restrictive lower bounds for error e" [24]. 

Consider, as an example, the frequently 
occurring case that  the creep compliance is 
a convex function of the logarithm of time, 
i. e. tha t  the following inequalities are true: 

J ( t / 128 )  - -  J ( t / 256 )  ~ J ( t /32)  - -  J ( t / 64 )  ~ J ( t /8 )  

- -  J ( t / 16 )  ~_ J ( t /4 )  - -  J ( t / 8 )  ~ J ( t / 2 )  

- -  J ( t /4 )  ~ J ( t )  - -  J ( t / 2 ) .  [45]  

Then, by combining eqs. [42] ,[43], [44] and 
[45] we obtain the following lower bound for 

p t  . 

[24] .  

~"[~4] ~ - -  0 . 0 2 7  J " ( r  - -  0 . 0 4 2  [ J ( t )  - -  J( t /2)]  

- -  0 . 0 2 7  J " ( w )  - -  0 . 0 2 5  J " ( r  

= - -  0 . 0 5 2  J " ( w ) .  [46]  

In this manner we obtained the error bounds 
listed in table 7. 

A discussion on applications of the for- 
mulae proposed here is postponed to a 
following publication. 



Wain, V-t capillary Rheomef~'y 17 

Table 7. Bounds for the  relative error, in %, for 
formulae of table 2 under  the  condition of convex creep 

behaviour 

formula number  upper bounds lower bounds 

[22] 2.3 --  9.4 
[24] 1.3 --  5.2 
[25] 2.3 -- 3.4 
[26] 2.7 --  2.9 
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~um~bary 

Numerical formulae are given for calculation of 
storage and loss compliance from the course of the  
creep compliance for l inear viscoelastic materials. 
These formulae involve values of the creep compliance 
a t  times which are equally spaced on a logarithmic 
t ime scale. The ratio between succeeding t imes cor- 
responds to a factor of two. 

A method is introduced by  which bounds for the  
relative error of those formulae can be derived. These 
bounds depend on the  value of the damping, tan  ($. 
The calculation of the storage compliance is easier with  
the  lower damping values. This calculation involves 
the  value of the creep compliance at  t ime t o ~ l/w, 
and t h a t  of its derivative with respect to the logari thm 
of t ime in a ra ther  narrow region around t 0. In contrast  
the  calculation of the loss compliance is more difficult 
wi th  the  lower damping v~lues. This calculation in- 
volves the value of the derivative of the  creep com- 
pliance with respect to the logari thm of t ime in a broad 
interval  around to. 

Zusammen/assung 

Numerische Formeln warden angegeben, die die Be- 
rechnung der dynamischen Nachgiebigkeit aus der 
Kriechkurve ermhglichen. In  diesen Formcln t re ten  
Werte  der Kriechkurve auf, die zu logarithmisch iiqui- 
d is tanten  Zei tpunkten gemessen wurden. Das Verh~lt- 
nis zweier aufeinanderfolgender Zei tpunkte  entspr icht  
stets einem Faktor  2. 

Fiir  alle Formeln werden obere und  untere Schran- 
ken ffir den relat iven Fehler abgeleitet. Diese Schranken 
h~ngen veto Werte  der D/~mpfung (tan 6) ab, die bei 
der Kreisfrequenz r auftr i t t ,  fiir die die Bercchnung 
erfolgt. Die Berechnung der Speicherkomponente der 
dynamischen Nachgiebigkeit ist desto leichter, je 
niedriger der War t  der Dhmpfung ist. Zu dieser Be- 
rechnung benhtigt  man  den Wer t  dcr Kriechfunkt ion 
zum Zei tpunkt  to ~ 1/w and  deren logarithmische Zeit- 
ablei tung in einem ziemlich engen Zeit intervall  um t 0. 
Die Berechmmg der Verlustkomponente der dynami- 
schen Nachgiebigkeit ist desto leichter, je hSher der 
Wer t  der D/~mpfung ist. Zu dieser Berechnung be- 
nStigt man den Wer t  der logarithmischen Zeitablcitung 
der Kriechfunktion in einem breiten Zeit intervall  um t 0. 
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List of Symbols V (cm 3) 
D see -1) ra te  of shear T (dyn -em -2) 
g (cm.  sac -2) acceleration of gravity ~ (g �9 cm -3) 
h (cm) difference in heights in liquid ~ (sec -1) 

level ~ (dyn .  cm -~) 
H (cm) maximum value of h A (1) 
L0 (cm) calibrated length of buret te  
Lc (cm) length of capillary B (1) 
AP (dyn.  cm -~) pressure drop 
Q (cm 3 �9 see 1) volumetric flow rate  p (1) 
R0 (cm) internal  radius of buret te  T (1) 
Re (cm) internal  radius of capillary tube  y (1) 
t (see) t ime of flow v ~ (1) 

volume of liquid flown out  of the  
ins t rument  
shear stress 
density of liquid 
kinematic consistency variable 
dynamic consistency variable 
dimensionless dynamic consistency 
variable 
dimensionless kinematic  consistency 
variable 
dimensionless ra te  of shear 
dimensionless t ime 
dimensionless pressure drop 
dimensionless shear stress 


