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ABSTRACT: The Kremer−Grest (KG) polymer model is a
standard model for studying generic polymer properties in
molecular dynamics simulations. It owes its popularity to its
simplicity and computational efficiency, rather than its ability to
represent specific polymers species and conditions. Here we show
that by tuning the chain stiffness it is possible to adapt the KG
model to model melts of real polymers. In particular, we provide
mapping relations from KG to SI units for a wide range of
commodity polymers. The connection between the experimental
and the KG melts is made at the Kuhn scale, i.e., at the crossover
from the chemistry-specific small scale to the universal large scale
behavior. We expect Kuhn scale-mapped KG models to faithfully represent universal properties dominated by the large scale
conformational statistics and dynamics of flexible polymers. In particular, we observe very good agreement between entanglement
moduli of our KG models and the experimental moduli of the target polymers.

1. INTRODUCTION

Polymers are long chain molecules built by covalent linkage of
a large numbers of identical monomers.1,2 Synthetic polymers
are ubiquitous in everyday life due to their unique processing
and materials properties.3 A key problem in polymer science is
the relation between structure and dynamics on the molecular
scale and the emergent macroscopic material properties. The
bulk density, the temperature below which the materials
become glassy,4 or their ability to form semicrystalline phases5

depends on specific chemical details at the monomer scale.
Other properties, like the variation of the melt viscosity with
the molecular weight of the chains, are controlled by the large
scale conformational statistics and dynamics of long entangled
chains, which adopt interpenetrating random walk conforma-
tions.6 Such properties are characteristic of polymeric systems
and universal6,7 in the sense that a large number of chemically
different systems exhibit identical behavior, if measurements
are reported in suitable, material-specific units.
The character of the target properties is crucial for making

an intelligent choice of which model to apply in a theoretical or
computational investigation. Predicting specific material
properties for a given chemical species often requires atom-
scale modeling. A growing body of work aims at developing
coarse-grained (CG) polymer models with lower resolu-
tion,8−12 which are designed for specific polymer chemistries
such as polyethylene,13−15 polyisoprene,16−19 polystyrene,20−22

polyamide,23,24 polymethacrylate,25 polydimethylsiloxane,19

bisphenol A polycarbonate,26−28 polybutadiene,29 vinyl poly-
mers,30 and polyisobutylene.19 Common to these approaches

is the selected inclusion of specific chemical details in the
coarse-grained models. They offer insights into which atomistic
details of the chemical structure are relevant for particular
nonuniversal polymer properties. The inclusion of molecular
details is supposed to preserve a certain degree of trans-
ferability; i.e., models optimized to describe materials at one
state point are expected to remain approximately valid at
neighboring state points.9,11,31 Similarly, careful coarse-graining
is supposed to ensure representability, that is, the ability of a
model to predict properties that it was not explicitly designed
to reproduce.32

In contrast, universality is usually taken to justify a “one-
model-fits-all” approach. For example, two polymer melts are
expected to show identical rheological behavior, if the (linear)
chains have the same ef fective length, Z in entanglement units,
spatial distances in units of the tube diameter, dT, and time in
units of the entanglement time, τe. Here Z = N/Ne where N
denotes the chain length and Ne the chain length per
entanglement. This suggests that the linear rheological
behavior of a target material can be predicted on the basis of
experimental reference data for particularly well-investigated
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polymer species or by using simple, analytically6,33−35 or
numerically convenient lattice36,37 and off-lattice models.38,39

A prototype example from polymer theory is the Rouse
model of polymer dynamics,40 which underlies the phenom-
enological tube model of entanglement effects in homopolymer
melts.6,33 Simulations targeting generic polymer behavior often
employ the bead−spring polymer model introduced by Kremer
and Grest (KG),38,39 which is also central to the present work.
In the KG model approximately hard-sphere beads are
connected by strong nonlinear springs, generating the
connectivity and the liquid-like monomer packing character-
istic of polymer melts. The interactions are tuned to
energetically prevent polymer chains from passing through
each other. With the model reproducing the local topological
constraints dominating the dynamics of long-chain polymers,39

nontrivial large scale entanglement properties emerge through
the exact same mechanisms as in real commodity polymer
melts. While the parameters Ne, dT, and τe characterizing the
entanglement scale are direct input parameters of the tube
model, they need to be measured as a function of the
microscopic energy scale, ϵ, bead diameter, σ, mass, mb, and
time m /bτ σ= ϵ of the KG model, before the simulation
results can be related to experiment.39

Both the standard Rouse/tube and the KG model disregard
the polymer contour length as an independent relevant length
scale. Theorists assume Gaussian chain statistics, implicitly
sending the contour length to infinity in the analytically
convenient continuum limit. The contour length of KG chains
is finite and well-defined, but because Kremer and Grest
parametrized their model by mapping it to experimental
systems on the entanglement scale, the value is essentially
arbitrary. To describe situations where the chains undergo
larger deformations, tube models incorporate their contour
length as an additional, independent parameter.6,33 But how
should one control the chain length in KG-like models, where
modifications of microscopic model parameters are bound to
influence all emergent mesoscopic time and length scales?
At least qualitatively, finite extensibility was already

accounted for in one of the oldest models of polymer physics.
Kuhn’s seminal insight in the 1930s was that the large scale
conformations of chain molecules can be represented as an NK
step random walk of “Kuhn” segments of length lK.

41 For the
proper choice of the Kuhn length, the model reproduces both
the end-to-end distance at full extension, L = lKNK, and the
mean-square end-to-end distance, ⟨R2⟩ = NKlK

2, of target
polymers. While the model obviously needs to be taken with a
grain of salt, it provides polymer physics6,7,42 with a natural set
of microscopic units: the Kuhn length, lK, the Kuhn time, τK,
and kBT as the natural energy scale in entropy dominated
systems. Intrinsically flexible polymers exhibit universal
behavior6,7,42 beyond the Kuhn scale, while behavior on
smaller scales is material-specific and dependent on atomic
details. For example, the large scale flexibility has completely
different microscopic origins in the wormlike chain43 and in
the rotational-isomeric-state2 models. Similarly, there are well-
documented exceptions44 to the strong form of the time−
temperature superposition principle,4 which postulates identi-
cal temperature dependence for microscopic relaxation
mechanisms all the way down to the atomic scale. Work
from the Hassager group45 underlines the importance of the
Kuhn scale for establishing universality in nonlinear rheology.
In particular, the authors present three conditions for nonlinear

universality in the rheology of polymer melts.45 In order for
polymer melts to show identical behavior, they have (i) to be
composed of chains with the same ef fective length, Z = NK/NeK,
(ii) to have the same number of Kuhn segments per
entanglement, NeK, and (iii) to exhibit the same friction
reduction in fast elongational flows.
Here we investigate how the KG model can be used as a

convenient tool for exploring universal properties of specif ic
polymer materials in the above, extended sense. This raises a
number of questions: (1) Is there a minimal modification of
the standard KG model that would allow for a coarse-grain
description of the full range of standard commodity polymers?
(2) How can KG models be related to atomistic simulations,
which predict the emerging large scale behavior by accounting
for chemical specificity on the atomic scale? (3) How can KG
simulation results most easily be compared to theories of
polymer physics? (4) How can KG simulations be used to
predict the results of experiments performed on real polymers?
(5) Is there a price to be paid in terms of computational
efficiency in studying material-specific KG models compared to
the standard use of the model?
The first question was addressed by Faller and Müller-

Plathe,46−48 who introduced a bending potential into the KG
model. Here we show that by tuning the bending potential, we
can reproduce the full range of effective stiffnesses exhibited by
commodity polymers. In doing so, we rely on results of an
accompanying paper, where we have studied the dependence
of the characteristic time and length scales in KG bead−spring
polymer melts on this parameter.49 Our working hypothesis is
that questions 2−4 can largely be reduced to a choice of units
or the matching of key characteristic length and time scales. By
construction, the resulting “Kuhn scale-mapped KG models”
reproduce the ratio of the packing to Kuhn length of the target
polymer. Interestingly, they turn out to be as or even more
computationally efficient than the original model.
The paper is structured as follows. We review the necessary

theoretical background in section 2. In section 2.1 we
introduce with the Kuhn scale the units of length and time
which are central to our scheme for locally mapping real
polymers onto Kremer−Grest chains. The results cited in the
remainder of section 2 serve to illustrate that two
monodisperse polymer melts of chemically different polymers
are expected to show the same universal large scale properties,
provided (i) they are characterized by the same number of
Kuhn segments per chain, NK, (ii) their densities correspond to
the same dimensionless Kuhn number, nK, and (iii) properties
are measured in the “natural” Kuhn units. The actual mapping
is discussed in section 3. In section 3.2, we transcribe well-
known results from Fetters et al.50 for the chain structure of a
wide range of commodity polymer melts to the Kuhn scale.
Section 3.3 summarizes the results of the accompanying paper,
where we have studied the dependence of the characteristic
time and length scales in KG bead−spring polymer melts on
the strength of the bending potential.49 In section 3.4 we
derive mapping relations for static properties. In particular, we
provide tables specifying a one-parameter KG force field for a
wide range of experimental polymer melts; that is, we list (1)
which bending stiffness to use for modeling a particular
chemical polymer species and (2) how to translate simulation
results expressed in KG units into predictions for the specific
polymer material expressed in SI units. Section 3.5 discusses
the transferability of the force field to other temperatures.
Section 3.6 focuses on time−temperature superposition as a
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means of estimating of how simulation time in our KG models
is related to real time. As a first test, we compare in section 3.7
plateau moduli inferred from KG models to experimental
values. The discussion in section 4 focuses on the place of
Kuhn scale matched KG models within the multiscale
hierarchy of polymer polymers. We propose to view Kuhn
scale matching as a special case of structure based coarse-
graining and discuss the large effective time step of our models
together with the expected speedup relative to atomistic
simulations. Finally, we briefly conclude in section 5.

2. BACKGROUND
In this section, we provide a brief outline of polymer
theory.6,7,42,51 The point of the exercise is to show that
Kuhn scale-mapped KG models can be expected to have
predictive power for emergent polymer properties.
2.1. Kuhn Scale. The Kuhn length

l
R
LK

L l
2

K= ⟨ ⟩≫

(1)

characterizes the crossover from local rigid rod to random walk
behavior. It is not straightforward to infer the Kuhn length
from the chemical structure of a polymer in its melt state as it
depends on intramolecular interactions, chemistry-specific
local packing, and universal long-range correlations.2,52,53

A known Kuhn length can be used to characterize the large
scale structure of polymer melts via two related dimensionless
numbers. The number of Kuhn segments per chain

N
R
l

L
RK

K

2

2

2

2= ⟨ ⟩ =
⟨ ⟩ (2)

is a dimensionless measure of chain length. If ρK denotes the
number density of Kuhn segments, then the number of Kuhn
segments within the volume of a Kuhn length cube

n lK K K
3ρ= (3)

provides a dimensionless measure of density for polymeric
materials. We refer to nK as the “Kuhn number”. In Kuhn units,
the chain density is given by

Nc
K

K
ρ

ρ
=

(4)

To characterize the dynamics, one can define the friction
coefficient, ζK, of a Kuhn segment undergoing Brownian
motion. Interpreting ζK as a viscous Stokes drag, ζK ∝ ηKlK, it is
convenient to define an effective viscosity at the Kuhn scale as

l
1

36K
K

K
η

ζ
=

(5)

The fundamental time scale of the dynamics of intrinsically
flexible polymers is set by the time that it takes a Kuhn
segment to diffuse (DK = kBT/ζK) over a distance comparable
to its own size. Again, it turns out to be practical to incorporate
some numerical prefactors into the definition of the Kuhn
time:

l
k T

l

k T
1

3
12

K
K K K K

2

2

B
2

3

B
τ

π
ζ

π
η

= =
(6)

The universal aspects of the mesoscale conformations54,55 and
liquid structure56,57 beyond the Kuhn scale can often be

described by Gaussian chain models. This ansatz preserves the
information about the mean-square chain extensions, ⟨R2⟩,
without retaining the chain contour length, L, as relevant
variable. This is particularly apparent in the continuum limit,
which is frequently employed in theoretical calculations.6,58

2.2. Rouse Dynamics. We begin our short tour d’horizon
with the Rouse model,6,40 which describes the dynamics of
short unentangled polymers. Rouse considered the Langevin
dynamics of a “Gaussian” chain composed of beads, which
experience local friction and which are connected by harmonic
springs representing the entropic elasticity of polymer sections
beyond the Kuhn scale. In this model, the maximal internal
relaxation time of a chain is given by the Rouse time

NR

K
K

2τ
τ

=
(7)

while the macroscopic melt viscosity can be written as

n N
K

K K
η
η

=
(8)

In particular, eqs 7 and 8 illustrate the utility of the natural
Kuhn units in expressing emergent universal properties.

2.3. Packing and the Invariant Degree of Polymer-
ization. The key for understanding the properties of polymer
melts is the realization that chains strongly interpenetrate. The
Flory number

n R n NF c K K
2 3/2 1/2ρ= ⟨ ⟩ = (9)

is defined as the number of chains populating, on average, the
volume spanned by one chain. That the Flory number is large
explains why chains behave nearly ideally in dense melts59 and
why such polymer systems can often be well described by
mean-field theories.60,61

The invariant degree of polymerization

N R n N nc K K F
2 2 3 2 2ρ̅ = ⟨ ⟩ = = (10)

is dimensionless measure of chain length and interpenetration
and related to the number of intermolecular pair interactions a
given reference chain experiences. It plays a key role in more
complex polymer systems such as block copolymers under-
going micro phase separation.55,62 The corresponding packing
length63,64 is defined as

p
R
N

l
n R

1K

K c

2

2ρ
≡ ⟨ ⟩

̅
= =

⟨ ⟩ (11)

such that monomers found at a spatial distance smaller than p
from a reference monomer typically belong to the same chain.
Monomers found at a larger distance have an increasing
probability to belong to a different chain. It is evident from eq
10 that Kuhn matching is suf f icient to reproduce all emergent
properties in polymer melts, which depend of the invariant
degree of polymerization, N̅, but by no means necessary. For a
more detailed discussion of these aspects in the context of
multiscale modeling, we refer the reader to refs 65 and 66.

2.4. Entanglement Scale. Chains undergoing Brownian
motion can slide past each other; however, their backbones
cannot cross.6 As a consequence, the motion of long chains is
subject to long-lived topological constraints.67 The constraints
become relevant at scales beyond the entanglement (contour)
length,64,68 Le, or the equivalent number of Kuhn units
between entanglements, NeK = Le/lK. In the present context NeK
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> 1. The corresponding spatial scale is the so-called tube
diameter

d
l

R N
l

N
( )T

K

eK

K
eK

2

2=
⟨ ⟩

=
(12)

where the latter equality assumes NeK ≫ 1. Just like the
fundamental time scale τK is determined by the Kuhn segment
diffusion coefficient and the Kuhn length, the diffusion
coefficient of an entanglement segment (De = kBT/[NeKζK])
and the tube diameter also define a characteristic time scale τe:

Ne

K
eK

2τ
τ

=
(13)

According to the packing argument for loosely entangled
polymers,69,70 the ratio of the tube diameter and the packing

length is given by a universal constant, α. Experimental
results50 (Table 1), simulation data,49 and a geometric
argument71 for the local pairwise72 entanglement of Gaussian
chains suggest

d
p

18 2Tα = = ±
(14)

The packing argument implies that there are d
N T

3K

eK
α = ρ

entanglement strands per entanglement volume and that the
entanglement length is given by

i
k
jjjjj

y
{
zzzzzN

neK
K

2
α=

(15)

Uchida et al.73 developed a scaling theory to describe the
crossover to the tightly entangled regime, suggesting instead

Table 1. Kuhn Descriptions and Entanglement Properties of Polymers76 Characterized by Experimental Temperature Tref,
Mean-Square Extension per Molecular Mass ⟨R2⟩/Mc, Bulk Mass Density ρbulk, Entanglement Modulus Ge, and Derived
Quantities Such As the Packing Length p and Tube Diameter dT; Polymers Are Also Characterized by their Kuhn Number nK,
Kuhn Length lK, Mass of a Kuhn Segment MK, Kuhn Density ρK, the Reduced Entanglement Modulus GelK

3/[kBTref], Kuhn
Segments between Entanglements NeK, and Number of Entanglement Strands Per Entanglement Volume αa

name
Tref
(K)

⟨R2⟩/Mc (Å
2·

mol/g)
ρbulk (g/
cm3)

Ge
(MPa) p (Å)

dT
(Å) nK lK (Å)

MK (g/
mol)

MK/
Mm

ρK
(nm−3)

GelK
3/

kBT NeK α

PI-50 298 0.528 0.893 0.51 3.52 47.7 2.50 8.80 146.60 2.15 3.66 0.085 29.41 13.6
PI-7 298 0.596 0.900 0.44 3.10 55.1 2.72 8.44 119.60 1.76 4.52 0.064 42.55 17.8
PDMS* 298 0.422 0.970 0.25 4.06 63.7 2.82 11.42 309.28 4.17 1.89 0.091 31.08 15.7
PI-20 298 0.591 0.898 0.44 3.13 54.8 2.86 8.98 136.50 2.00 3.95 0.077 37.17 17.5
PI-34 298 0.585 0.965 0.44 2.94 56.5 3.02 9.58 156.90 2.30 3.44 0.093 32.32 19.2
cis-PBd 298 0.758 0.900 0.95 2.43 42.2 3.40 8.28 90.50 1.67 5.99 0.131 25.93 17.3
PIB(413) 413 0.557 0.849 0.38 3.51 65.8 3.47 12.20 267.90 4.77 1.91 0.119 29.02 18.7
cis-PI 298 0.679 0.910 0.72 2.69 46.0 3.47 9.34 128.60 1.89 4.26 0.144 24.15 17.1
a-PP(463) 463 0.678 0.765 0.53 3.20 61.7 3.53 11.20 183.40 4.36 2.51 0.115 30.59 19.3
i-PP 463 0.694 0.766 0.54 3.12 61.7 3.64 11.40 187.80 4.46 2.46 0.125 29.22 19.8
a-PP(413) 413 0.678 0.791 0.59 3.10 56.0 3.65 11.20 183.40 4.36 2.60 0.145 25.21 18.1
a-PP(348) 348 0.678 0.825 0.60 2.97 51.9 3.81 11.20 183.40 4.36 2.71 0.175 21.70 17.5
a-PP 298 0.678 0.852 0.60 2.87 48.8 3.92 11.20 183.40 4.36 2.79 0.205 19.15 17.0
PIB 298 0.570 0.918 0.43 3.17 55.2 3.94 12.50 274.20 4.89 2.02 0.202 19.52 17.4
a-PMMA 413 0.390 1.130 0.39 3.77 62.5 4.07 15.30 598.00 5.97 1.14 0.243 16.72 16.6
i-PS* 413 0.420 0.969 0.24 4.08 76.7 4.19 17.11 697.12 6.69 0.84 0.209 20.10 18.8
a-PMA 298 0.436 1.110 0.31 3.43 61.9 4.29 14.70 494.60 5.75 1.35 0.241 17.79 18.1
PI-75 298 0.563 0.890 0.46 3.31 51.8 4.53 15.00 399.30 5.86 1.34 0.379 11.94 15.6
PBd-20 298 0.841 0.895 1.34 2.21 37.3 4.54 10.10 122.40 2.26 4.41 0.335 13.55 16.9
a-PS* 413 0.437 0.969 0.25 3.92 76.3 4.54 17.80 725.34 6.96 0.80 0.247 18.35 19.4
PBd-98 300 0.661 0.890 0.71 2.82 45.4 4.83 13.70 284.80 5.27 1.88 0.442 10.93 16.1
PEO* 353 0.805 1.060 2.25 1.95 33.4 4.99 9.71 117.12 2.66 5.45 0.423 11.81 17.1
POM* 473 0.763 1.140 2.12 1.91 40.1 5.06 9.65 122.11 4.07 5.62 0.293 17.28 21.0
a-PHMA 373 0.366 0.960 0.11 4.73 98.4 5.19 24.40 1622.00 9.53 0.36 0.317 16.35 20.8
a-PVA* 333 0.490 1.080 0.44 3.14 57.9 5.26 16.50 555.70 6.45 1.17 0.428 12.30 18.4
SBR 298 0.818 0.913 0.98 2.22 43.6 5.33 11.90 173.60 2.61 3.16 0.399 13.35 19.6
P6N* 543 0.853 0.985 2.25 1.98 41.1 5.53 10.93 140.05 1.24 4.24 0.392 14.11 20.8
a-PαMS* 473 0.442 1.040 0.40 3.61 67.2 5.66 20.43 944.61 7.99 0.66 0.523 10.82 18.6
a-PEA 298 0.463 1.130 0.45 3.17 53.7 5.70 18.10 710.10 7.09 0.96 0.649 8.79 16.9
PET* 548 0.845 0.989 3.88 1.99 31.3 7.50 14.91 263.15 1.37 2.26 1.698 4.42 15.8
s-PP 463 1.030 0.766 1.69 2.10 42.4 7.99 16.90 278.70 6.62 1.66 1.274 6.27 20.2
PE(413) 413 1.250 0.785 3.25 1.69 32.2 8.09 13.70 150.40 5.36 3.14 1.466 5.52 19.0
a-POA 298 0.442 0.980 0.20 3.83 73.3 8.34 31.90 2295.00 12.45 0.26 1.578 5.29 19.1
PC* 473 0.864 1.140 3.38 1.69 33.9 10.93 18.43 393.25 1.55 1.75 3.237 3.38 20.1
PE 298 1.400 0.851 4.38 1.39 26.0 11.10 15.40 168.30 6.00 3.04 3.884 2.86 18.6
PTFE* 653 0.598 1.460 2.12 1.90 47.2 12.30 23.40 915.41 9.15 0.96 3.019 4.07 24.8

aThe asterisk (∗) denotes polymers where we have derived the Kuhn scale descriptions; for the rest we use the values from ref 76 to uniquely
identify polymers, and we have added the reference temperature to some of the polymer names.

Macromolecules pubs.acs.org/Macromolecules Article

https://dx.doi.org/10.1021/acs.macromol.9b02428
Macromolecules 2020, 53, 1901−1916

1904

pubs.acs.org/Macromolecules?ref=pdf
https://dx.doi.org/10.1021/acs.macromol.9b02428?ref=pdf


N x x x x
n

(1 ) witheK
K

2/5 2/5 2 4/5 α= + + =
(16)

For small Kuhn numbers, eq 16 agrees with the packing
prediction, but corrections become noticeable for nK > 10.
Above the entanglement time, the Rouse model fails to

describe dynamic correlations in polymer melts. The universal
behavior of entangled chains depends on chain length only
through the number

Z
N
N

K

eK
=

(17)

of entanglements per chain and is best discussed in the
“entanglement units” dT and τe of spatial distance and time. A
key point to note is that the simple relation Z = N̅/α2

suggested by the packing argument breaks down when the
Uchida corrections become relevant. In this case, the number
of entanglements per chain, Z(nK), and the invariant index of
polymerization, N̅(nK), become dif ferent universal functions of
the Kuhn number, nK.
2.5. Tube Model. Modern theories of polymer dynamics6

are based on the idea that entangled chains are confined to a
one-dimensional, diffusive motion (reptation74) in tubelike
regions in space.75 In the limit of long chains the maximal
relaxation time74 is given by

Z3 emax
3τ τ= (18)

and for τe < t < τmax the shear relaxation modulus, G(t),
exhibits a rubber-elastic plateau, G GN e

4
5

= , where the

entanglement modulus

G
N

k Te
K

eK
B

ρ
=

(19)

is given by the product of entanglement density and thermal
energy. From the time-dependent shear relaxation modulus
one can obtain the shear compliance and the melt viscosity.
The asymptotically expected result6 for long entangled chains
is given by

G
15 e

2

maxη π τ=
(20)

3. MATCHING AT THE KUHN SCALE
In section 2 we have identified three relevant length scales: the
packing length, p, the Kuhn length, lK, and the tube diameter,
dT. Polymer theory being typically directly formulated in terms
of these scales, the results are straightforward to adjust to an
experimental target system, for which p, lK, and dT are known.
But in setting up computational models, we have to deal with
the difficulty that the relevant polymer scales emerge from
interactions and are only indirectly controlled through the
parameters of the employed model. Does this mean that we
need to embark on a complicated search for parameter
combinations, which allow us to fulfill two independently
controlled ratios like p/lK and dT/lK? Or maybe one (the
standard KG?) model “fits all”, and it suffices to map its
predictions to the various experimental target systems?
3.1. Case for Kuhn Scale Matching. As illustrated in

section 2, universal static, dynamic, mesoscopic, and macro-
scopic properties of polymer melts emerge from the Kuhn
scale. They depend on just two dimensionless parameters: the
Kuhn number, nK, characterizing the contour density of the

target material and the number of Kuhn segments per chain,
NK, as a measure of chain length(s). The first parameter is
specific for the particular polymer chemistry, while the second
characterizes the (polydisperse) composition of particular
melts under investigation. Specifically, the matching of nK
assures that the model properly reproduces (i) the ratio of
packing and Kuhn length, p/lK (eq 11), (ii) the number of
Kuhn segments per entanglement length, NeK (eqs 15 and 16),
(iii) the ratio of tube diameter and Kuhn length, dT/lK (eq 12),
and (iv) the ratio of the Kuhn and entanglement times, τe/τK
(eq 13). Matching NK assures (i) comparable ratios of average
and maximal chain elongation, ⟨R2⟩/L2 = 1/NK (eq 1), (ii)
comparable invariant degrees of polymerization, N̅ (eq 10),
(iii) comparable numbers of entanglements per chain, Z (eq
17), and (iv) comparable ratios of maximal relaxation and
Kuhn time, τmax/τK (eqs 7 and 18). Kuhn scale-mapped KG
models can be expected to have predictive power for emergent
polymer properties, if we may take it for granted that this
universality of properties of different chemical species also
extends to computational models that exhibit the key features
of polymer melts: chain connectivity, local liquidlike monomer
packing, and the impossibility of chain backbones to
dynamically move through each other. To most convenient
way to make predictions is (i) to express the simulation results
for a suitable KG model in Kuhn units of the simulation model
and (ii) to convert them to SI units by using the Kuhn length,
lK, Kuhn time, τK, Kuhn viscosity, ηK, and the thermal
excitation energy, kBT, for the specific target polymer.

3.2. Commodity Polymer Melts at the Kuhn Scale. At
a given state point (temperature), a melt of monodisperse
chains (with molecular weight Mc) can be characterized by just
a few experimental observables: the mass density ρbulk, the
average chain end-to-end distance per unit mass ⟨R2⟩/Mc, and
the maximal chain extension, L. Values for these observables
for a large number of typical polymers are collected in ref 76.
We present data for a selected subset of polymers expressed in
Kuhn units in Table 1. The Kuhn lengths are in the 1−2 nm
range, with a Kuhn segment mass MK = Mc/NK ∼ 100−2000
g/mol. The number of monomers in a Kuhn segment varies in
the range 1−13, and the number density of Kuhn segments, ρK,
varies in the range 0.5−5 nm−3.
A key characteristic of polymer species is their Kuhn

number, which varies for common, flexible commodity
polymers in the range 2 ≤ nK ≤ 12. For comparison, nK >
104 in gels of tightly entangled filamentous proteins such as F-
actin.77 In agreement with the arguments in the preceding
section, we observe in Table 1 a systematic correlation
between the Kuhn number and emergent properties such as
the entanglement modulus and the entanglement length
measured in Kuhn units. We will return to this point in
section 3.7.

3.3. Kremer−Grest Model Polymer Melts at the Kuhn
Scale. The Kremer−Grest model38,39 is a de facto standard
model in molecular dynamics investigations of generic polymer
properties. The KG model is a bead−spring model, where the
bead interact via a Lennard-Jones potential. Because we are not
interested in studying the emergence of the glass transition,78−80

we employ a version with purely repulsive Weeks−Chandler−
Anderson (WCA) interactions (the 12−6 Lennard-Jones
potential truncated and shifted to zero at the minimum)
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where σ defines the bead diameter and where we have
explicitly adopted the standard choice to render the model
athermal by setting the energy scale of the WCA interaction
equal to kBT. Bonded beads interact through the finite-
extensible-nonlinear spring (FENE) potential given by
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σ
= − −

(22)

We employ the standard choice of R = 1.5σ for the distance,
where the FENE potential diverges. The average bond length is
lb = 0.965σ. The standard choice for the bead density is ρb =
0.85σ−3. Faller and Müller-Plathe46−48 augmented the standard
KG model with a bending potential

U k T( ) (1 cos )bend BκΘ = − Θ (23)

where Θ denotes the angle between subsequent bonds. To
prepare this study, we have investigated the dependence of the
characteristic time and length scales in KG bead−spring
polymer melts on the reduced bending energy,.49 In particular,
we found for the Kuhn length

l l l( )K K K
(0)κ = + Δ

l
m
ooooo

n
ooooo

l l( )
2 e 1

1 e (2 1)
if 0

1 if 0

K b
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κ

κ
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=
+ −

− +
≠

=

κ

κ

−

−

l ( )
0.77(tanh( 0.03 0.41 0.16) 1)K 2κ

σ
κ κ

Δ
= − − + +

(24)

From this relation, we can directly infer the dimensionless
Kuhn number, eq 3, characterizing KG melts:

n l l( ) ( )K b b K
2κ ρ κ= (25)

Finally, the number of Kuhn segments between entanglements,
the bead friction, the Kuhn friction, and the Kuhn time of the
KG model are given by

N ( ) 0.84 3.14 3.69 30.1 39.3eK
4 3 2κ κ κ κ κ= − + + − +

(26)

m
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/
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κ
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≈ + −
(29)

The parametrization of the Kuhn length we believe to be valid
for arbitrary values for stiffness κ, while the other relations hold
for bending rigidities in the interval −1 < κ < 2.5. A negative
chain stiffness partly counteracts the stiffness induced by
excluded volume interactions between next-nearest beads
along a chain and hence makes the chain more flexible than
the standard KG model. We estimate that the error on the two
frictions and the Kuhn time is 20%.

3.4. One Parameter Kremer−Grest “Force Field” for
Commodity Polymer Melts. To define a KG force field for a
polymeric material, we match the dimensionless Kuhn
numbers nK characterizing the experimental system and the
model polymer melt. A priori, this requires the numerical
inversion of the combination of eqs 24 and 25 to identify the
corresponding reduced stiffness to use in the KG model. As
shown in Figure 1, the approximate relation

n n n n

n

( ) 0.824 log( 2.0) 0.00029 0.0087

0.055 0.28
K K K K

K

3 2κ = − − +

− + (30)

provides an excellent approximation over the experimentally
relevant range 2 ≤ nK ≤ 15. Through eq 30, lK, NeK, ζK, and τK
become functions of the Kuhn number. Note that the standard
KG model with κ = 0 essentially corresponds to the
intrinsically most flexible polymers such as PDMS or PI with
7−50% 3,4 content.
The number of beads per Kuhn length is given by

c n
l
l

n
l

( )b K
K

b

K

b b
3ρ

≡ =
(31)

and hence the number of beads per chain required to model an
experimental target polymer melt with chain length NK is

N c n N( )b b K K= (32)

What remains is to fix the mapping relations for the simulation
units of length, mass, and time. Equating the model and
experimental Kuhn lengths and accounting for the small
difference, lb = 0.965σ, between the bond length and the bead
diameter in the KG model, we obtain

l
c n0.965 ( )

K

b K

exp

σ =
× (33)

The bead mass is obtained along the same lines by equating
the experimental mass of a Kuhn segment to the mass of a
Kuhn segment in the model:

Figure 1. KG chain stiffness vs Kuhn number using eq 25 (solid black
line) and our approximate inversion eq 30 (green symbols). The inset
shows the error of our numerical inversion.
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In Table 2 we have listed the resulting Kremer−Grest model
parameters and mappings for the polymer species shown in
Table 1. By construction, the number of beads per Kuhn
length is an increasing function of nK and varies between 1.7
and 3.9. With −0.4 ≤ κ ≤ 2.3 the required stiffness parameters
falls into the validity range of our empirical relations for Kuhn
length, entanglement length, and Kuhn friction. Bead
diameters vary between 4 and 10 Å; the energy scale is given
by the thermal energy at the experimental temperature and
varies within a factor of 2. Nevertheless, the KG unit of stress,
4 MPa < kBTσ

−3 < 112 MPa, exhibits a much larger spread. As
a rule of thumb, beads correspond to monomers. But there are
important variations. To cite some examples: PA and PDMS
(polyisoprene and polydimethylsiloxane) are effectively the
most flexible chains, which map fairly well on the standard KG
model with κ ≡ 0. PI beads have a diameter of 5 Å and
represent one monomer; PDMS beads have a diameter of 6 Å
and represent two monomers. PS (polystyrene) beads

represent three monomers and have with 7.6 Å a
correspondingly larger diameter. PE (polyethylene) is among
the effectively stiffest chains, which four beads per Kuhn length
and κ ≈ 2. PE beads represent 1.5 monomers; with 4 Å they
are relatively small. PC (polycarbonate) is comparable to PE in
effective stiffness. With a diameter of 5 Å, PC beads are
comparable to PI beads. However, in the case of PC 2.5 beads
are required to represent the more complex monomers, which
is remarkably similar to two bead/ellipsoid models per
monomer used by Tschöp et al.26

Note that while we provide force fields for materials like
polyethylene (PE), polyoxymethylene (POM), poly(ethylene
terephthalate) (PET), poly(butylene terephthalate) (PBT),
polytetrafluoroethylene (PTFE), or isotactic polypropylene (i-
PP), they cannot be expected to reproduce the tendency to
form semicrystalline ordering. Such KG models should thus be
taken with a grain of salt or, maybe, as a reminder that there is
more to polymers than universal properties. Nonetheless, we
note that coarse-grain models have been used to study
crystallization,81 and recently specialized KG models were

Table 2. Kremer−Grest Model Parameters for the Polymers Shown in Table 1 in Terms of the Kuhn Number, Bending
Stiffness κ, Number of Beads per Kuhn Segment cb, Kuhn Length Expressed in KG units, Number of Beads per Monomer Mm/
Mb, and Finally the Conversion Relations from KG Units for Energy kBTref, Length σ, and Stress kBTrefσ

−3 to SI Units

name nK κ cb lK/σ Mm/Mb Mb [g/mol] kBTref (10
−21 J) σ (nm) kBTrefσ

−3 (MPa)

PI-50 2.50 −0.378 1.81 1.74 0.84 81.13 4.11 0.50 32.0
PI-7 2.72 −0.086 1.89 1.82 1.07 63.37 4.11 0.46 41.3
PDMS* 2.82 0.013 1.92 1.85 0.46 161.05 4.11 0.62 17.6
PI-20 2.86 0.056 1.94 1.87 0.97 70.50 4.11 0.48 37.1
PI-34 3.02 0.191 1.99 1.92 0.86 78.86 4.11 0.50 33.1
cis-PBd 3.40 0.445 2.11 2.04 1.26 42.87 4.11 0.41 61.3
PIB(413) 3.47 0.483 2.13 2.06 0.45 125.69 5.70 0.59 27.3
cis-PI 3.47 0.484 2.13 2.06 1.13 60.32 4.11 0.45 44.0
a-PP(463) 3.53 0.518 2.15 2.07 0.49 85.25 6.39 0.54 40.7
i-PP 3.64 0.575 2.18 2.11 0.49 85.96 6.39 0.54 40.4
a-PP(413) 3.65 0.580 2.19 2.11 0.50 83.84 5.70 0.53 38.2
a-PP(348) 3.81 0.656 2.23 2.16 0.51 82.08 4.80 0.52 34.3
a-PP 3.92 0.708 2.27 2.19 0.52 80.84 4.11 0.51 30.7
PIB 3.94 0.714 2.27 2.19 0.47 120.66 4.11 0.57 22.2
a-PMMA 4.07 0.770 2.31 2.23 0.39 258.82 5.70 0.69 17.6
i-PS* 4.19 0.819 2.35 2.26 0.35 297.22 5.70 0.76 13.2
a-PMA 4.29 0.856 2.37 2.29 0.41 208.42 4.11 0.64 15.6
PI-75 4.53 0.941 2.44 2.35 0.42 163.78 4.11 0.64 15.9
PBd-20 4.54 0.944 2.44 2.35 1.08 50.16 4.11 0.43 52.2
a-PS* 4.54 0.944 2.44 2.35 0.35 297.19 5.70 0.76 13.2
PBd-98 4.83 1.039 2.52 2.43 0.48 113.08 4.14 0.56 23.1
PEO* 4.99 1.086 2.56 2.47 0.96 45.77 4.87 0.39 80.2
POM* 5.06 1.105 2.58 2.48 0.63 47.40 6.53 0.39 111.5
a-PHMA 5.19 1.143 2.61 2.52 0.27 621.59 5.15 0.97 5.7
a-PVA* 5.26 1.162 2.63 2.53 0.41 211.52 4.60 0.65 16.7
SBR 5.33 1.182 2.65 2.55 1.01 65.62 4.11 0.47 40.6
P6N* 5.53 1.234 2.69 2.60 2.18 51.98 7.50 0.42 100.9
a-PαMS* 5.66 1.265 2.72 2.63 0.34 346.66 6.53 0.78 13.9
a-PEA 5.70 1.276 2.74 2.64 0.39 259.56 4.11 0.69 12.8
PET* 7.50 1.646 3.14 3.03 2.29 83.82 7.57 0.49 63.4
s-PP 7.99 1.728 3.24 3.12 0.49 86.03 6.39 0.54 40.5
PE(413) 8.09 1.744 3.26 3.14 0.61 46.15 5.70 0.44 69.0
a-POA 8.34 1.785 3.31 3.19 0.27 693.22 4.11 1.00 4.1
PC* 10.93 2.136 3.79 3.65 2.45 103.76 6.53 0.50 51.0
PE 11.10 2.156 3.82 3.68 0.64 44.07 4.11 0.42 56.4
PTFE* 12.30 2.291 4.02 3.87 0.44 227.70 9.02 0.60 41.1
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developed and optimized82,83 to study crystallization phenom-
ena.
3.5. Temperature Dependence of the Parameters. A

priori, the parameters listed in Table 2 are only valid at the
indicated reference temperatures, where the chain dimensions
were determined experimentally. To model polymer melts at
different temperatures, we have, in principle, to account for
changes in (i) the single chain statistics and (ii) the overall
density. While it is straightforward to rationalize84 a temper-
ature-dependent Kuhn length, temperature variations in nK due
to density changes result in less intuitive shifts in bead
diameters and weights with temperature. This is a consequence
of our choice to preserve the “canonical” KG bead density of ρb
= 0.85σ−3.
In practice, the static melt properties are relatively

insensitive to changes of temperature: the relative density
expansion coefficient is d ln ρbulk/dT ≈ − 6 × 10−4 K−1, while
typical thermal chain expansion coefficients |d ln ⟨R2⟩(T)/dT|
< 10−3 K−1.76 Because nK(T) ∼ ρbulk⟨R

2⟩2, we obtain |d ln
nK(T)/dT| < 3 × 10−3 K−1. In the one case where ref 76
provides data, atactic polypropylene, the 50% increase in
temperature over the interval 298 K ≤ T ≤ 463 K causes a
slight increase in density while apparently leaving the chain
dimensions unchanged. The corresponding reduction of the
Kuhn number from nK = 3.92 to nK = 3.43 suggests that when
one changes the bead weights from 81 to 85 g/mol, the bead
diameters change from 5.1 to 5.4 Å, while the required
reduction of the bending stiffness decreases the Kuhn length in
LJ units from lK = 2.19σ to lK = 2.07σ. Compared to the
dynamic effects discussed in the following section, it thus
seems safe to transfer the κ, Mb, and σ values listed in Table 2
to other temperatures. Compared to the standard “one-model-
fits-all commodity polymer melts” approach discussed in the
Introduction, we thus suggest the use of chemistry-specific
athermal models over the entire (not extremely wide)
experimentally relevant temperature range. While the use of
entropic springs is standard in coarse-grain polymer models
since the earliest theories of rubber elasticity,85 an entropic
wormlike bending rigidity like in eq 23 might appear unusual.
An alternative could be KG models with freely rotating bonds
along the lines of ref 86. However, within the present ansatz
the resulting behavior is described by an athermal bending
term. Obviously, the relations provided above can be used to
obtain an improved parametrization, if there is information

available about the end-to-end distance and bulk density at the
state point of interest.

3.6. Time Mapping. To reproduce not only static but also
dynamic properties of target systems, we require input on their
Kuhn time, τK, or their effective viscosity, ηK, at the Kuhn scale.
Equating with τK or ηK of the Kuhn mapped KG model, we can
directly infer the value of the KG time unit τ in SI units from
eq 6, since the value of κ(nK) is known via eq 30 for the Kuhn
number of the experimental system. However, to carry out this
program, we needed to overcome two difficulties.
While conceptually useful, τK and ηK are not straightforward

to observe directly. Typically, one can extrapolate down to the
Kuhn scale within a model, if there is information about
(emergent) macroscopic behavior or time scales at some
dynamic reference temperature, Tref

dyn. Examples of observables
that are more easily accessible experimentally, and from which
we can obtain a time mapping, are the viscosity of unentangled
chains, η = nKNKηK, the entanglement time, τe = NeK

2τK, the
Rouse time, τR = NK

2τK, and the terminal relaxation time, τmax.
Experimentally, the Kuhn time or equivalently the Kuhn
friction can be obtained from neutron spin echo data93 by
applying expressions from Rouse theory to analyze the
monomeric dynamics below the entanglement time scale as
in our analysis of simulation data.49 The entanglement time, τe,
can be measured by oscillatory rheological experiments,
dielectric relaxation, and transverse relaxation NMR measure-
ments (see e.g. refs 35 and 94−96). We note that published
estimates might be obtained by fitting data to expressions,
which define these times by using conventions for prefactors,
which differ from those we have adopted here.
The second difficulty is the pronounced temperature

dependence of the chain dynamics in polymer melts. Most
commodity polymer melts become glassy below a temperature
Tg in or slightly below the experimentally relevant temperature
range. As a consequence, even a small change in temperature
can have a significant impact on the dynamics. Experimentally,
time−temperature superposition (TTS)4 is used to explore
polymer dynamics over a much wider range of frequencies than
those directly accessible to a given measurement instrument.
Here we use this approach to estimate the Kuhn time at the
temperature of interest, T, given a Kuhn time measured at the
reference temperature, Tref

dyn:

Table 3. Parameters and Characteristic Times for Commodity Polymer Melts and the Corresponding KG Modelsa

name Tg (K) Tref
dyn (K) τe

exp (s) nK NeK τK(Tref
dyn) (ns) ηK(Tref

dyn) (mPa·s) τ(Tref
dyn) (ns) σ(Mb/kBTref

dyn)1/2 (ps)

PI-7 206 298 1.9 × 10−5 2.72 41.76 10.90 61.32 1.6 2.33
PDMS 150 298 1.1 × 10−7 2.82 38.74 0.073 0.17 0.01 5.00
cis-PBd 174 298 8.8 × 10−8 3.40 26.76 0.12 0.73 0.01 1.71
cis-PI 206 298 6.7 × 10−5 3.47 25.80 100.69 418 11 2.22
a-PP 262 348 1.9 × 10−6 3.81 21.82 3.99 11.22 0.4 2.77
PIB 201 298 1.1 × 10−3 3.94 20.58 2597 4499 240 3.98
a-PS 375 453 3.4 × 10−4 4.54 16.18 1299 1184 100 6.75
PEO 210 348 1.5 × 10−8 4.99 13.87 0.078 0.34 0.005 1.55

aThe first set of numbers defines the experimental input: the experimental glass transition temperature and the dynamic reference temperature Tref
dyn

for the experimental entanglement time τe (and/or more suitable VF parameters). Using the static mapping and, in particular, the Kuhn number nK,
we can infer the number of Kuhn segments per entanglement length, NeK, from eq 15 or more refined estimates.49,73 The Kuhn time, τK(Tref

dyn), and
the viscosity at the Kuhn scale, ηK(Tref

dyn), follow from eqs 6 and 13; the characteristic time scale, τ(Tref
dyn), of the corresponding Kuhn mapped KG

model is given by eq 6. For comparison, we also list the estimate for τ that results from the static mapping. Finally, we can use eqs 35 and 36 to
estimate τK, ηK, and τ over the entire TTS validity range (Figure 2). References for experimental data: PI-7,87,88 PDMS,89 cis-PDb,89 cis-PI,89 cis-
PI,90 a-PP,91 and PEO.92
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As discussed in the Appendix, the shift factor can be written as
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Equation 36 should be valid above the glass transition
temperature in the temperature range [Tg, Tg + 100 K].
Here we use a “universal” Vogel−Fulcher constant CVF =
ln(10) × 17.44 × 51.6 K = 2072 K. Similarly, we set TV = Tg −
51.6 K for the Vogel temperature, where viscosities and
associated time scales formally diverge. More detailed
information and specific tables with fitted VF (or WLF, see
the Appendix) parameters can be found in ref 4.
The mapping relations for the temperature-dependent

conversion of the KG time τ resulting from eq 6 are shown
in Table 3 and illustrated in Figure 2. The converted values

vary over a much wider range than the static parameters in
Table 2: PDMS, cis-PDb, and PEO are experimentally studied
about 150 K above Tg, resulting in KG time scales in the 10 ps
range. PI melts at 100 K above Tg are represented by KG
models with τ in the 10 ns range. PIB has a significantly higher
τ ≈ 240 ns at a similar distance from the glass transition
temperature. Perhaps this can be explained by specific
intramolecular rotational barriers.97 a-PS has a comparable τ
≈ 100 ns at 80 K above Tg, while a-PP maps onto a KG model
with τ ≈ 0.4 ns at a comparable distance from Tg
3.7. First Test: Plateau Moduli of Commodity

Polymer Melts. Figure 3 shows the reduced entanglement
moduli as a function of Kuhn number. The experimental data
are in good agreement with eq 19 for flexible chains.50 The
scatter observed between the experimental plateau moduli and
the predicted plateau modulus line must be attributed either to
chemical details causing some small degree of nonuniversal

behavior,98 such as a non-negligible crystalline fraction, or to
experimental uncertainties in accurately estimating the plateau
modulus.99 For the very largest Kuhn numbers, the
experimental data points can not discriminate between the
packing argument and the predicted crossover to the tightly
entangled regime.49,77

Figure 4 shows a comparison between experimental plateau
moduli and entanglement moduli of KG melts extracted from

primitive path analysis.49,100 Most of the experimental values
are within the 25% error interval around the line defined by the
one parameter KG models. This is concrete evidence that the
emergent entanglement properties of our KG models agree
with those of the targeted experimental polymer systems.
Interestingly, the stiffer KG models also seem to be in excellent

Figure 2. KG time unit τ (in ns) as a function of temperature for a
number of polymer species listed in the legend and distinguished by
color. Typical time steps in simulations are δt = 10−2τ. Solid lines:
WLF extrapolation over the temperature range [Tg, Tg + 100 K].
Thick dashed lines: WLF extrapolation for T > Tg + 100 K. Symbols:
estimate of τ derived from experimental data for the dynamic
reference temperature, Tref

dyn, underlying the WLF extrapolation. Thin

dashed lines: standard estimation of the LJ time M k T/b B ref
dynτ σ= [ ]

using the mapping values for bead diameter, mass, and energy scale.

Figure 3. Reduced entanglement moduli for the polymers in Table 1
compared to the theoretical expectation for flexible polymers (eq 19)
(red dashed line) to the semiempirical prediction of eq 42 in ref 49)
(black dotted line). The symbols denote in order of increasing Kuhn
number: PI-50 (orange ○), PI-7 (red ×), PDMS (orange ∗), PI-20
(magenta + ), PI-34 (green △), cis-PBd (blue □), PIB(413) (red ○),
cis-PI (blue ∗), a-PP(463) (orange +), i-PP (orange □), a-PP(413)
(green □), a-PP(348) (black +), a-PP (red □), PIB (magenta ∗), a-
PMMA (indigo △), i-PS (indigo ◇), a-PMA (red ◇), PI-75 (black
□), PBd-20 (indigo +), a-PS (blue ◇), PBd-98 (black △), PEO
(green ∗), POM (black ◇), a-PHMA (black ∗), a-PVA (blue ×), SBR
(blue ○), P6N (black ), a-PαMS (red ∗), a-PEA (green +), PET
(green ◇), s-PP (indigo ∗), PE(413) (orange △), a-POA (magenta
◇), PC (red △), PE (orange ×), and PTFE (black ○).

Figure 4. Reduced entanglement moduli for the experimental data in
Figure 3 compared to the range of KG models for −1 ≤ κ ≤ 2.5 (blue
solid line), with indications of ±25% error (dashed black lines). Also
shown is the semiempirical prediction of eq 42 in ref 49) (black
dotted line).
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agreement with the predicted crossover to tightly entangled
regime.49,77

4. DISCUSSION
Polymeric systems exhibit a wide range of characteristic time
and length scales. This is readily illustrated for the example of
natural rubber, i.e. melts of cis-PI chains with a typical length
of NK = 104 Kuhn segments. Important characteristic length
scales comprise (i) the Kuhn length, lK ≈ 1 nm, (ii) the tube
diameter, dT ≈ 5 nm, (iii) the coil diameter, ⟨R2⟩ ≈ 100 nm,
and (iv) the contour length, L ≈ 10 μm. The spread is even
larger between the characteristic time scales. There are already
almost 3 orders of magnitude between the Kuhn time, τK ∼ 1
× 10−7 s, and the entanglement time, τe ∼ 7 × 10−5 s. The
Rouse time of τR ∼ 108τK ∼ 10 s governs fast processes such as
the tension equilibration inside the tube,6 while the estimated
maximal relaxation time is τmax ∼ 4 h.
The slow dynamics has dramatic consequences for macro-

scopic properties such as the viscosity. Our estimate of the
effective viscosity at the Kuhn scale is ηK ≈ 0.4 Pa·s. The
viscosity of a short chain melt at the entanglement threshold,
NK = NeK, is already 2 orders of magnitude larger, ηe ≈ 40 Pa·s,
while for our strongly entangled (Z = NK/NeK = 400) example,
η ≈ 5 × 109 Pa·s. In other words, the long chain melt exhibits a
macroscopic viscosity similar to glass-forming liquids close to
Tg, even though locally the chains experience a friction as if
they were immersed in motor oil.
The wide range of relevant time and length scales in

polymeric systems makes them natural targets for multiscale
modeling.11,101,102 In particle-based models, the resolution
ranges from the atom scale to DPD-like descriptions, where
entire chains are represented by one or two soft spheres or
ellipsoids.65,103 What is the natural place of KG-like models in
this hierarchy? And how should they be parametrized?
4.1. Entanglement vs Kuhn Scale as Targets for KG

Models. Typically, the KG model is mapped to experi-
ments34,39 or simulations of more microscopic models105 on
the entanglement scale. The mini-review in section 2.1 explains
in some more detail the statement from the Introduction that
one can hope to reproduce the large scale dynamics of a target
system by carrying out KG simulation with chains of an
appropriate effective length, Z = L/Le, and then converting the
results by identifying the tube diameter, dT, as the unit of
spatial distance as well as the entanglement time, τe, as the unit
of time. Conceptually, this is what universality is all about and
not different from using experimental data for PDMS to
predict universal aspects of the behavior of, say, amorphous
polystyrene.
Because in this view there is nothing special about the

original KG model, one can apply the same logic to any other
member of the family of KG models we are considering here.
As illustrated by Figure 5, it is indeed tempting to use the
additional stiffness parameter47 to reduce the CPU time
required to reach the entanglement scale.48,106 But how far up
the scales can one safely push the characteristic features of the
KG model like the well-defined, almost inextensible contour
length and the almost fully excluded molecular volume? These
features are adequate for a description on the Kuhn scale but
not for a generic model of loosely entangled chains at the
entanglement scale.
Targeting the Kuhn scale, as we advocate here, provides a

simple physical motivation for the choice of the stiffness
parameter and should help to reduce “gaps”105 relative to

predictions of more microscopic models for the local behavior.
Importantly, Kuhn scale-mapped KG models are in most cases
computationally more efficient than the original KG model in
reaching the entanglement scale, even though, by targeting the
Kuhn scale, they are nominally more microscopic. The reason
is that κ > 0 for most Kuhn scale-mapped KG models of
commodity polymers, while the original KG model maps on
the intrinsically most flexible polymer species. Typical speed-
ups are of the order of 4; in the case of polycarbonate they
reach a factor of 30 (Figure 5).

4.2. Linear vs Nonlinear Universality in the Rheology
of Polymer Melts. Crucially, we can hope to extend the
validity range of the KG model by, to paraphrase Einstein,
making the chains “as stiff as possible, but not stiffer.” By
reproducing the number of Kuhn segments per entanglement
length, NeK, the models account for the maximal chain
extension, NeK∼ , under strong deformations. Furthermore,
KG melts parametrized at the Kuhn scale plausibly exhibit
friction reduction in fast elongational flows, insofar as the effect
can be attributed to the alignment of the Kuhn segments to the
stretching direction.107,108 There are thus good reasons to
expect that the models discussed in the present article fulfill all
three conditions for nonlinear universality in the rheology of
polymer melts.45

4.3. Computational Performance of Kuhn Scale-
Mapped KG Models Compared to Descriptions on
Neighboring Scales. Kuhn scale-mapped KG models are
computationally much less demanding than atomistic simu-
lations. This is due to two factors: (i) There is a considerable
reduction in the number of degrees of freedom. We have not
counted atoms, but assuming carbon and hydrogen atoms as
the dominant components, molecular bead weights between 40
and 700 g/mol translate to 3−50 united atoms that are being
represented by one KG bead. If hydrogen atoms are
represented explicitly, then these numbers increase by an
additional factor of 2 or 3. (ii) At the reference temperature,
Tref
dyn, of the rheological experiments, our estimates for the

physical meaning of the KG unit of time, τ, vary in the range 5
ps < 1τ < 0.24 μs. The corresponding time step of 50 fs < δt =
10−2τ < 2.4 ns is thus 50 to 2.4 × 106 times larger than the

Figure 5. Speed-up of KG models due to increased stiffness. The left
graph shows the speed up relative to the standard KG model with κ =
0, while the right graph shows the number of particle updates, Neb

eτ
τ

τ
δ ,

required to follow the dynamics of one entanglement strand over the
entanglement time.
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typical 1 fs time step in atomistic simulations. The time step in
atomistic simulations is dictated by typical frequency of bond
vibrations. Whereas if bond lengths are constrained, then the
typical time scale is that of bond angle vibrations which occurs
on time scales of tens of femtoseconds.101,109 For systems
closer to the glass transition, the speed-up in modeling the
large scale behavior along the present lines would be
exponentially larger. Compared to an atomistic model, this
obviously comes at the price of loosing the ability to predict any
of the glassy behavior.
With at least 106 particle updates per entanglement strand

and time (inset of Figure 5), Kuhn scale-mapped KG models
are bound to be slower than PPA-parametrized slip-link
augmented DPD models.110−114 Again, the more coarse-grain
description benefits from a reduction of the number of degrees
of freedom by a factor of the order of 1/NeK as well as a
corresponding reduction of the number of time steps by a
factor of τK/τe ∼ 1/NeK

2. For the intrinsically most flexible
polymers in Table 1, the speed-ups may be as large as a factor
of 104 or even 105 in rare cases. While this approach is clearly
successful, there is nevertheless a price to be paid: effects of
topological constraints do not emerge through the same
mechanisms as in the target systems. These effects have to
be introduced explicitly in models developed at the
entanglement scale. While the tube/slip-link model is in
general well understood,99 we suspect that nonlinear universal-
ity45 or the emergence of crumpling in nonconcatenated ring
melts71,106 remains a challenge for such models.
4.4. Kuhn Scale Matching as a Special Case of

Structure Based Coarse-Graining. The construction of
coarse-grain models requires choices and the definition of
(subjective) priorities. A classic example is the tension between
structure-based approaches11,115,116 and schemes focused on
preserving thermodynamic properties.117

Kuhn scale matching can be viewed as a special case of
structure-based coarse-graining. It is guided by theoretical
considerations which identify the Kuhn scale as controlling the
emergent, universal behavior at larger time and length scales.
Consequently, no particular effort is made to reproduce the
local behavior. The resulting “one parameter force-field” for
the KG model is remarkably simple, but this simplicity
obviously comes at the price of losing the ability to predict (or
to understand) the behavior of experimental target systems
below the Kuhn scale. In particular, this holds on the bead
scale, where we employ a computationally convenient, generic
model without any particular relation to the properties (or the
structure) of the target system.
The techniques for structure-based coarse-graining are well

understood.8,118−120 If applied on a similar level of coarse-
graining as our KG models (i.e., retaining a comparable
number of degrees of freedom), the resulting models can be
expected to offer a locally more faithful representation. The
differences are probably minor for polymers like isotactic
polystyrene, where our KG beads represent three polystyrene
monomers. The situation is different for polymers like
polycarbonate, whose monomers are represented by several
KG beads. In this case, the “beads” arising from systematic
coarse-graining are neither of equal size, nor spherical, or nor
joined in a straight line like those of our KG models.8,26,103

Such models may provide insight into the relation between
structure, local dynamics, and the dissipation mechanisms
responsible for the glassy dynamics, which is lost in our
approach. In terms of computational performance, they should

fall in between atomistic descriptions and Kuhn scale-mapped
KG models, since they need to resolve motion on smaller time
scales.

4.5. Time Scales in Coarse-Grain Models. There is a
persistent idea in the literature34 that the time scale in
simulations of coarse-grain models can be inferred by standard
dimensional analysis. The difficulty becomes clear if we try to
follow this approach on the Kuhn scale. The time scale
l M k T/K K B can be understood as the time required by a Kuhn
segment to ballistically cover a distance comparable to its size,
lK, if it moves at its thermal velocity, v k T M/K K

th
B= . In

contrast, the physically relevant Kuhn time, τK, is controlled by
the local viscosity, eq 5, which emerges from microscopic
interactions below the Kuhn scale and which is expected to
display an exponential WLF temperature dependence (eqs 35
and 36).
The systematic linking of time scales on different levels of

spatial and temporal resolution remains a challenge. A
conceptual framework is provided by the Mori−Zwanzig
projector formalism.121,122 Here the projection operator is
defined by the choice of “slow” CG variables. The formalism
provides a generalized Langevin equation (GLE) for the time
evolution of the CG variables, where the effect of the “fast”
variables is described by the GLE memory kernel giving rise to
friction and stochastic forces applied to the slow variables. In
practice, sampling such GLE memory kernels requires
simulations of the fast dynamics for fixed slow variables,
which is complicated and has only been achieved relatively
recently.123−125

In practice,22 one often uses a mapping approach, where the
time scale of the coarse-grain simulations is determined by the
condition that the coarse-grain and the microscopic model
predict identical dynamics on the largest time scales accessible
to the microscopic approach. In the present case, we have used
a mapping on the Kuhn scale to estimate the physical meaning
of the KG time scale τ. As shown in Table 3 and Figure 2,
these estimates exceed by orders of magnitude the time scale

arising from the standard combination M k T/b B ref
dynσ [ ] of the

diameter and massMb of the KG beads with the energy scale of
the model.
This mismatch strikes us as a natural and highly desired

consequence of the elimination of microscopic degrees of
freedom and of the associated dissipation mechanisms. In

principle, it is possible to preserve M k T/b B ref
dynσ [ ] as the

definition of time by tuning the friction of a Langevin (or
preferentially, DPD126) thermostat such that the resulting τK
matches the experimental target value. However, this would
make the simulations orders of magnitude more expensive in
terms of computer time without providing additional physical
insight.

4.6. Kuhn Scale Matched KG Models as Part of a
Multiscale Hierarchy of Polymer Polymers. In our
opinion, the Kuhn scale merits to be systematically included
in the hierarchy of multiscale models of polymeric systems.
Omitting it risks to mask a remarkable simplicity, which
emerges from the universality of polymeric behavior.
We have focused on the KG model with bending rigidity

because it has been used in a vast number of publications as a
basis for studying generic polymer and materials physics (see
e.g. refs 11, 115, and 116 for reviews). Furthermore, there are
several fast equilibration procedures66,127,128 which allow to
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build very well equilibrated, highly entangled melt config-
urations at relatively low computational cost. Obviously, one
could apply the same logic to bead−spring models with
variable density, to models based on chains of rods rather than
beads,129 or to lattice models37,130−132 as long as these capture
the relevant physics of polymers.
Kuhn scale-mapped polymer models are easy to connect to

neighboring scales. In the “up” direction, the primitive path
analysis133 provides a systematic link to phenomenological
models describing polymers on the entanglement scale.110−114

For a comparison between the standard KG model and slip-
link and slip-spring models see the recent work by Masubuchi
and Uneyama.104 In the “down” direction, they enable the
generation of well-equilibrated atomistic material models
through fine-graining of melt configurations of a chemistry-
specific KG model.134

The information we used here to parametrize the KG model
was obtained top-down from experiment.76 Our aim was to
provide reasonable estimates of these parameters for a wide
variety of polymer species and over the entire experimentally
relevant temperature range. Alternatively, one could analyze
simulations of atomistic13−19,25,29,30 or mildly coarse-grain26−28

models of target polymers at specific state points. If the
purpose is solely to parametrize the present model, then it
suffices to analyze the simulations along the lines of the
accompanying paper.49 The inferred Kuhn length, density, and
time are straightforward to convert into a bottom-up
parametrization of the KG model, which then provides access
to much larger time and length scales than the original, more
microscopic model.
4.7. Possible Applications. Compared to the original KG

model, the Kuhn scale-mapped variants are as or even more
computationally efficient and can be expected to be predictive
outside the linear regime. In particular, the mapping relations
we provide should help to establish a direct, quantitative link to
experiment. Otherwise, the models can be profitably applied to
the same broad range of complex emergent phenomena as the
original KG model. For instance, static and dynamic
entanglement effects including multichain mechanisms such
as constraint release135−139 and crumpling71,106,140,141 as well
as correlation hole effects53 will naturally emerge in such
models, without the description needing to be accurate on the
atomic scale. Polydispersity, branching,142 chemical cross-
linking,143−145 and network aging146 are also straightforward to
include. Furthermore, such models can be used to study effects
of spatial confinement147 in thin films148 and brushes,149−151

or the addition of filler particles in composite materials,152,153

or the welding dynamics at polymer interfaces,154,155 to name a
few examples.

5. CONCLUSION
We have argued that the Kuhn scale is a natural scale (i) to link
theories, experiments, and simulations of amorphous polymer
melts and (ii) to target in building computational polymer
models. Omitting the Kuhn scale from the hierarchy of
multiscale models risks to mask a remarkable simplicity, which
emerges from the universality of polymeric behavior.
In practical terms, we have shown how to model

homopolymer melts of a large variety of polymer species
with an extension of the Kremer−Grest model,38,39 which was
originally introduced by Faller and Müller-Plathe.46 The force
field has a single adjustable parameter: the chain stiffness. We
determine this parameter by matching the (Kuhn) number of

Kuhn segments per Kuhn volume, nK = ρKlK
3, of the target

polymer species and the KG polymer model. No attempt is
made to reproduce smaller scale features. Besides expressions
for estimating the model parameters from experimental input,
we have provided tables listing which bending stiffness to use
for particular polymer species and how to translate KG into SI
units. Our estimates for the mapping from simulation to
physical time are based on time−temperature superposition.
Conceptually, Kuhn scale matching can be seen as a special

case of structure based coarse-graining. The choice of the
structural features to be preserved is guided by theoretical
considerations, which identify the Kuhn scale as controlling the
emergent universal polymer behavior at larger time and length
scales.
The resulting coarse-graining level is about one bead per

chemical monomer or two to three beads per Kuhn segment.
Kuhn scale-mapped KG models thus fall in between atomistic
or mildly coarse-grain models and descriptions on the
entanglement scale. Both coarse-graining steps, from the
atom to the Kuhn and from the Kuhn to the entanglement
scale, are associated with performance gains of several orders of
magnitude. For systems close to the glass transition, the speed-
up in modeling the large scale behavior is even exponentially
larger. Compared to atomistic descriptions, Kuhn scale-
mapped KG models lose the ability to predict the microscopic
(glassy) dynamics or to reproduce semicrystalline ordering.
Compared to phenomenological entanglement models, Kuhn
scale-mapped KG models preserve the emergence of the full
spectrum of universal amorphous polymer properties through
the same mechanisms as in the experimental target systems. In
particular, we expect them to automatically fulfill all three
conditions for nonlinear universality in the rheology of
polymer melts.45

An interesting challenge for future work would be the
parametrization of a corresponding force field for copolymer
systems, using for example the technique from ref 156. While
this should, in principle, be possible at least for static
properties, modeling the dynamics might no longer be as
simple as adjusting a single time scale. Similarly, it might be
possible to parametrize minimal models of glassy157,158 or
semicrystalline81 polymers along the present lines.

■ APPENDIX. TIME−TEMPERATURE
SUPERPOSITION

For a TTS reference temperature T0 the empirical Williams−
Landel−Ferry (WLF)159 shift factor has the form

a T T
C T T T

C T T T
log ( ; )

( )( )
( ) ( )T 0

1 0 0

2 0 0
= −

−
+ − (37)

Equation 37 is valid above the glass transition temperature in
the temperature range [Tg, Tg + 100 K]. If one uses Tg as
reference temperature, the constants adopt “universal” values
C1
g ≈ 15 and C2

g ≈ 50 K.159 Other choices require suitably
adjusted parameters C1(T0) and C2(T0).
The conversion can be avoided by writing the shift factor in

a form derived from the equivalent Vogel−Fulcher−
Tammann−Hesse equation.160−162

a T T
C T T

T T T T
ln ( ; )

( )
( )( )T

VF

V V
0

0

0
= −

−
− − (38)

The relations
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T T C T C T T T( ) ( )V V0 2 0 2 0 0= − ⇔ = − (39)

C C T C T C T
C

T T
ln(10) ( ) ( ) ( )

ln(10)( )VF
VF

V
1 0 2 0 1 0

0
= ⇔ =

−
(40)

with CVF ≈ 2000 K allow to pass between the two
representations. In particular, eqs 37 and 38 suggest (i) that
the viscosity diverges at the Vogel temperature TV = Tg − C2

g

located ∼50 K below the glass transition temperature and (ii)
that the orders of magnitude by which the viscosity drops in
the opposite limit of T → ∞ are given by C1(T0) and are
hence inversely proportional to the distance of the reference
from the Vogel temperature. More detailed information and
specific tables can be found in ref 4. Note, however, that their
eq 26.3 ought to read

a T T
C

T T
C

T T
log ( ; )

/ln(10) /ln(10)
T

VF

V

VF

V
0

0
=

−
−

− (41)
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