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We present an extensive molecular-dynamics simulation for a bead spring model of a melt of 
linear polymers. The number of monomers N covers the range from N = 5 to N = 400. Since 
the entanglement length We is found to be approximately 35, our chains cover the crossover 
from the nonentangled to the entangled regime. The Rouse model provides an excellent 
description for short chains N <No while the dynamics of the long chains can be described by 
the reptation model. By mapping the model chains onto chemical species we give estimates of 
the times and. distances of onset of the slowing down in motion due to reptation. Comparison 
to neutron spm-echo data confirm our mapping procedure, resolving a discrepancy between 
various experiments. By considering the primitive chain we are able to directly visualize the 
confinement to a tube. Analyzing the Rouse mode relaxation allows us to exclude the 
generalized Rouse models, while the original reptation prediction gives a good description of 
the data. 

I. INTRODUCTION 

The physics of polymeric liquids has been a problem of 
considerable interest in recent years. 1-4 In contrast to liquids 
of small molecules, polymeric liquids display a rich and unu
sual viscoelastic behavior for time and distance scales, where 
ordinary liquds are still Newtonian. 2,4 ( For a review of the 
experimentally observed viscoelastic properties of polymers, 
we refer the reader to the classic books of Ferry3 and Bird et 
al.4

, as well as more recent articles by Pearson5 and Graess
ley.6) The reason for this unusual behavior of polymeric li
quids is that the motion of a polymer is subject to complicted 
topological constraints. Unlike simple atomic or molecular 
systems, long "entangled" chain polymers have to move in 
specific ways which are limited by the fact that they are con
nected to other monomers and they cannot cut through each 
other. It is the main concern of the present paper to investi
gate this motion in detail and compare our results to pre
vious numerical investigations as well as to theoretical pre
dictions and experiments. Although experiments have been 
very important in elucidating many of the interesting prop
erties of these complex systems, there remain many unan
swered questions. In particular, there has been no experi
ment up to now which is able to study directly the 
microscopic origin of the macroscopic effects which are ob
served. For this reason, computer simulations of highly en
tangled polymers can play an important role in our under
standing of dense polymer melts. The aim of such a 
simulation should be to bridge the gap between experimental 
and analytical investigations and to provide a direct connec
tion from a microscopic model of the motion to experimen
tally observable quantities. So far this has not been achieved. 
In this paper, we present a large-scale molecular-dynamics 

a) Present address. 

(MD) simulation ofa dense melt of linear polymers, which 
covers the range from the short nonentangled (Rouse l

•
7) 

regime up to the highly entangled (reptation 1.2.8--10) regime. 
A short account summarizing some of the important aspects 
of this work has appeared in Ref. 11. 

The dynamics of polymeric liquids are typically de
scribed in terms of the Rouse and reptation models. I

•
2 For 

short chains the topological constraints do not playa domi
nant role. For a given chain, the presence of the other chains 
can be accounted for as a stochastic background. The dy
namics of the chain can then be described by a Langevin 
equation with noise and the constraint that the monomers 
are connected to form a chain. This results in the well-known 
Rouse behavior for the diffusion constant and viscosity. 
While there remain a few questions about the short-time be
havior, this model describes the long-time behavior very 
well. 1.2.12-16 The largest relaxation time TN _N2 where N is 
the number of bonds per chain. The diffusion constant 
D - N - 1 and the viscosity 1] - N. Experimentally3 this 
changes to D-N -2 and 1]_N3

.4 for N exceeding a critical 
chain length Ne , the entanglement length. This behavior is 
usually explained by the reptation model ofEdwards8 and de 
Gennes. 9.10 Physically reptation means that on a length scale 
larger than d T - N !12, the coil dimension of a chain of N 
monomers, the monomers of the chain move predominantl~ 
along their own contour. The chain has a Rouse relaxation 
up to a time 'Ie -N;. Further relaxation can only occur 
along the path of a coarse-grained "primitive chain" consist
ing of monomers containing about Ne bonds. Since this is a 
one-dimensional diffusion along a random walk path, the 
chain needs a timeT d - N 3; Ne to leave the original path or 
tube. Consequently, one gets17 1]-N 3

• 

This single-chain picture has been used to develop a 
rather complete theory of the viscoelastic properties of poly
mer melts2.17 which has proven to be very successful. How-
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ever, there remain several problems, which are not well un
derstood. Experimentally, one clearly finds that D _ N - 2 
(Refs. 2-6 and references therein), while the viscosity re
mains at TJ - N 3

.4 for a range of N from about 2N. to a value 
of more than lOOON •. 18 This difference between the repta
tion prediction for the N dependence of TJ and the experimen
tal observation has been the subject of great controversy. 
Doi 19 proposed that the difference may be simply a crossover 
effect and that for very large N, TJ-N 3

• However, as pro
posed this theory20 probably cannot explain why this cross
over occurs for such large values of N. Rubinstein21 has re
cently presented a numerical calculation using the original 
de Gennes picture of moving defects I which shows that the 
crossover to the asymptotic regime can be delayed consider
ably, and this may explain why the crossover occurs for such 
a large value of N. In addition, there have also been a number 
of alternative attempts to explain the "3.4" power law based 
on reptation theory.22-24 Scher and Schesinger22 point out 
that the reptation model is a single-chain model and does not 
necessarily describe all the complicated many-chain effects 
which contribute to the stress relaxation. Other authors sug
gest that the experiments do not show a crossover effect but a 
breakdown of the Edwards-de Gennes picture. Consequent
ly, the entire reptation concept has been called into question 
and alternative approaches given.25-29 However, all of these 
alternative theories can only treat the interaction between 
the chains either in a mean-field approximation or develop a 
memory function formalism. Skolnick et al.26 base their ap
proach on the fact that they did not find any evidence for 
reptation in their simulations oflong, lattice polymers. 16 In
deed up until the present work, there has been no simulation 
or experiment, which can decide which of these models cor
rectly describes the underlying microscopic mechanism. 
There have been several Monte Carlo 15, 16,30-34 (MC) and 
one Brownian dynamics simulation 14 which attempted to 
analyze the behavior of entangled chains. Deutsch32 claimed 
to see reptation with a specially modified algorithm, in 
which the mobility of the monomers along the contour was 
artificially enhanced. These results have been questioned by 
several authors. 33,30 Other simulations did not observe any 
onset of slowing down due to entanglements. 13.15,16,30 In Ref. 
15, reptation theory could only be verified for a mobile chain 
in a frozen environment. Only very recently a MC simula
tion of a pearl necklace model31 and a reanalysis of lattice 
data34 showed a slowing down of monomer motion which 
does not contradict reptation. However, in both cases one 
cannot identify the mechanism which led to the effects seen. 
Even the spin-echo experiments of Higgins and Roots35 and 
Richter et al. 12,36 display contradictory results. Deviations 
from Rouse behavior are seen; however, they cannot distin
guish between the reptation model and some of the alterna
tive formulations. 

Even though the present discussion of the confinement 
and slowing down of the monomer motion has been based on 
the entanglement concept, there is no precise understanding 
of what an entanglement actually is. The early reptation pa
pers8

-
IO,17 simply introduce it as an adjustable parameter 

without specifying it completely. There exist several recent 
attempts to relate entanglements to topological knots.37.38 

Other estimates use packing arguments39,40 in order to ac
count for the strong dependency on the chemical structure 
which goes beyond the difference in persistence lengths. 
Thus it is clear that a better understanding of the microscop
ic motion of the monomers in a long, entangled polymer melt 
is still lacking. 

Considering the previous discussion on the state of our 
theoretical understanding of the dynamics of dense melts of 
entangled polymers, we thought that it would be important 
to perform a detailed numerical simulation which could 
hopefully yield an improved insight into these questions and 
help clear up some of the confusion. To do this we carried out 
a very extensive molecular-dynamics simulation of a melt of 
linear chains, which covers the regime from pure Rouse dy
namics up to the highly entangled regime. By storing the 
configurations of all of the chains at regular intervals, we 
have been able to perform an extensive set of analysis of our 
data. In this paper, we present our detailed findings for the 
static and dynamic properties for the range of chain lengths 
considered. We have structured the paper into units, which 
are as self-contained as possible. An outline of the material 
we will discuss is as follows: Sec. II, simulation method and 
static properties of the polymer melt; Sec. III, motion of 
monomers; Sec. IV, mode relaxation (generalized Rouse vs 
reptation); Sec. V, scattering functions; Sec. VI, comparison 
to experiment and other simulations; Sec. VII, motion of the 
primitive chain (visualization of rep tat ion); Sec. VIII, sum
mary and conclusions; and in the Appendix, technical de
tails and test of the numerical algorithm. Since the discus
sion of many of the interesting properties of importance for 
polymer melts has been extremely brief or nonexistent in the 
Introduction, each section will contain a more complete de
scription of the relevant theoretical and experimental re
sults. 

II. SIMULATION METHOD AND STATIC PROPERTIES 
OF POLYMER MELTS 

A. Method 

As we have discussed in Sec. I, computer simulations 
should be very useful in gaining some much needed insight 
into the microscopic mechanism of the motion of dense poly
mers. However, which is the best technique to use? Up to 
now the method most often chosen has been that of Monte 
Carlo simulations, 13,15,16,30-34,41-43 usualiy but not always on 

a lattice. For chains on a lattice, in order to obtain a reasona
ble acceptance rate of the attempted moves and to prevent 
precursors of the glass transition; the simulations are typi
cally confined to rather low densities. In practice, the largest 
concentrations that can be used for long chains is about 0.34 
for the diamond lattice 15, 16 and 0.5 for the simple cubic lat
tice.26 There have been a few simulations at higher densi
ties, 16.30,41 however, it is not clear whether precursors of the 
glass transition influence these results.43 These lattice MC 
algorithms are very efficient on sequential, scalar computers 
but do not work particularly well on modem supercom
puters, like the Cray XMP or Cyber 205. One reason is that 
the algorithms are difficult to vectorize, which is necessary 
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to obtain the large increases in speed. However, the real 
problem is that they work only at relatively low to intermedi
ate densities, which means that one is simulating a semidi
lute solution in the free-draining limit. This means that in 
order to map the simulations onto a melt, the chains have to 
be much longer than the screening length, which depends on 
the monomer density. We will discuss in Sec. VI some of the 
difficulties in estimating the entanglement length from simu
lations in which the density is significantly1ess than that of a 
melt. For a general discussion ofMC simulations for lattice 
polymers, see Ref. 43; and for simulations of dense polymer
ic systems, see Ref. 44. 

It is clear that in order to gain any significant new in
sight into the microscopic mechanism of a polymer melt, we 
need to be able to perform simulations at melt densities. This 
suggests immediately that one should abandon the lattice 
and study continuum models. One of the first such studies 
was by Baumgartner,31 who carried out a MC simulation for 
a hard-sphere chain at a density of 0.7 (number of mon
omers per unit volume, bond length 1 = 1) and hard-sphere 
diameter h = 0.91. These simulations were the first to ob
serve a deviation from Rouse behavior for a completely mo
bile system. Just as for lattice MC, the technique also does 
not vectorize very well. However, there appear to be two 
possible ways out of this problem and they are to use either a 
Brownian dynamics or molecular-dynamics simulation. 
While Brownian dynamics simulations have been widely 
used to study a single dilute polymer,45.46 there has been only 
one attempt which we are aware of to study a many-chain 
system. Ceperly, Kalos, and Lebowitz l4 studied the early
time behavior for nonentangled polymers and found results 
in agreement with the Rouse model, but did not study very 
long chains at high density. Because they were working at 
moderately high density, they were not able to use the stan
dard Brownian dynamics algorithm for reasonable size time 
steps (at;::::O.OI1', where l' is the unit of time in Lennard
Jones units), and instead had to solve the Smoluchowski 
equation for the time evolution of the polymer probability 
density by a Me random walk. The largest chain length they 
studied was only N = 63 at a density of 0.5, and because the 
method uses a MC sampling, it is very difficult to develop an 
efficient code suitable for a supercomputer. The third tech
nique, molecular dynamics (MD), does vectorize very well 
and is very suitable for modern supercomputers. Though 
MD simulations47-51 have been very useful in studying the 
properties for a wide range of atomic and molecular systems, 
it has not been widely used in the study of polymers. Most of 
the previous MD simulations of polymers prior to our work 
only studied very short chains (5.;;;N.;;;16) in a solvent of 
several hundred monomers. 5 I In Ref. 11, we showed that, in 
fact, MD simulations can be very useful for simulating dense 
polymer melts. 

Here we present the results of simulations for a wide 
range of chain lengths N from 5.;;;N.;;; 400, using a MD tech
nique recently developed by US. 52 This method has already 
proven to be very effective for a many-arm star53 polymer 
and end-grafted polymer brushes, 54 where strong density 
fluctuations occur. Each monomer of the system moves ac
cording to the equation of motion, 

fi = VIUij - rr i + Wi(t)· 
Hi 

(2.1 ) 

The interaction potential Uij has two parts. The first U~ is a 
purely repulsive Lennard-Jones potential which acts be
tween all monomers in the system. Along the sequence of the 
chain, we add a strong attractive potential4,14,52 Uijh (the 
parameter we used for this attractive potential differed from 
earlier simulations l4 so as to avoid any possibility of chains 
cutting each other. See Ref. 52 and the Appendix for de
tails). r is a (small) friction constant which couples the 
monomers weakly to a heat bath, while W j (t) is a Gaussian 
white-noise source. The strength of the noise is related to r 
via the fluctuation dissipation theorem. The equations were 
integrated with a time step at = 0.0061', where l' = a( m/ 
E) 1/2 is the standard time unit for a Lennard-Jones fluid. We 
will present most of our results in reduced units in which 
a = E = m = 1 and the Boltzmann constant kB = 1. As dis
cussed in the Appendix, we set T = 1.0E and r = 0.51'-1. 
The introduction of a weak coupling to the background is 
very important not only to keep the temperature at the preset 
value but also to keep the system stable over the course of the 
simulation. Because we are interested in the dynamics of a 
melt in which the relaxation times become very large 
( - N 3), we made runs up to 20 X 106 at after equilibration. 
We found that coupling the system weakly to a heat bath was 
a physically appealing way to reduce the effect of the nu
merical errors which accumulate during the course of any 
long simulation. In the Appendix we show that an alternate 
technique in which the temperature is rescaled every 100 
steps so as to conserve the total energy gives identical results. 
The overall coupling to a heat bath does, however, lead to a 
diffusion to the entire system. This diffusion has to be re
moved when analyzing the motion of the chains. This is done 
by simply calculating all quantities in the center-of-mass co
ordinate system ofthe whole system. 

In Table I, we give the number of chains and the length 
of the chains used in the present study. All of the simulations 
are carried out at a density ofp = 0.85, which from studies of 
atomic fluids is relatively high and equals the triple point 
density for an attractive Lennard-Jones fluid. As we will see 
below, the height of the pair correlation function at the first 
peak g(r)max ;::::2.7. However, because the intermonomer in
teraction is purely repulsive for those monomers which are 
not connected, we are still far enough away from the glass 
transition so as not to cause any problems in the interpreta
tion of the results. 

B. Equilibration 

The first systems (N.;;;50) investigated were prepared in 
a semidilute solution and then slowly compressed to a final 
density between 0.5 <p < 0.90. We then let the systems 
equilibrate until the chains moved several chain diameters. 
From these preliminary studies for small N, we determined 
that p = 0.85 was an appropriate density to work at. We 
wanted to work at high density so the tube diameter would 
be small, yet we needed to have reasonable relaxation times 
for chains which would allow us to equilibrate the system in 
a few million time steps. This turned out to be at p = 0.85. 
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TABLE I. Total time of the run T IT after equilibration, the radius of gyration (R ~), mean squared end-to-
end distance (R 2), ratio of the moments ofinertia (R ~ 1 HR ~2 ): (R ~ 3 ), average pressure P, and length of the 
simulation cell L for the systems studied in the present simulation. Here N is the number of monomers in each 
chain and M is the number of chains. The monomer density p = 0.85 for all the runs. 

M/N TIT (R~) 
(Rt) 

(R 2) 
(R4) 

(R ~, ):(R ~2 ):(R ~3) P L 
(R ~)2 (R 2)2 

50/5 3000 0.92 5.2 1.0:4.0:19.2 
25/10 7200 2.2 13.1 1.0:3.0:14.3 
30/20 12000 5.0 29.7 1.0:2.9: 13.4 
32/25 60000 6.3 1.16 37.8 1.53 1.0:2.8: 12.8 
20/30 14400 7.7 46.7 1.0:2.8:12.9 
16/50 42000 13.3 1.19 82.7 1.56 1.0:2.7:12.5 
20/75 48000 20.1 1.21 118.3 1.63 1.0:2.7:12.1 
20/100 120000 27.5 1.20 163.8 1.55 1.0:2.8:12.3 
20/150 90000 42.5 1.22 263.8 1.57 1.0:2.8:11.8 
20/200 60000 46.1 1.79 250.7 1.53 1.0:2.6:9.4 

100/200 30000 53.6 1.10 300.3 1.59 1.0:2.6: 10.7 

Since all the excluded volume interactions are screened in a 
melt, one expects that the equilibrium chains should be 
ideal. t That is, the mean-square end-to-end distance of a 
chain of N monomers should have the form 

(R 2(N»=.«r t -rN )2) =121;(N-I), (2.2) 

where r t and r N are the coordinates of the chain ends. Here I 
is the average bond length between two monomers on the 
chain and lp is the persistence length [lp = (coo) t /2 in 
Flory's terminology55]. Using Eq. (2.2), we found 

1=0.97, lp = 1.32 ± 0.02 (2.3) 

independent of chain length. In the subsequent analysis we 
use the best estimate from N = 100 and 150 for lp = 1.34. 
While this technique of compressing chains from the semidi
lute regime was reasonable for beginning our investigations, 
it was not very useful for longer chains. Because p is high, it is 
simply not possible to place chains randomly on a lattice 
without strong overlap. An alternative would be to construct 
an initial state using either stretched chains or some other 
special nonoverlapping arrangement. However, any such 
method would need far too much computer time simply to 
equilibrate. However, knowing I and lp and that melt chains 
are ideal, we know a great deal about the global equilibrium 
structure of our systems. We decided that the most efficient 
manner was to place M chains of N monomers randomly in a 
cubic box of volume V = MN / p. The chains were generated 
by a simple MC procedure as random walks with a bond 
length of 1= 0.97 and with a restriction on backfolding so as 
to give approximately the correct persistence length. For the 
present simulation this was achieved by requiring that 
Irj - t - rj + t I > 1.02, though this value depends slightly on 
the chain length for short chains. This provided us with a 
starting configuration in which the global structure of the 
chains is very close to the equilibrium structure of the melt 
but in which many of the monomers overlapped. This meth
od also has proven to be very useful for lattice chains. 15 For 
400, we found for some initial configurations one or two of 
the chains were stretched by an abnormal amount. When 
this occurred, we discarded the entire sample and started 

5.55 6.65 
5.20 6.65 
5.04 8.90 
4.97 9.80 
4.99 8.90 
4.93 9.80 
4.90 12.08 
4.90 13.30 
4.87 15.23 
4.88 16.76 
4.84 28.66 

over again with a different random sequence. This was nec
essary because we only had 10 chains. To remove the over
lap, so we could begin our numerical simulation, we carried 
out a standard MD simulation for a few thousand at, but 
replaced the hard-core Lennard-Jones repUlsion between 
monomers that were not nearest neighbors along the chain 
by a softer potential (because the initial bond length 
1= 0.97, but there was no overlap of attached monomers), 
which did not diverge at small distance, 

{
A (1 + cos 1Tr/2t/6u ) r<,u 

U(r) = 0 
r> u. 

(2.4) 

We started the run with A = I and increased A gradually to 
about 60 until the overlaps were removed. We also found 
that by quenching the velocities of all the monomers to zero 
several times during this initial phase, the monomers moved 
apart more quickly. This produced a starting state which 
was very nearly equilibrated and from which we could begin 
the full simulation. Some care has to be taken, if one wants to 
use this method for short chains (N < 30). There the onset of 
the excluded volume is strong enough to lead to an overall 
expansion of the chains. We then equilibrated all of the sam
ples further to up to 5 million steps. In the course of the 
simulation the chains then moved at least 2 (R ~ ), the mean
square radius of gyration (except for N = 200, which moved 
about (R ~) and N = 400 which moved less). We then 
checked for each system by monitoring (R 2), (R ~), etc., 
that the initial equilibration was sufficient. We also observed 
that our results for the lengths I and lp given in Eq. (2.3) 
were independent of chain length for 5<,N<,2oo. As a final 
check of the initialization procedure, we produced starting 
states for N = 50 by the two methods and found that both 
gave the same results for all static and dynamic properties 
measured. 

c. Static properties 

Chains in a melt are supposed to be ideal in the sense 
that they obey random walk statistics. As mentioned above, 
the mean-squared end-to-end distance (R 2 (N) ) scales as N 
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as expected. We also measured the mean-squared radius of 
gyration, 

(R ~ (N» = ~ (~I (fi - fcm )2) (2.5) 

where fcm = 1.- L i fi is the center of mass of the chain. 
N 

Figure 1 gives (R 2) and (R~) vsN for 1O<N<200. Clearly 
both quantities scale with N as expected. The ratio (R 2) I 
(R ~) = 6, also as expected for ideal chains. A more precise 
measure of the Gaussian character of the chains is given by 
the asphericity and the higher moments of (R 2). In Table I, 
we give results for (R 4)/(R 2)2. For a random walk, this 
ratio should be 5/3. As can be seen, we find a slightly lower 
value;:::; 1.57. However, due to the local self-avoidance con
dition, which is obeyed for these chains, one can only expect 
to find perfect Gaussian statistics in the limit N -+ 00. An
other measure of whether the dimensions of the chains can 
be regarded as ideal is the asphericity of the coils. In the case 
of an ideal random walk, the ratio of the eigenvalues of the 
inertia tensor are 1 :2.5: 11. 8. 56.57 The sum of the three eigen
values is of course just (R ~). The data in Table I show that 
for the longer chains this limit is approximately satisfied. 
Only the data for the small N = 200 system show a clear 
deviation. Because the chains are Gaussian, as N increases, 
the number of chains M must also increase, roughly as N 1/2 

to ensure that the chains do not interact with themselves via 
the periodic boundary conditions. From the chain dimen
sions given in Table I, it is clear that except for N = 400, 
there are a sufficient number of chains so that the effect of 
the periodic boundary conditions will not playa significant 
role in the dynamics. If we want to study the long-time be
havior for N = 400, we would need at least 40 chains, which 
is beyond the scope of the present simulation. The real bott
leneck, however, for N = 400 is the very slow relaxation. 
However, as we demonstrate in Sec. VI, the N = 400 sample 
is very helpful in visualization of the motion of the primitive 

1 
10 100 

N 

FIG. I. Mean square end-to--end distance (R 2(N» and radius of gyration 
(R ~ (N» vs N for IO.;;N.;;200. The lines give the expected slope of I. 

chain. We did not use the data for N = 400 for determining 
any static or dynamic quantities. The reader may also notice 
from Table I that for N = 200 we ran systems of size 20 and 
100. The system with M = 20 contains just about the mini
mum number of chains which we feel are necessary to obtain 
reliable data for the dynamics at long time. Except for the 
fact that (R 2) and (R ~) were slightly too small for the 
M = 20 system compared to the M = 100 system and as ex
pected from smaller N, all of the dynamic results for both 
sizes are the same within the statistical errors. 

So far, we have only presented results for the global 
properties of the chains, which indicate an overall equilibri
um structure. However, most of the analysis will be confined 
to intermediate times and length scales smaller than (R 2) 1/2. 

Thus it is important that we check the internal structure of 
the chains as well. One way this can be done is to determine 
the coherent structure function S( q) of an individual chain, 

S(q) = ~ (I i~1 exp(iq-ri ) I), (2.6) 

S( q) was determined by averaging over 20 randomly chosen 
q vectors every 6Orfor N;, 100 and every 6rfor N < 100. For 
2rr/(R 2)1/2 <q<2rrlllp we expect the fractal scattering of 
S(q) _q-IIV = q-2 (v = 1/2) independent of chain length. 
Figure 2 shows that this is fulfilled by the data. From a plot 
of q2S(q) (not shown), one can see a small overshot for the 
low q limit. It is not clear to us whether this is always the case 
for chains in the melt or just a result of the sampling statis
tics. For single chains one knows that due to the fluctuations 
of the ends, damped oscillations can be found in the plateau 
regime of qllv S(q) .58 Disregarding this possibility, we esti
mate that the best fit to the exponeqt v = 0.48, which is very 
close to the expected value of 1/2. 

Another check of the internal structure of the chains is 
to study the Rouse modes of the chain. For a finite discrete 
monomer chain these are given by59,60 
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For ideal chains these modes are eigenmodes. Within the 
fluctuations of the data we find (Xp (t)oXp' (t» = 0 for 
p=j=p'. One expects2 that the amplitudes obey the scaling re
lation 

(Xp(t)oXp' (t» = 2~(R 2(N»/p2ocN /p2. (2.8) 

Figure 3 gives (X~) vs p for 1O.;;;N.;;;200. Equation (2.8) 
describes the behavior very well except for the first mode 
p = I (which seems to be strongly effected by the chain 
ends). The agreement with Eq. (2.8) was valid for all chains 
studied and also is in accordance with the effects seen for 
S(q). Taking all of the information presented, we believe 
that all of the samples we used to investigate the dynamics 
have been well equilibrated. 

Since all ofthe runs were made at constant density, the 
relative effect of the free ends decreases with increasing 
chain length. One way this shows up very clearly is in the 
average pressure P. As seen in Table I, P decreases with 
increasing N. This decrease is rapid for N < 25 but much 
smaller for N> 30, indicating that for large N the end effects 
on the pressure are negligible. A similar behavior also is seen 
in the glass transition temperature which varies strongly 
with N for short chains, but saturates for large N.61 This 
already gives us a first hint that the chain lengths considered 
are sufficient in order to cover the crossover regime from the 
nonentangled to the entangled state. 

The internal structure of such a complex fluid is also of 
interest.62 This is particularly true for the formation of net
works, such as gels and rubber, where one needs to know 
about the details of the local structure.63

-65 Figure 4 gives the 
radial distribution function of all the monomers in the sys
tem. Besides the strong nearest-neighbor correlation due to 
the connectivity of the chain, the results are not unlike a 
simple, atomic fluid. More interesting is the intrachain dis
tribution function shown in Fig. 4(b), which describes the 
probability for monomers of the same chain to meet each 
other. Figure 5 gives the probability that a monomer a chem-
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ical distancej from the chain end is physically near the end. 
This quantity would thus describe the length distribution of 
self-loops for a network in which ends are randomly cross
linked to another monomer of the melt. Note that in the 
present case -14% of the chain ends would form loops, if 
we consider random crosslinking of the ends with a mon
omer nearby within a sphere of radius lip. 

III. MOTION OF MONOMERS 

This section contains a detailed discussion of the motion 
of the individual monomers. In order to provide this, we first 
present some background concerning the various theoretical 
approaches, which have been discussed in the literature. 
However, we will restrict our discussion to quantities which 
can be investigated directly by simulation. 

A. Theoretical concepts 

The motion of a single monomer is governed by the con
nectivity of the chain and the interaction of the monomer 
with its surroundings. In the simplest model, one can think 
that for such a situation all the complicated interactions are 
absorbed into a monomeric friction and a coupling to a heat 
bath. For this model, the Rouse model,7.2 the motion of each 
monomer is described by a Langevin equation 

. - 1 {} r· =-VU( r· ) + "-(t), '~ I Ji 
(3.1 ) 

where r; denotes the position of monomer i, ; is the friction 
coefficient with the viscous background, U is the potential 
which keeps the chains connected, and /; (t) is a random 
force. The strength of/; ( t) are; are related by the fluctu
ation dissipation theorem. Note that this model does not 
contain any specific interaction between monomers except 
that due to the chain connectivity. The Rouse model can be 
solved and gives for the diffusion coefficient D and viscosity 
TJ, 

(3.2) 

The largest relaxation time of the chain is then given by2 

1'N =;N(R 2(N»/3rrkT. (3.3) 

The mean-square displacement of a monomer g I (t) 

1 N 
gl(t) =- L ([r;(t) _r;(0)]2) (3.4) 

N;=I 
with time is governed by the fact that as time increases an 
increasing number of monomers have to be carried along. 
Using the fact that the chain structure is that of a random 
walk, it is easy to show that 

t<1'o, gl(t) </2 

1'O<t<1'N' gl(t) «R2) 

t> 1'N' gl (t) > (R 2). 

(3.5) 

It turns out experimentally that this extremely simple model 
provides an excellent description of polymer dynamics, pro
vided that the chains are short enough. Measurements3

-6 of 
TJ as well as NMR (Ref. 66) and neutron scattering experi-

mentsI2.35.36 which directly probe the motion via spin-echo 
techniques are in agreement with Eq. (3.2). However, simu
lations have been somewhat difficult to interpret in this re
spect. Up to now, simulations of dense systems have either 
used Monte Carlo or Brownian dynamics methods. For both 
of these cases the Rouse model is inherently built in. It is 
difficult to decide how much of the observed behavior can be 
directly attributed to the interactions and how much to the 
algorithm (see the Appendix and Sec. VI). 

For the MD algorithm we use in the present investiga
tion the situation is clearer. The value of r chosen 
(r = 0.51'-1) is so small that the typical t 1/2 behaviorin Eq. 
(3.5) for the unperturbed chain sets in at a distance of 2-3 
bond lengths. 52 Thus if we observe this behavior for shorter 
times and distances, it reflects the interactions of the individ
ual beads. 

For chains which significantly exceed the critical entan
glement length Ne , the motion is slowed down drastically. 
Experimentally, one finds 

Da:.N- 2, 

TJa:.N 3.4 • (3.6) 

The reptation concept gives a very nice physical picture for 
this slowing down. The idea is that the chain moves on a 
coarse-grained scale mainly along its own contour. The rea
son for this is that the topology of the surrounding supresses 
the motion transverse to its own contour. For short time 
scales the motion of the monomers cannot be distinguished 
from that of the Rouse model. When the distance a monomer 
moves exceeds a critical size, namely the so-called tube di
ameter d To one only has Rouse relaxation along this coarse
grained random walk structure. The typical time for the on
set of this constraint motion is given by 

(3.7) 

Since one has Rouse-like behavior along a random walk 
path,9.10 the t 1/2 power law for gl (t) becomes a t 1/4 power 
law. After the chain along this path is relaxed (t> 1'N a:. N 2), 
it has only moved a distance of the order of the square root of 
the contour length of the tube. Then one should observe an 
overall diffusion along the tube yielding a second t 1/2 regime 
for the motion in space. Finally, after a time 1'd a:. N 3/ Ne> 
the so-called disentanglement time, the overall diffusion of 
the polymer chain in space is observed. Thus we expect the 
following general power-law sequence (Fig. 6) for the mean
square displacement in space, g I (t): 

t I, t < 1'0 

t 1/2 , t<1'e- N ; 

gl(t) - t 1/4 , t<1'N-N 2 
(3.8) 

t 1/2 , t < 1'd - N 31 Ne 

t I, t> 1'd 

Similar behavior is expected for the mean-square displace
ment in the center of gravity ofthe chain itself g2(t), 

1 N 
g2(t) = N ;~I ([r;(t) - r;(O) - r c .m (t) + r c.m . (0) ]2), 

(3.9a) 

and the motion of the center of mass g3 (t), 
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FIG. 6. Schematic plot of the mean-square displacements for the reptation 
model. 

(3.9b) 

The reptation model predicts that g2(t) and g3(t) have the 
form 

t<70 

t<7e 

t<7N 

t>7N 

(3.lOa) 

g3(t)-{::~2, :::~ (3.lOb) 

t\ t>7N. 

For several years it has been the main concern of many simu
lation studies as well as experimental investigations using 
neutron spin echo to search for these power laws in order to 
confirm or reject the basic reptation picture. However, there 
remain many unanswered questions. The reptation idea is a 
conceptually simple single-chain approach. The largest re
laxation time 7 d ex: N 3 contradicts the measured viscosity 
which scales N 3

.
4 

• Also, the idea of rigid topological obsta
cles forming the entanglements is still under discussion. It is 
clear that the background moves as well and this leads to a 
release and reconstruction of constraints. 67-71 However, it is 
not yet clear whether an entanglement is a consequence of 
the chain topology or just a result of a diverging mass which 
has to be moved, as, e.g., a packing criterion would sug
gest.37-40 

Consequently, several other attempts have been made to 
describe the motion of the chain. Hess27 used a projection 
operator formalism in order to account for the topological 
constraints. He solved his model self-consistently within the 
framework of the Rouse model. By his approach a more 
microscopic foundation for a reptation-like ansatz is given 
under certain circumstances. His theory especially points 
out the importance of constraint release. His ansatz self-con
sistently introduces an explicitly time-dependent friction co
efficient. In the limit of small constraint release, the charac
teristics of the reptation model, e.g., in the mode spectrum, 
are recovered. Ronca25 used a memory-function approach. 

This is some sense is similar to Hess. However, here the time 
dependence of the friction coefficient comes from the ad hoc 
assumption of the form of the memory function. Kavassalis 
and Noolandi29 employ the so-called generalized Rouse 
model (GRM). Skolnik and Yaris26 simplified Hess' treat
ment in order to account for different intermediate power 
laws they observed for the motion of the chain. There the 
explicit time dependence of the self-consistent friction coeffi
cient was abandoned. Details of these different models will 
show up more clearly in the discussion of the Rouse modes 
(Sec. IV). However, the mere investigation of the motion of 
the monomers will give significant insight as well. It will also 
give us a clear picture of the parameter space we can cover. 
But it will not really be sufficient to decide which physical 
ansatz is the most appropriate. For this we need additional 
information, which we will discuss in the following sections. 

B. Analysis of chain motion 

For the analysis of the motion of the chains we ran the 
systems up to 20x 106 I:!..t (tmax = 1200007) as seen from 
Table I. Averaging was performed up to at most a third of 
this total time. The averaging of motion then effectively is 
done over at least 60 independent chains for the longest 
chains at the longest times except for 100/200. Assuming 3d 
random walk statistics for the motion of the chains, the sta
tistical error in our results is of the order of 10% in the worst 
case. However, it should be noted that the error bars de
crease progressively with decreasing time intervals. The esti
mate of the error given above is supported by the comparison 
of statistically independent systems, such as those with dif
ferent chain lengths. For all investigations of the monomer 
motion the overall system diffusion has to be taken out. For 
details see the Appendix. 

1. Diffusion 

In order to get an impression of how far into the entan
gled regime our chains reach, consider first the mean
squared displacement of the center of mass g3 (t) (Fig. 7). 
For long time one gets g3 (t) = 6Dt, which is how we deter-
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t:' 1.5 N .. I; .,/. ~ <> 25 
S 0 50 

i + 100 
x 150 

//O:l/~ 1.0 0 200 

o + 
0.5 o 0 + 

2 3 4 5 

Log,o (tiT) 

FIG. 7. Center-of-mass diffusion g3 (t) vs t / T for five values of N. Data from 
N = 200 are for. the M = 20 system. 
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mine D by extrapolation. We include for N = 200 extrapo
lated data of the large system, although it did not run into the 
diffusion limit. The error bar in Table II gives an estimate of 
the uncertainty in extrapolation. Also for N = 200, the sys
tem of only 20 chains would be too small to determine D 
properly. As one can see from the data there is already a 
significant short-time regime showing an effective slope less 
than 1 for N = 100. For N;;;.1 00 the effective minimal slope is 
about 0.70. The onset of this slowing down is at about 
t;::::2007. From reptation one expects a slope of (1/2 for the 
intermediate regime. However, it is known even for chains in 
a frozen environment where the chains clearly reptate, that 
this intermediate power law of 1/2 is difficult to obtain. 15 

Somewhat more insight can be gained from Fig. 8 where ND 
is plotted vs N. The figure clearly shows that the chain 
lengths considered cover the crossover regime. From Figs. 7 
and 8 we can obtain our first estimate of Ne . It is known that 
the crossover in D occurs at about Nc = 2Ne. For this inter
mediate regime several expressions for Ne have been given. 
Graessley,6 e.g., used 

D(N) = ADRouse (N) NJN, (3.11 ) 

where DRouse is the corresponding diffusion constant in the 
Rouse model, Eq. (3.2). Using this yields a value for Ne of 
120 monomers. Other equations differ considerably. Hess,27 
e.g., finds (with Ne = 0.5 Nc in his notation) 
D / DRouse = NJ (Ne + N) yielding Ne S 50. However, a 
closer look at the data for g3(t) in Fig. 7 shows that the 
estimate from Eq. (3.11) is clearly too high. Following both 
the Rouse and reptation models, one expects for the motion 
of the center of mass, 

(3.12) 

Using this and comparing it to the onset of the slower than 
linear ( dependency observed for g3' we expect Ne to be con
siderably smaller than 120. 

TABLE II. Diffusion constants and bead frictions from the mode analysis 
forN/p<Ne' 

N 6D(ci'IT)a X W 5,,(T-')b 

200" 0.35 24±3 
150 0.6±0.14 24 
100 1.65 ± 0.25 24 
75 2.73 26 
50 4.80 ± 0.40 20.5 
30 11.0 19 
25 13.2 
20 18.7 ± 1.0 18 
10 38 17±2 
5 80 15 

a Typical error bars are given. If not shown they are similar to the neighbor 
data. 

b The error bars give the typical accuracy in the fluctuations of the high p 
modes. 

cThe upper limit is 0.40. We expect the lower limit to be at a similar devi
ation; however, we cannot give a reliable number from the simulation. 
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FIG. 8. Diffusion constant 6DNvs N. D was obtained from the long-time 
behavior of g, (t), given in Fig. 6. For N = 200 only an upper limit is given. 

2. Monomer motion 

The behavior of the diffusion constant showed that the 
systems considered are in the crossover regime. Thus in or
der to observe the influence of the (topological) constraints 
introduced by the surrounding, we first confine ourselves to 
the innermost monomers, 

NI2+2 

g;(t)=~ L qri (t)-ri (0)]2), 
i~NI2-2 

NI2 + 2 

g~ =! L ({[ Ci (t) - Ci,c.m. (t)] 
i~NI2-2 

- [ci(O) -ci,c.m.(O)]P), 

(3.13 ) 

where ci,c.m. (t) is the center-of-mass chain i. Figure 9 shows 
our results. Note that for short times only a few points are 
plotted; however, as shown in Ref. 11, the data for all sys
tems fall exactly on top of each other. The results in Fig. 9 
demonstrate for short times and lengths excellent agreement 
with the expected Rouse behavior. For the background fric
tional coefficient r = 0.57- 1 used in these runs, the Rouse
like behavior for a free self-avoiding walk with the same pa
rameters as used here only starts for g. (t) ;::::20 and (;::::20-
307. Thus the apparent early ( 1/2 regime is a consequence of 
the bead-bead interaction and not of the algorithm. It is also 
important to note that the inner monomers for short times 
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FIG. 9. Mean-square displacement g, (t) vs t / T averaged over the inner five 
monomers for five values of N. 
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hardly know what the total length of the chain is that they 
are connected to. With increasing time for N = 25, we ob
serve a direct crossover from this t 1/2 regime to free diffu
sion. However, as the chain length increases, we observe a 
definite decrease of the slope in the intermediate regime. The 
onset of this slowing down occurs at the same time and am
plitude for all systems for N> 100. Again, this is an impor
tant check on the validity of our simulation. Reptation theo
ry would require a t 1/4 power-law regime, while our data give 
a slope of about 0.28 ± 0.03. Thus within the error bars the 
expectations of the reptation theory for g) (t) are confirmed. 
The onset of the t 1/4 regime can be identified as T e , giving 
Te "'" 1800T with gl (Te) "",2002. Assuming that Te is the re
laxation time of a Rouse chain of Ne monomers, one gets 
gl(Te)-g2(Te) =2(R~(Ne»' With Ip = 1.34 and 
1=0.97, one gets Ne ;::::35. It assumes, that at Te the sub
chains oflength Ne are relaxed. Taking this into the motion 
function g2 yields the above estimate. g I certainly is larger, 
however, since we do not have chain ends which partially 
compensate for this. Thus we think, that this estimate is a 
reasona ___ ble first guess. This estimate of Ne is independent of 
the chain length and thus differs from the estimates of Ne 
which depend on N, as given for instance by Kavassalis and 
Noolandi.40 For these theories, the constraint release mech
anism, namely the deformation of the tube due to the motion 
of the ends, plays the dominant role in determining the effec
tive entanglement length. The above results show that for 
the innermost monomers the initial slowing down of the mo
tion is not affected that strongly by constraint release. It may 
still be possible that even with increasing chain length we do 
not find t 1/4 exactly as a consequence of constraint release. 
However, in order to prove such a speculation much longer 
chains are needed. Since our estimate of Ne is independent of 
chain length, we can conclude that this is probably also a 
good estimate of the asymptotic value for Ne • In order to 
prove reptation from an analysis of the mean-square dis
placement, one also would need to identify the second t 1/2 

regime. However, even if the chains would strictly move in a 
tube of diameter dT this regime would be difficult to obtain 
unambiguously for the present chain lengths. As earlier in
vestigations of a chain in a straight tube42 showed, the pla
teau value/time for g2(t) is a strongly varying function of the 
position of the monomer along the chain. Even in this case 
there are problems with the predictions of the reptation 
model itself. Consequences of this for the scattering function 
S(k,t) will be discussed in Sec. V. 

Experiments typically see the entangled behavior only 
for chains containing many Ne monomers. In light of the 
above discussion one would expect strong influence of the 
positions of the monomers along the chain. To illustrate this, 
we present in Fig. 10 results for gl (t) and g2(t) averaged 
over all monomers of the chain on their dynamics. These 
figures hardly show any deviation from the Rouse-like be
havior. For N = 150 the apparent minimal slope in g I (t) is 
about 0.45, which is far from the predicted 1/4. To illustrate 
this in more detail, Fig. 11 presents our results for gl (t) and 
g2(t) for averaged over monomers from different positions 
along the chain for N = 150. What is striking is the extreme
ly enhanced mobility of the outer beads. Their fast motion is 
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FIG. 10. Mean-square displacements g,(t) (al andg2 (t) (b) vs t/Taver-
aged over all the monomers on the chain. 

actually slowed down by the much less mobile center mon
omers. When analyzing Fig. 11 one sees again that one typi
cally has to consider only monomers which are Ne to 1.5Ne 
inward in order to observe the "position-independent onset" 
of the slowing down. Experimentally, it is known that the 
monomeric friction coefficient {; increases with chain length. 
It changes from short-chain melts to highly entangled melts 
by about a factor of 1.5.72.73 Figure 11 gives a direct explana
tion for this phenomena. Short chains with the order of Ne 
monomers consist of essentially only "outer" monomers, 
while very long chains only contain "inner" monomers. 
Again as a consistency check and to support the above ideas, 
we show that the mobility change coming from the chain 
ends is independent of chain length (Fig. 12). It should al
ready be mentioned here that neutron scattering experi
ments l2

,35,36 up to now have only been performed with ho
mopolymers. Figures 11 and 12 strongly suggest the use of 
triblock chains in order to reduce the influence of the ends. 
(See Note added.) 

IV. MODE RELAXATION: GENERALIZED ROUSE vs 
REPTATION 

The preceding section mainly discussed quantities 
which are not directly accessible experimentally. In order to 
give more definitive answers about the validity of the various 
theoretical approaches and to also give a more coherent de
scription of the physical situation we have analyzed the nor
mal modes of our chains. The dynamical behavior of the 
normal modes is experimentally accessible in a variety of 
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FIG. 11. Mean-square displacements g, (t) (a) and g2(t) (b) vs tiT aver
aged over different segments of the chain. In each case, the upper curve is 
averaged over the outer five monomers, the next curve is averaged over 
monomers 8-12, the third curve from 18-22, and so on. The lowest curve is 
averaged over the center five monomers. 
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FIG. 12. Mean-square displacement g, (t) vs t IT averaged over different 
segments of the chain for N = 75 and 150. The upper curves are averaged 
over the outer five monomers, the center curves over monomers 18-22, and 
the lower two over the inner five monomers. 

relaxation experiments (e.g., dielectric relaxation and vis
coelastic relaxation). Also, knowledge of the mode spec
trum allows one to give a definitive answer as to whether the 
original reptation ansatz, one of its more microscopic formu
lations, or one of the simplified generalized Rouse models 
reproduce the appropriate physics. As discussed in Ref. 11, 
the Rouse modes of the chains indicate a length-dependent 
transition from typical short-chain dynamics to a slower 
long-chain dynamics. Here we present a more detailed anal
ysis of an extended set of data. 

In the context of the analysis of the static structure of the 
chains, the Rouse modes Xp (t) as defined by Eq. (2.7) were 
shown to be eigenmodes ofthe chains. Following the Rouse 
model for the relaxation function of the modes, one gets 

<Xp (t)"Xp (0» 
g (1)- =exp(-tlrp ) (4.1) 

p - <Xp (O)"Xp (0» 

with 

{;1l121! N 2 

3rkB TPZ' (4.2) 

where p is the index ofthe mode [Eq. (2.7)] and {;Il is the 
monomeric friction coefficient. As seen from the second 
equation in (4.2), the relaxation time of the pth mode is just 
the longest relaxation time of a chain of Nip monomers. This 
reflects the fact that the standard formulations of the Rouse 
model use periodic boundary (no end effects) conditions 
and take no additional interaction into account besides the 
connectivity of the chain. It is one of the least understood 
phenomena in polymer science why such a rather crude 
model works so well in describing short-chain melts. 

In Fig. 13, we present four examples which are typical of 
our results for gp (t). They display a clear single-exponential 
decay for the short chains [Figs. 13(a) and 13(b)]. For 
N> 100, however, there seems to be two different time scales 
for the long-wavelength modes. From an analysis of the re
laxation functions one gets the relaxation times given in Ta
ble II. A clearer picture can, however, be obtained by consid
ering the scaling of the modes with Nand p. 

A. Rouse relaxation on short (sub) chains 

Following Eq. (4.2), one would expect that the relaxa
tion plots for the different modes should collapse onto a sin
gle curve if time t is scaled by (piN) 2. This would be a direct 
verification of the Rouse behavior for short chains. For long, 
entangled chains, one would also expect standard Rouse be
havior for segments of the chain for which Nip < N e , since 
these modes relax in a time 'Tp < 'Te' In Fig. 14 we give typical 
examples of such scaled plots. Common to all curves is a fast 
short initial drop. After that in the initial regime for all the 
short chains NSNe the data nicely collapse onto a single 
curve, while for the lower modes (small p) of the longer 
chains the data do not scale as well as the N = 100 data [Fig. 
14 (c) 1 show. The data suggest, in agreement with the calcu
lation of Hess,27 that for these time and length scales the 
system almost perfectly reproduces the Rouse model as long 
as N S N e • This would also mean that all the data for the 
different N should follow one unique curve. This is not the 
case. The slope decreases with increasing chain length, indi-

J. Chem. Phys., Vol. 92, No.8, 15 April 1990 



5068 K. Kremer and G. S. Grest: Entangled linear polymer melts 

1\ 

€ 

r~ •••.. 
1\ .. ***. 

N l * ••• 
)(0. -1 t- .~ 0 * ••••• 
v .. ~ 0 ' ••• " 

II 0 ••• 

': ~ 0 - ••••• 

I. ~ 00 *"111" •••• 
+xCI. -2 I' 0 ••• 

•• )( 0 ** ••••• 
•• I( 00 •••••• 

+><0. • " 0 -._ •• 

-

-

o * •• 
V -3 r- • • 0 (a) N = 20 -

If><" 
V -3 
..e 

L 
o 2 

o 

I 
4 

2 3 4 

I I 
8 10 12 

I 

(b) N = 50 

5 6 ., 8 

o ~ •••••• **. 
A •••••••••••••••••••••• 

N 61''. ..................................... . 
xG. ~\ Xx 

v -1 R~\ xxx 

o' ' 
o.~ • x". 
lQ~~ • xXl( .. , 
[]&. X +>co. 6 A, • ·xx 

• -2 6~ .. • '. IIlC lIx )C 

1\ 

€ 

e: [] . I '" KJC
X 

tol" 11 ~ • • I, 11,',.:)( 

~ -3 0 .' II IIX 

o 2 

'Ix" V -3 

o 

4 

• 10 .. 

6 

5 

(e) N = 100 

8 10 12 

(d) N = 200 

10 15 

FIG. 13. Typical relaxation plots of the logarithm of the mode autocorrelation function gp (t) for N = 20 (a), 50 (b), 100 (c), 200(M = 100) (d). The 
correspondence between mode indexp and symbol is indicated in (d). 

cating a change in the effective monomeric friction coeffi
cient. This picture does not change if we confine the analysis 
to a short internal subchain. The only difference is the initial 
drop, indicating the effect of the free ends. It is known from 
diffusion experiments and viscoelasticity that the mono
meric friction coefficient calculated from samples of short 
chains differs from that determined from highly entangled 
systems by up to a factor of 2. This is sometimes related to 
the free ends of the chain, which as seen in Sec. III are much 
more mobile than the center of the chain. According to this 
conjecture, the apparent monomeric friction coefficient 
should increase around N~ Ne • Since we have analyzed the 
decay of the individual normal modes, we can check this 
directly. Figure 15 shows the results. For N;;. 75, we see that 
the normalized relaxation time "'p (pIN)2 seems to reach a 
plateau around 1.45-1.5"., while for shorter chains the value 
of".p (pIN)2 decays and extrapolates to a value about 1.0".. 
Following Eq. (4.2), we find that 

(4.3) 
2 3rkBT 

{;Jl- ="'p (piN) [2[2' 
p 

yielding (with [2[~ = 1.7) 

{; = {17 ± 2".-1, N <Ne 
Jl- 25±2".-1, N> 2Ne' 

(4.4) 

Results for all our systems are presented in Table II. This is a 

direct verification of the experimental finding3
•
72 and strong

ly supports our initial estimates of Ne . It also means that the 
longer chains are strongly entangled, though we are still not 
able to discuss the very nature of an entanglement itself. In 
order to be consistent, however, the lower value should coin
cide with the extrapolated Rouse diffusion constant 

D _ kT 
Rouse - N{;D (4.5) 

as found in Fig. 8. Taking the plateau value of 6NDr;;;;,r,0.4a2 I 
". directly yields for the monomeric friction coefficient {;D' 

{;D = 16 ± 2".-1. 

This is not only a consistency check of the model but also 
means that the sample sizes considered are, in fact, large 
enough. 

B. Long-wavelength modes: Reptation vs generalized 
Rouse 

The relaxation of the long-wavelength modes should di
rectly reflect the strongly decreased mobility of the long 
chains. This analysis also offers the opportunity to attempt 
to distinguish two groups of models, which have been dis
cussed in the literature. The first is the reptation model itself 
which is based on the idea of relaxation in a tube. The origi-
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nal relaxation time of a Rouse mode p with N /p > Ne is en
larged by a factor of N / Ne , giving2 

'T = N (R 2) t ~exN3/ 2. 
p,Rep 2 t?k T N P p B e 

(4.6) 

Hess27 derived a similar expression from his microscopic 
model by explicitly considering the effective entanglement as 
a dynamic effect, which then includes constraint release/ 
tube renewal. He finds 

'Tp,Hess = 2/3'Tp.Rep (4.7) 

after an initial fast Rouse-like decay up to the time 'Te. It is 

i; 
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FIG. 15. Normalized decay times Tp(p/N)' for N /p<.Nc vs N. The error 
bars indicate the scatter in the data from the different modes. 

important to note that both models essentially describe the 
same physical picture. For both cases, this long-time relaxa
tion only should occur for times larger than 'TN. For shorter 
times the rubber-like plateau should be observed. Ronca25 

employed a memory-function formalism. In the framework 
of Hess' self-consistent approach and the reptation model, 
this is a simplification containing an ad hoc ansatz for the 
time-dependent friction function. The ansatz is set to allow 
for a solution of the equations. Ronca's results for the time
dependent structure function (see Chap. V of Ref. 25), how
ever, describe the motion of the chain in the frozen environ
ment l2 rather well. There are several other approaches 
which can be formulated along the philosophy of Ref. 27 
with the important difference that the chain-length-depen
dent friction coefficient becomes a static quantity.26.29 This 
also leads to a motion confined to a rather tube-like contour, 
depending on the time under consideration.29 Contrary to 
this other authors claims26 that this confinement only results 
in an overall slowing down of the motion. References 25,26, 
and 28 do not give a detailed mode analysis, while Kavassalis 
and Noolandi29 explicitly give for their generalized Rouse 
model (GRM) 

'Tp,GRM exN3/p4. (4.8) 

Thus an analysis of the mode relaxation should be able to 
exclude one of these two classes of models, though it prob
ably cannot distinguish models within the same class. 

Figure 16 shows the relaxation plots with the standard 
Rouse time scaling t(p/N)2 for N = 200. One typically ob
serves a fast initial decay followed by a significant slowing 
down. The curves do not exactly fall on top of one another. 
However, the terminal slope is the same within a factor of 
1.3. Thus one has a mode-dependent crossover time to the 
"reptation behavior." This is in agreement with the observa
tions that the time window to observe reptation in scattering 
strongly varies withp (see also Sec. V). In contrast, in Fig. 
17, we plot the same data but now with a time scaling due to 
the generalized Rouse model as given by Eq. (4.8). Clearly, 
the data neither fall on one curve nor do they display the 
same terminal slope. For N = 150 and 200, in Fig. 18 the 
normalized relaxation times are plotted vs N. The dashed 
line gives the slope one would expect due to Eq. (4.8). Al
though the data points fluctuate, the data exclude the p-4 
dependence of the relaxation spectra of the GRM. 
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Are, however, the data for these chains within the cross
over regime able to rule out one of the two models? In con
trast to the mean-square displacement, the effect of the fast 
relaxing ends, as mentioned for the high p modes, only shows 
up in the initial drop. Thus we are correctly picking up the 
long-time behavior, within the time window analyzed. Nev
ertheless, the above time scaling of the data should for repta
tion only hold for t > TN' This time is not reached by the 
analysis. Still the data are useful for our purpose. As seen for 
the single chain in a straight tube42 (see also the primitive 
chain!) the diffusional motion of the inner monomers rela
tive to the center of mass of the chain, measured as the posi
tion along the tube, sets in at much earlier times t than TN' 
Thus, since the chain in the rigid straight tube has to show 
"ideal reptation," we think that the data for the relaxation of 
the modes rather satisfactorily follow the reptation picture. 
The other ansatz of the G RM uses a static p-dependent fric
tion coefficient. For this the authors of Ref. 29 do not give an 
explicit crossover time for the onset of this behavior, besides 
t>TN<", N /p>Ne' Although one could argue that for the 
small p modes (p = 2) the increase in Tp due to Eq. (4.9) 
might be smeared out, one at least should observe an increase 
in Tp p2 for p = 6, 5,4, and 3 for N = 200. !his is not the 
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case. Altogether we think that the data, although the chains 
are still in the crossover towards the highly entangled re
gime, strongly favor reptation-like concepts. 

In the upper part of Fig. 18, the two bars give the expect
ed value of Tp (p/N) 2 for N = 200 as extrapolated from the 
data for N = 150. Using Eq. (4.6), we can also directly esti
mate Ne from Fig. 18, giving values which are by far too 
large for N e , while the crossover to the slower decay again 
supports our initial estimate of N e • Similar to experiments, 18 

the relaxation is again too fast compared to the ideal repta
tion model. 

Since the terminal relaxation time can only be observed 
by averaging over very long times, one should expect finite
size effects due to the fact that the chains are only in the 
crossover regime. A somewhat better situation is given for 
the plateau modulus G~. One can write for the time-depen
dent modulus 

pkBT '" 2 
GN(t) = -- L exp( - 2tp /TN)' (4.9) 

N p=1 

where TN is the Rouse relaxation time. With 
p2/TN = Tp-

I
, GN(t) can be estimated from the relaxation 

of the individual modes. The plateau modulus, following 
Doi and Edwards,2 within the reptation theory is given by 
GN(t=Te): 

'" L (Xp (2Te)oXp (0)/(X;). 
p=1 

(4.10) 

Evaluating the sum yields 

G~ = pkBT(T
N

/Te )1/2 = pkBT. 
2../2 N 2../2 Ne 

(4.11 ) 

This result can be compared with G ~ calculated via Eq. 
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(4.9) for t=T. We get G~=0.0085 (N=75), 0.01 
(N = 1(0),0.014 (N = 150), and 0.0145 (N = 2(0). Thus 
for N;;.150, the value of G ~ seems not to change very much. 
Analyzing G N (t) directly following Eq. (4.10), the data dis
playa well-defined "wiggle," which increases length with 
chain length. However, even N = 200 is too short in order to 
use this onset of a plateau for a direct estimate of N e • Using 
Eq. (4.10), we find Ne ;::::20. This estimate certainly is more 
reliable than from the long-time relaxation of the modes 
from a statistical viewpoint, but also from the idea that the 
long-chain behavior within the crossover regime for t = 2Te 
is better maintained than for much longer times. A different 
estimate of Ne is given by the relation for G ~ and the viscoe
lastic properties of polymeric melts. It is known that Eq. 
( 4.10) only rigorously holds up to a prefactor of order unity. 
This prefactor can be estimated from viscoelastic properties. 
There the relaxation to the plateau modulus can be related to 
the tube diameter, from which one can estimate the entan
glement length. Following Doi and Edwards,2 for our sys
tem this would yield 

(4.12) 

This equation typically is used as the definition of the entan
glement molecular weight as determined from the plateau 
modulus. Using the data discussed above, Eq. (4.12) gives 
Ne ;:::: 60. This number still depends on the precise value of T e , 

taken from Fig. 9. To be on the safe side, for this estimate we 
chose the upper limit Te ;::::2000T. 

Comparing all these different estimates of Ne , the situa
tion looks rather confusing. Clearly there is an urgent need 
for a clear theoretical description of what an entanglement 
really is. There are various criteria38

-40 in the literature rang
ing from a pure packing criterium to entirely topological 
formulations. Kavassalis and Noolandi40 suggest that the 
entanglement length only is given by packing consider
ations. They estimate the asymptotic Ne by calculating the 
average volume (blob size) which is needed to include a 
strand of the chain plus if = 8.1 other strands. if is called the 
coordinate number. Its average value is given by a fit to 
many different polymeric systems. In terms of the density p 
and lip, their relation reads 

(4.13 ) 

For N -+ 00, our estimate of Ne = 35 would imply if ;::::4.8, 
which is very small compared to other polymers investigat
ed. Using their average value of if = 8.1 yields Ne = 85, 
which is certainly too high. However, it should be mentioned 
that the value of if varies with chemical species between 6.5 
and 10.0, allowing for a large fluctuation in Ne of more than 
a factor of2. There is an additional problem with Eq. (4.13). 
For finite N, there is a significant finite-size correction to the 
asymptotic value of Ne • For N = 150, this equation would 
predict that Ne is 4 times larger than for N -+ 00. This in turn 
would mean that our chains are only weakly entangled if at 
all. This certainly contradicts our previous results and shows 
the limitations of their approach. Although the chains might 
for a "long-time" analysis display a weaker entanglement 
and the analysis of the short-time-distance results might 

shift us artificially towards the asymptotic limit, this seems 
beyond the error bars in our data. 

The opposite approach is taken by Iwata and Ed
wards.38 They tried to define the entanglements via the typi
cal length of a chain which is needed in order to produce a 
knot with a strand of a different chain. They actually calcu
lated Gaussian integrals instead of Alexander polynomials; 
however, that is not significant here. They found that the 
average strand length per winding unit is typically around 
30%-40% smaller than the entanglement length deter
mined from Eq. (4.12). This agrees almost precisely with 
the difference in Ne estimated from the plateau modulus via 
Go,. and from the mean-squared displacement g 1 (t). It 
might well be that looking at short times and inner mon
omers a remanent effect of these interwindings, which are 
entirely static quantities, shows up. It is certainly one of the 
most interesting subsequent investigations of this paper to 
systematically try to investigate the nature of an entangle
ment. 

V. SCATTERING FUNCTIONS AND TUBE DIAMETER 

In the preceding section, we showed that the analysis of 
the individual modes led to the exclusion of the generalized 
Rouse model. Hence in this section we will discuss the dy
namic scattering function S(q,t) in terms of the reptation 
model. This function is particularly interesting since it can 
be measured directly via neutron scattering and can be relat
ed to the phenomenological tube diameter d T' The coherent 
scattering function for single chain is defined as 

S(q,t) =..!.. I (exp{iq· [r; (t) - rj (O)])), (5.1) 
N ;J 

and the incoherent as 

Sine (q,t) =..!.. I (exp{iq· [ri (t) - ri (0) ]}). (5.2) 
Ni 

The average ( ... ) indicates an average over many starting 
states (t = 0) as well as over orientations of q with the same 
magnitude. In the present study we averaged over three or
thogonal q's for each Iql. Note that the latter function, Eq. 
(5.2), is simply the Fourier transform of the single bead 
motion. Here the coherent S(q,t) always refers to scattering 
from a single chain. The collective S( q,t) of the overall sys
tem is not of interest here. For a discussion of correlation 
functions for the overall system, see Ref. 62. 

Following the standard Rouse treatment of the chain 
relaxation of de Gennes,2.73 both scattering functions can be 
written as a function of the scaled variable i ( Wt) 1/2. W is 
given by the bead friction, such that q2 ( Wt) 1/2 for t = TN 

andq;::::21TIRG is of order 1. Thus for chains having less than 
Ne monomers or small units of the longer chains as well as 
q> 21TldT , both S(q,t) and Sine (q,t) for 
kB Tq4(lIp )2t 112;~ 1 are given by 

In S(q,t)/S(q,O) = - q2( Wt) 1/2/6, 

In Sine (q,t) = - q2( Wt) 1/2/6. 

( 5.3a) 

(5.3b) 

The complete functional form for the Rouse model for all tis 
much more complicated and beyond the scope of the present 
investigation. The factor W can then be identified as 
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12kBT I 2 
W=--(/p) . 

1T; 
(5.4 ) 

For times t>1"N (N<Ne) one expects the standard diffu
sion behavior, namely 

In S(q,t)/S(q,O) = - iDt, (5.5 ) 

where D is the diffusion constant of the chain. In a semilo
garithmic plot we expect a common curve for S(q,t)/S(q,O) 
vs q2t 1/2 for t < 1" N and diffusion behavior, Eq. (5.5) for long
er times. Then using the data from Fig. 15 we can explicitly 
compare the mode relaxation with the scattering functions. 
Figure 19 shows our results for N = 75. Here Ns is the num
ber of scatterers per chain, positioned around the center 
monomer. Thus Ns = 5 means that only the inner five mon
omers had a nonzero scattering cross section. The upper 
panel of Fig. 19 gives S(q,t) for the inner five monomers. 
This is essentially the incoherent scattering function since 
we scatter off only five monomers. The lower panel in Fig. 19 
shows S(q,t) for the full chain. It shows the typical Rouse 
relaxation. Results for different values of q scale onto a com
mon curve up to the diffusion time. In the scaling region, the 
S(q,t) for N = 75 has the form 

In S(q,t)IS(q,O) = - 0.33 q2t 1/2/6. (5.6) 

From Eq. (5.4), this gives a bead friction for our model of 
;::::: 60, which is about a factor of2 too large compared to that 
found from the diffusion and mode analysis. A similar analy-
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tum down at long time for curves a-c is for times beyond the Rouse regime, 
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sis for N = 25 gives ;::::: 30, also a factor of 2 larger than 
expected for short chains from our earlier analysis. Note that 
the ratio for the bead friction; between N = 25 and 75 is a 
factor of 2, similar to what we observed in Sec. IV from the 
mode analysis. This suggests an error in relating the prefac
tor relating Wand;, Eq. (5.4) (see Sec. VI). 

For N> Ne and times t> 1". the situation is much more 
complicated. de Gennes in his pioneering paper in 1971 
(Ref. 9) discussed the coherent scattering of a reptating 
chain in terms of a chain in a tube of diameter d T' The idea is 
simply that up to times of order 1". one observes the standard 
Rouse relaxation, while for longer times, but less than 1" N the 
scattering function essentially sees only a smeared out chain 
in a tube. ThusS(q,t) decays to a value which can loosely be 
interpreted as a Debye-Waller factor, namely 

Further decay can only occur via creep out of the tube. Since 
the tube diameter is directly related to N. via 

(5.8) 

we expect from Sec. III in our reduced units a tube diameter 
d}:::::60cr. However, this plateau form for S(q,t)IS(q,O) is 
not easy to identify. Taking the full functional form of 
S(q,t)IS(q,O) , one gets (for t«1"d) 

S(q,t)IS(q,O) = 1 - id~/36 + q2d~f[q2cr( Wt) 1/2]136 
(5.9) 

withf(u) = exp(u2/36) [I - erf(uI6)], where erfis the er
ror function. For u -+ 00, f( u) 0:: U - I. For later times, this 
changes over to 

x L exp( - n2t l1"d)' (5.10) 
n odd 

Equation (5.10) demonstrates the difficulty in interpreting 
this scattering function. Kremer and Binder42 showed that 
the time, which they call the coherent time 1"coh' for which 
the plateau can be observed is strongly q dependent and var
ies from a minimal value 

(5.lla) 

to a maximal value for larger q 

r:':." 0:: (uldT )2N3 for qdT ::::: 1. (5.11b) 

Figure 20 shows a schematic plot of S(q,t)IS(q,O) for 
N = 200 for qu = 0.4 and 0.8 using Eq. 5.10. For W we use 
the expression from Doi and Edwards [Eq. (5.4)] while for 
1" d we take the relaxation time as expected from reptation. 
The bead friction is set to; = 251"-1 as taken from the mode 
analysis, Eq. (4.4). d ~ = 60cr is taken from the mean
square displacements. From this figure it is evident that the 
time window to observe the plateau is rather narrow. For 
q = 0.4 no plateau at all is reached, while for q = 0.8 
(:::::21TldT ) a slowing down of the decay can be seen. How
ever, there is another complication. The above discussion 
only addresses ideal reptation. There are also fluctuations of 
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FIG. 20. Schematic plot of S(q,t)/S(q,O) for N = 200. 

the tube, they increase the "smeared out region" due to con
straint release and tube leakage. This should also be taken 
into account. Indeed, it was already recognized for the chain 
moving in the frozen environment, that estimating d T from 
the approximated plateau value of S(q,t) gives results which 
are strongly q dependent. 15 This was very surprising since in 
that case constraint release could not occur. Later analysis 
which compared the scattering data for the chain in the fro
zen environment with Ronca's theory yielded a very reason
able estimate for d T • Ronca25 calculated S(q,t) within his 
memory-function approach. The slowing down of the mo
tion is governed by the memory the chain has for its previous 
path. Within this framework, he finds a similar plateau, 
however, with the form 

(5.12) 

Figure 21 gives the results for the scattering function for 
N = 150. The upper panel shows essentially the incoherent 
scattering. It is important to note that the initial slope prior 
to where the t 1/4 regime begins is the same as for N = 75 
(Fig. 19). The deviation from this initial decay can directly 
be attributed to the occurence of the t 1/4 regimeingl (t). The 
characteristic time for the deviation from Rouse is typically 
about 30%-40% above the estimated 1"e; however, this is 
difficult to determine precisely. 

In order to observe the de Gennes or Ronca plateaus one 
has to at least have Ns > Ne scatterers. The middle panel in 
Fig. 21 shows the result for Ns = 35. These data show a 
tendency towards a plateau, but it is rather difficult to esti
mate the plateau very precisely. Ifwe assume a plateau value 
of roughly e- 2 for curve c (qu = 0.6), we find 
d ~ = (R 2(Ne» Z 86, giving Ne Z 50 using the de Gennes 
equation,Eq. (5.7). WithinRonca'sschemewegetd~z57, 
giving Ne Z 34 which agrees very well with our initial esti
matesofNe fromg l (t). For the other values ofq, thesimula
tions still cannot be averaged with sufficient precision far 
enough out in time to obtain a meaningful estimate of dT at 
all. In the lower panel of Fig. 21, we give the result for scat
tering from the overall chain (Ns = N). It does not give any 
additional information then from the case Ns = 35. Consid
ering the above discussion on S(q,t) these unsatisfactory re
sults are not surprising at all. This, however, should also be 
kept in mind when one interprets experimental data. 
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FIG. 21. Semilog plot of the coherent structure factor S(q,t)/S(q,O) vs 
q't 1/216 for N = 150 and N, = 150, 35, and 5. In the latter two cases, only 
the inner N, monomers have a nonzero scattering cross section. The five 
curves in each case correspond to different values of (a) qu = 0.4, (b) 0.5, 
(c) 0.6, (d) 0.8, and (3) 1.0. The slowing down for long time is a clear 
signature of non-Rouse behavior. 

VI. COMPARISON TO EXPERIMENT AND OTHER 
SIMULATIONS 

A. Experiment 

So far the discussion has been confined to a variety of 
physical quantities in order to provide as complete an analy
sis of the dynamics of entangled polymers as we could. How
ever, one of the key problems remaining is to find a satisfac
tory way to determine the entanglement length Ne • In the 
preceding section we found that Ne determined from differ
ent measurements did not always come out the same exactly 
as found experimentally. Recently, it has become common 
practice to determine Ne experimentally by fitting data for 
the plateau modulus to the reptation theory (see, e.g., Refs. 3 
and 5). This at least gives a consistent way to determine Ne 
so that different polymeric systems can readily be compared 
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to each other. Using our results for Ne determined in this 
way, together with the persistence length and the bead fric
tions determined earlier, we show in this section how to map 
our "computer" polymers onto real polymers. Doing this we 
cannot only compare out results to experiments but also 
make predictions which can be checked experimentally. One 
such prediction is the length scale and the time for the onset 
of the t 1/4 regime, which can be measured by neutron scatter
ing. 

The standard way to compare different polymeric sys
tems with respect to their structural properties is to map the 
different persistence lengths. The idea is that by counting the 
persistence lengths provide the number of statistical seg
ments of the chain. This should give a reasonable way to 
compare static properties for different polymers. Here, how
ever, we are interested mainly in dynamic properties and it is 
not obvious that the mapping has to be the same. The simple 
mapping of the persistence length certainly gives a kind of 
minimal mapping, since one cannot identify units smaller 
than Ip with each other for polymers made up of totally dif
ferent units. On the other hand, it is always possible to con
struct a new coarse-grained statistical segment from several 
persistence lengths and compare this to the persistence 
length of another polymer. This is simply a consequence of 
self-similarity of the global chain structure. If we want to 
include dynamic properties into our comparison, the map
ping of persistence lengths is not sufficient. From the various 
entanglement theories for melt dynamics, it is clear that the 
stiffness of the chain is not the only relevant parameter in the 
determination of dynamical properties. Other quantities 
such as the microscopic bead friction are essential. 

We think that there is a unique way to compare different 
polymeric systems including "computer" polymers. This is 
to map the entanglement molecular mass Me or in our case 
Ne onto each other. All theories which attempt to describe 
the dynamics of polymer melts and especially the transition 
from the short-chain Rouse regime to the long-chain entan
gled regime introduce a new length scale into the problem, 
that of the entanglement length Ne • In most cases this is done 
without specifying what Ne physically really means. Experi
mentally, from linear viscoelasticity Ne is taken as a unique 
system specific parameter. Thus it seems natural that for 
different systems, Ne is the parameter which should be com
pared. 

The most direct way to determine Ne and thus to com
pare our results to experiment is via the plateau moduli since 
data are available for many systems. Unfortunately, since 
our chains only contain a few Ne the analysis of G?v as seen 
in Sec. IV does not give a very definite result for long chains. 
The alternative is to use the diffusion constant data. While 
there is not as much diffusion data available as for the pla
teau moduli, there are several experiments available for D of 
the individual chains from which Ne has been determined. 
In the Rouse limit, D is simply given by Eq. (4.5). The for
mal description of the crossover regime differ somewhat de
pending on the model. Nevertheless, if one knows Ne and 
D(N) for N <Ne all the curves for D(N)ID Rouse (N) vsN I 
Ne or MIMe should fall on top of one another, if universal
ity holds. 

Before we compare our results for D to the experimental 
data we have to clarify one point. Experimentally, the diffu
sion constant D is always corrected for the N-dependent 
glass transition temperature Tg • This correction is especially 
important for systems not very far from Tg • In our case, we 
do not know exactly how to do this, but we think that the 
correction should be negligible. For a liquid of monomers 
interacting with a purely repulsive r- 12 potential, Bernu et 
al.74 estimate k B Tg ::::: 0.4f". The present simulations are at 
kB T = f" and constant volume. Connecting the monomers 
should increase Tg • As seen from Table I, the pressure actu
ally goes down as N is increased. This effectively produces a 
less dense system, partly compensating for the usual increase 
in Tg with increasing N. Similar in experiments, the density 
slightly increases with increasing chain length. 75 From nu
merous numerical studies of the glass transition it is clear 
that the fact that we can even measure the diffusion constant 
at all in our simulations suggests that we are at least afactor 
of 2 above Tg , so that corrections to D can be neglected. In 
addition, as seen in Sec. IV, the variation of ~ with N is in the 
typical experimental range after the experiments have been 
corrected for variations in Tg • Thus we are confident that 
there is no correction needed. 

Figure 22 shows the comparison ofpolystryene (PS) of 
the diffusion data72 and polyethylene76 (PE) compared to 
our model chains with Ne = 35 as determined from the 
mean-square displacement gl (t). For PS, Me = 18000 
while for PE, Me = 1350 as determined from viscoelastic 
measurements. As the figure shows, the estimate of Ne = 35 
gives an almost perfect match to the PE data which is deter
mined by NMR. The PS data, obtained by forced Raleigh 
scattering, would suggest a somewhat larger value for Ne , 

about 50. However, it is not clear whether this difference is a 
deviation from universality in this early crossover region, 
which would be surprising, or whether one or both sets of 
data are not accurate enough. The PS data seem to show a 
somewhat larger scatter. Certainly our simple model is more 
like PE than PS. Thus for the subsequent discussion, we use 
Ne = 35, keeping in mind that PS suggests Ne ::::: 50. Using 
the molecular weights of the different monomers we find 
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FIG. 22. Diffusion data for several polymeric liquids compared to the simu
lation results. 
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that in our model, one monomer corresponds to about 3 
monomers for PE. For other polymers, the mapping is given 
in Table III, based on Ne = 35. Typically, a model monomer 
corresponds to several chemical beads. Polytetrahydrofur
ane (PTHF)( C4HgO) N is an exception however. The indi
vidual bead is already a small flexible subchain with a very 
flexible C-O-C bond. Thus we cannot think of a bead as a 
rigid basic building block and we need almost two of our 
monomers in order to mimic one PTHF bead. In compari
son to PE, this is actually not surprising. 

Following this mapping procedure, we find our first im
portant prediction. As seen from the mean-square displace
ments, the average distance the beads move before slowing 
down can be observed to be significantly smaller than the 
tube diameter itself, namely 31

/
2

;:::: 1.73. This extends the 
range in q that one would expect to see for the slowing down 
by inelastic neutron scattering from 21TldT to 21T11.73dT • 

Thus the maximal q value we would expect to see for the 
slowing down ranges from 21T 121 A.;:::: O. 3 A. - 1 for PTHF to 
only 0.056 A. -I for PS. 

Nevertheless, these variations in the maximal usable q 
vector do not explain why some neutron spin-echo experi
ments seem to find a distinct slowing down of the motion in 
S(q,t),35 while others do not. 12 The reason for this can only 
be found in the difference in mobility of the chains for differ
ent systems. Therefore, we also need to map the time scale 
from our simulation onto experimental time scales so that we 
can then identify the crossover time Te at which one would 
expect to see slowing down and the onset of the t 1/4 regime. 

For systems, where diffusion constant data are avail-

able, this mapping of the time scales is a simple exercise. 
Whenever the diffusion constant data are not available, we 
have to compare the bead friction for long chains. Since the 
mapping of the length scales is determined independently of 
the time scale, one can simply equate the Rouse diffusion 
constant D Rouse with that determined in our MD simulation 
for the equivalent number of monomers. Using the length 
scale conversions presented in Table III, we have for PE, 

DRouse (N = 1) = DRouse (M = 38.6). (6.1 ) 

Using Eq. (4.5) and the data from Ref. 76, this gives a2 I 
15T= 10.3 X 10- 5/38.6 cm2/s. Since 0'= 5 A. for PE, we 
find T = 6.6 X 10- 11 s. For other systems in which D is 
known, the same procedure is followed. This method was 
used to estimate Te for PE and PS. For PTHF (polytetrahy
drofurane) and PDMS (polydimethylsiloxane), PEP (po
lyethane-polypropylane), and PI (polyisoprene), the bead 
friction was taken from viscoelastic data for long chains76

•
77 

(plateau modulus). Since the bead friction for long, entan
gled chains increases compared to short, nonentangled 
chains, we compare these data to our long-chain bead fric
tion (;1' = 25T- 1

) obtained in Sec. IV. The times obtained 
by this mapping are presented in Table III. The typical time 
for the onset of the t 1/4 regime, the time where the extrapo
lated t 1/2 and t 1/4 regimes meet, range from Te ;::::5.5 X 10-5 s 
for PS down to 3.2 X 10-9 s for PTHF. Obviously, both for 
the simulations as well as experiments, one should not expect 
a sharp crossover at Te' rather it is meant to indicate the 
midrange of the crossover from the short-time Rouse regime 
towards the reptation regime. 

TABLE III. Mapping of the bead-spring polymer model described in this paper onto experimental polymers. Assuming N, = 35 and using d ~ = R 2 (N, ); 
the mapping procedure is described in the text. Taking N, = 35 ± 5 effects the value predicted for g, ('T,) and'T, by approximately 15% and 30%, respective-
ly. The uncertainty in the mapping for PS causes a doubling of the effective uncertainty. 

Equivalent 
Monomer No. Equivalent 

System T mass M, of beads mol. mass lip 10'= d T [g, ('T, » '/2 1'T= 'To 

MD 1 Elks 35 1.30' 7.70' 4.50' 18oo'T 
system 

PS· 485 K 104 18000 4.95 515 7.4 A. 12.6 A. 97 A. 56 A. 3.1 X 10-8 s S.5X 10-5 s 
PEb 448K 14 1350 2.76 38.6 4A. 5.1 A. 39 A. 23 A. 6.6X 10- 11 s 1.2X 10-7 s 
PDMSc 300K 74 9000 3.47 257 6.2 A. 8.7 A. 68 A. 39 A. 2.3XIO- lO s 4.1 X 10-7 s 
PTHP 418 K 72 1440 0.57 41 8A. 4.6 A. 35 A. 21 A. 1.8x 10-'2 s 3.2X 1O-9 s 
PEP' 500K 70 2950 1.20 84 7.74 A. 6.5 A. 50 A. 29 A. 0.55 X 10- 11 s 1.0x 10-8 s 
PI' 307K 68 4100 1.73 117 6.6 A. 6.7 A. 51 A. 30 A. 1.0 X 10- 11 s 1.8x 10-7 s 

• For PS lip are taken from Ferry (Ref. 3) for PS in the 0 solvent. For the mapping the bead friction due to diffusion constant of Antonietti et al. (Ref. 72) was 
used with a consistency check with So from viscoelasticity gave only - 10% deviation! Note that N, = 50 would change the time mapping, giving 'T, 
:::::2.6 X 10-5 s. 

bpersistence length as given by Flory (Ref. 55). M, and the diffusion constant taken from Pearson et al. (Ref. 75). 
C Persistence length and bead friction due to Ferry (Ref. 3). Note that the viscoelastic bead friction is obtained from entangled polymers. Thus for the Rouse 
diffusion equation used for comparison, we use the long-chain bead friction (Sec. IV). The data are for T= 273 K. For T= 373 K, 'T, changes to 1.0 X 10-7 

s, because of the strong temperature variation of the bead friction. 
d Persistence length M, and bead friction due to Pearson (Ref. 76). Here also the long-chain bead friction has to be taken. 
's, lip, and M, from Fetters (Ref. 77). For s(PI) , Nc was taken to be 2.SN,. 2Ne would reduct 'Te by about 30%. 
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These results shed some light on the long-standing dis
cussion about whether neutron spin-echo scattering can be 
used to see the predicted plateaus in S(q,t) or not. The dis
cussion was whether the q range and time range accessible 
were sufficient to cover the relevant regime. The typical q 
range for spin echo is approximately 0.03 < q < 0.13 A -I, 
while the longest times for which one could follow the mo
tion was :S 10-8 s. The two most important experiments 
were by Richter et a/. 12•36 on PDMS and by Higgins and 
Roots35 on PTHF. At 373 K, the PDMS experiments of 
Richter et a/. 12 studied chains of up to M w = 60000, which 
is approximately 6-7 entanglement lengths, comparable to 
our model chains of length N = 200. They scattered off the 
entire chain, not just the inner monomers. Therefore, it is 
clear from our results in Sec. III, particularly Figs. 11 and 12 
and the discussion of this section, that it would be extremely 
difficult to observe any slowing down of the motion in those 
experiments at all. The ends are just too dominant for chains 
having N of only 6-7 Ne. Unfortunately, Me for PDMS is 
only known for room temperature. Their interpretation was 
also questioned rather early with respect to the q range em
ployed,78 though we see from our results that the q range was 
adequate to observe deviations from Rouse, if d T is tempera
ture independent. More importantly, even ifthe chains had 
been longer or had they been labeled triblock chains, we 
estimate the crossover time 1'e ;::;;4.1 X 10-7 s (T = 273 K) 
and;::;; 1.0X 10-7 s (T= 373 K), respectively. Even allow
ing for some uncertainty in the mapping as well as in the 
experimental data, our results suggest that there was no 
chance to see slowing down using the older spin-echo instru
ment which had a limit of 10-8 s. Thus those early spin-echo 
experiments cannot be taken as evidence against reptation. 
We should note that more recent experiments using a newer 
spin-echo instrument with a maximum time limit of 
4 X 10-8 s observe a deviation from Rouse towards a re
duced mobility at a much higher temperature T= 473 K. 
However, these data cannot be explained by any ofthe cur
rent theories suggesting that there may be some problems 
with the T dependence of Me for PDMS at these elevated 
temperatures. Additional experiments on PDMS are needed 
to clarify the situation. This also shows that there is a general 
need for an investigation of the temperature dependency of 
Me. For more recent data see Note added. 

For PTHF the situation is much different. Since PTHF 
is more flexible than PDMS, the distance scale at which the 
crossover to the t 1/4 regime should begin is smaller than for 
PDMS. This means that the available q range increases to a 
maximal value of approximately 21T/g l (1'e )1/2;::;;0.3 A -I. 
The experiments35 were only carried out at 0.08-0.13 A - I, 

but should give reasonable data since they are well below this 
maximal q value. Unlike the PDMS samples, the PHTF 
samples had a much higher polydispersity. However, the 
chains typically contained between 20 and 40 entanglement 
lengths. This polydispersity certainly must have important 
consequences in estimating the long-time properties of the 
system like the terminal relaxation time, although for short
time properties around 1'. it should not playa significant 
role. Since the PTHF chains were significantly longer than 
the PDMS chains, when normalized by Me' end effects are 

not expected to be as significant. However, the crucial point 
is the time window. Is the motion of a single chain fast 
enough so that the onset of the slowing down occurs for 
t< 10-8 s? Using a bead friction of 2.14X 10-9 dynes/cm 
per monomer for PTHF at T = 418 K,77 we find that 
1'. ;::;; 3.2 X 10-9 s, which is easily accessible by spin-echo ex
periments. Figure 23 is a reproduction of one of the experi
mental results of Higgins and Roots,36 with our estimate of 
1'. indicated. Here we have converted the x axis which was 
originally presented in amperes (since time in a spin-echo 
experiment is proportional to the applied Larmor precession 
field H) to seconds using the conversion presented in their 
paper. We see that our estimate of 1'. is right at the beginning 
of where S(q,t) begins to flatten out. Thus these data clearly 
give direct evidence of a slowing down of the motion of the 
polymer chain. However, since only four very closely spaced 
q vectors were used and S(q,t)/S( Q,O) only decayed to 
about 0.8, the data cannot be used to distinguish which theo
retical model is most applicable and to observe the expected 
splitting with respect to q. This also provides us with an 
important argument for what chain length to extrapolate the 
viscosity to in order to obtain 5w For PTHF Pearson76 ex
trapolated Nc = 2Ne in agreement to our mode analysis. 
There reptation and Rouse model coincide yielding a unique 
5w Since 51" is very sensitive to No the times given for PI 
might be too high by about 30%-40% since there 
Nc = 2.SNe was taken.77 From this we think Nc = 2Ne 
should be the consistent choice. 

The experiments on short chains of PTHF provide us 
with one additional important check on our simulations. 
Higgins and Roots 79 found that the bead friction extracted 
from S( q,t) following the Rouse model is about twice as high 
as the viscoelastic data suggest. We found a similar effect in 
our simulations as discussed in Sec. V. This again confirms 
that the sample sizes and chain lengths considered in this 
study are sufficient. 

The present mapping procedure is unique, since via the 
entanglement length of the various systems it is a consistent-

o 2 4 6 6 10 12 

Time (10-" eec) 

FIG. 23. Semilog plot of the coherent structure factor S( q,t) / S( q,O) vs t for 
PTHF from Higgins and Roots (Ref. 35). For the entangled chains Te as 
found in our simulations is indicated. 
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ly determined quantity. Therefore, the present procedure 
can also be used to directly compare different experimental 
systems. For other simulations or the present model at dif
ferent densities and/or temperatures the mapping should 
work equally well, considering that Ne differs for various 
temperatures, densities, or models. 

B. Other simulations 

There have been a number of other simulations which 
deal with the question of dynamics of polymer melts. These 
can essentially be subdivided into three groups. First, there 
are the investigations which deal with completely mobile 
systems in the Rouse regime. 12-16.30 These provided a large 
amount of useful information for short chains with N < Ne . 
Since these studies are confined to the Rouse regime, they 
are not relevant here. The second group consists of a large 
number of studies using different approaches to test special 
aspects of the reptation model. These include the chain in a 
frozen environment,12,13 chain in straight tube,42 or a chain 
containing only primitive chain monomers.32,33,43,80 Again, 
since we are concerned with the validity of the reptation 
concept itself, this type of simulation will not be discussed 
here. The third group of simulations, namely those which 
are completely mobile and have chains long enough to reach 
into the entangled regime, contains up to now only three 
investigations. The work of Baumgartner31 on Monte Carlo 
simulations of pearl necklace chains, the lattice Monte Carlo 
simulations of Skolnick, Yaris, and Kolinski,26 and the pres
ent MD investigation, Baumgartner31 simulated with a kink
jump algorithm a hard-sphere system at a density of p = 0.7 
(bond length 1= 1) and hard-sphere diameter h = 0,91. 
Unfortunately, only the diffusion constant and gl (I) for the 
inner monomers were given, Therefore, a detailed compari
son ofMC and MD, which would be very interesting, is not 
possible. However, considering Baumgartner's data for 
D(N), we think that there is almost a one-to-one correspon
dence in the number of monomers per chain in his system 
and ours, This is reasonable, since the hard-sphere density is 
only slightly lower than our density provided we measure 
our particle diameter as that where the interaction energy 
equals kB T. Since his data also supports a t 1/4 power law in 
g 1 ( t), we believe that the two approaches agree, 

The second investigation is of a lattice polymer, which is 
more difficult to compare, Skolnick, Yaris, and KolinskF6 
simulated chains up to N = 800 on a simple cubic (sc) lat
tice at density p = 0.5. Considering the coordination num
ber off = 6 on the sc lattice, the effective density is close to 
that on the diamond lattice for p = 0.344 if = 4) studied by 
one of us, 15 There chains of N = 200 did not show any sign of 
reptation. For N = 800, however, the authors,34 when they 
confine themselves to the inner monomers, see an intermedi
ate power-law regime ing l (I) of the form to.27

• The question 
is how many entanglement lengths do the chains really con
tain. Skolnick and Kolinski argue that from the diffusion 
constant they get an Ne of about 110-130 using the standard 
equations. However, this is rather ambiguous since they do 
not simulate a dense melt. For their lattice density p = 0.5 on 
the sc lattice, they find a static screening length correspond
ing to a subchain of N = 12 monomers. So they essentially 

simulate a semidilute to dense solution. Clearly the entangle
ment length has to be much larger than the screening length. 
For chains on the diamond lattice at p = 0.344 the static 
screening length is equal to about 15 monomers. For such a 
chain in a completely "frozen" environment Ne was estimat
ed to be greater than 40. For the completely mobile system 
Ne of course must be much higher. In order to estimate Ne 
they use the diffusion constant D(N). Following their publi
cations 16,26 one sees that DN continuously decreases starting 
from N::::: 20. As discussed above, experiments as well as the 
simulations of Baumgartner and us show that DN starts to 
decrease around Ne . The reason their results deviate for 
smaller N is related to the fact that they are not at melt 
densities. Their chain mobility26 is influenced by two effects. 
The first is that with increasing chain length they have a 
crossover from single-chain Rouse-like towards the many
chain Rouse dynamics of a dense solution. This limit is 
reached when the chains exceed several (5-10) screening 
lengths. This crossover in the present MD simulations is 
shifted to zero chain length. Then, with further increasing 
chain length, there is a second crossover from a dense solu
tion Rouse chain to the entangled regime for the lattice poly
mers. Indeed a check of their diffusion data 16,26 display a 
wiggle in DN vs N indicating these two effects. Thus it is 
impossible to estimate Ne from these data using one of the 
standard reptation models. However, considering this sec
ond transition region we estimate that Ne seems to be located 
somewhere in the range of 110-120. We think the coinci
dence with the previous estimates is rather accidental. This 
would indicate that at p = 0.50 on the sc lattice, chains of 
length N = 800 are only marginally longer, in units of Ne 
than our chains oflength N = 200. Thus it seems rather per
plexing to understand why they state that their results can
not be interpreted by reptation, while our previous analysis 
seems to show the opposite. However, most of their conclu
sions are based on their attempt to see the confinement in the 
tube directly. Thus to check this and to show whether our 
chains can be seen as reptating objects or not we have to 
study the motion of the primitive chain, which is done in the 
next section. 

VII. MOTION OF THE PRIMITIVE CHAIN: 
VISUALIZATION OF REPTATION 

In the preceding section, we showed that the chain 
lengths considered here really do cover the crossover from 
pure Rouse chains for N < Ne = 35 to entangled chains with 
up to about 6Ne (N = 200). As the results show, the dynam
ics can reasonably well be explained by the reptation picture. 
The mode anaysis even shows that the reptation concept 
seems to be more appropriate than the generalized Rouse 
models. Our chains also compare rather well to experimen
tal systems. However, one intriguing question has not yet 
been discussed. That question is whether we can actually 
show the confinement on the length scale of d T' Skolnick, 
Yaris, and Kolinski26 clain that even for their N = 800 sys
tem which is roughly equivalent to our N = 200 chains, they 
could not identify any confined motion. In order to under
stand this, we first have to clarify under what circumstances 
the reptation model even predicts such a confinement. As 
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the test case consider the N = 200 system. In this case 
(R2):::::320 giving (R 2)1/2:::::18. With N. = 35 and 
d} = (R 2(Ne ». we get d T :::::8. Thus even for N IN. :::::6. 
the tube diameter is still more than about 1/3 of the total 
chain extension. In order to identify a motion along the con
tour one has to at least go to times larger than 1' •• Up to this 
time the monomers do not feel the constraint of the tube at 
all and move freely as predicted by the Rouse model up to a 
distance of order d T' This means that for the direct visualiza
tion of reptation we have to disregard at least the first and 
last N. monomers for each chain. Returning to our example 
of N = 200. this means that effectively only a chain of 4N. is 
available for this analysis. If we now consider that R is only 
about three times larger than d T it is obvious that chains of 
length N::::: 6Ne cannot be used to directly visualize repta
tion. To do this one needs much larger chains which are 
beyond the present computational capabilities. Fig. 24 
shows a sketch of what we have just discussed and indicates 
the problem for chains of order 6Ne • 

A way out of this difficulty can be found if one considers 
the original reptation ideas. There the motion of the primi
tive chain was considered and not the motion of the individ
ual monomers. The primitive chain is a coarse-grained chain 
with Ne monomers per coarse-grained bead. This coarse 
graining was considered to be done in a way that the topolog
ical entanglements of the chain are preserved. Here we fol
Iowa slightly different approach. since the above procedure 
would map our N = 200 chain into six coarse-grained mon
omers. Even our longest chains of length N = 400 would be 
mapped to a system of 12 beads. hardly long enough to do 
any interesting analysis. Thus we construct a primitive chain 
(PC) in a slightly different manner by continuously coarse 
graining along the chain. In this procedure we subdivide the 
chains into Np = (N + 1 - Ne )/2 subunits. The position of 
the new monomers is given by 

1 N,. 

R I =- Ir;> 
Ne i=1 

1 N,.+2 

R2 =-N .I r i ... •• 
e 1= 3 

(7.1 ) 

FIG. 24. Schematic sketch of the motion of a chain along its own contour. 
Note that the picture shows a rather stretched chain. The parameters of the 
sketch are set for N = 200. N, = 35. The full and broken tubes are possible 
configurations about T, apart in time. 

Note that a PC defined by Eq. (7.1) may not necessarily 
conserve the topology of entanglements. However. it is not 
clear whether the topological entanglements are relevant or 
what the nature of an entanglement really is. For the analysis 
of the motion of the PC. this does not matter since the origi
nal chain conserves entanglements. The idea now is that the 
PC is much more confined in its motion since it essentially 
has to follow the center of the tube. Thus for the inner part of 
the PC. we should be able to observe the reptation motion. 
Before we begin our analysis of the PC. we need to discuss 
briefly the time scales we expect to see the motion along the 
contour. 

The reptation-like motion along the tube is supposed to 
take over at l' e and to persist up to 1'd' because for t = l' N the 
chain only diffused a distance of order (N I Ne ) 1/2 along the 
tube. Thus the second t 1/2 regime should also show up in 
principle. However, we again run into difficulty because of 
our chain lengths. If NdTINe is the curvilinear length of the 
tube then the end-to-end distance of the PC is of order 
dT(N INe ) 1/2:::::2.4dT for N = 200. One expects the tube to 
be renewed from the ends. Thus for N = 200. disregarding 
any constraint release or tube defects. after the Rouse time 
the tube from both ends is reduced by an amount of order 
2.4dT if we assume random walk statistics for the diffusional 
motion along the contour. Consequently. after 1'N only a 
small part of the tube remains even for N = 200. and it is 
therefore not possible to obtain this second regime with any 
reasonable accuracy. For finding the second t 1/2 regime with 
good accuracy NINe should be of the order of 100. 

Before we investigate the dynamic properties of the PC. 
consider first its static properties. Since the PC is construct
ed along the chain the contour length L p should be propor
tional to N p while the contour length fluctuations should be 
proportional to L ~/2. This assumes that the PC is composed 
of random walk subchains. Table IV gives our results for the 
static properties of the PC. while in Fig. 25. we plot Lp and 
AL ~ vs N p where 

(7.2) 

AL ~ = (L~) - (Lp)2 a: N p. 

As the data in Fig. 25 show. the chains satisfy Eq. (7.2) as 
expected. Note that Lp has been plotted vs N p and not N. 
As the table and figure indicate. the fluctuation contour 

TABLE IV. Static properties of primitive chain for N. = 35. 

System N 

100/200 
20/200 
20/150 
20/100 
20/75 
16/50 

200 
200 
150 
100 
75 
50 

Np 

83 
83 
58 
33 
20 
8 

(Lp) 

33.6 
32.7 
23.5 
13.0 
7.6 
2.8 

(L;) 

1152 
1082 
567 
177 
62.2 

8.9 
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• 

FIG. 25. (a) Mean and standard deviation of the contour length vs Np for 
six chain lengths with 50<N<200. 

length is very small. This means that on the scale of an entan
glement length the blobs containing Ne monomers repel 
each other rather strongly. This is important for the under
standing of Rubinstein's repton model. 2 

I There in its initial 
form the reptons only weakly repel each other if at all. It has 
yet to be seen whether this interaction increases or decreases 
the range of the 3.4 power in the chain relaxation of this 
model. We, however, think that it does not destroy it, since 
Deutsch24 found in a system where the repulsion was infinite 
and there was no overlap of blobs, that the 3.4 power persist
ed. 

Now that we see that the properties of the PC length and 
its fluctuations follow the expected form, we can use our 
primitive chains for further investigations. Our aim is to find 
the motion along the contour, if it exists for the relatively 
short chains we have. To do this we first have to estimate the 
tube diameter d T for the PC. Figure 26 shows gl (t) for the 
inner monomers for the N = 150 chain and for two different 
primitive chains constructed with Ne = 18 and 35. It should 
be clear that due to the strong mutual repUlsion of the primi
tive path monomers the power laws for the PC are not as 
clear as for the full chain. The PC constructed with Ne = 18 
is included mostly for illustration while Ne = 35 is the value 

2~------r-------r-------.-------, 

~ -S 
C> 

Iii 
.9 a 1 

0 18 

• 35 

0 
1 2 3 4 5 

Log,o(tl T ) 

FIG. 26. Mean-square displacement q, (t) vs t /T averaged over the inner 
five monomers of the primitive chain constructed with N" = 35 and 18, as 
well as the original chain (N" = I). 

expected from our previous analysis. For the original chain 
we know that the motion along the contour should set in at 
'T e' We make the assumption that the same occurs for the PC. 
Again, following the reasoning described in Sec. III, g I ( T e ) 

defines the tube diameter, gl ('Te) = d }/3. Using this result, 
we find from Fig. 26 that g I (Te ) Z 9 for the PC yielding 
d T Z 5. As expected, this value is smaller than the value ob
tained for the entire chain, d T z7. The first quantity we 
checked is the probability for chain elements to remain in the 
tube, P tube (t). The probability P tube (t) is measured as fol
lows. Let R~(t) be the time-averaged position of coarsed
grained monomer i at time t, 

8t r/2 
R~(t) = - I R; (x + t), (7.3) 

Te X= - r/2 

where 8t is the time increment of the observation or in this 
case the frequency at which the configurations of the entire 
system were written to magnetic tape for later analysis. In 
our case 8t = 60'T. We can then define the probability P tu. 

be (t) of a given monomer at time t as the probability that it is 
less than d T /2 away from the position Rj(t = 0) of the 
chain. Thus 

Ptube(t) =P({minIR;(t) -Rj(t=0)}<;dT /2), (7.4) 
j 

where P(x <y) is thefraction of occurrences with x <yo This 
function is not unambigous, since the correct part of the 
center line of the tube is not necessarily clearly defined by the 
averaging. The PC may also have folds in which parts of the 
PC are close together spatially but far apart chemically. This 
could lead to an incorrect estimate of P tube (t). To reduce this 
effect, we excluded allj from Eq. (7.4) which are along the 
contour further apart than 2g1 (t) of the PC. Nevertheless, 
P tUbe (t) only give a first impression. Figure 27 shows the 
result for different chain lengths and positions along the 
chain. Here we take d T = 6.25 (only for this special quanti
ty) in order to account for the uncertainty in definition of the 
middle of the tube. Figure 27(a) shows our results for the 
inner monomers of the PC for N = 75-200. All the curves 
show a common decay up to a time of the order of 'Te' Then 
the decay for the longer chains, especially N = 150 and 200, 
becomes much slower. For N = 150, where we have the best 
statistics, the probability to stay in the original tube is about 
1/2 up to almost 3 X 104

'T, which is nearly the Rouse time for 
this system (N = 150). From the discussion above, we 
would not expect this behavior to continue for much longer 
times. The N = 75 chains clearly leave the tube very rapidly. 
This explains why one needs at least 2N. to see any effect, 
since for N<;75 the fluctuations of the ends dominate all oth
er motion. Figure 27 (b) shows in more detail what happens 
for chains which contain more than 2N. monomers. The 
inner monomers are more strongly confined to the tube than 
the others. The outer ones try to disappear from the tube but 
are of course partly caught by the connectivity to the center 
beads. This is very similar to the results for gl (t) for various 
positions along the chain (Figs. 11 and 12). 

A more stringent and direct test of the reptation concept 
is if one tries to identify the motion along the contour. Here 
we partially follow the analysis of Skolnick, Yaris, and Ko
linskj26 but confine ourselves to the PC and investigate the 
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(a) 
o~ ______ ~~ ______ ~~~ ____ ~. 
o 30,000 

tIT 

(b) 
°0~--------1~0~,0~0~0------~2~0~,0~00~----~30~,000 

tlr 

FIG. 27. Probability of staying in the tube P lube (t) vs t IT for a primitive 
chain constructed with N, = 35. The tube diameter was chosen to be 
d T = 6.25. In (a) we show results for the middle monomer of the primitive 
chain for four values of N, while in (b) we present results for 
Np = 58 (N = 150) for the end monomer, the 10th one from the end and 
center monomer. 

contour motion itself. To do this one has to subdivide g(t) 
into motion along the contour, gil (t), and perpendicular to 
the contour gl (t). We can then define gil (i,t) andg1 (i,t) for 
each monomer i as 

(7.5a) 

Via gl (i,t) we identify the monomer} which minimizes 
gl (i,f) for a given monomer i. gil then is the squared contour 
length between monomer i and} at time t = O. Disregarding 
contour length fluctuations, this gives 

gil (i,t) = [Ii - }I (Lp) / Np ] 2, (7.5b) 

where (Lp) / N is the average bond of the PC. 
For gil (i,t) we explicitly construct the motion along the 

primitive path, while gl (i,t) measures the minimal distance 
for monomer i from anywhere along the primitive path. For 
the infinite reptating chain, gl (t) should be a constant while 
gil (t) should follow the Rouse diffusion along the contour 
and thus follow a t 1/2 law up to TR (for the inner mon
omers). However, Fig. 26 shows that gl(t) for PC for 
N = 150 does not reach the f 1/4 power but only reaches an 
effective exponent of 0.35. Thus for t < TN' we cannot expect 
a power law for gil (i,t) with a slope lower than 0.7, if the 

chains reptate. If they do not reptate, then gil (i,t) should 
tend towards a constant or to the same slope as gl (t) itself. 
Figure 28 shows gil (i,t) for the inner monomers of chain 
length N = 50 (Np = 8) up to N = 200 (Np = 83). For 
short chains (N = 50) the motion is isotropic almost imme
diately. For N = 75, for t> Te there is no sign of motion 
along the tube. However, for the longer chains, the situation 
is different. The behavior expected from reptation remains 
up to the longest times we can average out to, indicating a 
clear preference for contour motion. This picture is support
ed by plots of gl (t)/gll (t) [Fig. 29(a)] for the same inner 
monomers. For N<.75, gl (t)/gll (t) begins to increase from 
the earliest times shown, indicative of isotropic motion. For 
increasing chain length this ratio begins to decrease signifi
cantly with time. For N = 150, it seems to reach a very shal
low minimum at aboutt::::: 104

T, while for N = 200 within the 
time we can analyze the minimal value does not appear to 
have been reached. Taking the value d T = 50' for the tube 
diameter of the PC, we cannot expect much smaller values 
for gl (t)/gll (t). Figure 29(b) shows a similar analysis for 
different beads of the same chain. Again the end monomers 
need some time to feel the connectivity to a chain which 
moves much more slowly than the ends would like. Alto
gether we believe that these data nicely support the qualita
tive reptation picture; they do this in a way which is surpris
ingly clear considering the effective chain lengths we are able 
to study. 

Finally, from the above arguments and results, it should 
also be possible to directly visualize the motion along the 
tube. To do this we simply plot projections of the configura
tions of a single PC onto to each other, where the configura
tions are 600T apart up to a maximum of either 1.2 X 104 or 
2.4 X 104

T. Since the tube diameter dT ::::: 50' for the PC con
structed with Ne = 35, we would expect that if the chains 
would strictly stay in the tube, all the plotted configurations 
would fit into a tube of that diameter. This would then be the 
width of the region explored by the chains. If, however, the 
chains move isotropically, the width of the region covered by 
the configurations would be larger, given by [3g1 (tmax)] 1/2 

for the Pc. For tmax = 1.2 X 104T this gives 10. Thus there is 
a factor of 2 difference in the expected widths for the times 

10 

911(t)/0 2 

1,000 
tIT 

10,000 50,000 

FIG. 28. Contour motion gil (t) vs t Irfor the inner monomer of the primi
tive chain constructed with N, = 35 for 50<N<200. 
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FIG. 29. gj (t)/gll (t) vs tIT for the primitive chain constructed using 
N,. = 35 for (a) the inner monomer of the primitive chain for 50..;N..;200, 
(b) Np = 83 (N = 200) for the end monomer, the 10th, 20th, and 30th 
monomer from the end as well as the center monomer ofthe primitive chain. 
The N = 200 data are for the M = 20 sample. 

considered. This should be sufficient for detecting the differ
ence. For clarity the first 10 configurations are given as solid 
lines while the second 10 are dashed. Figure 30 shows the 
result for N = 75. The bars in the figure give the tube diame
ter (solid line) and the width of the motion for the isotropic 
case (dashed line). Both projections of the same chain show 
that there is no confinement to a tube as expected. This single 
sample is not sufficient to prove that the motion is isotropic 
but is sufficient to exclude the opposite, since the other 
chains show the same behavior. Figure 31 shows a similar 
plot for one of the N = 200 chains in all three projections. 
One clearly sees that the middle part of the chain is confined 
to the tube. For the entire time, both the first ten as well as 
the last ten configurations explore the tube but not more. 
One also clearly sees that the tube is slowly destroyed and/or 
renewed by the motion of the chain ends. This can be seen as 
the classical tube renewal process. 2 For the time covered 
here the tube length remaining is reduced by a factor of 
2-3dT in agreement with our previous discussion. While Fig. 
31 (a) gave the three projections of the same chain, Fig. 
31 (b) shows examples for three different chains. Again, we 
find the expected behavior for two of the chains. However, 
we also see that one chain certainly deviates from reptation. 

8r-----~--------r_------~,_------~ 

o 

N = 75 

1---------1 
r--------l 

-~~8-------~O--------~8~--------70-------~8 

FIG. 30. Two projections of the configuration of one of the primitive chains 
for N = 75. The projections were plotted every 6007. The first ten were plot
ted as solid lines and the second ten as dashed lines. The center of mass of the 
first configuration was placed at the center of the box. The horizontal 
dashed bar is the amount the chain moves during the elapsed time of 
120007 as determined by gl (t) assuming isotropic motion, while the solid 
line is the tube diameter determined from the onset of the t 1/4 regime in 
gl (t) (Fig. 9) forlarge N. 

In that case, there is obviously some tube leakage or con
straint release. Since we only found one such chain it is im
possible to estimate the statistical significance of this in more 
detail. 

In order to be able to prove that these effects are real and 
independent of chain length, we also simulated a system of 
N = 400. Figure 32 shows three projections for the same 
chain. The result is as expected. Again the middle part of the 
chain is strictly confined to the region of the proposed tube 
diameter. The size of the region of enhanced mobility is con
strained to the same amount of outer beads as for N = 200. A 
very interesting aspect is given by the middle example in Fig. 
31 (a). There either the tube had in the beginning some leak
age or a constraint changed during the course of the run. It 
looks as though part of the chain was pulled (back) into the 
tube by the rest of the chain. For illustration, Fig. 33 shows a 
three-dimensional plot for two N = 400 chains for 24 0001'. 

Although the original chains are too short to be used to 
visualize the tube directly, we can do this by examining the 
PC. Besides an occasional observation of tube leakage and/ 
or constraint release, which is included in more recent modi
fications of the reptation theory, the motion of the PC is very 
much like what one expects from the original reptation pic
ture. It is clear that the analysis of this section cannot be 
taken as evidence for or against any specific model; for this 
we have to return to the discussion in Sec. III. However, 
what the analysis in this section shows is that the original 
reptation idea of the motion on a coarsed-grained scale is 
clearly evident for the present chains lengths and that they 
give a very good qualitative impression of the motion of the 
chain. 

VIII. SUMMARY AND CONCLUSIONS 

In the present paper, we have presented a rather exten
sive study of the dynamics of a polymeric liquid far above the 
glass transition temperature. The paper contains three main 
results: 

(i) At the level of a single chain, reptation provides a 
very good description of the dynamics of long, entangled 

J. Chem. Phys., Vol. 92, No.8, 15 April 1990 



5082 K. Kremer and G. S. Grest: Entangled linear polymer melts 

12r----------.-----------.-----------r----------.-----------7'-~------~ 

o 

N = 200 
y-z plane 

.... -------1 

1-------1 

N = 200 
x-z plane 

N = 200 
x-yplane 

-12~--------~~--------~1~2.---------~----------~~--------~~--------~ -12 0 0 12 0 12 

12r-----------.-----------.-----------,-----------.------------.-----------, 

o 

N = 200 

1--------1 
t-----i 

y-z plane N = 200 y-z plane N = 200 y-z plane 

-12~----------~----------~----------~~----------~12~----------~----------~ -12 0 12 0 0 12 

FIG. 31. Same as Fig. 30 for N = 200. (a) Three projections of the same primitive chain and (b) the projeciton onto the y-z plane for three other chains. In 
all cases the center of mass of the first projection was shifted so that it was at the center of the box. Note the development ofa well-defined tube in comparison 
to Fig. 31. Total elapsed time is 12 OOOr, which is still in the t 1/4 regime for N = 200. 

18~------~-,-----------.-----------.-----------r-----------.----------1 
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1-------1 
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N = 400 

-18~----------~--~------~------------~-----------L----------~~----------~ 
-18 0 18 0 18 0 18 

FIG. 32. Same as Fig. 30 for N = 400. Here we show three projections of the same primitive chain. As in Fig. 30, the first 10 projections are plotted as solid 
lines, while the second 10 are dashed. Total elapsed time 12 OOOr. 

J. Chem. Phys., Vol. 92, No.8, 15 April 1990 



K. Kremer and G. S. Grest: Entangled linear polymer melts 5083 

o 
co .... , 

o 
co .... , 

l~ .() 

FIG. 33. Configurations of the primitive path of two different chains for N = 400. The contours are plotted every 600r and the total elapsed time is 24 OOOr. 
As in the previous plots the center of mass of the first configuration for each chain is shifted to the center of the box for purposes of illustration. 

chains, while the Rouse model provides an excellent descrip
tion for short chains. 

(ii) By mapping our polymers to experimental polymer
ic liquids, we find that Ne can be estimated uniquely, and we 
are able to resolve a long-standing controversy regarding the 
interpretation of neutron spin-echo experiments. 

(iii) By analyzing the motion of the primitive chain, we 
have shown that it is possible to directly visualize the con
finement of the motion of a chain within a tube even for the 
chain lengths considered here. 

By using a very simple model system, we have been able 
to study chain lengths which cover the crossover from Rouse 
behavior into the reptation regime. This is the first extensive 
study of this kind using molecular-dynamics methods. The 
first main result of this work is that as long as we consider the 
motion of a single chain, the data agree very well with the 
reptation model. This is surprising since we mainly cover the 
crossover regime where the chains contain only a few Ne • 

The mean-square displacementg l (t) clearly exhibits a slow
ing down of the motion, which can be taken as a t 1/4 power 
law. Here it is important to consider the different mobilities 
of the monomers, depending on where they are situated 
along the chain. This explains why other investigations did 
not observe the t 1/4 regime.26 Since there are several models 
in the literature which suggest a slowing down in the motion 
of a monomers, we performed a detailed analysis of the 
Rouse modes in order to aid in clarifying which works best. 
The reptation8-IO,17 model and the more microscopic ap
proach of Hess27 propose a mode spectrum which agrees 
with our results, while the generalized Rouse models,29 
which introduce a chain-length-dependent increased static 
friction, yield a different spectrum. From this analysis, we 
have to conclude that the reptation model and reptation-like 
models provide a better description of the motion. The inter
pretation of the scattering function S(q,t) is more difficult. 

Again, one faces problems related to the mobility of the 
chain ends. Also the onset of the creep term, which is strong
ly q dependent, causes problems. Thus here we were mainly 
confined to the incoherent scattering, which again showed 
clear evidence for slowing down of the motion. 

The second important aspect of this work is concerned 
with comparison of the simulation results to experiment. We 
showed, by mapping the entanglement length Ne to the en
tanglement mass Me' that the results of such a conceptually 
simple model can be used to make definite predictions for 
many different chemical species. We showed that while the 
time scales for the slowing down of the motion to set in were 
out of the range for the neutron spin-echo spectrometer 
available a few years ago (by a factor of to) for PDMS, the 
crossover time was within the range for PTHF. The actual 
value of 1'e for PTHF agrees very well with the measure
ments by Higgins and Roots.35 It is impossible to perform 
simulations for the time and distance scales considered here 
for models containing all or many chemical details. It also 
will not be possible for a few generations of future comput
ers. For this reason, simulations of coarse-grained models 
such as the one considered here and a mapping to experi
mental parameters is very important. One may even argue, 
based on the success of the present model, how useful a simu
lation on a detailed model would be for the problems under 
investigation here. We believe that a more useful strategy 
would be to obtain precise experimental and theoretical re
sults for short chains, and then extrapolate to longer chains 
using the results of a simulation for a very simplified model 
like the one considered here. The present work is only the 
first step in this direction, but we think a rather promising 
one. 

The third main result of the present paper is the analysis 
of the motion of the primitive chain. We showed that for 
chains which are several times longer than N e , the probabili-
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ty of staying in the tube decays very slowly for the inner 
monomers and the motion along the contour becomes signif
icant. However, the most direct check of this behavior is 
given by the direct visualization of the reptation motion. By 
simply plotting several configurations of a chain at a fixed 
time interval, it is possible to directly verify that the chains 
move in a tube. From this aspect of our work we also con
cluded that the original reptation concept works very well. 

Obviously there still remain many open questions which 
need to be addressed in future research. One of most impor
tance is the origin of the N 3

.4 power law for the viscosity. 
There have been a number of explanations which are based 
on a many-chain picture as well as some which remain with
in the classical reptation framework. Rubinstein, e.g., dis
cusses the motion of subunits of Ne monomers, called rep
tons. 21 In his approach reptons can easily sit on top of one 
another. However, this does not agree very well with our 
results for the mean-square displacements of the primitive 
chain, which we discussed in Sec. VII. There it appeared that 
the "reptons" strongly repel each other, more in agreement 
with Deutsch's earlier reptation simulation algorithm. 24 
However, this model had the unphysical aspect that a sub
unit of Ne monomers occupied the space (R 2(Ne ) )d12 ex
clusively. Thus more work is needed to clarify this point, 
though it probably cannot be done using an approach at the 
microscopic level of the present simulation. In a similar 
manner, the present approach cannot yield statistically sig
nificant information on tube leakage--constraint release, at 
least on the computers presently available. Here we can only 
say that such events can be observed as we did by directly 
looking at the motion of the primitive chains. 

One additional aspect which deserves closer attention is 
the very nature of the entanglement lengths. There are many 
concepts, ranging from purely topological arguments to 
purely packing ideas, which need further testing.37

-40 Also, 
the PDMS experiments indicate a strong temperature de
pendency of Me. This is not included in any of the current 
theories. This problem is one which can be solved with the 
help of the present simulation techniques and we plan to do 
more on this problem in the future. 

Besides the direct extensions of the present work to sys
tems oflonger chains or systems with polymers of more than 
one chain length, the methods developed here and the refer
ence systems investigated open the way to studying much 
more complex structures, such as networks and rubbers. 
Such investigations are currently under way and we will re
port the results in future publications.65 

Note added 

After completing this work we received two preprints by 
Schweizer on a mode-coupling theory of polymeric liquids. 85 
His approach yields partially results, which are similar to 
reptation. Instead ofa t 1/4 regime he finds t 9/32. This certain
ly fits our data as well. The crucial test of the theory lies in 
the mode relaxation 'Tp. There Schweizer's results differ sig
nificantly from reptation yielding effectively p-independent 
relaxation times for large N. However, since this form of the 
equation is only applicable for t~ 'TN' N~ Ne the simulations 
by now cannot cover this regime. Our analysis in Sec. IV, 

however, indicates good agreement with reptation theory. 
Very recently, experiments on PEP (Ref. 86) extended 

the early results significantly on PTHF (Ref. 35) and 
PDMS (Ref. 36) to the limit that a separation of plateau 
values for different q could be observed. This is the first mi
croscopic experiment, which can be used to identify a tube 
diameter d T" Richter et al.86 found a crossover to a plateau 
value in S (q ,t) for various q vectors. Their data are not capa
ble of distinguishing Ronca's asymptotic scattering function 
from the one of de Gennes's (see Sec. V). We included PEP 
in Table III, showing that for the new spin-echo instrument 
(resolution -4X 10-8 s) a well-defined slowing down of 
the motion had to be expected to be seen. Note that the old 
experiments, used for PTHF (Ref. 35) andPDMS (Ref. 12) 
had a resolution of only up to 1.2 X 10-8 s. 
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APPENDIX 

We simulated our systems at constant density in a cubic 
cell with periodic boundary conditions. Each chain consist
ed of N monomers connected by an anharmonic spring.4.14,52 
All the monomers interacted with a repulsive Lennard
Jones potential, 

Ul:
J

= {4E[(o/rij)12- (oirij)6+!], rij<.21/6a (Al) 

Ij 0, rij>2 1/6a, 

where rij is the distance between monomer i andj. For mon
omers which are neighbors along the sequence of the chain, 
we added an attractive potential (FENE potential4) 

uch = { - 0.5kR ~ In[ 1- (rij/Ro)2], rij<.Ro. (A2) 
I) 00, rij>Ro 

This general form for the potential between connected mon
omers has been used previously.4.14 However, for our pur
poses we had to use different parameters for k and Ro in 
order to avoid any bond crossing. For the present simula
tion, as in our previous simulations using this model,52-54 we 
used Ro = 1.5a and k = 30 E/~. This spring constant was 
strong enough so that the maximum extension of the bond 
was always less than 1.2afor kB T = 1.0E, which made bond 
crossing energetically infeasible. (The maximum extension 
of the bonds was monitored during the course of the simula
tion in order to be assured that no crossings occurred.) How
ever, k was also small enough so that we could use an inte
gration time step at, which is comparable to what one would 
use for a fluid of Lennard-Jones particles. Increasing k 
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would reduce the maximum extension further but would re
quire a reduction in At. We explored a number of values for k 
and Ro and found this set to be a convenient compromise, not 
so stiff that we had to use too small a time step, yet not so soft 
that bond cutting was possible. Most of our simulations the 
equations of motion were integrated using a fifth-order pre
dictor-corrector algorithm due to Gear,SI though we also 
made some runs using the third-order predictor-corrector. 
Both orders gave the same results, though the third order 
was approximately 10% faster. 

As mentioned in Sec. II, we coupled the monomers 
weakly to a heat bath both to keep Tnear its preset value but 
also to keep the temperature from drifting upward due to 
numerical roundoff errors which always begin to accumu
late whenever one makes runs longer than a few million time 
steps. We solved numerically the equation of motion, given 
by Eq. (2.1). The white-noise source and the bead friction r 
are related by 

(W;(t)'Wj(t'» =8/j(t-t')6kB Tr. (A3) 

The temperature T can then be set, and during the course of 
the run will fluctuate around the preset value. We are thus 
essentially simulating a canonical ensemble. The value of r 
we used was 0.57- t, where 7 = u(m/E) tl2. This value was 
convenient since it had to be small enough not to produce 
Rouse-like behavior on length and time scales of the order of 
a bond length, but large enough to stabilize the system at 
long time scales. We estimate that values in the range 
0.1 < r < 1.0 would work equally well. 52.53 If r is too large 
any numerical algorithm for integrating second-order differ
ential equations will break down since the random noise and 
viscous damping terms in Eq. (2.1) would then dominate 
over the inertia term. For very short times (a few At), an 
MD simulation has the advantage that monomers move coo
peratively and ballistically, which is more effective than in a 
MC simulation. However, because our system is dense, the 
long-time diffusion is dependent only on the interactions be
tween monomers and does not arise from the Langevin terms 
in the equation of motion. That is, the observed monomeric 
friction coefficient;-~ r (see Sec. III). The Langevin terms 
in the equation of motion do, however, give rise to an overall 
diffusion of the center of mass of the entire system. Using the 
Einstein relation, one expects that the diffusion constant of 
the entire system D tot will have the form 

(A4) 

where MN is the total number of monomers in the system. 
This gives D tot = 2/ MN in our case. Thus in order to find the 
individual chain diffusion we removed this diffusion froin all 
quantities, like gt (t), S(q,t), etc. For each system we also 
measured D tot directly and found that it agreed with Eq. 
(A4) to better than ± 5%. In all cases the fluctuations of 
the measured diffusion constants for the total system was at 
least an order of magnitude smaller than the diffusion con
stants of the individual chains. For N = 100 and 150, where 
the errors in D are larger than for smaller N, the relatively 
large uncertainty in D for the individual chains comes from 
the scatter in the data for the individual chains themselves 
and not from the effect of the overall diffusion of the whole 

2r-------.-------~-------. 

OL-____ ~8~--------~------~ 
1 2 3 4 

FIG. 34. Comparison of the mean-squared displacementsg,(t), g2(t), and 
g3(t) for N = 25 for two simulation techniques. Results for g, (t) andg2(t) 
are averaged over the inner five monomers. The open triangles are for the 
molecular-dynamics simulation in which the monomers are coupled weakly 
to a heat bath, with r = 0.5r-', while the open circles are for the case in 
which the temperature is scaled every 100 steps such as to keep the energy 
constant. Both simulations were run to 12 OOOr with Ilt = O.OO6r. Clearly 
both methods for stabilizing the system for long times give the same result. 

system. For N= 200 we use the large 100/200 system to 
estimateD. 

As an additional check we compared the results of a 
simulation of M = 32, N = 25 using the method described 
above with the results of a simulation with r = 0, but in 
which the velocity was rescaled every 1 OOAt in order to keep 
the total energy of the system constant. The total run for 
each case was 12 0007 and Fig. 34 shows the results for g t (t) 
(i = 1,2) averaged over the inner 5 monomers and for g3 (t) 
for the two methods. As can be seen, there is no significant 
difference within the statistical scatter in the data. Similar 
results were found using different methods in the course of 
our work on simulating colloidal particles. 82 

We also made a run of 12007 in which the velocity was 
rescaled each time step so that (v2

) = 2kB T /3.83 After 
about 106 At, the internal temperature of the system began to 
cool down. Because this form of temperature control does 
not keep the total momentum of the system zero, eventually 
for very long runs the random fluctuations lead to an ever 
increasing total momentum for the entire system. This has 
not to our knowledge been observed in previous simulations 
since the runs were typically much shorter. Had we rescaled 
the velocities in such a way that the total momentum of the 
system remained zero, we expect we would have obtained 
results in agreement with those presented here. 

The programs were optimized to run very effectively on 
the Cray XMP. A general description of such a program is 
given in Ref. 84. Besides what is mentioned there, the calcu
lation of forces along the sequence of the chain was taken 
into a separate loop which vectorized trivially. 
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