Homework 2 Polymer Physics 2023 Due Tuesday January 24 at noon

(Please send one email with a <u>pdf</u> attachment to beaucag@uc.edu)

Everaers R, Karimi-Varzaneh HA, Fleck F, Hojdis N, Svaneborg C *Kremer–Grest Models for Commodity Polymer Melts: Linking Theory, Experiment, and Simulation at the Kuhn Scale* Macromolecules **53** 1901-1916 (2020) discuss the use of the Kuhn unit as the touch point between coarse grain simulations and experimental data, particularly, $n_{\rm K}$ which is the number of Kuhn units in a Kuhn volume, $l_{\rm K}^3$. The Kremer-Grest model is a bead-spring model that forms the basis of most computer simulations of polymer chains.

a) Equation (5) relates η and ζ . Explain this relationship.

b) Derive equation (6) using $D_{\rm K} = k_{\rm B}T/\zeta_{\rm K}$ and Stokes Law for $\zeta_{\rm K}$.

c) Explain the origin of equation (11). How does it relate to C_n or C_{∞} ?

d) Derive equation (12).

e) Equation (15) indicates that N_{eK} (number of Kuhn units between entanglements) only depends on n_K , equation (3), since α is a universal constant, 18. Explain both logically and mathematically why this is the case.