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Topological considerations concerning the ratio of linear, imperfectly branched, dendritic and terminal units in hyperbranched 
polymers based on AB2, A B 3  and AB, (m 2 2) type monomers are summarized. The reaction of AB2 monomers with a core 
molecule of the structure Bf is also treated. For larger hyperbranched polymers based on AB2 monomers the fraction of termi- 
nal units has to be equal to the number of dendritic units. A general expression for the degree of branching (DB) is derived for 
AB2 systems, which is based on the number of dendritic and linear units. The expression is valid for low molecular weight as 
well as high molecular weight hyperbranched polymers in contrast to the commonly used expression based on dendritic, linear 
and terminal units. DB may not exceed 0.5 in hyperbranched polymers based on AB2 systems (0.44 in AB3 systems). Further- 
more, a general expression for DB in hyperbranched polymers based on AB, monomers is derived. Consequences for signal 
ratios in NMR-spectra of hyperbranched polymers are discussed. The expressions presented allow verification of NMR-inte- 
gration ratios obtained experimentally on the basis of model compounds. 

1. Introduction 

Although the term “hyperbranched polymers” was 
coined only recently [I], this class of polymers has been 
known for a long time [2] and Flory already developed the 
fundamental concepts for highly branched macromolecules 
based on AB,monomers [3]. Flory predicted that AB, type 
momers containing one reactive group of one type and m re- 
active groups of another type ( m 1 2) would polymerize to 
highly branched three-dimensional structures without 
crosslinks. Burchard calculated the mean square radius of 
gyration as well as the scattering behavior for hyperbran- 
ched polymers on the basis of the cascade theory [4,5]. Cur- 
rently, there is intense research interest in synthetic routes to 
dendritic [6] and hyperbranched polymer topologies [7, 81, 
e. g., hyperbranched polyesters [9-151, polyethers [ 16-1 81, 
poly(ether ketones) [19], polyphenylenes [20], polyure- 
thanes [2 1, 221, polysilanes [23] and polycarbosiloxanes 
[24,25] have been prepared. An alternative route to hyper- 
branched polymers has been developed recently by various 
authors [26,27], who described a “self-condensing” type of 
polymerization. 

Present investigations aim at hyperbranched polymers 
with low polydispersity and high degree of branching (DB), 
i. e., hyperbranched structures that resemble perfect den- 
drimers. The DB is commonly determined by NMR-spec- 
troscopy on the basis of low molecular weight model com- 
pounds, which possess structures similar to the linear, den- 
dritic and terminal units in the respective hyperbranched 
polymers. The DB is obtained by comparison of the intens- 
ity of the signals for the respective units. As first shown by 
Hawker [28] and described similarly, using different termi- 
nology, by Kim [29], the degree of branching is commonly 
calculated according to the following equation: 

D + T  
D + L + T  

DB = 

where D, T and L are the fractions of dendritic, terminal or 
linearly incorporated monomers in the resulting hyperbran- 
ched polymers obtained from integration of the respective 
signals in NMR-spectra. The values commonly reported for 
DB are in the range of 0.4 to 0.8. Equation (I)  has been used 
by several researchers to determine the degree of branching 
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[9-16, 18, 20, 28, 291. In addition to NMR, degradative 
methods have also been used to determine DB [30]. 

It is obvious that Eq. (1) is only valid for hyperbranched 
polymers based on AB2 monomers and cannot be employed 
for m > 2. In this paper, we will present some general con- 
siderations concerning the ratio of perfectly and imper- 
fectly branched units in hyperbranched polymers for AB2, 
AB3 and AB, based systems. In addition, we derive a 
general expression for DB for AB, (rn 1 2 )  type monomers. 
We are aiming at rules that simplify determination of DB 
for hyperbranched polymers from NMR signal intensities 
and also allow the validity of signal assignments made on 
the basis of low molecular weight model compounds to be 
tested. The considerations are independent of the actual 
chemistry employed. 

2. Theory and discussion 

2.1. AB2 systems 

In AB2 systems, which represent the most common type 
of hyperbranched polymers at present, 3 different modes of 
incorporation of the monomer units are possible: terminal, 
dendritic and linear, as indicated in Fig. 1 by t, d and 1 for a 
hyperbranched structure and a perfect dendrimer structure, 
respectively. DPmol, the overall number of incorporated 
monomer units in one hyperbranched molecule is the sum 
of terminal, linear and dendritic units, designated t, I and d, 
respectively, 

DP,,, = d + I + t (2) 

It is obvious that any terminal unit may become a linear 
unit by addition of an AB2 monomer. This, in turn, may 
become a dendritic unit by attachment of another AB2 
monomer. Clearly, for every new dendritic unit formed 
from a linear unit, a new end group is formed. Thus, the 
number of terminal units t and the number of perfect den- 
dritic units din this hyperbranched polymer must be related. 
Since the polymerization starts with a terminal unit for an 
AB2-based hyperbranched molecule, one obtains 

t = d + l  (3) 

This has been mentioned before [9]. At this point it 
should be noted that the formation of loops by reaction of 
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N N N z t i = T ;  z d i=D;  l i = L  
i =  1 i =  I i =  1 

one obtains t I d 

T = D + N  ( 5 )  

How can an expression for DB be systematically derived 
for N molecules? The degree of branching of a hyperbran- 
ched molecule may be expressed in terms of the number of 
actual growth directions compared to the maximum number 
of possible growth directions. A branching parameter R 
may be defined that describes the number of deviations 
from the linear direction; thus R is 0 for a linear polymer, 1 
for one branch, 2 for two branches and so forth, as shown in 
Fig. 2: 

(6) 
R DB=- 

Rmax 

d 
Fig. 1. Schematic representation of terminal, linear, and dendritic 
building units of AB2-type hyperbranched polymer. (a) Hyperbran- 
ched structure with assignment of the building units, (b) perfect den- 
dritic structure with assignment. 

the A group of the first monomer with a B group of the same 
molecule is neglected in the ensuing discussion. However, 
the formation of loops will hardly affect the following con- 
siderations. Obviously, in larger hyperbranched molecules 
(i. e., at higher conversions in the course of the reaction) t 
and d become practically identical in one molecule. The ter- 
minal group formed as the result of the transformation of a 
linear to a dendritic unit may be separated from the respect- 
ive dendritic unit by an arbitrary number of linear units. 
Therefore, the number of linear units 1 is independent of t  or 
d and constitutes the key factor that determines the degree 
of branching of the hyperbranched structure. The relation 
between d and t is illustrated in Fig. 1 a, where a hyperbran- 
ched polymer with 23 monomer units is shown. In this case, 
6 terminal, 5 dendritic, and 12 linear units are present, in 
agreement with Eq. (3). 

All considerations summarized so far have treated only 
one hyperbranched molecule. If N hyperbranched mole- 
cules are considered, one obtains from Eq. (3)  

N N 

ti= z (d i+ 1) (4) 
i =  1 i =  1 

If 

R =  0 1 2 3 

Fig. 2. Different growth directions and the branching factor R. 

For an AB2 system, every dendritic unit will inevitably 
introduce one new branch (i. e., one deviation from a linear 
structure); therefore Eq. (6) becomes 

(7) 
D DB=- 

Dmax 
Thus, DB is the actual number of dendritic units divided by 
the maximum possible number of dendritic units. As two li- 
near units can be transformed into one dendntic and one ter- 
minal unit (an analogous consideration was already men- 
tioned in [29]), we obtain 

(8) 
1 
2 

D,, = D + - L 

Thus (with Eq. (7)) 

Equation (9) is a universally applicable expression for 
DB in small as well as large hyperbranched (macro)mole- 
cules. According to Eq. (9),  the ratio of dendritic and linear 
units in a hyperbranched polymer can be written as a func- 
tion of DB, resulting in Eq. (9'): 

D -  DB -- 
L 2(1-DB) (9') 

The meaning of Eq. (9') is visualized in Fig. 3, showing DIL 
as a function of DB. 

In order to compare our result to the commonly used 
Eq. (l), Eq. (9)  has to be slightly modified, using Eq. (5). 
One obtains 

(10) 
2 T - 2 N  - D + T - N  

2 T + L - 2 N  D + T + L - N  
- DB = 
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Degree of Branching DB 
Fig. 3. Ratio of dendritic to linear units DIL in a hyperbranched 
polymer vs. DB. 

If we compare this result to the common Eq. (l), 

D + T  
D + T + L  

DB’ = 

we find that Eq. (lo), which was derived on the basis of a 
simple comparison of the number of growth directions pres- 
ent with the number of growth directions possible, differs 
from Eq. (1) in that Eq. (1) actually gives the ratio 

As a consequence from the relationships derived, some 
other interesting conclusions can be drawn. For instance, 
the number average degree of polymerization DP, can be 
calculated from T, D, and L: 

- T + D + L  - T + D + L  DP, = - 
N T - D  

Equation (1 3) will be useful for small hyperbranched 
structures; however, for large hyperbranched molecules the 
increasing probability of loop formation will render Eq. (5) 
and thereby Eq. (1 3) invalid. That means values may be too 
large in this case, but not smaller than the actual one. Fur- 
thermore, the usefulness of Eq. (13) also depends on the 
resolution of the NMR-spectra, since the difference be- 
tween T and D can become very small in comparison with 
the numerator. 

It is important to note that Eq. (1 3) can also be derived 
from the Carothers equation in the expression used by Flory 
for AB,-type systems long ago (Eq. (14)) [3]. 

(14) 
- 1 -  1 DP,=-- 

1-PA 1 - p B * m  

For an AB2-system we can express the conversion of 

B-groups @B) by 1 D + y L  
L 

T + D + L  P B  = 

We get Eq. (1 3) by plugging Eq. (1 5) into Eq. (14). In this 
context it is important to realize that for hyperbranched 
polymers - as generally in polycondensation reactions - 
very high conversions are necessary for reasonable degrees 
of polymerization. 

Rearranging Eq. (5) yields 

R + N  DB’ = 
Rmax + N 

(16) 
T N 1 T 2 

-= 1 +-= 1 +--and-= 1 + 
D D Z D (11) DB . (DP, - 1) 

Clearly, the difference between Eq. (1) and our result for 
DB is due to the fact that in the commonly used expression 
(1) already the linear direction is counted as a branching di- 
rection, which leads to an overestimation of DB for small or 
little-branched molecules (i. e., in low generations). For 
small hyperbranched molecules, Eq. (9) yields more rea- 
sonable values for DB than Eq. (1). Furthermore, Eq. (9)  
does not require determination of T. However, if one con- 
siders large hyperbranched molecules, where D, T +- N, 
Eqs. (9)  and (1 1) give the same result. In this common case 
the following equations can be employed: 

Thus, for large hyperbranched structures the number of 
molecules considered does not influence DB strongly and 
knowledge of the number (i. e., the NMR-signal intensity) 
of dendritic or terminal units with respect to linear units is 
sufficient for the determination of DB. 

At this point, is worth mentioning that a high degree of 
branching does not imply a spherical or globular shape of 
the hyperbranched polymers. Although a perfectly centro- 
symmetrical dendrimer will always lead to a DB of 1, the 
reverse is not true. As pointed out by Kim before [29], a var- 
iety of isomers with DB = 1 and nonspherical structures is 
possible. 

In this expression z is 

z describes the average number of branching points per 
hyperbranched molecule. Expressions (16) and (1 7) are 
valid if no loops occur. For D +- N, z becomes large and the 
ratio TID approaches unity. This occurs even more rapidly if 
loops are present. 

So far, we have not considered the statistics of the poly- 
merization. An intriguing question is which maximum 
value for DB will be obtained in a completely random 
hyperbranching polymerization of an AB2-type monomer. 
In order to consider this, we will assume complete conver- 
sion (i. e., reaction of all A groups), equal reactivity of all A 
groups and equal reactivity of all B groups present, regard- 
less of their terminal or linear nature. It is obvious that for 
the hyperbranched macromolecules formed a distribution 
of different DBs will be obtained, even for molecules con- 
sisting of the same number of monomer units. A statistical 
treatment of the distribution of DB is not given in this paper, 
but - based on simple considerations -a  mean value for DB 
is derived. 

The most probable final situation after reaction of all 
monomer molecules will be characterized by an equal num- 
ber of unreacted B groups at linear units and terminal 
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monomer units. In this case the ratio of terminal units to li- 
near units T: L must be 1 : 2, because terminal units contain 
twice as many B groups as linear units. A large hyperbran- 
ched structure must contain the same number of terminal 
and dendritic units. We obtain 

The most probable value for DB (m) in such a system 
will be 0.5 according to Eq. (9)! This conclusion is also ob- 
tained from other considerations: Only half of the B groups 
can react due to the AB2 monomer stoichiometry (pB = 0.5). 
Thus, terminal and dendritic units have a probability of 
(0.52) = 0.25, linear units have a probability of 2 x 0.52 = 
0.5. Thus DB is 0.5. Experimentally obtained values for DB 
will be somewhat lower, because complete conversion of all 
A groups will not be reached. Furthermore, linear units 
formed during the growth process are likely to be less ac- 
cessible than terminal units. This would lead to a higher 
fraction of linear units than expected statistically. 

How can DB > 0.5 be realized? Finding the same number 
of terminal ( r )  and linear (I,) monomer units in %hyperbran- 
ched polymer would result in a value of 213 (0.6) for DB 
(Eq. (1) and (9)). However, this situation would require 
twice as many unreacted terminal B groups as linear B 
groups. This is possible if reaction of a linear unit with an A 
functionality to a terminal unit is more probable than at- 
tachment of A to a terminal unit. Large differences between 
reactivity of linear and terminal units in favor of linear units 
will lead to hyperbranched structures with DB values close 
to 1, but not necessarily spherical structures. If one aims at a 
centrosymmetrical dendrimer structure, a stepwise algo- 
rithm using protected B functionalities is unavoidable [6]. 

In summary, the maximum value obtainable for DB in a 
statistical process (given the conditions summarized above) 
will be 0.5. 

2. I .  I .  AB2 systems with core Bf 

In recent publications various authors have used a core Bf 
in combination with the AB2 monomer, which apparently 
results in higher values for DB [ 12-15,3 11. Introduction of 
a core with a core functionalityf will inevitably lead tof 
new end groups for the hyperbranched polymer. However, 
the core may not react fully. In this case, the hyperbranched 
polymer will possess Tend groups, 

T =  ~ + f .  C +  ( N - C )  = D+(& 1) .  C +  N (is) 

where C is the number of core molecules, f represents the 
average number of reacted B-groups out offgroups at the 
core molecule, and ( N  - C) represents the hyperbranched 
molecules formed without core, concurrently to the con- 
densation with core. One may define f ‘ as the average 
number of branches that actually grow at the core: 

thus 

Clearly, in an ideal case (when the core fully reacts), f = 

f ’ =f: However, if D S- N,  also in this type of hyperbranched 
polymer, the number of terminal and dendntic units has to 
be equal (T= D). 

We obtain for DB (the core itself is not considered as a 
branching point, because the core influences DB only at the 
beginning of the reaction) 

2 0  
2 D + L  

DB=- (9) 

Also in this case, DB will be at maximum 0.5 for larger 
hyperbranched molecules. The same considerations as 
mentioned for AB2 systems are valid in this case, including 
the ratio of D to L. 

2.2. AB3 systems 

Figure 4 illustrates the possible modes of incorporation 
into the hyperbranched structure for AB3-type units. In this 
case, four different configurations are possible: terminal (t), 
linear (l), semidendritic (sd), and perfect dendritic (d) 

t I sd d 

Fig. 4. Schematic representation of terminal, linear, semidendritic, 
and dendritic units in AB3-type hyperbranched polymer. 

(Fig. 4). Neglecting loop formation, in analogy to Eq. (3)  
the number of terminal units in this case is 

t = 2 d + s d +  1 (21) 

and for N molecules 

T =  2 0  f sD + N (22) 

According to the definition of the DB (Eq. (6)) we can 
now derive an expression for DB in AB3-type hyperbran- 
ched polymers. Each dendritic group results in two new 
growth directions, each semidendritic group in one new 
growth direction. Since three linear units can be trans- 
formed into one dendritic unit and three semidendritic units 
can be transformed into two dendritic units, we obtain for 
RJR,,, 

2 D + s D  
I ,  \ I? .  \ 

DB = 

2 D + 2  - L  + 2  -sD (I ) K 1 
- 2 D + s D  - 

2 - (3 D + 2 SD + L )  
3 

Similar to the case of AB2 systems, even if one of the three 
parameters D, sD, or T is not known or cannot be deter- 
mined, it is still possible to calculate the degree of branch- 
ing DB based on the remaining two parameters for large 
hyperbranched polymers. 

Which value is expected for DB on the basis of a random 
process, based on equal reactivities of all A groups and all 
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B groups, respectively, as well as complete conversion? 
Only 113 of all B-groups can react in this case (p = 113). 
Based on similar arguments as in the case of the AB2 sys- 
tem, it can easily be shown that the ratio T :  L : SD : D is 
8 : 12 : 6 : 1. Thus, only a small fraction of fully reacted den- 
dritic groups is present (1/27). Clearly, the ratios calculated 
on the basis of purely statistical considerations s a t i a  Eq. 
(22). The ratios of monomer units present result in DB = 
0.44. Again, the values obtained from experiments will be 
lower due to the same considerations as summarized in the 
case of AB2. Interestingly, almost equal intensity can be ex- 
pected for the signals of terminal and semidendritic units in 
NMRspectra. 

2.3. AB, (m 1 2 )  

In the case of AB,-type systems, a number of imperfectly 
branched modes of monomer incorporation can be im- 
agined, leading to m - 1 possible imperfect configurations 
of the building unit in the hyperbranched polymer. Using 
this, one can derive general relationships. In the following 
equations yo to y ,  represent the different units with increas- 
ing degree of perfection, e. g., for AB3: t =yo, 1 =yl ,  sd =y2 
and d = y3. 

For one hyperbranched molecule: 
m 

r=2 

and - in analogy to the expressions discussed above for N 
molecules 

N \ 

and thus 
rn 

Yo= I: ( r -  1) Y , + N  (26) 
r = 2  

From this, DB can be calculated to be 
)n 2 (r - 1) . Y, 

A general expression for the most probable value of DB in 
the case of a random process can also be derived. Assuming 

complete conversion (yo = I: (r - 1) . Y,.) one can write: 
rn 

r = 2  

- YO DB = 

The respective amounts of the different units can be ex- 
pressed by the probability of the units: 

l m -  1 \” 

It is easy to conceive thatfor large values of m the DB 
converges to 0.368 ( lim DB = Ue). This is illustrated in 

Fig. 5 ,  which shows DB versus m for m = 2 to 6. 
m’m 

0 3 3  5 

rn 
Fig. 5 .  The most probable degrEofbranching of AB,-type polymer 
systems in a random process (DB) vs. m. 

2.4. Average number of growth directions per non-terminal 
monomer unit 

This last section of the paper deals with an additional 
parameter that enables one to compare hyperbranched AB,- 
type structures with different m. The degree of branching 
(DB) discussed so far is based on the comparison of actually 
existing growth directions with the maximum possible 
number of growth directions, keeping the number of 
monomer units and molecules unchanged. Thus, DB values 
calculated for AB2 systems cannot be compared to those of 
AB3 systems with respect to the “density of branching”. A 
general parameter that would make such a comparison feas- 
ible should treat the average number of branches deviating 
from the linear direction per non-terminal monomer unit 
and is designated ANB in the following. For the definition 
of the ANB only the non-terminal linear units are con- 
sidered, since the number of terminal units is determined by 
those and the number of molecules ( N ) .  

ANB should not be mistaken for the average number of 
growing branches per monomer unit, which for all AB, sys- 
tems approaches unity with growing conversion. 

For AB2 systems the ANB is as follows: 

D 
D + L  

ANB = - 

Thus, for example, the hyperbranched polymer shown in 
Fig. 1 a possesses an ANB of 0.294, which means that only 
about 3 of 10 non-terminal units actually form a branching 
point. 

For AB3 systems we obtain 
2 D + s D  

D + s D + L  
ANB = 

For AB, systems in general one obtains 
rn 

I: ( r -  1). yr 
(32) ANB= r = 2  

i yr 
r= 1 
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As in the case of DB, also for the ANB parameter most 
probable values for a random process can be determined. 
This results in 0.333 for ABz systems and 0.421 in the case 
of AB3 monomers, showing that there are more deviations 
from the linear direction per non-linear unit when we con- 
sider AB3-type polymers. In analogy to a general ex- 
pression for m, an expression for X B  (statistically most 
probable value for ANB) can be derived: 

On the basis of these arguments, reconsideration of DB 
values reported might be appropriate in some cases. It 
should be stressed that the degree of branching is not related 
to the polydispersity - although some methods may yield 
hyperbranched polymers with narrow polydispersity, they 
will not lead to high values for DB, as DB is controlled by 
statistics. 

- 1 ANB = (33) 

K B  converges to 0.582 ( lim = l/(e - 1)) for grow- 
m-m 

ing m. This implies that it 1s not possible - at least in a ran- 
dom process - to enhance the “density of branching” be- 
yond a threshold value by using monomers with higher 
functionality. 

Again, due to the above-mentioned considerations, the 
experimentally observed “real-world’’ values are likely to 
be smaller. 

3. Conclusion 
As a consequence of the expressions derived on the basis 

of rather simple topological arguments, a number of rules 
for the ratio of terminal and dendritic units in hyperbran- 
ched polymers and the related NMR signal intensities can 
be summarized. 

(i) In NMR-spectra of high molecular weight hyperbran- 
ched polymers based on AB2 monomer units the signal in- 
tensities of dendritic and terminal units are equal, regardless 
of the presence of a core. This rule can be used to test the va- 
lidity of signal assignments in hyperbranched polymers 
based on low molecular weight model compounds. 

(ii) The degree of branching (DB) in hyperbranched 
polymers based on AB2-monomers calculated according to 
the commonly used Eq. (1) is only correct for high molecu- 
lar weights. The general expression DB = 2 0 4 2 0  + L)  
(Eq. (9)) in contrast is universally applicable for low and 
high molecular weight hyperbranched polymers based on 
ABz systems. In fact, Eq. (1) is a special case of the more 
general definition given in Eq. (9). 

(iii) Knowledge of the signal intensities of dendritic and 
linear or terminal and linear units suffices to determine DB 
in high molecular weight ABz-type systems. This is useful 
when identification of dendritic or terminal units is difficult 
in NMR-spectra. When assignments are based on model 
compounds, only two model compounds have to be pre- 
pared instead of three. 

(iv) DB for AB3 monomer systems can be calculated ac- 
cording to Eq. (23). Monomers of this type are known [24, 
29,321 for which Eq. (23) may be useful. 

Based on the assumption of a completely random growth 
process, conclusions can be drawn concerning the limiting 
degree of branching in AB2- and AB3-type systems. 

(v) The maximum value for DB achievable in a statistical 
AB2-type polyreactions is 0.5, independent of the presence 
of a core molecule Bf. The maximum DB value in an AB3 
system is 0.44. Values that are obtained experimentally have 
to be smaller, due to incomplete conversion and sterical fac- 
tors, provided the rate of monomer addition to a linear group 
is not orders of magnitude greater than to a terminal unit. 
Thus, dendrimer-like hyperbranched polymer are very un- 
likely to be obtained by means of an AB, polyreaction. 
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