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The conventional Kirkwoo#Riseman calculation of the hydrodynamic properties of bead models gives
abnormal results for rotational quantities and the intrinsic viscosities for models with a few beads or when
one bead is dominant. The reason is that beads are treated as point sources of friction. This can be remedied
by introducing terms that are neglected in the conventional treatment of ordersBandhterbead distances.

An alternative strategy is the cubic substitution in which each bead is replaced by a cubic array of minibeads.
These procedures require a computational overload that, in the case of the intrinsic viscosity, can be avoided
using an estimate of the correction due to the nonzero volume of the beads. We have found how such a
correction can be estimated from the geometry of the model, and its application yields results that are within
the range of typical experimental errors.

1. Introduction give Rg?(uncorr)= a2 when the correct result (obtained from
the moments of inertia of this particle) R? = 8a2/5. If it is
applied to just a single sphere, then eq 1 gives the unphysical
result R@(uncorr) = 0 rather thanR? = 3a%/5. Actually, the
correct expression for the radius of gyration of a multisubunit
structure i$°

The calculation of solution properties of macromolecules in
solution using bead models was first proposed by Kirkwood
and Riseman (KRY; 23 who modeled linear (flexible or rodlike)
polymers as strings of identical beads. Bloomfield et al.
envisioned the possibility of using models with equal or unequal
beads to model the complex, peculiar shapes of biological
macromolecules using initially approximate forms of the KR
theorie$ for the treatment of hydrodynamic interactions (H#8).
The procedures were later improved employing more advanced
descriptions of HI and computational algorithfn! Nowadays,
the methodology is implemented in a simple, public-domain
computer program, HYDR® and is being widely used to
calculate solution properties of macromolecules and nano-
particles.

Bloomfield et alll1314realized that a direct application of
the KR treatment would give abnormal results for the rotational
coefficients and intrinsic viscosity when applied to models with
a few beads or, in general, when the size of one bead is not
much smaller than the overall size of the particle. The reason
is that, in the KR theory, bead sizes are needed to express th
bead’s frictional coefficient, but beads are regarded as pointlike
sources of friction with frictional forces acting at their centers
while friction actually takes place at the spherical bead surface.
A similar situation arises in a simpler case, namely, the
calculation of radius of gyratiorRy, which for an array oiN
elements is usually evaluated as

N
Ry = R uncorm)+ } 7R, 2 2)

wheref; andRy;? are respectively the volume fraction and square
radius of gyration Ry;? = 3a?%/5 for spherical beads) of thith
subunit.

As we describe in the next section, the standard KR treatment
presents a similar problem, which may produce rather unphysical
results for the rotational coefficients and the intrinsic viscosity.
Among the various hydrodynamic properties, rotational quanti-
ties are the most sensitive to the size and shape of the particles
and play an essential role in advanced instrumental methods
like dynamic fluorescence and NMR relaxation. The intrinsic
‘?/iscosity, which is also sensitive to particle geometry (except
for globular particles), is a classically studied property which
is again increasingly used, thanks to instrumental advahces
and its use with a separation technique like multiple-detection
size exclusion chromatography. Thus, in this work, we consider
the various strategies available to avoid the mentioned difficul-
ties and propose effective and computationally efficient proce-
dures.

N N
2
IZ ;r‘i @) 2. Theory and Methods

2.1. Shell Model and Cubic Substitution As an alternative
wheref; ands? are, respectively, the volume fraction and the tO what we may call bead models in the strict sense, Bloomfield
distance from the center of elemérno the center of mass. The  and FilsoR®*"proposed the strategy of shell modeling in which
third and fourth terms in eq 1 are for indentical elements, where the particle surface is modeled as a shell of many small, identical
ri is the distance betweeérand]. For a particle consisting of a  “minibeads”; thus, friction takes place throughout the particle

pair of identical, touching spheres of radiasthese formulas ~ surface (a similar concept was later employed in the so-called
boundary element approdéh?? in which the elements are

* Corresponding author. E-mail: jgt@um.es. platelets that pave the particle surface). Origin&lly, the
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Figure 1. lllustration of the various kinds of modeling for a tetrahedral tetramer. (A) Bead model (in the strict sense). (B) SHM. (C) CBS.

hydrodynamic properties of the shell of beads were calculatedfrom a 6\ x 6N grand resistance matrixien. Of the 6N
with the approximate versions of the KR theory (double-sum coordinates, R corresponds to the components of linear
formulas)} and presently, the calculation can be done with the velocities and the frictional forces, antNZorresponds to the
more rigorous treatment of HP In the shell-model (SHM) components of the angular velocities and frictional torques.
procedure, calculations are repeated for decreasing minibead The grand resistance matrix is, in turn, the inverse of te 6
sizes (with increasing resolution and an increasing number of x 6N grand mobility matrixZen = usn~ . These grand matrices
beads), and the results are extrapolated to the SHM limit of a can be partitioned into fourM8 x 3N matrices corresponding
zero minibead radius. It has been shown that this strategy givesto translation, rotation, and translation rotation coupling. Each
very accurate results for particles whose hydrodynamic proper- of them hasN x N blocks of dimension 3< 3 corresponding

ties are quasi-exactly known from fluid mecharé34 some to each pairi(j) of frictional elements in the model. Thus,
examples will be presented here. Bead models, in a strict sense,

can be converted into SHMs by replacing each bead by a #21 /jl‘N ﬂtl’l #ler
spherical shell. The computer program HYDROS®Rr . . . .
HYDROPIX26 can be used for this purpose. The drawback of oy

this procedure is that the computing time for rigorous Hl o tr Mﬁl ﬂEN #t,\fu MKJN
calculations is proportional tb; thus, for instance, if a bead Hen = ﬂrt ﬂrr il oo i (4)
model of 20 beads is replaced by a shell of 2000 minibeads, u Uyg ™t Man Hi1 " Mg

then the computing time is £Qimes longer. Still, the typical P el : :

SHM calculations, as implemented in the programs of the " t o "
HYDRO suite?>-28 take only a few minutes of central process- UN1 7 UNN Mg Tt NN

ing unit time in a personal computer. This can be easily afforded

for calculations of just one or a few structures, but it may gnq ten has the same form. In its most general form, the
become prohibitive in situations where many structures have procedure would start from the calculation of mté 4, and

. . . ij o
to be considered, as in conformational searches or Monte Carlo‘uiry tensors and end up with the obtention@#, D, and D"

simulations?%-30 i . . )
- I . . In the conventional KR treatment, the rotation and coupling
,14,31 ,
The cubic substitutioft (CBS) is another strategy with supermatrices are ignored, that®, = 0 and=" = 0; in eq 4,

the dsal‘”.‘e scc|>pe. dEECh beEd’ with ra;ﬂrgmh:rg)e p(;lmiry.beés\gM there are no rr and tr blocks. The rotational friction is attributed
MOdel, 1S replaced by a Cubic array of ight beaads. As In S exclusively to the torques corresponding to frictional forces

although not so perfectly, the friction is moved from the center . :

) . . produced by the rotational displacement of the beads, and bead
of éhe_begiéovygrtﬂ_ns iur_face. Thle rad'l?s o{hthe bleads n :jheself-rotation is ignored. Indeed, the contribution of the latter is
cube is 0.4668; this choice nearly makes the volume an negligible when bead sizes are much smaller than the overall

r(?_tgqt]t(_)nslsfrkcetlr(;n No(f)thethcelgjE\ICn?l;rearyo:‘/f)reyagL?'SseBt?otlzqf]irg;;Zed particle size. The conventional KR treatment assigng“tthe
primitve sp - Now, u IS o ! ' first term of the order ofj~! in a series expansion in powers

aqd the computing time increases by afact.qr30¢8512.. Again, of the reciprocal interbead distancg
this cost may be important for cases requiring multiple calcula-
tions. Examples of the SHM and CBS model are displayed in
Figure 1.

2.2. Extended Kirkwood—Riseman Treatments: Volume

Corrections and Higher-Order His. The basic relationship ~ Wheredj is Kronecker's delta<1 fori = j, =0 fori = j) and
governing the frictional and Brownian behavior of a rigid | is the 3x 3 identity matrix. The Stokes law friction coefficient

particle is the generalized Einstein equatfén, of beadi is given by&; = 6003, 70 being the solvent viscosity
andTj being the well-known Oseen tensor
tt tr, T
(Btr Brr ): k-rl(

The left-hand side of eq 3 is the generalizedx & diffusion
matrix, containing 3x 3 blocks for translationDt, rotation,

D", and translation rotation couplin®!. This is derived from
the inverse of the 6& 6 generalized friction matrix whose 3

3 blocks are the translation, rotation, and translation rotation " a1
coupling friction tensorsz®, Z", and=". TheZ’s are obtained Hij = 5ij(8m700i ) (7)

wy =05 1 + (1= 0T, (5)

tt —=tr,T
tr irrr ) (3) T. = 1 | + M (6)
= i 87”70"ij rijz

(1 [1]

In a more rigorous and consistent formalism, if one includes
terms up to order-1 in ut, then the Oth-order term " should
not be ignored; this term has nonzerdlocks given by
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When this term is included, the rotational friction tensor is It was suggested that a KR calculation using this modification

changed, taking the forfa34 of the Oseen tensor would improve the calculation of transla-
tional properties (particularly, by removing singularities in the
E"(corr)= E"(uncorr)+ 6V, | (8) supermatrix). This procedure, which will be denoted as KRM,

does not improve the calculation of rotational properties because
whereZ"(uncorr) is the result from the primitive KR treatment it still neglects terms of order-3 in the rotation and coupling

and the correcting term is related to the total volume of the tensors (and, therefore, this approach is not to be confused with
bead modelVy, = (4/3)r¥ 0. the full third-order procedure, later denoted as 3RD) and the

The Oth-order correction can also be formulated for the Vvolume correction or alternative approaches are needed. Instead,
intrinsic viscosity. The theoretical description for this property one could accept those terms that are given by
is more complex and lengthy, and the reader is referred to the or
original publicatio for details. The final result is a correction Wr=9 1 | +(1- 6”-) 1 3(3 i |) (12)
0'ij

to the primitive KR-type result: I IJ87-[7700i3 rijz

5N,V,

AV and
oM 9)

[#7](corr) = [n](uncorr)+ f,
o . , #irjt =—-(1- 6ij)(87”70rij3)_l€'rij (13)
wheref, = 1 (vide infra) andM is the molecular weight. Note
that for a model of identical beads of radimseach representing  where
a molecular weighiM; = M/N, the volume correction for the
viscosity (the second term on the right-hand side of eq 9) reduces 0 z Y
to [y]l1 = 10mc®3M;, which is the Einstein law intrinsic erj=17% 0 X (14)
viscosity of a single bead. This correction was hinted to Vi % 0
(although not formally deduced) and introduced by other
workers in the calculation of intrinsic viscosity of short When third-order His (3RD) or higher-order His (GOL) are
(oligomeric) polymer chain&>36 considered, one has to invert the fuM6< 6N supermatrix in
The f, factor does not appear in the original formulafttn  eq 4 instead of theM x 3N supermatrix in the KR treatment,
(or, what is the samd, = 1). Examination of the results from  and computing time increases by a factor =28, which is
the original treatment indicates that, in most instances, while much less important than the computing overhead required by
the uncorrected viscosity falls always below exact results, EXA the CBS model or the SHM. Unfortunately, the inclusion of
(or more precise results), the inclusion of the volume correction third- and higher-order terms makes the formalism for the
overestimates them. It seems that an intermediate correctionintrinsic viscosity extremely complicated; therefore, these treat-
would be more appropriate, and indeed, one of the purposes ofments are limited to the calculation of translational and rotational
the present paper is to consider such a possibility, trying to properties, and the possibility of improving the calculation of
estimate the adequafgin terms of the structure of the bead the viscosity should be, by now, restricted to an ad hoc
model. Actually, if we have a reference value for the intrinsic modification of the volume correction, as we shall describe in
viscosity, denoted ag[(ref), then the correction that, added to next section.
the uncorrected value, would match the reference is
3. Numerical Results
[7](ref) — [7](uncorr)

The different approaches for the calculation of properties to

" [#nl(corr, f, =1) — [n](uncorr) be compared are coded as: EXA, exact results; SHM, shell
[#](ref) — [n](uncorr) model; CBS, cubic substitution; 3RD, third-order HI; GOL,
- 5N,V /2M (10 higher-order HE® KRM, Kirkwood—Riseman with modified

Garca de la Torre-Bloomfield HI but without volume correc-
tion; and KRV, the same as KRM but with full volume

With or without volume correction, the KR treatments '
correction.

described so far involve, as the main computational step, the . . .
inversion of the 81 x 3N 4t matrix. The properties that we consider (depending on the cases) are

As reviewed elsewher®, higher-order approximations are the translational diffusion coefficien)y; the intrinsic viscosity,

available for the mobility tensors in eq 4; for instance, the theory [7); the component of the rotational diffusion tensor corre-
of Reuland et a# includes terms of order up 1g~°. Another sponding to an axis perpendicular to the main axis of the particle,

theory is that described by Goldstéhwhich has simpler D!, which is the one usually observed for elongated or planar

expressions but has been found to be rather acctiragtually, conformations; the component of the rotational diffusion tensor
we have chosen the Goldstein treatment as that representativéorresponding along the main axis of the partié*, and the
of the higher-order approaches. rotational diffusion coefficient),, evaluated as the trace of the

The formalism is much simpler, but still with accurate results, rotational diffusion tenso, = D} + 2D/, related to the so-

if we take only terms up to that af;3. In the third-order ~ called rotational correlation time.
approximation, the translational tensors are given by eq 5, A simple, immediate, and relevant comparison is that of the
replacing the Oseen tensor by the Garae la Torre- results of the procedures involving bead models with the exact
Bloomfield tensdt (which is a generalization for unequal beads Einstein values for a spherical particle. Table 1 shows such a
of the Rotne-PragerYamakawa tensé®4Lfor identical beads): ~ comparison for the two advanced bead/shell modeling ap-

proaches. It is clear that both the SHM and the CBS yield very
gi2+ 012{1 RiR; accurate results, deviating typically 1% from the EXA, with

Ul ) (11)
i

T, = @mpR) Y1 + RiRy | |
i 0] 2 2
Ri RZ 3

the only exception of the CBS result fay][ whose deviation
is still within the usual range of experimental errors for this
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TABLE 1: Percent Deviations of the Results from the SHM
and CBS Methods from the EXA for a Spherical Particle

Garéa de la Torre et al.

TABLE 2: Results for Dimers of Touching Spheres with
Ratios of Radii a1/0, = 1 (D1), 2 (D2), and 3 (D3)

method
percent deviation SHM CBS
in Dy 0.9 -0.8
in D, 0.7 -0.9
in [n] -1.1 -3.8

property. For completeness, we recall that the KRM method
without volume correction gives quite a good estimateDpf
(deviation of only 39%), but as described above, it fails badly
predicting zero friction and zeray[ with EXA for the volume
corrected KRV and the GOL theories.

In the following tables where we present the results for a
variety of structures, numerical values of the properties will be

given for only one of the methods, taken as the reference, except Dr
for a few cases when a more exact result is available. In order [7]
to make the results more general, independent of the actual size

of the particle, what we report are the ratios of each property
for the particle to the value for a sphere of the same volume,
given byD? = kg T/6170ay andD? = kgT/870a, Whereay =
(3Vm/4m)1R is the radius of the sphere with equal volume and
[7]° = 5VNa/2M (Figure 2). For the remaining methods, we
list in the tables their percent deviation from the reference; in
this way, the presentation of results is more compact, and
specifically, we focus on the differences among the various
procedures.

Table 2 presents results for dimers consisting of two touching
(tangent) spheres with radii ando,. Codes for these structures

092 &
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Figure 2. (A) SHM for D1 and (B-D) SHM extrapolations. EXA
are indicated for comparison with the SHM results.

0. 0.2 0.4 1.2

DI EXA® SHM GOL 3RD CBS KRM KRV
D, 0907 06 10 23 0.0 4.4 4.4
D° 0532 16 09 14 -09 25 -—19
D! 1125 -19 -04 0.1 0.3 -11
D, 0730 -02 02 07 -03 ~15
7] 138 -10 2.7 —54 19
D2 EXA SHM® GOL 3RD CBS KRM KRV
Dy 0956 -05 02 —1.9 15 15
0 0694 —-02 08 -24 740 -21.0
D! 1.0s8 —-0.1 01 -0.7 55
0.816 -02 05 —16 —34
1.177 -03 —69 17
D3 EXA SHM® GOL 3RD CBS KRM KRV
D 0981 -05 -01 -20 0.5 0.5
D/ 0837 00 11 -24 145 —20
D! 1031 -0.7 -06 ~—16 -3.0
Dy 0902 -03 05 -21 -13
7l 1.072 -01 -80 13

a Reference values (relative to those of the sphere of the same
volume, see text) with respect to which we give the percent deviation
of the other methods in the following columns.

areDy, wherex = o01/0». In the case of the dimer with identical
beads, practically exact results are available in the literature for
translational and rotational diffusiti146 and for the viscosit§’4°

For the dimers of unequal spheres, as well as for most of the
remaining structures to be considered hereafter, we shall take
the SHM results for the reference since, among the most accurate
methods, this is the one that allows the calculatiorydBlong

with that of D; andD. It is clear that our 3RD and CBS methods
yield excellent results for all of the properties in the three cases.
We also note how the results with the volume correction (KRV)
improve the uncorrected ones (KRM); still, they deviate
somewhat from the reference, particularly for the case of
identical beads.

In addition to the single sphere and the pair of spheres, we
have analyzed the performance of the bead modeling methods
for a variety of arrangements of touching spheres, including
the following (1—6).

(1) Polyhedral arrays: tetrahedral (P4), octahedral (P6), cubic
(P8), icosahedral (P12), and dodecahedral (P20).

(2) Regular polygons (rings) witN beads (RN).

(3) Linear strings (rods) oN beads (LN).

(4) “Lollipops” consisting of a bead of radius, followed
by a linear array ol beads with radiug, = 01/5 (CN).

(5) Three-dimensional dendritic arrays with 3, 4, 5, and 6
generations. The first generation, G1, is a V-shaped trimer with
an internal angle of 120 Succesive generations are constructed
by attaching two beads to the external beads of the previous
generation, making an angle of T2@nd avoiding bead
overlapping. The numbers of beads are 15, 31, 63, and 127 for
G3-G6, respectively. These dendrimers are instantaneous
conformations (here considered of rigid structures) of flexible
dendritic polymers simulated by a Monte Carlo procedure in
an ongoing project®

(6) Models A and B consisting of seven beads of decreasing
radii: 100, 90, 80, 70, 60, 50, and 40 A for= 1; 100, 80, 60,

40, 20, 10, and 5 A for cases with= 2; and 100, 95, 90, 85,
80, and 75 A fom = 3. Note that the disparity of bead sizes
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TABLE 3: Results for the Translational and Rotational Diffusion Coefficient, Presented as in Table 2

D: DF

structure SHM CB® 3RD (%) KRM (%) SHM CB® 3RD (%) KRM (%) KRV (%)
L3 0.84 —-0.2 1.7 29 0.34 -3.1 -1.5 20 —-14
L4 0.78 0.1 1.8 2.8 0.23 —-3.4 -1.7 12 —-11
L6 0.70 0.2 1.7 2.4 0.13 —-4.7 —-2.8 4.6 -8.1
L8 0.65 0.4 1.7 2.2 0.09 —-5.4 -3.4 1.6 —6.6
L10 0.60 1.2 1.6 0.06 2.2 6.1 —-0.01
L13 0.55 1.1 1.4 0.04 2.3 5.1 1.0
L20 0.47 0.9 1.1 0.02 2.2 4 1.9
P4 0.89 -0.8 2.0 8.8 0.64 -0.9 6.3 32 —-29
P6 0.90 -1.1 1.5 9.2 0.69 -1.1 8.8 30 —-31
P8 0.86 —-0.1 1.9 7.6 0.61 0.3 9.6 33 —26
P12 0.88 3.0 8.3 0.67 12 39 —28
P20 0.79 3.0 6.6 0.48 9.9 31 —-20
R3 0.89 -0.8 2.3 6.8 0.72 —-1.7 2.3 57 —26
R4 0.87 —-0.1 2.9 7.0 0.64 —-0.1 35 21 —-33
R6 0.81 —-0.6 2.6 5.8 0.5 —-2.1 1.7 36 -19
R8 0.74 2.9 5.7 0.37 3.6 30 —-12
G3 0.64 1.9 3.1 0.19 29 9.9 —8.8
G4 0.60 1.6 2.8 0.17 3 8.2 —8.8
G5 0.60 2.5 0.18 7.4 —-10
G6 0.63 2.2 0.22 6.8 —-14
Cc2 1.0 -2 -0.5 -0.3 0.94 —2.2 1 340 —-15
C4 0.95 —-1.8 —-0.5 —-0.2 0.67 —-1.6 0.6 101 —14
C6 0.89 -1.6 —-0.3 0.05 0.45 -2 —-0.04 48 —-11
Cl1 0.77 1.2 1.5 0.18 1.8 18 -2.9
C16 0.68 1.1 1.4 0.09 1.9 10 0.0
Al 0.80 —-1.2 1.0 2.5 0.39 —2.4 0.5 17 —-20
A2 0.85 -1.1 1.9 3.3 0.4 -3.0 -0.2 17 —-21
A3 0.79 —-1.2 0.8 2.6 0.43 -1.8 1.9 20 —-21
B1 0.71 0.0 1.5 2.2 0.13 3.9 -1.8 51 —-7.6
B2 0.81 -0.4 1.5 2.3 0.26 2.1 0.5 14 —-12
B3 0.68 1.5 2.1 0.11 —2.7 3.4 -7.1

normalized rms % difference 1.7 4.4 rms % difference 4.3 68 17

a Reference values (relative to those of the sphere of the same volume, see text) with respect to which we give the percent deviation of the other
methods in the following column8.Same as or percent.

varies from one case to another. In A structures, the 100 A beadparticle are affected differently by the hydrodynamic ap-

is surrounded by the other ones in a rather compact arrangementproximations and corrections. As the 3RD procedure provides
while in B structures, the succesive beads are colinear, on onea rather accurate evaluation of the full tensor, we recommend
side of the first one, presenting an elongated, extendedit as the best choice for the calculation of rotation of bead
conformation. models.

Results for the translational and rotational coefficients are  In Table 4, we notice the previously commented performance
reported in Table 3, and those of the intrinsic viscosity are of the volume correction of the intrinsic viscosity. For the ample
reported in Table 4. As for the dimer with unequal beads, the collection of bead models that we have considered, the neglec-
supposedly most accurate result taken as reference is that ofion of the correction (KRM) produces an under-estimation of
the SHM. In a few cases with an appreciably large number of [#] of typically 32%. On the other hand, when the correction is
beads K > 10), shell modeling presents some practical included (KRV), |j] is generally over-estimated with a typical
difficulties, and then the CBS results are used for reference. As deviation of 23%. This deviation is smaller than that found when
an indicator of the typical errors of the method for each property, the correction is neglected; therefore, it can be concluded that,
we report the root-mean-square percent difference between thendeed, the volume correction produces an overall improvement,
result of that method and the reference. but the general impression is not satisfactory. While in various

For translational diffusion, the conventional and simplest cases it gives a substantial improvement, for others, particularly
KRM procedure gives quite acceptable results for most casesfor the more globular structures (polyhedral and dendritic
(errors of about 4%), except for the compact polyhedral and oligomers), the volume correction does not improve or worsen
dendrimeric structures. The CBS and 3RD methods perform the results.
very well in all cases; for the latter, typical errors are about = However, the fact that results are too small without correction
2%. and too large with it suggests, as anticipated above, that a

For rotational diffusion, the volume correction in KRV fractional correction would give better results than the full
decreases the large errors found in many cases with thecorrection or its absence. Thus, for each structure, we have
uncorrected KRM calculation (68% reduced to 17%). Again, evaluated thé, factor that would give a result identical to the
the performance of the CBS and 3RD methods is very good. reference (eq 10). These adjusted value$, @fre reported in
Particularly, the 3RD method presents an excellent compromiseTable 4.
between computational cost and error (about 4%). The observ- We notice a dependence fifon the geometry of the bead
able properties related to rotational diffusion, like the decays model. For models in which one bead or a few beads are
of electric birefringence and fluorescence anisotropy or NMR dominant and account for a large fraction of the total volume
relaxation, depend in a complex way on the rotational diffusion so that the model has a small degree of fragmentation, the
tensor. The components or eigenvalues of this tensor of a givenintroduction of the correction is important, and thevalues
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TABLE 4: Results for Intrinsic Viscosity, Presented as in Tables 2 and 3

structure SHM CBQ KRM (%) KRV (%) f, S A f,(calc) KRI (%)
L3 1.83 —-0.5 —40 15 0.73 1.50 0.20 0.73 1.2
L4 2.39 —-0.54 -31 11 0.74 2.00 0.24 0.74 0.8
L6 3.67 0.33 —-20 7.1 0.74 3.00 0.29 0.74 0.6
L8 5.24 0.05 —-15 4.1 0.79 4.00 0.33 0.79 -0.3
L10 7.05 —-12 2.4 0.83 5.00 0.35 0.83 —-0.6
L13 10.17 -8.8 1.0 0.89 6.50 0.37 0.89 -0.9
L20 19.31 —55 —-0.4 1.07 10.00 0.41 1.07 -1.2
P4 1.41 —0.12 —30 41 0.42 2.00 0.01 0.42 6.7
P6 1.36 2.3 —24 49 0.33 3.00 0.00 0.33 7.5
P8 1.56 —-25 —24 40 0.38 4.00 0.00 0.38 0.4
P12 2.15 —23 47 0.42 6.00 0.00 0.42 -0.2
P20 2.02 —-17 32 0.49 10.00 0.00 0.49 -3.9
R3 1.40 —-0.32 —38 34 0.52 1.50 0.12 0.52 10.9
R4 1.55 -2.0 —33 31 0.52 2.00 0.15 0.52 9.3
R6 1.92 1.2 —27 25 0.52 3.00 0.18 0.52 6.0
R8 2.46 -25 16 0.60 4.00 0.19 0.60 0.5
G3 3.78 —13 13 0.50 7.50 0.11 0.50 -1.6
G4 441 -9.9 13 0.44 15.50 0.09 0.44 -1.7
G5 4.43 —8.2 14 0.36 31.50 0.07 0.36 -1.3
G6 3.95 -7.0 18 0.27 63.50 0.05 0.27 —-0.4
Cc2 1.02 -0.77 —-90 8.3 0.92 0.51 0.01 0.92 —-12.2
C4 1.19 —-0.37 —75 9.1 0.89 0.55 0.07 0.89 7.2
C6 1.48 0.00 —60 8.1 0.88 0.62 0.11 0.88 —-4.4
Cl1 2.71 —33 4.1 0.89 0.91 0.19 0.89 —2.7
C16 4.68 -20 1.9 0.91 1.36 0.25 0.91 -2.3
Al 1.96 2.6 —-21 30. 0.41 2.06 0.11 0.41 10.1
A2 1.69 2.0 —33 26 0.55 1.15 0.18 0.55 12.8
A3 1.98 25 —-20 31 0.40 2.82 0.05 0.40 5.2
B1 3.64 0.21 —20 7.1 0.74 2.06 0.30 0.74 1.7
B2 2.10 0.05 —34 13 0.73 1.15 0.23 0.73 4.2
B3 4.25 =17 6.1 0.74 2.82 0.31 0.74 1.0
rms % difference 32 23 rms % difference 55

a Reference values (relative to those of the sphere of the same volume, see text) with respect to which we give the percent deviation of the other
methods in the following column8.Same as or percent.

are close to unity. We have found that the degree of fragmenta-p, = (1/3)0® + D + D{) is the translational diffusion

tion can be quantified as follows. Suppose that the beads arecoefficient. For a globular, approximately isometric particie,
indexed so that = 1 is the largest ond, = 2 is the second  ~ g, andA ~ 0. At another extreme, for a long roB") = D

largest, and so on. Lei be the volume fraction of the bead (in  _ 1,00 andA = 3/4.
reference to the total volume). Define the cumulative amounts Thu‘ts,,one can expect some correlation betweer, tfetor
(which form a monotonously increasing serie)= 3¢ and the quantitie# andS. In other words, from the and S
andSy = N. Then, the quantity defined as values of a bead model, a proggrvalue could be estimated.
NS+S 1 N With a large body of results obtained in Fhis work, we have
S=N-— o N+--S5 (15) found an expression of the typgA, ) that fits well all of the
5 2 p4 data obtained by nonlinear least-squares fitting

— 2

has the following properties: (a) for a model with identical f*? =1-0.54%(S+1) 0'28932/(S+ 1
beads, it takes the maximum vali&s= N/2, and (b) in a model
in which the largest bead is dominant, with~ 1, S~ 0. In o o L5AS(S+1) (17)
the latter case, the volume correction is essential, while in the  This kind of function is not the only one, and by no means
former one it may not be so important. the best, which fits the data set; simply, it represents the data

Looking at the values of, for models of identical beads adequately and is useful to estimate, for a given modelf,the
(structures PN, RN, LN, and GN), we notice that they are factor corresponding to an intermediate volume correction.
smaller for compact shapes (polygonal and dendrimeric struc-  Then, instead of ignoring the volume correctidp < 0) or
tures) and largerf{ ~ 1) for elongated ones, like rods. Among  including it fully (f, = 1), we propose an alternative procedure
the various possibilities, a convenient one in our case, to expresgVith an estimated, intermediate correction, denoted as KRI in
particle’s anisometry is the anisotropy of the translational Table 4.In this procedure, we estiméérom eq 17, using the
diffusion tensor,Dy, which is an intermediate result in the €asily calculated® andA values (values denoted ggcalc) in
calculation of the translational diffusion coefficient. T, Table 4), and this estimate is employed for the evaluation of a

corrected f] from eq 9. The performance of this procedure is

quantified by the root-mean-square value of the difference from
the result calculated and that taken as reference (reported in

Dﬁz), and Dt(3) are the eigenvalues @y, the tensor anisotropy
can be expressed by

— 12 (2n2 BN2 _ R(R@ _ the last column of Table 4); therefore, that can be used as a
A=MO)+ (B + (B7) — DDy typical percent error of the procedure. We find that this error is
DUD® — DPDEN Y2 (16)  only 5.2%; this is much smaller than what we find, in a similar

way, forf, = 0 in the absence of correction (40%) or for a full
and a relative anisotropy can be formulatedas A/D; where correction withf, = 1 (22%). Furthermore, such a small
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(15) Sdvez, A.; Iniesta, A.; Gara de la Torre, J.Int. J. Biol.
Macromol1988 9, 39—43.

(16) Harding, SProg. Biophys. Mol. Biol1998 68, 207—262.

(17) Filson, D. P.; Bloomfield, V. ABiochemistryl967 6, 1650-1658.

(18) Youngren, G.; Acrivos, AJ. Fluid Mech.1975 69, 377—403.

(19) Youngren, G.; Acrivos, AJ. Chem. Physl975 63, 3846-3848.

(20) Zhou, H. X.Biophys. J.1995 69, 2286-2297.

(21) Allison, S. A.Macromoleculed999 32, 5304-5312.

difference is of the same magnitude as the typical errors in
intrinsic viscosity measurements.

4. Computer Methods

Our public-domain HYDRO program worked with the KRV
method. A new version of the program, called HYDR®, is
now available from our web site http://leonardo.fcu.um/mac- ~ (22) Aragm, S.J. Comput. Chen2004 25, 1191-1205.
romol. This new program includes various options: the volume 305(327?’) Carrasco, B.; Garaide la Torre, JBiophys. J.1999 76, 3044~
corrections can be neglected or included or, what we indeed (24) Hansen, SJ. Chem. Phys2004 121, 91119115,
recommend, the program can find the optimfymalue for an (25) Garca de la Torre, J.; Carrasco, Biopolymers2002, 63, 163~
adjusted,_intermediate (KRI) c_orrection. The adjusted_ correction 16&3) Garéa de la Torre, JBiophys. Chem2001, 94, 265-274.
does not increase computing time. The program also implements  (27) Gar¢a de la Torre, J.; Llorca, O.; Carrascosa, J.; Valpueseys.
the third-order calculation (that is recommended for the obten- Biophys. J.2001 30, 457-462.

tion of rotational properties) and the CBS method. 1 20) Garta dela Torre, J.; Huertas, M.; Carrasco Biophys. 12000
'(29) Garéé de la Torre, J.; Ortega, A.;"Behez, H. P.; Cifre, J. H.
Biophys. Chem2005 116, 121—-128.
(30) Xin, Y.; Mitchell, H.; Cameron, H.; Allison, S. Al. Phys. Chem.
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