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The conventional Kirkwood-Riseman calculation of the hydrodynamic properties of bead models gives
abnormal results for rotational quantities and the intrinsic viscosities for models with a few beads or when
one bead is dominant. The reason is that beads are treated as point sources of friction. This can be remedied
by introducing terms that are neglected in the conventional treatment of orders 0 and-3 in interbead distances.
An alternative strategy is the cubic substitution in which each bead is replaced by a cubic array of minibeads.
These procedures require a computational overload that, in the case of the intrinsic viscosity, can be avoided
using an estimate of the correction due to the nonzero volume of the beads. We have found how such a
correction can be estimated from the geometry of the model, and its application yields results that are within
the range of typical experimental errors.

1. Introduction

The calculation of solution properties of macromolecules in
solution using bead models was first proposed by Kirkwood
and Riseman (KR),1-3 who modeled linear (flexible or rodlike)
polymers as strings of identical beads. Bloomfield et al.
envisioned the possibility of using models with equal or unequal
beads to model the complex, peculiar shapes of biological
macromolecules using initially approximate forms of the KR
theories4 for the treatment of hydrodynamic interactions (HIs).5,6

The procedures were later improved employing more advanced
descriptions of HI and computational algorithms.7-11 Nowadays,
the methodology is implemented in a simple, public-domain
computer program, HYDRO,12 and is being widely used to
calculate solution properties of macromolecules and nano-
particles.

Bloomfield et al.11,13,14realized that a direct application of
the KR treatment would give abnormal results for the rotational
coefficients and intrinsic viscosity when applied to models with
a few beads or, in general, when the size of one bead is not
much smaller than the overall size of the particle. The reason
is that, in the KR theory, bead sizes are needed to express the
bead’s frictional coefficient, but beads are regarded as pointlike
sources of friction with frictional forces acting at their centers
while friction actually takes place at the spherical bead surface.
A similar situation arises in a simpler case, namely, the
calculation of radius of gyration,Rg, which for an array ofN
elements is usually evaluated as

wherefi andsi
2 are, respectively, the volume fraction and the

distance from the center of elementi to the center of mass. The
third and fourth terms in eq 1 are for indentical elements, where
rij is the distance betweeni andj. For a particle consisting of a
pair of identical, touching spheres of radiusa, these formulas

give Rg
2(uncorr) ) a2 when the correct result (obtained from

the moments of inertia of this particle) isRg
2 ) 8a2/5. If it is

applied to just a single sphere, then eq 1 gives the unphysical
result Rg

2(uncorr) ) 0 rather thanRg
2 ) 3a2/5. Actually, the

correct expression for the radius of gyration of a multisubunit
structure is15

wherefi andRg,i
2 are respectively the volume fraction and square

radius of gyration (Rg,i
2 ) 3ai

2/5 for spherical beads) of theith
subunit.

As we describe in the next section, the standard KR treatment
presents a similar problem, which may produce rather unphysical
results for the rotational coefficients and the intrinsic viscosity.
Among the various hydrodynamic properties, rotational quanti-
ties are the most sensitive to the size and shape of the particles
and play an essential role in advanced instrumental methods
like dynamic fluorescence and NMR relaxation. The intrinsic
viscosity, which is also sensitive to particle geometry (except
for globular particles), is a classically studied property which
is again increasingly used, thanks to instrumental advances16

and its use with a separation technique like multiple-detection
size exclusion chromatography. Thus, in this work, we consider
the various strategies available to avoid the mentioned difficul-
ties and propose effective and computationally efficient proce-
dures.

2. Theory and Methods

2.1. Shell Model and Cubic Substitution.As an alternative
to what we may call bead models in the strict sense, Bloomfield
and Filson13,17proposed the strategy of shell modeling in which
the particle surface is modeled as a shell of many small, identical
“minibeads”; thus, friction takes place throughout the particle
surface (a similar concept was later employed in the so-called
boundary element approach18-22 in which the elements are
platelets that pave the particle surface). Originally,13,17 the* Corresponding author. E-mail: jgt@um.es.
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hydrodynamic properties of the shell of beads were calculated
with the approximate versions of the KR theory (double-sum
formulas),4 and presently, the calculation can be done with the
more rigorous treatment of HI.23 In the shell-model (SHM)
procedure, calculations are repeated for decreasing minibead
sizes (with increasing resolution and an increasing number of
beads), and the results are extrapolated to the SHM limit of a
zero minibead radius. It has been shown that this strategy gives
very accurate results for particles whose hydrodynamic proper-
ties are quasi-exactly known from fluid mechanics;23,24 some
examples will be presented here. Bead models, in a strict sense,
can be converted into SHMs by replacing each bead by a
spherical shell. The computer program HYDROSUB25 or
HYDROPIX26 can be used for this purpose. The drawback of
this procedure is that the computing time for rigorous HI
calculations is proportional toN3; thus, for instance, if a bead
model of 20 beads is replaced by a shell of 2000 minibeads,
then the computing time is 106 times longer. Still, the typical
SHM calculations, as implemented in the programs of the
HYDRO suite,25-28 take only a few minutes of central process-
ing unit time in a personal computer. This can be easily afforded
for calculations of just one or a few structures, but it may
become prohibitive in situations where many structures have
to be considered, as in conformational searches or Monte Carlo
simulations.29,30

The cubic substitution11,14,31(CBS) is another strategy with
the same scope. Each bead, with radiusσi in the primary bead
model, is replaced by a cubic array of eight beads. As in SHMs,
although not so perfectly, the friction is moved from the center
of the bead toward its surface. The radius of the beads in the
cube is 0.4668σi; this choice nearly makes the volume and
rotational friction of the cubic array very close to those of the
primitive sphere. Now, the number of beads is 8-fold increased,
and the computing time increases by a factor of 83 ) 512. Again,
this cost may be important for cases requiring multiple calcula-
tions. Examples of the SHM and CBS model are displayed in
Figure 1.

2.2. Extended Kirkwood-Riseman Treatments: Volume
Corrections and Higher-Order HIs. The basic relationship
governing the frictional and Brownian behavior of a rigid
particle is the generalized Einstein equation,32

The left-hand side of eq 3 is the generalized, 6× 6 diffusion
matrix, containing 3× 3 blocks for translation,Dtt, rotation,
Drr, and translation rotation coupling,Dtr. This is derived from
the inverse of the 6× 6 generalized friction matrix whose 3×
3 blocks are the translation, rotation, and translation rotation
coupling friction tensors,¥tt, ¥rr, and¥tr. The¥’s are obtained

from a 6N × 6N grand resistance matrix,ú6N. Of the 6N
coordinates, 3N corresponds to the components of linear
velocities and the frictional forces, and 3N corresponds to the
components of the angular velocities and frictional torques.

The grand resistance matrix is, in turn, the inverse of the 6N
× 6N grand mobility matrix,ú6N ) µ6N

-1. These grand matrices
can be partitioned into four 3N × 3N matrices corresponding
to translation, rotation, and translation rotation coupling. Each
of them hasN × N blocks of dimension 3× 3 corresponding
to each pair (i,j) of frictional elements in the model. Thus,

and ú6N has the same form. In its most general form, the
procedure would start from the calculation of theµij

tt, µij
rr, and

µij
rr tensors and end up with the obtention ofDtt, Dtr, andDrr.
In the conventional KR treatment, the rotation and coupling

supermatrices are ignored, that is,¥rr ) 0 and¥tr ) 0; in eq 4,
there are no rr and tr blocks. The rotational friction is attributed
exclusively to the torques corresponding to frictional forces
produced by the rotational displacement of the beads, and bead
self-rotation is ignored. Indeed, the contribution of the latter is
negligible when bead sizes are much smaller than the overall
particle size. The conventional KR treatment assigns toµtt the
first term of the order ofrij

-1 in a series expansion in powers
of the reciprocal interbead distancerij,

whereδij is Kronecker’s delta ()1 for i ) j, )0 for i * j) and
I is the 3× 3 identity matrix. The Stokes law friction coefficient
of beadi is given byúi ) 6πη0σi, η0 being the solvent viscosity
andT ij being the well-known Oseen tensor

In a more rigorous and consistent formalism, if one includes
terms up to order-1 in µtt, then the 0th-order term inµrr should
not be ignored; this term has nonzeroii blocks given by

Figure 1. Illustration of the various kinds of modeling for a tetrahedral tetramer. (A) Bead model (in the strict sense). (B) SHM. (C) CBS.

(Dtt Dtr,T

Dtr Drr ) ) kT-1(¥tt ¥tr,T

¥tr ¥rr ) (3)

µ6N ) (µtt µtr

µrt µrr ) ) (µ11
tt · · · µ1N

tt µ11
tr · · · µ1N

tr

··· · · · ··· ··· · · · ···
µN1

tt · · · µNN
tt µN1

tr · · · µNN
tr

µ11
rt · · · µ1N

rt µ11
rr · · · µ1N

rr

··· · · · ··· ··· · · · ···
µN1

rt · · · µNN
rt µN1

rr · · · µNN
rr

) (4)

µij
tt ) δijúi

-1I + (1 - δij)T ij (5)

T ij ) 1
8πη0rij(I +

rijrij

rij
2 ) (6)

µii
rr ) δij(8πη0σi

3)-1I (7)
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When this term is included, the rotational friction tensor is
changed, taking the form33,34

where¥rr(uncorr) is the result from the primitive KR treatment
and the correcting term is related to the total volume of the
bead model,Vm ) (4/3)π∑iσi

3.
The 0th-order correction can also be formulated for the

intrinsic viscosity. The theoretical description for this property
is more complex and lengthy, and the reader is referred to the
original publication34 for details. The final result is a correction
to the primitive KR-type result:

wherefη ) 1 (vide infra) andM is the molecular weight. Note
that for a model of identical beads of radiusσ, each representing
a molecular weightM1 ) M/N, the volume correction for the
viscosity (the second term on the right-hand side of eq 9) reduces
to [η]1 ) 10πσ3/3M1, which is the Einstein law intrinsic
viscosity of a single bead. This correction was hinted to
(although not formally deduced) and introduced by other
workers in the calculation of intrinsic viscosity of short
(oligomeric) polymer chains.35,36

The fη factor does not appear in the original formulation34

(or, what is the same,fη ) 1). Examination of the results from
the original treatment indicates that, in most instances, while
the uncorrected viscosity falls always below exact results, EXA
(or more precise results), the inclusion of the volume correction
overestimates them. It seems that an intermediate correction
would be more appropriate, and indeed, one of the purposes of
the present paper is to consider such a possibility, trying to
estimate the adequatefη in terms of the structure of the bead
model. Actually, if we have a reference value for the intrinsic
viscosity, denoted as [η](ref), then the correction that, added to
the uncorrected value, would match the reference is

With or without volume correction, the KR treatments
described so far involve, as the main computational step, the
inversion of the 3N × 3N µtt matrix.

As reviewed elsewhere,37 higher-order approximations are
available for the mobility tensors in eq 4; for instance, the theory
of Reuland et al.38 includes terms of order up torij

-9. Another
theory is that described by Goldstein,39 which has simpler
expressions but has been found to be rather accurate.37 Actually,
we have chosen the Goldstein treatment as that representative
of the higher-order approaches.

The formalism is much simpler, but still with accurate results,
if we take only terms up to that ofrij

-3. In the third-order
approximation, the translational tensors are given by eq 5,
replacing the Oseen tensor by the Garcı´a de la Torre-
Bloomfield tensor8 (which is a generalization for unequal beads
of the Rotne-Prager-Yamakawa tensor40,41for identical beads):

It was suggested that a KR calculation using this modification
of the Oseen tensor would improve the calculation of transla-
tional properties (particularly, by removing singularities in the
supermatrix). This procedure, which will be denoted as KRM,
does not improve the calculation of rotational properties because
it still neglects terms of order-3 in the rotation and coupling
tensors (and, therefore, this approach is not to be confused with
the full third-order procedure, later denoted as 3RD) and the
volume correction or alternative approaches are needed. Instead,
one could accept those terms that are given by

and

where

When third-order HIs (3RD) or higher-order HIs (GOL) are
considered, one has to invert the full 6N × 6N supermatrix in
eq 4 instead of the 3N × 3N supermatrixµtt in the KR treatment,
and computing time increases by a factor of 23 ) 8, which is
much less important than the computing overhead required by
the CBS model or the SHM. Unfortunately, the inclusion of
third- and higher-order terms makes the formalism for the
intrinsic viscosity extremely complicated; therefore, these treat-
ments are limited to the calculation of translational and rotational
properties, and the possibility of improving the calculation of
the viscosity should be, by now, restricted to an ad hoc
modification of the volume correction, as we shall describe in
next section.

3. Numerical Results

The different approaches for the calculation of properties to
be compared are coded as: EXA, exact results; SHM, shell
model; CBS, cubic substitution; 3RD, third-order HI; GOL,
higher-order HI;39 KRM, Kirkwood-Riseman with modified
Garcı́a de la Torre-Bloomfield HI but without volume correc-
tion; and KRV, the same as KRM but with full volume
correction.

The properties that we consider (depending on the cases) are
the translational diffusion coefficient,Dt; the intrinsic viscosity,
[η]; the component of the rotational diffusion tensor corre-
sponding to an axis perpendicular to the main axis of the particle,
Dr

⊥, which is the one usually observed for elongated or planar
conformations; the component of the rotational diffusion tensor
corresponding along the main axis of the particle,Dr

|; and the
rotational diffusion coefficient,Dr, evaluated as the trace of the
rotational diffusion tensor,Dr ) Dr

| + 2Dr
⊥, related to the so-

called rotational correlation time.
A simple, immediate, and relevant comparison is that of the

results of the procedures involving bead models with the exact
Einstein values for a spherical particle. Table 1 shows such a
comparison for the two advanced bead/shell modeling ap-
proaches. It is clear that both the SHM and the CBS yield very
accurate results, deviating typically 1% from the EXA, with
the only exception of the CBS result for [η], whose deviation
is still within the usual range of experimental errors for this

µij
rr ) δij

1

8πη0σi
3
I + (1 - δij)

1

16πη0rij
3(3r ijr ij

rij
2

- I) (12)

µij
rt ) -(1 - δij)(8πη0rij

3)-1
ε‚r ij (13)

ε‚r ij ) (0 zij -yij

-zij 0 xij

yij -xij 0 ) (14)

¥rr(corr) ) ¥rr(uncorr)+ 6Vmη0I (8)

[η](corr) ) [η](uncorr)+ fη
5NAVm

2M
(9)

fη )
[η](ref) - [η](uncorr)

[η](corr, fη ) 1) - [η](uncorr)

)
[η](ref) - [η](uncorr)

5NAVm/2M
(10)

T ij ) (8πη0Rij)
-1(I +

RijRij

Rij
2

+
σi

2 + σj
2

Rij
2 (13I -

RijRij

Rij
2 )) (11)
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property. For completeness, we recall that the KRM method
without volume correction gives quite a good estimate ofDt

(deviation of only 3%37), but as described above, it fails badly
predicting zero friction and zero [η] with EXA for the volume
corrected KRV and the GOL theories.

In the following tables where we present the results for a
variety of structures, numerical values of the properties will be
given for only one of the methods, taken as the reference, except
for a few cases when a more exact result is available. In order
to make the results more general, independent of the actual size
of the particle, what we report are the ratios of each property
for the particle to the value for a sphere of the same volume,
given byDt

0 ) kBT/6πη0aV andDr
0 ) kBT/8πη0aV

3 whereaV )
(3Vm/4π)1/3 is the radius of the sphere with equal volume and
[η]0 ) 5VmNA/2M (Figure 2). For the remaining methods, we
list in the tables their percent deviation from the reference; in
this way, the presentation of results is more compact, and
specifically, we focus on the differences among the various
procedures.

Table 2 presents results for dimers consisting of two touching
(tangent) spheres with radiiσ1 andσ2. Codes for these structures areDx, wherex ) σ1/σ2. In the case of the dimer with identical

beads, practically exact results are available in the literature for
translational and rotational diffusion42-46 and for the viscosity.47-49

For the dimers of unequal spheres, as well as for most of the
remaining structures to be considered hereafter, we shall take
the SHM results for the reference since, among the most accurate
methods, this is the one that allows the calculation of [η] along
with that ofDt andDr. It is clear that our 3RD and CBS methods
yield excellent results for all of the properties in the three cases.
We also note how the results with the volume correction (KRV)
improve the uncorrected ones (KRM); still, they deviate
somewhat from the reference, particularly for the case of
identical beads.

In addition to the single sphere and the pair of spheres, we
have analyzed the performance of the bead modeling methods
for a variety of arrangements of touching spheres, including
the following (1-6).

(1) Polyhedral arrays: tetrahedral (P4), octahedral (P6), cubic
(P8), icosahedral (P12), and dodecahedral (P20).

(2) Regular polygons (rings) withN beads (RN).
(3) Linear strings (rods) ofN beads (LN).
(4) “Lollipops” consisting of a bead of radiusσ1 followed

by a linear array ofN beads with radiusσ2 ) σ1/5 (CN).
(5) Three-dimensional dendritic arrays with 3, 4, 5, and 6

generations. The first generation, G1, is a V-shaped trimer with
an internal angle of 120°. Succesive generations are constructed
by attaching two beads to the external beads of the previous
generation, making an angle of 120° and avoiding bead
overlapping. The numbers of beads are 15, 31, 63, and 127 for
G3-G6, respectively. These dendrimers are instantaneous
conformations (here considered of rigid structures) of flexible
dendritic polymers simulated by a Monte Carlo procedure in
an ongoing project.50

(6) Models An and Bn consisting of seven beads of decreasing
radii: 100, 90, 80, 70, 60, 50, and 40 Å forn ) 1; 100, 80, 60,
40, 20, 10, and 5 Å for cases withn ) 2; and 100, 95, 90, 85,
80, and 75 Å forn ) 3. Note that the disparity of bead sizes

TABLE 1: Percent Deviations of the Results from the SHM
and CBS Methods from the EXA for a Spherical Particle

method

percent deviation SHM CBS

in Dt 0.9 -0.8
in Dr 0.7 -0.9
in [η] -1.1 -3.8

Figure 2. (A) SHM for D1 and (B-D) SHM extrapolations. EXA
are indicated for comparison with the SHM results.

TABLE 2: Results for Dimers of Touching Spheres with
Ratios of Radii σ1/σ2 ) 1 (D1), 2 (D2), and 3 (D3)

D1 EXAa SHM GOL 3RD CBS KRM KRV

Dt 0.907 0.6 1.0 2.3 0.0 4.4 4.4

Dr
⊥ 0.532 1.6 0.9 1.4 -0.9 25 -19

Dr
| 1.125 -1.9 -0.4 0.1 0.3 -11

Dr 0.730 -0.2 0.2 0.7 -0.3 -15

[η] 1.38 -1.0 2.7 -54 19

D2 EXA SHMa GOL 3RD CBS KRM KRV

Dt 0.956 -0.5 0.2 -1.9 1.5 1.5

Dr
⊥ 0.694 -0.2 0.8 -2.4 74.0 -21.0

Dr
| 1.058 -0.1 0.1 -0.7 -5.5

Dr 0.816 -0.2 0.5 -1.6 -34

[η] 1.177 -0.3 -69 17

D3 EXA SHMa GOL 3RD CBS KRM KRV

Dt 0.981 -0.5 -0.1 -2.0 0.5 0.5

Dr
⊥ 0.837 0.0 1.1 -2.4 145 -20

Dr
| 1.031 -0.7 -0.6 -1.6 -3.0

Dr 0.902 -0.3 0.5 -2.1 -13

[η] 1.072 -0.1 -80 13

a Reference values (relative to those of the sphere of the same
volume, see text) with respect to which we give the percent deviation
of the other methods in the following columns.
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varies from one case to another. In A structures, the 100 Å bead
is surrounded by the other ones in a rather compact arrangement,
while in B structures, the succesive beads are colinear, on one
side of the first one, presenting an elongated, extended
conformation.

Results for the translational and rotational coefficients are
reported in Table 3, and those of the intrinsic viscosity are
reported in Table 4. As for the dimer with unequal beads, the
supposedly most accurate result taken as reference is that of
the SHM. In a few cases with an appreciably large number of
beads (N > 10), shell modeling presents some practical
difficulties, and then the CBS results are used for reference. As
an indicator of the typical errors of the method for each property,
we report the root-mean-square percent difference between the
result of that method and the reference.

For translational diffusion, the conventional and simplest
KRM procedure gives quite acceptable results for most cases
(errors of about 4%), except for the compact polyhedral and
dendrimeric structures. The CBS and 3RD methods perform
very well in all cases; for the latter, typical errors are about
2%.

For rotational diffusion, the volume correction in KRV
decreases the large errors found in many cases with the
uncorrected KRM calculation (68% reduced to 17%). Again,
the performance of the CBS and 3RD methods is very good.
Particularly, the 3RD method presents an excellent compromise
between computational cost and error (about 4%). The observ-
able properties related to rotational diffusion, like the decays
of electric birefringence and fluorescence anisotropy or NMR
relaxation, depend in a complex way on the rotational diffusion
tensor. The components or eigenvalues of this tensor of a given

particle are affected differently by the hydrodynamic ap-
proximations and corrections. As the 3RD procedure provides
a rather accurate evaluation of the full tensor, we recommend
it as the best choice for the calculation of rotation of bead
models.

In Table 4, we notice the previously commented performance
of the volume correction of the intrinsic viscosity. For the ample
collection of bead models that we have considered, the neglec-
tion of the correction (KRM) produces an under-estimation of
[η] of typically 32%. On the other hand, when the correction is
included (KRV), [η] is generally over-estimated with a typical
deviation of 23%. This deviation is smaller than that found when
the correction is neglected; therefore, it can be concluded that,
indeed, the volume correction produces an overall improvement,
but the general impression is not satisfactory. While in various
cases it gives a substantial improvement, for others, particularly
for the more globular structures (polyhedral and dendritic
oligomers), the volume correction does not improve or worsen
the results.

However, the fact that results are too small without correction
and too large with it suggests, as anticipated above, that a
fractional correction would give better results than the full
correction or its absence. Thus, for each structure, we have
evaluated thefη factor that would give a result identical to the
reference (eq 10). These adjusted values offη are reported in
Table 4.

We notice a dependence offη on the geometry of the bead
model. For models in which one bead or a few beads are
dominant and account for a large fraction of the total volume
so that the model has a small degree of fragmentation, the
introduction of the correction is important, and thefη values

TABLE 3: Results for the Translational and Rotational Diffusion Coefficient, Presented as in Table 2

Dt Dr
⊥

structure SHMa CBSb 3RD (%) KRM (%) SHMa CBSb 3RD (%) KRM (%) KRV (%)

L3 0.84 -0.2 1.7 2.9 0.34 -3.1 -1.5 20 -14
L4 0.78 0.1 1.8 2.8 0.23 -3.4 -1.7 12 -11
L6 0.70 0.2 1.7 2.4 0.13 -4.7 -2.8 4.6 -8.1
L8 0.65 0.4 1.7 2.2 0.09 -5.4 -3.4 1.6 -6.6
L10 0.60 1.2 1.6 0.06 2.2 6.1 -0.01
L13 0.55 1.1 1.4 0.04 2.3 5.1 1.0
L20 0.47 0.9 1.1 0.02 2.2 4 1.9
P4 0.89 -0.8 2.0 8.8 0.64 -0.9 6.3 32 -29
P6 0.90 -1.1 1.5 9.2 0.69 -1.1 8.8 30 -31
P8 0.86 -0.1 1.9 7.6 0.61 0.3 9.6 33 -26
P12 0.88 3.0 8.3 0.67 12 39 -28
P20 0.79 3.0 6.6 0.48 9.9 31 -20
R3 0.89 -0.8 2.3 6.8 0.72 -1.7 2.3 57 -26
R4 0.87 -0.1 2.9 7.0 0.64 -0.1 3.5 21 -33
R6 0.81 -0.6 2.6 5.8 0.5 -2.1 1.7 36 -19
R8 0.74 2.9 5.7 0.37 3.6 30 -12
G3 0.64 1.9 3.1 0.19 2.9 9.9 -8.8
G4 0.60 1.6 2.8 0.17 3 8.2 -8.8
G5 0.60 2.5 0.18 7.4 -10
G6 0.63 2.2 0.22 6.8 -14
C2 1.0 -2 -0.5 -0.3 0.94 -2.2 1 340 -15
C4 0.95 -1.8 -0.5 -0.2 0.67 -1.6 0.6 101 -14
C6 0.89 -1.6 -0.3 0.05 0.45 -2 -0.04 48 -11
C11 0.77 1.2 1.5 0.18 1.8 18 -2.9
C16 0.68 1.1 1.4 0.09 1.9 10 0.0
A1 0.80 -1.2 1.0 2.5 0.39 -2.4 0.5 17 -20
A2 0.85 -1.1 1.9 3.3 0.4 -3.0 -0.2 17 -21
A3 0.79 -1.2 0.8 2.6 0.43 -1.8 1.9 20 -21
B1 0.71 0.0 1.5 2.2 0.13 3.9 -1.8 5.1 -7.6
B2 0.81 -0.4 1.5 2.3 0.26 2.1 0.5 14 -12
B3 0.68 1.5 2.1 0.11 -2.7 3.4 -7.1

normalized rms % difference 1.7 4.4 rms % difference 4.3 68 17

a Reference values (relative to those of the sphere of the same volume, see text) with respect to which we give the percent deviation of the other
methods in the following columns.b Same asa or percent.
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are close to unity. We have found that the degree of fragmenta-
tion can be quantified as follows. Suppose that the beads are
indexed so thati ) 1 is the largest one,i ) 2 is the second
largest, and so on. Letφi be the volume fraction of the bead (in
reference to the total volume). Define the cumulative amounts
(which form a monotonously increasing series)Si ) ∑k)1

i
φi

andSN ) N. Then, the quantity defined as

has the following properties: (a) for a model with identical
beads, it takes the maximum value,S) N/2, and (b) in a model
in which the largest bead is dominant, withφ1 ≈ 1, S ≈ 0. In
the latter case, the volume correction is essential, while in the
former one it may not be so important.

Looking at the values offη for models of identical beads
(structures PN, RN, LN, and GN), we notice that they are
smaller for compact shapes (polygonal and dendrimeric struc-
tures) and larger (fη ≈ 1) for elongated ones, like rods. Among
the various possibilities, a convenient one in our case, to express
particle’s anisometry is the anisotropy of the translational
diffusion tensor,Dtt, which is an intermediate result in the
calculation of the translational diffusion coefficient. IfDt

(1),
Dt

(2), andDt
(3) are the eigenvalues ofDtt, the tensor anisotropy

can be expressed by

and a relative anisotropy can be formulated asA ) ∆/Dt where

Dt ) (1/3)(Dt
(1) + Dt

(2) + Dt
(3)) is the translational diffusion

coefficient. For a globular, approximately isometric particle,∆
≈ 0, andA ≈ 0. At another extreme, for a long rod,Dt

(1) ) Dt
(2)

) 1/2Dt
(3), and∆ ) 3/4.

Thus, one can expect some correlation between thefη factor
and the quantitiesA andS. In other words, from theA andS
values of a bead model, a properfη value could be estimated.
With a large body of results obtained in this work, we have
found an expression of the typefη(A, S) that fits well all of the
data obtained by nonlinear least-squares fitting

This kind of function is not the only one, and by no means
the best, which fits the data set; simply, it represents the data
adequately and is useful to estimate, for a given model, thefη
factor corresponding to an intermediate volume correction.

Then, instead of ignoring the volume correction (fη ) 0) or
including it fully (fη ) 1), we propose an alternative procedure
with an estimated, intermediate correction, denoted as KRI in
Table 4. In this procedure, we estimatefη from eq 17, using the
easily calculatedS andA values (values denoted asfη(calc) in
Table 4), and this estimate is employed for the evaluation of a
corrected [η] from eq 9. The performance of this procedure is
quantified by the root-mean-square value of the difference from
the result calculated and that taken as reference (reported in
the last column of Table 4); therefore, that can be used as a
typical percent error of the procedure. We find that this error is
only 5.2%; this is much smaller than what we find, in a similar
way, for fη ) 0 in the absence of correction (40%) or for a full
correction with fη ) 1 (22%). Furthermore, such a small

TABLE 4: Results for Intrinsic Viscosity, Presented as in Tables 2 and 3

structure SHMa CBSb KRM (%) KRV (%) fη S A fη(calc) KRI (%)

L3 1.83 -0.5 -40 15 0.73 1.50 0.20 0.73 1.2
L4 2.39 -0.54 -31 11 0.74 2.00 0.24 0.74 0.8
L6 3.67 0.33 -20 7.1 0.74 3.00 0.29 0.74 0.6
L8 5.24 0.05 -15 4.1 0.79 4.00 0.33 0.79 -0.3
L10 7.05 -12 2.4 0.83 5.00 0.35 0.83 -0.6
L13 10.17 -8.8 1.0 0.89 6.50 0.37 0.89 -0.9
L20 19.31 -5.5 -0.4 1.07 10.00 0.41 1.07 -1.2
P4 1.41 -0.12 -30 41 0.42 2.00 0.01 0.42 6.7
P6 1.36 2.3 -24 49 0.33 3.00 0.00 0.33 7.5
P8 1.56 -2.5 -24 40 0.38 4.00 0.00 0.38 0.4
P12 2.15 -23 47 0.42 6.00 0.00 0.42 -0.2
P20 2.02 -17 32 0.49 10.00 0.00 0.49 -3.9
R3 1.40 -0.32 -38 34 0.52 1.50 0.12 0.52 10.9
R4 1.55 -2.0 -33 31 0.52 2.00 0.15 0.52 9.3
R6 1.92 1.2 -27 25 0.52 3.00 0.18 0.52 6.0
R8 2.46 -25 16 0.60 4.00 0.19 0.60 0.5
G3 3.78 -13 13 0.50 7.50 0.11 0.50 -1.6
G4 4.41 -9.9 13 0.44 15.50 0.09 0.44 -1.7
G5 4.43 -8.2 14 0.36 31.50 0.07 0.36 -1.3
G6 3.95 -7.0 18 0.27 63.50 0.05 0.27 -0.4
C2 1.02 -0.77 -90 8.3 0.92 0.51 0.01 0.92 -12.2
C4 1.19 -0.37 -75 9.1 0.89 0.55 0.07 0.89 -7.2
C6 1.48 0.00 -60 8.1 0.88 0.62 0.11 0.88 -4.4
C11 2.71 -33 4.1 0.89 0.91 0.19 0.89 -2.7
C16 4.68 -20 1.9 0.91 1.36 0.25 0.91 -2.3
A1 1.96 2.6 -21 30. 0.41 2.06 0.11 0.41 10.1
A2 1.69 2.0 -33 26 0.55 1.15 0.18 0.55 12.8
A3 1.98 2.5 -20 31 0.40 2.82 0.05 0.40 5.2
B1 3.64 0.21 -20 7.1 0.74 2.06 0.30 0.74 1.7
B2 2.10 0.05 -34 13 0.73 1.15 0.23 0.73 4.2
B3 4.25 -17 6.1 0.74 2.82 0.31 0.74 1.0

rms % difference 32 23 rms % difference 5.5

a Reference values (relative to those of the sphere of the same volume, see text) with respect to which we give the percent deviation of the other
methods in the following columns.b Same asa or percent.

S) N - ∑
i)1

N Si + Si-1

2
≡ N +

1

2
- ∑

i)1

N

Si (15)

∆ ) [(Dt
(1))2 + (Dt

(2))2 + (Dt
(3))2 - Dt

(1)Dt
(2) -

Dt
(1)Dt

(3) - Dt
(2)Dt

(3)]1/2 (16)

fη ) 1- 0.542S/(S+ 1) - 0.289S2/(S+ 1)2 +

1.50AS/(S+ 1) (17)
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difference is of the same magnitude as the typical errors in
intrinsic viscosity measurements.

4. Computer Methods

Our public-domain HYDRO program worked with the KRV
method. A new version of the program, called HYDRO++, is
now available from our web site http://leonardo.fcu.um/mac-
romol. This new program includes various options: the volume
corrections can be neglected or included or, what we indeed
recommend, the program can find the optimumfη value for an
adjusted, intermediate (KRI) correction. The adjusted correction
does not increase computing time. The program also implements
the third-order calculation (that is recommended for the obten-
tion of rotational properties) and the CBS method.
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