Supporting Information

Solvent Assisted Anionic Ring Opening Polymerization of Glycidol towards Medium and High Molecular Weight Hyperbranched Polyglycerols

Muhammad Imran ul-haq,¹ Rajesh A. Shenoi,¹ Donald E. Brooks^{1,2} and Jayachandran. N. Kizhakkedathu^{1,2*}

¹Centre for Blood Research, Department of Pathology and Laboratory Medicine, and ²Department of Chemistry, The University of British Columbia, Life Sciences Centre, 2350 Health Sciences Mall, Vancouver BC, V6T 1Z3, Canada

*Address to which correspondence should be addressed Dr. Jayachandran N. Kizhakkedathu 2350 Health Sciences Mall, Centre for Blood Research, University of BC, Vancouver, Canada Email: jay@pathology.ubc.ca Phone: 1-604-822-7085 Fax: 1-604-822-7742 Table S1. Degree of branching (DB) and relative abundance of different structural units determined from ¹³C NMR. ^{*a*}Integral data determined by IG ¹³C NMR in D₂O.
b. HPG synthesized in 1,4-dioxane; c- HPG synthesized in THP; d- HPG synthesized in EGDE

R ^a _O ^{-R}	R ^a O OH	R ^a O-R	R ^a OH
ОН	O-R	O-R	Сон
Linear 1,3 (L ₁₃)	Linear 1,4 (L ₁₄)	Dendritic (D)	Terminal (T)

ragion	shift (nnm)	1,4-dioxane	ТНР	EGDE	
region	smit (ppm)	(Mn- 100 g/mol) ^b	(Mn-100 g/mol) ^c	(Mn-75 g/mol) ^d	
L ₁₃	81.3, 81.5	1.0	1.0	1.0	
D	79.7, 80.0	3.03	2.71	3.37	
$2L_{14}$	73.8	7.45	5.98	7.20	
2 D, 2 T	72.0-73.0	12.58	10.93	14.18	
L_{13}, L_{14}	70.5, 70.8	4.61 4.03		5.13	
Т	64.2, 64.3	3.36	3.36 3.12		
L ₁₃	62.6	0.88 0.94		1.30	
Structural					
Units	Error	relative abundance (%)			
linear 1,3 (L ₁₃)	$\pm 2\%$	9	11	11	
dendritic (D)	$\pm 1\%$	25	23	29	
terminal (T)	$\pm 2\%$	32	34	32	
linear 1,4 (L ₁₄)	$\pm 2\%$	34	32	28	
DB	$\pm 0.05\%$	0.56	0.57	0.58	

Table S2. Ratio between Linear 1,3 (L₁₃) and Linear 1,4 (L₁₄) units determined from integrals values by IG ¹³C NMR in D₂O. Molecular weight characteristics determined by GPC-MALLS in 0.1 N NaNO₃ solution. ^aHPG synthesized in EGDE has Molecular weight of 75 g/mol.
b. HPG synthesized in 1,4-dioxane; c- HPG synthesized in THP; d- HPG synthesized in EGDE

Polymers (KDa)	1,4-dioxane ^b (L ₁₃ :L ₁₄)	THP ^c (L13:L14)	EGDE ^d (L13:L14)
HPG-8	1:3.15	1:2.93	1:2.61
HPG-100 ^a	1:3.71	1:2.91	1:2.54
HPG-500	1:3.01	1:2.82	1:2.75

Table S3. ^{*a*}Reaction solvents; ^{*b*}Molecular weight characteristics determined by GPC-MALLS; ^{*c*}Radius of hydration (R_h), ^{*d*}radius of gyration (R_g) and intrinsic viscosity [η] determined by viscometry (Viscotek) in 0.1 N NaNO₃ solution.

Polymer	Solvent ^a	M _n (g.mol ⁻¹) ^b	M _w /M _n ^b	R _h ^c (nm)	R _g ^d (nm)	[η] ^d (dL/g)
1	Dioxane	104	1.4	4.85	6.32	0.0552
2	THP	113	1.4	5.18	6.75	0.0587
3	EGDE	75	1.5	4.85	6.32	0.0569

Figure S1. A)- MALLS chromatograms of molecular weights distributions of HPGs obtained with different 1, 4-dioxane/glycidol ratios at constant initiator/glycidol ratio. B)- MALLS chromatograms of molecular weight distributions of HPGs obtained with different tetrahydropyran/glycidol ratios at constant initiator/glycidol ratio. Molecular weight

characteristics determined by GPC-MALLS in 0.1N NaNO₃, TMP (0.125 g) and polymerization time (15h).

Figure S2. A)- MALLS detector chromatograms of HPGs obtained with different glycidol concentrations at constant 1,4-dioxane/glycidol ratio. B)- MALLS detectors of chromatograms of molecular weight distributions of HPGs obtained with different glycidol concentrations at a

constant tetrahydropyran/glycidol ratio. Molecular weight characteristics determined by GPC-MALLS in 0.1N NaNO₃, TMP (0.125 g) and polymerization time (15h), solvent/glycidol ~1.5.

Figure S3. HPG representing different structural units of branching. Several environments within the structure exist, including linear (L), dendritic (D), and terminal (T). Linear units are formed from either secondary hydroxyls ($L_{1,3}$) or primary hydroxyls ($L_{1,4}$).

Figure S4. Thermogravimetric analysis of HPGs synthesized using three different solvents.