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Abstract

Each moving unit of a long, flexible, molecule induces in the surrounding solvent 

a velocity field vhich reacts on the motion of other segments. This long-range hydro- 

dynamic interaction modifies strongly the dynamical form factor S(qv) at low fre-

quencies co and small scattering vectors q. For neutron scattering (qRc ^  where 
Rq is the radius of gyration of the polymer), the frequency width A c of S(qu>) at 
fixed q becomes proportional to q*(for an ideal coil). Also the effect of stretching 

the molecule becomes more dramatic, since stretching greatly reduces the hydro- 

dynamic interactions,

I. Introduction

IN A preceding paper [l] we have discussed the slow, quasi macroscopic motions of a flexible 

polymer chain in the so-called "Rouse limit": namely when the velocity of each monomer depends 

only on the forces applied on it. This led to comparatively simple laws for the inelastic 

scattering of neutrons by a long chain. In particular the frequency width Acô  of the scattered 

beam (for a monochromatic incident beam and a fixed momentum transfer hq) was found to be pro-

portional to q4.

We now turn to the more realistic case where the motion of the solvent is taken into account. 

Then a number of new effects come into play:

(a) the motion of the solvent can be of interest in itself: typically one could measure the 

inelastic incoherent scattering of neutrons by hydrogen - containing solvent molecules moving 

in a macromolecular mesh of low scattering power: this experiment gives a diffusion coefficient, 
and should supplement in an interesting way the nuclear resonance data. However, in the present 

paper, we shall not be concerned with this class of problems : if we discuss incoherent scatter-

ing, for instance, we assume that the only scattering centers of importance are nuclei of the 

polymer chain. For coherent scattering, we assume that our solution can be treated as essenti-

ally incompressible [2]. Then we can again consider that the solute alone participated in the 

scattering, the specific scattering amplitude a (per cm3) being the difference asolute -

a solvent *

* Laboratoire associe au C.N.R.S.
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(b) the presence of the solvent leads to long-range interactions between monomers. Let us 

for instance idealise each monomer as a small sphere of radius 6. Then if a force 9W acts on the 
m-th monomer, it takes a velocity relative to the solvent
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(1)

where r| is the viscosity of the solvent. This induces a velocity field around the moving sphere, 

^f the form*

(2)

where u is a unit vector in the direction r - rw.

Each monomer drifts in the velocity field 5y . The total velocity of the n-th unit is thus

(3)

where v0(rn) is the velocity field of the solvent in the absence of any polymer molecule (for 
our scattering problems we always have v° = 0).

Equations (1-3) show that drn/dt depends not only on the force q>n applied on the n-th unit, 
but also on all other forces <pm. We assume that the 9's are small, and compute effects only to 

first order in 9 : then we can average equation (2) over all polymer configurations in a state 
of 0 forces. The terms in |rn - r j ~ 3 disappear when we perform the angular average, and assum-
ing an ideal coil we are left with :

(4)

where

(5)

and a2 is the mean square end-to-end dimension of one sub-unit, as defined in (I). The con-

sequence of this long-range hydrodynamic interaction for the viscosity and other macroscopic 

properties of the solution have been worked out by Kirkwood and Risemann [3] and more accurately 

by Zimm [4]. The present paper represents essentially an extension of ref. [4] to cover some
problems of inelastic scattering, 

v

We shall discuss first the limit of an infinitely long polymer chain (Section 2), since the 
calculations are comparatively simple for this case. In practice, this limit will be realised 

if qRQ »  1 where Rq is the radius of gyration of the molecule and q is the scattering vector j
j

* See for instance Landau-Lifshitz, Fluid mechanics, Chap. 2, Pergamon Press, Oxford.
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(6)

( 0 : scattering angle; A : incident wavelength). For thermal or subthermal neutrons qr1 will
O O

usually be smaller than 150 A (corresponding to A = 6 A and 0 = 2°) and the condition qRg »  1 

is satisfied in general. For light scattering, on the other hand, we usually have qRQ <  1 and a 
more complicated discussion allowing for the finite size of the molecule must be carried out.

The physical principles of this discussion are given in Section 3. The calculational aspects 

are described in an appendix.

2. Inelastic Scattering by a Very Long Chain (qRQ »  l)

(1) Equation of motion and relaxation modes of an ideal coil

The force q>n acting on the .n-th sub-unit has been rederived in (I) and is given by

(7)

where an - rn + x - rn =  3r/3n. The first term Fn is the external force. The second term

is a force proportional to 3 2r/3n2, i.e. to the curvature of the chain. We now restrict our 

attention to a free chain (Fn = 0) in a solvent at rest (v0 s 0). Using equations (3) and (4) 
we arrive at an irreversible equation of motion of the form

(8)

where

(9)

r\o being the viscosity of the solvent.

For our infinite chain the eigenmodes of equation (8) are still very simple, namely

(10)

with relaxation frequencies 1/tp given by

( I D

Again we are only interested in the modes of low relaxation frequency (p «  1) for which



equation (11) can be reduced to:
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(12)

We conclude that, as soon as the parameter £ is non zero, the hydrodynamic interactions 
dominate the relaxation behavior at low frequencies (p -> 0): in this limit we can drop the p2 

term and write

(13)

with

(14)

We can think of W as of the microscopic jump frequency of a single monomer moving in the 

solvent, and expect for W values in the range 1010 - 10 13 sec'1.

An important question arises at this stage : the Stokes formula for the velocity field 

(equation (2)), on which our analysis is based, is valid only for motions at very low fre-
quencies and not too long distances |rn - r J . Is it in fact correct for our purposes? The 
answer is yes in the limit p 0, and the proof proceeds as follows: If the frequency scale in 

which we are interested is Q ~  1/tp, equation (2) applies for distances jr„ - rm| < L where

L2 = no/poQ an(* Po is solvent density. This corresponds to s = \n - m\ < L2/a2, and leads 
to a cut-off in the summation 1 of equation (11) at the value

s

(15)

where

(16)

If p is much smaller than po, smax is much larger than 1/p : then the convergence of the sum 

1 in equation (11) is controlled by the factor cos ps, and is independent of the existence of
s

the cut-off smax. For all typical solvents at room temperature po is large (of the order 103). 

The values of p in which we are interested are much smaller than 1 : thus p «  p0 and equation
(2) is correct.



(2) Self correlation function and incoherent scattering

The basic correlation function derived from equation (8) is

Vol.3. No.4 QUASI-ELASTIC SCATTERING BY POLYMER SOLUTIONS 185

(17)

This is identical with equation (6) of I : the only new feature is that 1 / t p is now proportions.1 
to p3/2 as shown by equation (13) while in the Rouse limit of I (§ -* 0 ), 1 / t ? was proportional 
to p2.

We now apply these results to the self correlation function

(1 8 )

(the latter form being valid in the small q, large t, limit - as explained in I - and xn being 
the projection of r„ along q). Writing the rn’s in terms of the am’s and using equation (17), 
we arrive at the formula

(19)

Finally we construct the dynamic form factor for incoherent scattering

(2 0)

where we have introduced the reduced variables

(21)



and the constant a = (2/ir)r(l/3).

It is useful to compute the dynamic form factor at 0 frequency
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(2 2)

and to plot the results in terms of the dimensionless function

(23)

A graph of this function ĝ (co) is given on Fig. 1. The half width at half maximum is Aco = 1.1 

corresponding to

(24)

FIGURE 1

Aco is now proportional to g3 : this is somewhat more favorable, from an experimental point of 

view, than the g* dependence which we had obtained in the Rouse limit : Aco at a fixed, small q



is now larger.

What are the respective, domains of validity of the Rouse limit and of the present approxi-

mation? In all cases we have Acog ~  1 / t p and p ~  qo . The relaxation frequency 1 / t p is given by
equation (2.6). The contribution of the hydrodynamic effects dominates when £p3/2 »  p2 or 

p «  £2. Thus we arrive at the following set of rules:
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In practice, if £ is in a suitable range and if the transition between the two domains can be 

observed, one may derive £ from the experimental data.

(3) Coherent scattering

Our starting point here is equation (17) of I : the time-dependent correlation function to 

be studied is

(25)

where F(q) is a form factor for the monomer (and can be replaced by F(o) for most cases of 

interest). Expressing the rn's in terms of the s and making use of equation (17) we arrive 

at

(26)

where

(27)

In the small q limit we can replace the sum I in equation (25) by an integral and write
m
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(28)

where 8 is still defined by equation (21) and

(29)

Finally, the dynamic form factor per monomer unit is

l Scoh(q«) f9 dt 5 coh(gt) e <«*
N 2ir J

2 /*00
= — -------  I F( q) | 2 / dQ f( 8) cos(u8)

it M' e5/ 2 J 0'

(30)

FIGURE 2



The function f(Q) and the Fourier transform g C(S) = f °° / cos u 0 d0 have been computed
o

numerically, and the results for gc are shown on Fig. 2. The half-width at half maximum of gc 

is Aw = 0.8, and this leads to
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(31)

Again the width is proportional to g3 and all the qualitative remarks of the preceding para-

graph remain valid.

3. Light Scattering by a Chain of Finite length

(1) Weakness of internal motion effects

As explained in the introduction, the experiments on the inelastic scattering of light cor-

respond to situations where gflg is of order unity, or smaller: the finite size of the chain must 

be taken into account.

We shall first consider the simplest type of scattering, where depolarisation effects can be 

neglected : we assume that the induced dipole P„ induced on the n-th monomer hy the electric 

field E(r„) is of the form

a being a scalar. We also assume that the frequency dependence of a on the frequency band of 
interest (width ~  Aco„) can be neglected : this is quite correct in general. Then the frequency 
distribution of the scattered light at a fixed scattering angle 0 is still given by the coherent 

dynamic form factor Scoh(gw) with q defined by (6). For the present problem we can again reduce 
5coh(gt) to the gaussian form of equation (25).

(a) when the molecule is comparatively small (qRg << 1), it is clear that we cannot study 

its internal motions by light scattering : we can replace without error the coordinates xn of 
each monomer by the coordinate g of the center of gravity, and we have

(32)

If the molecule diffuses in the solvent with a diffusion coefficient D, then in the large time 
limit of interest we can write:

< [g(o) - g(t)]2 > = 2Dt 

Scoh('qt) = \NF\2 e~Oq2t

(33)

and the Fourier transform Scoh(gw) is a Lorentz curve of width Dg2. Thus in the small g limit 

the only parameter which can be derived from this type of experiment is the diffusion coeffi- 

cient D.

(P) when qRc ~  1, can we extract from the inelastic scattering data a significant, information



on the internal motions of the molecule? We shall now show that the answer to this question is 
no, unless reaches really high values (of the order of 2.5) which are not usually realis-

able in practice.

The discussion is particularly simple in one case : namely when the internal motions are com-

pletely decoupled from the motion of the center of gravity : let us write the coordinate xn of 
the n-th monomer in the form
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(34)

where I pn = 0. Then :
n

(35)

We say that the internal motions are decoupled from g when the third term in equation (35) 
vanishes. Physically, this decoupling property is related to the following question: if we act 

on each monomer with a constant force Fn = F, the center of gravity of the molecule takes a uni-

form motion : is the internal shape of the molecule distorted? In the Rouse limit there is no 

distortion; but, with hydrodynamic interactions, there is a (small) distortion : the two ends 

of the molecule tend to lag backwards*. However, even in this case, the deviations from the 

uncoupled behavior lead to corrections of order 2 per cent only (see Appendix). Thus, in the 

following, we shall drop the last term in equation (35). Then, returning to equation (25), we 
can write:

(36)

(37)

For t - 0, Sred(g, 0) is the familiar Debye function for coherent scattering by a freely 
orienting chain

(38)

* This coupling between overall and internal motions is reflected mathematically in the Zimm 
analysis by the non-orthogonality of the various relaxation modes. It is amusing to note 
that for a ring-shaped chain (no arms to be left behind) the orthogonality is restored and 
equation (35) is decoupled.



For t -* oo, 5red(g, t) tends towards a finite limit S(q)' We might call 5 the Debye-Waller 
factor for the long chain. At large times t, p„(0) and p„(t) are uncorrelated. Thus we may 

write
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(39)

Making use of classic results for a freely orienting chain, we have

and replacing the sum I by an integral we arrive at
n

(40)

The two curves giving S red(q, 0) and Sred(q, co) = S(q) as a function of y = q2/^2 are shown

°.5 -

.+*a>)

0 2 4 6 

Nq2cr2 
6

on Pig. 3. The contribution to the scattering function of the internal motions is measured by 

the difference 5 red(gf 0) - »Sred(g, oo). To observe clearly the internal motions we require

This will be realised only for qRQ> 2.5. Typical values for Rq in flexible chains are of order



o
500 A. The maximum q for a given wavelength A is 4tt/A (corresponding to 0 = it). Thus, to get

o
an interesting signal, one would probably have to work with A < 3000 A. Such experiments with 

ultraviolet laser sources may become feasible in the future. General formulae, applicable for 

all values of qRg, are given in the appendix.
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4. Conclusions

(1) Experiments using neutrons or light

The existence of long-range hydrodynamic interactions between monomers modifies profoundly 
the frequency spectrum of the internal motions in an ideal coil. This change is rather favor-
able from the point of view of inelastic neutron scattering experiments, since the frequency 
width Acoq vanishes now less rapidly (like q3) in the small q limit of interest : thus Acoq be-
comes slightly less difficult to detect.

As regards the inelastic scattering of photons, we have seen that the experiments with un-

polarised light can bring in information on the internal motions only for very short wavelengths
/y O O

or very large molecules (RG > 1300 A for A = 6000 A). Such large values of Rq occur only in 
semi-rigid molecules such as DNA : in such a case the subunits are large, the frequency scale 

is reduced, and also the analysis must be modified. An important parameter for semi-rigid 
molecules is the ratio of the persistence length L [6] to qr1. For qL »  1, we are essentially 

dealing with a rigid rod, and expect a rather well defined phonon spectrum : 5(qa)) should give 

some information on this spectrum (rather blurred, however, because of the orientational dis-

order). For qL «  1, we expect a central peak of the typt described here. What happens for 

qL ~  1 is not known.

Can the frequency distribution of the depolarised light scattered by the polymer give us any 
interesting information? What is measured here is a quadrupole correlation function. It is 
certainly sensitive to internal motions even when qRg «  1. But it is much more difficult to I 
compute than the vector-vector correlation functions (17). The calculation can be done within 

the model used by Zimm [4] in his study of flow birefringence. But the validity of this model 

is dubious : each monomer is described as a deformable object with a gaussian probability dis-

tribution. Of course, we can always define larger subunits which are gaussian; but then the 
average quadrupole of the subunit is not the quantity which dominates the depolarisation effect. 
Thus, at the present stage, we cannot make any clear-cut prediction on the depolarised light.

Another type of problems is related to what happens when the chain is extended - in practice 

by associating the chains in a loose, but connected, network on which mechanical stresses can 

be applied. In the Rouse limit, as explained in (I), this reacts on Acô  only for coherent 

scattering. With hydrodynamic interactions on the other hand, the effects are more drastic: on 

extension, the coupling terms of the equation of motion (8) go progressively from an \n -  m\~^ 
dependence to a |n - mj*1 dependence*. Thus the relaxation times l/*rp are modified : as a result 

we expect Acô  (for fixed q) to be changed by the extension, even in the case of incoherent 

scattering.

* This is one of the main causes for the non - Newtonian viscous beh/aior observed in dilute 
polymer solutions. Another complication brought in by stretching, and to be mentioned, is 
that, in this case, the static Stokes formula (2) cannot be used.



(2) Excluded volume effects

All the analysis of the present paper was restricted to the case of an ideal coil : the power 
laws derived here (such as Acô  ~  g3 in Section 2) can at best apply only in poor solvents where 

an attraction between neighboring monomers compensates the large repulsion for overlapping 

monomers : that is to say, very close to the compensation temperature 0, where the first virial 

coefficient vanishes.

But, in general, excluded volume effects may be important, and they will react on the relaxa-
tion time spectrum in two different ways:

(1) The distribution of relative distances rn - rm is strongly modified: according to the 
self-consistent calculation of Edwards [7] the average in equation (4) now becomes:
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(2) During the motion, each chain portion cannot be crossed by another chain portion (this 

occurs even at the 0 temperature) : no serious predictions concerning this effect are available 

at the present time.

If we boldly assumed that (1) is the only important effect, we would again be led to rather 

simple power laws, namely

A
where V! is a characteristic rotational frequency of the monomer. It is very much to be hoped 

that the future high-resolution, high-flux neutron spectrometers will allow for a detailed com-

parison between these proposed power laws and the experimental data.
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APPENDIX

Correlation Functions for Finite Chains

(1) Introduction of response functions 

Our aim is to compute averages such as
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in an ideal coil of N  segments. In the gaussian approximation of equation (18) and equation 
(25), such averages suffice to compute all dynamic form factors.

Our starting-point is to introduce a set of response functions (}„„(t) defined as follows: 
assume that a system of small external forces Fm(t) (all parallel to the * axis) is applied on 

the chain. The average velocity of the n-th unit is then of the form

The PnB’s will be obtained from the equations of motion (3). When they are known, we can derive 

correlation functions from them by the Kubo formula [8]: for a classical system, this takes the 
form

(A. 1)

We can write

Thus we can go from the response functions (A.1) to the correlation functions g by two 
successive integrations. As regards the integration constants, we note that for a classical 

system (with 0 magnetic field) gnn(t) is real and even in t; thus ^gnm/^t\ = 0. Finally we 
obtain * 0

(A. 2)

(2) Response functions in the Zimm model

The equation of motion, derived from (3) for a solvent at rest (vq = 0), is:

(A. 3)
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(A.4)

The force q>„ has been written down in equation (7)

(A.5)

where A is the symmetric matrix introduced by Zimm [4]

In an operator notation we rewrite equations (A.3) and (A. 5) as :

(A.6)

■ A A
We then introduce the eigenvectors |p) and eigenvalues 1/p Tp of the matrix BA

As explained in ref. [4], the matrix BA  is not hermitian, and the vectors |p) do not form an 

orthogonal set (except for the Rouse limit). But we have the property

We also introduce a normalised vector |o), for which all components are equal to Ah1/2, and a 

vector Ipo) = £ - 1 | o )  [(0\B~ 1 1 0)] _1. This is such that

We can analyse | x) in the eigenmodes |p) now :

Taking the scalar product with (p|2 (for p f 0), we get
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(A.7a)

For p = 0 we take the scalar product with ((301 and get

(A.7b)

Writing Fn = (n | F ) ,  etc., we obtain the response functions from equation (A.7)

(A. 8)

The first term is independent of n and m since (n|o) = (o|m) = N“1/2. In both terms the symbol 

6+ represents a 6 function with a peak immediately after t = 0 (such that /0°°8+(t)dt = 1).

(3) Correlation functions

Inserting (A. 8) and (A. 2) and performing the time integrals, we obtain:

(A.9)

Also a similar calculation gives for the motion of the center of gravity (along x)

(A.10)

where D - kgT N~ 1 [(0 | 11 0)] “ 1 is the diffusion coefficient. The last term in equation 

(A. 10) shows the coupling between the motion of g and the internal deformations. At large times 

equation (A. 10) is dominated by the term 2Dt : this corresponds to the approximation of equa-
tion (33), and is valid when t »  T l t  where -ti'1 is the lowest relaxation frequency of the chain 
(t i”1 ~  D Bq~2). In the opposite limit (t «  t j ), equation (A. 10) becomes:
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(U) Expansion of Scoh(qa) to order g2flg2

Equations (A.9) and (18) can be used to compute numerically the dynamical form factors at

all values of qP.Q. Here we consider only the corrections of order g2̂ 2 to the coherent form 

factor : the result is :

(A.11)

with

r . . _ 1 Dq + TP 1
Lp (<£>) - ~ " -

„ a 2 ^
SR2 = 2~t , |

N , (pUlp)
pf 0

he Rouse limit the modes |p) are orthogonal tare left with

[ 92^ G 2
* ^ c o h ( 9 '  ®)  ~ a )  1 --------- -—

O

Thus, to order q2RG2» there is no effect of the internal motions on the dynamical form factor.

(b) in the hydrodynamic limit ther.e is an effect, the relative importance of which is
measured by 5R2/Rg2. Making use of the numerical calculations of ref. [4] we find that the 

dominant contribution comes from p = 2 (first non-trivial even mode). The corresponding relaxa-

tion frequency is

1
—  = 12.79 £W(2/N ) 3 / 2 . 
T 2

Keeping only this mode we find 6R2/Rq 2 ~  v 1.7 10“2 : thus there is now an effect of the 

internal motions, but it represents less than 2 per cent of the signal.
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