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We have measured the frequency-dependent shear modulus of entangled solutions of wormlike micelles by
high-frequency microrheology and have compared the results with those from macrorheology experiments
done on the same samples. Using optical microrheology based on laser interferometry we have measured loss
and storage moduli over six decades in frequency up to about 100 kHz. We present data over a decade in
concentration in the entangled regime and find good agreement between micro- and macrorheology, thus
validating recently developed microrheology techniques. By collapsing data for different concentrations, we
furthermore determine both the concentration scaling of the plateau modulus and a power-law exponent of the
complex shear modulus at high frequencies.
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I. INTRODUCTION

Microrheology is a powerful new technique for studying
the viscoelastic properties of complex fluids and soft materi-
als with high bandwidth and spatial resolution �1–8�. To de-
termine the viscoelastic behavior of a particular system using
this technique one must employ a number of assumptions
and subtle physical approximations in evaluating the data.
Until now a rigorous comparison between established con-
ventional rheology and microrheology on a stable, well-
known system has been lacking. Here we set out to provide
such a comparison using entangled solutions of wormlike
micelles.

Microrheology techniques are based on tracking the mo-
tions of micron-sized probe particles embedded in the system
to be studied. Variations of the technique include active and
passive methods, as well as single- and multiple-particle
methods �8�. In the passive methods, such as the one applied
here, the fluctuation-dissipation theorem of linear response
theory �9� is used to extract viscoelastic parameters
�5,6,8,10� of the material from the thermal equilibrium fluc-
tuations of the embedded particles. In contrast to typical
macroscopic mechanical rheology, no strain is applied to the
material during the measurement, and linear response param-
eters can be measured directly without extrapolation. This is
particularly useful in soft materials and complex fluids where
even a small imposed strain can cause reorganization of
structure within the material and thus change its viscoelastic
properties �e.g., strain hardening or shear thinning�. Further-
more, when using micron-sized probes, probe and solvent
inertial effects are largely negligible up to frequencies of
100 kHz. Microrheology thus achieves a bandwidth far be-
yond that of conventional macroscopic rheometers, with the
exception of specialized designs, such as ones using resonant
probes �11,12� or the instrument we use here for comparison,
which is based on piezoelectric actuators and reaches 10 kHz
�13�.

In contrast to common instruments such as plate-and-cone
rheometers, there is no constant-volume constraint on the
medium around the probe in microrheology. Therefore the

probe motions can couple to pure shear modes as well as to
compressional modes. This opens a new window to study the
latter in complex fluids, but it also complicates the compari-
son with macrorheology, especially at low frequencies. If the
material studied is a polymer solution, the viscoelastic re-
sponse measured by microrheology will asymptotically ap-
proach pure shear response due to the viscous coupling of
polymer to solvent at higher frequencies �6,14–16�.

The thermal motion of a single particle reflects the vis-
coelastic properties of its environment on roughly the scale
of the probe particle radius since this is the length scale on
which the strain-field around the particle decays �6,17�. This
sets the spatial resolution of the method and therefore results
in micrometer resolution for micrometer particles. Ideally
one wants to measure material properties that are not per-
turbed by the presence of the probe particle itself. From the
preceding argument it is evident that this will not be the case
if the particle perturbs the medium on a length scale compa-
rable to its radius. The probe can influence the material near
its surface in several ways, e.g., by physical entropic deple-
tion or by chemical or electrostatic interaction with the ma-
terial. How deep into the material such a perturbation propa-
gates depends on the characteristic length scales of the
material in relation to the probe size. If the probe particle is
smaller than material scales �such as polymer persistence
length, contour length, Debye length, etc.�, perturbations will
decay over a distance of order the probe size and true bulk
properties are not measured. If all material scales are smaller
than the particle, surface effects should be negligible.
Biopolymer solutions and gels made of, for example, fila-
mentous actin �6,7�, DNA �18�, or polysaccharides �7� typi-
cally have intrinsic length scales as large as a micrometer. In
this case it may be insufficient to analyze the fluctuations of
an isolated probe particle. A way to avoid probe effects and
determine the bulk viscoelastic behavior in these cases is to
measure the correlated fluctuations of pairs of particles sepa-
rated by more than the relevant material length scales �two-
particle microrheology� �7,19�. In this study we have se-
lected a system with small characteristic length scales, so
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that single-particle microrheology should not be influenced
by local surface effects.

The polymer system studied here was an entangled solu-
tion of wormlike micelles. Wormlike micelles are cylindrical
assemblies of amphiphilic molecules that form spontane-
ously in aqueous solutions at particular concentrations and
temperature conditions. Their properties have been well stud-
ied, both experimentally and theoretically �20–22�. We have
used cetylpyridinium chloride �CPyCl� as the surfactant and
sodium salicylate �NaSal� as a strongly binding counterion.
The wormlike micelles formed in this system have a diam-
eter of 2 to 3 nm, contour lengths of 100 nm–1 �m, and a
persistence length of order 10 nm �20�. At the concentrations
we used �1–8 wt % �, the mesh size varies from about
30 to 10 nm �22�.

Despite their rather exotic structure and dynamics, worm-
like micelles exhibit well-defined rheological properties,
similar to those of covalently linked linear polymers. When
entangled wormlike micelles are sheared, relaxation of stress
occurs via reptation and scission �23�. Both processes, occur-
ring simultaneously, lead to a single dominating relaxation
time being observed. Systems with one relaxation time are
known as Maxwell fluids and have been studied extensively
�22,24�. In general, studies performed on wormlike micelles
have focused on low-frequency properties where the simple
mechanical analog, the Maxwell model, consisting of a dash-
pot and a spring in series, can be used to model the vis-
coelastic response. Higher frequency rheology has been per-
formed on micelle systems confirming the Maxwell regime
at somewhat elevated frequencies �25,26�.

We have chosen wormlike micelle solutions as a model
system to quantitatively test the underlying principles of mi-
crorheology and to provide a benchmark performance test.
Specifically, we have performed detailed comparisons be-
tween single particle microrheology and a macroscopic tech-
nique using a piezorheometer �13� over a frequency range
from 0.1 Hz to about 10 kHz. We have performed experi-
ments with both techniques for micelle solutions covering a
range of shear moduli ranging from 1 to 200 Pa at low fre-
quency. Our results demonstrate excellent agreement be-
tween the two techniques and make a strong case for the
validity of single-particle microrheology for soft materials
with intrinsic length scales below the probe size. At high
frequencies the �single relaxation time� Maxwell model does
not apply anymore and internal micelle dynamics become
important, presenting a continuous spectrum of relaxation
times. We introduce simple scaling arguments to interpret the
high-frequency dynamic properties of micelle solutions in a
regime where collective network dynamics cross over to
single filament dynamics.

This paper is organized as follows. In Sec. II, we present
the theoretical background and cover some fundamental as-
pects of microrheology and data evaluation. In Sec. III we
outline the experimental procedure, sample preparation, and
how data are collected and analyzed. In Sec. IV we present
our results, comparing microrheology and macrorheology
and investigating the scaling behavior of the shear moduli at
high and low frequencies. In Sec. V we discuss the results.

II. THEORETICAL BACKGROUND

In optical microrheology, the complex viscoelastic modu-
lus, G=G�+ iG� can be obtained from direct measurement of
the displacement fluctuations of micrometer size dielectric
particles �2,5,6�. By relying on fundamental principles such
as the fluctuation-dissipation theorem �9,27�, one can in
many cases obtain the frequency-dependent shear modulus G
of materials in this way.

In a general viscoelastic material, the position x of an
embedded particle is related, within the linear regime, to the
applied force f by a response function � via x�=����f�.
Here, the various quantities represent complex Fourier trans-
forms, and thus depend on frequency �. In particular, the
response function itself is complex, exhibiting both storage
�elasticlike� and loss �dissipative or viscouslike� character for
viscoelastic materials.

In the absence of any externally applied forces, random
thermal or Brownian forces will give rise to fluctuations of
the particle position. These fluctuations are fundamentally
related to the temperature of the system and the response
function or compliance � via the fluctuation-dissipation theo-
rem �9,27�. One common expression of the �classical�
fluctuation-dissipation theorem relates the power-spectral-
density �PSD� ��x��2� of particle fluctuations to the imaginary
part of the response function ��=Im���:

��x��2� =
2kT

�
����� . �1�

In our experiments, we measure the power spectral den-
sity �PSD� of the displacement fluctuations, which is then
directly used to determine the imaginary response function,
as shown above. In addition to the fluctuation-dissipation
theorem, linear response theory also shows that the real and
imaginary parts of the response function � can be obtained
from each other. Specifically, provided that the PSD, and
thus �����, can be determined over a wide frequency range,
it is possible to determine the real part ����� using a
Kramer-Kronig relation

����� =
2

�
�

0

� ������
�2 + �2d� . �2�

We use numerical integration to obtain the real part of the
compliance, and thus the full, complex �. In an incompress-
ible, linear viscoelastic medium, the geometry-dependent
compliance is related to the complex shear modulus G���
=G�+ iG� of the embedding medium via �5,6�

G��� =
1

6�R����
. �3�

In principle, the integral in the Kramers-Kronig relation
above must be performed out to infinite frequency. In prac-
tice, however, one has only a finite data set for the PSD, and
thus �����. Due to the finite range of the KK integral �����
will be slightly underestimated. By evaluating the integral
above assuming ����� continues to infinity with a slope of
−1 �i.e., as for a simple viscous liquid�, we can obtain an
analytic correction. Although not necessarily physically cor-
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rect, it allows us to estimate how much of an effect the finite
data set has. Specifically, we assume that ����� continues
from the Nyquist frequency �N with a slope of −1. Thus
�����=�N��N /� where the numerator is determined from the
data. By integrating this part from �N to infinity one obtains
a frequency-dependent correction of �����.

�c���� = −
�N��N

�
ln	�N − �

�N + �
	 . �4�

This correction may lead to an underestimate of both
G���� and G���� for the higher concentration data where the
correction is large �see Fig. 4�. If high accuracy is desired in
this range, data should be taken at high sampling rates at the
cost of large memory usage.

In an incompressible medium, the response function is
related to the �complex� shear modulus G by the generalized
Stokes-Einstein relation in Eq. �3�. Using this we can extract
the storage and loss moduli G���� and G���� from the re-
sponse functions ����� and �����, via

G���� =
1

6�R

 �����

�����2 + �����2� �5�

and

G���� =
1

6�R

 − �����

�����2 + �����2� . �6�

III. EXPERIMENTAL METHODS

A. Materials

Wormlike micelles were prepared from the surfactant
cetylpyridinium chloride �CPyCl� dissolved in brine �0.5 M
NaCl� with strongly binding counterions, sodium salicylate
�NaSal�. Chemicals were obtained from Sigma Chemical Co.
�Sigma-Aldrich Chemie B.V. Zwijndrecht, The Netherlands�.
In this study all samples have a molar ratio Sal/CPy=0.5. A
tiny quantity, below 10−3 vol %, of silica particles with a
diameter of 0.98 �m �Bangs Laboratories, Fishers, IN� was
added to each sample before measurement. The micellar so-
lutions were stored at �controlled� ambient temperature �be-
tween 21.5 and 22.0 °C� which was above the Krafft point of
this system.

B. Macrorheology

A custom-built piezorheometer �13� was used to measure
the viscous and elastic shear moduli of wormlike micelle
samples prepared in parallel with the ones used for microrhe-
ology. Details of this technique can be found in the literature
�28�. Briefly, samples are contained between two glass plates
mounted horizontally between two piezoelectric ceramics.
One of the plates is sinusoidally oscillated with a vertical
amplitude of about 1 nm. This movement squeezes the
sample and causes mainly shear strain with some extensional
flow in the very center of the sample. The vertical stress
transmitted to the second plate is measured by the other pi-
ezoelectric element. The imposed strain is extremely small

so that the sample structure is not altered by the flow. This
instrument allowed us to measure the storage �G�� and
loss �G�� shear modulus for frequencies ranging from
0.1 Hz to 10 kHz. The temperatures at which we measured
were 21.8 °C for cp=1 and 2%, 22.4 °C for cp=4%,
22.6 °C for cp=5 and 8%, and 22.0 °C for cp=6%. The
setup was hermetically sealed to avoid evaporation.

C. Microrheology

All microrheology experiments were performed on a
custom-built optical microscope equipped with differential
interference contrast optics and with optical traps essentially
as described earlier �6,29�. Briefly, an infrared laser ��
=1064 nm, NdVO4, COMPASS, Coherent, Santa Clara, CA�
was coupled into the sample via the microscope objective
lens �Zeiss, Neofluar, 100	, NA=1.3� with immersion oil
�noil=1.5, Cargille LTD, Cedar Grove, NJ� and used to trap
particles. A quadrant photodiode �YAG444-4A, Perkin
Elmer, Vaudreuil, Canada� was used to measure the lateral
�x and y� displacements of the trapped particle relative to the
laser focus by back-focal-plane interferometry �30�. In this
detection scheme the back-focal plane of the condenser
�Zeiss, NA=1.4, oil� collecting the laser light after the inter-
action with the probe particle is imaged onto the quadrant
photodiode. The diode current signals are amplified by a
low-noise analog differential amplifier �custom built�, then
digitized with a 200 kHz analog-to-digital board �AD16
board on a /ChicoPlus PC-card, Innovative Integration, Simi
Valley, CA� and processed and stored on hard disk using
Labview �National Instruments, Austin, TX�. Time-series
data were stored and later �off-line� calibrated to displace-
ment in nm as described below, using independently mea-
sured calibration factors from particles trapped in water
samples. We can track particle motions with a bandwidth of
about 100 kHz in our setup �31�.

The laboratory temperature was stabilized to between
21.5 and 22.0 °C. Micelle samples were doped with silica
particles as described above and then introduced into a
sample chamber. Sample chambers were assembled of a mi-
croscope slide and a coverslip separated by spacers of
double-stick tape and sealed with grease �Apiezon L, M&I
Materials Ltd, Manchester, U.K.�. The inner height of the
sample chambers was about 70 �m. Probe particles were
trapped and were moved to about 20 �m above the glass
surface. In order to ensure that the samples were completely
relaxed and isotropic after the filling procedure and the probe
positioning, x �aligned with the long axis of the chamber�
and y fluctuations were measured, and averaged power spec-
tral densities �PSD� of 60 s segments of data were obtained.
The instrument was aligned before each set of experiments
and, among other criteria, it was tested that x and y PSDs of
beads trapped in pure solvent were overlapping. Immediately
after manipulating the wormlike micelles samples, x and y
PSDs were not overlapping, with the x spectra �in the flow
direction� typically showing a higher rms amplitude of mo-
tion than the y spectra, due to shear-induced structural
changes in the solutions. After typically about 15 min, PSDs
overlapped and we used this as a criterion that the samples
had come to equilibrium.
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For each sample, once they had fully relaxed, we obtained
between 8 and 16 data sets. Each data file was about 5 MB.
In most samples eight data sets were sufficient, however, in
the high concentration samples up to 16 runs were required
to obtain better averaging and to reduce noise in the data. For
each sample we measured at two different sample frequen-
cies. Careful attention was paid to checking for anisotropic
behavior �difference in x and y PSDs� that occasionally oc-
curred due to the movement of small air bubbles or a leak in
the chamber. Data sets that showed anisotropic behavior
were eliminated. Figure 1 shows a typical set of data to il-
lustrate reproducibility from run to run with different beads.
PSDs were then averaged for all beads in the sample and for
x and y directions, before shear elastic parameters were cal-
culated.

Data were taken at two sample rates in order to cover
maximum bandwidth. To capture the low-frequency end of
the spectrum, we sampled at 20 kHz and recorded for 60 s
�0.1 to 10 kHz bandwidth�. In order to minimize the elastic
contribution from the trap we used a low laser power of
�3 mW which gave a trap stiffness of 1.6 pN/nm �measured
in buffer�, resulting in an apparent added constant of G�
�0.1 Pa in the final result for the shear moduli. The trap
effect was corrected for by subtracting this constant �32�. At
the high sampling rate of 195 kHz a higher power of
�30 mW was required to avoid shot noise, which resulted in
a correction of G��1 Pa. Shot noise is visible as a
turning-up of the PSD at high frequencies. At both high and
low laser powers heating of the sample due to the laser was
estimated to be less than 1 °C and therefore considered neg-
ligible �33�. Time series data were further processed off-line
on a PC, using LabView software to obtain the real and
imaginary part of the complex shear modulus of the worm-
like micelle solutions according to Eqs. �5� and �6�. Final
results were smoothed by logarithmic binning with a factor
of 1.05 relating the widths of successive bins. Data were thus
averaged into N bins where N is determined by the algorithm
N=log1.05�n /100� where n is the total number of data points
before binning.

Calibration factors to convert stored voltage time-series
data to actual displacement time series were determined from
measurements of the PSDs of the same beads as used in the
wormlike micelle experiments in water. PSDs of beads
trapped in a purely viscous fluid have a Lorentzian shape and
from the amplitude of the Lorentzian at high frequencies,
calibration factors can be determined if bead size, solvent
viscosity, and temperature are used as �given� parameters
�34�. Silica beads in water were trapped 20 �m from the

glass surface at both the low and high laser power used in the
micelle experiments, and their displacement fluctuations
were measured at sampling rates of 20 and 195 kHz, respec-
tively. Typically the x- and y-position components of three or
more particles were measured and an average PSD was ob-
tained �34�. The variance on these runs is approximately 5%
which is likely mainly due to bead polydispersity �compare
with Fig. 1�.

IV. RESULTS

Microrheology experiments on flexible wormlike micelles
were performed in the semidilute regime �c
c*

�0.3 wt % � where the micelles are entangled. The entangle-
ment length has been reported to vary between 30 and 10 nm
for cp=1–8 wt %, respectively �22�.

A. Comparing microrheology and macrorheology

Figure 2 shows the PSDs for water and wormlike micelle
solutions at cp=1, 2, 4, 5, 6, and 8 wt %. Following the
procedure outlined above real and imaginary parts of the
complex compliance were determined by use of a Kramers-
Kronig integral �9�. Frequency-dependent viscoelastic
moduli were then calculated from the compliance and cor-
rected for the trapping effect as described. Figure 3 shows
the effect of correcting the compliance for the finite high-

FIG. 1. Power spectral densities �PSD� of
thermal bead motion in a wormlike micelle solu-
tion �a�, and storage �G�� and loss �G�� modulus
of the solution derived from the PSDs �b�. The
scatter in amplitude and shape of the curves illus-
trates reproducibility for 16 different runs using
three different beads �d=0.98 �m� in the same
sample �cp=4% �. The vertical axes for G� and
G� in �b� are shifted apart for visibility.

FIG. 2. Power spectral densities of displacement fluctuations for
0.98 �m diameter beads in water and in wormlike micelle solutions
of concentrations, cp=2, 4, 6, and 8 wt %. PSDs are each an aver-
age of eight spectra recorded from three different beads in the re-
spective sample, smoothed by logarithmic binning. Data were taken
for each concentration at 20 and 195 kHz sampling rates and were
merged for each concentration.
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frequency cutoff of the Kramers-Kronig integral on the final
results for the shear elastic moduli, G� and G�, as described
above. Gray lines are uncorrected and black lines are cor-
rected storage and loss moduli for concentrations cp=2, 5,
and 8 wt %. At high concentrations and low sampling rates
the correction is significant, while at high sampling rates it is
minor. In the following, only corrected curves are presented.

Shear moduli obtained from the fluctuation analysis of
0.98 �m diameter beads, averaged over about three beads in
each case, and macrorheology data obtained with the pi-
ezorheometer are presented in Fig. 4 for micelle concentra-
tions cp=1, 2, 4, 5, 6, and 8 wt %. Each panel shows a com-
parison between shear elastic moduli, derived from
macrorheology �symbols� and microrheology �lines� for

FIG. 3. Comparison of complex shear moduli
of wormlike micelle solutions of concentrations
cp=2, 5, and 8 wt %, uncorrected �gray lines� and
corrected �black lines� for the finite high-
frequency cutoff of the Kramers-Kronig integral.
Moduli were measured by microrheology with
probe particles of 0.98 �m diameter at 20 and
195 kHz sampling rates. The correction effect is
more pronounced for low sampling rates and high
concentrations. Data curves are averages of eight
spectra recorded from three different beads in
each case, smoothed by logarithmic binning.

FIG. 4. Complex shear moduli
�G� on the left, G� on the right�
for wormlike micelle solutions of
concentrations cp=1, 2, 4, 5, 6,
and 8 wt % as labeled in the plots.
Lines are microrheology results
with probe particles of 0.98 �m
diameter �solid line 195 kHz sam-
pling rate, dashed line 20 kHz
sampling rate�. Data were aver-
aged from eight recorded spectra
from three different beads,
smoothed by logarithmic binning.
Symbols are macrorheology re-
sults obtained with the
piezorheometer.
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three concentrations. Storage moduli, G�, are plotted on the
left, and loss moduli, G�, on the right. Microrheology data
were taken at two different sampling rates: 195 kHz �solid
lines� and 20 kHz �dashed line�.

Over a large range of concentrations excellent agreement
between microrheology and macrorheology is observed. For
the microrheology data the low frequency data are taken at a
lower sampling frequency and lower power allowing us ac-
cess to the lower frequency range. Due to the extended time
required for these runs and the increase in noise in the data it
is important to verify an overlap of data with the high sam-
pling rate data. In our data excellent agreement over a decade
in the midrange frequency region between high and low sam-
pling rate runs is observed.

B. Scaling behavior and high-frequency viscoelasticity

Maxwell behavior in the low-frequency regime for vis-
coelastic fluids is usually demonstrated in a Cole-Cole plot
of normalized loss modulus plotted against normalized stor-
age modulus �Fig. 5�. With a single relaxation time t*, the
moduli become: G���= i��0 / �1+ i�t*� where the zero time
shear modulus is G�=�0 / t*, which will result in a half-circle
with radius 0.5 in the Cole-Cole plot. Our data demonstrate
this behavior �see Fig. 5� at the low-frequency end of the
moduli. The relaxation times can be determined from the
crossovers of G� and G� in Fig. 6.

Deviations from the circle reflect additional internal dy-
namics of the micelles �35�. At the high-frequency end these
will be dominated by the bending fluctuations of individual
micelles which lead to a continuum of relaxation times, com-
monly resulting in a power-law form of the moduli �36,37�.

The elastic plateau in G���� reflects the collective dynam-
ics of the entangled micelles and is maintained for frequen-
cies above 1/ t* until the largest characteristic microscopic
time scale of the system is reached, which is typically the
relaxation time of a single mesh in a flexible polymer net-
work. In simple physical terms, this crossover separates the
plateau regime caused by collective network dynamics from

the single-filament regime �e.g., Rouse behavior of flexible
polymers� at higher frequencies �36�. The increase of the
complex shear modulus at high frequencies can be under-
stood as a progressive reduction of the compliance of indi-
vidual filaments under periodic stress with increasing fre-
quency. The compliance mainly arises from the relaxation of
lateral undulation modes. Such modes typically exhibit a
power-law dispersion, with relaxation time decreasing with
wavelength, leading to power-law behavior of the shear
modulus. In rheology, crossovers such as this one can be

FIG. 5. Cole-Cole plot of normalized viscous modulus against
normalized elastic modulus for wormlike micelle solutions of con-
centrations cp=1, 2, 4, 5, 6, and 8 wt %, measured with the pi-
ezorheometer on macroscopic samples. Data curves follow Max-
well behavior at low frequencies.

FIG. 6. Crossover frequencies: Storage and loss shear moduli
were measured for wormlike micelle solutions of concentrations
cp=1, 4, and 8 wt % by microrheology with probe particles of
0.98 �m diameter �solid line 195 kHz sampling rate, dashed line
20 kHz sampling rate�. Moduli are plotted �without shifting curves
apart� to identify the crossover points of the two moduli. As con-
centration increases the high-frequency crossover moves to higher
frequency indicated by upwards pointing arrows, while the low-
frequency crossover moves to lower frequencies. Curves are at each
concentration averages of eight spectra recorded from three differ-
ent beads, smoothed by logarithmic binning. Frequencies for the
high-frequency crossovers are 316, 1144, and 60 000 Hz.
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extremely broad, covering many decades in frequency. It is
evident from our data �Fig. 4� that, particularly for the more
concentrated solutions, the high-frequency scaling regime is
not reached within the bandwidth of our experiments.

The mesh size of the entangled solution decreases with
increasing polymer concentration and the crossover fre-
quency marking the end of the plateau is expected to rise
accordingly. The plateau value of G� itself also increases
with polymer concentration. Both effects can be seen in Fig.
6. In fact, these two effects are not independent, as is dem-
onstrated empirically in Fig. 7. We can make these ideas
more precise, and actually infer the characteristics of the
high-frequency scaling regime from carefully analyzing the
transition regime as follows. The approach is to collapse both
the G� and G� curves simultaneously by rescaling the fre-
quency and moduli axes. This is similar to what was done in
Ref. �38� for colloidal gels, but we must account for the
single-filament bending dynamics of the micelles �39�.

We consider a simple model describing both the plateau
and the high-frequency regimes. The storage modulus is as-
sumed to behave at low frequencies as

G���� � cp
y , �7�

while both real and imaginary parts of the high-frequency
modulus are assumed to increase with frequency � according
to

G���� � G���� � cp�z. �8�

In simple terms, we assume that the complex viscoelastic
response of semidilute micelle solutions has two distinct
contributions: �1� a frequency-independent component domi-
nated by G���� at low frequencies, and �2� a high-frequency
component due to the relaxation of polymer between en-
tanglements. The former represents the plateau, which is ex-
pected to depend on network architecture, e.g., the mesh
size. It is expected to increase with concentration as a power-
law with the exponent y that is left as a fit parameter. The
latter, being a single-filament effect, is expected to depend
linearly on concentration cp.

For flexible polymers, the exponent z is expected to be in
the range 0.5–0.7, depending on hydrodynamic interactions
�36�. Following Ref. �38�, we collapse the family of
frequency-dependent shear moduli by introducing scaling
factors a�c� and b�c� for each pair of G� and G� curves at a
given concentration, chosen for the best empirical collapse of
the data. The G� and G� graphs were scaled after water G�
=��water was subtracted from the G�. The data collapse was
done independently for both microrheology and macrorheol-
ogy data �Figs. 7�a� and 7�b��.

Specifically, we chose the intermediate data set for 4% as
a reference, and rescaled the modulus as bG and frequency
as af for each of the other data sets for concentrations 1%,
2%, 5%, 6%, and 8% to match the 4% data. This method is
sufficient since we are only interested in the scaling of the
scaling factors. Assuming the model with exponents y and z
expressed above, this means that b�cp

−y and that a�cp
�1−y�/z,

which means that bcp�az. Thus by plotting cpb�c� versus
a�c�, we expect a power-law relationship between the scaling

factors, with the high-frequency scaling exponent z. The ex-
ponent z was found to be 0.67 from the combined plot of
factors derived from macro- and microrheology �Fig. 7�c��.
The exponent y was calculated to be 1.89. At the low-
frequency end the scaling is observed to break down as one
approaches the Maxwell regime. This is expected because
the terminal relaxation is not included in the model assump-
tion of Eqs. �7� and �8�.

FIG. 7. Scaling analysis of storage and loss moduli: Scaling
factors a and b were determined for every set of G� and G� curves
such that bG� and bG� vs af collapse onto the respective 4% ref-
erence curves. �a� Moduli from microrheology with probe particles
of 0.98 �m diameter for wormlike micelle solutions of concentra-
tions cp=1, 2, 4, 5, 6, and 8 wt %. �b� Macrorheology results �pi-
ezorheometer� for samples from the same stocks. �c� Plot of bc vs a
to extract the high-frequency scaling exponent z of both moduli and
the concentration scaling exponent of G� in the plateau regime.
Filler data points are macrorheology and unfilled are
microrheology.
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V. DISCUSSION

For wormlike micelles the characteristic length scales of
both individual micelles �diameter 3 nm, persistence
length 10 nm� and of the polymer solution �mesh size
30 nm� are much smaller than the probe particle size. Fur-
thermore, at the ionic strength of the brine we used, charge
interactions are effectively screened with a Debye screening
length of about 0.4 nm �0.5 M NaCl�. Therefore single-
particle microrheology should report correct bulk shear
moduli. Consistent with this expectation, our experimental
results �Figs. 3 and 4� show excellent agreement between
single particle and mechanical rheology. This result verifies
both the microrheology technique with the calibration and
data evaluation procedures we used here as well as the as-
sumptions involved. In particular, the assumption of strong
coupling between polymer and solvent, limiting the dynam-
ics to incompressible shear, appears to be justified down to
the lowest frequencies we measured of 10−2 Hz. A deviation
from strong coupling should have shown up as a growing
decrease of the microrheology-moduli below the macrorhe-
ology values towards low frequencies. No such systematic
difference was observed. On the other hand, a change of the
Poisson ratio from 1/2 even all the way to 0 would only
cause a slight decrease ��5% � of the shear modulus. Such
an effect is difficult to resolve due to noise at low frequen-
cies.

In some systems with relatively large internal characteris-
tic length scales, the presence of the particle will locally
affect the embedding medium so strongly that shear elastic
moduli derived from single-particle microrheology will dif-
fer from average bulk values �26,40�. In particular, we have
also performed similar experiments with the filamentous fd
virus �41�, and with the cytoskeletal protein actin �42�, in the
first case although the persistence length of fd is about 1 �m
and comparable to bead sizes used, there was no measurable
difference between one- and two-particle microrheology. In
the second case �actin�, there were strong probe particle ef-
fects at low and high frequencies �42�. In such cases, if spa-
tial resolution and high bandwidth are desired, two-particle
microrheology should be used. The price to pay is increased
noise and that of a more complex experimental setup. Even
in a system with small characteristic scales, slip boundary
conditions have been suggested as a possible explanation for
the discrepancies observed between one- and two-particle
microrheology �40�. It is important that we have here found
good agreement between single-particle microrheology and
macrorheology in a simple system. This unambiguously
proves the foundations of the technology and makes it now
possible to quantitatively exploit the unique strengths of mi-
crorheology to study less simple systems. Apart from seeing
effects created by the presence of the probe particle itself
�which in themselves can be interesting�, microrheology can
be used, e.g., to map microscopic inhomogeneities, to study
local nonaffine �bending� deformations of semiflexible or
bundled polymers, or to measure low-frequency compres-
sional elasticity of a polymer solution. In other words, what
from one point of view might have been seen as a disadvan-
tage of this technique, namely that results do not always
agree with conventional rheology, is clearly emerging as an

advantage providing more experimental access to phenom-
ena that could not be studied with conventional rheology.
One can, however, confidently exploit the capabilities of mi-
crorheology that go beyond those of conventional rheology
only after it has been shown that agreement can be reached
in simple systems, which we have done here.

The second result presented here is the high-frequency
rheology data extending beyond the Maxwell regime. Earlier
macrorheological work �24� had been technically limited to
about 5 Hz. At high frequencies we expect an asymptotic
crossover from elastic response determined by collective net-
work dynamics to response dominated by short-range single-
filament relaxation. The crossover frequency is expected to
be concentration dependent, determined by the longest relax-
ation time of a segment of wormlike micelle between two
entanglement points which should roughly be equivalent to
the mesh size in the entangled solution. In our experiments
�Fig. 6� the bandwidth is not sufficient to go far beyond this
crossover frequency into the asymptotic scaling regime, and
the log-log slopes of G� and G� are not constant for large
enough intervals to make a precise statement about scaling
exponents. Nevertheless, the superposition method we have
presented above can still be used to infer the asymptotic
scaling behavior, even if only the transition between regimes
is captured in the data. This only works, however, if the
transition takes place directly between two scaling regimes
without other intervening complex dependencies. For en-
tangled micelles one would expect the high-frequency
single-filament behavior to be somewhere between that of
flexible polymers and that of semiflexible polymers. For our
system, the entanglement length was approximately 30 nm
for cp=1% while the persistence length was of order 10 nm.
Semiflexible polymers show high-frequency scaling in the
shear elastic modulus with an exponent of about 3 /4
�5,6,43,44�. Our results point to a slightly lower exponent of
about 0.67. There is no model to calculate the exact scaling
behavior of a given polymer between the limits of semiflex-
ible and flexible behavior, but an exponent of slightly less
than 3/4 is reasonable. For Zimm dynamics, for a flexible
chain including hydrodynamic effects, an exponent of about
5 /9 is expected �36�. In the case of a chain with a persistence
length somewhat larger than the monomer size assuming a
more extended conformation, one might expect less of an
effect from hydrodynamic interactions and therefore Rouse
rather than Rouse-Zimm dynamics. For that case an expo-
nent of 1 /2 is expected. There may of course also be an
influence of the particular dynamics of wormlike micelles
that have so far not been considered. The breaking and rean-
nealing dynamics might, for example, also influence the scal-
ing exponent. The extraction of the scaling exponent from
the transition regime data rests, as described, on the assump-
tion that the transitions lead directly to the asymptotic high
frequency scaling. A distinct possibility is that other dynamic
regimes might follow the plateau regime before asymptotic
scaling is reached �43�. Further experiments either with sys-
tems with intrinsically slower dynamics or of a similar sys-
tem in a more viscous environment will be necessary to fur-
ther explore high frequency rheology of wormlike micelle
solutions.
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