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We calculate the concentration-dependence of the short-time self-diffusion coefficient Ds for 
spherical particles in suspension. Our analysis is valid up to high densities and fully takes into 
account the many-body hydrodynamic interactions between an arbitrary number of spheres. The 
importance of these many-body interactions can be inferred from our calculation of the second virial 
coefficient of Ds. 

1. Introduction 

It is well-known that properties of a suspension of particles in a fluid (e.g., 
diffusion, sedimentation, viscosity) are concentration-dependent, due to direct 
interparticle interactions and due to a coupling of their motion via the fluid. This 
coupling is called hydrodynamic interaction and is the subject of our investigation. 

The influence of hydrodynamic interactions on properties of suspensions can be 
studied conveniently by analyzing the concentration-dependence of the so-called 
short-time self-diffusion coefficient of uncharged spherical particles in suspension. 
This quantity (which we denote by Ds) describes diffusion of a single "tracer" 
particle on a time-scale, over which the spatial configuration of the particles is 
essentially constantL2). If the mobilities of the spheres are known- as a function 
of their positions - it is possible to calculate D s by means of a generalized Einstein 
relation3), which relates Ds to an average of these mobilities over all the 
configurations of the spheres. Experimentally the short-time self-diffusion 
coefficient can be determined from dynamic light-scattering studies: the initial 
decay of the auto-correlation function of the scattered field at large values of the 
scattering vector yields values for Ds4). 

If the suspension is sufficiently dilute we can assume the hydrodynamic 
couplings to be pairwise additive, i.e. we need to consider only two-body 
hydrodynamic interactions. Most theoretical treatments of properties of sus- 
pensions are restricted to this low-density regime*: the linear density corrections 

* An exception is formed by Muthukumar et al., who included many-body hydrodynamic 
interactions in their analysis of Darcy-flow (cf. ref. 5 and the references therein). 
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to the values at infinite dilution of Ds and of the bulk-diffusion coefficient were 
calculated by Batchelor 3) and by Felderhof ~) and Jones7). Batchelor used gener- 
alized Einstein relations for these coefficients, while Felderhof and Jones based 
their analysis on a Fokker-Planck equation in the many-particle coordinate space. 
Their results were equivalent. For the case of bulk-diffusion the value of this first 
virial coefficient has been confirmed by experimentsS). 

Recent theoretical results on many-body hydrodynamic interactions 9) (see also 
ref. 10) enabled us to extend the analysis of Batchelor 3) to include second-order 
density corrections. As we reported in ref. 1 l, we could conclude from our 
calculations that three-body hydrodynamic interactions may not be neglected if 
the suspension is not dilute (see in this connection also ref. 12). At still higher 
densities one will have to take into account the full many-body hydrodynamic 
interaction. Moreover, an expansion in the density (a "virial expansion") is not 
appropriate in this high-density regime. 

In the present work we present a theory for the concentration dependence of 
the short-time self-diffusion coefficient Ds, which is valid up to high densities and 
which fully takes into account the many-body hydrodynamic interactions between 
an arbitrary number of spheres. In section 2 we summarize the expressions for the 
many-sphere mobilities 9) and derive a few formulae for later use; by means of an 
Einstein relation 3) we can express Ds in terms of these mobilities, cf. eqs. (3.2) and 
(3.16). 

In the latter equation the contributions due to hydrodynamic interactions 
between clusters of 2, 3, 4, 5 , . . .  spheres are formally resummed. In the sections 
5, 6 and 7 we evaluate D~ as the average of an expansion in powers of the 
fluctuation in the concentration of the suspended particles. The zeroth order 
approximation (no density fluctuations) can be called an effective medium or 
continuum theory for the self-diffusion coefficient, which can then be expressed 
in terms of an effective viscosityt. We will include in our calculation of Ds the 
lowest (second) order correction due to fluctuations in the concentration. From 
our numerical results we can conclude that this fluctuation expansion can describe 
the concentration dependence of Ds reasonably well up to high densities. 

Eq. (3.2) on the other hand is a suitable starting point for a virial expansion 
in the volume fraction ~b. Details on the calculation of the second virial coefficient 
of Ds (i.e. the coefficient of the term of order 4~ 2) are given in section 4 (cf. ref. 
11 where also the bulk-diffusion coefficient was calculated to the same order in 
~). 

Finally in section 8 we discuss our results and compare them with 
experiments14). 

1" The Clausius-Mossotti formula for the dielectric constant can similarly be regarded as the zeroth 
order result from a fluctuation expansion. Bedeaux and Mazur ~a) have investigated in this context the 
deviations due to density fluctuations. 
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2 .  M o b i l i t i e s  

Consider N equal-sized spherical particles with radius a and position-vectors Ri 
(i = l, 2 , . . .  N), moving in an incompressible fluid with viscosity ~/, which is 
otherwise at rest. We describe the motion of  the fluid by the linear quasi-static 
Stokes equation, supplemented by stick boundary conditions at the surfaces of  the 
spheres. The velocity u~ of  sphere i can be expressed as a linear combination of  
the forces ~ ,  exerted by the fluid on each of the spheres j 

N 

u,= -- ~ $ij'Ky, i =  1,2 . . . .  N .  (2.1) 
j=l 

The mobility tensors p~j depend on the configuration of the N spheres; a term in 
p~j which depends on the positions of  s spheres is said to reflect s-body 
hydrodynamic interactions. In eq. (2.1) we have assumed that the fluid exerts no 
torque on the spheres, i.e. each sphere can rotate freely. 

The general expression for the mobilities, as derived in ref. 9, has the structure 
of an infinite series of  reflections or scatterings from the spheres, 

s = l  m l = 2 m 2 = 2  m s = 2 J l = l  j 2 = l  
Jl • i J2 #J l  

N (':5 4 (m,, 1) x ~., A!!,..,)©B(,.,,..,)-, QA!m.,,m2) 0 QB(  . . . .  .)-, ~' 'J ,J  
gl ]lJ2 " " 

j s = l  
Js 4:is - l ,J 

(2.2) 

and is given as a sum of  products of  tensors called connectors. The connector 
(,.m) " A,j (t # j )  is a tensor of rank n + m ,  which characterizes a hydrodynamic 

interaction between a force multipole of  order n on sphere i and a multipole of  
order m on sphere j. This connector is a function of  Rq =-Rj -  Ri of  order 
(a/IR~l) "+m- ~ and hence, for large separation of  the spheres, low values of n and 
m dominate. By definition these connectors are zero for i =j. The tensor B (re'm)- ' 

is a generalized inverse of  a tensor B (~'~) of  rank 2m, which does not depend on 
the positions of  the spheres. The notation ,4 (,,m)~ B(m,m)-] prescribes an m-fold 
contraction, with the convention that the last index of  the first tensor is contracted 
with the first index of the second tensor, etc. 

The general expressions for the connectors are (cf. ref. 9) 

(,.m) 0 (2.3) A ii = 

A{,.m)= f dr f dr" 6 (R i - r )6 (R j - r ' )A (n 'm) ( r ' - , ) ,  i ~ j ,  IRijl > 2a, (2.4) ff 
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with the connec tor  field A(n'm)(r) given by 

( 4 3 )  9 f A("'m)(r) = ~ n a  ~(2n - 1)!!(2m - 1)!!(i)m-"(2n) -3 dk e - ~ " ( a k )  -2 

{ '0 " - 1 '  sin(ak)'~( ' m - l  sin(ak) '~. 
x \-J-(-ff~-I ak ,] ' -k~kA)(O~ak)'~-I - ~  ] (2.5) 

The tensor B (2'2)-' is given by* 

10 B(2,2)-i  _ A (2.2) (2 .6 )  
9 

The tensor B (m''') for  m >/3 is defined, in terms of  the connector  field (2.5), as 

B (m'rn) = - A (rn'rn)(r = 0),  m /> 3 .  (2 .7 )  

The inverse of  this tensor is evaluated explicitly below. 
In the above equat ions ( 2 n - 1 ) ! ! = l . 3 . 5 . . . . . ( 2 n - 3 ) ' ( 2 n - 1 ) ,  k = l k  [, 

I~ = k/k.  The nota t ion ~3 denotes an irreducible tensor of  rank p, i.e., a tensor 
traceless and symmetric in any pair of  its indices, constructed from a p- fo ld  
ordered product  o f  the vector b (in the present context  b stands for O/8(ak)). For  
p = 1, 2, 3 one has (see e.g. ref. 15) 

16 b 2 = b~, ~ =  b ,b~-  ~ =~ , (2.8) 
= b,b~b, -- ~ (6,ab ~ + 6,rbp + 6~b,)b 2 . 

The tensor A (2.2) used in eq. (2.6) belongs to a class o f  tensors A ("'") of  rank 2n, 
which project out  the irreducible par t  o f  a tensor o f  rank n: 

A (". ") (5) b" = b" (5) A ("" ") = b" .  (2.9) 

For  n = 1, 2 we have ts) 

a (1 ,1)  _ 

,a - { I } , ~ =  6 ,a ,  ( 2 . 1 0 )  
A ( 2 , 2 )  __  I X X I 1 

The general expression for the mobilities as a function of  the positions of  the 
spheres (2.2) constitutes an expansion in the inverse interparticle distance 1/R. An 
explicit evaluation up to and including terms o f  order  ( l /R)  7 can be found in ref. 
9. 

Eqs. (2.3)-(2.10) define in principle all the quantities appearing in the expression 
(2.2) for  the mobilities. For  later use it is convenient  to rewrite the connector  field 
(2.5) (from which connectors  are formed according to eqs. (2.4) and (2.7)) in a 

* The tensor B (2.2)-' defined here corresponds to B {2~'2~} ' in ref. 9. 
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somewhat different form, using the identity 

8 p sink ~ / n \ i / 2  
=kP( - 1)P~k~-k) Jp+l/z(k), p = 0 , 1 , 2  . . . . .  (2.11) 

8kp k 

where Jp + 1/2 is the Besselfunction of  order p + 1/2. Eq. (2.11) follows from the 
definition 16) 

[2k \  1/2 sin k Jp+,/2(k) = ( - -  I)P~--~) kP(k --1 d/dk)P__ff_ 

and the relation 17) (which can be proven by induction) 

OP 
8kpf(k ) = k"k (k _~ d/dk )Pf(k ) . 

If we now define a Fourier-transformed connector field 

,4 (", ") (k) = f dr e ik "A (''m)(r), 

we have, in view of eqs. (2.5) and (2.11), 

(4 )9 
A("'")(k)= ~lta ~ ( 2 n -  1) ! ! (2m- 1 ) ! ! ( - i )  m - ~  g (ak) -3 

i i i i 

^ - -  - -  X J~_l/2(ak)Jm_l/2(ak)k ~ l(1 ~ ' ~ ) f m - l .  

(2.12) 

(2.13) 

(2.14) 

(2.15) 

The above relation may be used to evaluate the tensor B (m'm) explicitly for 
m ~> 3, since (of. eq. (2.7)) 

B ( ' ' ' °  = -- (2n)-3  f k  2 dk fdkA(m' ' ) (k) ,  m >/3. (2.16) 

The scalar part of  the above integration may be evaluated with help of  the formula 
(ref. 16, p. 679) 

cX3 

f d k  k - , j2  = (2m - 1 ) - ' .  (2.17) 1/2(k) I 

0 

Using, for the angular integration in eq. (2.16), the results given in appendix A 
(see eq. (A.9)), we find the explicit expression 

3 m 
B(m, m) = __ 2 ( m  - -  1) ! (2m --  3 ) " ( A  ( - -  l,id,m-1) -,t (re,m) 

"" 2m + 1  

m - - 1  
2 m - -  1 A(m-l'm l)om-ZA(m-l"m-l))' m>~3,  (2.18) 
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where the symbol Qt denotes a n / - f o l d  contraction. The tensor A (m-Lid,,,-~) is a 

tensor of  rank 2m with elements 

A(m-l,id,m-l) X A(m- t,m-l) (2.19) 
ct l  • • - a m  - I , f l T , ~ l  • • • 6 m  - 1 = v f l y  ~tl • • . 0tin - I , ~ l  - • • ~ m  - I " 

This tensor acts as a unit tensor when contracted with a tensor T (") of  rank m, 
which is irreducible (traceless and symmetric) in its first m - 1 indices* 

A ( m  l , i d , m -  1)  ( ~ )  T(m) = T(,,,). (2.20) 

The tensor B (m'"l-' (m i> 3) appearing in eq. (2.2) is the generalized inverse of  

B (",m) in the space of tensors of  rank m which are irreducible in their first m - 1 
indices. It is therefore determined by the equation 

B (",')-~ C)B (",m) = d (m-l'id'm-1), m >/3.  (2.21) 

The result 

l m B (re'm) ' (m -- l)!(2m --3)!! (A (m- l ' id 'm-I )  + A ("'") 
= - m + l  

m - - 1 2 m - 3  (, ,_l, , ,_,Q,,_2A(m_l,m_l)),  m ~ 3  (2.22) + - - - - A  
m - 2 2 m  - 1 

m a y - w i t h  help of  the formulae (A.3)-(A.5) in appendix A - b e  checked by 

substitution in eq. (2.21). 
We recall that B ( 2 ' 2 ) - 1  is defined in eq. (2.6). 

3. Self-diffusion 

The short-time self-diffusion coefficient Ds is related to the mobilities discussed 
in section 2 by a generalized Einstein relation 3) 

D~ = kBT i~l Pti , (3.1) 

where ( . . . )  denotes an average over all configurations of  the N spheres inside 
a volume V. We denote the temperature and Boltzmann's constant by T and kB, 
respectively. The short-time self-diffusion coefficient D, describes the diffusion of  
a single " t racer"  particle, over distances small compared to the interparticle 
separation (see in this connection the discussion in ref. 2). Combining eqs. (2.2) 
and (3.1) we obtain (see also eq. (2.3)) 

* Notice that 4(,.") is by definition irreducible in its first n - 1 and last m - 1 indices. - - q  
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-~- --1 E DffDo I + N E E E A(!" ')  . . . . . .  Z]l 
s=l m1=2 ras=2i=l j l=l  js=l 

(~) B(mt,mO- l (~) A (ml, m2)~ " "]JJ2 v 

where we have defined 

Do = kB T(6~la) - 1. 

. . .  @ Bt"+,"s)-~ c~ --j+,A (~'' 1)) , (3.2) 

Thus for isolated spherical particles Ds = Do 1, the familiar Stokes-Einstein result. 
Eq. (3.2) will be the starting point for the virial expansion of D s, evaluated up 

to second order in section 4. In order to study also the behaviour of Ds at higher 
densities, we will cast this equation in a different form, which permits a formal 
resummation. We first redefine the connector field in the following way 

A("'m)(r)=A("'m)(r) i f r  :~0, ~("'m)(r = 0 ) = 0 .  (3.4) 

If  we now use definition (2.4), eq. (3.2) becomes 

s= lml=2  ms=2 

X (~ ( R i - -  to) • ( R j I - r l ) . . .  E 6(Rjs  - r s )  
i 1 j l = l  js = 1 

X~(l,ml)(F 1 _ r° ) (~) B(ml,ml) I(~ . . .  (~) ,~(ms,l)(r 0 - -  rs) )  " (3.5)  

Note that the introduction of the modified connector field ,tl(n'm)(r) enabled us to 
perform the summations over the particle indices without restriction. Due to 
homogeneity of the suspension, the integrand in eq. (3.5) is invariant under a 
translation of the particle position vectors over r0. After a change of integration 
variables eq. (3.5) takes the form 

s= lml=2  ras=2 

x (n(r = O ) ~ ( l ' m O ( r l ) n ( r l )  O B (ml ' rn0-10 A(ml'm2)(r2 - r l )  

x n(r2) Q . . .  G B  ("+'ms)-' G A("+'t)( - rs)), (3.6) 

where the microscopic density field, with average no = N/V,  is given by 

N 
n(r) = ~, 6 ( R , -  r ) .  (3.7) 

i=1 

Eq. (3.6) may alternatively be written in operator notation 

D s / O o  = 1  + n o  1 ~ ~ . . .  ~ ({n~(l"ml)n C) B ( m l ' t n l )  I 

s= 1 m I =2 ms=2 

O A (m''"2)n © - . .  © B( . . . .  +)-' Q A("" ') }(010)), (3.8) 

(3.3) 



SELF-DIFFUSION IN A CONCENTRATED SUSPENSION 395 

where n and ,~(,,m) (written wi thout  a rgument )  are linear integral opera tors  with 

kernels 

n(r I r ' )  = n(r)~(r" - r ) ,  (3.9) 

A<',m)(r I r ' )  = ~("'m)(r' -- r ) .  (3.10) 

We see that  in r - representa t ion  n is a d iagonal  opera to r  and ,/T ("'') a convolut ion  
operator .  The  nota t ion  { . . .  }(0 1 0) prescribes an evaluat ion of  the kernel o f  the 

opera to r  between braces at  r = r '  = 0. 
Next  we define matr ices ~ / a n d  ~ - 1  with elements 

{~},, , ,  = A~(,,m), (3.11) 

{a - t } . , , .  = ~,mB(,,,,,)-' (3.12) 

and project ion opera tors  P and Q = 1 - P  

{P},.,, = ft.,fro,, {Q},,,, = 6 , m -  6,,dim, • (3.13) 

With  these nota t ions  we m a y  write e.g.,* 

~ .,~o,,,) (S) B ('' '°-' @ = p .~cQ.~- l .~p  (3.14) ~ ( m , l )  

m=2 

and eq. (3.8) takes the fo rm 

Ds/Do = I + no [ ~ P({n,;g(nQ,.@-ld)~}(OlO))P. (3.15) 
s = l  

This equat ion can formal ly  be resummed to yield 

DdDo = 1 + n o J P ( { n ~ ( 1  - na .~- I ,~) - t } (O l O))P, (3.16) 

where we have used the fact that,  in view of  definition (3.4), 

e({nsl}(OlO))P = n0,4(l")(r = 0) = 0 .  (3.17) 

We remark  that  it is possible to derive eq. (3.16) algebraically f rom eqs. 
(5.2)-(5.5) o f  ref. 9, in a way which does not  require a resummat ion .  Eq. 
(3.16) - which contains  the full hydrodynamic  interact ion o f  the N spheres - will 
be the start ing point  for  the expansion of  Ds in correlat ions o f  density fluctuations, 

pe r fo rmed  in section 5. 

4. The virial expansion 

For  a dilute suspension it is appropr ia te  to express the short- t ime self-diffusion 
coefficient Ds as a power  series in the density no (a so-called virial expansion).  We 

• To be more precise: the r.h.s, of eq. (3.14) is a matrix with the l.h.s, as the only non-zero element. 
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shall evaluate this series up to and including terms of second order in the density. 
Up to this order we need consider only two- and three-body hydrodynamic 
interactions, since the probability that a given particle has s neighbours is of order 
n6. The contributions to the virial expansion of Ds originating from two- and 
three-body hydrodynamic interactions are discussed separately in subsections 4.1 
and 4.2, respectively. 

4.1. Two-sphere contributions 

A restriction of Pu to terms which depend on the positions of at most two 
spheres has the following expansion in powers of 1/R 18'9) 

(6~t~la)tti~(two-spheres)='+k~(--l~54)(a/Rik)4~k~k 

~. 1 (a/R~)6(lO51u, i~ _ 17 7) + (_9(a/R) 8 . (4.1) 
+ k e e l 6  

Here the v e c t o r  Rig = R, - Rg has magnitude Rik = IR [ and direction f~ = eik/Rik. 
Substitution of eq. (4.1) in eq. (3.2) yields for the two sphere contributions to Ds 

Ds/D o (two-spheres) = 1 + no f dR g(R) 
i f f  

× ( - 1 - - - ~ ( a / R ) 4 ~ f + l ( a / R ) 6 ( 1 0 5 i i - 1 7 1 ) ) ,  (4.2) 

where g(R)  denotes the pair-distribution function for two spheres separated by 
R. Up to order n o we have (see e.g. ref. 19) 

0, if R < 2a, 4 (  ) 
g ( R ) =  l + ~ a 3 n o  8 - - 3 R / a +  (R/a) 3 , i f 2 a ~ R ~ < 4 a ,  (4.3) 

1, if R > 4a. 

An elementary integration gives the required first  and second order density 
corrections to Do due to two-body hydrodynamic interactions 

Ds(two-spheres) = Do 1[1 -- 1.73~b - 0.93~b 2 + 1~(~ 3)], (4.4) 

where q5 is the partial volume or volume fraction of the spheres 

q~ = 4 ~a3no . (4.5) 

4.2. Three-sphere contributions 

Of the three-sphere terms in the expansion of ~ii in powers of 1/R we have 
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retained the dominant one (which is of order R -  7), evaluated in ref. 9, 

(6~r/a)/t;,(three-spheres) = k~_~, i t ~ k - 7~6 (a / RH,) 2 (a / Rkl)3(a / Rtt) 2 

x ~kF,, ((1 -- 3¢k2)(1 -- 3¢5) + 6¢k2¢~ + 6¢,¢k¢,) + ~3(a/R) 9 , (4.6) 

where ~i = ~a'~il, ~k = ~k;'~kt, ~t = ~t;'~tk are direction-cosines. The three-sphere 
contribution to D~ is obtained by averaging eq. (4.6) with the three-sphere 
distribution function g(R~2, Rl3, R23), given in lowest order by 

0, if R~z < 2a or Rl3 < 2a or R23 < 2a,  
g(Rl2'  R13' R23) = 1, elsewise. (4.7) 

After three trivial angular integrations, we are left with a three-dimensional 
integral over a complicated domain, determined by eq. (4.7). This integral was 
evaluated numerically using Monte-Carlo techniques*. The resulting three-sphere 
contribution to Ds is 

D~(three-spheres) = Do 1 [1.80~ 2 + t~(~b 3)]. (4.8) 

If  we add eqs. (4.4) and (4.8) we obtain the virial expansion of Ds up to second 
order in the density (communicated by us in ref. 11) 

Ds(two- and three-spheres) = D01[1 - 1.73tk + 0.88q~ 2 + t~(q53)]. (4.9) 

The term of  order q~ is well-known3.7). Batchelor 3) used exact  expressions for the 
two-sphere mobility tensors and found - 1.83~b for the correction of order ~b. 
Comparison with eq. (4.9) shows that the terms of order R -s and higher neglected 
in eq. (4.1) are not very important. Concerning the three-sphere contributions 
neglected in eq. (4.6) (of order R -  9 and higher), we can say the following: a 
calculation of the contribution to D s due to one of the three-sphere mobility terms 
of  order R -9 givest about 1 ~ of  the value in eq. (4.8), which results from the only 
term of order R-7.  

We defer a discussion of  our result (4.9) to section 8. 

* Use was made of the adaptive stratified Monte-Carlo integration program RIWIADZ°). 
t Using the notation of ref. 9: we found that the sequence of connectors 

Gtl.2~)(RO:Bt2~.2~) -'. H¢~,z')(RI2): B~z,.z,)-'. Gt2s, l)(__ R2) 

contributes -0.016~b 2 to DJD o. 
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5. The fluctuation expansion 

The fluctuations in the microscopic density field are defined by 

n(r )  = no + f n ( r ) .  (5.1) 

The average ( f n ( r ) )  equals zero by definition, while 21) 

( f n ( r  ) f n ( r ' )  ) = nor ( r "  -- r )  + n~[g( l r '  -- r l )  --  1] ,  (5.2) 

with g ( r )  the pair distribution function. 

Our aim is to expand the expression between braces in eq. (3.16) in powers of  
fin. This can be done most conveniently by using first the identity (A is an 
arbitrary operator) 

[1 - (no + f n ) A  ] - l  = (1 - noA ) - l[1 - f n A  (1 - noA ) - l] - 1. (5.3) 

Substitution of  (5.1) in eq. (3.16) gives, with the aid of (5.3), the alternative 
expression for Ds 

DUDo = I + n o l p ( { n ~ ¢ , o [ 1  - f n Q g ~ - l m 4 j - l } ( O i O ) ) p  ' (5.4) 

where the renormalized matrix of  connectors ~¢,0 is defined as 

d ,  0 - ~¢[1 - noO~-1~¢]  -1 (5.5) 

This renormalization accounts for the fact that fluctuations in the concentration 
of the spheres interact hydrodynamically via the suspension rather than through 
the pure fluid. 

If we expand the expression between braces in eq. (5.4) in powers of  fn ,  we 
obtain an expansion of  Ds in correlations of density fluctuations of higher and 
higher order (a "fluctuation expansion") 

D~ = D(°)~ + D(2)s + . . . ,  (5.6) 

where D~ ) contains terms of  order ( ( fn)P~.  
The zeroth order term D~ °) is given by 

D~°)/Do = 1 + A(. '  o, ')(r = 0 ) ,  (5.7) 

where the renormalized connector field A(nno'm)(r) is the kernel of  the convolution 
operator A (,o 'm), which in turn is an element of the matrix d ,0  

A(,o'm)= {d~no)n,m. (5.8) 

The renormalized connector field will be evaluated in the next section; an explicit 
expression for D (°) is given in section 7. 

We will include in our calculation of Ds the lowest order correction to D~ °) due 
to fluctuations in the concentration of  the suspended particles. This correction D ~2) 
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results from terms of order ((6n) 2) in eq. (5.4) and is given by 

D ~Z)/ Oo = no  l P ( { 6n~ .o6na  ~ -  l ~ n  0 

+ .O~.o6nQ~- '~.o6nQ~- 'd.o}(O I 0 ) ) ? ,  (5.9) 

or, written out explicitly, 

D~Z)/Do = ~ A~.'2)(r = 0) Q B ~ ' ' ) - '  C) A~.o:)(r = O) 
m=2 

( ,~(m.l)(__ r ) [ g ( r ) -  II + no drA(~m)(r) G B("'m)-' Q- - .o  , 
m=2 J 

+ m = ~ k = 2 no dr A ~l;m)(r) Q B (,~,m)-I Q A ~'2'k)(0) 

Q B(k'k)-' (~ A ~ ' I ) ( -  r) 

-~ -m=2k=2  ~ ~ nmf dr f dr'A(~m)(r)Q)~(m'm)-'(~A(°J~,(r'-r) 
(~) B (k'k)- 1 (~ A ~'1)( - r ') tg(I, '  - r l ) -  I I  (5.10) 

Use has also been made of eq. (5.2). The contributions to D~ 2) result from 
pair-correlations (the terms containing g(r) - l) and from self-correlations which 
would also be present in the hypothetical case of penetrable spheres. 

6. Evaluation of the renormalized connectors 

According to eqs. (5.5) and (5.8) the renormalized connector field A~.o'')(r ) is 
formally given by 

A ("'') . . . .  drs.~(n'm')(rO .0 (r) A(".")(r)+ ~ n~ dr, . 
s= l  m I =2 ms=2 d 

Q) B(ml,ra 0 I Q) A(ml,mm)(¥2 __ ¥1) ( ~ ' ' "  C) B ( . . . . .  ) ' G A ( . . . .  )(r -- rs), 

(6.1) 

cf. also the definitions (3.10)-(3.13). We observe that we may replace A("'m)(r) 
under the integral in eq. (6.1) by A("'m)(r), since these two connector fields differ 
by a finite amount in a single point only, cf. eq. (3.4). Hence, in terms of the 
Fourier-transformed connector field defined in eq. (2.14), eq. (6.1) takes the form 

f -- ml=2 ms=2 
C) O era''"')-' @ A("""~)(k) Q) . . .  Q) O ¢ . . . . .  )-1 (D A(""m)(k) • (6.2) 
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To proceed we m a k e  use o f  the fo rmula  (proven in appendix  B) 

n0A (n'p)(k) Q) B (p'p)-I Q) A 0"")(k) = - ~ A  (n'm)(k ) ~ (.p 

× (2p - 1)z-~(ak)-3j2p_,a(ak), p >~ 2 ,  (6.3) 
Z 

with the definition 

e2=5 /9 ,  ep=l  ( p t > 3 ) .  (6.4) 

The vo lume fract ion q~ is defined in eq. (4.5). Using wel l -known formulae  for  
Bessel funct ions (cf. appendix  C), we can analytically pe r fo rm a summat ion  over  
p in eq. (6.3) 

~ noA ("'P)( k ) (S) B O'p) - ~ Q) A O"m)( k ) = -- 49 S ( ak )A ("' m)( k ) , (6.5) 
p=2 

where the funct ion S(x) is given by 

S(x) = ~ [Si(2x)x - l + ½ cos (2x)x  - 2 + ¼ sin(2x)x 3 1 

- (sin X)2X - 4  - -  4(sin x - x c o s  x)2x - 6 ] .  (6.6) 

Here  the sine-integral Si(2x) is defined by 

2x 

Si(2x) = fsin t/t dt.  (6.7) 

0 

For  small values o f  x, S(x)  behaves  as 

S(x) = 5/2 + (9(x2). (6.8) 

With  the aid of  fo rmula  (6.5) we can resum the formal  expansion (6.2) to yield 
the required expression for  the renormal ized connec tor  field 

A ~'m)(r) = , ~ " " ) ( r )  - (2~) - 3 f d k  e-~*"A ("'m)(k)dpS(ak)[1 + dpS(ak)] - ] .  (6.9) 

We remark  that  as a consequence o f  the expansion (6.8), we have for  r large 

A~'m)(r) = A("'m)(r)(1 + ~q~)-1[1 + e)(a/r)Z]. (6.10) 

W e  thus see that  the range o f  a renormal ized connec tor  is the same as the range 
o f  an unrenormal ized  one, or, in other  words,  the hydrodynamic  interact ion is not 
screened in the effective medium.  

For  the f luctuation expansion we need in par t icular  the value ~"") A.0 (r = 0) (cf. 
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eqs. (5.7) and (5.10)). Using, for the angular integration in eq. (6.9), the results 
(A.9)-(A.I 1) from appendix A we find 

A'.'o,"(r = O) = - 1 f dk k -'J~/2(k)dpS(k)[l + q~S(k)]-l, (6.11) 
0 

B ~"' m) -~ (S) A ~.o")(r = 0) O B (r.,,.) -~ 
at3 

;a(m'm~-'(2m 1) dkk--~J~_,/2(k)~S(k)[l+4'S(k)] -1, m f>2,(6.12) 

0 

A(m'~+2).o (r = O) =A("+2"m)(r"o , . . . .  O) 3(m + l)!(2m 1)!!d (re+i'm+ i) 
o0 

× fdk k - ~Jm- l/2(k)Jm + 3/2(k)c~S(k)[1 + q~S(k)] -1 ,  (6.13) 

0 

(n,m) A .  o ( r = O ) = O  i f n # m  a n d n # m + 2 ,  (6.14) 

where a (re,m) l(m >i 2) is given by eqs. (2.6) and (2.22). The remaining one- 
dimensional integrations in the above equations may be performed numerically. 

7. Numerica l  results for the fluctuation expans ion 

In section 5 we have written the fluctuation expansion of the short-time 
self-diffusion coefficient Ds in the form 

Os = O (°) + D~ 2) + . . . .  (7.1) 

where D~ p) contains terms of  order ((fin)P), i.e. correlations of  density fluctua- 
tions of order p. 

From eqs. (5.7) and (6.11) we obtain for D~ °) the expression 
oo 

O~°'--Do,(1-2~fdk(sink/k)~S(k)[l+~S(k)] -1) 
0 

oo 

= D0 '2~ f d k  (sink~k)2[1 + q~S(k)] -~ , (7.2) 

0 

where the function S(k)  is defined in eq. (6.6). A numerical integration* yields the 
values listed in table I. 

* We used an adaptive routine based on Gauss-quadrature rules22). This routine, together with an 
algorithm for the evaluation of the sine-integral appearing in definition (6.6), is part of the 
NAG-library (Oxford). 
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TABLE I 
The fluctuation expansion (eq. (7.1)) of D s. The 
values under D~°)/Do and D~2)/Do result from eqs. 

(7.2) and (7.3), respectively. 

D~°)/Do + D~2)/Do = DdD o 

0.00 1.000 + 0.000 1.00 
0.05 0.896 + 0.005 0.90 
0.10 0.812 -- 0.007 0.80 
0.15 0.743 -- 0.024 0.72 
0.20 0.685 -- 0.041 0.64 
0.25 0.636 - 0.057 0.58 
0.30 0.593 -- 0.071 0.52 
0.35 0.556 -- 0.083 0.47 
0.40 0.524 -- 0.093 0.43 
0.45 0.495 -- 0.102 0.39 

With the aid of  eqs. (6.13) and (6.14) the expression (5.10) for D~ 2) reduces to 

O~2)/Do = A ~,3)(,. = o) E) c o , , ) - '  E) A ~.~'(r = O) 

+ Y~ n0 d,'A~10'm)(, ") 0 e('~'m)-'O A~*(O) 
m = 2  

@ A .o("''+2)(0) @ B ('' + z'" + 2)- ' @ A .o(" + 2 , , ( _  r)  

no IdrA(. 'o")(r) G B (re'm)-' Q A~.o'°(- r) [g(r)  - 1] + 
m = 2  J 

+ ~__2k~__2n~ d r  d r ' A ( . ' o " ) ( r  ) e B ( " ' ) - '  Q) A(no'k)(r ' - r )  

' a(*,')¢ r ' ) [g (U rl) 1] (7.3) © B(k,~)  - © . . , , o  , -  - _ , 

We have numerically evaluated all the terms in eq. (7.3) not containing connectors 
A~,"o'm)(r) with n or m larger than 2, i.e. restricting ourselves to corrections to D~ °) 
due to monopolar  and dipolar hydrodynamic interactions between density 
fluctuations. The results can also be found in table I. We approximated g(r) by 
the solution of  the Percus-Yevick equation for hard spheres, as found by 
Wertheim and Thiele23). Details of the calculations are given in appendix D. 

The concentration dependence of  Ds given in table I will not be exact for two 
reasons: a) the values given for D~ 2) result from monopolar  and dipolar terms in 
eq. (7.3) only; b) we have evaluated only the first two terms of the fluctuation 
expansion (7.1). To obtain an estimate for the errors due to a) and b) we have 
evaluated: A) self-correlations (i.e. terms not containing the pair-correlation 
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function) in eq. (7.3) due to quadrupolar or even octupolar hydrodynamic 
interactions between density fluctuations; B) self-correlations contributing to ~sr~ (3). 
Since self-correlations give (for large 4)  the dominant contribution to D~ 2) (see 
table II in appendix D), it seems fair to assume that the results from A) and B) 
are reasonable estimates of the errors due to a) and b), respectively. We found: 
A) higher multipole terms contribute ~ l0 -3 D o to D~ 2) and can thus safely be 
neglected; B) D~ 3) will be "-~ 30~o ofD~ 2). O (2) ~ Since s in turn is less than 20~o of  D~°), 
one might expect the fluctuation expansion (7.1) to converge sufficiently rapidly. 

We conclude that the values for D~ given in table I should describe the 
concentration dependence of the short-time self-diffusion coefficient reasonably 
well up to high densities. 

8. Discussion 

We have calculated the concentration dependence of  the short-time self- 
diffusion coefficient Ds for spherical particles in suspension. 

For low values of the volume fraction ~ a virial expansion is appropriate. We 
found 11) 

Ds = Do 1[1 - 1.73~b + 0.884 2 + ¢(43)]. (8.1) 

Only two-body hydrodynamic interactions contribute to the - well-known 3,7)- 
term of order 4, which dominates if the suspension is very dilute. However, 
many-body hydrodynamic interactions may not be neglected at higher densitiest: 
a neglect of three-sphere contributions would give a value of  - 0.934 2 instead of 
+ 0.88~b 2 for the term of  order 4 2 in eq. (8.1). In a concentrated suspension it is 
therefore essential to fully take into account the many-body hydrodynamic 
interactions between an arbitrary number of spheres:~. 

The expansion of D~ in correlations of  fluctuations in the concentration of the 
suspended particles satisfies the above requirement. In fig. 1 we have plotted the 
results from this fluctuation expansion, including terms of  second order in the 
fluctuation. At low values of 4 we can compare these results with the virial 
expansion of  D~ (eq. (8.1)). We found from our fluctuation expansion a value of  
- 1.96 for the first virial coefficient, in reasonable agreement with the value of 
- 1 . 7 3  given in eq. (8.1), or with the exact value of  - .1 .83 calculated by 
Batchelor3). 

f The same is true for bulk-diffusion"). 
Van Megen, Snook and Pusey 24) have averaged the two- and three-sphere mobilities given in eqs. 

(4.1) and (4.6) with "exact" distributionfunctions (as known from computer simulations). The neglect 
of hydrodynamic interactions between four and more particles in a concentrated suspension can 
however not be justified. 
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Fig. 1. Density dependence of the short-time self-diffusion coefficient for spherical particles in 
suspension. The solid curve is according to table I. The datapoints with errorbars are measured values 

of D~ for a suspension of spherical colloidal latex particles (ref. 14). 

Pusey and van Megen 14) have measured Ds for a concentrated suspension of  
colloidal latex particles, using dynamic light-scattering techniques. Their 
datapoints are also plotted in fig. 1. Unfortunately, a comparison with the virial 
expansion (8.1) is not possible, since no measurements could be performed at 
sufficiently low concentrations. As we can see, the fluctuation expansion is in 
reasonable agreement with the experimental results for ~b ~< 0.30. However, for 
~b ~> 0.35 the calculated values for Ds are much larger than the measured ones. At 
~b = 0.40 e.g., experiment gives DJDo = 0.29, while the fluctuation expansion 
yields D~°~/Do + D~2~/Do = 0.52 - 0.09 = 0.43. In order to agree, higher order terms 
in the expansion would have to contribute 150~ of the lowest order correction 
D~ 2~. In view of  the discussion given at the end of  section 7, this seems rather 
unlikely. One may wonder, on the other hand, whether at these high densities - for 
which the typical distance between the centers of  the particles is 2.5a - the system 
studied in ref. 14 may still be regarded as a suspension of  hard spheres. 

We would like to conclude with the following observation: the zeroth order 
result D ~0~ from the fluctuation expansion of  D~ (given by eq. (7.2)) can, by means 
of  the expansion (6.8) be approximated by 

D~ °) ~ IkBT[6narl(1 + ~b)]-I (8.2) 

The approximation in eq. (8.2) amounts to a restriction of the hydrodynamic 
interaction to the dominant monopolar  and dipolar terms. As we can conclude 
from a comparison with the exact values of  D~ °) given in table I, the error in (8.2) 
is less than 5Yo. The expression r/(1 + 25-~b) in eq. (8.2) co inc ides-up  to terms of 
order ~b 2-  with the effective viscosity of  the suspension. In this sense the zeroth 
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order approximation D~ °) can be called an effective medium theory for self- 
diffusion. 

A c k n o w l e d g e m e n t s  

A discussion with Dr. P.N. Pusey is gratefully acknowledged. 
This work was performed as part of the research programme of the "Stichting 

voor Fundamenteel Onderzoek der Materie" (F.O.M.), with financial support 
from the "Nederlandse Organisatie voor Zuiver-Wetenschappelijk Onderzoek" 
(Z.W.O.). 

A p p e n d i x  A .  F o r m u l a e  f o r  i r r e d u c i b l e  t e n s o r s  

We will use the following formulae (cf. ref. 15) 

n -- 1 Q)n-2~n-2 , (A.1) 

~" (3"~" = n!l(2n - 1)!!, (A.2) 

A~"'")QmA~"")=A ~"'") i fm ~<n, (A.3) 

A ("'") (3" A ~,,,m) = 0 if m > n,  (A.4) 

2n + 1  A (".") (3" + 1A ~",n) = - - A  ("- 1,"- l) (A.5) 
2n - 1 

__1 f di~-;~- ~= D,,mn![(Zn + 1)![]_,A(,,, ) (A.6) 
4n J 

Integrals of  the form 

1 ( '  r------n , , 
d("")=~-n~ J d i ~ " - l ( 1  - ~ i ) i  "-*,  n,m>~2 (A.7) 

can now be evaluated using first eq. (A.1), and then eq. (A.6) and its corollary 
(cf. definition (2.19)) 

1 /" r-----n • , 
- -  J d ¢ i  "-* 7r m-Ira 6,,,(n - 1)![(2n - 1)[!]-lA ('-l,ia,n-t) (A.8) 
4~ 
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The result is 

J("'") = (n - 1)![(2n - 1)!!]-l 

X (Z~ (n l,id, n - I) H 

\ 2 n +  1 
- -  A ("'") 

2n - 1 
__n -- 1 A~ ,_L ,_I  ) Q),_Z A~,_L,_~) ) 

(A.9) 

j~,,,+2) = j( ,+2, ,)= _ (n + 1)![(2n + 3)!!]-~ A ('+L"+1) , (A.10) 

J { " " ) = 0  i f n ~ m  o r n ~ m _ + 2 ,  (A.11) 

where we have made use of eq. (A.3) to simplify the expressions. 

A p p e n d i x  B .  P r o o f  o f  e q u a t i o n  (6 .3 )  

Every tensor of  rank 2, constructed from the tensor I and the vector F, is 
necessarily of the form ~ 1 + fib:, with scalars 0t and ft. Hence we can write 

( 1 - h : ) r ' - ? O " B  (",') ' Q " r " - ; ( 1 - F i ) = e l + B h : ,  n / > 3 ,  (B.1) 

with B ("'")-~ (n ~> 3) given by eq. (2.22). 
If we contract both sides of  eq. (B.1) with i, we find 

0 = (~ + /~ )¢ ,  (B.2) 

hence, fl = - ct. T o  d e t e r m i n e  ct we take the trace of  eq. (B.  1) 

Z ~, 6u,nr,2 . . . .  , _ ,  .... , , : ,  . . . .  r , .  
t l l  • • • P n  V l  " " " V n  

r - ' - " ~  

- i t " -  1'(2)" B (",")- ~ O "  : " - l i  = 2 ~ .  (B .3 )  

The l.h.s, of  eq. (B.3) can be evaluated with the help of  the formulae (cf. eqs. 
(A. 1)-(A.5)) 

'̂  '̂ ( n - lA d ,  n - l )  . . . . .  k rv2 (H - -  1)!  ~, Z 6u: , r ,2""r , .Au . . . .u , , v ,  r, . . .  =3,T=--3)I!,,~.,, (B.4) 
l t l  . .  . l ~ n  V l  . . .  v n 

, , ( n  - 1 ) !  

,~ A<.,.) :, :,~ = (2n + I)(2n - I)!!' (B.5) 
t Z l  . . .  I t n  V l  . . . v n 
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"~ r T (n'n) rv .  . rv2 Z . . . .  . . . . .  . .  

.~.....vl .... , (B.6) 
= ' i  " - I  © " - ' r " - ¢  = (n - 1)![(2n - 3)!!] -1 , 

Cr"-"  ©" A ("- L,o.,-1) (5)" r " - " i  = r"-1'  ©"-1  r"-1'  = (n - 1)![(2n - 3)!!1-1, 

(a.7)  

i t " - "  ©" d ("'") ©" r " - " i  = 7 ©" ~:"7 = n ![(2n -- 1 ) ! ! ] - ' ,  (B.8) 

_ n - 1 r , _ j © , _ 2 . 1 , _ ~ _  n - 1 (n - 1)![(2n - 3 ) ! ! ]  -~ .  (B.9) 
2n - 3 2n - 3 

In eqs. (B.6) and (B.9) we have used the abbrevia t ion  

T (",") - A ("-I ,"-  I) ©n-Zd(n-l'n-1). (B.10) 

Subst i tut ion in eq. (B.1) of  the values for ~ and fl which follow f rom eqs. 
(B.2)-(B. 10) yields 

( l - f f ) r " - " O " O  ("'") ' © " ' ~ : " - ~ ' ( I - f f ) = - [ ( 2 n - 3 ) ! ! ] - 2 ( 1 - f f )  n / > 3 .  

( a . l l )  

Since 8 (2,2)-' equals - ~  A (2'2) (definition (2.6)), a simple calculation gives 

( 1  - : : ) i  " B ~2'2) ' : ~ ( 1  - ~ )  = - ~ ( 1  - ~ )  . (a.12) 

The eqs. (B. i l) and (B. 12) give, together  with eq. (2.15) the required formula  (6.3). 

Appendix C. Derivation of equation (6.5) 

We wish to calculate the sum 

2 2 ~ 2 ~ ( 2 n  + 1) J ,+l /E(X)  2 x  2 = ._. [J° + 1/2(x) + J.  _ l/2(x)J. + 3/2(x)] 
n = l  n = 0  

- x2[J~/2(x) + J~/2(x) + 2J_,/~(x)J3/2(x)],  

where we have used the recurs ion-re la t ion  16) 

(2n + 1 )J ,  + l/z(x) = x J ,  _ l/2(x) + x J ,  + s /2(x) .  

In ref. 25 (§116) we find the useful fo rmula  

x 

J .  + ~(x)S .  + p(x )  = x " -  ~ t t ~- "J~_ ,(t  )Jp( t )  d t  , 
n=O d 

0 

( c . o  

( c .2 )  

(C.3) 
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for v and p real numbers.  I f  we take v = p = ½, we find 

2x 

JZ+l/z(x ) = 7t -1 fsin t/t  dt - ~-1 Si(2x) ,  (C.4) 
n = 0  

0 

while the choice v = 3/2, p = - 1/2 gives 

x 

~ J ,+m(x)J~_,a(x)  = x - 2 ~ - 1  f t  sin 2t dt  
n = 0  

0 

= x -2 ~ - 1(¼ sin 2x - gxl cos 2 x ) .  (C.5) 

Substitution o f  eqs. (C.4) and (C.5) in the sum (C.1) yields the result 

~ (2n + 1)2J~+ ~a(x) = (2/r0[x 2 Si(2x) + 1 sin 2x + ½x cos 2x - x -1 sin2xl " 
n = l  

(C.6) 

This is the formula  we need in deriving eq. (6.5). 

Appendix D. Calculation of O~ 2) 

We can write the integrals in eq. (7.3) in terms of  Four ier - t ransformed 

renormalized connector  fields ,4 ~'m)(k), which, according to eqs. (2.14) and (6.9), 

are given by* 

A~,o'm)(k ) = A(n'm)(k )[l A- 4~S(ak)]-' . (D.1) 

Restricting ourselves to terms in eq. (7.3) containing only connectors  with upper  

indices n, m ~< 2, the expression for D <2) takes the form 

D~2)/Do = n0(Zn)-3 f d k  A ~'2)(k): a (2'2)-1 : A (20~2)(r = 0) 

: A : : A - * ' 1 ) ,  ( D . 2 )  

* When A~")(r) appears as an integrand, we may in its representation (6.9) replace the modified 
connectorfield ,~'t'm~(r) by the unmodified field At'')(r), since these two fields differ by a finite amount 
in a single point only (cf. definition (3.4)). 
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where  v(k) is the  p a i r - c o r r e l a t i o n  f u n c t i o n  in  wave  vec tor  r e p r e s e n t a t i o n  

fdr  e ~ " [ g ( r )  - 1]. (D.3)  v (k )  

The  first in t eg ra l  in  eq, (D.2)  (due  to  se l f -corre la t ions ,  cf. sec t ion  5) c an  be 

eva lua t ed  wi th  the a id  o f  eqs. (2.6), (2.15) a n d  (6.12) 

oO 

D ~2)(self_correlation) = 135 2 - 4 rtdp Do I dx x -4jE/E(X)J]/E(X) 

o 
c ~  

x [1 + tkS(x)]  -2  t d y y  -~J2/E(y)S(y)[1 + ~ b S ( y ) ] - l .  (D.4)  
I /  

0 

A n u m e r i c a l  i n t e g r a t i o n  22) o f  these o n e - d i m e n s i o n a l  in tegra l s  yields the va lues  

l isted in  table  II ,  c o l u m n  I. The  two r e m a i n i n g  in tegra ls  in  eq. (D.2)  c o n t a i n  the 

p a i r - c o r r e l a t i o n  f u n c t i o n  v (k).  W e  have  a p p r o x i m a t e d  v (k)  by  the so lu t i on  o f  the 

P e r c u s - Y e v i c k  e q u a t i o n  for  h a r d  spheres23) *. U s i n g  eqs. (2.6) a n d  (2.15) we can  

wri te  the two te rms  in  eq. (D.2)  c o n t a i n i n g  pa i r - co r r e l a t i ons  as two three-  

d i m e n s i o n a l  in tegrals .  These  in tegra l s  were eva lua t ed  by  M o n t e - C a r l o  

integrat ion2°).  The  resul ts  c an  also b e  f o u n d  in  table  II ,  c o l u m n s  II  a n d  III .  

TABLE II 
Specification of the terms contributing to 
D~2)/Do = I + II +III .  The values under I, II and 
III correspond to the first, second and third term, 

respectively on the r.h.s, of eq. (D.2). 

q~ I II III 

0.05 -- 0.007 + 0.014 
0.10 " -0.019 +0.021 
0.15 - 0.033 + 0.024 
0.20 -- 0.046 + 0.024 
0.25 - 0.057 + 0.024 
0.30 -- 0.066 + 0.022 
0.35 -- 0.073 + 0.020 
0.40 -- 0.079 + 0.018 
0.45 -- 0.084 + 0.016 

- 0.003 
-0.009 
- 0.014 
-0.019 
- 0.024 
- 0.027 
- 0.030 
- 0.032 
- 0.034 
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