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The perturbation theory of liquids developed recently by Weeks, Chandler, and Andersen
(WCA) is examined in detail: Each assumption introduced by these authors is tested by com-
parison with "exact" computer results. It is shown that the basic assumptions of WCA are
justified. An improved expression for the radial distribution function of the hard-sphere gas
enables us to correct for some further inconsistent assumptions of the WCA theory. We then
succeed in giving simple analytical expressions for the thermodynamic functions of the Lennard-
Jones fluid shown to be quite good at high density. We show that the remainder of the perturba-
tion series, which converges slowly at lower density, can be evaluated with the help of the
Percus-Yevick equation. We therefore possess a unified theory of liquids which is especially
simple at high density. Finally we reexpress the original WCA theory in an analytical form.

I. INTRODUCTION

A perturbation theory of liquids has been intro-
duced by Zwanzig, ' and been revived and generalized
recently by several authors~ 4: The excess free
energy is expanded as a series in a parameter X

multiplying some part of the interaction considered
as a perturbation (e.g. , the attractive part); the
statistical averages of the terms of the series are
calculated for a system interacting with the remain-
ing part of the interaction, the so-called "reference
system. " The first-order term of the expansion
involves the evaluation of the perturbing interaction
averaged over the reference system. The next-
order terms involve the averages of the fluctuations
with respect to the average perturbed energy and
they are very complicated to evaluate.

The method is feasible and useful because advan-
tage can be taken of the similarity between the ref-

erence system interacting with repulsive interac-
tions and that composed of hard spheres. Such a
similarity is, as a matter of fact, already present
for the full system at high density: It is well known
that the structure factors of dense liquids can be
interpreted with a hard-sphere model.

A prerequirement of that kind of theory is there-
fore a correct knowledge of the hard-sphere sys-
tem. The equation of state of a hard-sphere sys-
tem is quite well known at presents owing to the ex-
tensive computer work of Alder and Wainwright.
The situation regarding the radial distribution func-
tion (rdf) is not so satisfactory. It is well known
that the Wertheims- Thiele (WT) analytical solution
of the Percus-Yevick (PY) equation is good when
the density is not too high: It becomes quite un-
satisfactory for very dense states. We use hard-
sphere rdf obtained through computer experi-
ments' '" in order to improve the WT solution.
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Introducing essentially one empirical parameter,
we can succeed in fitting very v~ell the computer
data up to the transition density (Sec. II).

In Sec. GI we study the convergence of the X ex-
pansion for various separations of the Lennard-
Jones (LJ) potential into a reference and a perturb-
ing part. In particular, a new way of handling the
perturbation problem has been considered recently
by Weeks, Chandler, and Andersen (WCA). ' These
authors take for the reference system potential
vo(r) that part of the potential which gives rise to
the repulsive force and vanishes when the force
vanishes. The remainder of the LJ potential, w(r),
is treated as a perturbation. We show that in the
dense states this separation leads to a very rapid
convergence of the X expansion: Near triple point
the first-order term in the perturbation series for
the free energy is 200 times as large as the re-
mainder of the series. This constitutes an order-
of-magnitude improvement over ways of handling
the problem, and we shall concentrate on that divi-
sion of the potential.

In the same section we examine another approxi-
mation made by WCA, ' which, although in the same
spirit as the X expansion, is more restrictive. It
consists in replacing, when calculating the pres-
sure through the virial theorem, g(r) the rdf of the
total system by go(r), the rdf of the reference sys-
tem. We show that this assumption leads to incor-
rect results.

We then examine (Sec. IV) how the reference
system can be replaced by hard spheres. Using an
approximation already introduced by Kim, ' WCA
have proposed to replace the reference system rdf
go(r) by the approximation go(r) given by

go(~) = e "o'"'
y H, (~/d, g),

where y„,(r/d, q) is the rdf of a hard-sphere gas
of diameter d, and packing fraction g =+6ppd,
smoothly extrapolated when ~& d. The diameter d
is determined through a self-consistency criterion
also due to WCA. We show that both this criterion
and approximation (1.1) are excellent but that the
use of the WT solution made by these authors is not
correct for high densities where the results of
Sec. II should be used.

It is possible to expand y„,(r/d, g) around r = d
owing to the fact that vo(~) varies very fast in that
region. Then simple expressions can be given for
the diameter: It is given by the well-known expres-
sion of Barker and Henderson with a small cor-
rection. The pressure is, but for a small correc-
tion, that of a hard-sphere gas of packing fraction
g 0

In Sec. V, we consider the first-order free ener-
gy. We show that without appreciable loss of preci-
sion due to the approximations, it can be expressed
analytically.

II. RADIAL DISTRIBUTION FUNCTION FOR
HARD SPHERES

We wish to give a simple approximation for the
hard-sphere rdf for densities extending up to the
transition density. We know that, at low density,
the solution of the PY equation given analytically
by Wertheim and by Thiele yields such a repre-
sentation. The direct correlation function is equal
to zero for ~ d and otherwise given by

e~(~/d) = —X, —6q),,(~/d) —,' qX, (r/d) 3, — (2. 1)

with

(2. 2)

(2. 3)

From there it is possible to obtain the rdf
g~(r/d, q) using the Ornstein-Zernike relation which
reads:

We are then ready (Sec. VI) to calculate the ther-
modynamic properties of the system: the excess
free energy, the compressibility factor p/PENT, the
excess internal energy, all of which are given ex-
pressions which can be calculated without computing
facilities and which are shown to be very satisfac-
tory at high density. The defects, seen at lower
density, are not due to any numerical mistreatment
but mainly to the lack of convergence of the & ex-
pansion at low density, where the fluctuations of
the perturbing potentials are large. We therefore
resort to a mixed perturbation scheme. " We add
to the free energy calculated to the first order in
X the remainder expanded in the density up to p .

Section VII is devoted to the results specifically
obtained by WCA. There appears to be a mirac-
ulous cancellation of the errors entailed by the two
unjustified approximations we have mentioned
above: the replacement of g(x) by go(r) in the virial
theorem and the use of the WT approximation at
high density. It follows that using this coincidence
and the analytical procedures developed in the
present paper, we can give an equation of state
which is simpler, although less justified, than that
of Sec. VI. It reproduces exactly the results of
WCA which are known to be quite good at high den-
sity.

Once it has been verified that the cancellation of
errors mentioned above occurs for all high-density
states, the WCA approach provides an easy and
efficient way of calculating the rdf and gives a sim-
ple formula for the diameter of those equivalent
hard spheres which determine the structure factor
in thehard-sphere model. '" Although there are
some empirical elements in their foundations, these
expressions for the rdf and the structure factors
can be quite useful in practice.
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h ().d, rt)=f e""((( (~/d, n) —(]dr
i (kd)

1 —Pcv(kd)
(2. 4)

where c~(kd) is the Fourier transform of the direct
correlation (2. 1).

Computer experiments' ' show that the WT rdf
is incorrect and should be improved. Such experi-
ments have been performed on a system of 864
hard spheres by Schiff and Verlet" for the following
values of the packing fraction: g =0. 35, g =0.4,
g=0. 45, g=0. 47, q=0. 49. Of the order of 10'
configurations were used in each case. A compari-
son of the rdf g(x/d, ]1) thus obtained with the WT
rdf g~(x/d, q) shows that the latter suffers from
three defects, which become very apparent near
the transition.

(1) g~(r/d, ]7) is too small near the core.
(2) Its oscillations for large r have the conse-

quence that the main maximum of the structure
factor, equal to 1+pk(kd, ]7), is too high.

(3) g~(r/d, q) oscillates slightly out of phase with
respect to the exact rdf g(] /d, q).

The last two defects can be corrected by approxi-
mating, for x+d, g(r/d, ]7) by g~(y/d~, qv) where
dw is smaller than d and obeys the relation

4/nw=d'/@=6/vp. (2. s)

As we shall see, dw can be adjusted so that an al-
most perfect fit of the rdf is obtained except near
the core where the first defect mentioned above is
still worse. To correct for this, we add a short-
range term sg, (~) designed so as to produce the
correct behavior near the core. We thus write

g(r/d, ')I) =g(((r/d)(, q)()+sg, (~),
with

Sg, (r) = (A/x) e "'" ' cos p, (x —d) .

(2. 6)

(2. 7)

1 2
1W ~ 16~ (2. 9)

A is fixed so that the correct value for the rdf at
core is obtained:

A/d = g(1, 7l ) —g~(d/d ~, q)F) . (2. io)

g(1, g) is obtained using the virial theorem and the
excellent equation of state for hard spheres recent-
ly suggested by Carnahan and Stirling:

Z„,(q) = I+4qg(I, q)

In order to determine dw, we use the rdf which are
computed" for x& 3d and we minimize the integral

f„"
I g(~/d, n) g.(~/dw —nw) I

d r,
where x, =1.6d is large enough so that the second
term in (2. 6) is negligible. The results can be
represented using (2. 5) and the empirical formula

(2. 11)

Since d/d~ is nearly equal to 1, we may expand
g~(g, q) around 1 and use the fact that the values of
the WT rdf and of its derivatives at core can be
calculated using the continuity at core of g~(x, q)
—c~(x, )7) and that of its three first derivatives.

We then find easily, using (2. 9) and neglecting
small terms,

A 3 ]7](,(I —0. 7117]7N —0. 114]7)(,)
4 (1 —]I~)'

(2. 12)

The last parameter p, is obtained from the follow-
ing remark. The Fourier transform of the correla-
tion function is, using (2. 6),

k(kd, q) = k](((kd(((, q]],) + sk, (k) + Sk~(k), (2. 13)

where k~(kd](, , q]],) is given by (2. 4) and Ti(kd, q) is
similarly the Fourier transform of g(x/d, gj —1,
and where

sk, (k) = f e' 'sg, (x) dr (2. 14)

4m
d

ilh(A) = —
~

g —,n-) sin(rrd~ . (2. (h)

sk, (k) is trivially obtained from (2. 7). 6k~(k) can
be calculated by expanding g~(x, )7~) around x= 1
as above. In the k = 0 limit, (2. 13) reduces to

Bp BpkT — —kT —=6k, (0)+sk2(0) .
ap - ap

(2. is')

24A/d
nwaw(I nw)

' (2. 17)

The rdf obtained in this way differs from the
"exact" one by at most 0.03; the statistical error
in the rdf is estimated to be of the order of 0.01.

The same kind of agreement is obtained when the
rdf obtained by Alder and Hecht are considered,
if one takes into account the fact that those com-
putations are admittedly less precise than those
used in the present study.

Another important fact to be noted is that sk, (k)
+ Skz(k) is quite small. It yields for 7l = 0.49 a cor-
rection of 0. 5% on the structure factor at its first
maximum and a contribution of about 4% at its next
secondary maxima. The smallness of this correc-

The left-hand side is the difference between the
hard-sphere compressibilities calculated using the
"exact" expression (2. 11) and the Wertheim approx-
imation, respectively. It is of the order of 1/200
at the transition. In the same density region,
sk2(0) is of the order of unity. It is therefore a
good approximation to determine p. by the condition

sk, (0)+6k,(0) = o . (2. 16)

We then get
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tion explains why the WT solution can be used to
fit the experimental structure factors of liquids. '"
The packing fraction q~ determined through this
fit should be replaced by q obtained from (2. 9) if
the "exact" value of the packing fraction is wanted.

III. CONVERGENCE OF X EXPANSION

TABLE I. Convergence of the A, expansion of the free
energy for the potential separation schemes of McQuarrie
and Katz (MK) [cf. (3.9) and (3.10)], Barker and Hender-
son (BH) [cf. (3.7) and (3.8), and Weeks, Chandler, and

Andersen (WCA) fcf. (3.4) and (3.5)]. Column 4: first-
order term of the A, expansion. Column 5: remainder of
the X expansion [cf. (3.2)].

Let us consider that the potential v(r) which acts
between the particles is replaced by

Po tential
separation

scheme
', &w» -&w&.

N
v, (~) = v, (~) + &w(~), 0 —X —1 . (s. 1)

(W), i, (W), —(W),

0

(3.2)

where fo is the free energy per particle of the "ref-
erence system, "i.e. , of the system of particles
interacting through vo(x), and W is the total pertur-
bation. The average is to be taken for particles
interacting through v, (x).

The X expansion consists in expanding (W), in

powers of & and in integrating this expansion term
by term. One gets

(W), g (W'), -(W),'
N 2 N

(3. 3)

"Exact" computations using the Monte Carlo
method enable us to calculate (W)~ for various
values of &. If we plot ((W), —( W))o/ Nas a function
of X, we obtain the second-order term of (3.3) as
the slope of this curve for X = 0, and the sum of the
second- and higher-order terms as the area under
the curve. We have done such a calculation for a
state near the triple point (p=0. 84, T=0. 75) using
a system of 864 particles with 10 configurations.
The division of the potential was that due to WCA:

v, (~) = v„,(~)+I,
=0

w(r) = —1,
= v„(r),

where

otherwise

m

(s. 4)

(s. 5)

v, (~) = 4[(1/~)" —(I/~)'] (3. 5)

(reduced units q = o = 1 are used throughout).
The results of this computation are shown in

Table I. It is seen that the ratio of the remainder
of the X expansion [second term in (3. 2)] to the
first order -term (W)o/N is less than 1/200 in mag-
nitude. Good results are expected for dense states

vo(r) contains mostly the repulsive part of the po-
tential. ~(r), which contains the attractive part
of the potential, will be considered as a perturba-
tion: The free energy of the system willbe expanded
in powers of & [ultimately X will be taken equal to
1 so as to recover the original potential v(x). ]

The total free energy per particle f is given
through

MK
BH
WCA

0.84 0.75 —14.99
0.85 0.72 — 7.79
0.84 0.75 — 8. 81

—0.30
—0.45
—0.038

x —1

otherwise

x —1

(3.7)

=0 otherwise. (3.S)

For this case a computation similar to the one just
described has already been performed near the
riple point 's'8 We give the results for the sake

of comparison. " There the convergence ratio is
only of the order of 1/17. If quantitative answers
are wanted, it will be necessary to evaluate the
complicated second-order terms. '

Still another division of the potential has been
proposed by McQuarrie and Katz (MK). ' It con-
sists in writing

v, (~) =4/r",
w(r) = —4/~'.

(s. 9)

(s. 10)

This problem has been studied ..~eoretically by
Lebowitza and numerically by Hansen. ' The ad-
vantage is that some scaling laws hold which make
it possible to study only one isotherm. The draw-
back is that the reference system is rather different
from a hard-sphere one. This division of the po-
tential seems to be more attractive at very high
temperature, ~ ~' where it leads to a very rapid con-
vergence. The convergence of the X expansion can
be examined near triple point for that case also.
We therefore have made a direct computation of

if only the first-order term is kept. There are
two reasons for the good convergence. The first
one is well known: Owing to the repulsion of the
reference potential there is little space available
for the motion in the liquids and the potential fluc-
tuations are therefore prevented. Another reason
is peculiar to the WCA division, where w(~) is
perfectly smooth in the core region where important
fluctuations are most likely to occur for the dense
state.

This last argument is not true for the potential
separation proposed by Barker and Henderson'.
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TABLE II. Comparison of the compressibility factors
obtained through the virial equation using the exact rdf
g(z) of the total system (column 3) and the exact rdf gp(&)
of the reference system (column 4).

obtained as

6Pfoy(r)
5 Bvo(7 &-

p 6e (4. 1')

1.10
0.85
0.84
0.65
0.40

3.05
2. 81
0.75
1.35
1.35

9.87
4.35
0.37
0.85
0.27

+%CA

10.12
4. 59
1.57
0.92
0.02

If vo(r) is very repulsive, it is reasonable to follow
WCA' and to replace y(r) by y„o(r/d, ri) where the
hard-sphere diameter d has to be determined in
the best possible way. We thus obtain an approxi-
mate rdf go(r) for the reference system:

g, (r) = e '"o'"' y„,(r/d, q) . (4. 2)

p
6AT

g(r)r —drer (3.11)

and by the WCA approximation

p O'U

ZwcA 1 — go(r) r dr (3. 12)

would give the same result.
Monte Carlo computations have been made for the

reference system (864 particles, 10o configura-
tions) for a variety of states in the p, T plane,
which have enabled us to calculate Z«„"exactly. "
We have chosen states for which wIe knew the exact
compressibility factor. The comparison is made
in Table II. It is seen that the difference between
Z and Z«„ is quite large. We can see directly that
the difference between g(r) and go(r) is not negli-
gible. For instance, for p=0. 84, 1'=0.75, the dif-
ference between the heights of the first maxima
of g(r) and go(r) reaches 0.05; the difference be-
tween the heights of the first peaks of the structure
factors amounts to 0. 32.

IV. REDUCTION OF REFERENCE SYSTEM

We can always write the rdf of the reference sys-
tem as

g, (r)=e '"o"'y(r) . (4. 1)

y(r) contains the effect on the singled out pair of
the other particles of the liquid. y(r) is formally

(3.2) for the state p=0. 84, T=O. V5. It can be
seen that the convergence ratio is substantially
smaller than in the BH case, of the order of 1/50.
The improvement over the BH treatment is however
less spectacular than it seems, because the first-
order term is anomalously large for the MK division
of the potential. Finally, the correction to the free
energy due to the remainder of the X expansion is
not much smaller than in the BH case, as may be
seen in Table I.

Returning to the division of the potential due to
WCA, we examine the proposal of these authors
to approximate the rdf g(r) of the full system by
that of the reference system go(r).

If this approximation were true, then the virial
equation of state yielded by

[In what follows we put carets on the quantities ob-
tained using (4. 2). ]

We shall need y„(or/d, q) inside the hard core.
It is given by (4.1') in the limit of vo(r) going to a
hard-sphere potential with diameter d. y„(or/ dri)
is seen to be smoother at the core. In the PY ap-
proximation, y„o (r/d, ri) is simply given by

y~( /r,drj) = g~(r/d, q) —cv(r/d, ri) . (4. 3)

In general we shall write, using (2. 6),

y„,(r/d, r))=y (r/d, q )+5g,(r) . (4. 4)

There is obviously some arbitrariness in this ex-
tension, but we shall see, later on, that in fact
only the value at core 5g&(r) and of its first deriva-
tives are used and that ihe extrapolation inside the
core is really not needed.

In order to determine d', we shall require that
for the reference system, where vo(r) is steep, the
hard-sphere model for the structure factor' ap-
plies, i.e. , that in some sense the structure factor

So(k) = 1+p f [go(r) —1]e'"'d r (4. 5)

can be identified with a hard-sphere structure fac-
tor. Because we have for ~& r

go(r) yHS (r/d n) (4. 6)

it is obvious that the hard-sphere diameter for the
model must be d. Then we can determine that
diameter by requiring, for instance, that

f l So(&) S»(&d, n) I
d-a

be a minimum.
Another way of determining d is provided by the

remark that Ro(0) is an extremely sensitive function
of d. To describe reasonably the very repulsive
reference system, we should have So(0) very small,
and a way of enforcing this is to impose with WCA

S.(0) = S..(0, n) . (4. 8)

It is remarkable that the similarity of a repulsive
system to a hard-sphere gas imposes definite rela-
tions on its structure factor which are sufficient
to determine the hard-sphere diameter. It is the
great merit of WCA to have proposed the approxi-
mation (4.2) and the self-consistency criterion
(4. 8) to determine d.
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d=1.0239, Zo =9.31, U()) =0. 65 .
Using criterion (4. 8) and Eqs. (4. 2) and (4. 5),

we easily see that d is determined by

f drr'y„, (r/d, q)

= f drr y„~(r/d, q)(I —e ~"0'"') . (4. 9)

Let us consider

y(r) = v, (r/d —1)+,' o, (r/d —1)'+ ~ ~ ~-, (4. 10)

We shall now give a typical numerical example
which illustrates the preceding statement. For
p=0. 84 and T=0. 75, we have Z0=10. 23 and

U~, =0.73. When criterion (4. 7) is used we obtain
d=1. 0220. Using the virial theorem and the excess
internal energy formula, we obtain Z0=10. 34 and

Uo, =0.74. The value of So(0) obtained with this
value of the diameter is —0.002.

If now we use the WCA criterion (4. 8) we obtain
d=1. 0225 and then we get Z, =10.40, Uo, =0. '?4.
We see that both criteria give very similar results
(as they should if the ideas behind the model are
any good) andthat approximation (4. 2) is quite reli-
able. Other examples are given in Table III.

If now we follow WCA and use the PY approxima-
tion instead of the exact hard-sphere solution, we
see that the good agreement just mentioned no
longer holds. We obtain for the same state, using
(4. 8) again,

f y(r)5„,(r) dr = 0,
where

(4. 12)

(r) e-Boo(r)
dh

behaves like a 6 function. '
Using (4. 10) we obtain

(4. 13)

The first term is

d, = f (I-e~"o'"')dr .
0

(4. 15)

It is Barker's expression for the hard-sphere
diameter.

We shall put

it = —~~ (
——1) Il„(s ) dr

&v hCh
0

(4. 16)

Typically 6 is of the order of a few parts in a
thousand.

We thus have

h dh

0
OO 2

+ d ~ ——1 5„(r)dr+ . ~ . (4. 14)

and let
d = dg [I + (o(/2oo) &] (4. 17)

dy(r) r ' r= dr XHs

The condition (4. 9) becomes:

(4. 11)
We have neglected higher-order terms in the ex-
pansion (4. 14). They are extremely small. d~ and
5 are simple integrals depending on the tempera-
ture only. These integrals are tabulated in the

TABLE III. Compressibility factor and excess internal energy of the reference system using the approximate rdf
(4.2) (columns 7 and 8, respectively). For each state the upper line contains the values obtained when the HS diameter
d (column 6) entering the rdf (4. 2) is determined via criterion (4.7). In the lower line, d is determined via criterion
(4. 8). Column 9 gives the compressibility for both choices of d. Columns 3 and 4: exact Monte Carlo computations.

0.85

0.84

0.65

0.40

3.05

2. 81

0.75

1.35

1.35

Zp

12.67

6.92

10.23

4. 89

2. 53

Ugp

5.48

0.73

0.62

0.23

C rite rion
for the

choice of
d

(4.7)
(4. 8)

(4.7)
(4.8)

(4.7)
(4.8)

(4.7)
(4.8)

(4.7)
(4.8)

0.9610
0.9623

0.9692
0.9701

1.0220
1.0225

1.0025
1.0030

1.0045
1.0047

A

Zp

12.79
12.99

6.99
7.04

10.34
10.40

4.98
4.99

2.55
2.55

Ugp

5.36
5.45

2.39
2.41

0.74
0.74

0.64
0.64

0.24
0.24

S,(0)

—0.08
0.016

0.016
0.042

—0.002
0.024

0.059
0.070

0. 192
0. 194
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Appendix (Table XII) and simple approximants are
also given there [Eqs. (Al) and (A2)]. o, is the
value of the rdf g(l, 1I) at core and (?,', obtained
simply in terms of g(1, 1I) and of its first derivative
at core, is given in the Appendix [Eq. (A. 17)].

We now proceed to calculate the pressure of the
reference system. Through the virial theorem
we obtain

Zo= 1+4' dz r gHs g 0 x . 4 18
0

1.1
0.85
0.84
0.65
0.40

3.05
2. 81
0.75
1.35
1.35

12.67
6. 92

10.23
4.89
2.53

12.99
7.04

10.40
4.99
2. 55

12.61
7.01

10.37
4. 99
2. 55

TABLE IV. Compressibility factor of the reference
system obtained through exact Monte Carlo computations
(column 3), through Eq. (4. 18) (column 4) and the approx-
imate equation (4. 20).

If we expand

= To+7( —1 + $72 1 +

(4. 19)

we obtain, using (4. 14)-(4.16), the following ap-
proximation for Zo:

Z", =Z„,(q)+4?I5( r22~-, (r, /2cr )p. (4. 20)

Z„a (?l) is the hard-sphere compressibility factor
given by (2. 11). T1 and 7'2 are obtained in terms
of the first and second derivatives of g(x, ?l) at
core. They are given in the Appendix [Eqs. (A15)
and (A16)]. It is seen that both for d and Z, these
derivatives come in only multiplied by the very
small factor 6. The precise form of the correc-
tion term 5g1(r) as given by (2.7) plays only a
minor role. The extrapolation of g(r/d, ?l) inside
the core does not enter at all in the approximate
theory.

In Table IV, we compare the exact values of the
compressibility factor Zp of the reference system
with those yielded by the approximate theory of
this section. Zp, as given by (4. 18) contains only
the basic approximation (4. 2) with the WCA cri-
terion (4. 8). We see that the error is only slightly
larger than the statistical error and therefore quite
acceptable. There is an exception for the point
T =3.05, p=1. 1. This state is a fairly high-tem-
perature state quite near the solidification line.
Then, owing to the WCA division of the potential,

V. CALCULATION OF FIRST-ORDER CONTRIBUTION TO
FREE ENERGY PER PARTICLE

f1 = (W)P/N

= 2 p f ?u (r) gp(r) dr . (5.1)

If we make the approximation (4. 2), we obtain

f1= »p
0

r (r) (r '"0"' —())„(—,g) r'ar

'W(r) yap d ?l r dr (5.2)

The WCA criterion (4. 9) has been used to go from
the first to the second equation. Using (2.6), we
obtain after obvious manipulations

it happens that the diameter of the reference sys-
tem is larger than that of the total system (as could
be determined from the HS model), so that it yields
a packing fraction q = 0.51 which dangerously
extrapolates our formulas into the metastable
region of the hard-sphere gas. This explains why
the results are not so satisfactory for thai case.

Further on it is seen that the approximations
made when deriving Zp entail negligible errors.

f1—-21Tp( f 5g1 (r)?v(0)r Cr+ t 1v(0)yw (r/dw, ?lw)r dr + fvL2(r. )yw(r/dw, ?IW) r dr
d d d

—f v p(r)yw(r/dw, ?lw) r dr+ f [2()(r) —?v(0)] 5g1(r) r2dr) . (5.3)
d

fl (Ow )

The first and second terms cancel because of con-
dition (2. 16). The third term may be written

112 6

f1 481I
f1 ( lw) I1 (Rw (5.4)

W

where we have put

2 yw(~, 7W) (5.5)x" ? (1I ) f2(?t ) f2
1 lw 12 +

dw dw 4
(5.6)

For these integrals, there exist approximants due
to Kozak and Rice. They are not quite precise
enough for our purpose. Improved expressions are
given in the Appendix.

The fourth term in (5. 3) may be written
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with

I"=IT rm ~otr (~ ) (5.V)
J X

1

These integrals are calculated in the Appendix by
expanding xyo, (x, gtr) around x= 1. The last term
in (5.3) is the only one to depend explicitly on the
exact hard-sphere solution. It turns out to be quite
small. We can give an order-of-magnitude es-
timate of that term by expanding 2o(r) —ur(0) around
its inflexion point given by r, = (+)

51wp A „(„
169

x [cosp(r —, d) —sin p, (r - d}] . (5.6)

This term turns out to be of the order of f~ /1000
near triple point. It is negligible, so that the free
energy due to the perturbation is taken as

fi =fi +fi ~ (5.9)

In Table V we compare the Monte Carlo computed
free energy f, with f, yielded by the basic approx-
imations (4. 2) and (4. 9). The relative error on

f~ entailed by those approximations is seen to be of
the order of 1/200. It is therefore comparable to
the error made by neglecting higher-order terms
in the X expansion near triple point. When the
density is lower, the error due to the A. expansion
is relatively much more important.

It is seen also here that the various approxima-
tions summarized in the Appendix which are made
to reduce f~ to the easily computable form f", lead
to a negligible error.

VI. THERMODYNAMIC FUNCTIONS FOR LENNARD-
JONES SYSTEM

Starting from the expressions given in the two

preceding sections for Zo and fq we want to calculate
the total free energy per particle, the total com-
pressibility factor, and the excess internal energy.

In order to calculate the total free energy of the
system, we must get the approximate free energy
for the reference system which is given by

fo=
p

[&o«)-II—
0

TABLE V. First-order contribution to the free energy
per particle in the A. expansion. Column 3: exact values
obtained by Monte Carlo computations. Column 4: val-
ues obtained from Eq. (5.2). Column 5: values obtained
using the approximate equations (5.4), (5. 6), and (5.9).

1.1
0.85
0.84
0.65
0.40

3.05
2. 81
0.75
l.35
1.35

—2. 83
20 33

—8. 82
—3.62
—2. 05

—2. 82
—2. 34
—8. 85
—3.63
-2.06

—2. 81
—2. 34
—8. 84
—3.62
—2.06

is given explicitly in the Appendix.
Andersen, Weeks, and Chandler have pointed

out to us that one can perform a functional Taylor
expansion of the free energy fo of the reference
system in terms of (e "o'"' —e 2"»'"~"), where
vao (r/d) is the hard cor-e potential of diameter d.
The zero-order term of the expansion is f„'o.

Using (4. 1') and (4. 2), the first-order term is
proportional to

f dr [e 2"o'"' eo"H—o'"']y 2(r/d p)

and is seen to vanish if (4. 9) is used. The next-
order term is in 5 and thus altogether negligible.
Between the free energy thus obtained and (6. 1),
there is a discrepancy which amounts to 45nf. This
illustrates the fact that the terms of order 5 are not
treated in a completely consistent way. In order to
include all terms of order 6 in our approach, it
would be necessary to include the first-order cor-
rection to go(r) in the functional expansion consid-
ered above. This involves the knowledge of the
four-body correlation and is quite complicated.
Then the term 4Mf would disappear in (6. 2) but a
new term of order 5 should be included in f, , which
turns out to have the same sign and order of magni-
tude as 454f. We therefore choose to keep that
term in (6. 1). We should note, in any case, that
this term is very small: 4PMf is always smaller
than 0. 05.

In the same way, in order to get the total corn-
pressibility factor, we must calculate

whel e

=fH2 +4«f (6.1)

1 —dd (dd )s
' (6.4)

4 —Sq
pf Hs —'0

(1 )2 (6. 2)

(6.3)

is the excess free energy of the hard-sphere sys-
tem and where the expression for

with

~W dW

dW &~W
(6. 5)

The explicit formulas making it possible to calcu-
late analytically Z, are given in the Appendix.

In Tables VI—IX, the thermodynamic quantities
thus obtained are compared with the "exact" Monte
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TABLE VI. Compressibility factor, excess free ener-
gy, and excess internal energy on the isotherm T= 0.75.
Columns 2-4: exact Monte Carlo Computations (Ref. 21).
Columns 5-7: approximate equations (A25), (A34), and
(A39).

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.84

0. 23
—0. 29
—0.78
—1.20
—1.69
—2. 05

1 ~ 71
—0. 53
+ 0.37

—0. 80
—1.48
—2. 10
—2. 68

3 ~ 22
3 ~ 73

—4. 17
—4.47
—4. 53

U;

—l. 15
—1.90
—2. 58

3 ~ 21
3 ~ 73

—4.36
—5.07
—5.78
—6.04

gA

0.42
—0. 24
—0.93
—1.58
—2. 07
—2. 24
—1.86
—0. 56
+ 0.32

—0.55
—1.15
—1.79
—2. 43
—3.06
—3.65
—4. 12

—4.49

UAi
—0.56
—1.19
—1.87
—2. 62
—3.40
—4. 20
—5.00
—5.75
—6.02

Carlo values on the isotherms 0. 75, 1.15, 1.35,
and 2. 74. The agreement is seen to be quite good
at high density. Using the basic ideas of the per-
turbation theory as formulated by WCA, we have
succeeded in obtaining quantitatively correct an-
swers which can be obtained with a minimal compu-
tational effort.

At low and medium densities the results are only
fair and should be improved. For instance, one
gets for the critical constants T, = 1.44, p, = 0. 3,
and pp, /p, =0.41, when these constants should
be ' ' T, =1.36+0.02, p, =0. 36+0.03, a,nd P,P, /p,
=0. 31+0.03 for a Lennard-Jones system with en-
forced large scale density homogeneity.

A first idea' in order to improve the situation in
the low-density region is to subtract from the free
energy its low-density expansion and to add the ex-
act low-density expansion of the Lennard-Jones sys-
tem. The results become evidently exact at low

density, but the theory breaks down at high density.
Making a Pads approximant with the correcting se-
ries does not improve the situation.

We then try to use some approximation for the
remainder of the perturbation series for the free
energy. By (3. 2) it is equal to

—,
'

pJ, dXf d r [g,(r) -g,(x)] su(r),

where g~(x) is the rdf for the potential vo(x)+X m(x).
We may first try a simple approximation proposed
by Stell. It consists in writing

g, (x) = exp(- p[v, (~)+X S„',(0) ~(~)])y„,(x). (6. 6)

a correction of —0. 02 is obtained instead of the
—0.09 which is required.

A technically more complicated method appears
to be quite successful. It consists in calculating
g, (r) by solving the Percus-Yevick equation and in
calculating the remainder of the series in that ap-
proximation. There we work again in the spirit of
Stell's mixed perturbation expansion. X expansion
is used and its first two terms are calculated ex-
actly„' the remainder of the series is treated through
a method of integral equations which amounts to a p
expansion. The results, shown in Tables VIII and
Ix for the isotherms 7=1.35 and T= 2. 74, appear
to be very good. For T=0. 75 and p=0. 84, the re-
mainder calculated in the PY approximation gives
practically zero. Thus one does not get the small
correction which should come in at high density,
but at least the very good agreement so far obtained
is not spoiled by our treatment of the remainder of
the perturbation series. We have therefore suc-
ceeded in giving a theory of liquids which provides
a value of the free energy with a precision of about
1/100 for all densities in a temperature region
ranging from triple point to twice or three times
the critical temperature. There is however at the
present time a very great inhomogeneity in the in-
gredients of that theory. The high-density and low-
density parts of the theory are obtained through
simple formulas; the medium-density range re-
quires a substantial computational effort. We hope
to simplify this part of the theory.

VII, WCA APPROXIMATION

As we have said above, WCA make two further
assumptions which we have shown to be separately
inadequate. The first approximation consists in
using the PY approximation for the hard-sphere
correlation function; the second consists in approxi-
mating the total system rdf by that of the reference
system. As these authors have shown by numerical
computations that the equation of state and the in-

TABLE VII. Compressibility factor, excess free energy,
and excess internal energy on the isotherm 7.' =1.15.
Columns 2—4: exact Monte Carlo computations (Ref. 21).
Columns 5—7: approximate equations (A25), (A34), and
(A39).

This approximation incorporates the correct asymp-
totic form for large distances and the right behavior
at small separations. It leads to an exact second
virial coefficient. It appears, unfortunately, that
the screening of the potential tail yielded by (6. 6)
is too effective, so that the correction term is too
small, except at very low density. For instance,
at T = 1.35, the correction to P f, is —0. 04 for p
= 0. 1, when it should be —0.07; this is fairly satis-
factory. But at the same temperature, for p= 0.4,

0.1
0.2

0.3
0.4
0.5
0.6
0.65
0.75
0.85
0.92

0.61
0. 35
0. 12

—0.09
—0. 13

0.07
0.31
1.17
2. 86
4. 72

—0.38
—0.73
—1.05
—1.34
—1.59
—l.78
—1.84
—1.89
—1.78
—1, 56

—0.86
—1.55
—2. 24
—2. 85
—3.47
—4. 14
—4.45

5 ~ 13
—5.67
—5. 96

@A

0.70
0.37
0.05

—0.19
—0.27
—0.08

0. 17
1.10
2. 83
4. 69

—0. 29
—0 ~ 61
—0. 92

l. 23
—1, 51

le 73
—1.81
—1.87
—1.76
—1.54

UA

—0.55
1 ~ 17

—1.84
—2. 55
—3.29
—4.03
—4. 40
—5. 09
—5.68
—5. 99



948 L. VERLET AND J. - J. WE IS

0.1
0.2
0.3
0.4
0.5
0.55
0.70
0.80
0.90
0.95

2 8 ff Uf

0.72
0.50
0.35
0.27
0.30
0.41
l. 17
2.42
4. 58
6.32

—0. 29
—0. 56
—0. 80
—1.00
—l. 16
—1.22
—1.29
—l. 19
—0.91
—0.67

—0.78
—1.51
—2. 09

2 ~ 75
3 ~ 37

—3.70
—4. 68
—5. 25
—5. 66
—5. 71

ZA

0.77
0.53
0.32
0. 18
0. 20
0.30
1.15
2. 42
4. 53
5. 97

PfA

—0. 22
—0.46
—0.69
—0. 91
—1 ~ 09
—l. 16
—l. 25
—1.15
—0. 87
—0. 64

UA

—0. 55
—l. 16
—1.82

2 ~ 52
—3.24
—3.60
—4. 64
—5. 24
—5.70
—5. 84

—0 ~ 07
—0. 11
—0. 11
—0.09
—0.07
—0.05
—0.03

0. 00
0.00
0.00

Pf tot

-0.29
—0.56
—0. 80
—1.00
—1.15
—1.21
—l. 27
—l. 15
—0.87
—0. 64

ternal energy obtained in this way are quite good,
this means that they have found a very good semi-
empirical way of representing the rdf of dense
fluid, by writing for it

AwcA(+) = e " '"'
yw(+/~ 1)

with

q= —,'vrpa' .

(7. 1)

(V. 2)

This form of the correlation where the screening of
the tail of the potential is complete, clearly entails
a hard-sphere-like structure factor with a diameter
a, which will be given by the condition (4. 8). We
can follow the same line of argument as in Secs.
IV and V. We have for the hard-sphere diameter

TABLE VIII. Compressibility factor, excess free en-
ergy, and excess internal energy on the isotherm T = l.35.
Columns 2—4: exact Monte Carlo results (Ref. 16).
Columns 5—7: approximate equations (A25), (A34), and
(A39). Column 8: remainder of the series (3.2)~

~

~

~ ~

~

~

~

&w&, —
&w&,

P dA,
N

calculated in the PY approximation. The last column is
obtained by adding the values of column 8 to those of the
free excess energy of column 6.

27t'p , d~(~)
Rw cA (~) « (V. 7)

21»(q)- 21»(q) I,'(q) —f,'(q)
a a

(7. 8)

where I,"(q) and I2 (q) have been defined by (5. 5) and
(5. 7), respectively, and calculated in the Appendix.
In Table X, we have compared the compressibility
factor Z«A obtained numerically by WCA using
(V. 5) and (V. 7) with the value Z„"c„obtained using
the approximations (V. 6) and (7. 8). It is seen that
the approximations leading to the analytical equa-
tion of state are outstandingly good. The compari-
son of the WCA equation of state with the one pres-
ently derived shows a very slight superiority of the
latter one, especially in the low-density region
(where both equations are inadequate anyhow). For
instance, the critical constants obtained with the
WCA equation are T, = 1.55, p, = 0. 2V, and P, P,/p,
=0. 36.

WCA have also shown by a direct comparison with
molecular-dynamics calculations that their theory
provides a good rdf and structure factor in the
neighborhood of the triple point. It is unfortunate
that this simple semiempirical representation of the
rdf turns out to have a rather narrow range of
validity. It fails at lower density for the obvious
reason that the tail of the potential is entirely ne-
glected. It can be shown also to be unsatisfactory
when the density is larger than the triple-point
density. An illustration of this inadequacy is pro-
vided when one tries to apply the freezing criterion

Using the methods of Sec. V, we obtain the following
approximation for f2:

a=de 1+ (7. 8)

~WCA ~1+~2 &
(7 4)

where d~ and 5 are given by (4. 15) and (4. 16), re-
spectively, and where o,/2cro, as calculated in the
PY approximation, is expressed in the Appendix
[Eq. (A40)]. The WCA equation of state is obtained
as

TABLE IX. Compressibility factor, excess free energy,
and excess internal energy on the isotherm T =2.74.
Columns 2-4: exact Monte Carlo results (Ref. 16).
Columns 5-7: approximate equations (A25), (A34), and
(A39). Column 8: remainder of the series (3.2)

d~ &w&„—&w~&.

0
N

with

gwcA(+) d+ '2vp, dv()(r)
SkT dt'

(7. 5)

calculated in the PY approximation. The last column is
obtained by adding the values of column 8 to those of the
excess free energy of column 6.

P Z Pff ZA

Using the techniques of Sec. IV, one obtains, for
f„ the approximation

1 + 2'g+ 3'g 72 7 10'1
~l (1 )2 (7. 6)

where v, and ~2 are coefficients of the expansion of
x g~(x, q) around x= 1 (see Eq. (4. 19) and Appen-
dix), and with

0.1 0.97
0.2 0.99
0. 3 1.04
0.4 1.20
0.55 l.65
0.70 2.64
0.80 3.60
0.90 5. 14
1.00 7.39
1.08 9.58

—0.03
—0.05
—0.05
—0.01

0.06
0.37
0.65
1.04
1.58
2. 16

—0.61
—1 ~ 21
—1.78

2 ~ 37
—3.21
—3.90
—4. 28
—4. 41
—4. 18
—3.80

0.98
0.99
1, 05
1.19
1.65
2.62
3.70
5.24
7.35
9.46

—0.02
—0.03
—0.02

0.01
0.07
0.39
0, 67
l.07
l. 63
2. 19

—0.52
—1.08
—1.67
—2. 28
—3.16
—3.92
—4. 27
—4.43
—4 ~ 31
—3.97

—0.02
—0.02
—0.02
—0.02
—0.01

0.01
0.00
0.00
0.00
0.00

—0.03
—0.05
—0.05
—0.01

0.06
0.38
0.67
l.07
1.63
2. 19
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presented in Ref. 4. There it was stated that
freezing should occur in a liquid when the underlying
hard-sphere gas, yielded by the hard-sphere
model, solidifies, that is, when the maximum of
the structure factor S(ko) reaches the value 2. 85.
This occur s"'"when q~ = 0. 491, which, by (2. 9),
corresponds to the value g~= 0. 476 if the PY ap-
proximation is used. Using (7. 2), (7. 3), and (A40)
one obtains at solidification

p = [0.91/d (P )]ii+13.255(P )] (7. 9)

which gives the density at freezing p~ as a function
of P~, the inverse of the solidification temperature.
Table XI shows that this relation is not so well
verified and this shows that the structure factor
yielded by (7. 1) is not good enough along the freez-
ing line.

TABLE X. Compressibility factor and excess internal
energies for various states tabulated in Ref. 12. Columns
3 and 6: exact molecular dynamics results (Ref. 15).
Columns 4 and 7: compressibility factor and excess in-
ternal energy obtained by WCA (cf. Table III of Ref. 12).
Columns 5 and 8: approximate compressibility factor and
excess internal energy as given by Eqs. (A34) and (A39).

p T Z ZwcA

0.88 1.095 3.48 3.42
0.94 2. 77 2. 87
0. 591 —0. 18 0. 18

ZA

3.38
2. 74

—0.46

—5. 85
—6.04
—6. 53

UWCA )

—5.92
—6.08
—6.47

UA

—5. 88
—6 ~ 05
—6.46

0.85

0.75

0.65

2. 889
2. 202
".214
1.128
0. 88
0.782
0.76
0.658
0.591

2. 849
1.304
1 ~ 069
1.071
0.881
0.827

2. 557
l. 585
l.036
0.90

4. 36
4. 20
3.06
2. 78
l. 64
0.98
0. 82

—0. 20
—1.20

3. 10
l. 61
0.90
0.89

—0. 12
—0. 54

2. 14
l. 25

—0. 11
—0.74

4. 27
4. 11
3.05
2. 82
1.82
1.20
1.03
0.09

—0.75

3.05
1.63
0.90
0.91

—0.02
—0. 38

2. 08
1.21

—0.23
—0.91

4. 43
4. 25
3.02
2. 76
1.59
0.86
0.67

—0.45
—1.43

3.14
1.58
0. 77
0.78

—0. 26
—0.66

2. 14
l. 23

—0. 29
—1.01

—4. 25
—4.76
—5.60
—5.69
—5. 94
—6.04
—6.07
—6. 19
—6. 26

—4.07
—5.02
—5. 19
—5. 17
—5.31
—5.38

—3.78
—4. 23
—4. 52
—4. 61

—4. 35
—4. 85
—5.65
—5.?3
—5. 96
—6.06
—6.08
—6. 19
—6. 26

—4. 09
—4. 99
—5. 15
—5.15
—5. 28
—5.32

—3.78
—4. 20
—4.46
—4. 52

—4. 27
—4.78
—5. 62
—5.70
—5.95
—6.05
—6.0?
—6. 18
—6. 26

—4. 05
—4. 99
—5.15
—5. 15
—5. 29
—5. 33

—3.76
—4. 20
—4. 46
—4. 53

VIII. CONCLUSION

We have examined the validity of the various ap-
proximations introduced by Weeks, Chandler, and
Andersen in their version of the perturbation theory
and shown that these authors have introduced some
very interesting and fruitful new ideas. Using these
ideas with an improved solution of the hard-sphere
problem, we have derived a successfully analytical
equation of state for liquids. Such an equation can
and will be used to determine effective potentials
for real dense liquids.

TABLE XI. Solidification densities for the tempera-
tures T =2.74, 1.35, 1.15, 0.75, using exact Monte
Carlo computations (Ref. 4) (column 2), the criterion
(Ref. 4) S (ko) =2. 85 (column 3), and expression (7.9)
(column 4).

2.74
l.35
1.15
0.75

1.113
0.964
0.936
0.871

HV
Pg

1.118
0.966
0.935
0.866

1.018
0.921
0.902
0.857

The extension of the present study to liquid mix-
ture is now under way.
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APPENDIX: TECHNICAL DETAILS OF CALCULATION OF
THERMODYNAMIC PROPERTIES OF LENNARD-JONES

FLUID

1. Calculation of Diameter d

ds, given by the integral (4.15) and tabulated be-
low, can be approximated by

ax+&s p
8 +p (Al)

Q = 67Tpd (As)

2~w= 0 &6'0 ~ (A4)

It is convenient to introduce the following approxi-
mant [see following Eqs. (A12) and (A14)]:

01 1 +Sg gg + Spy g + S3 gg
2 3

2ao (1 nw)—

with Qg=O 3837 Qp=O 4293 Q3=1 068. For
0.7 & T & 1.6, the error is less than 2~10 4. This
entails an error of less than 0.02 on the compres-
sibility factor Z0 of the reference state. For
1.6&T&4. 5 the error may reach 8~10 4which
may yield an error of 0.08 on Z0 near the solidifica-
tion line. This error decreases very rapidly with
the density.

In the same way 6 may be approximated by

5= 1
(A2)

4a&+s p'

with n4 = 210.31 and as = 404. 6. The precision of
that fit is of order 8&&10 ', which is quite sufficient
for our purpose.

If we know d, we calculate the packing fractions
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TABLE XII. Values of dz and 6 and their derivatives
dz and gz vrith respect to the inverse temperature P for
temperatures going from the triple point temperature up
to T=5.

3nw(2 —4nw 7—nw )
(1 n-w)

(Alo)

From the compressibility factor of the hard-
sphere system

0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

1.05
1.10
I.15
1.20
1.25
l.30
1.35
1.40

1.50
1.60
1.70
1.80
1.90
2.00
2. 20
2.40

2.60
2. 80
3.00
3.50
4.00
4.50
5.00

1.030 61
1.028 14
1.025 79
1.023 57
1.021 44
1.01942
1.01747
1.015 61

1.013 81
1.01208
1.010 41
1.008 80
l.007 24
l.005 73
l.004 26
1.002 84

1.000 11
0.997 52
0.995 06
0.992 72
0.990 47
0.988 33
0.984 29
0.980 54

0.977 04
0.973 77
0.970 68
0.963 67
0.957 46
0.951 37
0.946 85

0.02148
0.023 56
0.025 67
0.027 81
0.029 97
0.03216
0.03436
0.036 59

0.038 84
0.041 10
0.043 38
0.045 68
0.047 99
0.050 32
0.05266
0.055 01

0.059 75
0.064 54
0.069 37
0.074 24
0.079 15
0.08409
0.09405
0.104 13

0.11431
0.124 57
0.13490
0.16104
0.187 52
0.21429
0.241 28

0.001 26
0.001 32
0.001 37
0.001 43
0.00148
0.001 53
0.001 58
0.00162

0.001 67
0.001 71
0.001 76
0.001 80
0.001 84
0.001 88
0.001 92
0.001 95

0. 002 02
0.00209
0.00216
0.002 22
0.002 28
0.00234
0.00246
0.002 56

0.00266
0.00275
0.002 84
0.003 04
0.003 22
0.003 39
0.003 53

—0.000 50
—0.000 56
—0.000 62
—0.000 68
—0. 000 74
—0.000 80
—0. 000 86
—0.000 92

—0.000 99
—0.001 05
—0.001 12
—0.001 18
—0.001 25
—Q. 001 32
—0.001 39
—0.001 46

—0.001 60
—0. 001 74
—0.001 88
—0.002 03
—0.002 17
—0.002 32
—0.002 62
—0.002 93

—0.003 24
—0.003 55
—0.003 87
—0.004 67
—0.005 49
—0.006 31
—0.007 14

1 +g+g
Es (1 )3 (A11)

we obtain, by applying the virial theorem, the
value of y(1, q) that we have called op:

o, = (1 ——3'7l)/(I —3l)3 . (A12)

We shall find it convenient to use for the combina-
tion A p, [A and p, are defined by E(ls. (2. 10) and
(2. 17), respectively] the expression

27 riw (1 —0. 7117rtw —0. 1143lw)
Ap, =—

(I nw)-' I + Sew

(A13)

which is not difficult to calculate using (2. 10) and
(2. 12). We then have for the coefficients of the
expansions (4. 10) and (4. 19)

(A14)o1= oo+ &1 A p

oo+ 1 -A p (A15)

(A16)7'2= 20'o+4cy1+ cy2 —4A p .
As stated in Sec. IV [E(l. (4. 20)], Zp is given by

Zp = Zss((7) = 4q5 (27 3 ~(, (Tg/2op) ~ (A17)

3. Calculation of First Order Con-tribution f( to
Exec Energy

A first part of the perturbed free energy is given
by

fg =48nw (fi" /d'w' -fi/dw) . (A18)

d =d, [I+(o,/2o, ) 5] (A8)

where S, = —17/4, SS = 1.362, and S3= —0. 8751.
Then

We have built approximants for the integrals
Pz (nw) [E(I. (5.5)] by noting that use may be made
of the known virial expansion of yw(x, qw) on the one
hand and that it may be supposed that I1 behaves
like' (1 —3lw)

3 as yw(1, rtw) does. We thus write

dw=d(nw/n)'" . (A7) p ft 1+I 1RW+~2 OW+I 3 lw
~ =&P

(1 )3 (AIO)

11+ 2RW

(1 —qw)'
(A8)

As we do not know d beforehand, we use d& as a
trial value and eventually iterate through the pre-
ceding equations.

2. Calculation of Compressibility Factor Zp of
Reference System

[xyw(x, dw)] and its first derivatives with respect
to x at x = 1 are given by

and find that

P.1 =0, P, 2
= —O. V9V, P.2

= —0.480,12 1 12 12 1 =

po —» p, 1 ——0. 691, p. 2
——1.169, p, 3

= 0.V51 .
(A20)

The error is of order 1&10 3.
In order to evaluate the next contribution f, ,

we need to calculate the integrals I2 defined by
(5.7).

Putting 8 =r„/dw —1 and n =n —2, we have

1 —5nw —5nw

(1 —qw)'
(AO)

2

I", = Q Z.',
m=o

(A21)
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with a„(( )+r'(!+(n'(n' —))/2(le + +((a'(n' —)) . (r' —.w+()/m!(e„)
n'(, '-1) ~ ~ ~ (n'-m) & (1+8)" (A22)

Lo Q ~a +n-1 m1

n I (n —1) l n+1
with n q

= 0. Then, as noted in Sec. V,

"2= Ia I2 Ig12 6 0

f =4&q — +—
1 w d12 ds

(A2s)

(A24)

fi =f~ +fi ~
A 1 2 (A25)

Using the preceding formulas, we can cast f~" in
the form

1 g2 QQ Qg Q2 1 6 +n Qg +3 9 rmfi =4&rtw
t dw 10 90 720 dw 4 12 24 64 dw

Iq ——"——'- — ~ z2

2 r-' a 2 1 n~ a
(o)g —o) s) —

~
(o(0 —o(g + + ~ cKO

——+ ~
. . (A26)9 dw 40 ( dw 2 ~ 3 12

Free Energy for Reference System

The free energy for the reference system is
given by (6. 1) with

7 2 T 0'( Q 0'g
P&f = ~ dq —— ~ —Sooq-

2oo s))l 2oo

is calculated with the help of (A5).
We then have

6))) s
s~ ~2

A I ~ Pf 1 A

1 —3L II, ~'ggr

The total compressibility factor of the total system
is then

Sq (1+1.759' —5. 249&)')
(1-q)' (A27) Z =So +Zy

A A A (As4)
A,

5. CalcuLation of First Order Cont-ribution Z", to
Compressi bili ty I'actor

6. Total Excess Internal Energy

(A28)

f", as given above depends explicitly on q)(/, d~,
and 6). We can easily see that

Asf'
Bg

Using

sP(f"o +f) )
p

we obtain

(A35)

We have

dw -- = —3&2
sPf i

with

A
@18

&q —96 gw P
W W

(A29)

(Aso)

where

(As&)

A

U( =fg +45)) &f+(Z" —1 —f()(l —3/(.v) ——,

BPf,'/Bg~ is easily calculated using (A18), (A19),
(A24), and (A25), with the o. given by (A8)-(A10).

We still need to know

RW edW

dw

11 gf 'g

I——"= 3 „(1+SA.v) +
2

'
5(')

20'0

(A37)

(As&)

where

=x- ~v)(I -gg) ', (A31)

(As2)

Then

U", =ff + 45() &f+ 3(Z —1 —
L; p)(ds/d, +(r~/2a(& 5(I ) ~

(As9)
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7. Equation of State in WCA Approximation

In order to calculate the hard-sphere diameter,
the value ot' &r&/2oo is needed, which in the PY ap-
proximation is simply given by

(A40)

In the PY approximation v'& and ~2 are given by
(A15) and (A16) with A p, = 0 and so = no.
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