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A B S T R A C T

We review a selection of models for wormlike micelles undergoing reptation and chain sequence rearrange-
ment (e.g. reversible scission) and show that many different assumptions and approximations all produce
similar predictions for linear rheology. Therefore, the inverse problem of extracting quantitative microscopic
information from linear rheology data alone may be ill-posed without additional supporting data to specify the
sequence rearrangement pathway. At the same time, qualitative parameter estimates can be obtained equally
well from any of the models in question. Our study also provides a careful re-assessment of how to best
reconcile artificial chain sequence rearrangement pathways (such as Poisson renewal) with physical processes
like reversible scission.
. Introduction

Wormlike micelles (WLMs) are polymer-like structures that self-
ssemble from small-molecule surfactants in aqueous solution [1–7].
n industrial applications, ranging from fast-moving consumer goods
o environmental cleanup, WLMs are often preferred to other self-
ssembled surfactant structures (e.g., spherical micelles or bilayer
embranes) because the viscosity and elasticity of a WLM formulation

an be adjusted over a wide range by tuning the salt concentration [8–
1]. Familiar applications of WLMs include home and personal care
roducts like shampoos, liquid soaps, and hand sanitizers [12–14]. In
he late 1980s, experimental and theoretical studies of WLM systems
xpanded considerably, covering both rheology and phase behavior
cross many surfactant chemistries [15–25]. Three decades later, WLMs
emain a productive research area for the rheology community, and
LMs are often seen as a ‘model polymer’ platform for studying

niversal features of nonlinear polymer rheology, viscoelastic flow
nstabilities, and more [25–31]. At the same time, WLMs are distinct
rom traditional covalently bonded polymers in that WLMs can break
nd reform reversibly, with implications for structure (e.g. length
istribution) and rheology.

As pertains to rheology, early conceptual breakthroughs provided
aluable mechanistic insights, beginning with the Cates model [15]
f reptation with reversible chain scission. The most widely cited
onclusions of the Cates model are:
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• A polydisperse mixture of WLMs relaxing by reptation will exhibit
a single relaxation time 𝜏 if the time it takes for a typical WLM
to break 𝜏B is much faster than the time it would take a typical
WLM to relax by reptation in the absence of reversible scission
reactions, 𝜏rep.

• The single relaxation time in question is proportional to the geo-
metric mean of the reptation and breaking times, 𝜏 ∼ [𝜏rep𝜏B]1∕2.

However, the full implications of the Cates model are much more
nuanced; these two major results alone are not sufficient to support
a complete interpretation of linear rheological data for most WLM sys-
tems, as one must consider at least four additional layers of complexity.
There are: (1) many chain sequence rearrangement pathways besides
reversible scission [30,32,33]; (2) many relaxation processes besides
reptation [34–36]; (3) many WLM architectures besides flexible linear
chains, and (4) many distinct scaling regimes for different relative
values of 𝜏B and 𝜏rep [23,37,38]. More challenging still, (5) the same set
of nominal assumptions (e.g. reversible scission, no loops or branching)
can yield a library of candidate models using different approximations
and seemingly unrelated mathematical machinery [15,16,34,39]. In
this paper, we will attempt to disentangle some of the complexities
associated with (1), (4), and (5) as enumerated above, comparing
predictions from models that nominally cover similar systems using
different mathematical machinery and/or different representations of
the underlying physical processes. Direct comparisons to experimental
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data are not featured in this discussion, since the models in question
have been previously and independently validated in this regard. We
will assume the reader has a basic familiarity with Cates’ 1987 theory
and the physical picture of reptation and reversible scission that it en-
codes, but no depth of knowledge regarding model details or supporting
mathematical machinery.

The complexities of (2) and (3) are out of scope for our present
study: we address only linear chain architectures for which the primary
relaxation mechanism in the absence of chain sequence rearrangements
(such as those caused by reversible scission) is reptation. However, we
do acknowledge the practical importance of understanding different
relaxation pathways (e.g. contour length fluctuations, constraint release
Rouse motion) and different WLM architectures (loops, branches, rods,
networks), for which the main conclusions of the present study may
not necessarily generalize. A comparison of branched and unbranched
WLM rheology will feature in a forthcoming publication [40], and
further comparisons must be left to future research.

The rest of this paper is structured as follows. To begin, Section 2
reviews the existing space of models, assumptions, and approximations
for reptation and chain sequence rearrangement in WLMs. In Section 3
we use the ‘simplest’ model [23] to generate benchmark calculations
for direct model/model comparisons to follow in Section 4–6: Section 4
compares with different versions of the original ‘Poisson Renewal’ (PR)
model by Granek and Cates [16], Section 5, compares with different
versions of the ‘Pointer method’ by Zou and Larson [34], and Sec-
tion 6 compares with a double reptation shuffling model by Peterson
and Cates [23]. As a supplementary discussion, Section 7 summarizes
key ideas in feature-parameter mapping for linear rheology of WLMs,
including the effects of intra-tube Rouse modes. The conclusions of Sec-
tion 4–6 are summarized in Section 8, where future research directions
are discussed.

Overall, we find that the different models of linear WLM rheology
that we consider (all intending to describe the same physical problem)
are not distinct. By this we mean that if one of the models is suit-
able to fit some experimental data, an equivalent fit can be obtained
from any of the other models (albeit with different parameter inputs).
On the basis of this conclusion, we argue that experimentalists and
formulation-scientists can be confident in choosing any one of these
models to extract usable qualitative formulation-property relationships
for linear rheology data. The differences between models do however
matter, to whatever extent one is interested in using linear rheology
data for quantitative extraction of kinetic information, such as identify-
ing a specified chain sequence rearrangement pathway (e.g., reversible
scission vs. end attack) and the associated rate constants. We find that
the rearrangement pathway itself does not leave a clear signature in
the linear rheology data, and hence extracting quantitative formulation-
property relationships from linear rheology alone is likely an ill-posed
problem. This highlights the need for separate measurements (inde-
pendent of linear rheology) to corroborate a proposed rearrangement
pathway, whenever such quantitative relationships are required.

2. Background

In this section, we will review the basic microscopic processes rel-
evant to WLM rheology, establish a nomenclature for comparing mod-
eling frameworks, and summarize the history and overall landscape of
linear constitutive models for WLMs.

2.1. Review of microscopic processes

WLMs are sometimes termed ‘living polymers’, in that their chain-
like structures (with contour length vastly exceeding their diameter)
resemble polymers, but instead of being formed from a (terminating,
generally irreversible) sequence of polymerization reactions, chains
of varying molecular weight are formed through a series of (non-
terminating, reversible) self-assembly processes [41–43]. One impor-
tant self assembly process is reversible scission; the forward reaction
2

sees WLMs spontaneously breaking apart at some random contour
position, and the reverse reaction sees WLM ends merging together (cf.
Fig. 1(b)). At equilibrium, the principle of detailed balance requires that
the overall rate of the forward process and the reverse process must be
equal. Assuming all WLM ends are equally reactive, the equilibrium
number density distribution 𝑛(𝐿) as a function of WLM contour length
𝐿 varies as 𝑛(𝐿) ∼ exp(−𝐿∕𝐿̄), where 𝐿̄ is the number-average length
of a WLM [15].

As the energy needed to break a WLM increases, the typical WLM
length grows longer, with an exponential dependence on the scission
energy and a power law dependence on the concentration [32,44,
45]. When the WLMs become very long and are sufficiently concen-
trated, they become entangled with one another. For the purpose
of this discussion, WLMs are entangled when topological constraints
between neighboring WLMs (arising because they cannot pass through
one another) strongly restrict the lateral motions of a typical WLM
(Fig. 1(a)).

As a WLM diffuses along its own contour, it simultaneously evac-
uates previously occupied portions of its tube on one side and creates
new tube sections on the other. This process of losing the original tube
is intrinsically tied to stress relaxation and is known as reptation [46,
47] (see Fig. 1(a)). The mechanistic interplay between reversible scis-
sion and reptation was first considered by Cates [15], who argued
that reversible scission speeds up stress relaxation by converting slow-
relaxing interior tube segments to fast-relaxing end segments with
every scission event. Note in Fig. 1 that when WLMs break or combine,
their confining tubes simply merge or divide; there should be no
net creation or destruction of tube segments from reversible scission
processes alone [39]. This remark will be important in Section 4.3.

2.2. Terms and definitions for comparisons

Having established the physical context of the problem at hand,
there are a number of terms that should be precisely defined before
we can begin discussing and comparing different WLM models. Even
readers who are deeply familiar with WLM models should read this
section carefully, as terms like ‘‘rearrangement’’, ‘‘breaking time’’, and
‘‘distinct’’ will take on specific meanings for the purposes of this paper.

• Rearrangement Mechanisms — In Section 2.1, we discussed re-
versible scission as one possible pathway for chain sequence
rearrangement, through which sections of WLM chains are ran-
domly reassigned to different contour positions and different
chain lengths. Other chain sequence rearrangements are listed be-
low. In principle, the choice of sequence rearrangement pathway
is independent of the choice of mathematical modeling frame-
work (e.g. continuum or stochastic).

– End attack (also known as ‘‘end interchange’’): the end of
a WLM can insert itself along the length of a neighbor-
ing WLM, forming a temporary ternary branch point. The
branch point can then break apart, splitting off a fragment
from the WLM that was originally attacked.

– Bond interchange: two WLM can fuse at some point along
their contours, forming a temporary quaternary branch
point. The branch point can decay back to two linear WLMs,
exchanging material in the process.

– Shuffling: an artificial rearrangement pathway in which
WLMs are continuously and randomly reorganized in a
uniform way.

– Poisson renewal: another artificial rearrangement pathway,
analogous to shuffling but allowing non-uniform (length-
dependent) rates of rearrangement.

• Rearrangement Mathematics — To simulate the rheology of WLM
undergoing one of the aforementioned rearrangement processes,
there are two basic types of mathematical frameworks that can
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Fig. 1. Graphical representations of important microscopic processes for WLMs. (a) Very long WLMs can become entangled such that stress relaxation occurs primarily through
reptation. (b) The equilibrium molecular weight distribution of WLMs is determined by sequence rearrangement processes like reversible scission, in which WLMs randomly break
apart and recombine.
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be used. In principle, either framework can be used to equivalent
effect (cf. reversible scission [15,39]), though in practice the
details of each rearrangement processes may naturally favor one
approach over the other.

– Stochastic models: A stochastic model is defined in terms
of a Langevin equation (stochastic differential equation) for
individual chain dynamics. Stochastic models (such as the
Pointer algorithm) are often more flexible, more intuitive,
and more easily constructed, but can be computationally
expensive compared to continuum models.

– Continuum models: A continuum model is defined in terms
of continuous variables and deterministic equations for
ensemble-averaged quantities. Continuum models (such as
Poisson renewal and shuffling) are often difficult to set
up, but they can be computationally efficient compared to
stochastic models.

• Breaking time — For a physical rearrangement pathway (e.g. re-
versible scission or end attack), the ‘‘breaking time’’ 𝜏B is the
average time for a WLM of average length to break. For artifi-
cial sequence rearrangement pathways (e.g. shuffling or Poisson
renewal) the ‘‘breaking time’’ 𝜏B is a measure of the mean rear-
rangement time for a typical tube segment, and cannot necessarily
be interpreted as a physical breaking time.

• Additive process — two stress relaxation processes A and B are
‘additive’ if their contributions to the relaxation modulus are
determined independently and added together, i.e. 𝐺(𝑡) = 𝐺𝐴(𝑡) +
𝐺𝐵(𝑡).

• Physics vs. fitting — When comparing a data set with a model,
the physics of the model determine whether a good fit exists in
principle, but whether a good fit can actually be found is a separate
question that also depends on the optimization engine used to
search the model’s parameter space.

• Rheologically Distinct vs. indistinct models — Given two models,
A and B, with supporting parameter sets 𝛼 and 𝛽, model A is
indistinct from model B if for every parameter set 𝛼 there exists
a parameter set 𝛽 (and vice versa) such that A and B yield practi-
cally indistinguishable viscoelastic outputs. Where this condition
is not met, models A and B are distinct for some portion of their
respective parameter spaces.

.3. History and landscape of WLM models

In this section, we will provide a brief summary of the constitutive
odels that have been developed to interpret the linear rheology of
3

W

LMs. Our goal is to place these models in their historical context
nd discuss the factors that motivated their development. A sum-
ary perspective on comparisons between models can be found in
ppendix C.

Cates’ initial work on reptation with reaction employed a stochastic
odeling approach [15]. The model began by choosing a random point

n a random chain and then simulating the processes of reptation (1D
andom walk of a point particle) and reversible scission (changes in the
ength of 1D line interval) until the section of tube represented by the
oint particle relaxed (random walker reaches an endpoint of the 1D
nterval). Simulating this process many times revealed a distribution
f tube survival times and a time-dependent overall tube survival
robability 𝑃 (𝑡). The stress relaxation modulus 𝐺(𝑡), which describes
tress relaxation following a small step deformation, can be computed
y multiplying the tube survival probability by a shear modulus 𝐺𝑒,
uch that 𝐺(𝑡) = 𝐺𝑒𝑃 (𝑡).

In principle it is possible to measure experimentally a relaxation
odulus 𝐺(𝑡), but a more accurate and convenient measurement of the

ame information comes via the complex modulus 𝐺∗(𝜔) for small am-
litude oscillatory deformations at varying frequency 𝜔. The relaxation
odulus 𝐺(𝑡) and complex modulus 𝐺∗(𝜔) are related by the one-sided

ourier transform (OSFT), 𝐺∗(𝜔) = 𝑖𝜔 ∫ ∞
0 𝑒𝑖𝜔𝑡𝐺(𝑡)𝑑𝑡. The real/imaginary

arts of 𝐺∗(𝜔) are termed the storage/loss moduli and describe the
lastic/viscous response of the material at varying frequencies. Both
(𝑡) and 𝐺∗(𝜔) measure the equilibrium (linear) viscoelastic response
f a material, so the micelle size distribution is not perturbed from
quilibrium by these measurements. Studying not only 𝐺(𝑡) but also
∗(𝜔) has been a major preoccupation of every WLM modeling effort, at

east since the work of Turner and Cates [48]. It is worth noting that for
tochastic models, executing an OSFT is an inherently ill-conditioned
roblem [49].

A direct numerical evaluation of 𝐺∗(𝜔) for a WLM model was first
eveloped by Granek and Cates [16], who introduced a complicated
ulti-dimensional integral constitutive relation (continuum model) for

he relaxation modulus 𝐺(𝑡). However, 𝐺(𝑡) was never solved for di-
ectly; instead, the authors showed that when an OSFT is applied to
he constitutive relation itself, the original PDE collapses into a simpler
quation for 𝐺∗(𝜔) that is trivial to evaluate numerically. The fact that
ontinuum models deal with the OSFT problem so easily is a significant
dvantage of continuum models over stochastic models.

Granek and Cates also extended the basic reptation-only framework
o include additional stress relaxation processes, including contour
ength fluctuations (CLF) and intra-tube Rouse modes. Both relaxation
rocesses were introduced as piecewise continuous elements in a single-
LM relaxation modulus 𝐺 (𝑡), effectively making them nonseparable
0
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from reptation in the original Poisson renewal approach. This simplifies
the calculations, but in general the stress relaxation from faster intra-
tube Rouse modes can simply be added to the stress arising from
entanglements, provided1 the breaking time 𝜏𝐵 is much longer than
the Rouse time of a single entanglement segment 𝜏𝑒 [34,39,51,52]. This
means that one can independently choose models for relaxation at the
tube scale (reptation, CLF, etc.) and intra-tube scale (flexible, semiflex-
ible, etc.) [34,53,54], and the contributions to the complex modulus
𝐺∗(𝜔) will be additive. We will therefore restrict our focus to modeling
tube-scale relaxation processes and, except for a brief discussion in Sec-
tion 7, our figures will not capture high frequency features such as a local
minimum in the loss modulus. At the same time, high frequency Rouse
modes are very important for a complete material characterization [55–
58], and so a general discussion on the interpretation of Rouse modes
is provided in Section 7.2.

Around the same time as the Poisson renewal model, an alterna-
tive continuum modeling approach was put forward by Lequeux [59].
Lequeux framed WLMs as a population of chains differing in length,
generalizing the concept of a ‘‘population balance equation’’ from
its conventional context of mass balance (describing changes in the
size distribution) to produce an additional balance equation on stress.
Lequeux suggested that every time self-assembling structures exchange
material (e.g. by reversible scission in the case of WLM), both the mass
and the stress of the original structures are transferred to a new sector
of the WLM size distribution — a process that can be described with
mathematical precision through ‘‘stress balance’’ terms appended to an
existing differential constitutive equation for stress relaxation in the
absence of rearrangement. Models that preserve this basic structure to
describe stress relaxation with physical rearrangement processes will
here be called ‘‘population balance’’ constitutive equations.

While Lequeux’s work is deeply insightful, it suffers from a few
problems. First, the mathematical framework is unwieldy compared to
the much simpler Poisson renewal model. Second, the model fails to
capture Cates’ scaling in the fast-breaking limit due to the use of a single
mode approximation for reptation in the absence of rearrangement.
Presumably for these reasons, the population balance framework for
continuum modeling of WLMs was abandoned for almost three decades
after its initial introduction.

Since the Poisson renewal model was first published in 1992, the
field of polymer rheology has made many significant advances. New
relaxation processes and microscopic insights that were first introduced
into polymer theory subsequently incorporated into WLM models [34,
39,60,61]. The past three decades have also brought significant ad-
vances in computational resources, and so stochastic models have
become a viable option for fitting and interpreting experimental data
even at large scales. In this context, Zou and Larson developed the
‘Pointer model’ (physics) and an associated ‘Pointer algorithm’ (fit-
ting procedure) for interpreting experimental data of 𝐺∗(𝜔) in well-
entangled semi-flexible WLMs [34]. To our knowledge, this was the first
WLM model with an accompanying fitting algorithm and also the first
to distribute a full open-source model implementation.

All of the above models can make predictions for linear rheology,
but when generalized to the nonlinear regime (which is not the main
topic of this paper) most lead to constitutive equations of integral
form (i.e. based on a memory kernel 𝐺(𝑡)). The approach by Lequeux
was different, leading a differential constitutive equation that could in
principle be generalized to include nonlinear relaxation processes. The
distinction between differential and integral constitutive relations mat-
ters in a practical sense; the former is simpler and more widely used for
fluid dynamics calculations. This explains the recent re-emergence [23,
39,62] of the population-balance approach initiated by Lequeux. Note

1 For well-entangled systems of any WLM chemistry, this approximation
hould hold to the best of the authors’ knowledge. However there are other
iving polymer systems for which it does not hold [50].
4
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also that the Vasquez–Cook–McKinley (VCM) model of WLM rheology
can also be interpreted as a severely coarse grained population balance
approach in which micelles take on only two different lengths [63,64].

Motivated by growing interest in the quantitative nonlinear rheol-
ogy of WLMs, Peterson and Leal developed a fully coupled nonlinear
population balance constitutive equation for WLMs, borrowing a de-
scription of nonlinear relaxation processes from an existing model for
well entangled polymers [62]. In its first formulation, this model had
the same weaknesses (single-mode approximation and computational
complexity) as the Lequeux model, but follow-up work by Peterson
and Cates provided corrections that restored key scaling exponents and
allowed computationally tractable methods of solution [23,39]. A new
set of continuum models for the linear rheology of WLMs emerged as a
part of this larger effort, including (1) a full-chain (i.e. with resolution
of tube segments in each chain) population balance model for reversible
scission2 and (2) a simplified approximation of the population balance
approach, called ‘shuffling’ [23,39]. The relationship between shuffling
and reversible scission is discussed in Appendix A.

Besides the models outlined above, there are several others worth
noting, but that will not feature in the comparisons to follow. We will
not include the Lequeux model, nor will we include any model (such as
VCM) that employs a single-mode approximation of reptation [62,63],
as the limitations of a single-mode approximation are already well
known. Similarly, slip-link models provide an excellent description of
CLF [61,65,66], but here we will focus on highly entangled systems
where CLF is subdominant to reptation, in which case slip-link models
become computationally prohibitive. Indeed slip-link models for WLM
have only considered a maximum of 𝑍̄ = 9 entanglements per WLM in
studies thus far [61,67]. Finally, we exclude nonlinear rheology models
that build upon a fast-breaking approximation, since these models do
not attempt to capture details of linear rheology outside the limit
where reversible scission is much faster than reptation (for which linear
rheology is essentially Maxwellian [39,68,69]). Instead, we will focus
on linear rheology models featuring a full-chain description of repta-
tion in flexible WLMs, and we allow for diverse means of describing
WLM sequence rearrangements (i.e. not limited to reversible scission).
Specifically, our study will compare predictions of the Poisson renewal
model, the Pointer model, and the shuffling model.

In each of these modeling frameworks, one can make rheological
predictions for linear WLMs undergoing reptation with some kind of
underlying pathway for WLMs to rearrange their material. Likewise,
all of these frameworks have been independently shown to match well
to experimental data on linear rheology, including effects of multiple
relaxation times. If the models are distinct, then whichever model
provides the best fit to a given set of data likely provides the most
reliable interpretation of the underlying physical processes. However,
if the models are not distinct then an equivalent fit can be obtained
from any choice of model, each implying a different description of the
underlying physical processes. Where multiple models appear equally
valid, fitting parameters can only provide qualitative (not quantita-
tive) microscopic insights regardless of the goodness of fit until the
underlying rearrangement pathway can be independently ascertained.

A central question that we aim to address is therefore given as fol-
lows: when fitting to linear rheology data, absent any other supporting
information, are the model predictions distinct so that a good fit to
data validates the model and fitting parameters, or indistinct, so that
each model can give an equivalent fit, using different model-dependent
parameters to achieve that fit?

The organization of our study is as follows. In Section 3, we use
the shuffling model to generate a set of benchmark calculations against

2 Considering reptation and reversible scission only, the original Cates
odel [15], the Pointer model [34], and the full-chain population balance
odel [39] are all different ways of modeling the exact same underlying
rocesses.
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which calculations using other models can be compared. In Section 4
we review the original Poisson renewal model and compare its predic-
tions to the benchmark calculations. Newly identified problems with
the Poisson renewal model (and possible corrections) are discussed
in Sections 4.3 and 4.4. In Section 5, several versions of the Pointer
model (single reptation, double reptation, end attack) are compared
with the benchmark calculations, using the Pointer algorithm to handle
the parameter search. In Section 6 we compare the shuffling model
with and without constraint release by double reptation to determine
whether these two versions of the model are distinct. Finally, Sec-
tion 7.2 discusses the importance of high frequency Rouse modes for
interpreting experimental data.

Across all of these comparisons, we find that none of the models are
istinct for the practical purpose of providing a fit to experimental data
f those data are dominated by low and moderate-frequency reptation
nd breakage/rejoining effects, excluding higher-frequency dynamics
uch as CLF, Rouse relaxation, and bending modes. We also find that
tochastic models tend to struggle with fitting 𝐺∗(𝜔) at high frequencies

due to the ill-conditioned OSFT problem.

3. Shuffling model predictions

In this section, we will review the shuffling model developed by
Peterson and Cates [23,39] (Section 3.1) and then generate a set of
benchmark results to facilitate our search for distinct model predic-
tions (Section 3.2). We choose the shuffling model as our benchmark
because it is the simplest model to explain and the fastest to compute.
Section 3.1 is primarily intended as a review for readers not yet familiar
with reptation models and the general Cates theory for reptation with
reversible scission. Other readers can continue to Section 3.2.

3.1. Basic cates theory via reptation and shuffling: a review

The shuffling model begins from an equilibrium distribution of WLM
lengths, 𝑛(𝐿) ∼ exp(−𝐿∕𝐿̄), where 𝑛(𝐿) gives the number density of
WLMs with contour length 𝐿 in solution and 𝐿̄ is the number-average
ength [15]. As with all of the models considered here, we neglect
oops and branches, and assume that the typical WLM is long enough to
eglect minimum size constraints (i.e., much longer than the diameter).
s per classical reptation theory, when WLMs are very long they be-
ome entangled, and constraints on lateral (as opposed to curvilinear)
ovement are interpreted as a confining tube-like potential. Polymer

tress is tied to the orientation of these tube segments, which are treated
s fixed topological constraints: the only way for stress to relax is for
polymer to diffuse along its own contour, or ‘reptate’, to escape its

onfining tube and establish a new tube configuration that is stress free.
To frame the above statements more precisely, we define a function

(𝑡, 𝑠, 𝐿) to keep track of the mean ‘tube survival probability’ for a tube
egment on a WLM of length 𝐿, initially at contour position 𝑠 ∈ [0, 𝐿],
t time 𝑡. The mean tube survival probability 𝑃 (𝑡) is averaged across all

WLM lengths and all contour positions to describe the overall fraction
of initial tube segments that have been able to relax. The WLM stress
decays in proportion to the surviving tube segments, 𝐺(𝑡) = 𝐺𝑒𝑃 (𝑡),

here the constant of proportionality is a shear modulus 𝐺𝑒. WLM ends
re always taken to be stress free, 𝑃 (𝑡, 𝑠 = 0, 𝐿, 𝐿) = 0, and at 𝑡 = 0
he system is initialized with all the original tube segments in place,
(𝑡 = 0, 𝑠, 𝐿) = 1. Finally, in the absence of reversible scission or any

uch sequence rearrangements, reptation theory describes tube survival
ia 1D diffusion of a flexible polymer along its own contour with a
obility that scales inversely with the polymer length, 𝑀 = 𝑀0∕𝐿 with
0 = 𝐿̄3∕𝜋2𝜏rep or equivalently3 𝜏rep = 𝐿̄3∕𝜋2𝑀0.

3 Sometimes the expression given for the reptation time 𝜏rep drops the
coefficient of 𝜋2, as was done in the original Poisson renewal model and
shuffling model, but the Pointer model includes it. Therefore, when we report
calculations from the Poisson renewal model and the shuffling model, the
numerical values of 𝜁 are larger (by a factor of 𝜋2) than they would be if
5

those models’ original definition of 𝜏rep were considered.
All of the above ideas can be expressed in the form of a PDE:

𝜕
𝜕𝑡
𝑃 (𝑡, 𝑠, 𝐿) = 1

𝐿
𝑀0

𝜕2

𝜕𝑠2
𝑃 (𝑡, 𝑠, 𝐿) (1)

𝑃 (𝑡, 𝑠 = 0, 𝐿, 𝐿) = 0 (2)

𝑃 (𝑡 = 0, 𝑠, 𝐿) = 1 (3)

Any model with the same WLM size distribution 𝑛(𝐿) and the same
basic description of reptation (whether stochastic or continuous) will
ultimately yield an identical result when sequence rearrangements are
present but infinitely slow, 𝜏B∕𝜏rep → ∞.

Where sequence rearrangements cannot be ignored, describing pro-
cesses like reversible scission or end attack with mathematical precision
is possible but complicated [39]. Fortunately, a ‘shuffling’ rearrange-
ment is simple to describe and captures many of the same ideas. We
refer the reader to Appendix A for further discussion on the relationship
between reversible scission and the shuffling model.

The shuffling approximation of WLM rearrangements supposes that
segments are uniformly, randomly, and continuously reshuffled with a
characteristic timescale 𝜏B. In PDE form, this is achieved by appending
a shuffling term to the end of Eq. (1):

𝜕
𝜕𝑡
𝑃 (𝑡, 𝑠, 𝐿) = 1

𝐿
𝑀0

𝜕2

𝜕𝑠2
𝑃 (𝑡, 𝑠, 𝐿) + 1

𝜏B
(𝑃 (𝑡) − 𝑃 (𝑡, 𝑠, 𝐿)) (4)

𝑃 (𝑡) =
∫ ∞
0 𝑑𝐿𝑛(𝐿) ∫ 𝐿

0 𝑑𝑠𝑃 (𝑡, 𝑠, 𝐿)

∫ ∞
0 𝑑𝐿𝑛(𝐿)𝐿

(5)

𝑃 (𝑡, 𝑠 = 0, 𝐿, 𝐿) = 0 (6)

𝑃 (𝑡 = 0, 𝑠, 𝐿) = 1 (7)

Eq. (4) will be called the ‘‘shuffling model’’, and the use of a shuffling
term, 𝑃 − 𝑃 , will be called the ‘‘shuffling approximation’’ wherever it
is used as an approximation of a different defined sequence rearrange-
ment pathway. The relationship between the shuffling approximation
and true reversible scission is discussed in Appendix A.

The complex modulus for the shuffling model is given by:

𝐺∗(𝜔)
𝐺𝑒

= 𝑖𝜔

[

⟨𝜂0⟩
1 − ⟨𝜂0⟩∕𝜏B

]

(8)

⟨𝜂0⟩ = ∫

∞

0
𝑑𝑧𝑒−𝑧𝑧

[ ∞
∑

𝑝,odd

1
𝑝2

[1∕𝜏B + 𝑖𝜔 + 𝑝2∕𝜏rep∕𝑧3]−1
]

(9)

𝑧 = 𝐿∕𝐿̄ (10)

The notation in Eqs. (8) and (9) is chosen to emphasize commonality
with the Poisson renewal model equations as originally published (cf.
Eqs. (14) and (15)).

As we will discuss in Section 4.4, describing the ‘shuffling time’
as a ‘breaking time’ is a convenience, used here to streamline the
nomenclature of this paper. In reality, reversible scission and shuffling
are different processes, and intuitions on the relationship between the
two can be misleading. The derivation of Eq. (8) from Eq. (4) can be
found in Ref. [39] and will not be reproduced here.

For a maximally efficient numerical implementation of the shuffling
model, the infinite sum in Eq. (9) can be collapsed to a closed-form,
leaving a single 1D quadrature as the limiting calculation:

⟨𝜂0⟩ = 𝜏rep ∫

∞

0
𝑑𝑧𝑒−𝑧 𝑧

𝐴

[

1 + 2

𝑧
√

𝐴
tanh

( 𝑧
√

𝐴
2

)

]

(11)

𝐴 = 𝑧(𝑖𝜔𝜏 + 𝜏 ∕𝜏 ) (12)
rep rep B
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Fig. 2. Comparing the loss modulus 𝐺′′∕𝐺𝑒 as a function of frequency 𝜔𝜏rep for varying values of 𝜁 = 𝜏B∕𝜏rep. For very small values of 𝜁 , the peak in the loss modulus shifts
towards higher frequencies, and for very large values of 𝜁 (or very large frequencies, 𝜔𝜏rep > 1∕𝜁) the loss modulus collapses to a single curve. Note that these loss moduli exclude
a separable contribution from the intra-tube Rouse modes (discussed in Sections 2 and 7) and therefore do not show an upturn at high frequencies.
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3.2. Benchmark calculations

The shuffling model has three fittable material parameters: a shear
modulus 𝐺𝑒; a reptation time 𝜏rep, and a breaking time 𝜏B. If the
complex modulus is scaled by the shear modulus 𝐺𝑒 and the imposed
frequency is scaled by the reptation time 𝜏rep, then the only remaining
parameter (and the one that determines the shape of 𝐺′(𝜔) and 𝐺′′(𝜔))
is the ratio of the breaking time and the reptation time, 𝜁 = 𝜏B∕𝜏rep.
This same argument applies to the Poisson renewal model and Pointer
model as well.

In Fig. 2, we compare predictions for the loss modulus 𝐺′′(𝜔) =
Im(𝐺∗(𝜔)) as a function of frequency for 𝜁 ranging from very small,
𝜁 = 10−3, to very large, 𝜁 = 105. For very large values, 𝜁 > 103,
predictions become independent of 𝜁 ; the rearrangements are so slow
that most chains are able to relax by reptation before they experience
a rearrangement. For very small values, 𝜁 ≪ 1, the frequency response
for 𝜔𝜏B < 1 approximates a single-mode Maxwell material. At higher
frequencies, 𝜔𝜏B ≫ 1, relaxation processes are fast enough to proceed
unchanged by WLM rearrangements and all curves collapse. Here,
we remind the reader that intra-tube Rouse modes are considered a
separate, additive, contribution to the stress; those terms are omitted
here, and so Fig. 2 does not show a local minimum in 𝐺′′(𝜔) (see
discussion in Sections 2 and 7).

For very large values of 𝜁 , WLM rearrangements are negligible and
there will be no distinction between any of the models we consider
(apart from the distinction of single vs double reptation, cf. Section 6).
Likewise, for very small values of 𝜁 , all of these models have previously
been shown to recover single-mode Maxwell rheology at frequencies
𝜔𝜏B < 1. Therefore, to search for distinctive features we will focus on
predictions at intermediate values of 𝜁 ∼ 𝒪(1). For simplicity, we report
results for just two values; (1) 𝜁 = 𝜋2 gives a system that is transitional
between fast breaking 𝜁 ≪ 1 and slow breaking scenarios, and (2)
𝜁 = 0.01𝜋2 gives a system that is fast breaking but still shows a clear
break from ideal Maxwell behavior. In the text, these values of 𝜁 will
be rounded to 𝜁 = 10 and 𝜁 = 0.1. Here and elsewhere,4 the complex
modulus will be rescaled by the zero shear steady state recoverable
compliance modulus 𝐽 0

𝑒 = lim𝜔→0
𝐺′(𝜔)
𝐺′′(𝜔)2 and the frequencies will be

scaled by the terminal relaxation time 𝜏0 = lim𝜔→0
𝐺′(𝜔)
𝐺′′(𝜔)𝜔 . Scaling this

way guarantees agreement in the limit 𝜔 → 0, so we only need to
compare the high frequency response at different values of 𝜁 to test
whether two models are distinct, in the sense defined in Section 2.

4 Comparisons featuring the Pointer model in Section 5 will rescale by 𝐽 0
𝑒

and 𝜏0 as defined by the benchmark (shuffling) calculations. This breaks any
guarantee of agreement in the zero frequency limit but preserves the ‘‘best fit’’
identified by the Pointer model’s fitting algorithm.
6

Fig. 3. Benchmark calculations for the loss modulus 𝐺′′(𝜔) and storage modulus 𝐺′(𝜔)
or 𝜁 = 10 and 𝜁 = 0.1. All curves have been shifted to ensure agreement in the low
requency range.

Benchmark calculations for the shuffling model with 𝜁 = 10 and
= 0.1, scaled to collapse in the zero frequency limit as described in

he preceding paragraph, are reported in Fig. 3. The main focus of this
aper is to see whether different models (e.g. Pointer, Poisson renewal,
tc.) can reproduce similar curves using (potentially) different values
f 𝜁 .

We have been careful to present our calculations in terms of a
escaled frequency-dependent complex modulus 𝐺∗(𝜔) rather than a
arametric Cole-Cole plot of loss modulus vs storage modulus. This
s because the Cole-Cole plot loses frequency information and cannot
rovide a complete test of distinctiveness; in principle, predictions
f 𝐺∗(𝜔) that are strikingly different could appear identical under a
ole-Cole representation.

. Poisson renewal model

The shuffling model, as defined in Eq. (4), assumes a constant value
f 𝜏B. In this section, we allow the rate of rearrangement to vary across
ifferent sectors of the length distribution and explore the resulting
mplications. For bulk rheology, we find that a length-dependent 𝜏B(𝐿)

recovers the bulk rheology equations of the Poisson renewal equation
(Section 4.1). We compare the bulk rheology predictions of the Pois-
son renewal model against the benchmark calculations (Section 4.2)
and then provide physical and mathematical arguments in favor of a

constant value of 𝜏B (Sections 4.3 and 4.4).
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Readers who are only interested in a practical comparison of Poisson
renewal and shuffling calculations can proceed directly to Section 4.2,
skipping Sections 4.1, 4.4, and 4.3. Readers who are interested in
developing a deeper understanding of the subtle distinctions between
models should find the rest useful.

4.1. Review of the Poisson renewal model

In this section, we will consider a generalization of the shuffling
model for which the breaking time varies with WLM length:

𝜕
𝜕𝑡
𝑃 (𝑡, 𝑠, 𝐿) = 1

𝐿
𝑀0

𝜕2

𝜕𝑠2
𝑃 (𝑡, 𝑠, 𝐿) + 1

𝜏B(𝐿)
(𝑃 (𝑡) − 𝑃 (𝑡, 𝑠, 𝐿)) (13)

Integrating these equations (following the derivation in Appendix B
of Peterson and Cates [39]) we obtain the constitutive equation from
the Poisson renewal model [16]:

𝐺∗(𝜔)
𝐺𝑒

= 𝑖𝜔

[

⟨𝜂0⟩
1 − ⟨𝜂0∕𝜏B⟩

]

(14)

⟨𝜂0∕𝜏B⟩ = ∫

∞

0
𝑑𝑧𝑒−𝑧𝑧 1

𝜏B(𝑧)

[ ∞
∑

𝑝,odd

1
𝑝2

[1∕𝜏B(𝑧) + 𝑖𝜔 + 𝑝2∕𝜏rep∕𝑧3]−1
]

(15)

𝑧 = 𝐿∕𝐿̄ (16)

A comparison of the rearrangement mechanisms for shuffling and
Poisson renewal (as described in the original publication [16]) is in-
teresting but beyond the scope of this section. Some details are give in
Appendix B.

To motivate the need for a length-dependent 𝜏B(𝐿), the Poisson
renewal model noted that longer chains rearrange (i.e. break) more
quickly than short chains. For reversible scission rearrangements, the
Poisson renewal model uses:
𝜏B
𝜏B0

= 3.3
2 + 𝐿∕𝐿̄

(17)

nd for WLMs that rearrange by the ‘end attack’ pathway, the Poisson
enewal model uses:
𝜏B
𝜏B0

= 4.0
1 + 𝐿∕𝐿̄

(18)

The numerators of these expressions were determined via a fitting
rocess, comparing with predictions from a stochastic model of re-
ersible scission and end attack rearrangement pathways. From the
enominators, we see that the breaking time is constant for short chains
nd inversely proportional to length for very long WLMs. Here, 𝜏B is
herefore the overall ‘‘renewal time’’ for a chain to react, whether by
cission or recombination, but we are calling it a ‘‘breaking time’’ to
aintain a common nomenclature for model/model comparisons. For
oisson renewal, we define 𝜁 = 𝜏B0∕𝜏rep, where 𝜏B0 is intended to
apture the true characteristic breaking time for reversible scission.

.2. Comparison between benchmark and Poisson renewal

For the Poisson renewal model with reversible scission (Eqs. (4) and
17)), we find that the benchmark predictions of the shuffling model for
= 10 and 𝜁 = 0.1 can be reproduced, respectively, by using instead
= 20 and 𝜁 = 0.15 in the Poisson renewal model. These results are

hown in Fig. 4.
For the Poisson renewal model with end attack (Eqs. (4) and (18)),

e find that the benchmark predictions of the shuffling model for
= 10 and 𝜁 = 0.1 can be reproduced, respectively, using 𝜁 = 15 and
= 0.1 in the Poisson renewal model. These results are shown in Fig. 5.

The main difference between Poisson renewal and shuffling appears
o be the choice of parameters needed to fit a particular data set and not
he range of data sets suitable for fitting. Thus, the inverse problem of
xtracting kinetic parameters from conventional linear rheology data
7

lone is likely ill-posed without additional information to inform the i
hoice of a sequence rearrangement pathway. Further discussion on this
ubject is given in Section 7.2.

Given that different functional forms of 𝜏B can lead to the same
uality of fit, it is important to remember that one major purpose of
itting to experimental data is to extract model parameters (e.g. 𝐺𝑒,
B or 𝜏B0, 𝜏rep), and these model parameters should describe real
hysical processes even where the Poisson renewal or shuffling models
hemselves do not. If the fitted parameters do not consistently map to
he physical value of 𝜏B for a given system, this should be regarded as a
cientific shortcoming. For example, if different models (all providing
ery good fits) give incompatible predictions for 𝜏B, then the quanti-
ative value of a true WLM breaking time cannot be determined from
heology data alone.

Where there is independent verification of a specific kinetic path-
ay for sequence rearrangements (e.g., reversible scission or end at-

ack), can we determine what form of 𝜏B(𝐿) (exemplified by Eqs. (17),
18)) will be best for mapping experimental spectra onto the mechanis-
ically correct kinetic parameters? In Sections 4.3 and 4.4, we identify
otential problems in the original Poisson renewal construction, argu-
ng in favor of a length-independent 𝜏B for shuffling approximations of
eversible scission and end-attack rearrangements.

.3. Concerns regarding conservation relationships

In the Cates framework for WLM rheology, rearrangements do not
irectly lead to stress relaxation. Instead, they indirectly facilitate
tress relaxation by turning slow-relaxing interior tube segments into
ast-relaxing end segments. In other words, rearrangements do not
reate or destroy tube segments but only move them from one WLM
hain to another, changing their distance from the nearest chain end
n the process. Surprisingly, an unintended consequence of a length-
ependent 𝜏B(𝐿) is that shuffling rearrangements no longer conserve
ube segments. Averaging Eq. (13) over all chain lengths and all contour
ositions yields:

𝜕
𝜕𝑡
𝑃 =

[

−2𝑀0⟨
1
𝐿

𝜕𝑃
𝜕𝑠

|

|

|

|

|𝑠=0
⟩

]

+

[

⟨𝜏−1B ⟩𝑃 − ⟨𝜏−1B 𝑃 ⟩

]

(19)

here

𝑋⟩ =
∫ ∞
0 𝑛(𝐿)𝑑𝐿 ∫ 𝐿

0 𝑋(𝑠, 𝐿) 𝑑𝑠

∫ ∞
0 𝑛(𝐿)𝑑𝐿 ∫ 𝐿

0 𝑑𝑠

The first term on the right hand side of Eq. (19) describes relaxation
by reptation, and the second block of terms describes the overall
creation/destruction of tube segments happening directly via shuffling.
If the shuffling process conserved tube segments, the second block
would be identically zero at all times, but this is only guaranteed to
hold if 𝜏B is independent of length.5

To guarantee conservation of surviving tube segments in a shuffling
model with length-dependent rates of rearrangement, the mean tube
survival probability in a ‘‘renewed’’ chain should not be the population-
average tube survival probability. Instead, it should be weighted by the
rate at which chains of different lengths make themselves available to
rearrangement. In other words, we can redefine 𝑃 in Eq. (13) to be the
average tube survival probability of WLMs presently being rearranged.

𝑃 (𝑡) =
⟨𝑃∕𝜏B⟩

⟨1∕𝜏B⟩
=

∫ ∞
0 𝑛(𝐿)𝑑𝐿 ∫ 𝐿

0 𝑑𝑠𝑃 (𝑡, 𝐿, 𝑠)∕𝜏B(𝐿)

∫ ∞
0 𝑛(𝐿)𝑑𝐿 ∫ 𝐿

0 𝑑𝑠1∕𝜏B(𝐿)
(20)

We can call this Poisson renewal with a common pool. Enforcing
a common pool for rearrangements is a significant change from the

5 This issue is clearly demonstrated for a shuffling mechanism, but it is also
resent for the original Poisson renewal rearrangement mechanism. Additional
otes on the original description of the Poisson renewal mechanism are given
n Appendix B
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Fig. 4. Comparing predictions of the Poisson renewal model with reversible scission (Eqs. (4) and (17)) against the benchmark calculations of the shuffling model with (a) 𝜁 = 10
and (b) 𝜁 = 0.1, cf. Fig. 3. There is no obvious distinction apart from the differing fitted value of (a) 𝜁 = 𝜏B0∕𝜏rep = 20 and (b) 𝜁 = 𝜏B0∕𝜏rep = 0.15 in the Poisson renewal model.
Fig. 5. Comparing predictions of the Poisson renewal model with end attack (Eqs. (4) and (18)) against the benchmark calculations of the shuffling model with (a) 𝜁 = 10 and
b) 𝜁 = 0.1, cf. Fig. 3.
w
l

riginal Poisson renewal formulation, as the bulk rheology is now given
y:

𝐺∗(𝜔)
𝐺𝑒

= 𝑖𝜔

[

⟨𝜂0∕𝜏B⟩

⟨1∕𝜏B⟩ − ⟨𝜂0∕𝜏2B⟩

]

(21)

⟨1∕𝜏B⟩ = ∫

∞

0
𝑑𝑧𝑒−𝑧𝑧 1

𝜏B(𝑧)
(22)

For 𝜏B following Eq. (17), we solve Eq. (21) and find that the
huffling calculations with 𝜁 = 10 and 𝜁 = 0.1 can be reproduced with
= 55 and 𝜁 = 0.4, respectively. Thus the common pool approximation

s not distinct from the original Poisson renewal model (see Fig. 6).

.4. Detailed balance and the concept of renewal

In Cates’ original work on reptation and reaction, it was shown
hat reversible scission leads to faster stress relaxation because it
ransforms slow-relaxing interior portions of a WLM into fast-relaxing
nd portions. This happens every time a WLM breaks, but when two
LMs reattach there is no resulting stress relaxation. Any approximate

equence rearrangement strategy (e.g. Poisson renewal or shuffling)
hould attempt to capture the rate at which slow-relaxing interior
egments are moved to a WLM end.

In Eq. (13), WLMs of length 𝐿 are removed from the population at
ength 𝐿 with rate 1∕𝜏B(𝐿) and replaced at the same rate by chains with
he same length and a uniform internal distribution of tube segments
8

ith mean tube survival probability 𝑃 . For reversible scission, equi-
ibrium reaction kinetics dictate that WLMs of length 𝐿 are removed

from the population at length 𝐿 at a rate of 2∕𝜏B0 by recombination
and a rate of 𝐿∕(𝐿̄𝜏B0) by reversible scission. Therefore, it would seem
sensible to formulate a shuffling model with a breaking time that
includes both of these processes, cf. Eq. (17). Unfortunately, this misses
a key distinction: chains of length 𝐿 produced by scission of long
chains 𝐿′ > 𝐿 are very different from chains of length 𝐿 produced by
recombination of shorter chains 𝐿′+𝐿′′ = 𝐿. For recombination events,
no new ends are created.

By detailed balance, every time a WLM of length 𝐿 breaks it must
be replaced by a pair of shorter WLMs (in some other, possibly distant
part of the system) with lengths 𝐿′ < 𝐿 and 𝐿′′ = 𝐿−𝐿′ undergoing the
reverse process of recombination. In recombination, there is no transfer
of interior segments to end segments, and therefore no path for faster
stress relaxation in the population of WLMs with length 𝐿. For WLMs
of length 𝐿, faster stress relaxation is only possible when the micelle in
question was generated by scission of a longer micelle.

Integrating over all possible breaking events for all WLMs longer
than length 𝐿 seems difficult, but detailed balance provides a solution.
At equilibrium, the rate at which WLMs of length 𝐿 form by scission
of longer WLMs must be equal to the rate of the reverse process at
which WLMs of length 𝐿 undergo recombination. For reversible scission
(assuming equal reactivity of end segments), the latter is given by
2∕𝜏B0, and is independent of length. Furthermore, since fragments of
length 𝐿 have one relaxed end and one unrelaxed end, the rate at which
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Fig. 6. Comparing predictions of the Poisson renewal common pool model with reversible scission (Eqs. (4), (17) and (20)) against the benchmark calculations of the shuffling
model with (a) 𝜁 = 10 and (b) 𝜁 = 0.1, cf. Fig. 3.
enewed chain ends are produced for chains of length 𝐿 must be half
f this rate, 1∕𝜏B0. Therefore, we argue that a constant 𝜏B (rather that
he 𝐿-dependent one used in the original Poisson renewal approach)
ill provide a better approximation of the essential Cates mechanism,
ecause it gives the true rate at which slow-relaxing interior segments
re ‘‘renewed’’, i.e. transformed to fast-relaxing end segments.

For an alternative means of arriving at the same conclusion, Ap-
endix A discusses a set of approximations by which a shuffling model
ith constant 𝜏B can be derived from the full reversible scission equa-

ions.

. Pointer algorithm

Similarities between shuffling (which is our benchmark) and Pois-
on renewal may not be too surprising in retrospect, given that the
wo models have similar equations for bulk rheology. In contrast,
he Pointer model has a completely different construction, capturing
enuine WLM sequence rearrangements caused by identifiable kinetic
chemes like reversible scission and end attack. By comparing against
redictions from the Pointer model, we can assess the influence of the
huffling approximation directly.

In its complete form, the Pointer model includes a library of descrip-
ions for many microscopic process relevant to WLM rheology, from
ntra-tube Rouse fluctuations of stiff polymers to contour length fluc-
uations and bond-interchange rearrangement processes. We mention
his at the outset because the main advantage of a stochastic model
ver a continuum model is its versatility and flexibility — whereas a
ajor disadvantage is the difficulty in computing6 the OSFT of 𝐺(𝑡) to

et 𝐺∗(𝜔). In this section we will have to confront challenges with the
SFT, but we will have limited opportunities to highlight the versatility
f the full Pointer model approach.

First, we evaluate the Pointer model with reversible scission re-
rrangements [34]. In Fig. 7, we find that the benchmark results of
he shuffling model with 𝜁 = 10 and 𝜁 = 0.1 can be approximately
eproduced with the Pointer model using 𝜁 = 26 and 𝜁 = 0.6. Fig. 7
hows some differences between the Pointer model and the benchmark
alculations at high frequencies, but we attribute this to numerical chal-
enges with computing the OSFT and not physical differences between
he models. Errors with the OSFT introduce some undertainty in the
arameter estimate, but this is difficult to quantify without an estab-
ished reference point. Challenges with the OSFT are less important at
ery high frequencies when intra-tube Rouse modes dominate 𝐺∗(𝜔).

6 In practice there is a vast range of tools from traditional signal processing
hat have been developed to numerically approximate an OSFT operation, but
n principle the problem is fundamentally ill-posed due to the ambiguity in
egularization [70–73].
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Next, we evaluate the Pointer model with end-attack rearrange-
ments [60]. In Fig. 8, we find that the benchmark results of the shuffling
model with 𝜁 = 10 and 𝜁 = 0.1 can be approximately reproduced with
the end-attack Pointer model using 𝜁 = 39 and 𝜁 = 0.6.

Finally, we compare our benchmark shuffling calculations against
the Pointer model for reversible scission, but now with a ‘double
reptation’ transformation of the relaxation modulus 𝐺(𝑡) [34,74]. This
changes the modeling of the reptation sector, but leaves the rearrange-
ment kinetics unchanged. In Fig. 9, we find that the benchmark results
of the shuffling model with 𝜁 = 10 and 𝜁 = 0.1 can be approximately
reproduced with the double reptation Pointer model using 𝜁 = 5.5 and
𝜁 = 0.18.

Despite significant changes in the set of underlying assumptions and
approximations, the various types of Pointer model for reptation and
rearrangement are evidently not distinct from the shuffling model or
various Poisson renewal models considered in Section 4. In all cases, the
models can be made to almost coincide within their predictive ranges
for linear rheology, given suitable choices of model parameters such as
𝜁 (which then depend strongly on the model chosen).

6. Shuffling with double reptation

Double reptation is a simple, and often successful, approximation
strategy for dealing with the problem of thermal constraint release
in well-entangled polymer melts [69,75]. For polydisperse systems of
entangled and unbreakable polymers, the double reptation and single
reptation approximations generally lead to distinct rheological pre-
dictions for the same input molecular weight distribution [74]. It is
therefore surprising that in Section 5, the choice of single vs double
reptation within a Pointer model for WLMs can be absorbed into a shift
of the fitted parameters. This probably comes from the fact that double
reptation and single reptation are not very distinct for systems whose
rearrangements are much faster than reptation (single mode Maxwell)
or much slower (unbreakable chains with exponential polydispersity).

All the same, a skeptical reader might wonder if distinct features
do emerge at intermediate 𝜁 , but have been misattributed to artifacts
of the OSFT problem in Fig. 9. This question can be resolved thanks
to a recently developed continuum model implementation for double
reptation, using a generalization of the shuffling model [23] to avoid
the OSFT problem. In Fig. 10, we show that the benchmark results of
the single reptation shuffling model with 𝜁 = 10 and 𝜁 = 0.1 can be
approximately reproduced with the double reptation shuffling model
using 𝜁 = 2 and 𝜁 = 0.025. For the fast breaking system, the transition
out of a single mode Maxwell response around 𝜔𝜏B ∼ 1 is very slightly
broader for the double reptation approximation, but this feature is
likely too subtle to be noticed in any comparison with experimental
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Fig. 7. Comparing predictions of the Pointer model with reversible scission against the benchmark calculations of the shuffling model with (a) 𝜁 = 10 and (b) 𝜁 = 0.1, cf. Fig. 3.
There is no major distinction, apart from the differing fitted value of 𝜁 in the Pointer model. We also note some oscillations in the loss modulus for the Pointer method, which
we attribute to difficulties in computing an OSFT. The inability to accurately resolve 𝐺′′ at high frequencies is likely responsible for other overall fitting discrepancies.
Fig. 8. Comparing predictions of the Pointer model with end attack against the benchmark calculations of the shuffling model with (a) 𝜁 = 10 and (b) 𝜁 = 0.1, cf. Fig. 3.
Fig. 9. Comparing predictions of the Pointer model with double reptation against the benchmark calculations of the shuffling model with (a) 𝜁 = 10 and (b) 𝜁 = 0.1, cf. Fig. 3.
data. For the comparisons at both low and high 𝜁 , double reptation will
se smaller values of 𝜁 because reptation dynamics are sped up and a
aster breaking time is needed to maintain the same ratio of timescales
or stress relaxation and rearrangement.
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From this comparison we conclude that the choice of double vs
single reptation in a WLM model modulates the fitting of model pa-
rameters but does not otherwise alter predictions in a distinct way.
Moreover, the reduction in fitted 𝜁 from single to double reptation is
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Fig. 10. Comparing predictions of the double reptation shuffling model against the single reptation shuffling model with (a) 𝜁 = 10 and (b) 𝜁 = 0.1, cf. Fig. 3.
onsistent with what was seen from the Pointer model, cf. Figs. 7 and
.

For a more complete treatment of constraint release, a different
lass of constitutive modeling framework is required in order to resolve
he full Rouse-like motion of the tube itself. These ideas have been
reviously incorporated into population balance constitutive models
or wormlike micelles [39], but the resulting model predictions were
arred by issues that arose from replacing a discrete Rouse spectra with
continuous approximation.

. Intra-tube rouse modes and feature-parameter mapping

Up to this point, we have neglected intra-tube Rouse modes
i.e. Rouse modes having a wavelength no longer than the tube diame-
er) and consequently none of our figures have included the character-
stic upturn in the loss modulus seen at high frequencies [76,77]. This
ection reviews a simple and approximate way of incorporating intra-
ube Rouse modes. We also discuss the relationship between ‘‘features’’
f linear rheology measurements and ‘‘parameters’’ of a fitted model
i.e. feature-parameter mapping). This is useful for anticipating (1)
hat information might be present in a given set of linear rheology
ata and (2) what information might be missing or best measured by
ome other means.

.1. Intra-tube dynamics

We will assume that WLMs are very flexible on scales comparable
o the tube diameter, such that the complex modulus from intra-tube
ouse modes 𝐺∗

𝑅(𝜔) is given by the Rouse model [51,78]:

∗
𝑅(𝜔) = 𝐺𝑒 ∫

∞

0
𝑑𝑍𝜙(𝑍) 1

𝑍

𝑁𝑒𝑍
∑

𝑝=𝑍

𝑖𝜔𝜏𝑒∕2
𝑖𝜔𝜏𝑒∕2 + (𝑝∕𝑍)2

(23)

where 𝑍 = 𝐿∕𝐿𝑒 is an entanglement number, 𝜏𝑒 is the longest Rouse
ime for an entanglement segment, 𝜙(𝑍) is the length distribution of

the WLMs, and 𝑁𝑒 is the number of Kuhn segments per entanglement
section. If the WLMs are very flexible on the scale of an entanglement
segment, 𝑁𝑒 ≫ 1, the above sum approximately evaluates to:

𝐺∗
𝑅(𝜔) ≈ 𝐺𝑒 ∫

∞

0
𝑑𝑍𝜙(𝑍)

√

𝑖𝜔𝜏𝑒
2

arctan

[
√

𝑖𝜔𝜏𝑒
2

]

= 𝐺𝑒

√

𝑖𝜔𝜏𝑒
2

arctan

[
√

𝑖𝜔𝜏𝑒
2

]

(24)

These assumptions and approximations on flexibility may not be
reflected in real systems, but they are useful here for pedagogical
purposes. Many WLM systems will be semi-flexible or stiff, in which
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case additional physics is needed to describe the rheology above 𝜔 >
1∕𝜏𝑒 [34,54]. With this minimal set of physics, Rouse modes introduce
a new parameter — the entanglement Rouse time 𝜏𝑒. From reptation
theory, 𝜏𝑒 should be related to the reptation time 𝜏rep via the entangle-
ment number of a typical chain, 𝑍̄, with 𝜏rep = 3𝑍̄3𝜏𝑒. Thus, the Rouse
modes can also be seen as adding information about the entanglement
number if 𝜏rep is known or included as a fitting parameter for the low
frequency rheology.

If we add 𝐺∗
𝑅(𝜔) from the intra-tube Rouse modes to the com-

plex modulus from the shuffling model, we get the overall complex
modulus shown in Fig. 11. These calculations specify an average en-
tanglement number of 𝑍̄ = 30. For larger values of 𝑍̄, the intra-tube
Rouse modes are shifted to higher frequencies. We note that for lower
entanglement numbers 𝑍̄ < 10, inclusion of slower Rouse modes
corresponding to wavelengths longer than an entanglement spacing
have been found necessary to correctly match the rheology predicted
by the more microscopic slip-spring model [67].

7.2. Feature-parameter mapping

When fitting models to experimental data, it is important to choose
models that provide the right level of physical insight. For example,
if intra-tube Rouse modes are not clearly evidenced in the linear
rheology data, as detailed below, the entanglement time 𝜏𝑒 should not
be included as a fitting parameter; including it can lead to overfitting or
slow/unstable convergence in the fitting algorithm. In some respects,
this is common sense, but for complicated models it is not always
obvious what information is represented in the data before conducting
a thorough comparison with a model.

This subsection aims to provide heuristics that anticipate whether
an experimental data set contains sufficient information to specify a
parameter or whether that parameter must be measured independently
by some other means.

For this subsection, we define the ‘low frequency’ and ‘high fre-
quency’ rheology in relation to the frequency 𝜔min, at which a local
minimum appears in the loss modulus. For WLMs relaxing by reptation
and intra-tube Rouse rearrangement, some model parameters can be
found through the low frequency rheology, some can be found from the
high frequency rheology, and some can only be found when combining
both the high and low frequency model parameters.

As a disclaimer, our discussion on feature-parameter-mapping ex-
cludes the effects of contour length fluctuations, which in principle can
provide a second independent means of estimating the entanglement
number 𝑍̄ [55]. However, for an imperfect model it is possible that
different model-based comparisons or heuristics will generate conflict-
ing estimates of the entanglement number. Resolving such a conflict
is more of an art than a science, and it goes beyond the scope of
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Fig. 11. Predictions for the complex modulus 𝐺∗(𝜔) of a very flexible WLM with 𝜁 = 10 and 𝑍̄ = 30, including intra-tube Rouse modes via Eq. (24). At frequencies above
𝜔𝜏rep > 103, the intra-tube Rouse modes dominate the loss modulus, and at frequencies above 𝜔𝜏rep > 105 they dominate the storage modulus as well. Superimposed upon these
curves are schematic indicators for feature-parameter mapping, cf. Section 7.2. The crossover frequency does not equal the reptation time 𝜏rep but it does provide information
needed to ascertain 𝜏rep. Likewise the separation between 𝜏rep and 𝜏𝑒 provides information needed to determine 𝑍̄ but is not equal to 𝑍̄. For the model fit to be well-posed, the
experimental data must contain enough distinct features to specify all model parameters.
what we are able to cover here. The signature from contour length
fluctuations enters in the low-to-intermediate frequency range, and CLF
is not strictly necessary for feature-parameter mapping provided the
system is very well entangled and not too fast breaking, 𝜁 > 1∕𝑍̄.

In broad conceptual terms, we have seen that the ‘shape’ of the low
frequency response is governed by a single dimensionless parameter7

𝜁 , which compares an effective relaxation time to the characteristic
time for some underlying stress relaxation process. Seeing this univer-
sality, the low-frequency response involves only three parameters for a
complete classification — a shear modulus 𝐺𝑒, a long relaxation time
(e.g. 𝜏rep), and some general shape parameter, 𝜁 . The linear rheology
data in the low frequency range does not contain information beyond
these three parameters, and the value assigned to those parameters
will depend on the model used. If a general shape parameter 𝜁 is
not enough for a useful interpretation of the experimental data (i.e if
the specific choice of rearrangement pathway really matters) then the
low frequency rheology data can provide an estimate of 𝜁 for a spec-
ified rearrangement pathway, but the low frequency rheology cannot
also independently corroborate the choice of rearrangement pathway.
To corroborate a rearrangement pathway, additional experiments are
needed, which can include some combination of:

1. High frequency rheology: At high frequencies, contour length
fluctuations and intra-tube Rouse modes provide information
about the entanglement number [53,55,79,80] and WLM stiff-
ness [34,54,81,82]. Information about the entanglement number
also allows an estimate of the WLM scission energy [34,83,
84] given a specified rearrangement pathway. The high fre-
quency response does not differentiate between rearrangement
pathways.

2. Temperature-jump: A rapid temperature change will cause the
molecular weight distribution to fall out of equilibrium. Scatter-
ing or rheological measurements taken along the path to equi-
libration can reveal the natural time-scales associated with spe-
cific rearrangement pathways [85–87]. In principle, the molec-
ular weight distribution can also be perturbed from equilibrium
by non-linear rheology to facilitate the same kind of measure-
ments, but this has not been fully explored [62,63].

7 This is true provided the WLMs are well-entangled and flexible/
semiflexible with 𝜁 ≫ 1∕𝑍̄. For very small values of 𝜁 , both 𝜁 and 𝑍̄ are
needed to describe the low frequency response due to the dominant role of
contour length fluctuations [23].
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3. Other non-rheological measurements: Additional information
about the structure and dynamics of a WLM system can be
obtained from a great variety of methods including conductiv-
ity [88,89]; neutron and light scattering [90–93]; cryo-TEM [94–
97]; and molecular dynamics simulations [98–101].

Information from (2) and (3) go beyond the narrow focus of this
paper, but regarding (1) we can note the value of high frequency
linear rheology data, which provides two main pieces of information:
First, it reveals the longest intra-tube Rouse relaxation time, 𝜏𝑒. In
conjunction with an estimation for 𝜏rep (which can be estimated via the
low frequency rheology), 𝜏𝑒 can be used to estimate an entanglement
number 𝑍̄. Second, for frequencies above 𝜔 > 1∕𝜏𝑒, the scaling laws
for loss modulus and shear modulus can reveal information about
chain stiffness [54,102,103]. In conjunction with estimates for 𝐺𝑒 and
𝜏rep, the high frequency rheology can provide improved estimates of
entanglement lengths and entanglement numbers [34].

The overall feature-parameter mapping strategy is summarized
schematically in Fig. 11, where annotations identify features that
provide information but do not imply one-to-one mappings (i.e. the
low frequency crossover is not 1∕𝜏rep). The Pointer model is currently
the most complete modeling framework for detailed feature-parameter
mapping in WLM, incorporating additional models and correlations
beyond those outlined here. In particular, the Pointer model includes
correlations to infer microscopic properties (e.g., scission energy and
the entanglement length) from the entanglement number 𝑍̄ and the
plateau modulus 𝐺𝑒; see for example [34].

8. Summary and future directions

This work summarizes a series of advances, spanning several
decades, in modeling the linear rheology of WLMs by combining the
physics of reptation (diffusion) and sequence rearrangement (breaking
and reformation of chains). Specifically, we address three modeling
frameworks – the Poisson renewal model, the Pointer model, and
the shuffling model – that all aim to describe reversible scission
and reptation but employ differing assumptions and approximation
schemes, balancing constraints on computational speed, robustness,
and accuracy. In practice, these models are designed for the purpose
of fitting and interpreting linear rheology data on WLMs, and in the
end we find that none of the models is distinct from the others for
the purpose of this aim. In other words, the shape of the complex
modulus 𝐺∗(𝜔) can be reliably fitted by any of the models, and all that
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differs is the fitted parameter values. This result is both disappointing
and encouraging. It is disappointing because it suggest that a good fit
to experimental data obtained with a reversible scission model does
not necessarily corroborate the assumption of a reversible scission
rearrangement pathway — an equally good fit could be obtained by
shuffling or Poisson renewal. To validate a sequence rearrangement
pathway requires additional information outside of linear rheology
(cf. Section 7.2), and such information is often slow and expensive
to acquire by comparison. However, for industrial applications a fast
qualitative assessment may often be preferable to a slow quantitative
assessment. In such cases, our findings should be encouraging —
the fastest models are just as useful as the most detailed models for
qualitative assessments.

For rapid qualitative parameter assessments and predictable fitting
at all frequencies, our study recommends a shuffling model. Alter-
natively, for optimal quantitative parameter estimation with known
sequence rearrangement pathways, one can use the Pointer modeling
framework. If additional work is done on modeling the linear rhe-
ology of wormlike micelles undergoing reptation and rearrangement
(to the exclusion of all other processes), the main value would lie in
resolving questions beyond the fitting of linear rheology data, such as
parameterizing a non-linear rheology model.

At the same time, reptation is not the only rheologically meaningful
tube-scale process in highly entangled WLM systems. There are other
non-separable and distinctive linear relaxation mechanisms (contour
length fluctuations, thermal constraint release), plus additional WLM
architectures (loops, branches, networks) to be considered, all of which
were neglected in the present study. In general the full complexity of
WLM rheology should not be expected to collapse onto a small number
of parameters as we found in this work; as new physics are incorpo-
rated, new distinctions may emerge. However, early evidence suggests
that a ‘principle of equivalence’ in WLM rheology could be surprisingly
universal; a forthcoming publication will show that branched WLMs
can be modeled as linear WLMs, given an appropriate correction to the
average micelle length [40].

In future research there are many open directions worth pursuing,
especially insofar as WLMs are a ‘model polymer’ system for study-
ing fundamental questions in entangled polymer rheology. Improved
WLM models could provide valuable new insights on marginally en-
tangled polymer rheology [61], flow-induced disentanglement [104],
and convective constraint release [39,69,105]. For systems far from
equilibrium, WLMs may also serve as a model system for studying
fundamental questions relevant to polymer recycling (e.g. chemolysis,
thermolysis, reactive compatibilization, reactive extrusion). Finally,
there are opportunities to continue integrating population balance
equations into an expanded range of complex fluids applications, from
suspension crystallization to aggregation/breakup phenomena in gels
and emulsions.

Declaration of competing interest

The authors declare the following financial interests/personal rela-
tionships which may be considered as potential competing interests:
Ron Larson reports financial support was provided by National Science
Foundation.

Data availability

No data was used for the research described in the article.

Acknowledgments

Funding for RGL was provided by the National Science Foundation,
United States of America under grant CBET 2323147. Any opinions,
findings, and conclusions or recommendations expressed in this mate-
rial are those of the authors and do not necessarily reflect the views of
13

NSF. MEC was funded by the Royal Society, United Kingdom.
Appendix A. Discussion on reversible scission vs shuffling

The full-chain population balance equations for reversible scission
with reptation were first written down by Peterson and Cates [39]
as an exact ensemble-averaged description of the process described
in stochastic form by Cates in 1987 [15]. We find it useful to think
of the equations as a ‘‘population balance’’ model, since they fol-
low the basic structure of a population balance equation, tracking
rearrangements of surviving tube segments in accordance with the
reaction kinetics defined by reversible scission. Other readers may find
it useful to think of the ordinary reptation equation (cf. Eq. (1)), as a
Smoluchowski equation for the distribution of surviving tube segments
along a chain; from this perspective, our full-chain population balance
equations are simply the Smoluchowski equation for reptation, but
extended to include reorganization by reversible scission.

Given that our population balance model captures the same rear-
rangements as the (previously solved) Pointer model, this Appendix is
not concerned with finding accurate solutions to the full equations.
Instead, the focus will be pedagogical, seeking to explain the full
equations (and their simplification) term-by-term. For a more complete
discussion (including equations for out-of-equilibrium 𝑛(𝐿), end-attack,
and other relaxation processes beyond reptation) we refer the reader
to [39].

For a collection of chains reacting by reversible scission, the dis-
tribution of surviving tube segments 𝑃 (𝑡, 𝑠, 𝐿) in a collection of chains
with length 𝐿 can change through five different processes:

1. Reptation — the endmost surviving segments of a tube are
erased through curvilinear diffusion

2. Reaction 1 — chains of length 𝐿 break into shorter fragments.
All contour positions have an equal probability of breaking, so
the overall rate of breaking increases with chain length.

3. Reaction 2 — chains of length 𝐿 join together with another chain
to become longer. All end segments are assumed to be equally
reactive.

4. Reaction 3 — chains of length 𝐿′ > 𝐿 break in a way that
generates a new chain of length 𝐿 (i.e. at contour position 𝑠 = 𝐿
or 𝑠 = 𝐿′ − 𝐿)

5. Reaction 4 — Two chains shorter than 𝐿 combine together to
generate a new chain of length 𝐿

For the reaction processes (1) - (4) we introduce a pair of conserva-
tion rules: (a) when two chains combine, the product chain preserves
the surviving tube segments of the reagent chains, and (b) when a chain
is broken, the fragment chains preserve the surviving tube segments
of the parent chain. These concepts are demonstrated graphically in
Fig. 12 and are discussed with more precision in [39].

All these enumerated processes are represented in Eq. (25), where
they appear in the order as listed. Eq. (25) assumes that the length
distribution remains at equilibrium, 𝑛(𝑡, 𝐿) ∼ 𝑒−𝐿∕𝐿̄, or else there would
be additional terms and accompanying population balance equation for
the number density distribution function 𝑛(𝑡, 𝐿).

𝜕
𝜕𝑡
𝑃 (𝑡, 𝑠, 𝐿) = 𝑀0

1
𝐿

𝜕2𝑃
𝜕𝑠2

+ 1
𝜏𝐵

[

loss by breaking
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

−𝐿
𝐿̄
𝑃 (𝑡, 𝑠, 𝐿) −

loss by breaking
⏞⏞⏞⏞⏞⏞⏞
2𝑃 (𝑡, 𝑠, 𝐿) +

production by scission
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

𝑒𝐿∕𝐿̄ 1
𝐿̄ ∫

∞

𝐿
𝑑𝐿′𝑒−𝐿

′∕𝐿̄(𝑃 (𝑡, 𝑠, 𝐿′) + 𝑃 (𝑡, 𝐿′ − 𝑠, 𝐿′)) +

production by recombination
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

1
𝐿̄ ∫

𝐿

0
𝑑𝐿′

{

𝑃 (𝑡, 𝑠, 𝐿′) if 𝑠 < 𝐿′

𝑃 (𝑡, 𝑠 − 𝐿′, 𝐿 − 𝐿′) if 𝑠 ≥ 𝐿′

]

(25)

Because reptation and reversible scission are linear operations on
the tube survival probability distribution 𝑃 (𝑡, 𝑠, 𝐿), the principle of
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Fig. 12. Schematic representation of how surviving tube segments are distributed during (a) recombination and (b) scission. For a more complete discussion, we refer the reader
to our prior work.
linear superposition applies and the ensemble averaging implied by the
equations is exact.

The ‘‘production by scission’’ term in Eq. (25) employs a ‘‘reflection’’
(𝑠 → 𝐿′ − 𝑠) of the tube survival probability distribution inside the
argument of the integral. By linear superposition, this reflection is not
strictly necessary but is permitted since chains have no natural head
or tail. Implementing reflections in this way enforces a symmetry in
the resulting solution 𝑃 (𝑡, 𝑠, 𝐿) = 𝑃 (𝑡, 𝐿 − 𝑠, 𝐿), which will be helpful
when the equations are solved numerically. No additional reflection is
needed for the ‘‘production by recombination term’’ since all possible
orderings of the (symmetric) parent chains are already considered (and
equally weighted) inside the argument of the integral.

To interpret (or apply) Eq. (25), the main challenge lies with the
integral expressions of the production terms. The simplifying approx-
imations that we introduce in this Appendix section are primarily
pedagogical; they are not intended to be realistic, but we believe they
are helpful for understanding the physical meaning of the full equations
and the relationship between reversible scission and shuffling.

Inside of these integrals, we differentiate between (1) freshly bro-
ken chain ends and (2) previously relaxed chain ends. Every time a
WLM breaks apart, it produces two freshly broken ends (one on each
product chain) and two previously relaxed chain ends. Every time two
WLMs combine, two previously relaxed end segments are moved to the
chain interior and two previously relaxed ends persist as they were.
Stress relaxation is accelerated by the formation of freshly formed ends
and rearrangements of previously relaxed ends are less important by
comparison.

Our approximation scheme will account for this differentiation as
follows: when a chain of length 𝐿 is produced, (1) freshly broken ends
are assumed to have surviving tube segments uniformly and randomly
distributed, with mean survival probability 𝑃 and (2) previously re-
laxed ends are assumed to look similar to the typical end segment in the
current population of chains with length 𝐿. These assumptions preserve
the essential distinction between freshly broken and previously relaxed
chain ends.

With these approximations in place, the ‘‘production by recombina-
tion’’ term becomes:

1
𝐿̄ ∫

𝐿

0
𝑑𝐿′

{

𝑃 (𝑡, 𝑠, 𝐿′) if 𝑠 < 𝐿′

𝑃 (𝑡, 𝑠 − 𝐿′, 𝐿 − 𝐿′) if 𝑠 ≥ 𝐿′

≈ 1
𝐿̄ ∫

𝐿

0
𝑑𝐿′𝑃 (𝑡, 𝑠, 𝐿) = 𝐿

𝐿̄
𝑃 (𝑡, 𝑠, 𝐿) (26)

For the ‘‘production by scission’’ term, we reorganize the reflections
(each chain containing one relaxed end and one unrelaxed end) as a
superposition of one chain with no relaxed ends and one chain with two
relaxed ends. Combining these simplifying approximations, we write:

𝑒𝐿∕𝐿̄ 1
𝐿̄ ∫

∞

𝐿
𝑑𝐿′𝑒−𝐿

′∕𝐿̄(𝑃 (𝑡, 𝑠, 𝐿′) + 𝑃 (𝑡, 𝐿′ − 𝑠, 𝐿′))

≈ 𝑒𝐿∕𝐿̄ 1
𝐿̄ ∫

∞

𝐿
𝑑𝐿′𝑒−𝐿

′∕𝐿̄(𝑃 (𝑡, 𝑠, 𝐿) + 𝑃 (𝑡)) = 𝑃 (𝑡, 𝑠, 𝐿) + 𝑃 (𝑡) (27)

Combining Eq. (25) with the simplifying approximations of Eqs. (26)
and (27), we get:

𝜕 𝑃 (𝑡, 𝑠, 𝐿) = 𝑀0
1 𝜕2𝑃

2
+ 1

[

−𝐿
̄ 𝑃 (𝑡, 𝑠, 𝐿) − 2𝑃 (𝑡, 𝑠, 𝐿)+
14

𝜕𝑡 𝐿 𝜕𝑠 𝜏𝐵 𝐿
𝐿
𝐿̄
𝑃 (𝑡, 𝑠, 𝐿) + 𝑃 (𝑡, 𝑠, 𝐿) + 𝑃 (𝑡)

]

(28)

After cancelling terms, this becomes:

𝜕
𝜕𝑡
𝑃 (𝑡, 𝑠, 𝐿) = 𝑀0

1
𝐿

𝜕2𝑃
𝜕𝑠2

+ 1
𝜏𝐵

[

𝑃 (𝑡) − 𝑃 (𝑡, 𝑠, 𝐿)

]

(29)

which is the shuffling model featured in the main text. This is
another way of arguing in favor of a constant breaking time as the most
reasonable choice for a shuffling model of the full reversible scission
rearrangement pathway.

Appendix B. Extended discussion of Poisson renewal

The original Poisson renewal model [16] is attributed to a different
sequence rearrangement pathway than the shuffling pathway repre-
sented by Eq. (13). In the main text we have chosen to focus on the
shuffling rearrangement pathway for two reasons: (1) the shuffling
approximation of Poisson renewal is simpler, and (2) we translated
the rearrangement process originally attributed to Poisson renewal into
equations for 𝑛(𝑡, 𝐿) and 𝑃 (𝑡, 𝑠, 𝐿) (cf. Eqs. (30) and (33)) but found that
the bulk rheology predictions are not consistent with Eq. (14) when 𝜏B
is constant.

The cause of such a disparity is not clear to us. However it is
our view that the main result of the Poisson renewal model, namely
Eq. (14), is more important than the details of its assumed artificial
sequence rearrangement pathway. We feel that the shuffling model
with length-dependent 𝜏B(𝐿) preserves both the spirit of the original
Poisson renewal model and its main result, and any disparity at the
level of sequence rearrangements is curious but ultimately does not
demand careful scrutiny at this point.

The goal of this Appendix is to review the stated mechanism of the
original Poisson renewal model and translate it into an equation for
the tube survival probability 𝑃 (𝑡, 𝑠, 𝐿). In the original Poisson renewal
model, ‘‘renewal’’ events cause chains to (1) change length and (2)
re-initialize all stress relaxation processes (except intra-tube Rouse
mode relaxation). The length of the renewed chain is drawn from
the equilibrium distribution, 𝑛(𝐿) ∼ exp(−𝐿∕𝐿̄), and its surviving
tube segments are randomly redistributed to re-initialize all stress
relaxation processes. Following these assumptions, the number density
distribution evolves as:
𝜕
𝜕𝑡
𝑛(𝑡, 𝐿) = − 1

𝜏B(𝐿)
𝑛(𝑡, 𝐿) + 𝑒−𝐿∕𝐿̄ 1

𝐿̄

⟨

1
𝜏B

𝑛
⟩

(30)

𝑛(𝑡 = 0, 𝐿) = 𝑛0 exp(−𝐿∕𝐿̄) (31)

⟨

1
𝜏B

𝑛
⟩

= ∫

∞

0
𝑑𝐿′ 1

𝜏B(𝐿′)
𝑛(𝑡, 𝐿′) (32)

The ‘‘production’’ term in Eq. (30) calculates the total rate of re-
newal events and then redistributes those renewed chains in accordance
with a defined exponential molecular weight distribution.

Next, a balance equation on surviving tube segments gives:
𝜕 (𝑛(𝑡, 𝐿)𝑃 (𝑡, 𝑠, 𝐿))

𝜕𝑡
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Table C.1
This table summarizes comparisons on the capabilities and limitations of the linear rheology models considered in the main text. This list is not intended to be
comprehensive, and the notes reflect our best current understanding. The table uses abbreviations RS (reversible scission), EA (end attack), OSFT (one-side Fourier
transform), and CLF (contour length fluctuations).

Linear rheology models Type Rearrangements Notes

Cates Original [15] Stochastic RS + EA Method is intuitive but slow compared to Pointer

Lequeux PBE [59] Continuum RS Restricted to single-mode relaxation processes

Poisson Renewal [16] Continuum RS + EA (nominal) Fast and efficient for fitting. Includes corrections for CLF.

Poisson ‘‘common pool’’ Continuum RS + EA (nominal) Pedagogical, not recommended for use

Pointer Algorithm [34] Stochastic RS + EA + more Includes all relevant physics in some form.
Known issues with OSFT and fitting algorithm

Full-chain PBE [39] Continuum RS + EA Technically sound but (so far) difficult to use

Shuffling [23] Continuum Shuffling Minor improvement on Poisson renewal

Slip Link [61] Stochastic RS Best treatment of CR and CLF
Ideal for low entanglement numbers, 𝑍 < 10
= 𝑛(𝑡, 𝐿)
𝑀0
𝐿

𝜕2𝑃
𝜕𝑠2

− 1
𝜏B(𝐿)

𝑛(𝑡, 𝐿)𝑃 (𝑡, 𝑠, 𝐿) + 𝑒−𝐿∕𝐿̄ 1
𝐿̄

⟨

1
𝜏B

𝑛𝑃
⟩

(33)

⟨

1
𝜏B

𝑛𝑃
⟩

= ∫

∞

0
𝑑𝐿′ 1

𝜏B(𝐿′)
𝑛(𝑡, 𝐿′) 1

𝐿′ ∫

𝐿′

0
𝑑𝑠′𝑃 (𝑡, 𝑠′, 𝐿′) (34)

The production term in Eq. (33) follows the same kinetics as the
addition of new chains in Eq. (30), integrating over the entire length
distribution to sample every renewal event. Every time a chain of
length 𝐿′ undergoes a renewal event leading to the formation of a
chain with length 𝐿, tube survival probability in the renewed chain
is uniform across all contour positions and equal to the mean tube
survival probability prior to the renewal event. Eqs. (30) and (33)
exactly reproduce the original Poisson renewal assumptions, but they
do not reproduce the bulk rheology of Eq. (14). This is difficult to prove
for a general case, but for the specific case of a constant breaking time
the bulk rheology implied by Eqs. (30) and (33) leads to a version
of Eq. (14) with a revised definition of ⟨𝜂0∕𝜏B⟩, in which the argument
of the integral differs by a factor of 𝑧:

⟨𝜂0∕𝜏B⟩ = ∫

∞

0
𝑑𝑧𝑒−𝑧 1

𝜏B

[ ∞
∑

𝑝,odd

1
𝑝2

[1∕𝜏B + 𝑖𝜔 + 𝑝2∕𝜏rep∕𝑧3]−1
]

(35)

Appendix C. Expanded summary of models

This Appendix summarizes a selection of linear rheology models
for WLMs, comparing their strengths, weaknesses, and relationships to
predecessor models. These notes relay our best current understanding
and do not necessarily represent a consensus across the field. Since
this is not intended to be a comprehensive list, the choice to include
or omit specific models should not be viewed as a value judgement
on usefulness. The linear rheology models in Table C.1 are mainly the
models that were featured (or at least mentioned) in the main text.

The Pointer algorithm basically updates the original Cates model
to include (1) a more complete library of physics, (2) a more effi-
cient algorithm to simulate the WLM dynamics, and (3) a complemen-
tary protocol to interpret micelle parameters by fitting to rheological
measurements. While there have been known issues with prolonged
iterations and occasional failure in converging towards a quantitative
fit for experimental data, we believe this is mainly due to challenges
with the overall nonlinear optimization and fitting process rather than
the physics of the model itself. The precise cause of these issues can
depend on the initial estimate for model parameters, the noise of
experiment data, and the number of iterations allowed for the fitting.
A recent work [53] on the fitting algorithm and iteration protocol
demonstrates that the aforementioned issues can be addressed with
continued attention and software improvements.

The full-chain population balance model by Peterson and Cates [39]
is an ensemble-averaged version of the Langevin equations from the
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original Cates model. The transformation to a continuum model is exact
— there are no approximations beyond those used by Cates, in contrast
to the earlier population balance attempt by Lequeux [59]. However,
the full-chain population balance model equations (cf. Appendix A)
are sufficiently cumbersome that they have not been used. As an
alternative, two of us developed the ‘‘shuffling model’’ (cf. Eq. (4)) as a
useful approximation strategy. It was soon discovered that the shuffling
model was a variation of (and slight improvement upon) the original
Poisson renewal model (c.f Section 4). Corrections for contour length
fluctuations (CLF) have also been developed in both frameworks, and
in this case it seems that the equations prescribed by Poisson renewal
cannot be transformed into a differential constitutive equation for com-
parison with the shuffling model. Shuffling also includes corrections
for double reptation and links to nonlinear rheology models [23], and
Poisson renewal prescribes corrections for Rouse modes (though these
fail for 𝜏B < 𝜏𝑒).

While the main text (and Appendix A) identifies physical grounds
to prefer a shuffling approximation over Poisson renewal, it also shows
that in practice there is very little distinction between the two and no
practical scientific reason to prefer one over the other. On the other
hand, the common pool approximation of Section 4.4 has neither a
physical basis nor a historical status and cannot be recommended for
practical use.
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