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Abstract: In this review, today’s state of the art in the rheology of gels and transition through the yield
stress of yielding liquids is discussed. Gels are understood as soft viscoelastic multicomponent solids
that are in the incomplete phase separation state, which, under the action of external mechanical
forces, do not transit into a fluid state but rupture like any solid material. Gels can “melt” (again, like
any solids) due to a change in temperature or variation in the environment. In contrast to this type of
rheology, yielding liquids (sometimes not rigorously referred to as “gels”, especially in relation to
colloids) can exist in a solid-like (gel-like) state and become fluid above some defined stress and time
conditions (yield stress). At low stresses, their behavior is quite similar to that of permanent solid
gels, including the frequency-independent storage modulus. The gel-to-sol transition considered in
colloid chemistry is treated as a case of yielding. However, in many cases, the yield stress cannot
be assumed to be a physical parameter since the solid-to-liquid transition happens in time and is
associated with thixotropic effects. In this review, special attention is paid to various time effects. It
is also stressed that plasticity is not equivalent to flow since (irreversible) plastic deformations are
determined by stress but do not continue over time. We also discuss some typical errors, difficulties,
and wrong interpretations of experimental data in studies of yielding liquids.
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1. Introduction

The term “gels” is one of the most widely used when scholars study various soft
matters. The concept of “soft matter” was first proposed by deGennes when considering
complex fluids and soft condensed matter [1]. These matters have two main characteristics:
a complex structure and flexibility. It is intuitively clear that under this definition, a
certain group of multicomponent and, most likely, multiphase materials characterized
by a low elastic modulus and, possibly, but not necessarily, fluidity is considered. The
rheological properties of such systems should belong to the class of viscoplastic (or yielding)
media since the dispersed components of the mixture should form a certain “structure”
characterized by some strength. The term “structure” does not have a strict definition
either since we are talking not only about crystalline bodies but also amorphous ones
characterized by some specific interaction, causing the ordering of their parts and/or
orientation in space. Soft matter is widely used in production, such as tensides, polymeric
fluid compounds, liquid crystals, membranes, gels, concentrated emulsions, foams and
other colloids, and proteins [2].

If we are dealing with such a substance as solid “gels”, there is no doubt that they
have some strength under mechanical loading. If the medium is capable of irreversible
deformations, then the yield stress characterizes the strength of the internal structure. In this
case, two modes of behavior of the medium can be realized: solid-like (or, more precisely,
gel-like) at low enough stresses and fluid at higher stresses that exceed the characteristic
threshold, the yield stress. The phenomenon of gel–sol or sol–gel transition, which is
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important for colloidal (but not only colloidal) systems, refers just to the transition between
the two extremal cases (from a gel-like to a liquid state and vice versa).

This seemingly unambiguous interpretation of the experimental data concerning the
rheology of these substances turns out to be far from being so unambiguous in practice,
primarily due to the kinetic or time factor, as well as the need to operate with very low
stresses, which are at the limit of the capabilities of standard experimental technique.
Indeed, in many cases, it is true, and the statement that “time dependence is a rheological
attribute that is not well understood” [3] is absolutely true.

We will consider mainly shear deformations, although undoubtedly, the deformation-
induced transition from a solid-like to a fluid state exists for any type of stress field that
is described by modern rheological models [4–8]. This consideration is based both on the
authors’ own experimental data and on numerous results related to various soft matters
that have been published in recent years.

This review has the following goals:

- To propose an unambiguous and unequivocal classification of gels and related materi-
als based on rheological arguments;

- To summarize the results of studies of yielding liquids published during the last few
years;

- To discuss some typical errors, difficulties, and wrong interpretations of experimental
data in the studies of yielding liquids.

We will adhere to the following terminological definitions:

- Gels are solid bodies incapable of irreversible deformations;
- Yielding liquids are materials that can be in a solid-like state but, under some threshold

conditions, can transfer to a liquid state;
- A gel-like state is the solid-like state of a yielding liquid.

2. Gels and Gel-like States
2.1. Formation of a Gel

A gel is a multicomponent system formed by a structure-forming component and an
absorbed liquid, usually a low-viscosity solvent. In particular, hydrogels can be defined as
highly hydrophilic three-dimensional (3D) networks composed of cross-linked natural or
synthetic polymer chains capable of holding huge amounts of water (>90%) [9].

The general thermodynamic understanding of such compositions is “systems with
incomplete phase separation” [10]. This incompleteness is due to steric and/or kinetic
reasons. Let us consider a possible rheological model of gelation (Figure 1):

The viscosity, η, of the initial composition of a liquid begins to grow due to its own
intermolecular reactions, and at time a (in Figure 1), molecular interactions lead to the
formation of a structure characterized by the yield stress, σY. This corresponds to the
transition from a liquid (fluid) state to a yielding state, which exists during the time interval
a–g. This interval consists of two parts: a gel-like state (at stresses below σY) and a liquid
state (at stresses above σY), as shown by the arrows in Figure 1. The substance in a
liquid state can demonstrate different rheological behaviors, including viscous flow and/or
viscoelastic deformations, depending on the applied stress and time of its action. The upper
limit in Figure 1 is the stress σ* (either shear or normal) at which the liquid is broken up. It
should not be surprising that a liquid is characterized by a certain strength since complex
liquids are always more or less elastic. Then, the destruction of such a liquid (as well as a
gel), like any solid, is associated with the release of stored elastic energy. Thus, there are
two characteristic parameters of the matter–macro-strength, σ*, and yield stress, σY. In the
process of gelation, both of them increase over time and, at some point, become equal at
point A. This means that the object in question becomes a real non-flowing gel.
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Figure 1. A rheological model of gelation. 
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At this point, it is necessary to define the difference between gels and yielding liquids.
Indeed, the term “gel” is often used by scholars in various senses. According to the
definition, a gel is a non-fluid soft elastic substance with a permanent structure, and the
application of external forces results in viscoelastic reversible deformations, which, when
a certain critical stress state (at σ*) is reached, are destroyed. At the same time, there are
many multicomponent compositions, e.g., polymer solutions with a transient structure that
can exist as viscoelastic solids and become yielding fluids when an applied load exceeds
some threshold. Such media (viscoplastic substances according to the standard but possibly
not quite exact rheological nomenclature) are also frequently called “gels”. This extending
using the concept of gels (which is not assumed in this review) is popular, especially in
colloid science, where yielding colloidal substances are usually treated as gels [11,12].
Sometimes, it is also erroneously said that with an increase in the viscosity of polymer
solutions and a decrease in temperature or an increase in concentration, those solutions
become “gels”. But they are not gels in any way! (Certainly, it is true if an increase in
concentration or a decrease in temperature does not lead to the intersection of the binodal
in the phase diagram of this polymer–solvent pair).

Meanwhile, a boundary between solutions and gels may not be rigid but somewhat
blurry. It depends on the nature (energy and lifetime) of the intermolecular interactions.
The characteristic times of the intermolecular contacts are determined by their energy and
the energy of the Brownian motion. These times can be less than the time of observation
(measurements), and in this case, it is a real solution. However, if components of the dis-
persed phase can create long-term associates and their lifetimes lie in the range acceptable
for measurements, we arrive at the transition to the temporal gel state.

True gel (or solid gel), therefore, means exclusively a non-fluid solid substance. Such a
gel may transit into a fluid state only when environmental changes (temperature, pH, etc.)
occur. This is true, for example, for so-called “thermoreversible gels” [13].

A substance that can be in a solid-like state and, under external forces, turn into a fluid
state is called a “yielding liquid” (or “yielding stress” material). These substances (by analogy
with Newtonian liquids) can also be called Binghamian liquids or media. The boundary
between these two states of soft matter is determined by the yield stress. At stresses lower
than the yield stress, such matter is considered as being in a gel-like or solid-like state, and
at stresses higher than this threshold, the matter is considered to be in a liquid state, or sol.
The transition between these states is traditionally (in colloid science) called a “gel-sol” (or
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vice versa) transition, although, in fact, it should be referred to as a gel-like (not gel) to
sol transition.

Gels (solid-like gels), as a rule, are chemically cross-linked substances, the structural
network of which is formed by covalent or ionic bonds. Due to the nature of these bonds,
they are not able to perform the gel–sol transition under the applied external load. Yielding
materials (liquids) are formed by the transient physical cross-linked network existing due
to dispersed non-covalent interactions. The three-dimensional network of such a system
can be reversibly (or partly irreversibly) destroyed by a high enough external load, and
this is considered a gel–sol transition. This difference between the two types of rheological
behavior is associated with categorizing gels into chemical gels and physical gels, where the
former have permanent covalent bonds while the latter, like colloidal gels, have temporary
and weak bonds [14].

The term “plastic” in the mechanics of solids is understood as an irreversible deforma-
tion when this deformation depends on stress only, but at a certain stress, strain does not
depend on time. That is why plastic deformations are something different to flow.

The creation of a solid-like structure, within which a large amount of liquid is retained,
is widespread in various technologies. Important examples of such technology include the
adsorption of crude oil mixed with water and the excess water production in petroleum
reservoirs [15–18], hygroscopic polymer gels [19], the development of stimuli-responsive
material [19,20], 3D printing [21], medicine and food soft matters [22,23], and fiber spinning
from polymer solutions. The latter case is based on the effect of the phase separation of a
polymer solution jet on contact with a coagulant. The state of the system is described by
Equation (1) for the Flory–Huggins parameter:

∆µ1

RT
= ln(1− ϕ2) +

(
1− 1

x

)
ϕ2 + χ1 ϕ2

2 (1)

where R is the gas constant, T is temperature, x is the ratio of molar volumes of polymer and
solvent, and µ1 is the chemical potential (or the parameter of polymer–solvent interaction),
which does not depend on ϕ2 and is proportional to 1/T.

One of the interesting and industrially used polymer gels is formed by the gel method
of ultra-high molecular weight polyethylene processing into fibers, where the jet of the solu-
tion in non-polar solvent transforms to gel-like fiber under a decrease of temperature [24].

Sorbents of various types are typical examples of industrial gels; among them, hyper-
cross-linked co-polymers of styrene and divinylbenzene are special gel materials. These
microporous gels have a free surface of more than 1000 m2/g and can absorb a huge
amount of liquid [25,26]. The development of new gels/sorbents continues due to the
requirements of environmental safety and the oil industry, in particular. New super-
absorbing cross-linked hydrogels are characterized by a swelling ratio exceeding 10 (at
room temperature) [27]. Mesoporous hydrogels also belong to the group of gels with a
developed surface that can be important for biomedical applications [28].

The polymer materials related to gels include weakly cross-linked rubbers containing
a large number of plasticizers, as well as protein and polysaccharide gels [29,30], with their
high concentration of biopolymers, which are firm enough to be self-supporting and show
fractures at large deformations.

Since gels are used in such a multiplicity of applications, it is crucial to correctly char-
acterize the rheological behavior of these soft matter, bearing in mind that their properties
are mainly determined by their microstructure. Various methods are used to study gel
structures in order to explain their rheology, such as small-angle neutron scattering [31],
rheo-NMR [32], fluorescence measurement [33], light-scattering [34], atomistic simula-
tion [35], etc.

The rheological analysis of soft matters consists of describing the complex characteris-
tic properties of an object in various rheological states and features of threshold parameters–
macro-strength and yield stress.
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2.2. Rheology of Gels

Gels are materials formed at poin A in Figure 1 and possibly continuing to develop
after point A. The X-axis may not necessarily represent time but, for example, temperature
or a change in the composition of the matrix due to the addition of certain chemicals.
According to the assumed definition, a gel is a solid matter without the ability to flow. The
nature of the mechanical rupture of gels resembles the known mechanisms of breaking up
of solids.

Structural bonds in a gel can be of different nature [36]. The limiting case is strong
covalent chemical bonds between macromolecules (chemical network), and the upper limit
of such gels is plasticized rubbers and plastics (such as, for example, plasticized PVC and
PVC plastisols). Their rheological behavior is quite well known. In the ideal case, it is
characterized by a wide rubber-like plateau on the frequency dependence of the storage
modulus G′ (ω) and relatively low values of the loss modulus G′′ (ω).

The characteristics of gels on breaking up, as for other solid-like materials, have many
similar features. First of all, two main types of break can be distinguished: brittle rupture
and elastic yielding. The latter is intrinsic for polymeric substances [37,38], although brittle
rupture has also been observed for these substances [39]. Clear evidence of gel fracture
was presented in [40]. It is interesting to note that the shearing point corresponding to the
destruction of the gel structure was determined by critical strain rather than stress. Similar
results were described in [41], where brittle fracture of protein gels was observed and fitted
by using some characteristic constants.

Macro-fracture of gels (as well as other soft matters) can be observed in two modes–
either as the appearance of discontinuities inside the sample due to the breaking of cohesive
contact or the transition to wall slip instead of shear in volume. Direct observations of inho-
mogeneous deformations with a fracture zone after initial elastic strain were demonstrated
for the thixotropic (“self-healing”) protein gel in [42]. Destruction can be accompanied by
sliding along the solid boundary surface of the experimental cell. In this study, the effect
of delayed fracture, or durability of the gel, was found. This is very similar to the stress
dependence of the lifetime of solids associated with the Zhurkov–Bueche kinetic fracture
model and described by the exponential law [43]

t∗ = Ae−γσ (2)

where t* is the time-to-break at the constant applied stress σ, and A and γ are parameters
of the model. Gels can be viscoelastic, and, in this case, the break-up occurs after some
viscoelastic (recoverable) deformation.

Three possible modes, namely elastic (a), viscoelastic (b), and delayed (c), of break-up
are shown in Figure 2.
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The strength of gels in the extension was also investigated, and many publications are
devoted to this method. A detailed review [44] considers various aspects of gel fracture,
including its theoretical substantiation, and contains a large number of references to original
publications.
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To understand the physical nature of the macro-fracture of gels formed by a transient
network, it is advisable to introduce some characteristic time of a determining relaxation
process. Then, the possibility of break-up is determined by the ratio between the time of
deformation (reversible deformation rate) and this time. This situation is analogous to the
role of the Deborah Number for viscoelastic soft matters [45]. Meanwhile, two different
relaxation modes can play a crucial role. The first is the characteristic lifetime of bonds
or entanglements, and the second is the relaxation time of macromolecular movements.
Depending on the scale of these times in terms of the strain rate, we encounter either brittle
or viscoelastic fractures.

2.3. Yielding Materials (Liquids)

The viscoelastic properties of a matter in a gel-like state, where the network is formed
by transient bonds, depend on its structure. The direct experimental proof of a solid-like
behavior of the gel-like state is the independence of the storage modulus of frequency
accompanied by relatively low mechanical losses. There are numerous examples [46–52]
of such behavior, many of which are analyzed in reviews and monographs [53–55]. The
evolution of viscoelastic properties in the transition from yielding liquid to real gel is
carefully described in [56].

Developing viscoelasticity can be followed in parallel with the scheme in Figure 1.
Initially, we deal with a usual Newtonian liquid with viscosity η0. Its loss modulus G′′ is
equal to (ωη0) in a whole frequency (ω) range and elasticity is negligible (G′ = 0). When a
structural network appears, this is reflected in the appearance of non-Newtonian behavior,
and the evolution of the storage modules occurs as schematically shown in Figure 3.
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Figure 3. Evolution of the storage modulus in the process of gelation (scheme).

At the beginning of the process, a relaxation of the structuring liquid is close to a
simple Maxwellian model, and the slope of the G′ (ω) dependence is equal to 2, which
corresponds to a single relaxation time θ. Along with the development of the network,
relaxation properties are characterized by a set of relaxation times that is reflected in a
decrease of the slope of the G′ (ω) dependences. Finally, after reaching the gel state, we
deal with a solid-like matter with the elastic modulus independent of frequency (upper
straight line in Figure 3) as observed for any solid body.

The width of the relaxation time depends on the nature of the matter. An extreme
case is micellar solutions, which are yielding liquids. According to the review [57], the
viscoelastic properties of wormlike micelles are well-fitted by the Maxwell single-relaxation
time model in a wide frequency range. This is illustrated in Figure 4, where the solid lines
are built strictly according to the Maxwell equation, and τR and G0 are relaxation time and
the elastic modulus of the Maxwell model, respectively.
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Such behavior in the linear region of viscoelasticity is quite typical of various micel-
lar structures [58,59] and lamellar gels [60]. The constants characterizing the relaxation
properties of such soft matters are related to the classical relationship.

τR =
η0

G0
(3)

If a structural network is formed by macromolecular chains, the relaxation spectrum of
the soft matter can be quite wide since the polymeric chains have many modes of relaxation
(see, for example, [61,62]).

The concept of a gel-like state relates to different substances, including those that are
not usually considered to be “gels”. The viscoelastic properties of highly concentrated
emulsions presented in Figure 5 are a typical example confirming this approach. One can
see the correlation between the rheology of typical yielding materials (presented by the
flow curves) and the frequency independence of the storage modulus in the gel-like state
(at low stresses) [63].
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like state of soft matter, where an intermolecular network in the polymer solution is cre-
ated by silica nanoparticles. These have much higher values of the storage modulus in 
comparison with the loss modulus [64]. 
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The experimental data also show that the same ratio between the components of the 
complex elastic modulus is observed for the aqueous dispersion of a biopolymer complex 
of gelatin with polysaccharide [65]. In this material, the storage modulus is practically 
constant, and the loss tangent is quite small. 
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Figure 5. Flow curves–dependences of the apparent viscosity on shear stress (a) and frequency
dependences of the storage modulus (b) in the gel-like state of low stresses for concentrated emulsions
(these objects are liquid explosives.

Figure 6 demonstrates the other typical feature of the viscoelastic properties of a
gel-like state of soft matter, where an intermolecular network in the polymer solution is
created by silica nanoparticles. These have much higher values of the storage modulus in
comparison with the loss modulus [64].
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Figure 6. Viscoelastic properties of the aqueous solutions of poly(ethylene oxide) with different
concentrations (shown in the curves) in the presence of 3 vol.% of SiO2. Filled symbols–storage
modulus G′; open symbols–loss modulus, G′′.

The experimental data also show that the same ratio between the components of the
complex elastic modulus is observed for the aqueous dispersion of a biopolymer complex
of gelatin with polysaccharide [65]. In this material, the storage modulus is practically
constant, and the loss tangent is quite small.

The above examples for different soft matters show that the gel state in yielding
structured substances, as well as gels, should be considered solids, and they have the
following common features: constant values of the storage modulus and low mechanical
losses over a wide frequency range.

Based on what has been said above, it follows that flow in the region of the gel-
like state is not possible. However, there is a long tradition of “measuring” the largest
Newtonian viscosity below the yield point. Historically, this is associated with the concept
of a “complete” flow curve [65,66], but experimental results of this kind are also often
presented in modern publications [67–72],

A rather curious example in this regard is the results of a study of the rheological
properties of concentrated emulsions [47]. The object of this study was definitely yielding
liquids, and this was confirmed by the frequency independence of the storage modulus
(Figure 7a). However, the experimental data were also presented in the form of flow
curves within the domain of the maximal Newtonian viscosity (Figure 7b). This is an
obvious contradiction, and it can be assumed that the problem is related to an inadequate
understanding of the experimental data at low shear rates.
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Figure 7. Experimental data for highly concentrated emulsions for the gel-like region (a) and “com-
plete” flow curves (b). As an emulsion stabilizer, a mixture of gelatin (CG = 0.5 wt.%) with κ-
carrageenan (Ccar, wt.%—shown in the figures) is used.

The situation is related to the peculiarities and difficulties of measurements at low
shear rates, as well as at low frequencies. As a rule, measurements of the apparent viscosity
depending on the shear rate are carried out by scanning the shear rate using certain steps,
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and the duration of the deformation at each shear rate is constant. When studying the
viscous properties of yielding stress liquids, this leads to the results shown in Figure 8
(according to [73]). Here, the time step is chosen to be 1 min. At a high shear rate (exceeding
0.1 s−1 in this example), this time is sufficient to reach a stationary regime of the flow
corresponding to the value of the real viscosity. In contrast, at slower deformations,
shearing always hits point Z regardless of the specified shear rate. Then, at all shear rates
over any of its range, the apparent “viscosity” seems to be the same, and this is erroneously
treated as the upper Newtonian limit, not depending on the shear rate. However, if we
increase the deformation time (duration of observation), we will obtain larger values of
the quasi-Newtonian viscosity, as shown by the vertical arrow in Figure 8. In fact, the
left envelope does not have any limit, and the apparent “viscosity” increases unlimitedly,
corresponding to the approaching yield point.
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The role of elasticity in transient deformation regimes during the stepwise reduction
in the shear rate is also stressed in [74].

A general approach to the role of the time effect was later confirmed for various
yielding liquids by measuring the increase in quasi-Newtonian viscosity while increasing
the observation time [75]. This result included gel for hair dressing, foam, emulsions,
Carbopol, and food products such as mayonnaise and tomato puree, which have frequently
been considered as “visco-plastic”, although sometimes (contrary to this classification)
many of them have been characterized by the upper Newtonian viscosity. However, it must
be kept in mind that the structure in various liquids, particularly in Carbopol, may develop
very slowly. Therefore, depending on the pre-formation of the sample, the experimenter
can conclude whether the liquid under study is a simple one (Newtonian) or whether, due
to thixotropic phenomena, it has a yield point [76–78]. One can find a complete analysis of
Carbopol microgels as a typical example of yielding liquid in [79].

The values of the quasi-Newtonian viscosity for yielding soft matters are usually
shown at the level of 106–109 Pa·s, and the yield stress is of the order of 10 Pa. This means
that shear rates at this range of viscosity should be of the order of 10−5–10−8 s−1. The
steady-state values of viscosity in this range of shear rates are reached in 105–108 s (in the
interval from 30 h to 40 months). It is doubtful that anyone has actually conducted such
long-term experiments, not to mention the fact that it is difficult to expect the properties
of many substances to be stable for such a long time. This estimation also confirms the
unreality of flow in the stress region below the yield point. All these arguments lead to the
conclusion that no steady-state flow below the yield stress is possible, and the origin of
apparent viscosity in yielding fluids below the yield stress is an artifact [80].
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Meanwhile, none of the above denies the existence of the upper Newtonian viscosity
in the rheology of multicomponent but single-phase systems such as polymer solutions.
Such highly viscous solutions may visually resemble gel-like media, but they are not.

Yielding observed above the yield point and the subsequent irreversible deformation
is determined by a number of microscopic structural phenomena [81], the nature of which
has not been fully elucidated.

In recent years, significant progress has been made in the research of soft materials [3,82].
Modeling and theoretical studies have shown that flow arises as a result of microscopic local
rearrangements involving several particles in the so-called “shear transformation zones” (in
certain areas). In experiments with colloidal particles, it is possible to visualize directly the
rearrangement of particles that occurs during shearing [83]. Yielding is a gradual transition,
occurring to an increased extent as the deformation increases [84], which is accompanied by
irreversible particle rearrangement [85].

Finally, it should be noted that yielding is a three-dimensional phenomenon [6].
Traditionally, the solid-to-liquid threshold is determined via shear stresses, although normal
stresses in complex fluids can lead to new flow phenomena [86]. A quite simple method
for determining the elongational yield strength from the mass of a droplet emanating from
a cylindrical capillary was developed in [87]. The results of the first and second normal
stress differences for yield stress liquids were reported in [86], and it was shown again that
normal stress differences are quadratic functions of the shear stress.

3. On the Yield Stress in Soft Matter

Measuring the yield stress, σY, of viscopastic media is not such a simple task as it
seems at first glance [88,89]. First of all, it is necessary to determine what is meant in a
particular case by this value, i.e., an unambiguous definition of what we want to measure
should be given. A milestone in this problem was the classic work of Bingham [90]. He
clearly distinguished two possible states of multicomponent multiphase materials: a solid
(or gel-like) state, where the material exhibits only elastic deformations, and a liquid state,
where this material can flow under the action of applied stresses. The boundary between
these two states is the yield stress (or yield point) σY, and its value was considered as a
physical parameter of a substance.

Such an approach can often be found in modern publications on the characterization
and comparison of various substances since it adequately describes the behavior of various
concentrated suspensions, for example, bentonite colloidal systems [91,92], electrorheologi-
cal liquids [93], and supramolecular solutions [94], as well as colloidal gels [95–97], gels for
3D printing [98], liquid crystal systems [99], ferrofluids [100,101], and magnetorheological
fluids [102]. Yielding behavior and flow are important in many operations within the oil
and gas industry [103].

A visual analysis of many model situations using the Bingham understanding of
yield stress is conducted in one review [104]. Also, the Bingham model and its non-linear
generalization are the basis for solving a lot of dynamic (boundary) problems. The known
analytical solutions can be used in technological practice, for example, in designing the
transport of cement mortars.

The yield stress value reflects the strength of a structure, which is created by inter-
molecular interactions of various types. The upper limit of the yield stress depends both
on the nature of the bonds and on the concentration of the structure-forming components.
The strength of the structure in highly filled compositions can exceed 105 Pa, and this is
the structure formed specifically by the filler since the yield stress does not depend on the
nature of the liquid matrix [105] (see the example in Figure 9).
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Figure 9. Concentration dependence of the yield stress for dispersions of carbon black (surface
300 m2/g) in different matrix–poly(butadiene)s with Mw = 1.35 × 105 and 1 × 104 Da and low-
viscosity silicon oil–marked with various symbols; with various symbols calculated by the Casson
and the Herschel–Bulkley models [106], and by G′ (σ0) curves. Original data.

However, this is true only for components that do not interact with each other. In fact,
the matrix can strongly influence the structure formation in gels. Of course, other options
are possible, in which the matrix will take part in the formation of the structure [107].
An illustrative example of the formation of a continuous structure by silica in a polymer
matrix depending on the pH of the medium is presented in [108]. The formation of a three-
dimensional structure has been shown in systems based on proteins with polysaccharides,
the properties of which (Figure 10) are determined by the composition of biopolymer
supramolecular complexes [48,66].
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Figure 10. Determination of the yield stress by the Herschel–Bulkley model and the Cas-
son model for hydrogel of gelatin-κ-carrageenan complexes (Cg = 1.0 wt.%). The change 
in the κ-carrageenan concentration is indicated by arrows, Ccar, wt.%: 6–0.100, 7–0.150, 8–
0.175, 9–0.200, 10–0.400, 11–0.500.  

The measurement of large values of the yield stress presents no fundamental diffi-
culties. However, the issue of the minimum physically reasonable values of the yield stress 
is of special interest. In practice, using standard experimental techniques, it is not really 
possible to reliably measure the values of the yield stress below 1 Pa. 
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Structure formation in organogels at extremely low concentrations of less than 10–3% has 
been described [111,112]. So, the level of the minimal value of the yield stress might be 
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as nothing more than a value judgment. 
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Figure 10. Determination of the yield stress by the Herschel–Bulkley model and the Casson model
for hydrogel of gelatin-κ-carrageenan complexes (Cg = 1.0 wt.%). The change in the κ-carrageenan
concentration is indicated by arrows, Ccar, wt.%: 6–0.100, 7–0.150, 8–0.175, 9–0.200, 10–0.400, 11–0.500.

The measurement of large values of the yield stress presents no fundamental difficul-
ties. However, the issue of the minimum physically reasonable values of the yield stress
is of special interest. In practice, using standard experimental techniques, it is not really
possible to reliably measure the values of the yield stress below 1 Pa.

However, supramolecular structures have very low strength, and in this case, the
values of the yield stress may be obtained by extrapolating experimental data. Such an
approach sometimes gives minimum values of the yield stress in the range of 0.01–0.1 Pa
at a concentration of the structure-forming phase significantly below 0.1% [107,109,110].
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Structure formation in organogels at extremely low concentrations of less than 10–3% has
been described [111,112]. So, the level of the minimal value of the yield stress might be
roughly estimated as 0.01 Pa; however, such low values of yield strength should be treated
as nothing more than a value judgment.

How strong, in fact, can supramolecular structures be?
We can give the following estimation of the minimum possible strength of structure

formation based on the supposition that the structure should not be destroyed by Brownian
motion. This requirement is expressed in the inequality of the Péclet Number:

Pe =
σYd3

kT
>> 1 (4)

where d is the characteristic size of the structural element, T is the absolute temperature,
and k = 1.380649 × 10−23 J/K is the Boltzmann constant.

This implies a possible yield limit, namely:

σY >>
kT
d3 (5)

For the characteristic size of the particles that form the supramolecular structure, it is
reasonable to take the typical size of colloidal particles or the wavelength of visible light
(0.4 µm). Hence, it follows that the minimum possible strength of the structure in yielding
media can be no lower than 0.01 Pa, which roughly corresponds to the minimum values of
the yield strength obtained by extrapolating the experimental data.

Currently, we are far away from the historical understanding of the yield strength
described in the pioneering work of Bingham. A modern understanding of the concept of
yielding was discussed in several recent publications [113–115].

The experimental measurement of the yield stress, σY, should be based on a rigorous
definition of this quantity. Indeed, after the question of whether there is a yield point, a
counter-question follows: What is it? (that is, first of all, a definition of what the questioner
understands by this value should be given). The concept advanced by Bingham seems
quite clear [90]. However, there are some theoretical and practical problems in determining
the yield stress, even if we remain in the Bingham paradigm. Indeed, the yield point is
defined by some equation (whether it be the Bingham, Herschel–Bulkley, Casson, or any
other fitting equation; see Figure 10) and extrapolation of the experimental data to the limit
at

.
γ→ 0.

However, any extrapolation procedure leaves room for doubt, as illustrated in Figure 11,
where different possible ways of extrapolating are shown. This procedure is especially
dangerous when using a wide range of shear rates and presenting the experimental data in
a log scale. It can be seen that it is possible to come to very different values of the yield stress
(points of intersection of the lower curves with the σ-axis at

.
γ = 0) and even the possible of

the absence of a gel-like domain (σY = 0).
Bingham’s yield stress is a limiting case that may be true for compositions in which the

dispersed component forms a rigid structure instantly breaking down at a certain stress, σ.
However, even in these cases, the reverse restoration process can continue for a long time,
and the different rates of approach to the initial yield stress (depending on the scanning
speed) indicate the thixotropic nature of the substance (Figure 12).

The gel-like structure can be different due to its physical origin, and consequently,
its breaking up can happen in different ways. For example, instead of Bingham’s fragile
jump-like transition from the gel-like to the liquid state, this transition can happen over
time [116,117]. Then, the structure can be characterized by the lifetime t* decreasing (from
t*3 to t*1) along with the increase in stress. Therefore, the flow does not begin immediately
after the application of the load but only after some time, which characterizes the durability,
or lifetime, of the structure (Figure 13).
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Figure 13. Developing deformation γ on time–Bingham yielding. The dotted arrows show the
increase in shear stress.

The function t* (σ) reflects the strength of a gel-like structure and thus replaces Bing-
ham’s yield stress, σY. The slope of the straight lines in Figure 14 corresponds to the
viscosity of a matter in a liquid state (above the gel-like-to-liquid transition).

The durability of rigid structures (in concentrated suspensions) is characterized by a
rather strong dependence on stress. For example, the exponential-type t* (σ) dependence
in yielding materials was proposed in [118]:

t∗ = Be−βσ (6)
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where B and β are empirical constants in this equation. This equation is quite similar to
Equation (1), fitting the strength of a material overall.

The time effects create a serious principal difficulty in finding the “true” yield point
(which in reality may not exist), and the time effect leads to the conclusion that the yield
stress should not be considered a material property since it depends on the prehistory
of deformation and the rest of the sample [119]. Time-dependent effects were carefully
discussed in [117], with the evident conclusion that the time evolution in aging and shear
rejuvenation should be the basis for estimating the flow behavior of thixotropic substances.
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Figure 14. Development of deformations in transition from the gel-like to plastic state (the stress for
curve 2 is higher than that for curve 1).

The rheological properties of yielding materials are similar to those of non-fluid gels
at σ < σY., where only small elastic deformations are possible. At σ > σY, these elastic
deformations are negligible in comparison to the irreversible deformation of flow, and
therefore, they are not shown in Figure 13. However, it is reasonable to assume that the
deformation during the initial stage of loading at σ > σY is not elastic but viscoelastic. Then,
the development of deformations at a certain σ = const (in measuring compliance as a
function of time) takes place as shown in Figure 14 (as described, for example, for various
materials in [118,120–123]).

At sufficiently low stresses, the time dependence of deformation comes to a plateau,
which becomes shorter and higher as the applied stress increases. Then, a very sharp
increase in deformation happens, reflecting the shear-induced solid-to-liquid transition (as
indicated by the oval in Figure 14) to stationary flow. The slope of the last sections of the
curves (shear rates) obviously increases as the stress increases. The appearance of a plateau
is characteristic of the elasto-plastic type of mechanical behavior.

The dependences of such a type presented in [120] can be reconstructed to give the
t* (σ) dependence, which reflects the durability of a solid-like structure. This is shown in
Figure 15 (based on the data from Figure 4 in this publication).

These experimental data are approximated by the standard exponential dependence
(5) with β = 0.414 Pa−1.

Therefore, two limiting types of rheological behavior should be distinguished: Bing-
ham’s one with an immediate increase in deformation at σ > σY and viscoelastic behavior at
σ < σY (for soft matter). The shear-induced transition from initial viscoelastic deformations
to flow might not be sharp, as shown in Figure 14, but smooth. The delayed break-up (or
durability) of a structure in the gel-like state is superimposed on the viscoelastic behavior
of yielding materials.

The gelled crude oil is one of the most interesting substances, demonstrating a wide
range of rheological effects intrinsic to yielding materials. Different time-dependent effects
are observed for these objects [124]. The structure of these objects is formed by crystallizing
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paraffin and other components of crude oil, and this structure is sensitive to the time,
temperature, and shearing history of the sample.
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The main rheological feature of waxy oils is their thixotropy, directly linked to the
gel-like-to-fluid transition [125]. This type of rheological behavior is analytically described
by various models [4,5,121,126]. The commonly accepted approach to modeling reversible
structural processes induced by shearing is based on the introduction of a certain condi-
tional factor β for the notion of “degree of structuring”, which cannot be rigorously defined.
This factor depends on the shear rate. The kinetic equation describing the evolution of β
can be proposed in the following rather general form [127]:

dβ

dt
= k1(1− β)n .

γ
α
+ k2βm .

γ
ν (7)

where all constants in this equation are empirical parameters.
More common kinetic equations of the same type and their tensorial generalization

were proposed in [128].
Equations of this type reflect both kinetic processes–the forward and reverse struc-

ture evolution and the role of shearing in both. Meanwhile, the process of structuring
can continue for a long time in a gel-like structure at rest [129]. Such “physical aging” is
typical of biological objects [130,131], including systems containing proteins and polysac-
charides [132,133], and is accompanied by conformational changes in macromolecules and
the microstructure of gel-like systems over time.

These structure transformations occurring over time (thixotropy) should not be con-
fused with viscoelastic deformation [134], which is also associated with time effects [135],
although the timescales of both processes can be superimposed.

The recovery of the initial structure disturbed by shearing can only be partial [136,137],
and this requires an improvement of the model, taking into account these effects [138,139].
This means that the yield stress for thixotropic soft matters can be different depending on
the prehistory of deformations reflecting a different structure of the matter in the gel-like
state. These properties of thixotropic media are inherent not only in gelled waxy oil but also
in other multicomponent materials, for example, Laponite suspensions [140], hydrogels of
polysaccharides [141,142], colloidal gels [143], Carbopol [77,78], and as-spun fibers from
polymer solutions.

One of the consequences of the time effect is the bifurcation of the flow curve of a
thixotropic liquid, which is usually associated with its yielding [144]. This is the reason
for the shear banding effect. It consists of the movement of a sample separated into two
layers with different rheological properties (or even a motionless layer near a wall of the
measuring device or an industrial unit and the flowing layer) [5,145–147]. Such rheological
effects are undoubtedly associated with the evolution in local particle rearrangements,
leading to such localization phenomena as shear banding and bifurcations [148,149].

Using oscillation experiments over a wide frequency range enables quantification
of the time effects of yielding shown in a general form in Figure 1. This approach was
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(and remains) quite popular in searching for the correlation between the evolution of the
dynamic modulus and direct observations, for instance, of paraffin crystallization in crude
oil [150–152] and the structure formation of proteins in the aqueous phase [153].

The typical evolution of the components of the elastic modulus over time, t (at a
certain frequency), for various yielding materials is exhibited in Figure 16. Point a can
be conditionally considered the beginning of the process, and point b is the moment of
gelation, but it is evident that the gelation occurs over time and approaching the final state
is rather long. The timescale can be minutes or even days. In addition, the position of
the G′ (t) and G′′ (t) curves shifts depending on the fixed frequency, and the frequency
dependence of the position of point a (or b) can be used as a quantitative characteristic of
the kinetics of gelation.
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Figure 16. Evolution of the storage G′ and loss G′′ moduli in isothermal gelation atω = const.

The method of characterization of the yield stress based on measuring the amplitude
dependences of the storage and loss components, G′ (A) and G′′ (A), respectively, at some
constant frequency,ω = const, has become quite popular. A scheme of such measurements
is shown in Figure 17.
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dynamic modulus showing the transition to the non-linear viscoelastic behavior at constant frequency.

These so-called “large-amplitude-oscillatory-shear” (LAOS) measurements show the
existence of the linear domain of viscoelastic behavior for the solid-like state of gels (where
the components of the elastic modulus do not depend on the amplitude of shear) and
the transition to the non-linear domain (where they depend on the amplitude). These
experiments are referred to as “large-amplitude”, although their sense is not in the “large”
absolute value of the amplitude used but as a marker of the linear-to-non-linear transition.
For rigid gels, this transition can happen at amplitudes of less than 0.1%, although other
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materials continue to remain linear at deformations exceeding several hundred percent.
The point of this transition is most likely related to the critical linear strain that is valid for
at least some soft matters [122].

The linear-to-non-linear transition corresponds to uncertain structure transformations,
and a natural suspicion arises that this effect is associated with yield stress. So, it is
reasonable to try searching for correlations between the yield stress observed in shearing
and characteristic points at curves in Figure 17. One can note a few characteristic points in
this figure. This is point a corresponding to the deviation from the linearity of the G′(A)
dependence (although another method for estimating this point can be proposed). Then,
there is the crossover point b, where G′ = G′′ showing the transition from the prevailing
elastic to dominating plastic behavior. The point c at the maximum of the G′′ (A).

These points correspond to the characteristic stresses σa = G′A,a and σb = G′A,b where
the subscripts a and b correspond to the values of the modulus and the amplitude at points
a and b, respectively. Now, it is necessary to answer a question:

Does a correlation between σY found in the shearing experiment by the extrapolation
procedure, on the one hand, and σa (or σb), on the other, exist?

Experiments conducted with a variety of soft matters (polysaccharide–protein hy-
drocolloids, highly concentrated oil emulsions, Kaolin or SiO2 suspensions with different
concentrations of the solid phase, Mayonnaise, and so on) showed that the σY/σb ratio for
the studied subjects differs, varying from 1 to 10 [154–156]. Moreover, this ratio depends on
the frequency at which the modulus is measured. So, it is rather difficult to use the LAOS
method for the estimation of σY, especially bearing in mind that σb depends on frequency.
Careful analysis of LAOS data (for Carbopol solution) showed that σY ∼= σd (for a single
frequency), while for other characteristic points in Figure 17, the ratio of σY to the stress
at different points varied in the range of two to ten times [155]. It was also found that the
loss tangent at the maximum on the amplitude dependence tan δmax is a rather interesting
value since it is proportional to the characteristic reciprocal frequency,ω−1. If we assume
that the position of δmax characterizes the yielding point, then it appears possible to obtain
the time sweep of yielding or dynamic yield stress [155]. It would be interesting to extend
this approach to other soft matter in order to confirm the generalizability of this conclusion.

The kinetic factor in the structure of soft matters and consequently their yield stress, as
well as the whole complex of the rheological properties, depend not only on the prehistory
of deformations but also on the thermal history, which influences the kinetics of the structure
formation in the transient network of secondary bonds [157–159], crystallization in the
case of waxy oils [123]. So, it is necessary to consider these materials as thermo-kinematic
sensitive substances [160,161].

Moreover, as discussed above, various materials in the gel-like state may exhibit vis-
coelastic rather than purely elastic behavior [4,5,138,162,163]. This should also be included
in a complete visco-elasto-fluid thixotropic rheological model of real yielding stress liq-
uid [164–166]. This complicated model has been examined, although there are difficulties
in determining the constants of the model [128,160,167]. Such a detailed description of
the rheological properties of process fluids, including the measurement of a large number
of empirical constants, may seem excessive. However, this is not just a matter of being
curious. It is dictated by real technological problems associated with the pipeline trans-
portation of such media as crude waxy oil. The increase in yield stress during forced or
planned shutdowns of the pipeline is of crucial technical and financial importance for
the restart [168–171]. Numerical simulations of the flow of yielding fluid [172,173] have
provided a better understanding of the fundamental properties of yield stress fluids in
many applications relevant to natural and engineering sciences.

The complex nature of the rheological behavior of real fluids forces us to approach
with caution the simplified methods of estimating the properties accepted in technological
practice. The results of “simple” evaluations may give incorrect estimates of the expected
behavior of the material and not coincide with the characteristics of the fluidity obtained
with more rigorous experiments [174].



Gels 2023, 9, 715 18 of 29

4. Sol–Gel Transition

The sol–gel transition is represented by the diagram in Figure 1. This already suggests
that such a transition occurs over time, although it can also be considered as a transition
through the yield point since, according to the physical meaning, this is a transition from a
liquid state to a solid-like state.

As emphasized above, it is necessary to distinguish between a sol-to-gel transition to
a solid gel state and a sol-to-gel-like transition to a yielding material (liquid), although the
term “gelation” is used for both processes.

Traditionally, people working with weak organic and especially bioorganic compounds
prefer to talk about sol–gel (or gel–sol) transitions, while those who work with coarser
multicomponent materials interpret them as yielding. Meanwhile, in both cases, the
physical content is the same—the formation of a network of the transient bonds of various
types in a liquid. Moreover, the situation is quite common when the same composition,
depending on the temperature, can form a true gel (below the glass transition temperature,
Tg). And at higher temperatures (above the melting temperature, Tm), the composition
becomes viscous liquid. In the temperature range Tg–Tm, this is a yielding material
(Figure 18) [66].
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Figure 18. Dependence of melting (Tm) and gelling (Tg) temperatures on the κ-carrageenan-to-gelatin
mass ratio Z in mixed hydrogels; gelatin concentration CG = 1.0 wt.%. Original data.

One can find a lot of pictures showing a gel-like structure in multicomponent compo-
sitions (e.g., [153]).

It is quite evident that gelation leads to the transformation of the viscoelastic properties
of the matter. This basic concept was developed based on experiments with stoichiometric
balanced cross-linking PDMS [175,176]. It was shown that the gel point is characterized by
the equality of G′ (ω) = G′′ (ω) over a very wide frequency range (but not at a single point,
as assumed sometimes). In this threshold state, the following simple law holds:

G′(ω) = G′′ (ω) = Kω1/2, (8)

where K is a temperature-sensitive factor.
Figure 19 shows how viscoelastic properties of the liquid before gelation (at t < t*) pass

into properties of a typical gel (at t > t*), and this is accompanied by a change in the ratio of
G′ and G′′: in a liquid state, G′′ > G′, and in a gel (or gel-like) state, G′′ < G′.
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Figure 19. Experimental data illustrating an evolution of viscoelastic properties at the liquid-to-gel
transition, according to a concept formulated in [176]. G′ (ω) and G′′ (ω) are used in the reduced
form, and the constants are omitted; every pair of curves corresponds to the different moments of
the gelation.

In addition, it was shown that at the gel point, a very simple relationship exists for the
relaxation modulus, Gr = S·t−1/2, and only a single parameter S, referred to as the “strength”
of a gel network, is enough to characterize the gel properties. The development of this
approach for stoichiometric imbalanced cross-linking was discussed in [177]. Initially, this
approach to determining the gel point was developed for chemical gels. Later, it was shown
that the same method can be applied to sol–gel transition for gels formed by transient
bonds [178]. One can find some examples of the application of this approach in [179–181].

The sol–gel transition is a rather special state of the system associated with the forma-
tion of the space percolation network. In the publications of Winter et al. cited above, as
well as in the review of earlier studies [182], it was shown that the rheological behavior in
the vicinity of this critical point is characterized by power law dependences of viscoelastic
functions on frequency or time. These power-law dependences were treated as a conse-
quence of the fractal structure of the matter near the gel point [183]. It was also shown
that the approach to the gel point is accompanied by the formation of space clusters in the
pre-gel state [184]. Typically, in quiescent conditions, attractive colloids in low-concentrated
solutions form fractal gels structured into two length scales: the colloidal and the fractal
cluster scales. Two models that account for the structure and the rheological properties of
such colloidal gels were derived from [185].

Both the agglomeration and the deagglomeration (breakdown) of the particle network
in polymer nanocomposites are affected by the shear flow, resulting in shear-induced liquid-
solid (sol–gel) transition and shear-induced solid-liquid (gel–sol) transition, respectively. It
was shown [186] that the percolation threshold of both transitions under shear-induced
agglomeration and breakdown processes depends on the shear rate under a steady shear
condition. A scaling relation is suggested to describe the percolation threshold at a low
shear rate. The critical strains at both sol–gel and gel–sol transitions are determined by the
distance of the particle concentration to the percolation concentration.

The most characteristic feature of the rheology at the gel point is the independence of
the loss tangent on frequency and/or time [175]. The scaling of the rheological function
in the vicinity of the gel point for physical gels was observed and discussed in many
publications (e.g., [187,188]). This issue was carefully discussed for both colloidal clay
suspension and polymer solutions in [189]. This study not only confirmed the universality
of the scaling concept for gelation near the gel point for various objects but also showed
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that exponents are the same: the gelation either occurs over time or due to temperature
scanning in the non-isothermal mode.

This approach proposes a fundamental understanding of the evolution of the relax-
ation properties at the sol–gel transition. However, the application of this approach in
practice requires cessation of the gelation process at different moments and measuring
the viscoelastic properties of a set of samples obtained at these moments. Therefore, it is
impossible to determine the gel point during the ongoing kinetic process since a single
point at which G′ = G′′ (at some frequency) obviously does not correspond to the gel point.

In research and technological practice, the sol–gel transition is considered not only
as the formation of a real non-fluid gel but also as the appearance of a yield point. In
addition, this transition is frequently considered not as an isothermal process but rather
as a temperature transition, something like “melt temperature” [190,191]. However, in all
approaches, the sol–gel transition is a kinetic process, which can take a long time. Therefore,
the temperature transition can be extended along the temperature scale with a gradual
transformation of the structure.

Typical results regarding the biopolymer (gelatin) aqueous solution were as fol-
lows [153]. The time evolution of the modulus continued for rather a long time in the range
of the supposed sol–gel transition (24–28 ◦C), and the temperature strongly influenced the
rate of gelation.

The authors [192] took the crossover point as the moment of sol–gel transition at the
lowest frequency used, where G′ and G′′ were proportional to ω2 and ω, respectively,
although the experimental data showing the dependence of this moment on the frequency
were also presented. This is a quite common technique for determining gel time at various
temperatures [66,192–195], although (as stated above) this method does not correspond
to the real transition and should be considered conditional for usage in technological
applications.

Figure 20 demonstrates that the addition of κ-carrageenan to gelatin solution increases
the rate of gelation in the isothermal conditions as followed by changes in the time de-
pendence of the complex elastic modulus, G* (t), for samples with different κ-carrageenan
content [153].

Gels 2023, 9, x FOR PEER REVIEW 22 of 32 
 

 

Typical results regarding the biopolymer (gelatin) aqueous solution were as follows 
[153]. The time evolution of the modulus continued for rather a long time in the range of 
the supposed sol–gel transition (24–28 °C), and the temperature strongly influenced the 
rate of gelation. 

The authors [192] took the crossover point as the moment of sol–gel transition at the 
lowest frequency used, where G′ and G″ were proportional to ω2 and ω, respectively, alt-
hough the experimental data showing the dependence of this moment on the frequency 
were also presented. This is a quite common technique for determining gel time at various 
temperatures [66,192–195], although (as stated above) this method does not correspond to 
the real transition and should be considered conditional for usage in technological appli-
cations. 

Figure 20 demonstrates that the addition of κ-carrageenan to gelatin solution in-
creases the rate of gelation in the isothermal conditions as followed by changes in the time 
dependence of the complex elastic modulus, G* (t), for samples with different κ-carragee-
nan content [153]. 

 
Figure 20. Kinetics of gelation as followed by an increase of the dynamic modulus G* normalized 
by its limiting value, G*t→∞, at CG = 2 g/100 g and different concentrations of κ-carrageenan.  

The sol–gel transition of diluted colloidal dispersions is so barely noticeable that spe-
cial highly sensitive detection methods are required [196]. 

The temperature and frequency dependences of rheological parameters can some-
times be considered interchangeable. This is an attempt to apply a similar method to the 
temperature-frequency equivalence in the linear viscoelasticity of polymers. In the case of 
viscoelasticity, this principle only works if the shape of the relaxation spectrum (as a re-
flection of the internal structure of the substance) does not change. In the case of gelation, 
both an increase in temperature and a reduction in the frequency helps to accelerate the 
gel-to-sol transition (“melting” of the gel). However, the internal transformation of gels 
characterized by rheological methods may not be similar to the temperature-induced tran-
sition. Therefore, the influence of these factors may be qualitatively different, so fre-
quency–temperature superposition during gel melting or gelation is hardly possible. 

Moreover, the gelation process can include stages of different types. In this case, us-
ing multiwave analysis can provide richer information than traditional single-frequency 
measurements of the elastic modulus [197]. Simultaneous determination of the complex 
modulus at different frequencies can be implemented using a non-harmonic input signal 
with further decomposition of the input and output signals using the Fourier transform 
method [198]. 

Of course, the most rigorous method for establishing the sol-to-gel transition point is 
to measure the evolution of the elastic modulus at different frequencies accompanied by 

Figure 20. Kinetics of gelation as followed by an increase of the dynamic modulus G* normalized by
its limiting value, G*t→∞, at CG = 2 g/100 g and different concentrations of κ-carrageenan.

The sol–gel transition of diluted colloidal dispersions is so barely noticeable that
special highly sensitive detection methods are required [196].

The temperature and frequency dependences of rheological parameters can some-
times be considered interchangeable. This is an attempt to apply a similar method to the
temperature-frequency equivalence in the linear viscoelasticity of polymers. In the case of
viscoelasticity, this principle only works if the shape of the relaxation spectrum (as a reflec-
tion of the internal structure of the substance) does not change. In the case of gelation, both



Gels 2023, 9, 715 21 of 29

an increase in temperature and a reduction in the frequency helps to accelerate the gel-to-sol
transition (“melting” of the gel). However, the internal transformation of gels characterized
by rheological methods may not be similar to the temperature-induced transition. There-
fore, the influence of these factors may be qualitatively different, so frequency–temperature
superposition during gel melting or gelation is hardly possible.

Moreover, the gelation process can include stages of different types. In this case,
using multiwave analysis can provide richer information than traditional single-frequency
measurements of the elastic modulus [197]. Simultaneous determination of the complex
modulus at different frequencies can be implemented using a non-harmonic input signal
with further decomposition of the input and output signals using the Fourier transform
method [198].

Of course, the most rigorous method for establishing the sol-to-gel transition point is
to measure the evolution of the elastic modulus at different frequencies accompanied by an
in-depth analysis of the relaxation spectrum at different stages of the process. However, in
practice, we need simpler and faster methods, especially if we are interested in the outcomes
of comparing different compositions. So a single-frequency technique (at a low frequency)
can be useful, although the gelation point should not be determined by the crossover point
on the G′ (t), G′′ (t) dependencies but approximation of the G′ (t) dependence to the point
that conditionally corresponds to the approach to the limiting plateau value. However, this
approach may not be completely reliable either since many gelling systems “live” for a
rather long time due to the slow transformation of the internal structure.

In technological practice, quite simple “visual” methods of the sol-to-gel transition
are widely used. They are based on the standardized estimation of the moment of the
loss of fluidity. Some simple proposed methods for finding the yield transition are based
on elongation deformation considering the drop formation during the extrusion of a
yield stress fluid in the air [87,199,200]. Observation of the “falling ball”, displacement
of the meniscus, the capillary method [201,202], the inclined plate method [203], and
determination of the cloud point of crude oils, or the temperature of wax appearance
(WAT), according to ASTM D-5853, do not provide the necessary accuracy and reliability in
measuring the gelation time, although they can be useful for preliminary characterization
of the samples. Another simplified method for estimating the sol–gel point can be used
based on measurements of the time dependence of the apparent viscosity at constant shear
stress. This dependence is shown in Figure 21.
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The analysis of the η(t) curve can be based on different analytical approximations,
including a simple exponential formula:

η(t) = ηoeαt (9)



Gels 2023, 9, 715 22 of 29

where ηo is the initial viscosity of the substance in the sol state, and α is an empirical
parameter.

It can easily be seen that this equation does not allow for determining the limit η→0
and, therefore, does not satisfy the criterion of the sol–gel transition. However, in many
cases, this equation (or equations of this type) fits well with experimental data over a wide
timescale. Then, the gel point is conditionally assumed as the time when the viscosity
reaches a definite limit, for example, 103 Pa·s. This is a rather high viscosity close to the
loss of fluidity. A quite similar criterion for curing is frequently assumed in the technology
of thermo-setting resins.

This review does not address the problem of the relationship between the rheolog-
ical properties of gels and their application characteristics. However, such a connection
undoubtedly exists. An interesting example in this regard is the observation of adhesive
characteristics of hydrogels in biological objects [204,205]. Correlation between adhesive
and rheological properties (especially in the range of large deformations) will lead to
optimization of the required material strength.

5. Conclusions

It is necessary to distinguish solid gels and yielding liquids, which can form a solid-like
(gel-like) structure that is destroyed by increasing stress. The proposed rigorous definition
of gels as solid materials contradicts the habitual treating of colloidal yielding substances
as “gels” but advances a general understanding of the rheological behavior of all materials
demonstrating yield stress (not correctly called viscoplastic media).

The main peculiarity of various soft multicomponent subjects is the ability to transit
from a solid-like to a liquid state due to incomplete phase decomposition. This leads to
the formation of a structured network with some strength, in which a significant amount
of solvent is immobilized. The transition between these states—also sometimes called
the “gel-sol transition”—can be caused by external thermodynamic factors, which are
typical for solid-like gels (temperature, changes in the environment, etc.) but can also occur
under the action of applied mechanical forces. It is the latter case that is inherent in a large
number of so-called “yielding materials” (liquids), and the solid-to-liquid transition takes
place at some threshold, certified as yield stress. This point is quite clearly determined
for rigid and fragile structure networks, but in the vast majority of real materials (such as
lubricants, paints, foodstuffs, clay, soils, biological hydrogels, and natural phenomena such
as mudflows), this transition can be extended over time. The time effects of such objects are
similar to the durability of a solid-like structure and its deformation-induced thixotropy.
This leads to practical uncertainty in estimating the solid-to-liquid transition point.

Gels and yielding materials occupy a huge and expanding place in our lives and in
modern technologies. New materials of this type are constantly being created. At the
same time, rheology remains one of the main methods for assessing the properties of any
materials. This raises two obvious problems. The first of these consists of the study and
establishment of correlations between the rheological properties and the structure of gels,
including interaction between dispersed particles and interfacial interaction. The second
task is to develop technological methods for evaluating the rheological properties of gels
that would adequately reflect their applied properties.
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